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Abstract:

Theodolites represent a well-established 3D-point-measuring technology. However
when used for robot applications they have to be properly calibrated to fulfil the
necessary accuracy requirements. The theodolite calibration methods, which have
been reported in the literature, involve the use of costly sophisticated equipment not
easily available to most users. Therefore, a new simplified calibration technique is
presented based on the use of a graduated precision bar suspended freely to align with

the vertical direction.

To develop efficient mathematical models, the theodolites will be regarded as 2R
open-ended mechanisms with the end-effector axis directed along the line of sight.
The proposed models are then coded in a computer program designed to verify the
validity of the technique presented. The simulation results will be presented at the

end of the paper.



1. Introduction and Literature Survey:

It is essential for robot calibration to precisely measure the spatial characteristics of
the end-effector at many locations and compare the measured quantities with their
corresponding nominal values using a suitable mathematical procedure. To acquire
the necessary spatial measurements, researchers have implemented different
approaches that range from simple conventional contact methods such as dial

indicators and mechanical fixtures to costly automated laser-tracking systems.

Some factors should be examined before any particular three-dimensional (3D)
measuring system is decided upon. The first factor to consider here would be the
level of precision desired for the collected data and how it compares with the
established precision of the proposed measuring approach. This is particularly
important because the improved positioning accuracy of the calibrated robot

manipulator is limited by the accuracy of the measurement system employed.

Economical viability of the measuring system as weighed against the expected gain of
the calibration work is another factor to consider during the selection process.
Measuring systems vary in cost according to the level of automation, precision and
operating skills involved. Also the time required to collect the data might be a factor
to consider in some applications, especially in production environment where the
robot has already been in operation and the calibration process is only a part of a
scheduled maintenance routine. In such a case, a low-cost, simply built and readily
used system may be a preferred option. The system, which was designed by Everett

and lves (1996), is a representative example in this regard. This short-range system



uses LED beam trip switches to define the spatial location of a sphere attached to the

end-effector.

Generally, measuring systems may be broadly classified according to the amount of
spatial data they return per one measurement. Usually, six parameters are needed to
locate a solid object in space. Three of these parameters may represent the XYZ
Cartesian location of any point on the object whilst the other three parameters are
intended to report the angular orientation of the object. For robot calibration, it is
preferable that the measuring system employed is able to return all the six spatial
characteristics of the end-effector and therefore produce full-pose measurements.
Even though it is long established that the spatial measurement of angles is a difficult
task to achieve, a system capable of generating complete, six parametric,
measurements was reported by Vincze et al (1994). The system uses a single laser
beam to measure the Cartesian location of a target attached to the end-effector while
the orientation is determined by analysing the intensity profile of the reflected beam.
The system, which is fully automated, is able to track and measure random
movements of the robot in space. Other laser tracking systems were reported by Van
Brussel (1990) and Nakamura et al (1994). These systems however seem to produce
only partial-pose measurements of the end-effector spatial locations. This is in fact
the case with the overwhelming majority of the measuring systems already in
existence. They mostly generate information related to the spatial position of a point
attached to the end-effector. The automated theodolite system designed by Driels and
Pathre (1991) is a good example of these systems. This system is different in the
sense that it uses a charge-coupled device (CCD) and an image-analysis technigue to

track an illuminated spot attached to the end-effector. A CCD camera is mounted on
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a stepper-motor-driven, two revolute-joint mechanism similar to that used on
theodolites to facilitate the tracking performance. A single CCD camera system was
also successfully used by Preising and Hsia (1991) to calibrate a robot arm. In this
system, the image of 36 infinitesimal disks of known dimensions, inscribed on a plate

attached to end-effector, was analysed to calculate the required spatial information.

