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Abstract

Cluster analysis deals with the problem of organization of a collection of patterns into

clusters based on a similarity measure. Various distance functions can be used to define

this measure. Clustering problems with the similarity measure defined by the squared Eu-

clidean distance have been studied extensively over the last five decades. However, problems

with other Minkowski norms have attracted significantly less attention. The use of different

similarity measures may help to identify different cluster structures of a data set. This in

turn may help to significantly improve the decision making process. High dimensional data

visualization is another important task in the field of data mining and pattern recognition.

To date, the principal component analysis and the self-organizing maps techniques have been

used to solve such problems.

In this thesis we develop algorithms for solving clustering problems in large data sets

using various similarity measures. Such similarity measures are based on the squared L2 as

well as L1 and L∞ norms. In all cases the clustering problem is a global optimization problem

with nonsmooth nonconvex objective functions. In many datasets these problems are large

scale and the conventional global optimization algorithms are not efficient for solving such

problems. Therefore we propose to apply local search methods for solving clustering problems,

however the success of these methods strongly depends on the choice of starting cluster

centers. To deal with the nonconvexity of the clustering problems we propose incremental

algorithms for their solution which helps us to design a special procedure to generate starting

points for cluster centers. Such an approach allows one to find global or near global solutions

to the clustering problem. In order to solve nonsmooth clustering problems we apply both

efficient nonsmooth optimization algorithms as well as smoothing techniques. To test the

proposed algorithms we apply them to solve clustering problems in small, medium size and
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large data sets. Furthermore, these algorithms are compared with many other clustering

algorithms using results of numerical experiments.

The Self Organizing Maps (SOM) is one of the topology visualizing tool that contains a

set of neurons that gradually adapt to input data space by competitive learning and form

clusters. The topology preservation of the SOM strongly depends on the learning process.

Due to this limitation one cannot guarantee the convergence of the SOM in data sets with

clusters of arbitrary shape. Therefore it is important to develop more accurate data visual-

ization and clustering algorithms. In this thesis, Constrained SOM (CSOM) is proposed as

the new version of the SOM by modifying the learning algorithm. The idea is to introduce an

adaptive constraint parameter to the learning process to improve the topology preservation

and mapping quality of the basic SOM. The computational complexity of the CSOM is less

than that of the SOM. Mapping quality of the SOM is sensitive to the map topology and

initialization of neurons. Thus in this research, a modified version of the SOM (MSOM) is

proposed to improve the convergence of the SOM. An initialization algorithm based on split

and merge of clusters is introduced to initialize neurons of the SOM. The initialization algo-

rithm speeds up the learning process in large high dimensional data sets. A topology based

on this initialization is developed to minimize the vector quantization error and topology

preservation of the self organizing maps. The CSOM and MSOM algorithms are tested on

small to large size real-world datasets.

Finally, a convolutional structure of the Recursive Modified SOM is proposed to cope

with the diversity of styles and shapes in digits recognition. The proposed recursive structure

can learn various behaviors of incoming images. The numerical results on the well-known

MNIST dataset demonstrate the superiority of the proposed algorithm over existing SOM-

based approaches.
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ε , with high resolution neurons only. These networks are the

results of equation (8.2) on the networks presented in Figure 8.8. . . . . . . . 133

8.10 The first 45 digits of the test samples. . . . . . . . . . . . . . . . . . . . . . . 135

8.11 100 training samples from the 400 training samples, which have been used to

train the sets My, y = 0, · · · , 9. . . . . . . . . . . . . . . . . . . . . . . . . . . 136

8.12 The networks Ψy
1 ∈ My, y = 0, · · · , 9 after running Algorithm 15 on training

samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

8.13 The 97 misclassified samples from the 10000 test samples. . . . . . . . . . . . 141

8.14 The set M7 used to classify images with label 7. . . . . . . . . . . . . . . . . 142

8.15 The reliability of CR-MSOM vs CNN-SOM [33] on 10000 test samples. . . . . 142

xvii



Introduction

In recent years, the problem of mining very large datasets has become more and more

pronounced in diverse areas such as document and web mining, geo information, remote

sensing, bioinformatics, and medicine, to name just a few. In these areas, massive volumes of

data arise on a daily base which have to be preprocessed and mined to allow further processing

and human inspection. Clustering and data visualization are two most useful approaches for

pattern recognition, image processing, decision making, data mining or knowledge discovery

in databases. Clustering is among most important tasks in data mining and it is the process

of learning concept of raw data by dividing the data into groups of similar objects [8, 26]. As a

tool, clustering has a wide range of applications in many applied fields like biomedical, signal

analysis, life science taxonomy, remote sensing, demography and social sciences, geology and

anthropology, economics and planning [40, 48, 50, 146].

Clustering algorithms can be broadly divided into two groups: hierarchical and partitional.

Hierarchical clustering algorithms recursively find nested clusters either in agglomerative

mode that is starting with each data point in its own cluster and merging the most similar

pair of clusters successively to form a cluster hierarchy or in divisive (top-down) mode that

is starting with all the data points in one cluster and recursively dividing each cluster into

smaller clusters. Partitional clustering algorithms decompose a dataset into a set of disjoint

clusters. Given a data set of m points, a partitioning method constructs k (k ≤ m) partitions

of the data, with each partition representing a cluster. That is, it classifies the data into k

groups by satisfying the following requirements: (1) each group contains at least one data

point, and (2) each data point belongs to exactly one group. Usually, the number of clusters

should be specified in advance. Many clustering algorithms have been proposed based on

statistical, machine learning, neural networks and optimization techniques [21, 19, 26, 84].
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The clustering problem can be formulated as an optimization problem and its optimiza-

tion models include combinatorial, mixed integer nonlinear programming and nonconvex non-

smooth optimization formulations [19, 27, 15]. In order to define similarity between points

one needs to introduce the so-called similarity measure. This measure can be defined by a

distance function. Clustering problems with the similarity measure defined by the squared

Euclidean distance have been studied extensively over the last five decades. However, prob-

lems with other Minkowski norms have attracted significantly less attention.

One should notice that most of clustering algorithms in the literature are able to find

only local solutions to clustering problems and such solutions might be significantly different

from global solutions. Moreover, these algorithms are sensitive to the choice of starting

points. The clustering is a global optimization problem, it has many solutions and only

global solutions provide the best cluster structure of a data set. General purpose global

optimization algorithms are not efficient for solving such problems in even relatively large

data sets.

In this research, we develop three different algorithms for solving clustering problems,

where the similarity measure is defined using the L1 and L∞ norms. The first algorithm

is based on an incremental approach and applies heuristics like the k-means algorithm for

finding cluster centers. This algorithm computes clusters gradually starting from one cluster

which is the whole data set. Using the incremental approach we introduce an auxiliary

clustering problem to find starting points for cluster centers. Such an approach allows one to

find either global or near global solutions to clustering problems.

In the second algorithm, we apply the discrete gradient method as a nonsmooth opti-

mization algorithm to solve the clustering problem. This method is a derivative-free method

and uses discrete gradients which are approximations to subgradients. In the third algo-

rithm, to deal with nonsmoothness, smoothing techniques are applied to approximate the

clustering functions based on the L1 and L∞ norms by smooth functions. This allows us to

apply powerful smooth optimization algorithms to solve cluster analysis problems. To test

the proposed algorithms we apply them to solve clustering problems in small, medium size

and large data sets. Furthermore, these algorithm are compared with many other clustering

algorithms using results of numerical experiments.
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We introduce two approaches to the problems in high dimensional data visualization. High

dimensional data visualization is used to analyze the hidden patterns and data relationships,

which are hard to illustrate. The self organizing map is one of the well known data mining

tools where the aim is to visualize a high dimensional data space into usually a 2-Dim grid

[37, 73, 81, 106, 129], which provides a better insight to the structure of the input data set.

The SOM contains a set of neurons that gradually adapts to input data space by competitive

learning and creates ordered prototypes. The ordered prototypes preserve the topology of the

mapped data and make the SOM to be very suitable for cluster analysis [151]. This adaption

is based on a similarity measure, which is usually Euclidean distance, and repositioning of

neurons in a 2-Dim space using a learning algorithm. The performance of the SOM strongly

depends on the learning algorithm and the quality of the self organizing map is measured

based on the quantization error and topology preservation of the map [61, 62, 71, 75].

We develop a modified learning algorithm for the Self Organizing Maps. The aim is to

propose a learning algorithm which restricts the neighborhood adaptations to only those neu-

rons that are not far from the best matching unit in the n-dimensional space. We introduce

an adaptive constraint parameter that is a decreasing function with respect to iterations to be

applicable to the SOM learning process (CSOM). The adaptive constraint parameter selected

as linear, hyperbolic and sigmoid functions. The results show that the CSOM converges much

faster than SOM, requires less computational effort, improves the topology preservation and

presents promising clustering results. The proposed algorithm outperforms similar topol-

ogy preservation algorithms especially in very large data sets in the sense of accuracy and

computational time.

The SOM and many of its modifications are sensitive to the initialization of neurons and

the topology of the map. All existing modifications of the SOM do not include any specific

procedure to initialize neurons of the map. Furthermore, the most of these algorithms,

including the SOM, are not efficient in large data sets. We develop a modified version of

the SOM (MSOM) to address these drawbacks. The proposed version includes an algorithm

for initialization of neurons based on the split and merge procedure. The high dense areas

in input data space are detected by this procedure. Then neurons are generated in those

detected areas, therefore, the number of neurons in the map is not predefined in advance.
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Initialization of neurons in such areas accelerates the convergence of the algorithm and makes

it applicable to large data sets. Based on the initial neurons, a new topology is presented to

restrict the adaptation of the neurons to those neurons, which are located in the same high

density area. Such a topology reduces the contraction of neurons which are far from each

other in n-dimensional space, consequently, leads to a better quantization error and topology

preservation than that of by the SOM. The CSOM and MSOM algorithms are tested on small

to large size real-world datasets.

Finally, we developed a Convolutional Recursive Modified SOM to solve the handwritten

digits recognition problem. A recursive form of the Modified SOM is proposed for training

process, in order to learn the diverse shapes and styles of incoming images. Then, a convolu-

tional structure is introduced to label the unknown handwritten digits images of the MNIST

dataset. The results using this dataset demonstrate the superiority of the proposed algorithm

over the existing SOM-based methods in the sense of accuracy.

Structure of the thesis

The thesis is structured as follows.

• Chapter 1 presents a literature review on hierarchical and partitional clustering algo-

rithms, clustering algorithms, which are defined using different distance functions and

high dimensional data visualization algorithms including modifications of the SOM.

• Chapter 2 discusses different optimization formulation of the clustering problems and

their comparison in the sense of computational complexity.

• In Chapter 3, we present a modified incremental algorithm to the clustering problem.

• Chapter 4 is devoted to solving the optimization problems from clustering problems.

The nonsmooth noncovex formulation of the clustering problem is presented, where the

similarity measures is defined using the L1 and L∞ norms. Furthermore, hyperbolic

smoothing of cluster functions are presented.

• The implementation of algorithms and numerical results are presented in Chapter 5.

4



• In Chapter 6, we present a new learning algorithm based on a constraint parameter to

improve the quantization error of the SOM for data visualization.

• The initialization algorithm of modified SOM and its modified topology are introduced

in Chapter 7.

• In Chapter 8, the convolutional structure of the recursive modified SOM is introduced

to the problem of handwritten digits recognition.

• We conclude the thesis by giving a short overview of the results obtained in this thesis

and discuss the directions for future work.

5



Chapter 1

Literature review

1.1 Introduction

Advances in sensing and storage technology and dramatic growth in applications such

as internet search, digital imaging, and video surveillance have created many high-volume,

high dimensional data sets. Most of the data are stored digitally in electronic media, thus

providing huge potential for the development of automatic data analysis, classification, and

retrieval techniques. In addition to the growth in the amount of data, the variety of available

data (text, image, and video) has also increased. Inexpensive digital and video cameras

have made available huge archives of images and videos. The prevalence of RFID tags or

transponders due to their low cost and small size has resulted in the deployment of millions

of sensors that transmit data regularly. E-mails, blogs, transaction data, and billions of Web

pages create terabytes of new data every day. Many of these datasets are unstructured, thus

difficult to be analyzed.

Clustering and data visualization are two most useful approaches for pattern recogni-

tion, image processing, decision making, data mining or knowledge discovery in databases.

Clustering is an unsupervised learning problem, which deals with finding structure in a col-

lection of unlabeled data. Clustering algorithms mainly fall into two groups: hierarchical and

partitional.

In this chapter we present a brief overview of hierarchical and partitional clustering al-

gorithms as well as algorithms for data visualization. A comprehensive survey on clustering
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algorithms can be found in [26, 84]. We consider only hard clustering problems. Algorithms

for the fuzzy clustering problems can be found, for example, in [45, 114].

1.2 Hierarchical clustering

Hierarchical clustering is a widely used data analysis tool. The idea is to build a binary

tree of the data that successively merges similar groups of points and visualizing this tree

provides a useful information about the data.

One of the first methods is BIRCH (Balanced Iterative Reducing and Clustering us-

ing Hierarchies) [157] that adopts the notion of clustering feature to summary description

of clustering properties, which is demonstrated that it is especially suitable for very large

databases. BIRCH incrementally and dynamically clusters incoming multi dimensional met-

ric data points to try to produce the best quality clustering with the available resources (i.e.,

available memory and I/O time constraints). It utilizes measurements that capture the nat-

ural closeness of data. These measurements can he stored and updated incrementally in a

height balanced tree (see Figure 1.1).

Root

nonLeaf

Leaf

CF CF CF CF CF CF CF CF CF CF CF

Each leaf is a sub-cluster

Leaf

CF CF CF CF CF

Figure 1.1: BIRCH concept, a leaf node is not a single data point but, a sub-cluster (which
absorbs many data points with diameter (or radius) under a specific threshold T

A Clustering Feature is a triple CF = (N,
−→
LS, SS) summarising the information that

BIRCH maintains about a cluster. Here N is number of data points in the subcluster,

−→
LS =

∑n
i=1

−→
Xi and SS =

∑n
i=1

−→
Xi

2. Some shortcomings involved in BIRCH are to have

efficient result the initial parameters should be properly assigned, like threshold. Furthermore
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it tries to cluster the whole dataset at once, which is not affordable for massive dataset due

to memory restriction.

A clustering algorithm based on density of data points, the so called adaptive density-

reachable (CADD) [103], is introduced according to the notion and enlightenment of BIRCH.

The authors proposed an incremental clustering algorithm based on definitions of subcluster

similarity for very large spatial databases. The incremental clustering algorithm is simple

and efficient, and has good performance especially for very large spatial databases. Similar

to the Clustering Feature (CF), a SubCluster Feature (SCF) is also presented by a triple of

numbers, which gives the statistic description of a subcluster. Given N d-dimensional data

points
−→
Xi, (i = 1, ..., N) in a subcluster, a SubCluster Feature SCF = (N,

−→
X0, R) is defined,

where
−→
X0 = 1

N

∑N
i=1

−→
Xi and R =

√
1
N

∑N
i=1(
−→
Xi −

−→
X0)2.

The algorithm compares the distribution of initial data points D with the distribution of

data points in the incremental data space D′ based on three similarity measures.

1. Similarity of spatial position:

S = e−
‖
−→
C−
−→
C ′‖2

2σ2 (1.1)

where
−→
C ,
−→
C ′ are subcluster centroids in initial and incremental data space respectively

and σ2 = R×R′. R is coherence of a subcluster.

2. Similarity of coherence:

D =
R

R′
if R′ ≥ R (1.2)

D =
R′

R
if R ≥ R′

3. Similarity norm: If S ≥ 0.7 and D ≥ 0.7 simultaneously, the two subclusters are similar

and merged, otherwise, they are not similar and maintained independently.

Although the CADD is an extension of BIRCH it is argued that unlike BIRCH it can detect

clusters with arbitrary shape and size, however the same shortcomings of BIRCH still remain

unsolved.

A hierarchal clustering algorithm, called CURE, explores sophisticated cluster shapes [74].

The crucial feature of CURE lies in the usage of a set of well-scattered points to represent
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each cluster, which makes it possible to find cluster shapes other than hyperspheres and

avoids the tendency to find clusters with similar sizes. CURE utilizes random sample (and

partition) strategy to reduce computational complexity.

One of the clustering algorithms for massive data sets is Hybrid Cell Density Clustering

method (HyCeltyc) [111], which combines a cell-density based algorithm with a hierarchical

agglomerative method to identify clusters in linear time. The main steps of the algorithm

involve sampling, dimensionality reduction, selection of significant features on which to cluster

the data and a grid-based clustering algorithm that is linear in the data size. The author of

[111] has mentioned some drawbacks of most grid-based algorithms:

1. For large M (bin sizes), the image points in SM (feature space) become very sparse.

2. The algorithms is sensitive to the choice of the bin sizes, which not only determines

the quality of the clusters but also determines the space and time complexity of the

algorithm.

3. The quality of algorithm closely depends on the choice of a data structure for managing

the non-empty cells since the number of grid cells could be very much larger than even

the number of points.

To address the first problem, i.e. the effect of large dimensionality, the author in [59] applied

a linear dimensionality reduction method called FastMap, on a sample of the data to reduce

the dimensionality from M to K, where K is a user selected dimensionality for clustering.

In addition to reducing the dimensionality, a method is developed to order the dimensions

according to their ability to discriminate the clusters. To address the second problem of

selecting the bin sizes, a threshold τ1 is specified. The value of τ1 defines the minimum

number of points in a cell that allows it to be considered as dense. This value of τ1, expressed

either as an absolute value or as a percentage of the number of points, is also utilized to

determine the bin sizes of each attribute. The third problem is resolved by hashing the

addresses of non-empty cells to a linear address space [59].

A cluster in HyCeltyc is defined as a union of neighbouring dense cells. The determination

of clusters in the rectilinearly partitioned cells is done by invoking a simple Cell-Density

Clustering algorithm which is abbreviated simply as Celtyc. It takes as input, the set of
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Figure 1.2: The images of the points on the one dimensional space are shown as the projections
onto the line E. The clusters generated in the reduced dimensional space are those enclosed
in the diagonal rectangular boxes A, B and C. Observe that when these clusters are mapped
back to the original 2-dimensional feature space, the points a and b are misclassified. The
refinement process using the hierarchical algorithm for each cluster independently identifies
the true clusters encircled as U, V and W. Using the clusters U, V, W, the significant attribute
chosen for clustering is Y since it has a higher discriminant value than X.

objects R, the number of objects N , the attributes A = A0, A1, ..., AK−1, the dimensionality

K and an array M = m0,m1, ...,mK−1, that specifies the number of bins that each attribute

has to be split (see Figure 1.2). However there are many input parameters that should

be properly defined prior to clustering as well as using six phases with multiple algorithm

execution which may not always guarantee the best performance on massive data sets.

There are various principles and techniques that are not sufficient for clustering data of

diverse shape, density and size [36]. Therefore in [36] the author proposed a hybrid approach

with the aim to identify clusters of irregular shape and size (which contain concavity and

nested shapes), cluster data with non-uniform density, be independent of data order and

handle high dimensional data and be insensitive to noise or outlier data. The proposed

algorithm is basically a split-and-merge based grid-clustering approach and has been named

as Genetically Guided Grid Clustering (GGGC) [36].

The hybridization was attained by a combination of genetic algorithm and Tabu Search

(TS) method. Both algorithms involve a population based search technique where the pop-

ulation is represented by a set of individuals. Each individual is a string of binary values

chosen from {0, 1}. The search process advances to a solution depending on the individuals

selected using the fitness score. The fitness score of an individual determines its survival
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strength in a population.

The grid-clustering approach quantizes the space into a finite number of cells that form

a grid structure on which all operations for clustering are performed. The GGGC algorithm

proceeds as follows:

1. The entire feature space is initially partitioned hierarchically by the multi-dimensional

grid structure into a number of cells by Grid based Decomposition Algorithm (GDA).

The cells containing data points are finally considered as sub-clusters (see Figure 1.3).

Figure 1.3: Progress of the decomposition process using GDA in 2-D data space. (a) Data
space before start of the partitioning process. (b) Initial partitioning of the data space.
(c) Repartition of the non-empty blocks in the intermediate stage of GDA. (d) Complete
partitioning after checking all non-empty blocks.

2. In the second stage, the sub-clusters are merged hierarchically using the hybrid method

namely, Cluster Merging with Hybrid Algorithm (CMHA). CMHA is based on the

combination of a Modified GA (MGA) and a tabu search method. Both the MGA and

TS process are invoked sequentially to run iteratively and in each run, some sub-clusters

are merged.

3. The MGA is started first. When the MGA is terminated with an optimal solution after

Gmax iterations or the solution is not changed for a long time, TS is actually invoked

to run iteratively.
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4. With the completion of the TS procedure another round of MGA followed by TS is

executed. The completion of one MGA and TS cycle is referred to as a single epoch.

5. This sequence is continued several times until the expected number of k clusters are

found.

The use of TS is effective at this juncture since it can facilitate the genetic method to emerge

out from the local optima due to its inherent local search capability. Thus, the TS enhances

the performance of the genetic method by reducing the number of overall iterations.

1.3 Partitional clustering

Partitional clustering algorithms divide data into several subsets. Since checking all possi-

ble subsets of a given dataset is computationally infeasible, certain greedy heuristics are used

in the form of iterative optimization. Specifically, this means different relocation schemes that

iteratively reassign points between the k clusters. Unlike traditional hierarchical methods,

in which clusters are not revisited after being constructed, relocation algorithms gradually

improve clusters.

A k-means clustering algorithm introduced in [97] proceeds as follows: Let have a set of k

centers C, for each center c in C, let have a set, N(c), which is the set of data points where c

is the nearest neighbor. In each stage of Lloyd’s algorithm every center point c moves to the

centroid of the set N(c) and then the algorithm updates N(c) by recomputing the distance

from each data point to its nearest center. These steps are repeated until no data point

changes its cluster. Note that Lloyd’s algorithm can get stuck in locally minimal solutions

that are far from the global ones.

Forgy’s algorithm [63] is a simple alternative of least-squares algorithm. The algorithm,

first initialize the center of clusters randomly. Then read the data points and assign each

data to the nearest center point using Euclidean distance. In the next stage the algorithm

updates each center point with the mean of the set of data points that were assigned to it.

The last two stages are repeated until no data point changes its cluster.

The clustering algorithm introduced by MacQueen [99] is similar to the Forgy’s algorithm.

The difference is in the last stage where the proposed algorithm by MacQueen moves the
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centers points to the mean of their Voronoi set.

The authors in [79] introduced a clustering algorithm that requires a matrix of M points

in N dimensions and a matrix of K initial cluster centers in N dimensions as an input. The

general procedure is to search for a K-partition with locally optimal within-cluster sum of

squares by moving points from one cluster to another. The authors proposed a novel initial

seeding of cluster centers based on the distance of each data point to the overall mean of

data set. First, the data points are sorted based on their distance to the mean of the data

set. Then the initial center for cluster i, i = 1, . . . , k is the data point with index j, where

j = 1 + (i− 1)(M/K), in the sorted list.

The k-means++ algorithm is an alternative algorithm to the k-means, which is introduced

in [9]. The authors proposed a variant that chooses centers at random from the data points,

but weighs the data points according to their squared distance from the closest center already

chosen. Then next center is chosen from the weighted data points with the maximum weight.

These procedure is repeated until k centers are initialized. The rest of the algorithms is the

same as the simple k-means algorithm.

The authors in [113] proposed a clustering algorithm, the so called X-means, based on

k-means algorithm. This algorithm is claimed to be an improvement to some shortcomings

of the original k-means. The number of clusters, k, is estimated by this algorithm using

a scoring system which runs k-means several times. Then the algorithm decides whether

to split the current clusters into two new clusters by computing the Bayesian Information

Criterion.

Some attempts have been made to parallelize the k-means algorithm to make it applicable

to very large datasets. In [88] the authors use a network of homogeneous workstations with

Ethernet network and use message-passing for communication between processors. In an

Ethernet network, all communications consist of packets transmitted on a shared serial bus

available to all processors. The following is a description of the parallel k-means clustering

algorithm. A master-slave single program multiple data approach (SPMD) is used. The

parallel k-means algorithm can be summarized as follows:

Master Process:

1. Randomly form K equal subsets of the set S

13



2. Send each subset to each of the K slaves

3. Receive K resulting subsets from K slaves

Slave Process:

1. Receive a vector subset P from master process

2. While Error E is not stable:

3. Compute a mean Xmyrank of the subset P

4. Broadcast the mean Xmyrank to every other slaves

5. Compute distance d(i, j), 1 ≤ i ≤ K, 1 ≤ j ≤ |P | of each vector in P such that
d(i, j) = ‖Xi − vj‖

6. Choose vector members of the new K subsets according to their closest distance to Xi,
1 ≤ i ≤ K

7. Broadcast K subsets computed in Step 6 to every other slaves

8. Form the new subset P by collecting vectors that belong to Xmyrank that were sent
from other slaves in Step 7

9. End While

10. Send the subset P to master process

The concept is to distribute processing of k-means on k machines which result in a sat-

isfactory time complexity. On the other hand for k clusters we have to configure exactly

k machines and every time rerun the k-means from the start point. Due to the memory

limitation this version of the k-means may not be efficient for massive dataset.

The authors in [107] introduce the partial/merge k-means algorithm which processes the

overall set of points in cells, and merges the results of the partial k-means steps into an

overall cluster representation. The partial k-means and the merge k-means are implemented

as data stream operators that are adaptable to available computing resources such as volatile

memory and processors by parallelizing and cloning operators, and by computing k-means

on partitions of data that can be fit into memory.

Instead of storing all data points v1, . . . , vn of a grid cell Cs in memory, the data is divided

of Cs (see Figure 1.4) into p partitions P1, . . . , Pp with the condition that all data points

v1, . . . , vm of partition Pj can be stored into available volatile memory. The stream operator

partial k-means selects a set of random k seeds for a partition Pj , and performs a k-means

on the subset of data points of the overall grid cell until the convergence criteria is met. This
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Data Domain

C s

Figure 1.4: Partial/merge k-means, partitioning scheme.

step is repeated for several sets of random k seeds, and the representation with the minimal

mean square error is selected to represent the clustering of partition Pj . The partial k-means

operator produces a set of weighted centroids cij ∈ Pj{(c1j , w1j), (c2j , wij), . . . , (ckj , wkj)}.

The weight wij is defined as the number of points that are assigned to the centroid cij . The

sum
∑k

i=1wij is the number of points Nj in the partition Pj . Each partition is clustered

independently. The last step is merging process where the set of weighted centroids are

clustered and merged according to their minimum distances and minimization of an error

function.

Partial/merge k-means re-runs the k-means several times to get better result in each

partition. This algorithm is sensitive to the size of partitioning in order to get the best

performance in massive datasets.

Sketch based techniques [49] are a natural method for compressing the counting informa-

tion in the underlying data so that the broad characteristics of the dominant counts can be

maintained in a space-efficient way. In [1] the authors applied the count-min sketch [49] to

the problem of clustering massive-domain data streams.

Sketch Table for each cluster (w.h)

Hash function 1

Hash function n

Figure 1.5: Sketch tables of hash functions.

The proposed data structure itself consists of a two dimensional array with w × h cells

with a length of h and width of w (see Figure 1.5). Each hash function corresponds to
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one of w 1-dimensional arrays with h cells each. In standard applications of the count-min

sketch, the hash functions are used in order to update the counts of the different cells in

this 2-dimensional data structure. For example, consider a 1-dimensional data stream with

elements drawn from a massive set of domain values. When a new element of the data stream

is received, each of the w hash functions are applied to map onto a number in [0, . . . , h− 1].

The count of each of the set of w cells is incremented by 1. In order to estimate the count of

an item, the set of w cells to which each of the w hash-functions map is determined, and the

minimum value among all these cells is computed.

Let qjr(xri ) represents the frequency of the value xri in the j-th cluster. Let mi be the

number of data points assigned to the j-th cluster. Then, the d-dimensional statistics of the

record (x1
i , . . . , x

d
i ) for the j-th cluster is given by (qj1(x1

i ), . . . , q
j
d(x

d
i )). Then, the frequency-

based dot-product Dj(Xi) of the incoming record with statistics of cluster j is given by the

dot product of the fractional frequencies (qj1(x1
i )/mj , . . . , q

j
d(x

d
i )/mj) of the attribute values

(x1
i , . . . , x

d
i ) with the frequencies of these same attribute values within record Xi. Therefore,

the corresponding dot product is the following:

Dj(Xi) =
d∑
r=1

qjr(x
r
i )/mj (1.3)

The incoming record is assigned to the cluster for which the estimated dot product is the

largest.

Batch clustering (like k-means) requires all training data to be stored in the main memory

which becomes infeasible for very large or massive datasets. The article [60] proposes a simple

and efficient strategy for k-means clustering with restricted buffer where data are processed

consecutively in patches of predefined size (Patch Clustering). In [5] the same strategy is

transferred to NG (Neural Gas Network) (see Figure 1.6).

