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Abstract: 

Theodolites represent a well-established 3D-point-measuring technology.  However 

when used for robot applications they have to be properly calibrated to fulfil the 

necessary accuracy requirements.  The theodolite calibration methods, which have 

been reported in the literature, involve the use of costly sophisticated equipment not 

easily available to most users.  Therefore, a new simplified calibration technique is 

presented based on the use of a graduated precision bar suspended freely to align with 

the vertical direction.   

 

To develop efficient mathematical models, the theodolites will be regarded as 2R 

open-ended mechanisms with the end-effector axis directed along the line of sight.  

The proposed models are then coded in a computer program designed to verify the 

validity of the technique presented.  The simulation results will be presented at the 

end of the paper. 



 -2- 
 

 

1. Introduction and Literature Survey: 

It is essential for robot calibration to precisely measure the spatial characteristics of 

the end-effector at many locations and compare the measured quantities with their 

corresponding nominal values using a suitable mathematical procedure.  To acquire 

the necessary spatial measurements, researchers have implemented different 

approaches that range from simple conventional contact methods such as dial 

indicators and mechanical fixtures to costly automated laser-tracking systems. 

 

Some factors should be examined before any particular three-dimensional (3D) 

measuring system is decided upon.  The first factor to consider here would be the 

level of precision desired for the collected data and how it compares with the 

established precision of the proposed measuring approach.  This is particularly 

important because the improved positioning accuracy of the calibrated robot 

manipulator is limited by the accuracy of the measurement system employed.   

 

Economical viability of the measuring system as weighed against the expected gain of 

the calibration work is another factor to consider during the selection process.  

Measuring systems vary in cost according to the level of automation, precision and 

operating skills involved.  Also the time required to collect the data might be a factor 

to consider in some applications, especially in production environment where the 

robot has already been in operation and the calibration process is only a part of a 

scheduled maintenance routine.  In such a case, a low-cost, simply built and readily 

used system may be a preferred option.  The system, which was designed by Everett 

and Ives (1996), is a representative example in this regard.  This short-range system 
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uses LED beam trip switches to define the spatial location of a sphere attached to the 

end-effector. 

 

Generally, measuring systems may be broadly classified according to the amount of 

spatial data they return per one measurement.  Usually, six parameters are needed to 

locate a solid object in space.  Three of these parameters may represent the XYZ 

Cartesian location of any point on the object whilst the other three parameters are 

intended to report the angular orientation of the object.  For robot calibration, it is 

preferable that the measuring system employed is able to return all the six spatial 

characteristics of the end-effector and therefore produce full-pose measurements.  

Even though it is long established that the spatial measurement of angles is a difficult 

task to achieve, a system capable of generating complete, six parametric, 

measurements was reported by Vincze et al (1994).  The system uses a single laser 

beam to measure the Cartesian location of a target attached to the end-effector while 

the orientation is determined by analysing the intensity profile of the reflected beam.  

The system, which is fully automated, is able to track and measure random 

movements of the robot in space.  Other laser tracking systems were reported by Van 

Brussel (1990) and Nakamura et al (1994).  These systems however seem to produce 

only partial-pose measurements of the end-effector spatial locations.  This is in fact 

the case with the overwhelming majority of the measuring systems already in 

existence.  They mostly generate information related to the spatial position of a point 

attached to the end-effector.  The automated theodolite system designed by Driels and 

Pathre (1991) is a good example of these systems.  This system is different in the 

sense that it uses a charge-coupled device (CCD) and an image-analysis technique to 

track an illuminated spot attached to the end-effector.  A CCD camera is mounted on 
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a stepper-motor-driven, two revolute-joint mechanism similar to that used on 

theodolites to facilitate the tracking performance.  A single CCD camera system was 

also successfully used by Preising and Hsia (1991) to calibrate a robot arm.  In this 

system, the image of 36 infinitesimal disks of known dimensions, inscribed on a plate 

attached to end-effector, was analysed to calculate the required spatial information.   

 

Point measuring systems are widely used for robot calibration where researchers may 

use only the spatial positions of a measured point attached to an end-effector in a 

mathematical procedure to compute the corresponding values of the geometric 

parameters of the robotic structures.  Some of these systems use laser interferometry 

to measure positioning errors along one of the axes of a given Cartesian frame.  