Point measuring systems are widely used for robot calibration where researchers may
use only the spatial positions of a measured point attached to an end-effector in a
mathematical procedure to compute the corresponding values of the geometric
parameters of the robotic structures. Some of these systems use laser interferometry
to measure positioning errors along one of the axes of a given Cartesian frame.
Examples of these systems are presented by Tang and Liu (1993) and Legnani et al
(1996), where the robot is made to move along linear paths in the direction of either

the Y- or X-axis, parallel to a laser beam, and linear errors are measured.

A more generalised point measuring technique is achieved through the use of
coordinate measuring machines (CMM). These are mostly built out of three
prismatic-joints where the joint-axes are directed along the three axes of a Cartesian
frame. The Cartesian location of any target located within the machine work space
will be displayed once it comes in contact with a probe. Mooring et al (1991) present
a good example of these systems where the positioning errors of a PUMA-type robot

are directly measured.

The method of triangulation is often used to measure the spatial locations of points.

In this method, two, or more, lines are made to intersect at the point whose spatial
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position is required to be measured. The spatial particulars of these lines, with respect
to a defined frame, are measured and used in a mathematical procedure to calculate
the position of the observed point with respect to a known frame. One approach was
reported by Stone and Sanderson (1987), where triangulation is achieved by emitting
sound pulses from a source attached to the end-effector and the time taken by the
sound wave to travel to microphones located at known positions, was used to work
out the distances from the source to the microphones. These distances are then used
in a triangulation procedure to work out the position of the end-effector in space.
This method is indeed automatic and fast but sensitive to changes in atmospheric

conditions and therefore prone to errors as discussed by Mooring et al (1991).

Theodolites are also employed to measure the spatial position of a target attached to
the end-effector. The lines of sight of two, or more, theodolites are used to achieve
the required triangulation. This technique was used by Judd and Knasinski (1990) to
successfully calibrate an Automatix AID-900 robot. There is no mention in this work
as to how the two theodolites were calibrated and consequently how the kinematic
relations between them were established. Whitney et al (1986) used a single
theodolite and a bar with a predefined length to calibrate a PUMA-type robot. In this

work there is no reference to the method used to calibrate the measuring theodolite.

Jarvis (1988) notes that the simple geometry used to describe the kinematics of
theodolites in surveying applications is not sufficient for robot calibration purposes.
Jarvis therefore proposes a technique where every theodolite is calibrated individually
by observing a target, moving along a straight line, as it pauses at a set of defined

points. The target is mounted on a robotic arm and the distances between the
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measurement points are determined by a laser interferometric system. The kinematic
relations between two theodolites are then established by mutual observation of
spatial targets located within the work volume. The sophisticated equipment used to
calibrate theodolites in this work made it possible to use the absolute, rather than
relative, location of the observed point in the mathematical model. However such a
level of sophistication is rarely possible to attain in an industrial situation and as such
defeats the purpose of simplicity for which theodolites are used for robot calibration.
The procedure is also prone to error accumulation which may result from both
positioning errors of the robotic arm and the laser interferometer. The method results
in theodolites calibrated only in the narrow portion of the work volume which is

relevant to the straight line along which the target is moved.

Driels and Pathre(1991) also calibrated a single theodolite, which was built to carry a
CCD camera. In this work a CMM was employed to calibrate the theodolite in a
limited portion of the work volume using the kinematic notation described by Hayati

(1983).

This paper reports a proposed procedure for the calibration of a two-theodolite
module. The procedure, which is referred to as the Vertical-Observation-Lines
method, involves the use of a published kinematic notation referred to as the ¢-model.
The main aspects of this notation is described in the attached appendix, but more
details may be sough in a work Sultan and Wager (1999). The same notation was also
used by Sultan and Wager (2001) successfully to calibrate an industrial six-axes

robot.