Assume a fixed patch size P is chosen such that a number of P examples fits into the

buffer. The main idea is to subsequently process patches of size P by batch optimization,

there by enlarging the dataset by patterns which stem from a sufficient statistic of the clusters

obtained in the previous patch. A clustering is represented by the cluster centers which are

weighted according to the number of data points assigned to it. Note that, with respect to

the quantization error, an optimum cluster center is represented by the mean of data points
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Figure 1.6: Patch clustering algorithm.

assigned to it. To compute the cluster centers, it is sufficient to keep track of the sum of

data points assigned to a cluster and the number, i.e. it is sufficient to store (Sum(A), n(A))

to represent cluster A, where Sum(A) is the sum of points assigned to the cluster, and n(A)

its number. Note that the merging of two clusters A and B is represented by (Sum(A) +

Sum(B), n(A) + n(B)) which can easily be computed iteratively.

Apart from memory reduction, patch clustering allows a reduction of time because of the

faster convergence of the separate patch clustering. This can be explored even further by

introducing parallelization into the procedure.

1.4 Clustering using similarity measure based on the L1 and

L∞ norms

The similarity measure is an important notion in the cluster analysis. It can be defined

using various distance functions. The widely used similarity measure is based on the squared

Euclidean distance. Such a clustering problem is also known as the minimum sum-of-squares

clustering problem. The k-means algorithms are widely used to solve such problems [83, 150].

Optimization techniques such as the branch and bound [39], the variable neighborhood search

algorithm [78] and metaheuristics like simulated annealing, tabu search, genetic algorithms

[3, 29, 115, 125, 133] have been applied to solve it.

Let d : Rn × Rn → R+ be a distance function. Here R+ = {x ∈ R : x ≥ 0}. The distance

17



function d can be defined using the Lp-norm:

d(x, y) ≡ dp(u, v) =

(
n∑
i=1

|xi − yi|p
)1/p

, p ≥ 1.

In particular, the distance function d using the L1 norm is defined as:

d1(x, y) =
n∑
i=1

|xi − yi|,

and using the L∞ norm it is:

d∞(x, y) = max
i=1,...,n

|xi − yi|.

Note that both distance functions are nonsmooth.

The similarity measure can also be defined using other Minkowski norms. Among them

the d1 (also known as the Manhattan or City-blocks distance) and d∞ (also known as the

Chebyshev distance) have been frequently used.

There are many applications where clustering algorithms with the distance functions

d1 and d∞ produce significantly better results than that based on the squared Euclidean

norm. In high dimensional data mining applications the distance function d1 is consistently

preferable than the function d2 [2]. Functions d1 and d∞ are more robust to outliers than

d2 [156]. These functions produce the highest identification and best verification rates in

closed-set text-independent speaker recognition systems [77]. The use of different distance

functions allows one to find different cluster structures in a data set and improve the decision

making process.

The paper [31] (see, also [89]) seems to be the first paper where the distance function

d1 was used to define the similarity measure. The paper [130] presents an algorithm for

calculating a given number of clusters in a data set by minimizing the total sum of the sums

of absolute deviations from the cluster members to the cluster centers (medians).

The ISODATA clustering algorithm [139] using the function d1 was introduced in [85]

where the comparison with the squared Euclidean distance demonstrates that the algorithm

with d1 function is superior when the correlation coefficient is high and negative. In [58],
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the authors examine the use of a range of Minkowski norms for clustering. The X-means

algorithm introduced in [113] can use various distance functions as similarity measures. In

the paper [53], the authors introduce adaptive and non-adaptive partitioning cluster methods

for interval data using the d1 distance function. A one dimensional center-based L1-clustering

algorithm is proposed in [121] and a local method for solving clustering problems using the

d1 distance function is developed in [120].

A clustering method, called Hyperbox clustering with Ant Colony Optimization, is pro-

posed in [116] where the function d∞ is used to define the similarity measure. Results show a

significant improvement in accuracy and faster processing time when compared to the usual

ant colony optimization approach.

1.5 High dimensional data visualization and clustering

High dimensional data visualization is used to analyze the hidden patterns and data

relationships, which are hard to illustrate. One of the most popular and classical methods

for dimension reduction and data visualization is Principal Component Analysis, PCA [87].

Linear PCA is susceptible to loose useful information in highly nonlinear data sets. Several

nonlinear PCA methods have been proposed such as the work presented in [123]. Linear

and nonlinear PCA are computationally inexpensive in large data sets, however the memory

required by these algorithms is not affordable in very large data sets. The Sammon’s mapping

[122] is a nonlinear mapping algorithm for visualization of multivariate data, which is shown

to be superior to PCA. The Self Organizing Maps [91] are able to learn complex nonlinear

relationships of variables in a sample of data points. An overview of methods for data

visualization can be found in [142]. The authors in [142] show that the vector quantization

and projection methods such as SOM give more visual insights to the properties of the data

than methods based on mapping or projection of the data points.

Multidimensional (MDS) is known as a collection of visualization techniques for proximity

data which yield a set of representative data points in a suitable embedding space. These

points are selected in such a way that their mutual distances match the respective proximity

values as faithfully as possible [102, 144, 140]. In the more familiar case of data represented

by feature vectors, MDS can be used as a visualization tool. It establishes a mapping of these
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points to an informative low-dimensional plane or manifold on the basis of pairwise Euclidean

distances in the original feature space [90]. The authors in [46] proposed a dynamic learning

for metric representations of asymmetric proximity data to improve data visualization.The

proposed learning generates two representations (maps) with the row vectors (sending or

exporting)and column vectors (receiving or importing) of the matrix, respectively. In [46]

the authors supplement the maps with two analysis tools: cluster analysis and distance

analysis, which connect and compare the different patterns from the different maps.

Different versions of the SOM for visualization of high dimensional data have been intro-

duced in [42, 86, 98, 145, 147, 152, 153]. An alternative to the SOM algorithm, ViSOM, is

introduced by [153] to improve the topological and quantization errors by restricting contrac-

tions of neurons. The authors proposed different updating rules for the winner neurons and

their neighborhood neurons, which is computationally expensive in very large data sets. The

analysis and experimental results show that the ViSOM may offer attractive advantages over

the commonly used SOM, PCA, and Sammon’s mapping. The PRSOM [147] is an extension

to ViSOM, where the sequential updating rules are extended to optimize a cost function. Un-

like the hard assignment in SOM and ViSOM, the assignment of PRSOM is soft such that an

input data point belongs to a neuron with certain probability. However, the computational

complexity of both ViSOM and PRSOM is shown to be more than the classical SOM and

depends quadratically on the number of neurons [147].

In [67], a new self organizing model, the so called Growing Grid (GG), is proposed to

the problem of data visualization. The network automatically chooses a height/width ratio

suitable for the data distribution. Moreover, locally accumulated statistical values are used to

determine where to insert new units (neurons). The Growing Neural Gas (GNG), introduced

in [66], is an improvement to the Neural Gas (NG) algorithm [101]. More specifically, it is

an incremental version of the NG algorithm which does not require the pre-setting of the

network size. The GNG algorithm is able to make explicit topological relations of input data.

The growing hierarchical SOM (GHSOM) generates multiple independent layers of the

maps on the top of the first layer to cluster input data points in a hierarchical manner and

allows for adaptation of the network architecture simultaneously [117]. The GHSOM is pre-

sented to be suitable for visualization of high dimensional document data sets rather than
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the SOM, although manipulating multiple layers of the GHSOM is liable to high computa-

tional effort in very large data sets. Following the training phase of the GHSOM, a novel

visualization method, namely, the ranked centroid projection (RCP), is introduced in [152]

for projecting the document vectors to a hierarchy of output maps. The results of the results

for the cluster validity Davies-Bouldin index show that RCP produces a better result, which

denotes that for the purpose of classification and categorization, the RCP is to be preferred

over the SOM, PCA and Sammon’s mapping [152].

The expanding SOM, ESOM, for data visualization is proposed in [86]. The ESOM utilizes

the SOM by employing an additional factor, the expanding coefficient, which is used to push

neurons away from the center of all data points during the learning process. The authors show

that the ESOM has advantages over the SOM and the growing models of the SOM, where

the growth criteria in the latter increases the computational time in the learning process.

To cope with the problems of selecting learning rate in conventional SOM, the authors in

[42] proposed RPSOM in which, for each input data point, the RPSOM adaptively chooses

several rivals of the best matching unit (BMU) and penalizes their associated models a little

far away from the input data point [42]. The RPSOM converges much faster than the SOM

and the two-phase SOM [143] moreover, outperforms them in the term of quantization error.

1.5.1 Self organizing map

A self organizing map (SOM) is a well known data mining tool where the aim is to visualize

a high dimensional data into usually a two dimensional grid [91]. The SOM consists of a set

of neurons that gradually adapt to input data by competitive learning. It creates ordered

prototypes which preserve the topology of the mapped data and make the SOM suitable for

cluster analysis [151]. The adaptation of neurons is based on a similarity measure, which

is usually Euclidean distance, and their repositioning in a two dimensional space using a

learning algorithm. The performance of the SOM strongly depends on a learning algorithm

[62, 61, 71, 75]. Furthermore, the SOM and many its modifications are sensitive to the

initialization of neurons and the topology of the map.

The SOM is an unsupervised neural network [91] that usually contains a two dimensional

array of neurons Ψ = {w1, . . . , wq}. Assume that we are given the set of m input data vectors
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A = {x1, . . . , xm} where xi ∈ Rn, i = 1, . . . ,m. In the SOM a weight wj ∈ Rn is associated

with the neuron j, j = 1, . . . , q. For given j ∈ {1, . . . , q} define the following set:

Sj = {xk : d(xk, wj) < d(xk, wl), l 6= j, l = 1, . . . , q} (1.4)

where

d(x, y) = ‖x− y‖ =

(
n∑
t=1

(xt − yt)2

)1/2

, x, y ∈ Rn

is the Euclidean distance.

One data point xi, i ∈ {1, . . . ,m} at a time is presented to the network and is compared

with all weight vectors. The nearest wj , j = 1, · · · , q is selected as the best matching unit

(BMU) for the i-th data point. This data point is mapped to the best matching neuron.

Therefore,

Sj = Sj ∪ xi.

The set of neighborhood weights Nc = {wl : p(c, l) ≤ r, l 6= c} around the BMU are

updated as follows:

wj := wj + α(τ)h(τ)(xi − wj). (1.5)

where p(c, l) is the distance between the BMU and the neighborhood neuron l in 2-Dim

coordinates of the network topology and r is the predefined radius. Furthermore, p(c, l) ∈ N

and 0 < p(c, l) ≤ r. The ordered neurons of the SOM preserve the topology of the mapped

data and make the SOM to be very suitable for cluster analysis [151]. The aim is to solve

the vector quantization problem:

minimize E =
1

m

m∑
i=1

‖xi − wc‖2, (1.6)

where wc is the weight of the BMU of xi, i = 1, . . . ,m. Note that the vector quantization

problem (1.6) is used to measure the quality of the self organizing map.

A general description of the SOM algorithm is as follows.

Algorithm 1. SOM algorithm

22



Step 1. Initialize the dimension of the network, the maximum number of iterations (T ), a

radius (r) of the network and weight vectors wj , j = 1, . . . , q. Set stopping criterion ε0 and

iteration counter τ := 0.

Step 2. Select data xi, i = 1, . . . ,m and find its closest neuron c, that is

c := argmin
j=1,...,q

‖xi − wj‖. (1.7)

Step 3. Update the set of neighborhood neurons wj ∈ Nc using (1.5) (Here h is a neighborhood

function and α(τ) is a learning rate at the iteration τ .)

Step 4. If all input data are presented to the network go to Step 5, otherwise go to Step 2.

Step 5. Calculate E using (1.6). If E < ε0 or τ > T terminate, otherwise set τ := τ + 1 and

go to Step 2.

The neighborhood function h(τ) and learning rate α(τ) in Step 3 of Algorithm 1 are

defined as

h(τ) = exp

(
− r2

0

2σ(τ)2

)
, α(τ) = η

T − τ
τ

, η ≥ 1. (1.8)

Here

σ(τ) = p0 −
τ

T
, p0 ≥ 1.

The neighborhood function (1.8) plays an important role in the SOM. Usually h is a

decreasing exponential function of τ . The learning rate α is a decreasing linear function of τ

that reduces the effect of the neighborhood function h as τ → T . The learning procedure of

SOM is explored in details in the next section.

1.5.2 Modifications of the SOM

The performance of the SOM depends on the initialization of neurons, the choice of the

topology and a learning algorithm (Steps 2 and 3 in Algorithm 1). Different versions of the

SOM have been proposed to improve its performance (see, for example, [4, 7, 8, 13, 30, 41,

43, 44, 50, 68, 72, 94, 95, 126, 134, 141, 146, 149, 151, 152, 162]). The paper [146] presents

an automated detection algorithm based on the SOM assuming that the training data is an

adequate representation of the sample distribution. Therefore, the SOM is trained using a

small proportion of the sample data set and the algorithm defines a region around prototypes
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by employing a parameter rj that represents the distance of the farthest projected sample

into the neuron j, j = 1, . . . , q (where q is the number of neurons). The upcoming samples

are distributed into the network and novelties are those samples which cannot fit into these

regions.

A combinatorial two-stage clustering algorithm based on the SOM is introduced in [44].

The numerical results using the Ant Colony Optimization technique and the k-means demon-

strate the superiority of the proposed algorithm in comparison with the SOM and the k-

means. In [30], an enhanced Clusot algorithm [28] is applied in the SOM for automatic

cluster detection.

In [134] the SOM’s prototypes are clustered hierarchically based on the density instead

of the distance dissimilarity. A two-stage algorithm is proposed in [151] that applies the

graph cut algorithm (see [128]) to the SOM output. Results demonstrate that this algorithm

requires less computational time than direct clustering methods.

A dynamic SOM is a version of the SOM where its structure is not fixed during the

learning phase. In [4], a growing self organizing map (GSOM) is presented which defines a

spread factor to measure and control the growth of the network. Similarly in [13], a multi

level interior growing SOM is introduced. Unlike the GSOM, which allows the growth only

from border sides, this algorithm allows neurons to grow also from an interior node of the

map.

The Growing Neural Gas (GNG), introduced in [66], is an improvement to the Neural

Gas (NG) algorithm [101]. More specifically, it is an incremental version of the NG algorithm

which does not require the pre-setting of the network size. The GNG algorithm is able to

make explicit topological relations of input signals.

In [67], a new self organizing model, the so called Growing Grid (GG), is proposed to over-

come some drawbacks of existing models. The network automatically chooses a height/width

ratio suitable for the data distribution. Moreover, locally accumulated statistical values are

used to determine where to insert new units.

A novel artificial neural-network architecture, called the growing hierarchical SOM (GH-

SOM), is proposed in [117] to resolve two limitations of the SOM due to its static architecture

as well as the limited capabilities for the representation of hierarchical relations of the data.
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A parameter-less self-organizing map algorithm (PLSOM), proposed in [24], eliminates

SOM parameters such as the learning rate and neighborhood size and calculates values of

these parameters using the local quadratic fitting error of the map. This allows the map

to make large adjustments in response to unfamiliar inputs, i.e., inputs that are not well

mapped, while not making large changes in response to inputs it is already well adjusted to.

Unfortunately, the PLSOM has the property that it overreacts to extreme outliers, even after

long periods of training [25].

Another extension of the SOM algorithm is presented in [75]. This extension automatically

calculates the learning parameters during the training. The algorithm is based on the Kalman

filter estimation technique and the idea of the topographic product. The Fast Learning SOM

(FLSOM) algorithm is presented in [62], which is based on the application of the simulated

annealing (SA) metaheuristics to the SOM learning. The SA is used to modify the learning

rate factor in an adaptive way. The FLSOM shows a better convergence than the original

SOM algorithm.

A two-level clustering algorithm is proposed in [104] to improve clustering output. At

the first level of the algorithm the data is trained by the SOM and at the second level the

incremental clustering approach is applied to the output of SOM. The optimal number of

clusters is found by applying the rough set theory to the output of the SOM. SA algorithm

is adopted to minimize the uncertainty due to the overlapping between clusters, which is

detected using the rough set theory. Similarly in [105], the overlapping, caused by the cluster

structures, is removed by using a genetic algorithm instead of using SA.

All modifications of the SOM, described above, do not include any specific procedure to

find initial weights of neurons. Therefore, the most of these algorithms are still sensitive to

the initialization of neurons. Furthermore, the most of these algorithms, including the SOM,

are not efficient in large data sets. In this research, a new version of the SOM is proposed

to address these drawbacks. The proposed version includes an algorithm for initialization

of neurons based on the split and merge procedure. The high dense areas in input data

space are detected by this procedure. Then neurons are generated in those detected areas.

Initialization of neurons in such areas accelerates the convergence of the algorithm and makes

it applicable to large data sets. A new topology is presented to restrict the adaptation of the
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neurons to a neighborhood which is located in the same high density area. Such an approach

leads to a better local minimum of the quantization error than that of by the SOM.

1.6 Handwritten digits recognition using SOM

Handwritten digits recognition has many real world applications such as postal mail sort-

ing or form data processing. Several algorithms based on Neural Network [154, 112, 6, 155,

161, 70, 82], Machine Learning [108, 100, 55], Statistics [158, 52, 137], hybrid and mixture

models techniques [132, 38, 137, 76] have been proposed to solve this problem. Among these

algorithms, the Self Organizing Maps (SOM) [91] has been shown to be a promising tool to

solve such problems [33, 110, 51, 80, 159, 127].

Different versions of the SOM have been applied to solve the handwritten digits recog-

nition problem. A Hierarchically Growing Hyperbolic SOM (H2SOM ) [109] is proposed for

incremental training with an automated adaptation of lattice size to improve the quantization

error. Furthermore, the H2SOM is utilized by a best match search to speed up the training

phase in large data sets. The experimental results of H2SOM on MNIST data set demonstrate

the dominance of this method over the conventional SOM in the sense of accuracy. In [33],

the authors introduce a hybrid method CNN1-SOM for classification of handwritten digits

data. Moreover, a rejection strategy is presented to change the topology of the map during

training for improving the reject quality. An Adaptive-Subspace SOM (AOSSOM) algorithm

is introduced by [159] and this algorithm is applied to the MNIST data set. The authors in

[161] propose a gradient-decent method, Linear Manifold SOM (LMSOM), to find multiple

linear manifolds by using the self organizing maps to minimize the projection error function

in the learning process. The LMSOM is tested on the MNIST data set and the authors claim

that this method overcomes several shortcomings of the Adaptive-Subspace-SOM [92].

A neural model, referred to Locally Linear Online Mapping (LLOM), is introduced by

[161] to solve the handwritten digits recognition problem. The idea is to model nonlinear

manifolds with mixtures of local linear manifolds via online learning. The mixture of local

models is constructed using the Self Organizing framework and the online learning is used for

time reduction in large data sets. The classification accuracy of the LLOM presented by the

1Convolutional Neural Network
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authors, is better than that of the ASSOM and AMSOM. A modification of the SOM, Binary

Tree Time Adaptive SOM (BTASOM), is introduced in [127] and tested on the MNIST data

set. The BTASOM is a dynamic binary tree in such a way that each of the tree’s node

contains a fixed predetermined number of neurons. But the number of levels of the tree and

the children of each node are determined dynamically and via the learning process. The

comparative results reported by [127] outline the efficiency of the BTASOM in comparison

with the Growing Hierarchical SOM [23]. [80] propose an Elastic Matching [136] concept for

the problem of handwritten character recognition, where a character is transformed to match

it with the template image with keeping its topology (GP+ASSOM+TM). To implement

such transformation the SOM is employed. Furthermore, the authors in [80] show that using

a hybrid technique based on the SOM and template matching improves the performance of

the template matching technique.

1.7 Summary

In this chapter, we presented a literature review on recent hierarchal and partitional

clustering algorithms as well as the data visualization approaches including the modifications

of the SOM. Furthermore, the shortcomings of these approaches in large data mining problems

are discussed.
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Chapter 2

Optimization formulation of

clustering problem

2.1 Introduction

In this chapter we present three different optimization formulations of the clustering

problem. Assume that a finite set A of points in the n-dimensional space Rn is given, that is

A = {a1, . . . , am}, where ai ∈ Rn, i = 1, . . . ,m.

The hard unconstrained clustering problem is the distribution of the points of the set A into

a given number k of disjoint subsets Aj , j = 1, . . . , k, which are called clusters. Each cluster

Aj can be identified by its center xj ∈ Rn, j = 1, . . . , k. Data points from the same cluster

are similar and data points from different clusters are dissimilar to each other. The similarity

between points can be measured using different distance functions. Let d : Rn × Rn → R+

be a distance function. Here R+ = {x ∈ R : x ≥ 0}.

In this chapter, we define the distance function d using the squared Euclidean norm,

L1-norm and L∞-norm:

1. The distance function using the squared Euclidean norm:

d(x, y) =

n∑
i=1

(xi − yi)2,
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2. The distance function using the L1-norm:

d(x, y) =

n∑
i=1

|xi − yi|,

3. The distance function using the L∞-norm:

d(x, y) = max
i=1,...,n

|xi − yi|.

Note that the distance function d defined using the L1 and L∞ norms is nonsmooth. The use

of different distance functions can lead to finding of different cluster structures in the data

set.

2.2 Combinatorial formulation of the clustering problem

Denote the set of k clusters in the set A by Ā = (A1, . . . , Ak) and a set of all possible

k-partitions of the set A by Ã. Then the combinatorial formulation can be given as:

minimize Ψk(Ā) =
1

m

k∑
j=1

∑
a∈Aj

d(xj , a) (2.1)

subject to

Ā = (A1, . . . , Ak) ∈ Ã. (2.2)

Here xi is the center of the cluster Ai, i = 1, . . . , k which can be found by solving the following

optimization problem:

minimize
1

|Aj |
∑
a∈Aj

d(x, a) subject to x ∈ Rn. (2.3)

Here | · | stands for the cardinality of a set. If the squared Euclidean distance is used for the

similarity measure then the center xj can be found explicitly as follows:

xj =
1

|Aj |
∑
a∈Aj

a, j = 1, . . . , k. (2.4)
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Note that in this formulation decision variables are nonempty subsets of the set A and

therefore optimization algorithms cannot be directly applied to solve the problem (2.1)-(2.2).

The combinatorial formulation can be used to solve clustering problems only in very small

data sets.

2.3 Mixed integer nonlinear programming formulation of the

clustering problem

Alternatively, the problem of the finding k clusters in the set A can be reduced to the

following optimization problem:

min ψk(x,w) =
1

m

m∑
i=1

k∑
j=1

wij d(xj , ai) (2.5)

subject to

x = (x1, . . . , xk) ∈ Rk×n, (2.6)

k∑
j=1

wij = 1, i = 1, . . . ,m, (2.7)

wij ∈ {0, 1}, i = 1, . . . ,m, j = 1, . . . , k. (2.8)

Here wij is the association weight of the pattern ai with the cluster j, given by

wij =

 1, if ai is allocated to the cluster j;

0, otherwise.

w is an m× k matrix.

The problem (2.5)-(2.8) is called the mixed integer nonlinear programming formulation of

the clustering problem. It contains mn integer variables wij , i = 1, . . . ,m, j = 1, . . . , k and

kn continuous variables xj ∈ Rn, j = 1, . . . , k.

Cluster centers xj , j = 1, . . . , k can be found by solving the problem (2.3). If the similarity

measure is defined using the squared Euclidean norm then xj is a centroid of the cluster

Aj , j = 1, . . . , k and it can be found applying the formula (2.3). In this case the problem

(2.5)-(2.8) becomes integer programming problem as cluster centers xj , j = 1, . . . , k are not
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decision variables.

2.4 Nonsmooth nonconvex optimization formulation of the

clustering problem

Nonsmooth nonconvex optimization formulation of the clustering problem is as follows

[15, 22, 27]:

min fk(x) subject to x = (x1, . . . , xk) ∈ Rk×n, (2.9)

where

fk(x
1, . . . , xk) =

1

m

m∑
i=1

min
j=1,...,k

d(xj , ai). (2.10)

If k = 1 then the function fk is convex and it is nonconvex if k > 1 due to the minimum

operation. If the similarity measure is defined using the squared Euclidean distance then

for k = 1 the function fk is smooth that is it is continuously differentiable for any x ∈ Rn.

However, for k ≥ 2 this function is nonsmooth due to the minimum operation that is its

gradient does not exist at all x ∈ Rk×n. If the similarity measure is defined using the L1

or L∞ norms then the function fk is nonsmooth for all k ≥ 1. This is due to the minimum

operation and the fact that both L1 and L∞ norm based distance functions are nonsmooth.

2.5 Comparison of different formulations

In this subsection we compare objective functions in different formulations of the clus-

tering problems. We call objective functions Ψk, ψk and fk cluster functions. Note that the

objective function Ψk explicitly depends, in particular, on clusters (or subsets of the set A).

Optimization methods cannot be applied to minimize such functions and the combinatorial

formulation cannot be used to solve clustering problems considered in this chapter. Therefore,

we compare only objective functions ψk and fk.

Comparing these two functions (also two different formulations of the clustering problem)

one can note that:

1. The objective function ψk depends on variables wij , i = 1, . . . ,m, j = 1, . . . , k (co-

efficients, which are integers) and x1, . . . , xk, xj ∈ Rn, j = 1, . . . , k (cluster centers,
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which are continuous variables). However, the function fk depends only on continuous

variables x1, . . . , xk.

2. The number of variables in Problem (2.5)-(2.8) is (m+n)×k whereas in Problem (2.9)

this number is only n × k. Notice that the number of variables in Problem (2.9) does

not depend on the number m of instances. In many real world data sets the number of

instances m is substantially greater than the number of features n.

3. Since the function fk is represented as a sum of minima functions it is nonsmooth

for k > 1, that is it is not differentiable everywhere. Both functions ψk and fk are

nonconvex for k > 1.

4. Problem (2.5)-(2.8) is mixed integer nonlinear programming problem and Problem (2.9)

is nonsmooth global optimization problem. However, they are equivalent in the sense

that their global minimizers coincide [27].

Items 1 and 2 can be considered as advantages of the nonsmooth optimization formula-

tion (2.9) of the clustering problem. Nonsmooth optimization models of unsupervised and

supervised data classification problems are also discussed in [11, 10, 12, 32, 54].

2.6 Summary

Three different optimization formulations of the clustering problem: combinatorial, mixed

integer nonlinear programming and nonconvex nonsmooth are discussed in this chapter. The

comparative analysis of these formulations is also presented.
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Chapter 3

Incremental clustering algorithm

3.1 Introduction

The objective function (2.10) in Problem (2.9) is nonconvex and the problem itself is

global optimization problem. However, the most of existing global optimization techniques

cannot be applied to solve this problem because its size becomes large as the number of

clusters increases. These techniques are extremely time consuming for solving such clustering

problems. Therefore, solving clustering problems in large data sets is out of reach of most

of global optimization algorithms. Any local optimization algorithms starting from a given

point will end up at the closest local minimizer which can be significantly different from the

global minimizer. Global minimizers provide the best cluster structure of a data set with the

smallest number of clusters.

We propose to apply local search methods, including heuristic methods such as the k-

means and deterministic methods of optimization, to solve clustering problems. Such methods

are very fast even in large data sets however their success in finding global or near global

solutions to the clustering problems highly depends on the choice of starting points. In order

to generate such points we introduce the auxiliary cluster function. Starting points are found

by minimizing this function.
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3.2 The auxiliary cluster problem

Assume that the solution x1, . . . , xl−1, l > 1 to the (l − 1)-clustering problem is known.

Define by

ril−1 = min
j=1,...,l−1

d(xj , ai)

the distance between the data point ai, i = 1, . . . ,m and its cluster center. We will also use

the notation ral−1 for the data point a ∈ A. Consider the following function:

f̄l(y) =
1

m

m∑
i=1

min
{
ril−1, d(y, ai)

}
, y ∈ Rn. (3.1)

We call this function the l-th auxiliary cluster function. One can see that the function f̄l

is represented as a sum of minima of constants ril−1 and the distance function d(y, ai), i =

1, . . . ,m which is convex. Therefore the function f̄l is nonsmooth and in general, nonconvex.

The l-th auxiliary clustering problem is formulated as follows:

min f̄l(y) subject to y ∈ Rn. (3.2)

This is a nonsmooth global optimization problem and it may have many local minimizers.

The success of any local method for solving this problem heavily depends on the choice of

starting points. Therefore it is important to develop an algorithm to generate good starting

points for its solution. One such algorithm will be designed in Section 3.4.

3.3 An incremental clustering algorithm

In this section we describe a general scheme for an incremental clustering algorithm.

Incremental algorithms are becoming popular in data mining and in particular, in the cluster

analysis. There are two types of incremental algorithms. In algorithms of the first type new

data points are dynamically added at each iteration of the algorithm to the data set and

clusters are updated accordingly. In algorithms of the second type a data set is static and

an algorithm computes clusters incrementally. Such incremental clustering algorithms build

clusters dynamically adding one cluster center at a time. Therefore this type of incremental
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algorithms can also be called sequential clustering algorithms. In this chapter we consider only

the second type of incremental clustering algorithms. The general scheme of such algorithms

for finding the k-partition of the set A is as follows.