Examples of these systems are presented by Tang and Liu (1993) and Legnani et al 

(1996), where the robot is made to move along linear paths in the direction of either 

the Y- or X-axis, parallel to a laser beam, and linear errors are measured. 

 

A more generalised point measuring technique is achieved through the use of 

coordinate measuring machines (CMM).  These are mostly built out of three 

prismatic-joints where the joint-axes are directed along the three  axes of a Cartesian 

frame.  The Cartesian location of any target located within the machine work space 

will be displayed once it comes in contact with a probe.  Mooring et al (1991) present 

a good example of these systems where the positioning errors of a PUMA-type robot 

are directly measured. 

 

The method of triangulation is often used to measure the spatial locations of points.  

In this method, two, or more, lines are made to intersect at the point whose spatial 
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position is required to be measured.  The spatial particulars of these lines, with respect 

to a defined frame, are measured and used in a mathematical procedure to calculate 

the position of the observed point with respect to a known frame.  One approach was 

reported by Stone and Sanderson (1987), where triangulation is achieved by emitting 

sound pulses from a source attached to the end-effector and the time taken by the 

sound wave to travel to microphones located at known positions, was used to work 

out the distances from the source to the microphones.  These distances are then used 

in a triangulation procedure to work out the position of the end-effector in space.  

This method is indeed automatic and fast but sensitive to changes in atmospheric 

conditions and therefore prone to errors as discussed by Mooring et al (1991).   

 

Theodolites are also employed to measure the spatial position of a target attached to 

the end-effector.  The lines of sight of two, or more, theodolites are used to achieve 

the required triangulation.  This technique was used by Judd and Knasinski (1990) to 

successfully calibrate an Automatix AID-900 robot.  There is no mention in this work 

as to how the two theodolites were calibrated and consequently how the kinematic 

relations between them were established.  Whitney et al (1986) used a single 

theodolite and a bar with a predefined length to calibrate a PUMA-type robot.  In this 

work there is no reference to the method used to calibrate the measuring theodolite.   

 

Jarvis (1988) notes that the simple geometry used to describe the kinematics of 

theodolites in surveying applications is not sufficient for robot calibration purposes.  

Jarvis therefore proposes a technique where every theodolite is calibrated individually 

by observing a target, moving along a straight line, as it pauses at a set of defined 

points.  The target is mounted on a robotic arm and the distances between the 
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measurement points are determined by a laser interferometric system.  The kinematic 

relations between two theodolites are then established by mutual observation of 

spatial targets located within the work volume.  The sophisticated equipment used to 

calibrate theodolites in this work made it possible to use the absolute, rather than 

relative, location of the observed point in the mathematical model.  However such a 

level of sophistication is rarely possible to attain in an industrial situation and as such 

defeats the purpose of simplicity for which theodolites are used for robot calibration.  

The procedure is also prone to error accumulation which may result from both 

positioning errors of the robotic arm and the laser interferometer.  The method results 

in theodolites calibrated only in the narrow portion of the work volume which is 

relevant to the straight line along which the target is moved.   

 

Driels and Pathre(1991) also calibrated a single theodolite, which was built to carry a 

CCD camera.  In this work a CMM was employed to calibrate the theodolite in a 

limited portion of the work volume using the kinematic notation described by Hayati 

(1983). 

 

This paper reports a proposed procedure for the calibration of a two-theodolite 

module.  The procedure, which is referred to as the Vertical-Observation-Lines 

method, involves the use of a published kinematic notation referred to as the -model.  

The main aspects of this notation is described in the attached appendix, but more 

details may be sough in a work Sultan and Wager (1999).  The same notation was also 

used by Sultan and Wager (2001) successfully to calibrate an industrial six-axes 

robot. 
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2. The Method of Vertical-Observation-Lines: 

In the present work the theodolites were made to observe two points, Pi1 and Pi2 

whose position vectors in a base Cartesian frame are, 1ip and 2ip  respectively.  The 

two points are separated by a known distance, l i , along a line parallel to the vertical 

axis of the base frame.  This line will be referred to, in the following discussion, as 

the vertical-observation-line or VO-line for short.  In other words, the two observed 

points are made to share both the x- and y-coordinates and their relative position 

vector, il , is fully defined, in a base Cartesian frame, as follows; 

l i  = 0 x + 0 y + l i  z        (1) 

where x, y and z are unit vectors parallel to the corresponding axes of the base frame 

and the length, l i , is accurately measured. 