2. The Method of Vertical-Observation-Lines:

In the present work the theodolites were made to observe two points, P'1 and P2

2

whose position vectors in a base Cartesian frame are, p"and p'® respectively. The

two points are separated by a known distance, 1", along a line parallel to the vertical
axis of the base frame. This line will be referred to, in the following discussion, as
the vertical-observation-line or VO-line for short. In other words, the two observed
points are made to share both the x- and y-coordinates and their relative position
vector, 1', is fully defined, in a base Cartesian frame, as follows;

I'=0x+0y+ 1z D

where x, y and z are unit vectors parallel to the corresponding axes of the base frame

and the length, 1', is accurately measured.

The same position vector when calculated as observed by the theodolites using their

erroneous geometric parameters and then transformed to the base frame is referred to

in this discussion as Ap'. This vector can be expressed as follows;

Ap' = Apixx+Apiyy+Apiz (2)

where Ap;, Ap, and Ap, are the X-, Y- and Z-components respectively of the
position vector Ap'. The scalar quantities, Ap, Ap, and Ap, are expressed in
functional forms as follows;

Ap, = ,(0',q), Apy = f,(8',q) and Ap, = f,(8',q) 3)

where 0', is a vector of the eight theodolite-angles (obtained from observations)

which correspond to VO-line number i and q is a vector encompassing the system’s

21 geometric parameters. These 21 parameters will be detailed in section (3) below.
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The VO-lines method is useful in the formulation of the mathematical model, because
it provides three equations, instead of the common one length equation, per two
observations. Each equation describes the relative error in a direction parallel to one
of the three perpendicular axes of the base frame. Two more equations can also be
written per a VO-line to describe the kinematic consistency of the observation
process. This will bring the number of useful equations per line to five; hence

decreasing the number of observations required for the calibration process.

In the present work, VO-lines with different lengths and altitudes would be moved
around in the work volume from one location to the other and at each location, i, two
points separated by different lengths, 1', are observed. Therefore; the following error
equation can be written at every location of the VO-line;

e =Ap' -1 4)

where e is the dimensional error vector associated with the VO-line number i in

directions parallel to the corresponding axes of the base frame.

After the VO-line was moved through an adequate number of locations distributed
around the work volume resulting in the compilation of an adequate number of error
equations, a suitable least-squares technique may be implemented for the
mathematical realisation of the procedure. The models proposed here for theodolite

calibration are presented in the next section.



3. Mathematical Procedure:

A two-theodolite module is shown in figure (1). The figure also shows the VO-line

number i with the observation target points P and P2 separated by a distance I.. In

the present discussion, spatial characteristics of the left-hand side (LHS) theodolite

are designated by the subscript L while the subscript R is used for the spatial

characteristics of the right-hand side (RHS) theodolite.

The ¢-model frames are attached to the links of both theodolites as shown in figure

(1). The frames are assigned according to the conventions presented in the appendix

as follows;

1. X,YZ, is the base frame.

2. X ,Y,,Z,, is constructed about the near-vertical joint-axis of the LHS theodolite
and this frame will be referred to as the L1-frame.

3. X, Y ,Z,, Is constructed about the near-horizontal joint-axis of the LHS theodolite
and it will be referred to as the L2-frame.

4. X Y, Z, is constructed about the line of sight of the LHS theodolite. This frame is
referred to, here, as the L-frame.

5. X, Y, Zg, is constructed about the near-vertical joint-axis of the RHS theodolite
and will be referred to as the R1-frame.

6. X,,Y,Zs, IS cOnstructed about the near-horizontal joint-axis of the RHS theodolite
and this frame will be referred to as the R2-frame.

7. XY Z. is constructed about the line of sight of the RHS theodolite and is referred

to, in the present discussion, as the R-frame.