Algorithm 2. An incremental clustering algorithm.

Input: The data set A and the number k of clusters to be computed.

Output: The l-partition of the set A with l = 1, . . . , k.

Step 1. (Initialization). Compute the center x1 ∈ Rn of the set A. Set l := 1.

Step 2. (Stopping criterion) Set l := l + 1. If l > k then stop. The k-partition problem has

been solved.

Step 3. (Computation of the next cluster center). Find a starting point ȳ ∈ Rn for the l-th

cluster center by solving Problem (3.2).

Step 4. (Refinement of all cluster centers). Select (x1, . . . , xl−1, ȳ) as a new starting point to

solve the l-partition problem (2.9) (or the problem (2.5)-(2.8)) (when k = l). Let y1, . . . , yl

be a solution to this problem.

Step 5. (Solution to the l-partition problem). Set xj := yj , j = 1, . . . , l as a solution to the

l-th partition problem and go to Step 2.

Remark 3.3.1. To date incremental algorithms were designed for solving the minimum sum-

of-squares clustering problems [19, 17, 96]. In this chapter, we develop incremental algorithms

also for solving clustering problems where the similarity measure is defined using L1 and L∞

norms.

Remark 3.3.2. One can see that Algorithm 2 in addition to the k-partition problem solves also

all intermediate l-partition problems where l = 1, . . . , k−1. Step 3, where one finds a starting

point for the l-th cluster center, and Step 4 are the most important steps of Algorithm 2. In

the next section we design an algorithm for finding starting points for the l-th cluster center.
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3.4 Computation of starting points for cluster centers

Various initial seeding procedures were introduced to improve the efficiency of the k-means

algorithms. Such procedures were considered to design different versions of the k-means al-

gorithm such as the X-means [113] and k-means++ [9] algorithms. In the paper [34], a

comparative study of various initialization methods for the k-means algorithm is presented.

In this section we discuss an initial seeding procedure based on nonsmooth optimization for-

mulation of the clustering problem. This procedure is designed for the incremental algorithm

described in the previous section. This means that in order to find initial points for the l-th

cluster center, l > 1, it is assumed that cluster centers for the (l − 1)-partition problem are

known.

Given the solution x1, . . . , xl−1, l > 1 to the (l−1)-clustering problem one can divide the

whole space Rn into two subsets as follows:

S1 =
{
y ∈ Rn : d(y, a) ≥ ral−1, ∀a ∈ A

}
,

S2 =
{
y ∈ Rn : ∃a ∈ A such that d(y, a) < ral−1

}
.

All cluster centers x1, . . . , xl−1 ∈ S1. It is clear that S1
⋃
S2 = Rn and S1

⋂
S2 = ∅. Moreover,

f̄l(y) = fl−1(x1, . . . , xl−1) =
1

m

∑
a∈A

ral−1, ∀y ∈ S1, (3.3)

that is the l-th auxiliary cluster function is constant on the set S1 and any point from this

set is a global maximizer of the function f̄l. In general, a local search method will terminate

at any of these points. Hence, points from the set S1 cannot be considered as starting points

to solve the problem (3.2). Therefore, starting points should be chosen from the set S2.

For any y ∈ S2 one can divide the set A into two subsets as follows:

B1(y) =
{
a ∈ A : d(y, a) ≥ ral−1

}
,

B2(y) =
{
a ∈ A : d(y, a) < ral−1

}
.
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It is obvious that the set B2(y) contains all data points which are closer to the point y than

their cluster centers. Since y ∈ S2 the set B2(y) 6= ∅. Furthermore, B1(y)
⋂
B2(y) = ∅ and

A = B1(y)
⋃
B2(y). Then

f̄l(y) =
1

m

 ∑
a∈B1(y)

ral−1 +
∑

a∈B2(y)

d(y, a)

 .

The difference vl(y) between the value fl−1(x1, . . . , xl−1) (see (3.3)) and the value of the l-th

auxiliary cluster function at y is:

vl(y) =
1

m

∑
a∈B2(y)

(
ral−1 − d(y, a)

)

which can be rewritten as

vl(y) =
1

m

∑
a∈A

max
{

0, ral−1 − d(y, a)
}
. (3.4)

It is obvious that data points a ∈ A, which are not among cluster centers x1, . . . , xl−1, belong

to the set S2, because these points attract at least themselves. Therefore in order to compute

starting points for solving the auxiliary clustering problem (3.2) we use data points a ∈ A\S1.

We introduce the following number:

v1
max = max

a∈A\S1

vl(a). (3.5)

The number v1
max is the largest decrease of the auxiliary cluster function f̄k(y) comparing to

the value fl−1(x1, . . . , xl−1) for all y ∈ A\S1. Among all data points a ∈ A, a point ā ∈ A\S1,

satisfying the condition vl(ā) = v1
max, provides the largest decrease of the cluster function fl

comparing with the value fl−1(x1, . . . , xl−1) if ā is chosen as the l-th cluster center.

Let γ1 ∈ [0, 1] be a given number. Define the following subset of A:

Ā1 =
{
a ∈ A \ S1 : vl(a) ≥ γ1v

1
max

}
. (3.6)

The set Ā1 contains points a ∈ A\S1 which provide sufficient decrease of the cluster function
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fl comparing with the value fl−1(x1, . . . , xl−1) if these points are chosen as the l-th cluster

center. If γ1 = 1 then we choose only points with largest decrease and if γ1 = 0 then

Ā1 = A \ S1.

For each a ∈ Ā1 we compute the set B2(a) and its center c(a). In this stage we replace

points a ∈ Ā1 by points c(a), because the center c(a) is the better representative of the set

B2(a) than the point a. If the similarity measure is defined using the squared Euclidean norm

then c(a) is the centroid of the set B2(a). In all other cases c(a) is defined as the solution to

the following convex minimization problem:

minimize
1

|B2(a)|
∑

b∈B2(a)

d(x, b) subject to x ∈ Rn.

As a result we get the following set:

C1 = {c ∈ Rn : ∃a ∈ Ā1 such that c = c(a)}.

Then using (3.4) we compute v2
l (c) = vl(c) for each c ∈ C1. Finally, we compute the maximum

of all numbers v2
l (c), c ∈ C1:

v2
max = max

c∈C1

v2
l (c). (3.7)

Let γ2 ∈ [0, 1] be a given number. We define the following subset of C1:

Ā2 =
{
c : c ∈ C1 and v2

l (c) ≥ γ2v
2
max

}
. (3.8)

The set Ā2 contains all points c ∈ C1 which provide sufficient decrease of the cluster function

fl comparing with the value fl−1(x1, . . . , xl−1) if these points are chosen as the l-th cluster

center. If γ2 = 1 then we choose points with the largest decrease and if γ2 = 0 then Ā2 = C1.

All points from the set Ā2 are considered as starting points for solving the auxiliary

clustering problem (3.2).

Applying a local search algorithm, Problem (3.2) is solved starting from each point of

the set Ā2. Such local search algorithms will be discussed in Chapter 4. A local search

algorithm generates the same number of solutions as the number of starting points. The set

of these solutions is denoted by Ā3. Since the local method can arrive to the same solution
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starting from different points we remove from the set Ā3 solutions which are sufficiently close

to each other keeping only one of them. Sufficiently close solutions can be defined using some

predefined tolerance. It is clear that Ā3 6= ∅.

Next we define

f̄minl = min
y∈Ā3

f̄l(y). (3.9)

Let γ3 ∈ [1,∞) be a given number. Compute the following set:

Ā4 =
{
y ∈ Ā3 : f̄l(y) ≤ γ3f̄

min
l

}
. (3.10)

If γ3 = 1 then Ā4 contains stationary points of the problem (3.2) with the lowest value f̄minl .

If γ3 is sufficiently large then Ā4 = Ā3.

Points from the set Ā4 are considered as a starting point for the l-th cluster center in

Step 4 of Algorithm 2. Summarizing all steps for computing the set Ā4 we can design the

following algorithm for finding starting points to solve the clustering problem (2.9).

Algorithm 3. Computation of starting points.

Input: The data set A and the solution x1, . . . , xl−1, l > 1 to the (l− 1)-clustering problem.

Output: The set of starting points for the l-th cluster center.

Step 0. (Initialization). Select numbers γ1, γ2 ∈ [0, 1] and γ3 ∈ [1,∞).

Step 1. Compute v1
max using (3.5) and the set Ā1 using (3.6).

Step 2. Compute v2
max using (3.7) and the set Ā2 using (3.8).

Step 3. Apply a local search algorithm to compute a set Ā3 of solutions to the auxiliary

clustering problem (3.2) using points from the set Ā2 as starting points.

Step 4. Compute fminl using (3.9) and the set Ā4 using (3.10). Ā4 is the set of starting points

to solve the clustering problem (2.9).

Thus, we use more than one starting point to solve the clustering problem (2.9) in Step 4

of Algorithm 2. Moreover, these points always guarantee decrease of the clustering function

at each iteration of the incremental algorithm and they are away from each other in the
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search space. Such an approach allows us to apply local search methods to solve the global

optimization problem (2.9).

3.5 The modified incremental clustering algorithm

In this section the incremental clustering Algorithm 2 is modified by applying Algorithm

3 in Step 3. Then Algorithm 2 for solving the k-partition Problem (2.9) can be rewritten as

follows:

Algorithm 4. A multistart incremental algorithm.

Input: The data set A and the number k of clusters to be computed.

Output: The l-partition of the set A with l = 1, . . . , k.

Step 1. (Initialization). Compute the center x1 ∈ Rn of the set A. Set l := 1.

Step 2. (Stopping criterion) Set l := l + 1. If l > k then stop. The k-partition problem has

been solved.

Step 3. (Computation of the set of starting points for the next cluster center). Apply

Algorithm 3 to find a set Ā4 of starting points for the l-th cluster center.

Step 4. (Refinement of all cluster centers). For each ȳ ∈ Ā4 select (x1, . . . , xl−1, ȳ) as a

starting point to solve the l-partition problem (2.9) (when k = l). Let (y1(ȳ), . . . , yl(ȳ)) be

a solution to this problem and flȳ = fl(y
1(ȳ), . . . , yl(ȳ)) be a value of the cluster function at

this solution.

Step 5. (Computation of the best solution). Compute

fminl = min
ȳ∈Ā4

flȳ

and the set of best solutions

C =
{

(y1(ȳ), . . . , yl(ȳ)) : flȳ = fminl

}
.

Step 6. (Solution to the l-partition problem). Take any (y1(ȳ), . . . , yk(ȳ)) ∈ C, set xj :=

yj(ȳ), j = 1, . . . , l as a solution to the l-th partition problem and go to Step 2.
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3.6 Summary

In this chapter an incremental approach for finding cluster centers is proposed. This

algorithm computes clusters gradually starting from one cluster which is the whole data set.

Furthermore, we introduced an auxiliary clustering problem to find starting points for cluster

centers using the incremental approach.
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Chapter 4

Solving optimization clustering

problems

4.1 Introduction

In this chapter we discuss local search algorithms for solving both the auxiliary clustering

problem (3.2) and the clustering problem (2.9). We will consider three different algorithms

for this purpose: (i) k-means type heuristic algorithm; (ii) the nonsmooth optimization algo-

rithms and (iii) an algorithm based on smoothing techniques.

4.2 k-means type heuristic algorithm

This algorithm was discussed in [19] (see, also [17]). In order to solve the auxiliary

clustering problem (3.2) this algorithm fixes the first (l− 1) cluster centers and updates only

the l-th center. The algorithm proceeds as follows.

Algorithm 5. Heuristic algorithm for minimizing the auxiliary cluster function.

Input: The data set A and the starting point y ∈ Ā4.

Output: Local minimizer of Problem (3.2).

Step 1. Compute the set B2(y) and its center c.

Step 2. Compute the set B2(c) and its center.
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Step 3. Recompute the set B2(c) and its center until no more data points escape or return

to this set. The last center c is the solution to Problem (3.2).

It is proved in [19] that Algorithm 5 converges to the local minimizer of Problem (3.2)

after finite number of iterations.

We apply the k-means algorithm for solving Problem (2.9). This algorithm converges to

the local solutions of the problem (2.9).

4.3 Nonsmooth optimization methods

There are three different optimization problems to be solved to find cluster centers: (i)

the optimization problem (2.9) to find all cluster centers; (ii) the optimization problem (3.2)

to find starting points for cluster centers; and (iii) an optimization problem for finding centers

of each cluster. In this section we describe algorithms for solving each of these problems. We

start with the description of the algorithm for solving the problem (2.9).

4.3.1 An algorithm for solving Problem (2.9)

The objective function (2.10) in Problem (2.9) is nonsmooth and nonconvex. Most of

algorithms for solving Problem (2.9) are based on the Clarke subdifferential. Let ϕ : Rn → R

be a locally Lipschitz function. The generalized directional derivative ϕ0(x, u) of ϕ at x in

the direction d is defined as [47]:

ϕ0(x, u) := lim sup
y→x,α↓0

α−1[ϕ(y + αu)− ϕ(y)].

For locally Lipschitz functions the generalized directional derivative exists. The subdifferen-

tial ∂ϕ(x) of the function ϕ at x is defined as follows [47]:

∂ϕ(x) :=
{
v ∈ Rn : ϕ0(x, u) ≥ 〈v, u〉 ∀u ∈ Rn

}
.
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According to Rademacher’s theorem the locally Lipschitz function ϕ is differentiable almost

everywhere and its subdifferential ∂ϕ(x) at a point x ∈ Rn can also be defined as:

∂ϕ(x) := conv

{
lim
i→∞
∇ϕ(xi) : xi → x and ∇ϕ(xi) exists

}
, (4.1)

where “conv” denotes the convex hull of a set. Each vector v ∈ ∂ϕ(x) is called a subgradient.

The subdifferential ∂f(x) is a compact and convex set at any x ∈ Rn.

A function ϕ is called regular at x ∈ Rn, if it is differentiable with respect to any direction

u ∈ Rn at x and ϕ′(x, u) = ϕ0(x, u) for all u ∈ Rn where ϕ′(x, u) is a derivative of the function

ϕ at the point x in the direction u:

ϕ′(x, u) = lim
α↓0

α−1[ϕ(x+ αu)− ϕ(x)].

Next we will describe some properties of the objective function (2.10). For each a ∈ A

consider the following function:

ψa(x) = min
j=1,...,k

d(xj , a)

and let

Ra(x) =
{
j ∈ {1, . . . , k} : d(xj , a) = ψa(x)

}
.

The function ψa is directionally differentiable and

ψ′a(x, u) = min
j∈Ra(x)

d′[(xj , a), uj ] u = (u1, . . . , uk) ∈ Rn×k. (4.2)

Here d′[(xj , a), uj ] is the directional derivative of the function d at the point xj ∈ Rn in the

direction uj , j ∈ Ra(x).

Proposition 1. The function fk given by (2.10) is directionally differentiable at any x =

(x1, . . . , xk) ∈ Rn×k and

f ′k(x, u) =
1

m

∑
a∈A

min
j∈Ra(x)

d′[(xj , a), uj ], u = (u1, . . . , uk) ∈ Rn×k. (4.3)
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Proof: Since both distance functions d1 and d∞ are convex they are directionally differen-

tiable at any x with respect to any direction u ∈ Rn. Then the directional differentiability of

the function fk follows from its representation as a sum of minima functions. The expression

(4.3) follows from the expression (4.2) for the directional derivative of the function ψa.

Corollary 4.3.1. Assume that at a point x = (x1, . . . , xj) ∈ Rn×k there exist a ∈ A such

that |Ra(x)| ≥ 2 and d′[(xj1 , a), u] 6= d′[(xj2 , a), u] for some j1, j2 ∈ Ra(x) and u ∈ Rn. Then

the function fk is not regular at x.

Proof: The generalized directional derivative of the function fk at the point x ∈ Rn×k in

the direction u = (u1, . . . , uk) ∈ Rn×k is given by

f0
k (x, u) =

1

m

∑
a∈A

max
j∈Ra(x)

d′[(xj , a), uj ].

This obviously implies that if the conditions of the corollary are satisfied then f ′k(x, u) <

f0
k (x, u) for some u ∈ Rn×k. This completes the proof.

It is well-known that the Clarke subdifferential calculus with most widely used operations

(summation, maximum) exists in the form of equalities only for regular functions. Fur-

thermore, for functions defined using complex compositions more restrictive conditions on

component functions are required to have equalities. Calculus exists in the form of inclusions

if these conditions are not satisfied which makes such calculus not applicable in numerical

algorithms since it cannot be applied to calculate the subgradients. It follows from Corollary

4.3.1 that the Clarke subdifferential calculus for the function fk in some points x ∈ Rn×k

can be expressed only as inclusions and therefore, this calculus cannot be applied to com-

pute its subgradients. In this situation derivative free algorithms or algorithms based on the

approximation of subgradients using values of a function are only choice.

The Discrete Gradient Method introduced in [16] is one such method. It uses discrete

gradients to approximate subgradients and discrete gradients are computed using only values

of a function; n+ 1 function evaluations are required to compute one discrete gradient where

n is the number of variables. In [20] the version of the discrete gradient method is introduced

where the number of function evaluations can be reduced significantly exploiting a special

structure of the objective function such as piecewise partial separability. Next we recall
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definitions of partial and piecewise partial separabilities (see [20], for details) and show that

the function fk is piecewise separable for distance functions d1, d
2
2 and d∞.

Definition 1. The function ϕ : Rn → R is called partially separable iff there exists a family of

n×n diagonal matrices Ui, i = 1, . . . ,M,M ≥ 1 such that the function ϕ can be represented

as follows:

ϕ(x) =

M∑
i=1

ϕi(Uix).

In other terms, the function ϕ is called partially separable if it can be represented as the

sum of functions of a much smaller number of variables. If M = n and diag(Ui) = ei where

ei is the i-th unit vector, i = 1, . . . , n then the function ϕ is separable.

Definition 2. The function ϕ : Rn → R is said to be piecewise partially separable iff there

exists a finite family of closed sets D1, . . . , Dm such that
⋃m
i=1Di = Rn and the function ϕ is

partially separable on each set Di, i = 1, . . . ,m.

Next we will show that the function fk is piecewise partially separable.

Proposition 2. The function fk defined by (2.10) is piecewise separable for distance functions

d1, d
2
2 and d∞.

Proof: It is clear that distance functions d1, d
2
2 and d∞ are separable. Since the function

ψa(x) = minj=1,...,k d(xj , a), a ∈ A is represented as a minimum of functions each depending

on a subset of variables, it is piecewise separable. Finally the function fk as a sum of piecewise

separable functions ψa, a ∈ A is piecewise separable itself by Proposition 7 in [20].

It is shown in [20] that by exploiting piecewise partial separability it is possible to reduce

the number of function evaluations by the discrete gradient method. The number of variables

in Problem (2.9) is nk. This means that to compute one discrete gradient of the function

fk one needs nk + 1 evaluations of this function. However, since the function fk is piecewise

separable applying the scheme from [20] we need only 2 evaluations of this function to compute

one discrete gradient that is using it we can reduce the number of the objective function

evaluations (nk + 1)/2 times.
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4.3.2 An algorithm for solving Problem (3.2)

The objective function (3.1) in Problem (3.2) is nonsmooth and nonconvex. One can

use the Clarke subdifferential of this function to design algorithms for solving Problem (3.2).

However, it will be shown that, similar to the function (2.10), the computation of the subd-

ifferential of the function (3.1) is not an easy task.

Introducing the sets

Ā1 = {a ∈ A : rak−1 > d(y, a)}, Ā2 = {a ∈ A : rak−1 = d(y, a)},

Ā3 = {a ∈ A : rak−1 < d(y, a)}

one can rewrite the function f̄k as follows:

f̄k(y) =
1

m

∑
a∈Ā1

d(y, a) +
∑
a∈Ā2

min{rak−1, d(y, a)}+
∑
a∈Ā3

rak−1

 . (4.4)

Proposition 3. The function f̄k given by (3.1) is directionally differentiable at any y ∈ Rn

and

f̄ ′k(y, u) =
1

m

∑
a∈Ā1

d′[(y, a), u] +
∑
a∈Ā2

min{0, d′[(y, a), u]}

 , u ∈ Rn. (4.5)

Proof: Distance functions d1 and d∞ are convex and therefore they are directionally dif-

ferentiable at any y in any direction u ∈ Rn. Then the directional differentiability of the

function f̄k follows from its representation as a sum of minima functions. The expression

(4.5) follows from the expression (4.4) for the function f̄k at the point y.

Corollary 4.3.2. If at a point y ∈ Rn there exist at least one a ∈ A such that d′[(y, a), u] 6= 0

for some u ∈ Rn. Then the function f̄k is not regular at y.

Proof: The generalized directional derivative of the function f̄k at the point y ∈ Rn in the

direction u ∈ Rn is:

f̄0
k (y, u) =

1

m

∑
a∈Ā1

d′[(y, a), u] +
∑
a∈Ā2

max{0, d′[(y, a), u]}

 .
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Then it follows from the conditions of the corollary and (4.5) that f̄ ′k(y, u) < f0
k (y, u) for

some u ∈ Rn. This completes the proof.

Since the function f̄k is not regular the Clarke subdifferential calculus for this function

exists in the form of inclusions at some points and this calculus cannot be used to calcu-

late subgradients of f̄k at such points. Therefore we apply the discrete gradient method to

minimize this function. Next we prove that the function f̄k is piecewise partially separable.

Proposition 4. The function f̄k defined in formula (3.1) is piecewise separable for distance

functions d1, d
2
2 and d∞.

Proof: Since the distance functions d1, d
2
2 and d∞ are separable the first term in the pre-

sentation (4.4) is separable and the third term is constant. It is obvious that the function

min{rak−1, d(y, a)} is piecewise separable. Then the second term in (4.4) is piecewise separable

and consequently the function f̄k is piecewise separable.

Since the function f̄k is piecewise separable one needs only 2 evaluations of this function

to compute one discrete gradient. If we do not use this scheme then the number of function

evaluations required to compute one discrete gradient will be n + 1. This means that using

the piecewise separability of the function f̄k and the scheme from [20] we can reduce the

number of objective function evaluations used by the discrete gradient method to solve the

problem (3.2) (n+ 1)/2 times.

4.3.3 Solving optimization problems to find center of one cluster

In this subsection we discuss algorithms for finding a center of one cluster using differ-

ent distance functions. A center x for a cluster B is found as a solution to the following

optimization problem:

minimize ϕ(x) =
1

|B|
∑
b∈B

d(x, b) subject to x ∈ Rn. (4.6)

If the function d is defined using the squared Euclidean norm then the center x is the centroid

of the cluster B which can be easily computed without solving the optimization problem

(4.6). If the distance function is defined using the L1-norm then the center is the median

of the cluster B, which first used the k-median algorithm in [130]. In this paper we use the
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nonsmooth optimization formulation to prove that the median of the cluster is the solution

to the problem (4.6).

Proposition 5. If the distance function d is defined by the L1-norm then the median of the

set B is the solution to Problem (4.6).

Proof: In this case the function ϕ is as follows:

ϕ(x) =
1

|B|
∑
b∈B

n∑
i=1

|xi − bi| =
1

|B|
∑
b∈B

n∑
i=1

|xi − bi|

Introduce the function

ψi(xi) =
∑
b∈B
|xi − bi| =

∑
b∈B

max{xi − bi, bi − xi}.

Then the function ϕ is separable and can be represented as

ϕ(x) =
n∑
i=1

ψi(xi).

This means that the minimization of ϕ is equivalent to the minimization of the functions ψi

for each i ∈ {1, . . . , n}. We assume that all numbers bi, b ∈ B are different. To write the

subdifferential of ψi consider the following sets:

B− = {b ∈ B : bi < xi}, B+ = {b ∈ B : bi > xi}, B0 = {b ∈ B : bi = xi}.

Since all numbers bi, b ∈ B are different it is obvious that for a given x ∈ Rn the cardinality

|B0| of the set B0 is either 0 or 1. Then the subdifferential of the function ψi at xi, i = 1, . . . , n

is:

∂ψi(xi) = |B−| − |B+|+
[
−|B0|, |B0|

]
=
[
|B−| − |B+| − |B0|, |B−| − |B+|+ |B0|

]
.

The point xi to be a global minimizer of the function ψi it is necessary and sufficient that

0 ∈ ∂ψi(xi). This means that

|B−| − |B+| − |B0| ≤ 0, |B−| − |B+|+ |B0| ≥ 0.
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Now we can consider two cases: (i) |A0| = 0 and (ii) |A0| = 1. In Case (i) we have |B−| −

|B+| = 0 that is |B−| = |B+| and the total number of points b ∈ B with different i-th

coordinate is 2|B−| that is this number should be even. In this case xi is a median. In Case

(ii) we have −1 ≤ |B−| − |B+| ≤ 1. This means that there can be three different cases: (a)

|B−| = |B+|−1. This means that the number of points b ∈ B with different i-th coordinate is

even and xi is a median coinciding with one of bi, b ∈ B. (b) |B−| = |B+|. Then the number

of points b ∈ B with different i-th coordinate is odd and xi is a median coinciding with the

point which is exactly in the middle. (c) |B−| = |B+|+ 1. In this case the number of points

b ∈ B with different i-th coordinate is even and again xi is a median coinciding with one of

bi, b ∈ B.

It follows from Proposition 5 that in order to solve Problem (4.6) with the distance

function d1 one needs to find the median of the cluster B that is in this we do not need to

solve the optimization problem.

Finally, consider Problem (4.6) with the distance function d∞. In this case the objective

function ϕ can be rewritten as:

ϕ(x) =
1

|B|
∑
b∈B

max
i=1,...,n

|xi − bi|. (4.7)

For each data point b ∈ B consider the following function:

θb(x) = max
i=1,...,n

|xi − bi| = max
i=1,...,n

max{xi − bi, bi − xi}

and define the set:

Rb(x) = {i ∈ {1, . . . , n} : |xi − bi| = θb(x)}.

Consider

I−(b, x) = {i ∈ {1, . . . , n} : xi < bi}, I+(b, x) = {i ∈ {1, . . . , n} : xi > bi},

I0(b, x) = {i ∈ {1, . . . , n} : xi = bi}.

The condition I0(b, x)
⋂
Rb(x) 6= ∅ means that Rb(x) = I0(b, x) = {1, . . . , n} and θb(x) = 0.
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This implies that in this case

∂θb(x) = conv
{

(0, . . . ,−ei, 0, . . . , 0), (0, . . . , ei, 0, . . . , 0), i ∈ {1, . . . , n}
}
.

If I0(b, x)
⋂
Rb(x) = ∅ then Rb(x) ⊂ I−(b, x)

⋃
I+(b, x). In this case

∂θb(x) = conv {(0, . . . , 0, sign (xi − bi), 0 . . . , 0) : i ∈ Rb(x)} ,

where

sign (z) =


0, if z = 0;

−1, if z < 0;

1, if z > 0.

Then the subdifferential of the function ϕ at x is:

∂ϕ(x) =
1

|B|
∑
b∈B

∂θb(x).

and the necessary and sufficient condition for a minimum is: 0 ∈ ∂ϕ(x). It is easy to see

that even for moderately large number of points in the set B one may have a huge number

of extreme points in the subdifferential ∂ϕ(x) and therefore the computation of the whole

subdifferential is not an easy task. For this reason we propose to apply smoothing techniques

to minimize the function (4.7). More specifically, we apply the hyperbolic smoothing to

approximate this function. Details of this approach will be discussed in the next subsection.

4.4 An algorithm based on smoothing techniques

In this subsection we will demonstrate how smoothing techniques can be applied to ap-

proximate the objective functions in Problems (2.9) and (3.2) by smooth functions. This will

allow us to apply powerful smooth optimization algorithms such as the conjugate gradient

and quasi-Newton methods to solve cluster analysis problems. We will use the hyperbolic

smoothing for this purpose. Other smoothing techniques can be applied in a similar way.

The hyperbolic smoothing functions were originally introduced to approximate the fol-
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lowing nonsmooth function (see, for example, [148]):

ϕ(x) = max{0, x}, x ∈ R. (4.8)

The hyperbolic function smoothing the function (4.8) is as follows:

φτ (x) =
x+
√
x2 + τ2

2
. (4.9)

Here τ > 0 is called the precision or smoothing parameter.

Proposition 6. The function φτ (x) has the following properties:

1. φτ (·) is an increasing convex C∞ function;

2. ϕ(x) < φτ (x) ≤ ϕ(x) + τ
2 , ∀τ > 0.

The hyperbolic smoothing functions for maximum functions

ψ(x) = max
i=1,...,p

ψi(x)

were studied in [18]. Here p ≥ 1 and functions ψi, i = 1, . . . , p are continuously differentiable.

Using an additional variable t ∈ R we introduce the following function:

Ψ(x, t) = t+

p∑
i=1

max(0, ψi(x)− t).

