Your selections:

Show More

Show Less

On the reconstruction of polytopes

- Doolittle, Joseph, Nevo, Eran, Pineda-Villavicencio, Guillermo, Ugon, Julien, Yost, David

**Authors:**Doolittle, Joseph , Nevo, Eran , Pineda-Villavicencio, Guillermo , Ugon, Julien , Yost, David**Date:**2019**Type:**Text , Journal article**Relation:**Discrete and Computational Geometry Vol. 61, no. 2 (2019), p. 285-302**Full Text:****Reviewed:****Description:**Blind and Mani, and later Kalai, showed that the face lattice of a simple polytope is determined by its graph, namely its 1-skeleton. Call a vertex of a d-polytope nonsimple if the number of edges incident to it is more than d. We show that (1) the face lattice of any d-polytope with at most two nonsimple vertices is determined by its 1-skeleton; (2) the face lattice of any d-polytope with at most d- 2 nonsimple vertices is determined by its 2-skeleton; and (3) for any d> 3 there are two d-polytopes with d- 1 nonsimple vertices, isomorphic (d- 3) -skeleta and nonisomorphic face lattices. In particular, the result (1) is best possible for 4-polytopes. © 2018, Springer Science+Business Media, LLC, part of Springer Nature.

**Authors:**Doolittle, Joseph , Nevo, Eran , Pineda-Villavicencio, Guillermo , Ugon, Julien , Yost, David**Date:**2019**Type:**Text , Journal article**Relation:**Discrete and Computational Geometry Vol. 61, no. 2 (2019), p. 285-302**Full Text:****Reviewed:****Description:**Blind and Mani, and later Kalai, showed that the face lattice of a simple polytope is determined by its graph, namely its 1-skeleton. Call a vertex of a d-polytope nonsimple if the number of edges incident to it is more than d. We show that (1) the face lattice of any d-polytope with at most two nonsimple vertices is determined by its 1-skeleton; (2) the face lattice of any d-polytope with at most d- 2 nonsimple vertices is determined by its 2-skeleton; and (3) for any d> 3 there are two d-polytopes with d- 1 nonsimple vertices, isomorphic (d- 3) -skeleta and nonisomorphic face lattices. In particular, the result (1) is best possible for 4-polytopes. © 2018, Springer Science+Business Media, LLC, part of Springer Nature.

On the maximum order of graphs embedded in surfaces

- Nevo, Eran, Pineda-Villavicencio, Guillermo, Wood, David

**Authors:**Nevo, Eran , Pineda-Villavicencio, Guillermo , Wood, David**Date:**2016**Type:**Text , Journal article**Relation:**Journal of Combinatorial Theory. Series B Vol. 119, no. (2016), p. 28-41**Full Text:****Reviewed:****Description:**The maximum number of vertices in a graph of maximum degree

**Authors:**Nevo, Eran , Pineda-Villavicencio, Guillermo , Wood, David**Date:**2016**Type:**Text , Journal article**Relation:**Journal of Combinatorial Theory. Series B Vol. 119, no. (2016), p. 28-41**Full Text:****Reviewed:****Description:**The maximum number of vertices in a graph of maximum degree

Almost simplicial polytopes : the lower and upper bound theorems

- Nevo, Eran, Pineda-Villavicencio, Guillermo, Ugon, Julien, Yost, David

**Authors:**Nevo, Eran , Pineda-Villavicencio, Guillermo , Ugon, Julien , Yost, David**Date:**2020**Type:**Text , Journal article**Relation:**Canadian Journal of Mathematics Vol. 72, no. 2 (2020), p. 537-556**Full Text:****Reviewed:****Description:**We study -vertex -dimensional polytopes with at most one nonsimplex facet with, say, vertices, called almost simplicial polytopes. We provide tight lower and upper bound theorems for these polytopes as functions of, and, thus generalizing the classical Lower Bound Theorem by Barnette and the Upper Bound Theorem by McMullen, which treat the case where s = 0. We characterize the minimizers and provide examples of maximizers for any. Our construction of maximizers is a generalization of cyclic polytopes, based on a suitable variation of the moment curve, and is of independent interest. © 2018 Canadian Mathematical Society.

**Authors:**Nevo, Eran , Pineda-Villavicencio, Guillermo , Ugon, Julien , Yost, David**Date:**2020**Type:**Text , Journal article**Relation:**Canadian Journal of Mathematics Vol. 72, no. 2 (2020), p. 537-556**Full Text:****Reviewed:****Description:**We study -vertex -dimensional polytopes with at most one nonsimplex facet with, say, vertices, called almost simplicial polytopes. We provide tight lower and upper bound theorems for these polytopes as functions of, and, thus generalizing the classical Lower Bound Theorem by Barnette and the Upper Bound Theorem by McMullen, which treat the case where s = 0. We characterize the minimizers and provide examples of maximizers for any. Our construction of maximizers is a generalization of cyclic polytopes, based on a suitable variation of the moment curve, and is of independent interest. © 2018 Canadian Mathematical Society.

- «
- ‹
- 1
- ›
- »

Are you sure you would like to clear your session, including search history and login status?