It is worth noting here that the z-axis of the base frame is made to coincide with the
absolute vertical direction and intersect the z-axis of the L1-frame. The point of
intersection is the origin of both the base frame and the L1-frame. Moreover, the y-
axis of the base frame is made to intersect the z-axis of the R1-frame. These frames
are related, according to the conventions of the ¢-model, by the following sets of 21-
parameters;

{a,, b, o, and 2} relate the R-frame to the R2-frame,
{a,, bg, @y, and B, } relate the R2-frame to the R1-frame,
{a,, o, and 2.} relate the R1-frame to the base-frame,

{a , b, o, and 3} relate the L-frame to the L2-frame,
{a ;. b, o, and B } relate the L2-frame to the L1-frame and
{a, and 3 } relate the L1-frame to the base frame.

The values of ¢-angles are selected as follows;

¢,=00,¢,=00, 4,200, ¢ =00, ¢ = 2.

Figure (1) depicts the instant when the two theodolites are observing point, P,

number j (where j = 1 or 2) on the VO-line number i. At this instant, the lengths of
the lines of sight of the LHS-theodolite and the RHS-theodolite are hy and h}
respectively. The spatial location of the observed point with respect to the L-frame,
p!, can be expressed as follows;

p! =0x! +0y) +hlz} (5)

where x! , y! and zJ are unit vectors directed along the axes of the L-frame.
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The position vector of the same point with respect to the R-frame, p‘g; , can be written
as follows;
pr =0x3 +0.y} +hgzg (6)

where x!, y% and z! are unit vectors directed along the axes of the R-frame.

The technique of homogeneous transformation is used here to express both the
position vectors in equations (5) and (6) with respect to the base-frame. In this case,

the transformed position vectors can be equated as follows;

ij ij
OT% (ﬂoTLl LngoLl (ﬂLlTLZ LZTwLZ ‘ﬂLzTL |:p1L j|=0T¢0 (/’oTRl RngORl (/’R1TR2 RZT%Z (/’RZTR |:lej|

(7)
where the T-matrices are constructed as outlined in the appendix. These matrices

encompass the model parameters together with the joint-displacements of theodolites.

Substituting for p! and p! in equation (7) and performing the due matrix
multiplication produces the following vector relation;

hg-z3, —h! -zl =pl -p}, )

where zgo and zEO are unit vectors directed along the Z-axes of the R-frame and the

L-frame respectively as expressed with respect to the base-frame. The position

vectors, pgo and pEO, locate the origins of the R-frame and the L-frame respectively

with respect to the base-frame.
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The following system of linear equations, which relates to point number ij, can be
worked out from equation (8);

ij

zg[hﬁ;} _ Ap! ©)
ny

where ZJ and Ap{ take the following forms;

zi=lh, -2, (10
and
Al =[pi —pi | | (11)

The values of hE and hg could now be worked out by applying a least-squares

technique to equation (9) as follows;

ij - e - -
{H - (ZgT Z1)" Y Ap} (12)
L

Equation (12) yields the following expression for hE ;

hﬁz[ L ]AﬁoAM’ (13)

. .
1-(z], o zg,)

where Az} is given as follows;

2l = (2l o71) -2, (19

Once the length, hE is calculated; the position vector, pg which relates the spatial

location of the observed point with respect to the base-frame could be worked out as

follows;
pl=pl, +hl -2, (15
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The differential form of equation (15) may be expressed as follows;

i ij A ij
Py _ D, +hi- Lo Eoﬂ (16)
A A A Ay

where g, refers to the geometric parameter number k and,

ij ij O o
il = ijl i 2 Az —=% ﬁApO +Apy — Ay + 2h} (2 Z) oZg, )—(ZLO ?r,)
A, 1-(z z} ) A, A, A,

(17)

The above concepts may now be applied to equation (4) to obtain a differential error

form for the VO-line number i as follows;

) ) ) 21 apil apiZ
(pll_pIZ _ll — (_0__0 (18)
oo 2 o9, od )

where pi and py> are calculated using equation (15) and the numerical values of the

aPo
aq,

parameters as obtained in the previous iteration. The differential vectors and

apo

O

are as given in equation (16).