It is clear that ψ(x) = Ψ(x, ψ(x)). Then the hyperbolic smoothing function H(x, τ) for ψ can

be written as

H(x, τ) = t+

p∑
i=1

ψi(x)− t+
√

(ψi(x)− t)2 + τ2

2
, t = ψ(x). (4.10)

See [148] and [18] for details.
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4.4.1 Hyperbolic smoothing of the cluster function

In this subsection we define hyperbolic smoothing of the clustering function fk defined by

(2.10). It is clear that

min
j=1,...,k

d(xj , ai) = − max
j=1,...,k

−d(xj , ai), i = 1, . . . ,m.

Then

fk(x
1, . . . , xk) = − 1

m

m∑
i=1

max
j=1,...,k

−d(xj , ai).

Consider the function:

Ψk(x
1, . . . , xk) = − 1

m

m∑
i=1

ti +

k∑
j=1

max(0,−d(xj , ai)− ti)

 .

Here

ti = max
j=1,...,k

−d(xj , ai) = −min d(xj , ai) ≤ 0, i = 1, . . . ,m.

It follows from (4.10) that the hyperbolic smoothing Uk(x
1, . . . , xk, τ) of the function fk is as

follows:

Uk(x
1, . . . , xk, τ) = − 1

m

m∑
i=1

ti +
k∑
j=1

−d(xj , ai)− ti +
√

(d(xj , ai) + ti)2 + τ2

2



=
1

m

m∑
i=1

−ti +
k∑
j=1

ti + d(xj , ai)−
√

(d(xj , ai) + ti)2 + τ2

2

 . (4.11)

4.4.2 Hyperbolic smoothing of the auxiliary cluster function

In this subsection we define the hyperbolic smoothing of the the auxiliary cluster function

f̄k defined by (3.1) (here we take l = k). This function can be rewritten as:

f̄k(y) =
1

m

m∑
i=1

rik−1 +
1

m

m∑
i=1

min (0, d(y, ai)− rik−1).
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Then we have

f̄k(y) =
1

m

m∑
i=1

rik−1 −
1

m

m∑
i=1

max (0, rik−1 − d(y, ai)).

Applying (4.9) we can approximate the auxiliary cluster function f̄k by the following function:

Ūk(y, τ) =
1

m

m∑
i=1

rik−1 −
1

m

m∑
i=1

rik−1 − d(y, ai) +
√

(rik−1 − d(y, ai))2 + τ2

2

=
1

m

m∑
i=1

rik−1 + d(y, ai)−
√

(rik−1 − d(y, ai))2 + τ2

2
, y ∈ Rn. (4.12)

Since the squared Euclidean distance is differentiable there is no need to smooth it. How-

ever, two other distance functions using L1 and L∞ norms are nondifferentiable. Therefore

we use the hyperbolic smoothing technique to approximate them with the smooth functions.

4.4.3 Hyperbolic smoothing of L1-norm

Here we describe the hyperbolic smoothing of the L1-norm. It is obvious that for x, a ∈ Rn

d(x, a) = ‖x− a‖1 =
n∑
q=1

max{xq − aq, aq − xq} =
n∑
q=1

[(xq − aq) + 2 max{0, aq − xq}] .

Then applying (4.9) we can approximate ‖x− a‖1 by the following smooth function:

η1(x, a, τ) =
n∑
q=1

[
(xq − aq)2 + τ2

]1/2
. (4.13)

Figure 4.1 illustrates the shape of the L1-norm (blue) and its hyperbolic smooth approx-

imation (red).

Thus, replacing the distance function d in (4.11) and (4.12) by its approximation η defined

by (4.13) we get the following smooth approximations for the cluster and the auxiliary cluster

functions, respectively:

H1
k(x1, . . . , xk, τ) =

1

m

m∑
i=1

−ti +

k∑
j=1

ti + η1(xj , ai, τ)−
√

(η1(xj , ai, τ) + ti)2 + τ2

2

 ,

(4.14)
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Figure 4.1: Smooth approximation of L1-norm

H̄1
k(y, τ) =

1

m

m∑
i=1

rik−1 + η1(y, ai, τ)−
√

(rik−1 − η1(y, ai, τ))2 + τ2

2
, y ∈ Rn. (4.15)

4.4.4 Hyperbolic smoothing of L∞-norm

Now consider the smoothing of the distance function using L∞-norm. In this case

d(x, a) = ‖x− a‖∞ = max
q=1,...,n

|xq − aq|. (4.16)

Then

‖x− a‖∞ = max
q=1,··· ,n

max{θq(x),−θq(x)}. (4.17)

where θq(x) = xq − aq.

The hyperbolic smoothing Ωq(x, τ) of the function βq(x) = max{ψq(x),−ψq(x)} is

Ωq(x, τ) = βq(x) +
θq(x)− βq(x) +

√
(θq(x)− βq(x))2 − τ2

2
+

−θq(x)− βq(x) +
√

(−θq(x)− βq(x))2 − τ2

2
. (4.18)

Then the hyperbolic smoothing of the distance function d(x, a) can be expressed as

η2(x, a, τ) = d(x, a) +
n∑
q=1

Ωq(x, τ)− d(x, a) +
√

(Ωq(x, τ)− d(x, a))2 − τ2

2
. (4.19)
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Figure 4.2 illustrates the shape of the L∞-norm (blue) and its hyperbolic smooth approx-

imation (red).
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Figure 4.2: Smooth approximation of L∞-norm

Replacing the distance function d in (4.11) and (4.12) by its approximation η2 defined by

(4.19) we get the following smooth approximations for the cluster and the auxiliary cluster

functions, respectively:

H2
k(x1, . . . , xk, τ) =

1

m

m∑
i=1

−ti +
k∑
j=1

ti + η2(xj , ai, τ)−
√

(η2(xj , ai, τ) + ti)2 + τ2

2

 ,

(4.20)

H̄2
k(y, τ) =

1

m

m∑
i=1

rik−1 + η2(y, ai, τ)−
√

(rik−1 − η2(y, ai, τ))2 + τ2

2
, y ∈ Rn. (4.21)

4.4.5 Smooth clustering problems

Now we can replace nonsmooth optimization problems (2.9) and (3.2) by their smooth

approximations as follows. Smooth auxiliary clustering and clustering problems with the

similarity measure defined by the squared Euclidean distance are, respectively:

minimize Ūk(y, τ) subject to y ∈ Rn. (4.22)

minimize Uk(x
1, . . . , xk, τ) subject to x1, . . . , xk ∈ Rn. (4.23)

Smooth auxiliary clustering and clustering problems with the similarity measure defined
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by the L1 norm are, respectively:

minimize H̄1
k(y, τ) subject to y ∈ Rn. (4.24)

minimize H1
k(x1, . . . , xk, τ) subject to x1, . . . , xk ∈ Rn. (4.25)

Finally, smooth auxiliary clustering and clustering problems with the similarity measure

defined by the L1 norm are, respectively:

minimize H̄2
k(y, τ) subject to y ∈ Rn. (4.26)

minimize H2
k(x1, . . . , xk, τ) subject to x1, . . . , xk ∈ Rn. (4.27)

In order to solve these problems we take any sequence {τl} such that τl > 0 and τl → 0 as

l→∞. Then applying any smooth optimization algorithms we can get sequences of solutions

which converge to the solutions of problems (2.9) and (3.2).

4.5 Summary

In this chapter, we developed algorithms for solving clustering problems. The similar-

ity measure is defined using the L1, L2 and L∞ norms. The first algorithm is based on an

incremental approach and applies heuristics like the k-means algorithm for finding cluster

centers. In the second algorithm, we proposed to apply the nonsmooth optimization algo-

rithms to solve the clustering problem. In the third algorithm, to deal with nonsmoothness,

the clustering functions based on the L1 and L∞ norms are approximated by smoothing

techniques.
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Chapter 5

Implementation and numerical

results

5.1 Introduction

In this Chapter we discuss the implementation of Algorithm 4. The most important steps

in Algorithm 4 are Steps 3 and 4. Other steps of this algorithm are easy to implement.

In Step 3 we apply Algorithm 3 to find the set of starting points for the l-th cluster center.

Algorithm 3 contains three parameters, namely, γ1, γ2 and γ3. The choice of these parameters

depends on the size of a data set.

One can see from (3.6) that if γ1 is close to 0 then the set Ā1 will contain most of data

points which may lead to a large number of starting points and make the algorithm very

time-consuming. Therefore in order to avoid having a large number of starting points the

choice of γ1 and γ2 should depend on the number of points in a data set. Since the difference

between the values of the auxiliary clustering problem (3.2) and the clustering problem (2.9)

is not expected to be large one can choose the parameter γ3 from [1, 2]. These parameters

are chosen as follows:

1. γ1 = 0.3, γ2 = 0.5 and γ3 = 2 for data sets with the number of data points m ≤ 200;

2. γ1 = 0.6, γ2 = 0.8 and γ3 = 1.25 for data sets with the number of data points 200 <

m ≤ 2500;
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3. γ1 = 0.8, γ2 = 0.99 and γ3 = 1.05 for data sets with the number of data pointsm > 2500.

In order to determine the neighboring points from the set Ā3 we use the following tolerance:

ε =
10−4fmin1

l

where fmin1 is the optimal value of the cluster function fk when k = 1 and l is the number of

clusters. If the distance between two points in Ā3 is less than ε then we remove one of them

(any) and keep another one.

Since the proposed algorithm is an incremental one we do not consider data points which

are very close to previous cluster centers as candidates to be starting points. In order to do

so we apply a scheme already discussed in [17].

We apply the Quasi-Newton method with BFGS update to solve smooth clustering prob-

lems (4.22), (4.23), (4.24), (4.25), (4.26) and (4.27).

In general, Algorithm 4 can find only stationary points of the clustering problem (2.9).

However, the use of the special procedure to generate good starting points allows us to

find either global or near global solutions to this problem which will be confirmed by the

computational results presented in the next section.

5.2 Computational results: evaluation of the incremental al-

gorithm

We tested the proposed algorithm using a number of real-world data sets. Numerical

experiments were carried out on a PC with Processor Intel(R) Core(TM) i5-3470S CPU 2.90

GHz and RAM 8GB. Algorithm 4 was implemented in Lahey Fortran 95. 12 data sets were

used in numerical experiments. The brief description of these data sets is given in Appendix.

The more detailed description can be found in [14, 119].

We consider three different versions of Algorithm 4. These versions differ from each

other on optimization algorithms used to solve both the auxiliary clustering and clustering

problems.

1. Incremental Nonsmooth k-means algorithm: INKA - in this algorithm both the auxil-
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iary clustering and clustering problems are solved using the k-means algorithm.

2. Incremental Nonsmooth Optimization Clustering algorithm: INCA - in this algorithm

both the auxiliary clustering and clustering problems are solved using the discrete

gradient method of nonsmooth optimization.

3. Incremental Smooth Optimization Clustering algorithm: ISCA - in this algorithm both

the auxiliary clustering and clustering problems are solved using their smooth approx-

imations.

We compute 10 clusters in small data sets (German towns, Bavaria postal 1, Bavaria

postal 2 and Iris Plant), 20 clusters in medium size data sets (Heart Disease, Breast Cancer,

TSPLIB1060 and Image segmentation) and 25 clusters in large data sets (TSPLIB3038, Page

Blocks, D15112 and Pla85900). Results with different similarity measures are presented

separately. In all tables we use the following notation:

• k is the number of clusters;

• fbest is the best known value of the cluster function (2.10) (multiplied by m) with the

corresponding number of clusters;

• E is the error in %;

• N is the number of the distance function evaluations for the computation of the corre-

sponding number of clusters;

• t is the CPU time.

The error E is computed as

E =
(f̄ − fkbest)
fkbest

· 100

where f̄ is the optimal value of the function fk given by (2.10) obtained by an algorithm and

fbest is the best known value of fk for given k.
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5.2.1 Results for the similarity measure based on the squared L2-norm

Results for small data sets are given in Table 5.1. These results demonstrate that all three

algorithms are efficient for finding global or near global solutions to the clustering problem in

small data sets. Furthermore, optimization based clustering algorithms: INCA and ISCA are

more accurate than the INKA algorithm. On the other hand, the INKA requires significantly

less computational effort (both distance function evaluations and CPU time) than other two

algorithms. Although the INCA algorithm is slightly more accurate than the ISCA algorithm

however the former requires more computational effort than the latter algorithm.

Table 5.2 contains results for medium size data sets. In these results all three algorithms

are efficient for finding global or near global solutions to the clustering problem in medium

size data sets. The INCA algorithm is most accurate and overall the INKA is more accurate

than the ISCA algorithm. The INKA algorithm requires less distance function evaluations

and CPU time than other two algorithms. The INCA algorithm uses more distance function

evaluations and CPU time than the ISCA algorithm in Heart Disease and Breast Cancer

data sets, however the former algorithm requires less computational effort than the latter

algorithm in other two data sets.

Table 5.3 presents results for large data sets. One can see that the accuracy of all three

algorithms is similar for large data sets used in this chapter. The INKA algorithm requires

least number of the distance function evaluations and CPU time among three algorithms. The

INCA requires more computational effort than the ISCA algorithm in all data sets except

Pla85900 data set where results are mixed.

5.2.2 Results for the similarity measure based on the L1-norm

In this subsection we present clustering results with the similarity measure defined by the

L1-norm. Here we use only the INCA and ISCA algorithms since the INKA algorithm is not

applicable with the L1-norm.

Results for small data sets are given in Table 5.4. These results clearly demonstrate that

the INCA algorithm is more accurate than the ISCA algorithm in all data sets, however

in Iris Plant data set results are similar. On the other side the INCA algorithm requires

significantly more distance function evaluations and CPU time than the ISCA algorithm.
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Table 5.1: Results with the similarity measure based on L2-norm
k fbest INKA INCA ISCA

E N t E N t E N t
German town

×103 ×104 ×106 ×105

2 121.4257 0.00 1.84 0.00 0.00 0.43 0.00 0.00 0.26 0.00
3 77.0086 0.00 4.21 0.02 0.00 0.94 0.00 0.00 0.53 0.02
4 49.6006 0.24 5.72 0.02 0.00 1.18 0.00 0.00 0.97 0.02
5 38.7160 0.00 8.75 0.02 0.00 2.34 0.01 0.00 1.35 0.03
6 30.5354 0.00 11.02 0.02 0.00 3.38 0.01 0.00 1.79 0.03
7 24.4326 0.08 12.51 0.02 0.00 4.13 0.03 0.00 2.23 0.03
8 21.4830 0.00 15.76 0.02 0.00 7.39 0.04 0.00 3.00 0.05
9 18.5504 2.13 18.99 0.02 0.00 10.54 0.06 0.00 3.66 0.06
10 16.3080 1.81 23.37 0.02 0.00 13.44 0.09 0.00 4.36 0.08

Bavaria postal 1

×106 ×104 ×106 ×106

2 602547.2132 0.00 1.20 0.00 0.00 0.28 0.00 0.00 0.09 0.00
3 294506.5545 0.00 3.34 0.00 0.00 0.76 0.01 0.00 0.21 0.00
4 104474.6551 0.00 5.57 0.00 0.00 1.27 0.01 0.00 0.51 0.00
5 59761.5150 0.00 8.36 0.00 0.00 2.27 0.01 0.00 0.88 0.02
6 35908.5267 0.00 11.53 0.00 0.00 3.96 0.03 0.00 1.21 0.03
7 21983.1969 0.61 16.45 0.00 0.00 5.24 0.04 0.00 1.62 0.03
8 13385.4046 0.00 20.67 0.02 0.00 6.95 0.06 0.00 2.12 0.03
9 8423.7401 0.00 22.62 0.02 0.00 9.40 0.07 0.00 2.53 0.03
10 6446.4738 0.00 28.21 0.02 0.00 13.26 0.10 0.00 3.36 0.06

Bavaria postal 2

×106 ×104 ×106 ×106

2 48631.2853 0.00 1.38 0.00 0.00 0.45 0.00 7.32 0.04 0.00
3 17398.7515 0.00 3.19 0.00 0.00 1.70 0.03 0.00 0.11 0.02
4 7559.0849 0.00 6.05 0.00 0.00 2.86 0.05 0.00 0.35 0.02
5 5342.8659 0.00 9.65 0.00 0.00 5.16 0.06 0.00 0.61 0.02
6 3187.5747 0.00 13.41 0.00 0.00 6.68 0.08 0.00 0.80 0.02
7 2215.9024 0.00 17.99 0.00 0.00 11.36 0.12 0.00 1.61 0.03
8 1704.5235 0.18 23.28 0.02 0.00 19.30 0.19 0.00 2.35 0.06
9 1401.0666 1.07 27.70 0.02 0.00 32.97 0.37 0.00 3.32 0.09
10 1181.0406 0.00 31.91 0.02 0.00 54.10 0.56 0.00 3.96 0.12

Iris Plant

×100 ×104 ×106 ×106

2 152.3480 0.00 0.45 0.02 0.00 0.45 0.01 0.00 0.22 0.00
3 78.8510 0.00 1.29 0.02 0.00 1.36 0.01 0.00 0.55 0.00
4 57.2280 0.05 2.69 0.02 0.00 3.83 0.04 0.00 2.09 0.03
5 46.4460 0.06 3.89 0.03 0.00 6.93 0.07 0.00 3.96 0.06
6 39.0400 0.07 5.36 0.03 0.00 12.77 0.15 0.00 5.30 0.08
7 34.2980 0.01 7.74 0.05 0.00 19.24 0.21 0.00 6.88 0.11
8 29.9890 0.25 8.92 0.06 0.00 22.88 0.26 0.00 8.76 0.16
9 27.7860 0.28 12.25 0.08 0.00 52.04 0.62 0.90 15.64 0.31
10 25.8340 0.07 16.30 0.09 0.00 84.94 1.12 0.91 21.86 0.47
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Table 5.2: Results with similarity measure based on L2-norm (cont.)
k fbest INKA INCA ISCA

E N t E N t E N t
Heart disease

×104 ×106 ×108 ×107

2 59.8899 0.00 0.41 0.05 0.00 0.04 0.08 0.00 0.08 0.03
5 32.7543 0.00 3.01 0.27 0.00 0.14 0.34 0.13 0.70 0.23
10 20.0521 0.00 15.26 0.94 0.00 1.86 3.62 0.01 5.87 8.46
15 14.7085 0.00 26.51 1.47 0.00 4.13 7.47 0.03 9.47 24.23
20 11.6834 1.02 37.16 1.94 0.39 7.50 14.63 0.00 12.22 45.80

Breast cancer

×104 ×107 ×108 ×107

2 1.9323 0.00 0.10 0.09 0.00 0.03 0.04 0.00 0.23 0.05
5 1.3705 0.00 0.86 0.58 0.00 0.86 1.27 0.00 1.73 0.61
10 1.0194 0.00 2.00 1.06 0.00 2.55 3.51 0.00 8.01 2.14
15 0.8710 0.00 3.71 1.72 0.00 7.14 9.17 0.00 19.78 9.08
20 0.7677 0.00 5.82 2.48 0.00 15.07 18.29 0.00 37.10 27.36

TSPLIB1060

×106 ×107 ×108 ×108

2 9831.9499 0.00 0.14 0.06 0.00 0.05 0.04 0.00 0.04 0.05
5 3791.0203 0.01 1.00 0.34 0.00 0.25 0.18 0.00 0.16 0.17
10 1754.8752 0.22 4.04 1.14 0.00 1.17 0.76 0.00 0.63 0.70
15 1121.9175 0.00 8.22 2.08 0.00 3.04 1.84 0.02 1.08 1.25
20 792.5267 0.14 13.79 3.19 0.00 7.48 4.46 0.03 2.27 2.70

Image segmentation

×105 ×107 ×108 ×108

2 356.0580 0.00 0.64 0.52 0.00 0.16 0.44 0.00 0.08 0.27
5 171.4291 0.00 3.24 2.30 0.00 1.65 4.37 0.00 0.55 1.84
10 97.9546 0.64 9.22 6.00 0.00 12.41 28.42 1.15 1.93 10.26
15 65.5542 0.47 15.76 9.48 0.00 26.61 58.53 1.88 3.83 32.34
20 51.3621 0.89 25.55 14.41 0.12 45.71 98.84 0.00 6.55 89.31
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Table 5.3: Results with similarity measure based on L2-norm (cont.)
k fbest INKA INCA ISCA

E N t E N t E N t
TSPLIB3038

×106 ×108 ×108 ×108

2 3168.8047 0.00 0.11 0.56 0.00 0.20 0.20 0.00 0.26 0.25
5 1198.1959 0.00 0.57 2.50 0.00 1.00 0.87 0.00 0.95 0.98
10 560.2569 0.57 1.53 4.92 0.00 2.81 2.23 0.00 2.47 2.64
15 356.0483 0.00 3.09 8.55 0.00 5.42 4.07 0.00 4.71 5.16
20 267.1626 0.20 4.69 11.89 0.00 11.70 7.87 0.11 7.99 8.86
25 214.4985 0.23 8.86 20.95 0.00 26.11 16.33 0.01 12.49 14.01

Page blocks

×106 ×109 ×109 ×109

2 57936.8499 0.00 0.01 1.88 0.00 0.05 0.93 0.00 0.04 0.89
5 13218.3776 0.00 0.07 8.09 0.00 0.22 4.05 0.19 0.17 3.76
10 4532.9960 0.00 0.12 12.08 0.00 0.76 12.27 1.04 0.46 10.44
15 2493.6468 0.00 0.19 16.45 0.06 1.72 25.20 0.31 0.89 21.01
20 1720.3970 0.00 0.25 20.75 0.00 2.98 41.58 0.00 1.45 37.52
25 1210.2370 0.00 0.32 25.28 2.23 4.28 58.29 0.00 2.17 63.31

D15112

×108 ×109 ×109 ×109

2 3684.0305 0.00 0.23 3.23 0.00 0.47 5.52 0.00 0.42 5.15
5 1327.0655 0.00 0.92 10.12 0.00 1.89 20.47 0.00 1.52 18.41
10 644.9025 1.41 2.09 17.38 0.00 4.73 47.64 0.00 3.44 41.50
15 431.3720 0.26 3.28 24.34 0.00 10.99 99.05 0.00 5.74 68.23
20 321.7737 0.01 4.52 31.11 0.00 19.72 165.97 0.00 8.65 101.82
25 253.0012 0.51 5.76 37.53 0.00 41.29 317.07 0.00 11.96 139.53

Pla85900

×1011 ×1011 ×1011

2 374908.4065 1.44 0.07 143.70 0.00 0.13 132.21 0.00 0.12 123.96
5 133971.8844 2.78 0.30 609.91 0.00 0.39 471.00 0.00 0.37 452.96
10 68294.1490 0.00 0.67 1358.81 0.00 0.83 1028.34 0.00 0.79 1011.17
15 46029.3761 0.17 1.04 1938.13 0.00 1.29 1608.17 0.00 1.24 1596.67
20 34985.9729 0.03 1.42 2382.82 0.00 1.78 2198.69 0.00 1.71 2210.91
25 28275.5162 0.77 1.80 2788.37 0.00 2.30 2808.12 0.00 2.21 2863.18
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Table 5.4: Results with the similarity measure based on the L1-norm
k fbest INCA ISCA

E N t E N t
German town

×103 ×106 ×106

2 3.0740 0.00 0.82 0.00 0.00 0.31 0.01
3 2.4450 0.00 1.46 0.00 0.00 0.24 0.01
4 1.8870 0.00 2.93 0.01 0.00 0.19 0.01
5 1.6460 0.00 5.40 0.03 0.30 0.17 0.03
6 1.5060 0.00 8.34 0.04 0.60 0.15 0.03
7 1.3780 0.00 12.22 0.07 0.00 0.14 0.08
8 1.2500 0.00 15.15 0.09 1.44 0.13 0.08
9 1.1390 0.00 17.83 0.10 0.09 0.11 0.09
10 1.0440 0.00 21.60 0.14 0.38 0.10 0.11

Bavaria postal 1

×106 ×107 ×107

2 4.0249 0.00 0.42 0.03 3.21 0.32 0.09
3 2.8284 0.00 0.59 0.04 2.51 0.39 0.11
4 2.1982 0.00 1.41 0.10 0.22 0.52 0.14
5 1.7208 0.00 2.67 0.20 3.54 0.67 0.19
6 1.3003 0.00 3.29 0.24 8.72 1.13 0.31
7 1.0704 0.00 3.55 0.26 3.25 1.48 0.42
8 0.8510 0.00 3.58 0.28 2.21 1.53 0.44
9 0.7220 0.00 5.11 0.39 1.02 2.38 0.75
10 0.6037 0.00 6.02 0.45 0.33 3.40 1.09

Bavaria postal 2

×106 ×106 ×106

2 1.8600 0.00 2.36 0.03 2.38 0.52 0.03
3 1.2607 0.00 3.06 0.03 1.82 0.63 0.03
4 0.9633 0.00 5.96 0.06 1.29 0.86 0.03
5 0.7872 0.00 16.44 0.14 6.91 1.35 0.05
6 0.6736 0.00 22.76 0.20 3.64 1.79 0.08
7 0.5659 0.00 27.38 0.24 3.34 1.92 0.08
8 0.5097 0.00 36.97 0.32 1.90 2.68 0.11
9 0.4688 0.00 46.44 0.40 3.67 3.20 0.12
10 0.4340 0.00 55.42 0.48 4.63 4.75 0.23

Iris Plant

×102 ×107 ×107

2 2.1670 0.00 0.08 0.01 0.00 0.41 0.08
3 1.5920 0.00 0.93 0.09 0.00 1.64 0.28
4 1.3650 0.00 1.91 0.20 0.07 1.93 0.33
5 1.2460 0.00 3.65 0.40 0.40 2.69 0.44
6 1.1530 0.00 5.10 0.54 0.10 3.77 0.61
7 1.0620 0.00 6.38 0.70 0.01 4.06 0.65
8 1.0010 0.00 8.91 1.01 0.05 4.41 0.72
9 0.9540 0.00 13.62 1.65 0.00 5.91 0.98
10 0.9070 0.00 20.36 2.66 0.00 6.78 1.14
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Table 5.5: Results with the similarity measure based on the L1-norm (cont.)
k fbest INCA ISCA

E N t E N t
Heart disease

×104 ×108 ×108

2 2.0435 0.00 1.17 4.68 0.02 0.05 0.25
5 1.5760 0.00 5.97 27.78 0.06 1.22 6.21
10 1.3006 0.00 11.19 45.50 2.11 2.23 14.09
15 1.1158 0.00 17.17 61.65 0.00 9.97 114.00
20 1.0190 0.00 19.44 66.87 0.10 12.92 176.48

Breast cancer

×104 ×108 ×108

2 0.6401 0.00 0.57 1.04 0.02 0.13 0.50
5 0.5032 0.00 4.45 8.84 0.56 1.27 3.90
10 0.4244 0.00 10.57 21.16 1.96 1.60 5.04
15 0.3858 0.00 25.44 46.28 0.08 5.64 21.25
20 0.3583 0.00 35.96 62.29 0.11 6.28 23.52

TSPLIB1060

×106 ×108 ×108

2 3.8645 0.00 0.13 0.09 0.74 0.23 0.31
5 2.3096 0.00 1.83 1.02 0.62 0.90 1.08
10 1.5628 0.00 10.46 5.75 0.40 2.75 3.48
15 1.1983 0.00 28.89 16.33 0.73 5.21 6.75
20 1.0157 0.00 70.94 40.76 0.42 16.97 19.48

Image segmentation

×105 ×109 ×109

2 5.1916 0.00 0.04 1.35 0.01 0.14 12.28
5 3.3996 0.00 0.55 16.62 0.00 0.52 39.64
10 2.5663 0.00 8.39 221.88 0.00 3.72 289.71
15 2.1795 0.00 17.68 440.93 1.40 8.84 801.91
20 1.9411 0.00 40.85 968.79 0.05 21.48 2566.79

Results for medium size data sets presented in Table 5.5 demonstrate that the INCA

algorithm is more accurate than the ISCA algorithm in all data sets. The ISCA algorithm

requires less distance function evaluations than the INKA algorithm however the former uses

more CPU time than the latter algorithm.

Table 5.6 contains results with large data sets. These results show that the INCA algo-

rithm is more accurate than the ISCA algorithm in TSPLIB3038 and Pla85900 data sets. In

Page Blocks and D15112 data sets both algorithms are equally successful. Again one can see

that the ISCA algorithm requires less distance function evaluations than the INCA algorithm.