 

The same position vector when calculated as observed by the theodolites using their 

erroneous geometric parameters and then transformed to the base frame is referred to 

in this discussion as ip .  This vector can be expressed as follows; 

   p x y zi
x
i

y
i

z
ip p p          (2) 

where px
i , py

i  and pz
i  are the X-, Y- and Z-components respectively of the 

position vector ip .  The scalar quantities, px
i , py

i  and pz
i  are expressed in 

functional forms as follows; 

),( qθ ii
x

i
x fp  , ),( qθ ii

y
i
y fp   and ),( qθ ii

z
i
z fp    (3) 

where iθ , is a vector of the eight theodolite-angles (obtained from observations) 

which correspond to VO-line number i and q is a vector encompassing the system’s 

21 geometric parameters.  These 21 parameters will be detailed in section (3) below. 
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The VO-lines method is useful in the formulation of the mathematical model, because 

it provides three equations, instead of the common one length equation, per two 

observations.  Each equation describes the relative error in a direction parallel to one 

of the three perpendicular axes of the base frame.  Two more equations can also be 

written per a VO-line to describe the kinematic consistency of the observation 

process.  This will bring the number of useful equations per line to five; hence 

decreasing the number of observations required for the calibration process. 

 

In the present work, VO-lines with different lengths and altitudes would be moved 

around in the work volume from one location to the other and at each location, i, two 

points separated by different lengths, l i , are observed.  Therefore; the following error 

equation can be written at every location of the VO-line; 

iii lpe           (4) 

where ei is the dimensional error vector associated with the VO-line number i in 

directions parallel to the corresponding axes of the base frame. 

 

After the VO-line was moved through an adequate number of locations distributed 

around the work volume resulting in the compilation of an adequate number of error 

equations, a suitable least-squares technique may be implemented for the 

mathematical realisation of the procedure.  The models proposed here for theodolite 

calibration are presented in the next section. 
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3. Mathematical Procedure: 

A two-theodolite module is shown in figure (1).  The figure also shows the VO-line 

number i with the observation target points Pi1 and Pi2 separated by a distance li.  In 

the present discussion, spatial characteristics of the left-hand side (LHS) theodolite 

are designated by the subscript L while the subscript R is used for the spatial 

characteristics of the right-hand side (RHS) theodolite. 

 

The -model frames are attached to the links of both theodolites as shown in figure 

(1).  The frames are assigned according to the conventions presented in the appendix 

as follows; 

1.  X
0
Y

0
Z

0
 is the base frame. 

2.  X
L1

Y
L1

Z
L1

 is constructed about the near-vertical joint-axis of the LHS theodolite 

and this frame will be referred to as the L1-frame. 

3.  X
L2

Y
L2

Z
L2

 is constructed about the near-horizontal joint-axis of the LHS theodolite 

and it will be referred to as the L2-frame. 

4.  X
L
Y

L
Z

L
 is constructed about the line of sight of the LHS theodolite.  This frame is 

referred to, here, as the L-frame. 

5.  X
R1

Y
R1

Z
R1

 is constructed about the near-vertical joint-axis of the RHS theodolite 

and will be referred to as the R1-frame. 

6.  X
R2

Y
R2

Z
R2

 is constructed about the near-horizontal joint-axis of the RHS theodolite 

and this frame will be referred to as the R2-frame. 

7.  X
R
Y

R
Z

R
 is constructed about the line of sight of the RHS theodolite and is referred 

to, in the present discussion, as the R-frame. 
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It is worth noting here that the z-axis of the base frame is made to coincide with the 

absolute vertical direction and intersect the z-axis of the L1-frame.  The point of 

intersection is the origin of both the base frame and the L1-frame.  Moreover, the y-

axis of the base frame is made to intersect the z-axis of the R1-frame.  These frames 

are related, according to the conventions of the -model, by the following sets of 21-

parameters; 

{a
R2

, b
R2

, 
R2

 and 
R2

} relate the R-frame to the R2-frame, 

{a
R1

, b
R1

, 
R1

 and 
R1

} relate the R2-frame to the R1-frame, 

{a
R0

, 
R0

 and 
R0

} relate the R1-frame to the base-frame, 

{a
L2

, b
L2

, 
L2

 and 
L2

} relate the L-frame to the L2-frame, 

{a
L1

, b
L1

, 
L1

 and 
L1

} relate the L2-frame to the L1-frame and 

{
0
 and 

0
} relate the L1-frame to the base frame. 