Equation (18) produces three scalar error equations per a VO-line to use for the
calibration analysis. Two more equations per line (i.e. a single equation for every
observed point) can also be obtained and utilized for the analysis. These two
equations are relevant to the kinematic consistency of the theodolite module as

described in the next section.
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4. Kinematic Consistency:

The expressions in equations (7) and (8) indicate that both theodolites must indeed be
observing the same point, number ij, in order to ensure the accuracy of measurements.
To achieve that, a kinematic consistency index may be proposed and used for the
analysis by re-writing equation (8) in the following linear form;

hy

i -zl pl—pl]|ni|=0 (19)
1

For equation (19) to have a solution, the determinant of the system matrix must be

equal to zero. Geometrically, this means that the intersecting axes, zgo and z‘ﬂo must

fall in the same plane as the vector p‘ﬂo —pgo . This is equivalent to the co-planarity

constraint, which is utilised in the field of computer vision to establish the elements of
the epipolar geometry. In this geometry, the lines linking the centres of the cameras
must fall in one plane with the intersecting optical rays of the cameras. Since these
optical rays are relevant to a pair of corresponding points on two images, geometric
relationships can be used to construct the necessary transformation information.
Adequate information on the epipolar geometry may be sought in textbooks by Xu
and Zhang (1996) and by Hartley and Zissermann (2000) or in papers by Xu (1995),

Zhang (1998) and Zissermann and Maybank (1993).

In the present work, the kinematic consistency is quantified by calculating the
determinant of the matrix given in equation (19). This determinant is referred to in
the following discussion as the Kinematic Consistency Index, KCI. As such, the
value of KCI", which is relevant to point ij, may be expressed as follows;

KCI' = ~(p}, —p},) o (2}, xz!, (20)
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Equation (20) can then be manipulated into the following from;
KCIY =2 o (p!, x2)+2], = (p}, x2L,) (21)
This last expression (21) produces two extra equations (one for every observed point)

to use for the VO-line. The differential form of KCI" is expressed as follows;

oKCI” j 8(pEO szD) 8220 i i i a(pgo ngo) Gziﬂo i i
T T 1Zgy° + o(pLOXZLO)+ZLOO + o(pROXZRO)
Ay A Ay Ay Ay
(22)
For model implementation, KCI" is used as follows;
- 21 ij
(KCI' - 0) =28KC' 54, (23)
a Ay

where KCI" is calculated numerically from equation (21) using the values obtained

ij

during the previous iteration for the system parameters and is evaluated from

k

equation (22).

After the data related to a total of n VO-lines are collected and the corresponding
aggregate 5nx1 error vector, e, is worked out, the overall error equation of the model
may be expressed as follows;

e=J&q (24)

where J is the, 5nx21, aggregate Jacobian matrix of the model.

The solution of the over-determined system in equation (24) may be obtained by the
use of a suitable least-squares technique as follows;

J7J)sq=17"e (25)
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The output of equation (25) is the vector of differential parameters, 6q. The iterations
stop when the norm of this vector is less than or equal to a small predefined value.
The values of the system parameters are updated for each iteration such that the
vector of parameters, q', which may be used in iteration number r is worked out as
follows;

q'=q"-3q"" (26)

where 8q"* is the vector of differential parameters obtained at iteration number r—1.

The Levenberg-Marquardt technique can be implemented to solve the system given in
equation (25) as follows;

W"I+ADogq=J"e (27)

where T is a 21x21 identity matrix and A is a non-negative coefficient selected in such
a manner that the matrix (J7 J + AI) is always positive definite.

In this technique, the user selects a suitable value for A and this value is gradually
decreased as the solution converges to a minimum to retain the favourable
convergence properties of Gauss-Newton method. Useful insights into this strategy

are available in publications by Mooring et al (1991) and Marquardt (1963).