However results for CPU time are mixed. Overall, results presented in this subsection demon-

strate that the nonsmooth optimization based INCA algorithm is more accurate, however it

requires more computational effort than the smoothing technique based ISCA algorithm.
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Table 5.6: Results with the similarity measure based on the L1-norm (cont.)
k fbest INCA ISCA

E N t E N t
TSPLIB3038

×106 ×109 ×109

2 3.7308 0.00 0.04 0.28 0.02 0.02 0.23
3 3.0056 0.00 0.10 0.68 0.00 0.03 0.44
5 2.2551 0.00 0.24 1.59 0.06 0.08 0.97
10 1.5502 0.00 1.70 9.95 0.14 0.99 10.33
15 1.2298 0.00 4.71 27.11 0.27 2.14 22.03
20 1.0597 0.00 9.97 56.89 0.64 4.19 42.37
25 0.9441 0.00 14.38 81.97 0.18 7.60 75.88

Page blocks

×106 ×109 ×109

2 8.4141 0.00 0.08 1.73 0.00 0.10 3.37
5 4.8821 0.00 1.18 21.43 0.00 0.45 14.88
10 3.1704 0.00 9.17 149.35 0.00 1.83 63.09
15 2.5682 0.00 12.60 197.94 0.00 6.77 241.91
20 2.2127 0.00 27.10 391.28 0.00 10.16 366.84
25 1.9737 0.00 49.83 689.86 0.00 16.43 623.74

D15112

×108 ×109 ×109

2 0.886 0.00 0.40 4.66 0.00 0.27 3.87
5 0.4998 0.00 1.40 16.08 0.00 1.15 16.08
10 0.3617 0.00 3.50 37.17 0.00 2.78 38.13
15 0.293 0.00 6.84 66.64 0.03 4.74 64.38
20 0.2501 0.00 11.86 106.82 0.00 8.62 112.29
25 0.2243 0.00 16.49 143.66 0.00 11.37 147.12

Pla85900

×1010 ×1010 ×1010

2 2.0656 0.00 1.33 123.67 0.21 0.82 105.75
5 1.2569 0.00 4.38 455.53 1.84 3.12 412.28
10 0.898 0.00 9.59 1006.40 0.95 7.01 930.83
15 0.7333 0.00 14.98 1576.03 1.38 11.00 1451.20
20 0.6374 0.00 20.89 2171.28 0.91 15.10 1991.88
25 0.5693 0.00 26.67 2748.98 1.69 19.50 2557.04
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Table 5.7: Results with the similarity measure based on the L∞-norm
L∞-norm N(×106)

k INCA

fbest N t fbest N t
German town Bavaria postal 1

×103 ×106

2 2.5573 0.64 0.00 3.9981 1.35 0.01
3 1.8719 1.22 0.00 2.7916 2.02 0.03
4 1.5069 1.78 0.01 2.1713 3.24 0.04
5 1.2476 2.15 0.01 1.7496 9.46 0.09
6 1.1316 5.03 0.03 1.3178 17.30 0.17
7 1.0415 8.81 0.06 1.0997 23.23 0.23
8 0.9595 11.54 0.09 0.9081 31.94 0.31
9 0.8875 14.62 0.10 0.7703 41.43 0.40
10 0.8196 18.32 0.14 0.6486 49.63 0.46

Bavaria postal 2 Iris Plant

×106 ×102

2 0.9646 3.73 0.06 1.3651 3.87 0.06
3 0.6765 4.30 0.06 0.9656 4.53 0.06
4 0.5373 6.52 0.09 0.7922 16.52 0.23
5 0.4592 20.63 0.26 0.6750 18.70 0.24
6 0.3877 35.69 0.45 0.6197 47.87 0.65
7 0.3454 58.20 0.73 0.5650 67.40 0.92
8 0.3132 80.16 1.02 0.5187 106.01 1.46
9 0.2870 89.40 1.15 0.4953 177.23 2.51
10 0.2619 101.53 1.32 0.4729 251.74 3.60

5.2.3 Results for the similarity measure based on the L∞-norm

In this subsection we present clustering results with the INCA algorithm using the simi-

larity measure defined by the L∞-norm. Results with small data sets are presented in Table

5.7, with medium size data sets in Table 5.8 and with large data sets in Table 5.9. These

results show that computational effort required by the INCA algorithm in these data sets is

reasonable.

In Figures 5.1, 5.2 and 5.3 we present dependence of both the number of distance calcu-

lations and CPU time on the number of clusters for the INCA algorithm using the similarity

measures based on the L1, L2 and L∞ norms, respectively. We use two data sets with the

largest number of data points, namely, D15112 and Pla85900. These graphs demonstrate

that both the number of distance calculations and CPU time increases almost linearly for

Pla85900 data set and for all similarity measures. This dependence is also quite close to linear

one for D15112 data set. Since the proposed algorithm includes an optimization solver, it is

not possible to estimate its complexity. However, results show that the number of distance

calculations depends at most polynomially on the number of clusters and data points.
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Table 5.8: Results with the similarity measure based on the L∞-norm (cont.)
L∞-norm N(×108)

k INCA

fbest N t fbest N t
Heart disease Breast cancer

×104 ×104

2 1.0265 0.99 3.15 0.1927 0.49 1.46
3 0.8763 2.13 6.84 0.1737 0.65 1.95
5 0.7267 3.95 12.63 0.1521 1.74 5.36
7 0.6455 6.41 20.20 0.1402 3.15 9.76
10 0.5631 9.93 30.98 0.1294 8.91 27.08
12 0.5198 12.10 37.56 0.1247 15.20 45.83
15 0.4753 14.81 45.83 0.1186 21.31 64.13
18 0.4400 19.12 58.98 0.1138 29.16 87.46
20 0.4207 22.25 68.42 0.1108 34.43 103.08

TSPLIB1060 Image segmentation

×106 ×105

2 2.9215 0.14 0.09 1.5901 5.14 21.68
3 2.3911 0.42 0.29 1.3954 14.03 57.34
5 1.7843 0.93 0.65 1.1563 41.75 164.11
7 1.4847 1.69 1.23 1.0269 70.93 272.14
10 1.1779 3.44 2.52 0.8852 261.00 959.59
12 1.0559 5.63 4.07 0.7998 366.10 1334.30
15 0.9299 11.21 8.19 0.7380 586.25 2110.36
18 0.8409 19.97 14.72 0.6861 831.64 2975.59
20 0.7957 43.37 32.47 0.6586 933.84 3334.88

Table 5.9: Results with the similarity measure based on the L∞-norm (cont.)
L∞-norm N(×109)

k INCA

fbest N t fbest N t
TSPLIB3038 Page blocks

×106 ×106

2 2.8326 0.03 0.26 5.1353 0.06 1.56
3 2.1424 0.06 0.56 4.1871 0.13 3.33
5 1.6562 0.13 1.17 2.9973 0.60 14.05
10 1.1544 0.56 4.50 1.6485 1.92 42.44
15 0.9114 1.60 12.41 1.2580 4.82 101.83
20 0.7750 3.51 26.94 1.0943 10.29 212.56
25 0.6924 7.74 58.70 0.9667 13.98 286.55

D15112 Pla85900

×108 ×1010

2 0.7018 0.35 5.42 1.5803 11.53 124.16
3 0.5178 0.64 10.12 1.2250 20.74 235.26
5 0.3952 1.27 19.76 0.9184 37.25 442.32
10 0.2663 3.01 45.05 0.6523 78.26 971.83
15 0.2148 5.17 74.30 0.5455 122.83 1507.79
20 0.1859 7.93 109.57 0.4653 172.67 2087.35
25 0.1669 14.18 179.71 0.4155 224.15 2714.76
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Figure 5.1: Results for the similarity measure based on the L1-norm
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Figure 5.2: Results for the similarity measure based on the squared L2-norm
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Figure 5.3: Results for the similarity measure based on the L∞-norm
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5.2.4 Results for purity in data sets with class labels

In order to determine which similarity measure provides better approximation of a data

set one can use the notion of the cluster purity in situations where instances are already

labeled. In this case we can compare the clusters with the “true” class labels. The purity Pi

of the cluster i, i = 1, . . . , k is defined as follows [57]:

Pi =
1

ni
max
j=1,...,l

nji .

In this expression ni is the number of points in the cluster i, i = 1, . . . , k, nji is the number

of points in the cluster i that belong to the true class j and l is the number of true classes.

The total purity Pt for the whole data set A is computed as:

Pt =
1

m

k∑
i=1

max
j=1,...,l

nji .

Among all data sets used in our experiments only four contain class label: Heart Disease,

Breast Cancer, Image Segmentation and Page Blocks. Results of numerical experiments are

presented in Table 5.10. In this table k stands for the number of clusters and Pt for the total

purity. The number of clusters where the purity achieves its maximum is presented in bold.

Results show that the use of the similarity measure based on the L1-norm provides better

approximation than the use of similarity measures based on other two norms. Results for L2

and L∞ norms are similar in the sense of both the number of clusters and accuracy. The

exception is the Image Segmentation data sets where the similarity measure based on the

squared L2 norm produced significantly better accuracy.

5.2.5 Visualization of results

We use Voronoi diagrams to visualize results obtained by the INCA algorithm for different

similarity measures. In order to draw these diagrams we used the software available from [124].

Figures 5.4-5.6 present Voronoi diagrams for three data sets: German town, TSPLIB1060 and

TSPLIB3038 data sets. In all data sets these diagrams are illustrated for five clusters. One

can see that cluster structures for different similarity measures are different in all data sets,
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Table 5.10: Cluster purity for different similarity measures
L1 L2 L∞

k Pt k Pt k Pt
Heart Disease

2 59.2593 2 57.5758 2 57.5758
5 65.6566 5 62.6263 5 61.6162
10 68.0135 10 63.2997 10 65.6566
15 69.3603 14 68.0135 13 68.6869
18 71.3805 15 67.0034 15 68.3502
20 70.7071 20 68.0135 20 67.6768

Breast Cancer

2 94.4363 2 96.0469 2 97.0717
5 96.3397 3 97.0717 3 96.7789
6 97.6574 5 96.3397 5 96.9253
10 96.4861 10 96.9253 10 96.6325
15 97.0717 15 96.9253 15 96.3397
20 96.9253 20 96.9253 20 96.3397

Image Segmentation

2 28.5714 2 28.5714 2 20.8225
5 60.9091 5 43.8095 5 40.0866
10 74.2857 10 61.342 10 46.1472
15 77.4026 15 71.6883 15 50.4329
19 77.7489 19 74.7619 19 51.6883
20 78.0087 20 75.671 20 54.2424

Page Blocks

2 89.768 2 89.8593 2 89.768
5 89.9872 5 89.9141 5 89.8776
10 90.0603 10 90.0968 10 90.0238
15 90.1517 15 90.1517 15 90.0786
20 90.1517 20 90.1882 20 90.1151
23 90.8642 23 90.2065 24 90.1334
25 90.8642 25 90.2065 25 90.1334

(a) L1-norm (b) L2-norm (c) L∞-norm

Figure 5.4: Visualization of clusters for German towns data set

however the distributions of cluster centers for different norms are similar in TSPLIB1060

data set. These results confirm that the use of different similarity measures allows one to

explore different cluster structures in data sets.
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(a) L1-norm (b) L2-norm (c) L∞-norm

Figure 5.5: Visualization of clusters for TSPLIB1060 data set

(a) L1-norm (b) L2-norm (c) L∞-norm

Figure 5.6: Visualization of clusters for TSPLIB3038 data set

5.3 Computational results: comparison with other clustering

algorithms

In this section we compare the proposed three algorithms with other clustering algorithms.

Comparison of algorithms with different similarity measures are presented separately.

5.3.1 Comparison of algorithms using the similarity measure based on the

squared L2-norm

In subsection we use the following algorithms for comparison with the INCA algorithm:

1. Lloyd algorithm. This clustering algorithm is the version of the k-means algorithm. It

was introduced in [97].

2. Forgy algorithm. This algorithm is a simple alternative of least-squares algorithm [63].

3. MacQueen algorithm. This clustering algorithm introduced in [99] is similar to the

Forgy’s algorithm. The difference is in the last stage where the MacQueen algorithm
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moves the center points to the mean of their Voronoi set.

4. Hartigan algorithm. This algorithm was introduced in [79].

5. K-means++ algorithm. This algorithm is the version of the k-means algorithm and was

introduced in [9]. It uses a special procedure for initialization of cluster centers.

6. X-means algorithm. This algorithm is an improvement of the original k-means algo-

rithm [113]. It uses a special procedure for initialization of cluster centers.

7. Global k-means algorithm (GKM). This is an incremental algorithm [96].

8. Modified Global k-means algorithm (MGKM). This is the modified version of the global

k-means algorithm [19].

All algorithms listed above, except the GKM and MGKM algorithms, use randomly

generated starting points for cluster centers. In order to have a fair comparison with the

INCA algorithm we use large number of starting points in these algorithms so that the CPU

time used by them is almost the same that used by the INCA algorithm. More specifically,

we used 500 starting points in all algorithms and we chose the best solution and compared it

to that of found by the INCA algorithm. Results are presented in Tables 5.11-5.13. In these

tables we include the error of a solution found by an algorithm.

Results for small data sets are presented in Table 5.11. These results show that the

Hartigan, k-means++ and INCA algorithms are most accurate among all algorithms. The

error by the GKM and MGKM algorithms are not large in comparison with other algorithms.

Table 5.12 contains results with medium size data sets. Again we can see that the Har-

tigan, k-means++ and INCA algorithms are among most accurate in these data sets. The

GKM and MGKM algorithms also show good performance in most data sets.

5.3.2 Comparison of algorithms using the similarity measure based on the

L1-norm

In this subsection we present the comparison of the INCA algorithm with two clustering

algorithms: the k-means and the X-means algorithms. All algorithms use the similarity
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Table 5.11: Comparison of algorithms using the similarity measure based on the L2-norm
k Forgy Lloyd McQueen Hartigan X-means K-means++ GKM MGKM INCA

German town
2 0.00 0.00 0.00 0.00 8.76 0.00 0.00 0.00 0.00
3 0.00 0.00 0.00 0.00 11.63 0.00 1.45 1.45 0.00
4 0.00 0.00 0.00 0.00 15.35 0.00 0.72 0.72 0.00
5 0.00 0.00 0.00 0.00 11.44 0.00 0.00 0.00 0.00
6 0.00 0.00 0.00 0.00 27.26 0.00 0.00 0.27 0.00
7 0.00 0.00 0.00 0.00 31.00 0.00 0.09 0.00 0.00
8 0.00 0.00 0.00 0.00 46.65 0.00 1.33 1.23 0.00
9 0.00 0.00 0.00 0.00 51.81 0.68 2.13 4.41 0.00
10 0.00 0.00 0.28 0.00 80.32 0.00 1.79 1.51 0.00

Bavaria postal 1
2 0.00 0.00 0.00 0.00 242.83 0.00 7.75 0.00 0.00
3 0.00 0.00 0.00 0.00 579.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00 312.15 0.00 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00 763.62 0.00 0.00 0.00 0.00
6 27.65 0.00 0.00 27.65 1223.59 0.00 0.00 0.00 0.00
7 0.61 0.61 1.32 0.00 2010.27 0.00 1.50 1.50 0.00
8 0.00 0.00 0.00 0.00 3296.56 0.00 0.00 0.00 0.00
9 0.00 15.43 0.00 0.00 5312.35 0.00 0.00 0.00 0.00
10 0.00 0.00 0.00 0.00 6811.38 0.00 0.00 0.00 0.00

Bavaria postal 2
2 0.00 0.00 0.00 0.00 0.00 0.00 7.32 7.32 7.32
3 0.00 0.00 0.00 0.00 110.55 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00 317.87 0.00 0.00 0.00 0.00
5 1.14 1.14 0.00 0.00 482.46 0.00 1.86 1.86 0.00
6 39.04 39.02 26.72 0.00 868.32 0.00 1.21 1.21 0.00
7 0.04 0.04 0.04 0.00 1260.32 0.00 0.55 0.55 0.04
8 4.68 12.57 6.06 0.00 1668.73 0.00 0.73 0.73 0.00
9 11.90 1.34 1.34 0.00 2046.36 0.14 0.14 0.14 0.00
10 3.91 11.64 5.54 0.00 2422.10 0.22 1.00 1.00 0.00

Iris Plant
2 0.00 0.00 0.00 0.00 1.71 0.00 0.00 0.00 0.00
3 0.00 0.00 0.00 0.00 8.92 0.00 0.01 0.01 0.00
4 0.00 0.00 0.00 0.00 37.30 0.00 0.05 0.05 0.05
5 0.00 0.00 0.00 0.00 11.76 0.00 0.54 0.54 0.00
6 0.00 0.00 0.00 0.00 19.81 0.00 1.44 1.44 0.00
7 0.00 0.00 0.00 0.00 30.49 0.00 3.17 3.17 0.00
8 0.00 0.00 0.00 0.00 47.80 0.00 1.71 1.71 0.00
9 0.00 0.00 0.01 0.00 56.56 0.00 2.85 2.85 0.00
10 0.20 0.41 0.00 0.00 60.86 0.06 3.55 3.55 0.00
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Table 5.12: Comparison of algorithms using the similarity measure based on the L2-norm
(cont.)

k Forgy Lloyd McQueen Hartigan X-means K-means++ GKM MGKM INCA

Heart disease
2 0.00 0.00 0.00 0.00 75.01 0.00 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00 216.02 0.00 0.58 0.58 0.00
10 0.05 0.06 0.14 0.00 389.14 0.09 2.61 1.33 0.03
15 0.28 0.97 0.61 0.00 531.38 1.17 0.96 1.13 0.16
20 2.90 2.65 0.92 0.00 667.67 1.77 2.18 1.35 0.41
25 3.33 5.44 5.56 0.31 781.51 4.33 3.77 0.75 0.00
30 5.45 4.32 5.66 0.03 845.62 4.68 3.76 1.38 0.00

Breast cancer
2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00 2.97 0.00 2.28 0.62 0.02
10 0.10 0.03 0.04 0.00 9.96 0.14 0.25 0.20 0.04
15 0.87 0.84 0.65 0.00 11.87 1.07 1.55 1.49 0.73
20 2.88 2.68 2.59 0.00 23.75 1.92 4.08 1.84 0.82
25 2.10 2.28 3.93 0.50 20.23 3.38 5.04 1.19 0.00
30 4.46 3.68 4.07 0.00 20.98 3.23 4.67 1.06 0.46

TSPLIB1060
2 0.00 0.00 0.00 0.00 149.58 0.00 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00 24.48 0.00 0.01 0.01 0.01
10 0.00 0.00 0.00 0.00 46.36 0.00 0.23 0.04 0.03
20 0.05 0.04 0.03 0.00 45.94 0.39 0.39 0.39 0.08
25 0.11 0.26 0.00 0.08 68.25 0.09 1.81 1.81 0.00
30 0.13 0.00 0.48 0.23 73.92 1.47 2.82 2.83 0.75
40 1.57 0.93 1.89 0.00 76.85 2.39 4.00 2.82 0.27
50 3.77 3.75 3.69 0.61 88.96 4.49 2.07 1.50 0.00

Image Segmentation
2 0.00 0.00 0.00 0.00 6.65 0.00 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00 54.85 0.00 0.00 0.00 0.00
10 1.53 1.16 0.00 0.63 106.25 0.00 1.76 1.76 1.75
20 12.08 0.18 8.87 2.38 126.52 0.77 0.00 1.40 27.72
25 11.48 15.35 17.29 4.09 173.86 4.18 0.05 0.00 23.39
30 14.65 12.37 17.01 9.35 202.64 5.75 0.07 0.06 0.00
40 14.96 12.26 17.65 15.37 260.99 6.99 1.08 1.07 0.00
50 19.96 18.87 22.55 18.82 323.81 8.13 2.22 2.21 0.00
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Table 5.13: Comparison of algorithms using the similarity measure based on the L2-norm
(cont.)

k Forgy Lloyd McQueen Hartigan X-means K-means++ GKM MGKM INCA

TSPLIB3038
2 0.00 0.00 0.00 0.00 30.17 0.00 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00 1.77 0.00 0.00 0.00 0.00
10 0.00 0.00 0.00 0.00 12.43 0.00 2.78 0.58 0.57
20 0.02 0.03 0.02 0.00 10.11 0.14 2.00 0.48 0.14
25 0.05 0.02 0.03 0.00 8.20 0.22 0.75 0.23 0.56
30 0.05 0.03 0.08 0.00 13.22 0.45 1.44 1.04 0.82
40 0.00 0.76 0.66 0.00 20.78 1.26 1.49 1.72 1.01
50 0.34 0.41 0.51 0.33 19.00 1.15 0.68 0.20 0.00

Page blocks
5 38.99 38.99 38.99 38.99 933.67 0.00 0.00 0.00 0.00
10 208.96 46.37 216.19 38.71 2787.71 5.20 1.53 0.73 0.00
20 247.53 248.08 678.67 200.22 2209.30 36.81 0.64 0.00 1.02
30 497.05 482.87 496.96 417.76 4644.91 31.56 2.16 1.40 0.00
50 1118.04 1110.42 1064.06 943.63 7602.65 69.65 0.11 0.07 0.00
70 1883.18 1905.86 1911.44 1708.40 13742.13 97.83 0.45 0.15 0.00
80 1572.73 1794.92 1428.82 1408.72 16659.75 86.06 1.97 0.51 0.00
100 2069.75 2415.00 2074.10 2045.52 20261.88 107.94 1.03 1.14 0.00

D15112
5 0.00 0.00 0.00 0.00 4.91 0.00 0.00 0.00 0.00
10 0.00 0.00 0.00 0.00 1.51 0.00 1.41 1.41 0.62
20 0.00 0.00 0.00 0.00 4.44 0.00 0.25 0.25 0.24
30 0.00 0.01 0.00 0.00 8.55 0.00 0.07 0.10 0.06
50 0.19 0.22 0.31 0.23 5.80 0.00 0.00 0.00 0.08
70 0.51 0.34 0.49 0.28 6.23 0.87 0.96 0.95 0.00
80 0.70 0.97 0.55 0.40 10.85 0.81 0.28 0.27 0.00
100 1.52 1.28 1.34 1.08 10.48 0.82 0.13 0.13 0.00

Pla85900
5 0.00 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.00
10 0.00 0.00 0.00 0.00 0.53 0.00 0.00 0.00 0.00
20 0.00 0.00 0.00 0.00 1.06 0.00 0.31 0.31 0.54
30 0.00 0.00 0.00 0.00 3.13 0.00 0.13 0.13 0.01
50 0.14 0.14 0.00 0.07 0.99 0.04 0.35 0.35 0.70
70 0.18 0.32 0.10 0.00 2.83 0.25 0.24 0.72 1.23
80 0.29 0.00 0.04 0.11 2.78 0.02 0.93 0.87 1.15
100 0.29 0.33 0.13 0.00 3.48 0.16 0.30 0.70 0.68
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Table 5.14: Comparison of algorithms using the similarity measure based on the L1-norm
k k-means X-means INCA k-means X-mean INCA

German Towns Bavaria postal 1

2 4.23 2.68 0.00 18.58 44.21 0.00
3 16.11 4.09 0.00 53.31 34.44 0.00
4 1.64 29.36 0.00 98.27 48.73 0.00
5 6.38 14.27 0.00 146.01 102.81 0.00
6 10.23 11.24 0.00 223.08 149.68 0.00
7 14.15 18.49 0.00 284.29 148.85 0.00
8 10.16 19.12 0.00 384.27 188.39 0.00
9 10.80 26.51 0.00 441.99 338.77 0.00
10 8.14 33.78 0.00 491.15 404.42 0.00

Bavaria postal 1 Iris Plant

2 1.44 13.31 0.00 0.28 2.05 0.00
3 35.65 15.29 0.00 0.06 2.07 0.00
4 57.83 27.51 0.00 0.51 12.42 0.00
5 90.57 14.30 0.00 2.97 5.34 0.00
6 119.23 10.23 0.00 6.76 7.15 0.00
7 151.72 20.40 0.00 8.00 11.85 0.00
8 178.83 32.68 0.00 9.19 17.12 0.00
9 201.37 39.58 0.00 9.12 21.59 0.00
10 128.65 42.21 0.00 12.35 23.72 0.00

measure defined by the L1-norm. Results are presented in Tables 5.14-5.16. We include the

error of each algorithm for given number of clusters at these tables.

Table 5.14 contains results on small data sets. These results clearly demonstrate the

superiority of the INCA algorithm over other two algorithms in these data sets. Moreover,

its superiority over the k-means and X-means algorithms in Bavaria Postal 1 data set is

significant.

Results for medium size data sets are given in Table 5.15. Again we can see that the INCA

algorithm is much more superior than other two algorithms for these data sets. In most cases

results obtained by the k-means andX-means algorithms deteriorate as the number of clusters

increases.

Table 5.16 presents results for large data sets. One can see that the INCA algorithm

achieves significantly better solutions than other two algorithms in most cases except the

case k = 3 for Pla85900 data set. The algorithms the k-means and X-means algorithms

are quite efficient in TSPLIB3038, D15112 and Pla85900 data sets. All these data sets have

two attributes. This means that the k-means and X-means algorithms are efficient when the

number of attributes is very small (2 or 3).

78



Table 5.15: Comparison of algorithms using the similarity measure based on the L1-norm
(cont.)

k k-means X-means INCA k-means X-mean INCA
Heart disease Breast cancer

2 18.31 18.63 0.00 0.05 14.46 0.00
3 26.60 30.37 0.00 5.93 15.35 0.00
5 44.06 49.02 0.00 5.03 18.16 0.00
7 52.37 59.50 0.00 6.28 20.73 0.00
10 69.75 73.73 0.00 8.15 18.87 0.00
12 77.73 84.08 0.00 11.61 19.82 0.00
15 92.18 97.24 0.00 9.18 19.20 0.00
18 101.43 108.08 0.00 8.66 21.68 0.00
20 105.50 112.45 0.00 9.24 23.27 0.00

TSPLIB1060 Image segmentation

2 37.69 0.17 0.00 1.68 8.78 0.00
3 17.61 18.37 0.00 16.66 5.62 0.00
5 7.30 13.17 0.00 0.13 7.59 0.00
7 6.86 9.35 0.00 2.10 17.72 0.00
10 11.56 11.79 0.00 9.42 21.76 0.00
12 12.58 9.13 0.00 12.80 25.18 0.00
15 13.13 14.00 0.00 18.87 30.73 0.00
18 14.14 9.44 0.00 20.21 33.01 0.00
20 9.17 12.54 0.00 25.86 28.25 0.00

Table 5.16: Comparison of algorithms using the similarity measure based on the L1-norm
(cont.)

k k-means X-means INCA k-means X-mean INCA
TSPLIB3038 Page blocks

2 4.91 0.27 0.00 27.42 29.10 0.00
3 2.05 0.62 0.00 33.09 58.19 0.00
5 1.86 4.22 0.00 83.22 111.94 0.00
10 3.24 6.99 0.00 142.63 151.02 0.00
15 2.28 1.95 0.00 164.98 158.37 0.00
20 2.93 3.40 0.00 202.92 141.11 0.00
25 2.07 4.45 0.00 238.26 148.37 0.00

D15112 Pla85900

2 1.16 0.64 0.00 0.51 0.46 0.00
3 8.45 3.52 0.00 0.00 0.13 0.25
5 0.44 1.05 0.00 0.21 0.37 0.00
10 1.31 0.73 0.00 0.15 0.88 0.00
15 1.03 1.91 0.00 0.27 1.28 0.00
20 2.65 3.27 0.00 0.94 0.85 0.00
25 1.61 5.10 0.00 2.01 2.12 0.00
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Table 5.17: Comparison of algorithms using the similarity measure based on the L∞-norm
k k-means X-means INCA k-means X-mean INCA

German Towns Bavaria postal 1

2 0.00 24.00 5.41 21.62 44.43 0.00
3 0.00 4.69 1.57 69.89 111.24 0.00
4 0.47 0.00 3.41 106.20 63.50 0.00
5 7.21 2.72 0.00 137.93 96.54 0.00
6 5.03 10.58 0.00 225.35 158.52 0.00
7 2.11 14.55 0.00 285.78 207.73 0.00
8 15.37 15.67 0.00 356.89 271.70 0.00
9 10.31 17.74 0.00 413.54 327.02 0.00
10 6.09 25.57 0.00 338.41 409.24 0.00

Bavaria postal 1 Iris Plant

2 404.07 498.62 0.00 1.08 0.00 39.10
3 601.05 771.69 0.00 0.00 2.45 25.24
4 733.30 560.73 0.00 0.00 2.64 12.37
5 806.53 648.82 0.00 4.94 0.00 4.17
6 1005.88 778.72 0.00 2.47 11.94 0.00
7 1128.26 879.76 0.00 2.74 5.85 0.00
8 1224.71 977.71 0.00 9.41 13.52 0.00
9 1278.33 1046.10 0.00 11.75 17.35 0.00
10 985.72 1161.13 0.00 14.61 15.78 0.00

5.3.3 Comparison of algorithms using the similarity measure based on the

L∞-norm

In this subsection we present the comparison of the INCA algorithm with two clustering

algorithms: the k-means and the X-means algorithms. All algorithms use the similarity

measure defined by the L∞-norm. Results are presented in Tables 5.17-5.19. In these tables

the error of each algorithm for given number of clusters is included.