The values of 
i
-angles are selected as follows; 


L2 

= 0.0, 
L1 

= 0.0, 
R2 

= 0.0, 
R1 

= 0.0, 
0 
= /2. 

 

Figure (1) depicts the instant when the two theodolites are observing point, Pij, 

number j (where j = 1 or 2) on the VO-line number i.  At this instant, the lengths of 

the lines of sight of the LHS-theodolite and the RHS-theodolite are hL
ij  and hR

ij  

respectively.  The spatial location of the observed point with respect to the L-frame, 

p L
ij , can be expressed as follows; 

ij
L

ij
L

ij
L

ij
L

ij
L h zyxp  .0.0        (5) 

where x L
ij , y L

ij  and zL
ij  are unit vectors directed along the axes of the L-frame. 
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The position vector of the same point with respect to the R-frame, p R
ij , can be written 

as follows; 

ij
R

ij
R

ij
R

ij
R

ij
R h zyxp  .0.0        (6) 

where x R
ij , y R

ij  and zR
ij  are unit vectors directed along the axes of the R-frame. 

 

The technique of homogeneous transformation is used here to express both the 

position vectors in equations (5) and (6) with respect to the base-frame.  In this case, 

the transformed position vectors can be equated as follows; 
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1

0

0
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2

1

1

0

0
2

2
1

1
02

2
1

1
0

ij
RR

R
R

R
R

ij
LL

L
L

L
L

R

R

R

R

L

L

L

L
p

TTTTTT
p

TTTTTT 















  

(7) 

where the T-matrices are constructed as outlined in the appendix.  These matrices 

encompass the model parameters together with the joint-displacements of theodolites. 

 

Substituting for p L
ij  and p R

ij  in equation (7) and performing the due matrix 

multiplication produces the following vector relation; 

ij
R

ij
L

ij
L

ij
L

ij
R

ij
R hh

0000
ppzz         (8) 

where ij
R0

z  and ij
L0

z  are unit vectors directed along the Z-axes of the R-frame and the 

L-frame respectively as expressed with respect to the base-frame.  The position 

vectors, ij
R0

p  and ij
L0

p , locate the origins of the R-frame and the L-frame respectively 

with respect to the base-frame. 
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The following system of linear equations, which relates to point number ij, can be 

worked out from equation (8); 

ij

ij
L

ij
Rij

h

h
00 pZ 








         (9) 

where ij
0Z  and ij

0p  take the following forms; 

 
230 00 

 ij
L

ij
R

ij zzZ        (10) 

and 

 
130 00 

 ij
R

ij
L

ij ppp         (11) 

 

The values of hL
ij  and hR

ij  could now be worked out by applying a least-squares 

technique to equation (9) as follows; 

  ijTijijTij

ij
L

ij
R

h

h
00

1

00 pZZZ 






 
       (12) 

Equation (12) yields the following expression for hL
ij ; 





























 ijij

ij
R

ij
L

ij
Lh 002)(1

1

00

pz
zz




      (13) 

where ij
0z  is given as follows; 

ij
L

ij
L

ij
R

ij
R

ij

0000
)(0 zzzzz          (14) 

 

Once the length, hL
ij  is calculated; the position vector, ij

0p , which relates the spatial 

location of the observed point with respect to the base-frame could be worked out as 

follows; 

ij
L

ij
L

ij
L

ij h
000 zpp          (15) 
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The differential form of equation (15) may be expressed as follows; 

k

ij
Lij

L
k

ij
Lij

L
k

ij
L

k

ij

q

h

q
h

qq 











0

000 z
zpp

       (16) 

where qk refers to the geometric parameter number k and, 
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          (17) 

 

The above concepts may now be applied to equation (4) to obtain a differential error 

form for the VO-line number i as follows; 

k
k k

i

k

i
iii q

qq



















21

1

2
0

1
02

0
1

0 )(
pp

lpp      (18) 

where 1
0
ip  and 2

0
ip  are calculated using equation (15) and the numerical values of the 

parameters as obtained in the previous iteration.  The differential vectors 
k

i

q
 1

0p
 and 

k

i

q
 2

0p
 are as given in equation (16). 