The system in equation (24) could also be solved by the use of a suitable Kalman
filter technique, which involves a recursive stepwise estimation procedure. In this
technique, which may be reviewed in Mooring et al (1991) or Bay (1993), the data
collected for one VO-line may be used to estimate the system parameters. The values

of these parameters would then be improved by the sequential use of the data
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collected in connection with other VO-lines one at a time. This method may be best
suited for the autonomous, on-the-fly, calibration methods rather than aggregate batch

data-collection techniques.

The mathematical procedure proposed in this section was performed, symbolically, on
a computer algebra package and the resulting output was coded in a computer
program. The input to the program consists of the theodolite angles that correspond
to all VO-lines simulated in conjunction with the nominal ideal values of the model
parameters.

The computer program was successfully used to obtain a calibrated model for a two-

theodolite module. The results of the simulation work are given in the next section.

5. Simulation and Results:

The mathematical model presented in sections (3) and (4) was used in a computer
program designed to simulate the calibration process of a two-theodolite module. The
input to the program consists of the set of nominal geometric parameters in addition to
the theodolite angles (i.e. ') identifying the spatial positions of vertical lines-

attached points. These angles are, normally, obtained from observations.

The nominal values of the system geometric parameters are shown in table (1), where
the angles are given in radians and lengths are in millimetres. The values in this table
were obtained by assuming that the two theodolites would be erected and levelled at a
distance 2400.0 from one another. Both lines-of-sight are assumed to be initially

parallel to the X — axis and lying in the xy-plane of the X Y Z - frame (i.e. the base
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frame). Without loss of generality, this configuration is meant to represent the home

position (where all joint angles may be equated to zero) of the two-theodolite module.

The details of the calibration procedure are described in figure (2). The inverse
kinematic procedure, pointed out in the figure, is performed to calculate the angular
displacements of the theodolite joints in order for the line of sight to shoot at a point
whose spatial coordinates are known. If the joint angles are given, then a direct
kinematic procedure may be performed to calculate the spatial location of the
observed point. The details of both the inverse and the direct kinematic procedures

may be sought in works on robot kinematics; e.g. Sultan (2000).

As figure (2) indicates, small constant deviations were intentionally incorporated into
the nominal values of the theodolite geometric parameters to simulate a real life
situation. Table (2) shows the new values of these geometric parameters after small

deviations were added.

Also, the angles obtained from observations were incremented by random errors
introduced to simulate the effects of sensor resolutions. These errors were generated
by a random function available in the C-compiler used for the simulation. A
histogram representation of these errors is shown in figure (3), whereby the mean
error and the standard deviations are given as 1.88 seconds and 17.59 seconds

respectively.

Calibration procedure has been performed, as described in figure (2), and the resulting

calibrated values for the theodolites’ geometric parameters are given in table (3). A

-18-



comparison between the values in this table and corresponding values in table (2)
reveals that the deviations introduced initially to the geometric parameters differ
slightly from the deviations in these parameters as obtained by the calibration
procedure. This may be attributed to the effects of the sensor resolution errors, which

were mapped into the calibration results.

To test the performance of the proposed theodolite calibration technique, a simulated
set of predetermined vertical lengths were calculated using the geometric parameters
of both uncalibrated (nominal) and calibrated theodolites. The details of this
procedure are described in figure (4) and the x-, y- and z-errors obtained for both the
calibrated and uncalibrated theodolites are shown in figures (5), (6) and (7)
respectively. The mean errors in these directions have been reduced form 14.19 to
0.05mm, 9.7 to 0.024mm and 10.3 to 0.044mm respectively. Moreover, the
corresponding standard deviations of error have been reduced respectively from 6.37
mm, 6.38 mm and 5.51 mm to 0.035 mm, 0.024 mm and 0.046 mm. This proves the

validity of the models proposed in this work.