Results for small data sets are given in Table 5.17. These results demonstrate the signifi-

cant superiority of the INCA algorithm over other two algorithms in all data sets, except the

cases when the number of clusters is small.

Table 5.18 contains results for medium size data sets. One can see that the INCA al-

gorithm is much more superior than other two algorithms in these data sets. In most cases

results obtained by the k-means and X-means algorithms deteriorate as the number of clus-

ters increases.

Results for large data sets are reported in Table 5.19. The INCA algorithm achieves

significantly better solutions than other two algorithms in Page Blocks data set. However

in other three data sets the k-means and X-means algorithms are more successful than the

INCA algorithm. These results confirm that both the k-means and X-means algorithm is
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Table 5.18: Comparison of algorithms using the similarity measure based on the L∞-norm
(cont.)

k k-means X-means INCA k-means X-mean INCA
Heart disease Breast cancer

2 29.51 30.08 0.00 39.34 0.32 0.00
3 50.94 51.55 0.00 12.09 5.70 0.00
5 81.01 80.94 0.00 25.71 4.84 0.00
7 102.73 101.13 0.00 22.18 8.00 0.00
10 129.34 128.72 0.00 26.43 12.78 0.00
12 148.06 145.52 0.00 23.26 11.66 0.00
15 165.77 166.08 0.00 27.23 13.10 0.00
18 184.73 186.18 0.00 28.08 13.18 0.00
20 195.60 197.98 0.00 29.56 12.67 0.00

TSPLIB1060 Image segmentation

2 30.88 45.57 0.00 12.77 11.62 0.00
3 17.93 23.59 0.00 9.52 13.88 0.00
5 16.21 18.04 0.00 24.66 23.08 0.00
7 12.97 11.35 0.00 25.50 20.02 0.00
10 18.52 17.35 0.00 21.36 29.97 0.00
12 15.58 17.15 0.00 34.01 38.56 0.00
15 16.58 13.69 0.00 38.66 34.67 0.00
18 13.34 13.87 0.00 43.64 45.01 0.00
20 19.86 18.54 0.00 49.17 41.86 0.00

efficient when the number of attributes is very small.

Table 5.19: Comparison of algorithms using the similarity measure based on the L∞-norm
(cont.)

k k-means X-means INCA k-means X-mean INCA
TSPLIB3038 Page blocks

2 1.06 4.19 0.00 8.97 7.10 0.00
3 2.74 1.62 0.00 6.21 30.99 0.00
5 0.41 0.00 1.52 47.22 79.15 0.00
10 0.00 2.16 2.82 137.85 205.06 0.00
15 0.00 0.45 2.61 193.57 293.60 0.00
20 3.43 0.00 2.20 235.09 343.56 0.00
25 0.19 0.60 0.00 272.51 329.67 0.00

D15112 Pla85900

2 1.62 0.00 13.17 0.46 0.00 7.80
3 0.40 0.00 2.96 0.07 0.00 6.74
5 7.17 0.00 5.27 0.29 0.00 5.08
10 0.32 0.55 0.00 0.07 0.00 3.52
15 1.63 0.00 0.38 0.00 0.01 5.86
20 0.00 0.76 0.76 0.03 0.00 2.81
25 0.00 1.67 1.43 1.41 0.00 3.17

5.4 Summary

In this chapter, we discussed the implementation of three clustering algorithms: Incremen-

tal Nonsmooth k-means algorithm (INKA), Incremental Nonsmooth Optimization Clustering

algorithm (INCA) and Incremental Smooth Optimization Clustering algorithm (ISCA) are
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implemented. These algorithms are tested on 12 real world data sets in the sense of clustering

accuracy and computational time. Furthermore, the numerical results are compared with the

well-known similar clustering algorithms.

82



Chapter 6

Constrained self organizing maps

for high dimensional data

visualization

6.1 Introduction

In this chapter, a similar approach to the RPSOM [42] is proposed to improve the perfor-

mance of the RPSOM and the SOM in the scene of quantization error. Instead of penalizing

the rivals of the BMU, which increases the training steps, an adaptive constraint parameter

is used in the learning process. The constraint parameter is chosen as a decreasing function

with respect to iterations and we consider three such functions: linear, hyperbolic and sig-

moid. This parameter restricts the process of updating neighborhoods of the BMU to only

those neighbors which are close in the n-dimensional space. Such an approach leads to faster

convergence and better local minimum of the quantization error than that of by the RPSOM

and the SOM. Furthermore, the distortion error and topology preservation are improved.

The proposed algorithm is tested using 8 real-world data sets.
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6.2 CSOM learning algorithm

In this section the learning process of the Self Organizing Map is analyzed, furthermore,

the quantization performance of the SOM is criticized. As we mentioned in Section 6.1, the

set Nc in Step 3 of Algorithm 1 contains all neighborhood neurons which are connected to

the BMU. These neurons are selected using the parameter r which is the radius around the

BMU in the topological 2-dimensional map. The SOM updates all neighborhood neurons

of the BMU in the topological map using (1.5), although relative weights of these neurons

may be far from the BMU in the n-dimensional space. In this case, the value of E in (1.6)

deviates from its optimal value as the neighborhood neurons in the network topology, which

are not in the neighborhood of the BMU, are relocated according to (1.5) (see Figure 6.1).

The relocation of the set of neighborhood neurons, Mc, Mc ⊂ Nc, which are far from the

winning neuron in the n-dimensional space is illustrated in the Figure 6.1.
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Figure 6.1: Contraction of neighbor neurons of the BMU.

Assume that the SOM algorithm is learning the input data points. In some stage, the

relocation of the neighborhood neurons in the set Mc increases the inter-neuron distances

(see Figure 6.1). Let have a given data point xm, which activates the nearest neuron in the

map at iteration τ, τ > T/ρ, subject to ρ ∈ N . The neighborhood neurons of the BMU

move towards the data point xm on the line intersecting both xm and wj , wj ∈ Nc. Based

on the updating formula in (1.5) the distance that neuron wj moves is ‖∆wj‖ where,

∆wj = β(xm − wj), 0 ≤ β < 1.
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Therefore, by applying the updating rule to the neuron wj , there exist data points xi ∈ Sj ,

that the value

∆d(xi, wj) > 0,

after updating the neuron wj , if

d(xm, wj) ≤ cos(θm,i)d(xm, xi), (6.1)

where θm,i is the angle between data points xm and xi. Let have the subset of data points,

Qj ⊂ Sj , where every data point xi ∈ Qj holds the condition (6.1). Thus, the increment in

the value of inter-neuron distance, ∆Dj , is:

∆Dj =

|Qj |∑
i=1

∆d(xi, wj), (6.2)

where, |.| is the cardinality of a set of data. Furthermore, consider a subset of neurons Fc ⊂ Nc

including neurons wj , which are far from the BMU in the n-dimensional space. Therefore,

the value E in (1.6) increases by:

∆E =

|Fc|∑
j=1

∆Dj , (6.3)

after the data point xm is presented to the network and (1.5) is applied to the set Nc.

6.2.1 Modified learning algorithm

In this section we design an algorithm to minimize ∆E given by (6.3) for wj , j =

1, · · · , |Nc| at iterations τ > T/ρ. The idea is to modify the update formula (1.5) in Step 3 of

Algorithm 1 by adding a constraint parameter. We introduce a constraint parameter γ ∈ R,

which defines a subset Cc of the set of neighborhood neurons Nc which are close to the BMU:

Cc = {wj : d(wc, wj) < γdmin, wj ∈ Nc}, (6.4)

where γ > 1 and

dmin = min {d(wc, wj) : wj ∈ Nc} . (6.5)
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One can see from (6.4) that |Cc| < |Nc| for values of γ close to 1 and both sets coincide

as γ → ∞. The set Cc contains neighborhood neurons in a 2-Dim topological space while

preserving the condition of adjacency of wj ∈ Cc in the n-dimensional space. In the step 3 of

Algorithm 1, if we update neighborhood neurons of the set Cc then the weight vectors, which

are far from the best matching unit, will not be considered in equation (1.5). Therefore,

following (6.4):

dmin ≤ d(wc, wj) < γdmin ∀ wj ∈ Cc, γ > 1. (6.6)

Since the distance d(wc, wj), wj ∈ Cc is sufficiently small, it is easy to see that ∆d(xi, wj) in

(6.2), where

∆d(xi, wj) < d(wc, wj),

is depended on the upper bound, d(wc, wj) (see Figure 6.2).

w
j

x
i

∆w
j

d(wc,w j )
w
c

x
m

µ

Figure 6.2: The updating procedures in the SOM algorithm.

Therefore, by limiting the value of d(wc, wj), then we have:

∆d(xi, wj) < γdmin.

One can see that the values ∆Dj in (6.3) are minimized.

Thus, the constrained learning algorithm can be summarized as follows.

Algorithm 6. Constrained learning algorithm

Step 1. Cc = ∅, select γ and find dmin from Nc using equation (6.5).

Step 2. Select neuron wi ∈ Nc, if ‖wi − wc‖ < γdmin then

Cc = Cc ∪ wi

Step 3. If all neurons in Nc have been visited then goto 4, otherwise goto 2.

Step 4. Update the set of neighborhood neurons wj ∈ Cc using equation (1.5).
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Thus, we minimize the equation (6.3) by applying Algorithm 6 in the step 3 of Algorithm

1 at iteration τ .

6.2.2 Adaptive selection of parameter γ

In this section, we propose linear, hyperbolic and sigmoid formulation of the constraint

parameter γ in equation (6.4) with respect to iteration τ . Considering Algorithm 6, one can

see that fixed values of γ may prevent spreading the neurons over the whole data space in

early iterations. Although, it may take some iterations for dmin in equation (6.5) to be a true

value as long as the neurons adapt to the input data points entirely.

From equation (6.4) it is easy to see that Cc ≡ Nc for the large values of γ. Therefore

the behavior of the algorithm for large values of γ is similar to that of classical SOM. This

statement is true for γ > ψ where

ψ =
dmax
dmin

, (6.7)

and

dmax = max{d(wc, wj) : wj ∈ Nc}. (6.8)

In Step 2 of Algorithm 6 we consider γ not as a fixed constant but parameter depending

on iteration τ . Moreover, γ(τ) decreases as τ increases. Hence, to ensure the validity of the

proposed formulations, the constraint functions allow the algorithm to perform similar to

SOM in early stages and gradually converges to the constrained learning algorithm. In order

to have such property we require γ to satisfy the following conditions: there exist τ̄ > 1 such

that: 
γ(τ) > ψ 1 < τ < τ̄

1 < γ(τ) ≤ ψ τ̄ ≤ τ < T

(6.9)

It is clear there are different ways to choose γ satisfying the conditions (6.9). In this

research, we will define γ as a linear, hyperbolic and sigmoid constraint functions of τ .

Linear formulation: In the case of linear constraint function one can approximate γ as

follows:

γ(τ) =
ρ

(1− ρ)
(ψ − 1)

( τ
T
− 1

ρ

)
+ ψ, (6.10)
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where ρ ∈ N defines the τ̄ = T/ρ which is the iteration from which the constrained learning

algorithm is applied to Algorithm 6. It is easy to see that the function (6.10) satisfies condition

(6.9).

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

No. of finding BMU

d
min

γ d
min

d
max

(a) Performance of γ.

0 10 20 30 40 50 60 70 80 90 100
5

10

15

20

25

30

35

40

45

50

No. of finding BMU

|C
c|

with constraint γ without costraint

(b) Comparing |Cc| with and without constraint.

Figure 6.3: Performance of constraint γ using equation (6.10) on 20 × 20 SOM where r =
3, ρ = 5, T = 5 and |A| = 20.

Hyperbolic formulation: The hyperbolic expression for γ is given as

γ(τ) =


∞ 1 < τ < τ̄

ψ
τ−ϕ + 1 τ̄ < τ < T

(6.11)

where

ϕ = τ̄ − dmax
dmax − dmin

,

and τ̄ = T/ρ.

Sigmoid formulation: Finally, we propose the following sigmoid function to define γ:

γ(τ) = ε(ψ − 1)
exp(−τ+τ̄

δ )− exp( τ−τ̄δ )

exp(−τ+τ̄
δ ) + exp( τ−τ̄δ )

+
1

2
(ψ + 1), (6.12)

where 0 < ε < 1 and 1 < δ < T defines the slope of changes depending on iterations. It
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should be noted that if δ is chose close to 1 then we have a rapid changes in constraint

function (6.12).

To explain the idea, the performance of the proposed algorithm is presented in Figure

6.3. The Figure 6.3(a) shows that from iteration 2 onwards (τ > τ̄) the algorithm applies

the constraint to the learning process and γdmin is decreasing and always less than dmax

as τ → T , consequently, the cardinality of Cc in (6.4) decreases (see Figure 6.3(b)). The

algorithm prevents further modification to the neighborhood neurons which are far from the

BMU in the n-dimensional space.

6.3 The CSOM algorithm and its implementation

In this section, we apply adaptive formulations of constraint γ in Step 2 of Algorithm 6.

Then Algorithm 1 for solving vector quantization problem (1.6) can be rewritten as follows.

Algorithm 7. CSOM algorithm

Step 1. Initialize dimension, maximum iteration (T ), radius (r) of the network and finally

weight vectors wj , j = 1, · · · , q. Set τ := 1.

Step 2. Select data xi and find closest neuron c, where

c = argmin
j
‖xi − wj‖. (6.13)

Step 3. Compute the set Nc and dmin and dmax using equations (6.5) and (6.8) respectively.

Step 4. Compute γ(τ) using equations (6.10), (6.11) or (6.12) and set Cc = ∅.

Step 5. Select neuron wi ∈ Nc, if ‖wi − wc‖ < γ(τ)dmin then

Cc = Cc ∪ wi.

Step 6. If all neurons in Nc have been visited then goto Step 7, otherwise goto Step 5.

Step 7. Update the set of neighborhood neurons Cc using the following equation:

wj(t+ 1) = wj(t) + α(τ)h(τ)(xi − wj(t)), wj ∈ Cc. (6.14)

Step 8. If all input data xi are presented to the network go to Step 9 otherwise, go to Step 2.
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Step 9. Calculate Eτ using equation (1.6) and if τ > T terminate otherwise set τ = τ + 1

and go to step 2.

Note that the neighborhood function in equation (7.22) of Algorithm 13 is as follows.

h(τ) = exp(− r2

2σ(τ)2
), (6.15)

where

σ(τ) = η
T − τ
T

, η ∈ R, (6.16)

and usually η ≥ 1.

6.3.1 Implementation of CSOM algorithm

In Algorithm 13, weight vectors wj , j = 1, · · · , q are initialized with a uniform pattern

in order to be comparable with the basic SOM. The maximum number of iterations T is set

between 10 and 50 for small to large dataset respectively. We set T large for large data sets

because for such data sets more time is required to obtain stable network over input data.

The topology of network is rectangular [91] with the same number of neurons in each column

and row (i.e. n×n). Each interior neuron is connected with 8 neighborhood neurons, however

this number is less than 5 for border neurons. Furthermore, the radius of the map r is set to

2 for small and 3 for large number of neurons (see Table 7.1).

Table 6.1: Initialization of SOM parameters in Algorithm 13.
Data sets Input Size SOM Dimension r T

Small (|A| < 103) 10× 10 2 200

Medium (103 < |A| < 104) 15× 15 3 300

Large (104 < |A| < 0.5× 105) 20× 20 2 300

Very large (0.5× 105 < |A| < 0.8× 105) 15× 15 3 100

(|A| > 0.8× 105) 25× 25 3 30

As it is presented in Table 7.1, the number of neurons, maximum iteration number T and

r are chose incrementally in order to be applicable on larger input data sets. The exception

are very large data sets where r and T are smaller than those for small data sets to decrease

the computational complexity.

In step 4 of Algorithm 13, we set values of ρ ∈ {ρ : 2 ≤ ρ ≤ 0.7× T, ρ ∈ N} for equations

(6.10) and (6.11) which depends on data set size and the maximum iteration number T . If
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the number of data points is large then we choose ρ so that to apply the constrained learning

in the most first T/2 iterations. If the size of data set is small, then ρ is chosen in order to

apply the constraint in early iterations (ρ ≥ 2). In all experiments, the parameters ε and δ

in equation (6.12) are set to 0.83 and T/4, respectively. The parameter η in equation (7.25)

is set to 1 for all data sets.

6.4 Numerical Results

To demonstrate the efficiency of the proposed algorithm, the numerical experiments were

carried out using a number of real-world data sets. Algorithm 13 was coded in NetBeans IDE

under Java platform and the algorithm is tested on a MAC OSX with 2.7GHz core i7 CPU

and 10GB of RAM. Eight data sets: 2 small (Iris and Wine), 2 medium size (TSPLIB1060

and Image Segmentation), 2 large (D15112, Gamma Telescope) and 2 very large (NE1 and

Pla85900) data sets are used in experiments. Iris, Wine, Image Segmentation and Gamma

Telescope data sets are data sets with 4, 13, 19 and 10 attributes, respectively, which can

be found in UCI Machine Learning Repository [14]. TSPLIB1060, D15112 and Pla85900

are 2 dimensional data sets from TSPLIB library [119] and NE data set from [135]. A brief

description of data sets is presented in Table 10.

6.4.1 Validation of parameter ρ in adaptive constraints

The sensitivity of choosing different values of parameter ρ in (6.10), (6.11) and (6.12)

on Iris and Wine data sets is presented in Figure 6.4. One can see that this parameter in

sigmoid constraint is more sensitive than other two constraint functions in both data sets.

Furthermore, in both data sets, the hyperbolic constraint is less sensitive to the parameter ρ

and produces high quality maps with less quantization error.

In order to validate the performance of the constraint parameter ρ, the quantization

errors using different settings of this parameter in four data sets, Iris, Wine, TSPLIB1060

and Image Segmentation are presented in Table 6.2. Furthermore, the average and standard

deviation of quantization errors are calculated to check the robustness of this parameter in

each constraints. From these results one can see that the CSOM with hyperbolic constraint

1North East
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Figure 6.4: The sensitivity of choosing different values of parameter ρ on Iris and Wine data
sets. E is the value of quantization error.

obtains less average quantization error and sufficiently low deviation in high dimensional data

sets, Iris, Wine and Image segmentation than other two constraints. The sigmoid constraint

is the one with low average quantization error and deviation in TSPLIB1060 data set. The

linear constraint is the second-best constraint, which obtains less deviations in all four data

sets.

Table 6.2: The quantization error, E, using different settings of parameter ρ in CSOM (Linear,
Hyperbolic and Sigmoid functions).

Const. ρ
10 20 40 60 80 100 140

Iris Ave. Std.
Lin. 0.2951 0.3019 0.2990 0.3097 0.2817 0.3004 0.2994 0.30 0.01
Hyp. 0.2106 0.2011 0.1952 0.1944 0.2049 0.2069 0.1925 0.20 0.01
Sigm. 0.7730 0.3062 0.2636 0.2692 0.2693 0.2720 0.2834 0.35 0.19

Wine
Lin. 14.5293 14.4811 13.0406 13.8492 13.4721 14.3073 14.3171 14.00 0.57
Hyp. 12.1234 13.1810 12.4003 13.1966 12.2707 12.6803 12.7122 12.65 0.42
Sigm. 54.1000 13.5297 14.6650 14.4896 15.2834 13.8161 14.9614 20.12 15.00

ρ
10 40 80 100 140 180 200

TSPLIB1060 Ave. Std.
Lin. 346.8374 351.0316 345.5140 358.7634 332.5446 333.2026 371.6440 348.51 13.83
Hyp. 468.8084 462.0523 418.3928 401.7283 502.9605 376.1342 371.4968 428.80 50.17
Sigm. 344.4523 347.7434 376.8300 324.9194 328.8889 336.5058 334.9467 342.04 17.30

Image Segmentation
Lin. 25.3648 25.4697 25.1439 24.8948 25.0708 24.6638 24.7583 25.05 0.30
Hyp. 22.0328 21.3622 21.7399 20.9122 21.4309 21.9969 21.2374 21.53 0.41
Sigm. 39.7772 26.5647 28.4100 22.8137 26.2363 26.5249 26.1327 28.07 5.42

6.4.2 Comparison with the SOM

The error values e of the quantization values E using equation (1.6) for different iterations

on all data sets are presented in Tables 6.3-6.4. The error e is calculated using the following

formula:
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e =
E − Ebest
Ebest

· 100%. (6.17)

In these tables t stands for the CPU time used by an algorithm and the numbers in these

tables should be multiplied by the number indicated after the name of each data set to get

true values of Ebest. We include results for different iterations of each to demonstrate their

performance. As it is presented in these tables, in early iterations the CSOM is performing

same as the classical SOM until the constraint is applied to the learning process, then the

CSOM performs much better than the SOM. From these results one can see that the CSOM

outperforms SOM in all data sets and the hyperbolic constraint finds best solution (providing

the lowest value of E) on 5 data sets (Iris, Wine, Image Segmentation, Gamma Telescope

and NE), sigmoid on 3 data sets (TSPLIB1060, D15112 and Pla85900) and linear is the

second-best constraint in 3 data sets (TSPLIB1060, Gamma Telescope and Pla85900).

Table 6.3: Results for small and medium size data sets.
CSOM

τ Ebest SOM Linear Hyperbolic Sigmoid
e t e t e t e t

×100 Iris
1 2.4136 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00
5 0.8222 0.00 0.08 0.00 0.01 0.00 0.01 0.00 0.01
10 0.4199 80.52 0.10 80.52 0.02 0.00 0.02 80.52 0.02
50 0.2160 119.03 0.21 119.03 0.12 0.00 0.09 119.03 0.12
100 0.1941 51.16 0.34 46.01 0.23 0.00 0.17 57.50 0.24
200 0.1881 53.06 0.53 43.86 0.43 0.00 0.33 16.59 0.40

×101 Wine
1 1.4507 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00
5 0.3349 144.94 0.10 144.94 0.03 0.00 0.02 144.94 0.03
10 0.2605 231.32 0.13 231.32 0.06 0.00 0.04 231.32 0.06
50 0.1343 318.54 0.36 331.72 0.27 0.00 0.16 318.54 0.28
100 0.1093 111.99 0.60 70.72 0.53 0.00 0.29 123.97 0.54
200 0.1082 59.98 1.10 18.02 0.93 0.00 0.55 9.24 0.78

×102 TSPLIB1060
1 5.7347 0.00 0.12 0.00 0.04 0.00 0.04 0.00 0.04
5 3.2195 0.00 0.32 15.95 0.31 0.00 0.30 0.00 0.30
15 3.8098 37.06 0.69 0.00 0.96 37.06 0.98 37.06 0.94
75 2.7782 0.00 2.93 8.64 4.93 0.00 4.98 0.00 4.81
150 0.9196 23.26 5.58 0.00 9.75 23.26 9.87 23.26 9.56
300 0.3124 7.23 10.48 1.66 18.53 16.55 18.75 0.00 17.98

×101 Image Segmentation
1 1.1162 0.00 0.32 0.00 0.37 0.00 0.36 2.57 0.34
5 0.8451 16.36 1.21 48.89 1.66 0.00 1.55 14.71 1.57
15 0.6216 71.44 3.19 76.54 4.57 0.00 3.77 50.97 4.31
75 0.2999 173.92 14.87 122.67 21.37 0.00 14.51 137.71 21.14
150 0.2152 100.33 29.34 77.83 41.58 0.00 26.92 1.77 33.43
300 0.2051 27.50 56.53 18.77 76.05 0.00 51.06 0.20 57.09
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Table 6.4: Results for small and medium size data sets.
CSOM

τ Eopt SOM Linear Hyperbolic Sigmoid
e t e t e t e t

×102 D15112
1 2.3218 0.00 0.38 0.00 0.53 0.00 0.53 0.00 0.44
5 1.3541 0.00 1.47 0.00 2.39 0.00 2.40 0.00 2.26
15 1.3809 0.00 3.86 0.00 6.76 20.75 5.98 0.00 6.78
75 0.6992 46.57 18.02 46.57 32.92 0.00 24.09 46.57 33.52
150 0.4455 17.53 35.81 17.53 65.82 0.00 46.26 17.53 67.26
300 0.3698 0.57 71.02 1.35 121.22 16.68 90.40 0.00 122.56

×102 Gamma Telescope
1 1.2449 0.00 0.67 0.00 1.12 0.00 1.20 0.00 1.21
5 1.3468 0.00 3.01 0.00 5.70 0.00 5.64 0.00 6.10
10 1.3494 0.00 5.78 0.00 11.16 3.50 10.26 0.00 11.80
50 0.7721 35.40 27.09 42.07 56.26 0.00 35.50 35.40 59.44
100 0.4555 62.70 55.89 44.35 109.41 0.00 60.30 45.27 115.24
200 0.3510 5.16 109.68 3.28 196.90 0.00 107.47 0.37 159.77

×10−1 NE
1 2.6821 0.00 0.94 0.00 2.48 0.00 2.49 0.00 2.81
5 0.9135 195.44 4.02 195.44 12.88 0.00 11.68 195.44 14.00
10 0.8027 237.05 7.48 237.05 25.89 0.00 20.50 237.05 28.10
25 0.5573 361.44 17.69 270.02 64.85 0.00 41.76 361.44 72.94
50 0.2725 819.82 34.62 231.30 130.26 0.00 71.59 819.82 147.50
100 0.1515 4.16 68.15 6.14 248.12 9.31 124.55 0.00 263.54

×105 Pla85900
1 3.9514 0.00 4.51 0.00 9.44 0.00 8.94 0.00 8.53
5 3.6387 0.00 20.99 0.00 52.89 0.00 50.47 0.00 49.78
10 3.8160 0.00 40.62 0.00 106.15 0.00 100.96 0.00 100.30
15 3.0293 0.00 59.94 0.00 166.88 0.00 156.32 0.00 156.20
20 1.2720 31.16 77.79 0.00 218.68 14.34 199.25 31.16 209.46
30 0.1747 6.64 114.26 0.11 298.67 98.17 274.29 0.00 289.62

CSOM finds significantly better solution on 5 data sets (Iris, Wine, TSPLIB1060, Image

Segmentation, and Pla85900) than SOM from 6.2% on Pla85900 up to 37.48% on Wine data

set. In this case, the minimum improvement gained by the CSOM is on D15112 data set

where the obtained solution is only 0.57% better than SOM . In other two data sets (Gamma

Telescope and NE) the CSOM reduces the value of the quantization error E about 5% on the

rest of the data sets. Note that in the most data sets CPU time required by the Constrained

SOM is slightly larger than that of by the SOM. This is due to the fact that the CSOM tries to

find nearest neighborhood neurons in n-dimensional space. Since both the NE and Pla85900

are large data sets the SOM algorithm requires more iterations than in other smaller data

sets to spread neurons over the whole data set. Therefore, in these data sets constraints are

applied at iterations close to T/2 to ensure that values calculated by constraint functions

(6.10)-(6.12) are true values.
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Figure 6.5: Convergence of CSOM vs SOM.

To see the performance of proposed algorithm, In Figures 6.5 we present values of E

obtained by the SOM and the CSOM depending on iteration τ in Iris, Wine, Image Segmen-

tation and NE data sets. From these figures, it is obvious that both the SOM and the CSOM

converge as τ → T . Comparing values of E in all data sets, one can see that the CSOM

converges significantly faster than the SOM in iterations less than 20. The CSOM with the

hyperbolic constraint produces best results in all 4 data sets.

6.4.3 Complexity comparison with SOM

The time complexity of Self Organizing Map is linear with respect to number of data

points but it is dependent quadratically on the number of the neighborhood neurons to be

updated by the winner neuron. The most time consuming step in the SOM algorithm is Step
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2 and Step 3 where the equation (1.5) is calculated. The total number of calculations, ρ,

in Step 3 depends on the parameter r which defines the set of neighborhood neurons to be

updated by equation (1.5).

The complexity of SOM can be formulated as O(Tρn), where

ρ =
r∑

r0=1

r2
0 + 4r0 + 4,

and n is number of data points. The proposed CSOM reduces the total value of ρ signifi-

cantly by restricting the number of neighborhood neurons to be updated by the algorithm.

This restriction is applied by the constraint parameter. In Table 6.5, the total number of

calculations of (1.5), N = Tρn, for all data sets is presented. From these results, one can

see that the number N obtained by CSOM is considerably less than those with the classical

SOM in all data sets. The complexity is improved significantly using the proposed algorithm

in 4 data sets: Iris, Image Segmentation, D15112 and NE.

6.4.4 Distortion error

Note that the error E shows the quantization quality of the network. However, there

is a distortion measurement which can be used to calculate the overall quality of the map.

Unlike the quantization error, the distortion measure ξ considers both vector quantization

and topology preservation of the SOM. The distortion measure is defined as follows [8]:

ξ =
∑
xi∈A

∑
wj∈Ψ

hcj‖xi − wj‖2, j 6= c, (6.18)

where c is the BMU of xi and hcj is the neighborhood function of neurons c and j defined by

Equation (7.23).

Table 7.5 presents the numerical results of distortion measure (7.28) on all data sets. From

these results, one can see that the proposed algorithm outperforms the SOM in all data sets.