 

Equation (18) produces three scalar error equations per a VO-line to use for the 

calibration analysis.  Two more equations per line (i.e. a single equation for every 

observed point) can also be obtained and utilized for the analysis.  These two 

equations are relevant to the kinematic consistency of the theodolite module as 

described in the next section. 
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4. Kinematic Consistency: 

The expressions in equations (7) and (8) indicate that both theodolites must indeed be 

observing the same point, number ij, in order to ensure the accuracy of measurements.  

To achieve that, a kinematic consistency index may be proposed and used for the 

analysis by re-writing equation (8) in the following linear form; 

  0ppzz 

















1

0000

ij
L

ij
R

ij
R

ij
L

ij
L

ij
R h

h

     (19) 

For equation (19) to have a solution, the determinant of the system matrix must be 

equal to zero.  Geometrically, this means that the intersecting axes, ij
R0

z  and ij
L0

z  must 

fall in the same plane as the vector ij
R

ij
L 00

pp  . This is equivalent to the co-planarity 

constraint, which is utilised in the field of computer vision to establish the elements of 

the epipolar geometry.  In this geometry, the lines linking the centres of the cameras 

must fall in one plane with the intersecting optical rays of the cameras.  Since these 

optical rays are relevant to a pair of corresponding points on two images, geometric 

relationships can be used to construct the necessary transformation information.   

Adequate information on the epipolar geometry may be sought in textbooks by Xu 

and Zhang (1996) and by Hartley and Zissermann (2000) or in papers by Xu (1995), 

Zhang (1998) and Zissermann and Maybank (1993). 

 

In the present work, the kinematic consistency is quantified by calculating the 

determinant of the matrix given in equation (19).  This determinant is referred to in 

the following discussion as the Kinematic Consistency Index, KCI.  As such, the 

value of ijKCI , which is relevant to point ij, may be expressed as follows; 

)()(
0000

ij
L

ij
R

ij
R

ij
L

ijKCI zzpp         (20) 



 -15- 
 

 

Equation (20) can then be manipulated into the following from; 

)()(
000000

ij
R

ij
R

ij
L

ij
L

ij
L

ij
R

ijKCI zpzzpz        (21) 

This last expression (21) produces two extra equations (one for every observed point) 

to use for the VO-line.  The differential form of ijKCI  is expressed as follows; 

)(
)(

)(
)(

00

000

000

000

0

ij
R

ij
R

k

ij
L

k

ij
R

ij
Rij

L
ij
L

ij
L

k

ij
R

k

ij
L

ij
Lij

R
k

ij

qqqqq

KCI
zp

zzp
zzp

zzp
z 













 


 

          (22) 

For model implementation, ijKCI  is used as follows; 

k
k k

ij
ij q

q

KCI
KCI 






21

1

)0( 


       (23) 

where ijKCI  is calculated numerically from equation (21) using the values obtained 

during the previous iteration for the system parameters and 
k

ij

q

KCI




 is evaluated from 

equation (22). 

 

After the data related to a total of n VO-lines are collected and the corresponding 

aggregate 5n1 error vector, e, is worked out, the overall error equation of the model 

may be expressed as follows; 

e = J q         (24) 

where J is the, 5n21, aggregate Jacobian matrix of the model. 

 

The solution of the over-determined system in equation (24) may be obtained by the 

use of a suitable least-squares technique as follows; 

(JT J )q = JT e        (25) 
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The output of equation (25) is the vector of differential parameters, q.  The iterations 

stop when the norm of this vector is less than or equal to a small predefined value.  

The values of the system parameters are updated for each iteration such that the 

vector of parameters, qr, which may be used in iteration number r is worked out as 

follows; 

qr = qr-1  qr-1         (26) 

where qr-1 is the vector of differential parameters obtained at iteration number r1. 

 

The Levenberg-Marquardt technique can be implemented to solve the system given in 

equation (25) as follows; 

(JT J + I)q = JT e        (27) 

where I is a 2121 identity matrix and  is a non-negative coefficient selected in such 

a manner that the matrix  (JT J + I) is always positive definite.   

In this technique, the user selects a suitable value for  and this value is gradually 

decreased as the solution converges to a minimum to retain the favourable 

convergence properties of Gauss-Newton method.  Useful insights into this strategy 

are available in publications by Mooring et al (1991) and Marquardt (1963). 