6. Conclusion:

It is necessary to calibrate theodolites to fulfil the requirements of their use in robot
metrology. This paper describes a simplified technique proposed for theodolite
calibration using sets of vertical observation lines of known lengths. In this
technique, the theodolites are regarded as 2R open-ended mechanisms with the end-

effector axes directed along the line of sight.
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Mathematical models were developed using a non-singular kinematic representation
and coded in a computer program, which was then employed successfully in program
designed to simulate the calibration process. The simulation results indicate the

suitability of the proposed technique for theodolite calibration applications.

Appendix: The g-model

The kinematic aspects of the ¢-model notation are shown in figure (8). The model is
established by introducing an intermediate Cartesian system between the joint-frames
number i and i+1. The Z-axis of the new frame, which is referred to as the ¢.-frame,
lies in a plane parallel to the X,Y.-plane and at a distance, d., equal to the linear joint-
displacement from it. In case of a rotary joint, d; may be set equal to zero. This Z-
axis, which may be referred to as Z 4, is initially set by the user at a constant angle, ¢,
from the X-axis. ¢, which is measured in a right-handed sense about Z;, is selected
to ensure that Z 4 may not be parallel to Ziq The X¢i-axis of the ¢i-frame is then
established in a plane perpendicular to both Z 4 and Z,. The g-frame is then used to
establish a Cartesian system, X.,,Y;,,Z; ,, about the Z ,-axis in a DH-fashion.

The ¢-frame and the (i+1)-frame are on the same rigid link and perform the same

displacement (d; or &) along or about the Z; respectively.

The transformation, iTi+1, from the (i+1)-frame to the i-frame may now be expressed

as follows,

Ti+l = iT‘r’% 4T (A1)
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where iTq}I

and ¢iTi+1 represent the transformation from the ¢.-frame to the i-frame
and from the (i+1)-frame to the ¢-frame respectively. These matrices may be

expressed as follows,

—-sin(¢g +6) 0 cos(g+6) O
T — cos(¢ +6) 0 sin(g+6) O
' 0 1 0 d,
0 0 0 1

and (A2)

cos(ﬂl) —sin(,&l)cos(ai) sin(ﬂl)sin(ai) bicos(ﬂi)
¢|Ti+1= sin(ﬂl) cos(ﬂl)cos(ai) —cos(,al)sin(ai) bi sin(ﬂl)

0 sin(ai ) COS(ai ) a

0 0 0 1

where a;, b, ; and £, are the DH-parameters which relate the (i+1)-frame to the ¢-

¢

frame as shown in figure (5). As the above expression for T"! indicates, the angle

between the X;- and the Z -axes is initially ¢. However with the onset of the
rotational motion, this angle would vary by the value of the motor displacement, 6.
The expression also reveals that the ¢,-frame may slide along the Z.-axis a distance d;

if the joint was of the sliding type; in such a case & may be set equal to zero.
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Table (1): Nominal Values of System Parameters.

0 L1 L2 RO R2 R2
a 0.0 0.0 0.0 2400 0.0 0.0
b 0.0 0.0 0.0 0.0 0.0 0.0
a /2 /2 /2 /2 /2 /2
p T /2 —T11/2 s /2 —11/2
Table (2): Intentionally Deviated Values of System Parameters.
0 L1 L2 RO R1 R2
a 0.0 0.229008 | -0.039649 2405.0 0.129916 | -0.385445
b 0.0 0.029187 | 0.199963 0.0 -0.202099 | 0.102801
a 1.580796 | 1.55074 | 1.630808 | 1.580786 | 1.582881 | 1.596907
Yij 3.162 1.560002 | -1.530751 3.154 1517744 | -1.584155
Table (3): Calibrated Values of System Parameters.
0 L1 L2 RO R1 R2
a 0.0 0.20266 | -0.03126 | 2405.017 | 0.13301 -0.44304
b 0.0 0.1064 0.23157 0.0 -0.05699 0.06682
a 1.5807 1.5507 1.63081 1.58079 | 1.582889 | 1.59690
Jij 3.1616 1.5600 -1.53076 | 3.15359 | 1.517747 | -1.58415