The improvement of distortion error, ξ, is significance in eight data sets (Wine, TSPLIB1060,

Image Segmentation, TSPLIB3038, D15112, Gamma Telescope, NE and Pla85900). The

value nd in the Table 7.5 presents the number of neurons which never activated (dead neurons)

by the input data points. The number of dead neurons, nd, for CSOM in all data sets is equal
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Table 6.5: Total number of calculations of (1.5), N , for all data sets.
CSOM CSOM

τ SOM Linear Hyperbolic Sigmoid τ SOM Linear Hyperbolic Sigmoid

Iris (×104) Wine (×104)
1 1.05 1.05 1.05 1.05 1 4.72 4.72 4.72 4.72
5 5.34 5.34 5.34 5.34 5 22.4 22.4 18.1 22.4
10 10.5 10.5 9.05 10.5 10 44.4 44.4 28.1 44.4
50 51.6 51.6 18.6 51.6 50 220 212 68.4 220
100 103 99.0 23.1 92.8 100 437 392 93.7 407
200 205 159 31.0 96.2 200 872 611 135 421

TSP.1060 (×105) Image Seg. (×106)
1 0.81 0.81 0.81 0.81 1 1.59 1.59 1.59 1.29
5 3.82 3.85 3.82 3.82 5 7.82 7.83 6.59 6.72
15 11.3 10.9 11.3 11.3 15 23.6 23.3 13.5 20.6
75 56.1 50.3 56.1 56.1 75 118 111 26.1 105
150 112 93.0 112 112 150 235 214 33.0 110
300 223 143 123 141 300 462 361 42.9 110

D15112 (×106) Gamma Tel. (×106)
1 0.62 0.62 0.62 0.620 1 3.71 3.71 3.71 3.71
5 3.09 3.09 3.09 3.09 5 18.6 18.6 18.6 18.6
15 9.26 9.26 6.24 9.26 10 37.1 37.1 32.3 37.1
75 46.5 46.5 11.7 46.5 50 187 178 70.9 187
150 93.4 93.4 15.1 93.4 100 376 338 89.3 353
300 187 146 21.1 141 200 756 558 120 372

NE (×106) Pla85900 (×106)
1 1.94 1.94 1.94 1.94 1 6.90 6.90 6.90 6.90
5 9.68 9.68 7.78 9.68 5 34.5 34.5 34.5 34.5
10 19.4 19.4 12.7 19.4 10 68.9 68.9 68.9 68.9
25 48.6 48.6 21.3 48.6 15 101 101 101 101
50 97.9 97.9 29.4 97.9 20 130 127 120 130
100 196 147 40.6 170 30 200 164 135 175
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Table 6.6: Results of distortion measure on all data sets
CSOM

SOM Linear Hyperbolic Sigmoid
Dataset ξ nd ξ nd ξ nd ξ nd

Iris ξ × 10−3 1.75 33 0.47 29 1.18 23 1.37 27
Wine ξ × 10−3 1.85 24 0.29 17 0.25 24 0.13 22
TSP1060 ξ × 104 1.32 16 0.82 7 0.99 20 0.57 10
Image Seg. ξ × 10−4 7.13 9 0.74 6 1.01 13 0.74 4
D15112 ξ × 103 4.04 0 0.49 0 20.50 49 0.44 1
Gamma Tel. ξ × 10−9 4.85 0 0.02 1 0.12 0 0.03 0
NE ξ × 10−6 1.09 19 0.37 1 0.19 7 0.01 9
Pla85900 ξ × 105 16.30 0 0.10 0 0.26 4 0.08 0

TSPLIB1060 SOM

(a) SOM on TSPLIB1060

TSPLIB1060 Constrained SOM

(b) CSOM on TSPLIB1060

Figure 6.6: Topology preservation of CSOM vs SOM.

or less than that for the SOM. This means that the proposed algorithm activates more neurons

and distributes the neurons more efficiently than the classical SOM.

6.4.5 Topology preservation

In this section we present the topology preservation of the proposed algorithm. We choose

2-dimensional data sets which can be easily displayed. Figures 6.6 and 6.7 show the topology

of the SOM and CSOM for two data sets: TSPLIB1060, NE. It should be noted that only

active neurons are presented in these figures. In Figure 6.6(a) one can see that some of the

SOM’s neurons for the TSPLIB1060 data set are far from the mapped data points which leads

to increments in the quantization error E. These is due to the absorption of these neurons

by their neighborhoods which, in fact, are far from these neurons in the n-dimensional space.
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(a) SOM on NE (b) CSOM on NE

Figure 6.7: Topology preservation of CSOM vs SOM.

On the contrary one can see from Figure 6.6(b) that the CSOM spreads the neurons over the

mapped data more accurately by overcoming the above mentioned deficiency in the SOM.

These improvements can be obviously seen by comparing Figures 6.6(a) and 6.6(b) at the

bottom-left and right of the maps where exists a gap between two groups of data points.

Figure 6.7 presents the topology of the SOM and CSOM on NE data set. The CSOM in

Figure 6.7(b) is more accurate than the SOM in Figure 6.7(b) where some active neurons are

located in the space outside of the region where the data set is located (they are displayed

by an arrow).

6.4.6 Comparison with other algorithms

In this section the CSOM is compared to similar topology preservation algorithms in the

sense of accuracy and computational time. The CSOM is compared with Growing Grid (GG)

[67], Growing Neural Gas (GNG) [66], Growing Hierarchical SOM (GHSOM) [117], Principal

Component Analysis (PCA) [123], Sammon’s Mapping [122], Fuzzy Sammon Mapping [93]

and RPSOM [42] algorithms. The value e using 6.17 and the best value of quantization

error, Ebest, are presented in Table 6.7. In all data sets, except Gamma Telescope, the

CSOM produces less quantization error than other algorithms. The GNG algorithm obtains

less error on Gamma Telescope data set in comparison with other algorithms. From the

results presented in the Table 6.7, one can see that the PCA is the second best algorithm

in Iris, D15112 and Gamma Telescope data sets. Moreover, the RPSOM is the second best
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algorithm in Wine, NE and Pla85900 data sets. The results obtained by GG and GNG

algorithms are close to those obtained by CSOM in TSPLIB1060 and Image Segmentation

data sets, respectively. The RPSOM algorithm generates satisfactory results on NE and

Pla85900 data sets in comparison with CSOM. Note that the PCA, Sammon’s Mapping and

Fuzzy Sammon algorithms failed in two very large data sets, NE and Pla85900, due to high

computational time requirement.

Table 6.7: Results of quantization error on all data sets
Alg. Iris Wine TSP.1060 Image Seg. D15112 Gamma Tel. NE Pla85900

Ebest

×10−1 ×101 ×102 ×101 ×102 ×101 ×10−2 ×104

1.88 1.08 3.12 2.05 3.70 3.14 1.51 1.75
e

GG 45.35 66.34 2.73 29.59 32.24 5.93 51.04 1452.03
GNG 35.42 34.75 20.36 2.94 4.50 0.00 13.73 249.67
GHSOM 30.23 45.62 47.37 157.50 123.25 109.72 - -
PCA 5.15 16.09 14.47 29.09 4.25 3.23 - -
Sammon 5.79 16.15 14.47 29.10 4.25 3.54 - -
FuzSam 39.17 23.67 13.88 59.85 3.75 42.24 - -
RPSOM 12.01 11.91 8.59 15.72 2.69 14.57 3.00 2.12
Linear 43.84 18.03 1.66 18.78 1.37 15.27 6.19 0.10
Hyper. 0.00 0.00 16.56 0.00 16.71 11.61 9.34 98.14
Sigm. 16.58 9.22 0.00 0.21 0.00 12.04 0.00 0.00

Table 6.8: The CPU time required by all algortihms
Alg. Iris Wine TSP.1060 Image Seg. D15112 Gamma Tel. NE Pla85900

t
GG 4.40 4.31 10.67 30.70 163.63 297.60 166.91 622.70
GNG 3.16 4.48 6.20 13.90 26.85 102.10 97.76 115.82
GHSOM 2.06 2.87 62.88 303.68 10848.36 18363.03 - -
PCA 0.04 0.05 0.31 2.31 34.07 131.72 - -
Sammon 3.81 4.36 40.35 194.72 6620.42 9386.41 - -
FuzSam 2.43 3.01 24.64 25.26 144.93 196.65 - -
RPSOM 6.29 7.58 55.57 130.11 804.15 726.64 968.34 445.05
Linear 0.42 0.87 17.89 92.19 128.00 211.62 236.54 338.24
Hyper. 0.33 0.55 18.74 73.62 96.05 127.55 156.08 325.50
Sigm. 0.37 0.73 19.78 68.10 123.20 140.72 253.70 315.96

The CPU time required by all algorithms are presented in the Table 6.8. The CSOM is

the best algorithm in Iris, Wine, NE and Pla85900 data sets in the sense of both accuracy

and the required cpu time. The PCA and GNG algorithms are fast in most of the data sets,

but the generated errors by these algorithms are quit far from the satisfactory results. From

these results one can see that the CSOM outperforms the RPSOM algorithm in all cases.
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6.5 Summary

The Constrained SOM algorithms (CSOM) and its modified learning algorithm are de-

veloped in this chapter to the overcome the shortcomings that are involved with the SOM

algorithm. The proposed algorithm is implemented and tested on 8 real world datasets. The

numerical results are compared with the existing data visualization algorithms, including

SOM, in the sense of quantization error and the required CPU time.
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Chapter 7

Modified self organizing maps for

vector quantization and clustering

problems

7.1 Introduction

In this chapter, to improve the performance of the SOM, an initialization algorithm based

on the split and merge procedure is proposed. The high dense areas in input data space are

detected by this procedure. Then neurons are generated in those detected areas. A new

topology is introduced to restrict the adaptation to the neurons from the same high density

area. Such an approach leads to a better local minimum of the quantization error than that

of by the SOM. The proposed algorithm is tested using eight real-world data sets.

7.2 Splitting and merging algorithms

In this section splitting and merging procedures in cluster analysis are introduced. More

specifically, first one splitting algorithm and one merging algorithm are described and then

an algorithm based on the combination of these two is presented.

Assume that k clusters C1, . . . , Ck and their corresponding centers c1, . . . , ck are given.
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These centers are solutions to the following problem:

minimize f =

k∑
i=1

∑
x∈Ci

‖x− ci‖2. (7.1)

In some cases data points from the cluster Ci are not dense in some neighborhood of its

center ci. Given a radius ε > 0 consider the following two sets for the cluster Ci:

Φi
c(ε) = {xj ∈ Ci| d(xj , ci) ≤ ε} (7.2)

and

Φi
s(ε) = {xj ∈ Ci| ε < d(xj , ci) ≤ ri}, (7.3)

where

ri = max{d(x, ci)| x ∈ Ci}, i = 1, . . . , k. (7.4)

Two clusters Ci and Cl are said to be well separated if d(ci, cl) ≥ (ri + rl).

It is clear that for any cluster Ci, i = 1, . . . , k there exist εi ∈ (0, ri] such that |Φi
c(ε)| =

max(|Φi
c(ε)|, |Φi

s(ε)|) for all ε ∈ (εi, ri]. Let εi = βri, where β ∈ (0, 1). If εi is sufficiently

small then data points from the cluster Ci are dense around its center ci. εi will be used to

design a splitting algorithm for clusters whereas the definition of well separated clusters will

be used to design a merging algorithm.

7.2.1 Splitting

In this subsection the splitting procedure for clusters is described. This procedure is

designed using the parameter β and also the special scheme to identify parts of a cluster

where most of points reside.

Assume that a set of k clusters, Ω = {C1, ..., Ck} and a number β ∈ (0, 1) are given. The

number of points within the radius εi = βri from the center of the cluster Ci is:

Lic = |Φi
c(εi)|.

Introduce the angle θi,j between the cluster center cj and the data point xi ∈ Cj assuming
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that cj 6= 0 and xi 6= 0:

θi,j = arccos
〈xi, cj〉
‖xi‖‖cj‖

. (7.5)

Remark 7.2.1. In order to make (7.5) well-defined the cluster Cj is transformed so that the

point v = (δ, . . . , δ) ∈ Rn becomes its center. Here δ > 0 is a sufficiently small number, say

δ ∈ (0, 0.1]. It is clear that points xi from this cluster will be transformed as follows:

x̄ti = xti − ctj + δ, t = 1, . . . , n.

Moreover, only x̄i’s satisfying the condition

εj < d(x̄i, v) ≤ rj

are considered. Then the angle θi,j between v and x̄i is well defined.

Now introduce the following two sets:

Φj
u(εj) =

{
xi ∈ Cj | εj < d(xi, cj) ≤ rj , 0 ≤ θi,j ≤

π

2

}
, (7.6)

and

Φj
d(εj) =

{
xi ∈ Cj | εj < d(xi, cj) ≤ rj ,

π

2
< θi,j ≤ π

}
. (7.7)

The cardinalities of these sets are Lju = |Φj
u(εj)| and Ljd = |Φj

d(εj)|. The sets Φi
c(εi),Φ

j
u(εj)

and Φj
d(εj) satisfy the following conditions:

1. Lju + Ljd + Ljc = |Cj |;

2. Φj
c(εi) ∪ Φj

u(εj) ∪ Φj
d(εj) = Cj ;

3. Φj
c(εi) ∩ Φj

u(εj) = ∅, Φj
c(εi) ∩ Φj

d(εj) = ∅, Φj
u(εj) ∩ Φj

d(εj) = ∅.

The outcome of the splitting procedure on the cluster Cj depends on the values of Lju, L
j
d

and Ljc. If

Ljc ≥ max{Ljd, L
j
c} (7.8)
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then data points are dense around the cluster center and such a cluster is not split. If

Ljc < max{Ljd, L
j
c} (7.9)

then this cluster is divided into two new clusters. In order to do so the following two subsets

of Φi
c(εi) are defined:

Φj
cu(εj) =

{
xi ∈ Φi

c(εi)|d(xi, cj) ≤ εj , 0 ≤ θi,j ≤
π

2

}
, (7.10)

and

Φj
cd(εj) =

{
xi ∈ Φi

c(εi)|d(xi, cj) ≤ εj ,
π

2
< θi,j ≤ π

}
. (7.11)

Then the cluster Cj is split into two new clusters C∗j and C∗j′ as follows:

C∗j = {Φj
u(εj) ∪ Φj

cu(εj)}, (7.12)

with the center

c∗j =
1

|C∗j |
∑
xi∈C∗j

xi, (7.13)

and

C∗j′ = {Φj
d(εj) ∪ Φj

cd(εj)}. (7.14)

with the center

c∗j′ =
1

|C∗j′ |
∑
xi∈C∗j′

xi. (7.15)

Thus, the splitting algorithm can be summarized as follows:

Algorithm 8. Splitting algorithm

Step 0. Input: A collection of k clusters Ω = {C1, ..., Ck}, and the ratio β ∈ (0, 1).

Step 1. Select cluster Cj ∈ Ω and calculate its center cj .

Step 2. Calculate d(xi, cj) and also θi,j using (7.5) for all data point xi ∈ Cj .

Step 3. For each cluster Cj calculate sets Φj
c(εi),Φ

j
u(εj),Φ

j
d(εj) using (7.2), (7.6) and (7.7),

respectively.

Step 4. If (7.8) is satisfied then go to Step 6, otherwise go to Step 5.
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Step 5. Split the cluster Cj into two new clusters C∗j and C∗j′ using (7.12) and (7.14),

respectively. Update Ω and set k := k + 1.

Step 6. If all clusters Cj , j = 1, . . . , k are visited terminate, otherwise go to Step 2.
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Figure 7.1: The splitting procedure.

Figure 7.1 illustrates the splitting procedure. Figure 7.1(a) presents the center ci of the

dataset and the radius εi. The radius ri given by (7.4) is shown in Figure 7.1(b). Figure

7.1(c) illustrates the sets Φi
c(εi) and Φi

s(εi) defined by (7.2) and (7.3) and colored in white

and blue, respectively. In Figure 7.1(d) the set Φi
s(εi) is divided into two disjoint subsets

Φi
u(εi) and Φi

d(εi) defined by (7.6) and (7.7). It is obvious that for this set the condition

(7.9) is satisfied, therefore, the cluster should be split. In Figure 7.1(e) the sets Φi
cu(εi) and

Φi
cd(εi) are calculated according to (7.10) and (7.11), respectively. Then the set Φi

cu(εi) is

combined with the set Φi
u(εi) and the set Φi

cd(εi) is combined with the set Φi
d(εi) to form

two new disjoint clusters. The centers ci and c∗i of these clusters computed using (7.13) and

(7.15), respectively and are illustrated in Figure 7.1(e). Figures 7.1(f)-7.1(h) illustrate the

same procedure for the cluster with the center ci, where the condition (7.9) is satisfied.

7.2.2 Merging

Assume that the collection of k clusters, Ω = {C1, ..., Ck}, is given. It may happen that

(also after applying the splitting algorithm) some clusters are not well separated. In this

subsection an algorithm is designed to merge clusters which are not well separated from each
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other.

According to the definition of well separated clusters, two clusters Cj , Cp ∈ Ω should be

merged if

d(cj , cp)− (rj + rp) < 0. (7.16)

These two clusters are merged into one cluster as follows:

C∗j = Cj ∪ Cp, (7.17)

with the center

c∗j =
1

|C∗j |
∑
xi∈C∗j

xi. (7.18)

For the cluster C∗j only the index j is used meaning that the cluster Cp joins the cluster Cj .

Then the merging algorithm can be summarized as follows:

Algorithm 9. Merging algorithm

Step 0. Input: A collection of k clusters Ω = {C1, ..., Ck}.

Step 1. Select cluster Cj ∈ Ω and calculate its center cj .

Step 2. Select cluster Cp ∈ Ω and calculate its center cp, where p 6= j.

Step 3. If the condition (7.16) is satisfied then go to Step 4, otherwise go to Step 6.

Step 4. Merge clusters Cj and Cp using (7.17). Update the set Ω and set k := k − 1.

Step 5. If all clusters Cp, p = 1, . . . , k, p 6= j are visited go to Step 6, otherwise go to Step 2.

Step 6. If all clusters Cj ∈ Ω are visited terminate, otherwise go to Step 1.

It is obvious that Algorithms 8 and 9 are complementary. In other words, to have stable

cluster centers these algorithms should be applied iteratively until the cluster centers become

stable. The stability can be checked by monitoring the value of (7.1) for strict decrease.

Alternatively, the maximum number of iteration can be predefined in advance. In this research

we use the first criterion. Then the split and merge algorithm can be summarized as follows.

Algorithm 10. Split and Merge algorithm

Step 0. Input: A collection of k clusters Ω = {C1, ..., Ck} and the ratio β ∈ (0, 1).

Step 1. Apply Algorithm 8 to the collection of clusters Ω. This algorithm will generate a

new collection of clusters Ω.
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Step 2. Apply Algorithm 9 to the collection of clusters Ω.

Step 3. If the value of the function (7.1) increase then terminate, otherwise go to Step 1.

7.3 SOM initialization algorithm

Usually the set of SOM neurons Ψ = {w1, · · · , wq} are initialized randomly [91]. This

leads the network to converge only to local solutions of Problem (1.6). Furthermore, the

SOM suffers from slow convergence. In other words, the number of iterations to learn the

input data become large and the neurons may not learn some data points correctly. In this

section, a new algorithm is presented where Algorithm 10 is applied to initialize the neurons

of the SOM and a modified topology of neurons at the initial points is used.

Algorithm 11. SOM initialization algorithm.

Step 0 (Initialization). A set of m input data vectors A = {x1, . . . , xm}. Set Ψ := ∅.

Step 1. Calculate the center c∗ of the set A, set w1 := c∗ and

Ψ := Ψ ∪ {w1}.

Step 2. Apply Algorithm 10 on Ψ. This algorithm will generate a new set Ψ of neurons.

Step 3. Set the final Ψ as initial neurons of the SOM.

Algorithm 11 ensures that the initial neurons are located in distinct high density area

of the input data space which is found by Algorithm 8. Algorithm 9 guarantees that initial

neurons are not close to each other. Figure 7.2 illustrates the performance of Algorithm 11.

Data 

Initial neuron 

ε
i

w
i( )
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ii

r
i

Figure 7.2: Initial neurons after split and merge
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7.4 SOM with modified topology

Assume that the set of initial neurons Ψ = {w1, . . . , wq̂} computed by applying Algorithm

11 is given. A set of e number of neurons uz ∈ Rn, z = 1, . . . , e, using each individual neuron

wi, i = 1, . . . , q̂, is generated as follows:

gi = {uz|wti − λεi ≤ utz ≤ wti + λεi}, (7.19)

where t = 1, . . . , n, z = 1, . . . , e and λ ≥ 1. It can be observed that all neurons in the set

gi are close to wi to cover up the dense area represented by neuron wi. The use of such

neurons allows to decrease the value of the quantization error (1.6). In Problem (1.6) the

local solution is obtained while none of the activated neurons are far from its mapped data

points. Therefore, the set of neurons defined by (7.19) guarantees that the SOM learning

process escapes from local solutions of Problem (1.6) and converges to the global solution.

Usually in the SOM topology, all neighborhood neurons are connected to each other in

order to spread the adaptation to adjacent neurons. For each pair wi, wj , i, j = 1, . . . , q̂, i 6= j

the following integer number is defined:

r̂ij =

⌈
d(wi, wj)

εi + εj

⌉
. (7.20)

Here dxe is a smallest integer greater than or equal to x, called its ceiling. Note that the

parameter r̂ij for neurons ui, uj ∈ gk, i, j = 1, . . . , e, i 6= j, k = 1, · · · , q̂ is set to 1. In order

to determine the connectivity of neurons the threshold r0 ≥ 1 is defined and two neurons

wi, wj are said to be connected if r̂ij ≤ r0. The threshold r0 is defined for the whole data set.

The neurons in the sets gi, i = 1, · · · , q̂ are connected to their parent neuron wi and to each

other. Then the connectivity matrix for the new topology is as follows:

1. con(i, j) ∈ {0, 1}, wi, wj ∈ Ψ.

2. con(i, j) ∈ {0}, ui ∈ gk, uj ∈ gp, k 6= p.

3. con(i, j) ∈ {1}, ui ∈ gk, uj ∈ gp, k = p.

4. con(i, j) ∈ {1}, ui ∈ gk, wj ∈ Ψ, k = j.
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5. con(i, j) ∈ {0}, ui ∈ gk, wj ∈ Ψ, k 6= j.

This new topology guarantees that neurons from one dense area are not connected with those

from another dense area and therefore according to the equation (1.5) such neurons do not

change each others weight.

w
i

u
z

wwg
i

Figure 7.3: Topology of the modified SOM.

The new topology is illustrated in Figure 7.3 where the initial neurons are in gray and the

generated neurons around each initial neuron are in white color. There is no any connection

between two separate set of generated neurons.

Algorithm 12. SOM topology generation.

Step 0. Given: A set Ψ = {w1, · · · , wq̂} of initial neurons and a number λ ≥ 1.

Step 1. Select a wi and generate gi using equation (7.19).

Step 2. Connect wi to all uz ∈ gi.

Step 3. If all wi ∈ Ψ are visited go to Step 4, otherwise go to Step 1.

Step 4. Select a wi and connect it to all wj ∈ Ψ with r̂ij < r0.

Step 5. If all wi ∈ Ψ are visited terminate, otherwise go to Step 4.

The well-known Chain Link data set is used to illustrate the performance of Algorithms

11 and 12. This data set was widely used to demonstrate the performance of the SOM. More

information on the Chain Link data set can be found in [118]. The performance of Algorithms

11 and 12 is displayed in Figures 7.4 and 7.5.

In Figure 7.4, the initial neurons are close to the domain of the input data space which

helps to avoid any deterioration in convergence of the maps. It should be noted that in this

figure λ is set to 1. In Figure 7.5, the results of the neuron initialization is presented with

the same setting as in Figure 7.4, except the value of λ which is 1.5. The parameter λ defines
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Figure 7.4: Initial neurons generated by Algorithms 11 and 12 with λ = 1.
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Figure 7.5: Initial neurons generated by Algorithms 11 and 12 with λ = 1.5.

the proximity of initial neurons with respect to data points. These figures demonstrate that

the increase of the values of λ leads to the increase of the distance between neurons and data

points.

7.5 The modified SOM algorithm and its implementation

In this section, Algorithm 1 is modified by applying the new initialization algorithm for

neurons and the modified SOM topology. The new algorithm can be summarized as follows.

Algorithm 13. Modified SOM algorithm.

Step 0. (Initialization) Initialize the ratio β ∈ (0, 1) in Algorithm 10. Define the maximum

number of iterations T , the maximum value βmax of the ratio β and the step length βs. Set

the iteration counter τ := 0.

Step 1. (Split and Merge). Apply Algorithm 11 to A for β → βmax to generate the set

Ψ = {w1, · · · , wq̂} of neurons which minimizes the function f in (7.1). This set contains
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initial weights of neurons.

Step 2. (SOM topology). Apply Algorithm 12 to the set Ψ.

Step 3. Select data point xi, i = 1, . . . ,m and find its closest neuron wc ∈ Ψ
⋃
{
⋃q̂
i=1 gi}, that

is

c := argmin
j=1,...,(q̂·(e+1))

‖xi − wj‖. (7.21)

Step 4. Update the set of neighborhood neurons wj ∈ Nc using the following equation:

wj := wj + α(τ)h(τ)(xi − wj), (7.22)

where

Nc =


gi ∪ wi if wc = uz ∈ gi,

gi ∪ wi ∪ Ξ if wc = wi ∈ Ψ,

subject to

Ξ = {wj |j 6= i and rij < r0}.

Step 5. If all input data points are presented to the network go to Step 6, otherwise go to

Step 3.

Step 6. Calculate Eτ using (1.6). If τ > T terminate, otherwise set τ := τ + 1 and go to Step

3.

Steps of Algorithm 13 are illustrated in Figure 7.6.

Algorithm 5


Algorithm 7


Step 3 to Step 6


find solution to 


the Problem (2)


Data


Algorithm 6


Figure 7.6: The summary of steps in Algorithm 13.

The neighborhood function h in (7.22) of Algorithm 13 is defined differently for sets Ψ
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and gi, i = 1, . . . , q̂. More specifically, for neurons wi, wj ∈ Ψ

h(τ) = exp

(
−

r2
ij

2σ(τ)2

)
, (7.23)

and for neurons uz ∈ gi, i = 1, . . . , q̂

h(τ) = exp

(
− 1

2σ(τ)2

)
. (7.24)

Here

σ(τ) = p0 −
τ

T
, p0 ≥ 1. (7.25)

The learning rate α(τ) is defined as

α(τ) = η
T − τ
τ

, η ≥ 1. (7.26)

The main difference between Algorithm 13 and the classical SOM is in Steps 1 and 2. The

SOM algorithm does not have such steps. Furthermore, in Step 4 the set Nc is modified to

improve the approximation of the global solution to the vector quantization problem. Other

steps in Algorithm 13 are similar to those in the classical SOM. Note also that unlike the

classical SOM, in the proposed algorithm the number of neurons and the radius of the map

are not given a priori. They are calculated by the algorithm itself.
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Figure 7.7: The Modified SOM on Chain Link dataset.

The results obtained by Algorithm 13 on Chain Link data set is presented in Figure 7.7.

One can notice that the Modified SOM converged to the input data accurately.
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7.5.1 Implementation of algorithm 13

In Algorithm 1, weight vectors wj , j = 1, · · · , q are initialized randomly. The maximum

number of iterations T is set between 20 and 40 for small to large data sets, although for

large data sets more iterations might be required to obtain stable network over input data.

The topology of the SOM network is rectangular [91] with the same number of neurons on

each column and row (i.e. n × n). Each interior neuron is connected with 8 neighborhood

neurons, however this number is less than 5 for border neurons. Furthermore, the radius of

map r is set to 2 for small and 4 for large number of neurons (see Table 7.1).

Table 7.1: Initialization of SOM parameters in Algorithm 1.

Data sets Input Size SOM Dim. r T

Small (|A| < 103) 10× 10 2 20
Medium (103 ≤ |A| < 104) 15× 15 3 30

Large
(104 ≤ |A| < 0.5 · 105) 20× 20 4 40

(0.5 · 105 ≤ |A| < 0.8 · 105) 25× 25 3 20
(|A| ≥ 0.8 · 105) 20× 20 2 20

As it is presented in Table 7.1, the number of neurons, the maximum number of iterations

T and the radius r are chosen in increasing order to make the SOM applicable to large data

sets. The exception is for the data sets with the the number of points |A| ≥ 0.5 · 105. For

these data sets, r and T are smaller comparing to other large data sets. This is done to

decrease the computational complexity.