 

The system in equation (24) could also be solved by the use of a suitable Kalman 

filter technique, which involves a recursive stepwise estimation procedure.  In this 

technique, which may be reviewed in Mooring et al (1991) or Bay (1993), the data 

collected for one VO-line may be used to estimate the system parameters.  The values 

of these parameters would then be improved by the sequential use of the data 
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collected in connection with other VO-lines one at a time.  This method may be best 

suited for the autonomous, on-the-fly, calibration methods rather than aggregate batch 

data-collection techniques. 

 

The mathematical procedure proposed in this section was performed, symbolically, on 

a computer algebra package and the resulting output was coded in a computer 

program.  The input to the program consists of the theodolite angles that correspond 

to all VO-lines simulated in conjunction with the nominal ideal values of the model 

parameters.   

The computer program was successfully used to obtain a calibrated model for a two-

theodolite module.  The results of the simulation work are given in the next section.   

 

5. Simulation and Results: 

The mathematical model presented in sections (3) and (4) was used in a computer 

program designed to simulate the calibration process of a two-theodolite module.  The 

input to the program consists of the set of nominal geometric parameters in addition to 

the theodolite angles (i.e. iθ ) identifying the spatial positions of vertical lines-

attached points.  These angles are, normally, obtained from observations. 

 

The nominal values of the system geometric parameters are shown in table (1), where 

the angles are given in radians and lengths are in millimetres.  The values in this table 

were obtained by assuming that the two theodolites would be erected and levelled at a 

distance 2400.0 from one another.  Both lines-of-sight are assumed to be initially 

parallel to the X
0
– axis and lying in the xy-plane of the X

0
Y

0
Z

0
- frame (i.e. the base 
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frame).  Without loss of generality, this configuration is meant to represent the home 

position (where all joint angles may be equated to zero) of the two-theodolite module. 

 

The details of the calibration procedure are described in figure (2).  The inverse 

kinematic procedure, pointed out in the figure, is performed to calculate the angular 

displacements of the theodolite joints in order for the line of sight to shoot at a point 

whose spatial coordinates are known.  If the joint angles are given, then a direct 

kinematic procedure may be performed to calculate the spatial location of the 

observed point.  The details of both the inverse and the direct kinematic procedures 

may be sought in works on robot kinematics; e.g. Sultan (2000).   

 

As figure (2) indicates, small constant deviations were intentionally incorporated into 

the nominal values of the theodolite geometric parameters to simulate a real life 

situation.  Table (2) shows the new values of these geometric parameters after small 

deviations were added.   

 

Also, the angles obtained from observations were incremented by random errors 

introduced to simulate the effects of sensor resolutions. These errors were generated 

by a random function available in the C-compiler used for the simulation.  A 

histogram representation of these errors is shown in figure (3), whereby the mean 

error and the standard deviations are given as 1.88 seconds and 17.59 seconds 

respectively.   

 

Calibration procedure has been performed, as described in figure (2), and the resulting 

calibrated values for the theodolites’ geometric parameters are given in table (3).  A 
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comparison between the values in this table and corresponding values in table (2) 

reveals that the deviations introduced initially to the geometric parameters differ 

slightly from the deviations in these parameters as obtained by the calibration 

procedure.  This may be attributed to the effects of the sensor resolution errors, which 

were mapped into the calibration results.  

 

 

To test the performance of the proposed theodolite calibration technique, a simulated 

set of predetermined vertical lengths were calculated using the geometric parameters 

of both uncalibrated (nominal) and calibrated theodolites.  The details of this 

procedure are described in figure (4) and the x-, y- and z-errors obtained for both the 

calibrated and uncalibrated theodolites are shown in figures (5), (6) and (7) 

respectively.  The mean errors in these directions have been reduced form 14.19 to 

0.05mm, 9.7 to 0.024mm and 10.3 to 0.044mm respectively.  Moreover, the 

corresponding standard deviations of error have been reduced respectively from 6.37 

mm, 6.38 mm and 5.51 mm to 0.035 mm, 0.024 mm and 0.046 mm.  This proves the 

validity of the models proposed in this work.   

 

6. Conclusion: 

It is necessary to calibrate theodolites to fulfil the requirements of their use in robot 

metrology.  This paper describes a simplified technique proposed for theodolite 

calibration using sets of vertical observation lines of known lengths.  In this 

technique, the theodolites are regarded as 2R open-ended mechanisms with the end-

effector axes directed along the line of sight.   
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Mathematical models were developed using a non-singular kinematic representation 

and coded in a computer program, which was then employed successfully in program 

designed to simulate the calibration process.  The simulation results indicate the 

suitability of the proposed technique for theodolite calibration applications. 

 

Appendix: The -model 

The kinematic aspects of the -model notation are shown in figure (8).  The model is 

established by introducing an intermediate Cartesian system between the joint-frames 

number i and i+1.  The Z-axis of the new frame, which is referred to as the i-frame, 

lies in a plane parallel to the XiYi-plane and at a distance, di, equal to the linear joint-

displacement from it.  In case of a rotary joint, di may be set equal to zero.  This Z-

axis, which may be referred to as Zi, is initially set by the user at a constant angle, i, 

from the Xi-axis.  i, which is measured in a right-handed sense about Zi, is selected 

to ensure that Zi may not be parallel to Zi+1.  The Xi-axis of the i-frame is then 

established in a plane perpendicular to both Zi and Zi.  The i-frame is then used to 

establish a Cartesian system, Xi+1Yi+1Zi+1, about the Zi+1-axis in a DH-fashion.  

The i-frame and the (i+1)-frame are on the same rigid link and perform the same 

displacement (di or i) along or about the Zi respectively.   

 

The transformation, 
i
Ti+1, from the (i+1)-frame to the i-frame may now be expressed 

as follows, 

i
Ti+1 = 

i
T
i iT

i+1        (A1) 
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where 
i
T
i and iT

i+1 represent the transformation from the i-frame to the i-frame 

and from the (i+1)-frame to the i-frame respectively.  These matrices may be 

expressed as follows, 

i

i i i

i i i i

i

i

d
T

   
   



  
 



















sin( ) cos( )

cos( ) sin( )
i 0 0

0 0

0 1 0

0 0 0 1

 

and          (A2) 

i
i i i i i i i

i i i i i i i

i i i
i

 






















1
0

0 0 0 1



     
     

 
T

cos( ) sin( )cos( ) sin( )sin( ) b cos( )

sin( ) cos( )cos( ) cos( )sin( ) b sin( )

sin( ) cos( ) a
 

where ai, bi, i and i are the DH-parameters which relate the (i+1)-frame to the i-

frame as shown in figure (5).  As the above expression for 
i
T
i indicates, the angle 

between the Xi- and the Zi-axes is initially i.  However with the onset of the 

rotational motion, this angle would vary by the value of the motor displacement, i.  

The expression also reveals that the i-frame may slide along the Zi-axis a distance di 

if the joint was of the sliding type; in such a case i may be set equal to zero. 
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Figure (1): -Model Assignment for a Two-Theodolite Module. 
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Figure (2): Block Diagram of the Simulation Procedure. 
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Figure (3): A Histogram of Typical Random Errors Added to Angular Measurements. 
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Figure (4): Block Diagram of the Performance Analysis Procedure. 
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Figure (5): The Effect of the Calibration Processes on the X-reading of Theodolites. 
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Figure (6): The Effect of the Calibration Processes on the Y-reading of Theodolites. 
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Figure (7): The Effect of the Calibration Processes on the Z-reading of Theodolites. 
 



 
 

Figure (8): The Kinematic Notation of the -Model. 
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Table (1): Nominal Values of System Parameters. 
 0 L1 L2 R0 R2 R2 
a 0.0 0.0 0.0 2400 0.0 0.0 
b 0.0 0.0 0.0 0.0 0.0 0.0 
      
      
 
 
 
 
Table (2): Intentionally Deviated Values of System Parameters. 

 
 
 
 
 
Table (3): Calibrated Values of System Parameters. 

 
 
 

 0 L1 L2 R0 R1 R2 
a 0.0 0.229008 -0.039649 2405.0 0.129916 -0.385445 
b 0.0 0.029187 0.199963 0.0 -0.202099 0.102801 
 1.580796 1.55074 1.630808 1.580786 1.582881 1.596907 
 3.162 1.560002 -1.530751 3.154 1.517744 -1.584155 

 0 L1 L2 R0 R1 R2 
a 0.0 0.20266 -0.03126 2405.017 0.13301 -0.44304 
b 0.0 0.1064 0.23157 0.0 -0.05699 0.06682 
 1.5807 1.5507 1.63081 1.58079 1.582889 1.59690 
 3.1616 1.5600 -1.53076 3.15359 1.517747 -1.58415 