In Step 0 of Algorithm 13, the values of T are set as same as in Table 7.1. The initial

value of the parameter β and the values of parameters βmax and βs are defined as follows:

β = 0.05, βmax = 0.6, βs = 0.05. In Step 2, the parameter λ, which is used in Algorithm 12,

is set to 1.5 for small and medium size data sets and to 2.5 for large data sets. In Algorithm

12 the parameter e = 9. Therefore the total number of neurons is |Ψ| × |gi| + |Ψ|. For all

data sets the parameter r0 = 3. Finally, the parameters p0 and η in (7.25) and (7.26) are set

to 5 and 1, respectively, for all data sets.

7.6 Results of the evaluation and discussion

To demonstrate the effectiveness of the proposed algorithm, numerical experiments were

carried out using a number of real-world data sets. Algorithm 13 was coded in NetBeans IDE
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under Java platform and tested on a MAC OSX with 2.7GHz core i7 CPU and 10GB of RAM.

8 data sets, 2 small (Iris and Wine), 2 medium size (TSPLIB1060 and Image Segmentation),

2 large (D15112 and Gamma Telescope) and 2 very large (NE and Pla85900) were used in

experiments. A brief description of data sets is presented in Table 10. More details can be

found in [14, 119, 135].

The results obtained by the Split and Merge algorithm, which is in Step 1 of Algorithm

13, are presented in Table 7.2. In this table, fmin is the value of the problem (7.1), β∗ is the

value of the parameter β corresponding to fmin, |Ψ| is the number of initial neurons and t is

the CPU time.

Table 7.2: The results of the Split and Merge algorithm

Data sets β∗ |Ψ| fmin t

Fisher’s Iris Plant 0.05 23 4.95 ×101 0.02
Wine 0.05 31 8.62 ×105 0.02
TSPLIB1060 0.05 30 6.43 ×109 0.05
Image Segmentation 0.10 62 3.17 ×107 0.14
D15112 0.10 72 2.53 ×1011 7.13
Gamma Telescope 0.05 87 2.01 ×108 6.61
NE 0.20 61 3.66 ×102 4.57
Pla85900 0.05 75 3.07 ×1015 1.09

Let ESOM and E be values of the quantization error obtained by the SOM and the

Modified SOM, respectively. Then the improvement P achieved by the Modified SOM in

comparison with the result of the SOM is defined as

P =
ESOM − E
ESOM

· 100%. (7.27)

The values of quantization error using equation (1.6) for different iterations and different

data sets are presented in Tables 7.3-7.4. From these results one can see that the Modified

SOM outperforms SOM in all data sets. The maximum improvement of 42.7% is obtained

in Wine data set. The improvement P in Image Segmentation and Iris data sets is 38.3%

and 24.8%, respectively. The minimum improvement is obtained in Pla85900 data set which

is 4.4%. On other data sets the improvement P is between 6.9% and 14.1%. Note that the

Modified SOM starts with a smaller value of E than the SOM algorithm. This is due to the

use of the special initialization procedure in the Modified SOM algorithm.

The computational effort used by the Modified SOM is much less than that of the SOM
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Table 7.3: Results for small and medium size data sets
iter E t E t iter E t E t

Iris TSPLIB1060

SOM Modified SOM SOM Modified SOM

2 3.17E+00 0.06 2.96E-01 0.02 2 4.84E+08 0.23 2.47E+03 0.08
4 2.05E+00 0.08 2.76E-01 0.03 4 2.03E+05 0.39 5.60E+03 0.11
6 1.95E+00 0.09 2.29E-01 0.03 6 7.32E+03 0.52 2.03E+03 0.12
8 9.70E-01 0.09 2.23E-01 0.05 10 5.57E+03 0.70 3.66E+02 0.17
10 5.56E-01 0.11 2.22E-01 0.05 14 3.82E+03 0.90 3.19E+02 0.22
12 3.51E-01 0.12 2.22E-01 0.05 18 1.29E+03 1.08 3.17E+02 0.25
14 2.88E-01 0.12 2.22E-01 0.06 22 3.26E+02 1.23 3.17E+02 0.30
16 2.86E-01 0.14 2.22E-01 0.06 25 3.21E+02 1.36 4.67E+02 0.33
20 2.86E-01 0.16 2.15E-01 0.08 30 3.21E+02 1.56 2.99E+02 0.37

Wine Image Seg.

SOM Modified SOM SOM Modified SOM

2 6.65E+02 0.08 3.45E+01 0.03 2 1.82E+07 0.73 1.01E+02 0.40
4 2.21E+02 0.11 1.33E+01 0.06 4 2.41E+03 1.28 8.01E+01 0.62
6 2.00E+02 0.12 1.19E+01 0.08 6 1.84E+02 1.75 2.90E+01 0.84
8 1.48E+02 0.14 1.11E+01 0.09 10 1.42E+02 2.74 1.89E+01 1.26
10 6.18E+01 0.17 1.12E+01 0.09 14 1.02E+02 3.65 1.75E+01 1.68
12 2.93E+01 0.19 1.12E+01 0.11 18 4.55E+01 4.54 1.74E+01 2.09
14 1.87E+01 0.20 1.12E+01 0.12 22 2.69E+01 5.40 1.74E+01 2.51
16 1.85E+01 0.20 1.54E+01 0.14 25 2.69E+01 6.04 1.75E+01 2.84
20 1.85E+01 0.23 1.06E+01 0.16 30 2.69E+01 7.00 1.66E+01 3.35

in all data sets except Pla85900. The Split and Merge algorithm that initializes the Modified

SOM is very efficient and it is not time consuming. The new initialization algorithm which is

based on the Split and Merge algorithm speeds up the convergence of the Modified SOM and

makes it less time consuming than the SOM. The maximum time reduction by the Modified

SOM, comparing with the SOM, was achieved in D15115 and Gamma Telescope data sets.

On the other hand the minimum computational time reduction is on two very large data sets:

Pla85900 and NE data sets.

The dependence of the CPU time on the number of iterations for the SOM and Modified

SOM algorithms using D15112 and Gamma Telescope data sets is given Figure 7.8. Note

that the Modified SOM requires more CPU time at the early iterations due to the use of the

Split and Merge algorithm for initialization. Once the Modified SOM initialized, it converges

much faster than the SOM which is initialized randomly.

Note that the error E shows the quantization quality of the network. However, there

is a distortion measurement which can be used to calculate the overall quality of the map.

Unlike the quantization error, the distortion measure ξ considers both vector quantization
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Table 7.4: Results for large and very large data sets
iter E t E t iter E t E t

D15112 NE

SOM Modified SOM SOM Modified SOM

2 3.65E+04 7.36 1.56E+04 7.77 2 2.02E+07 5.18 3.28E+07 6.47
4 2.52E+08 14.35 5.15E+06 8.32 4 3.32E-01 9.86 8.56E+32 8.18
6 1.60E+04 21.28 1.71E+09 8.86 6 3.01E-01 14.56 3.88E-02 9.89
10 9.59E+03 34.99 1.37E+05 9.97 8 2.70E-01 19.25 2.15E-02 11.54
18 1.57E+03 61.85 4.09E+02 12.20 10 2.56E-01 23.93 1.23E-02 13.20
22 7.26E+02 75.30 3.89E+02 13.29 12 1.94E-01 28.52 1.12E-02 14.88
26 4.28E+02 88.73 3.85E+02 14.37 14 5.41E-02 32.99 1.12E-02 16.55
30 3.80E+02 102.23 3.85E+02 15.46 16 1.16E-02 37.46 1.12E-02 18.24
40 3.80E+02 135.96 3.51E+02 18.14 20 1.12E-02 46.30 1.03E-02 21.51

Gamma Telescope Pla85900

SOM Modified SOM SOM Modified SOM

2 3.93E+20 10.97 8.28E+01 8.39 2 2.17E+113 4.29 5.81E+112 6.49
4 5.11E+12 21.32 4.08E+01 10.00 4 4.41E+05 8.14 1.43E+05 11.23
6 2.22E+03 31.73 3.46E+01 11.62 6 4.32E+05 11.72 1.99E+88 15.19
10 2.21E+02 53.17 3.15E+01 14.84 8 4.09E+05 16.99 3.09E+04 20.84
18 1.30E+02 95.26 3.02E+01 21.23 10 3.87E+05 18.69 2.74E+04 22.73
22 7.56E+01 116.35 3.00E+01 24.43 12 3.71E+05 22.23 2.63E+04 26.46
26 4.53E+01 137.56 2.99E+01 27.63 14 1.87E+05 25.91 2.61E+04 30.19
30 3.34E+01 158.70 2.99E+01 30.81 16 5.00E+04 29.44 2.61E+04 33.96
40 3.33E+01 210.52 2.86E+01 38.44 20 2.73E+04 36.41 2.61E+04 41.31
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Figure 7.8: SOM vs Modified SOM using CPU time.

and topology preservation of the SOM. The distortion measure is defined as follows [8, 13]:

ξ =
∑
xi∈A

∑
wj∈Ψ,wj 6=wc

hcj‖xi − wj‖2, (7.28)

where c is the BMU of xi and hcj is the value of the neighborhood function h, defined by

(7.23), for neurons c and j.

Table 7.5 presents the distortion measure (7.28) and the number of active neurons nact

for all data sets. One can see that the distortion error ξ obtained by the Modified SOM

is less than that obtained by the SOM in all data sets. This is due to the topology of the
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Modified SOM where the neurons from different dense areas are not connected. This prevents

deterioration of the network from its optimal value of ξ and E simultaneously.

Table 7.5: Results of distortion measure on all data sets
SOM Modified SOM

Dataset ξ nact ξ nact

Fisher’s Iris Plant 1.25×10−6 69 3.62×10−7 92
Wine 1.68×10−2 72 6.23×10−3 104
TSPLIB1060 1.63×10−1 204 2.11×10−2 258
Image Seg. 3.26×10−4 210 8.73×10−5 490
D15112 6.19×10−2 397 2.69×10−2 710
Gamma Telescope 2.35×10−5 400 1.39×10−5 759
NE 1.66×10−1 375 3.11×10−2 610
Pla85900 7.66×10−6 400 4.97×10−6 636

7.6.1 Comparison with other algorithms

In this subsection the Modified SOM (MSOM) is compared with well-known high dimen-

sional visualization algorithms such as: Growing Grid [67], Growing Neural Gas [66] and

Growing Hierarchal SOM [117] using computational results. In the Growing Grid algorithm

the number of iterations are set 10 times of that for the Modified SOM. In other algorithms

parameters are defined as the same as the similar parameters in the Modified SOM. The

CPU time limitation is set to 6 hours. The results for the quantization error E, defined by

(1.6), are presented in Table 7.6. In order to compare results by different algorithms the best

known value Ebest of the quantization error and relative errors Re of algorithms are included

in this table. The relative error is computed as

Re =
Ē − Ebest
Ebest

100,

where Ē is the value of the quantization error (1.6) obtained by an algorithm.

Results presented in Table 7.6 demonstrate that the Modified SOM algorithm outper-

forms all other algorithms in all data sets used in this research. The dash line shows that

GHSOM algorithm failed to produce results in large data sets NE and Pla85900. Results

also demonstrate that the SOM is quite efficient in data sets with small number of features

(2 or 3). In small data sets (Iris Plant and Wine) GHSOM produced good results however it

fails as the number of data points increases. Although the GG and GNG algorithms are not
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Table 7.6: Comparison of different algorithms.
Data set Ebest Re

GG GNG SOM GHSOM MSOM

Fishers Iris Plant 2.148×10−1 27.27 18.58 33.33 14.04 0.00
Wine 1.061×101 69.65 37.43 74.28 48.51 0.00
TSPLIB1060 2.991×102 7.27 25.68 7.36 53.88 0.00
Image Seg. 1.658×101 60.34 27.36 62.22 218.59 0.00
D15112 3.510×102 39.30 10.09 8.31 135.18 0.00
Gamma Telescope 2.855×101 16.67 10.14 16.76 130.99 0.00
NE 1.032×10−2 121.63 66.88 8.23 - 0.00
Pla85900 2.610×104 938.81 134.04 4.65 - 0.00

computationally expensive, their results are not satisfactory in comparison with the Modified

SOM and in some data sets also in comparison with the classical SOM.

Note that the quantization error, E, is similar to the notion of the compactness error,

which is used in [56] to express the quality of the clusters obtained.

In Figure 7.9, the values of E obtained by the Modified SOM are compared with those

obtained by other algorithms on Iris and Wine data sets. On both data sets the Modified

SOM starts with a value of E close to the value of E at the global solution and converges

to the optimal value within the given number of iterations. Since the SOM is initialized

randomly, it takes more time to converge. The initial grown neurons of the GHSOM are

closer to the optimal solution than those generated by GG and GNG algorithms.
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Figure 7.9: Comparison of algorithms using E values.

The notion of distinctness error is introduced in [56] and can be formulated as:

D =
∑

wi,wj∈Ψ,i 6=j
‖wi − wj‖. (7.29)

The value of D characterizes the distribution of neurons in the input space. Larger value
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of D means better distribution of neurons. Results for the distinctness error using all data

sets are presented in Table 7.7. In this table the best value Dbest of D obtained using all

five algorithms and also the relative error RD of results obtained by these algorithms are

included. The relative error RD is computed as follows:

RD =
Dbest − D̄

D̄
100.

Here D̄ is the value of the distinctness error obtained by an algorithm.

Results from Table 7.7 demonstrate that the Modified SOM outperforms other algorithms

in all data sets except the Iris Plant data set, where GHSOM reached the maximum value

of D. However the GHSOM algorithm fails in two large data sets NE and Pla85900 and

performs poorly in two dimensional data sets TSPLIB1060 and D15112. In other data sets

this algorithm performs better than GG, GNG and SOM.

Table 7.7: Results for the distinctness error
Data set Dbest RD

GG GNG SOM GHSOM MSOM

Fisher’s Iris Plant 1.460×104 1479.67 857.19 179.23 0.00 43.44
Wine 1.633×106 1436.65 120.54 128.91 35.64 0.00
TSPLIB1060 1.989×108 533.91 259.51 65.88 1082.92 0.00
Image Seg. 2.085×107 2764.31 1132.94 454.36 323.44 0.00
D15112 2.167×109 2216.38 384.15 221.13 1341.98 0.00
Gamma Telescope 6.050×107 2330.17 368.15 400.61 65.37 0.00
NE 4.924×104 7676.32 242.36 113.17 - 0.00
Pla85900 6.144×1010 1499.12 768.24 160.30 - 0.00

In order to demonstrate the time efficiency of the proposed algorithm in comparison

with other algorithms the CPU time t required by algorithms is reported in Table 7.8. The

GHSOM is not efficient in large data sets. The Modified SOM converges faster than other

algorithms on three data sets: Iris, Wine and TSPLIB1060. In all other data sets the GG

and GNG are faster than the Modified SOM. Only exception is the Pla85900 data set where

the Modified SOM is faster than the GG.

Figure 7.10 displays the visualization of the D15112 data set and clusters in it obtained by

algorithms. Clusters are visualized using Voronoi diagrams. One can see that the Modified

SOM identifies dense areas and generates more neurons in such areas more efficiently than all

other algorithms. The GHSOM algorithm performs better than other algorithms (except the

Modified SOM) in identifying dense areas. However it fails to generate more neurons in such
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Table 7.8: CPU time required by algorithms
Data set t

GG GNG SOM GHSOM MSOM
Fisher’s Iris Plant 0.44 0.31 0.25 2.06 0.08
Wine 0.43 0.44 0.26 2.87 0.15
TSPLIB1060 1.06 0.62 2.48 62.88 0.48
Image Seg. 3.07 1.39 7.40 303.68 3.57
D15112 16.36 2.68 277.61 10848.36 20.40
Gamma Telescope 29.76 10.21 385.67 18363.03 37.13
NE 16.69 9.77 74.00 - 21.05
Pla85900 62.27 11.58 42.18 - 38.07

areas in the given number of iterations. Notice that the SOM algorithm tries to distribute

neurons uniformly over the data set, which is one of the drawbacks of the SOM [117].

7.6.2 Topology preservation

The comparison of topology preservation of the Modified SOM and other algorithms in

TSPLIB1060 data set is presented in Figure 7.11. It can be observed that the Modified

SOM spreads the neurons more efficiently than other algorithms. This can be proved by the

error values, which are reported in Tables 7.6-7.7. If consider white areas (where there is no

input data) in Figure 7.11, one can see that the Modified SOM forces neurons to map the

data accurately whereas many neurons of other algorithms are located in white areas. The

topology of the Modified SOM is defined in order to prevent any attraction of neurons from

different dense areas. This decreases the value of the quantization error E.

7.7 Summary

In this chapter, the Modified SOM (MSOM) algorithm is developed to solve large data

visualization problems. The MSOM is novel in the sense of initialization algorithm and topol-

ogy. The proposed algorithm is tested on 8 small to large data sets. Furthermore, the MSOM

is compared with SOM-based data visualization algorithms in the sense of computational time

and topology preservation.
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Figure 7.10: Visualization of the data set D15112 and clusters.
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Figure 7.11: Topology preservation of algorithms in TSPLIB1060 data set (data points are
in blue and neurons are in red color).
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Chapter 8

Convolutional recursive modified

SOM for handwritten digits

recognition

8.1 Introduction

In this chapter, we present a semi-supervised tool for handwritten digit recognition using

a Convolutional Structure of Recursive Modified SOM. The Modified SOM is presented in

Chapter 7.

8.2 Selection of parameters in modified SOM algorithm

Algorithm 13 contains the following parameters: the maximum number of iterations T

and radius r0; ε and γ for the split and merge, their minimum values ε0 and γ0 and maximum

values εmax and γmax; the parameter λ. Among these parameters ε and γ are most important

which may significantly affect the convergence of the map. These parameters are used in

Algorithm 13 to initialize the neurons of the MSOM.

Using the well-known A1 dataset from [131] we demonstrate how the parameters ε and

γ can be chosen. Results are presented in Table 8.1 where the quantization error E is

included for different settings of parameters ε and γ. Note that the parameter ε has less
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influence on the performance of the MSOM than the parameter γ. However, in all cases

these parameters generate a distinct MSOM. Results show that the recommended values for

γ are between γ0 = 5 and γmax = 6 and for ε they are between ε0 = 0.1 and εmax = 1.1.

Since the parameter ε has less influence on the performance of the MSOM its values between

0.1 and 0.5 can be chosen to reduce the computational time. However these values can be

vary depending on a dataset. Results show that the performance of Algorithm 13 does not

strongly depend on the parameter λ.

Table 8.1: The result of E values in A1 dataset using different configurations of parameters
ε and γ in Algorithm 13 (sε is step length).

ε0 −→ εmax, sε = 0.2
0.1 0.3 0.5 0.7 0.9 1.1

γmax E AV. SD.

5 293 291 302 291 297 295 295 4.07
6 281 287 284 280 285 278 283 3.29
7 325 335 344 328 323 321 329 8.48

AV. 300 304 310 300 302 298
SD. 22.56 26.66 30.59 25.49 19.53 21.73

In numerical experiments, we choose λ = 1.5, the maximum number of iterations T = 30

and the coefficient η = 1. Note that the last two parameters are included also in the classical

SOM algorithm.

8.2.1 Comparison with SOM using numerical results

The following data sets are used to compare the performance of the MSOM and the SOM:

Path [35], Spiral [35], R15 [138], Aggregation [69], D31 [138], S1 [64], Mopsi Users’ locations

in Joensuu [65] and A3 [131]. All datasets are 2-dimensional. Results are illustrated in

Figure 8.1 where the data points are indicated in blue and the neurons are presented as red

circles. One can see that, in all datasets the quality of the map generated by the MSOM

is significantly better than that of by the SOM. This is due to the improved initialization

process and topology preservation used by the MSOM.

Comparison of E values obtained by the SOM and MSOM on Path, Spiral, and Mopsi

datasets is given in Figure 8.2. One can see that in the MSOM the initial position of neurons

before training is close to the optimal solution. In Path, Spiral and Mopsi datasets, the SOM

obtains optimal values of the problem (1.6) 1.19, 1.50 and 5.69 × 10−3, respectively. The

MSOM improves these results to 0.91, 0.54 and 1.07× 10−3.
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Path data set Path Spiral data set

R15 data set Aggregation data set

D31 data set S1 data set

Mopsi data set A3 data set

Modified SOMSOMModified SOMSOM

Figure 8.1: The comparison of the SOM and the MSOM.

8.2.2 Complexity comparison with SOM

The time complexity of the SOM is linear with respect to the number of data points.

The total number of calculations, ρ of (1.5) in the SOM depends on the parameter r which

defines the set of neighborhood neurons to be adapted by (1.5). The complexity of SOM can

be formulated as O(Tρn), where

ρ =
r∑

r0=1

r2
0 + 4r0 + 4,

n is the number of data points and r0 is defined in Section 7.4. The proposed topology in

the MSOM improves the complexity and reduces the number ρ to ρ̄ = e + r0 and therefore

the complexity of the MSOM is O ((kγ + T ρ̄)n). One can see that the coefficient of n is

increasing quadratically in the SOM, whereas it is increasing only linearly in the MSOM.
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Figure 8.2: Comparison of E values obtained by the SOM and the MSOM.

8.3 Recursive MSOM

The recursive neural network is a combination of neural model and feedback, in order to

learn different behaviors of input images by one neural network. First, the idea is to have

distinct sets of recursive neural networks,M0, · · · ,M9 for training a sequence of images with

0, · · · , 9 labels, respectively. Therefore,

My = {Ψh|h = 1, · · · , n̄y}, y = 0, · · · , 9,

where Ψh is the result of training the set of B input images, Pb, b = 1, · · · , B. Pb is a set of

vectors indicating image pixels, Pb = {xi|xi ∈ R3}. We propose a recursive form of Algorithm

13 for training process and the scheme of Rec-MSOM is presented in Figure 8.3. As it is

presented in this figure, The P(0) is the first incoming image and the feedback of the network

at time t is combined with the incoming picture at time t + 1 in order to be learned by the

network.
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P(t +1)!!(t)P(t +1)

Sequence of images  
with label  y

!(t)

Recursive Modified SOM 

Figure 8.3: Topology of modified SOM.

The Recursive Modified SOM Algorithm is as follows:
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Algorithm 14. Recursive Modified SOM algorithm

Step 1. Let have a set of images ℵ = {P1, · · · , PB}. Initialize parameters of the Algorithm

13. Set network Ψ = ∅.

Step 2. Select a Pb ∈ ℵ.

Step 3. (Training) Apply Algorithm 13 on the set Pb ∪Ψ as input data vectors.

Step 4. (Update Ψ) Set the output neurons of Modified SOM into the parameter Ψ.

Step 5. If all Pb ∈ ℵ are visited terminate, otherwise go to Step 2.

In Step 3 of Algorithm 14, the training is done on the union of new input image and

the network obtained from the previous sequence. Usually all Pb ∈ ℵ are from same label,

therefore the final set Ψ is a trained network with a label as the input images. Assume that

all Pb ∈ ℵ are from the images of digit with label 0, therefore we add the network Ψ to the

set M0,

M0 =M0 ∪Ψ,

and the network Ψ is a recognition tool for images with label 0 in the set M0.

8.3.1 Training

In the training phase, the cardinality of sets M0, · · · ,M9 are predefined. Assume that

the cardinality of sets My, y = 0, · · · , 9 are set as n̄y, y = 0, · · · , 9, therefore, we have n̄y

number of networks, Ψy
1, · · · ,Ψ

y
n̄y , in the set My. The set of training sample images ℵy of

label y are divided into n̄y subsets ℵy1, · · · ,ℵ
y
n̄y to be learned by the networks Ψy

1, · · · ,Ψ
y
n̄y ,

in the set My, respectively. It should be noted that

ℵyi ∩ ℵ
y
j = ∅, i 6= j, i, j = 1, · · · , n̄y.

Each subset ℵyi learned by Ψy
i , where i = 1, · · · , n̄y, using Algorithm 14. The training

Algorithm is defined as follows:

Algorithm 15. Training algorithm

Step 1. (Initilization) Let have a set of images ℵ = {P1, · · · , PB}. Initialize the values n̄y

and set My = ∅ for y = 0, · · · , 9. Set label y = 0.
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Step 2. (Selection and devision) Select all images with label y in ℵ and put them in ℵy.

Divide the set ℵy into n̄y number of distinct subsets ℵyj , j = 1, · · · , n̄y.

Step 3. (Training) Select a ℵyj and its corresponding network Ψy
j then send them as an input

to Algorithm 14.

Step 4. The output of Algorithm 14 is a trained network Ψy
j , therefore,

My =My ∪Ψy
j .

Step 5. If all ℵyj , j = 1, · · · , n̄y are visited go to Step 6, otherwise go to Step 3.

Step 6. If y > 9 terminate, otherwise y = y + 1 and go to Step 2.

After termination of Algorithm 15 the sets My, y = 0, · · · , 9 contain trained networks

which are used for recognizing unknown images.

Assume that we have selected 13 images with label 0 as is presented in Figure 8.4. We

set n̄0 to 5 and apply Step 2 of Algorithm 15 on this set and divide these images into n̄0

subsets. The Steps 3 to 5 of Algorithm 15 generate 5 different networks, which are presented

in Figure 8.5.

Figure 8.4: A set of images, ℵ0, with label 0, which are selected randomly from the training
set.

Figure 8.5 presents the set M0, which contains 5 Rec-MSOM networks.

8.3.2 Testing

In this section we propose the testing procedure for handwritten digits recognition. As-

sume a Modified SOM network Υ as a screen to train the input unknown images using

Algorithm 13. Then, the network Υ is compared with all the networks in the sets My, y =

0, · · · , 9. The aim is to recognize the label, ȳ, of an input image by minimizing the following
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Figure 8.5: The set of modified SOM networks, Ψh ∈ M0, after training with samples in
Figure 8.4. This set is using for recognition of images with 0 label.

equation,

ȳ = min
y

j=1,··· ,n̄y
E(Ψy

j ,Υ) (8.1)

E(Ψy
j ,Υ) =

|Υ|∑
i=1

min
k
‖ŵi − wyk‖, w

y
k ∈ Ψy

j ,

where y = 0, · · · , 9. There are many neurons in the the network Υ and also in all the networks

in the sets My, y = 0, · · · , 9, which are dark and carry no information. Therefore, before

using equation (8.1) for image recognition, we introduce a filtering parameter, δ, to remove

those neurons in the sets of training networks Ψy
j , j = 1, · · · , n̄y, y = 0, · · · , 9 and also in the

screen network, Υ, which are low in luminance. One can see that, in Figure 8.5 the shape of

digit is held by neurons which are in white or light colors. Therefore, we discard the neurons

which are dark or low in luminance by setting filtering parameter δ, in advance. The set of

neurons that are extracted by filtering from the network Ψy
j is calculated as follows:

Ψ̄y
j =

{
wyk | ‖w

y
k‖ ≥ δ, w

y
k ∈ Ψy

j

}
, (8.2)

where k = 1, · · · , |Ψy
j |, j = 1, · · · , n̄y, y = 0, · · · , 9.

In Figure 8.6 the result of filtering on the network, Ψ, which is on the left with dark

background, is presented. The result is a reduced size network, Ψ̄, on the right of the Figure

8.6 with a white background.

The set of black dots in Figure 8.6, Ψ̄, are those neurons with high luminance in the

network Ψ. These neurons should be extracted from the network, Υ, as well as all the sets
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Figure 8.6: The Modified SOM network, Ψ, in the left and the network Ψ̄ in the right after
applying filtering on Ψ.

of trained networks, My, y = 0, · · · , 9, before using equation (8.1) for digit recognition.

8.4 The convolutional structure

In this section a convolutional structure of the the proposed tool for digit recognition is

presented. It should be noted that, the screen network, Υ and the sets of training network,
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Figure 8.7: The proposed convolutional structure.

My, y = 0, · · · , 9, are Modified SOM and follow the topology which is presented in Figure

7.3.

In the convolutional structure , see Figure 8.7, we learn the input image by different

settings of the network Υ in the sense of parameters ε and γ in the Algorithm 10. The result

is a set of derivative networks of Υ,

I = {Υγ
ε |0 < ε < 1, 1 < γ < γmax}.
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The parameter ε is defined in Section 7.2.1. This parameter is used to split the clusters

with a low density center point. One can see that, according to equations (7.2) to (7.7),

changing the ε to a high value reduce the number of initial neurons which, consequently,

generates a new topology based on Algorithm 12. If we run the Algorithm 10 with a low to a

high value of ε, the number of initial neurons will change in a decreasing format in Algorithm

12. In Figure 8.8, we present the results of changing ε and γ of the network Υγ
ε from 0.01 to

0.31 and 5 to 6, respectively, while learning an digit image with label 0.

ε =0.01
γ = 5

ε =0.01
γ = 6

ε =0.16
γ = 6

ε =0.16
γ = 5

ε =0.31
γ = 5

ε =0.31
γ = 6

Figure 8.8: Different settings of parameters ε and γ for Υγ
ε while learning an input image

with label 0.

One can see that, different settings of parameters ε and γ, represent different networks,

Υγ
ε , while learning an input image. In the recognition procedure, the filtering process is

applied by equation (8.2) on all networks Υγ
ε ∈ I. The result is a set of filtered networks,

Ī = {Ῡγ
ε |0 < ε < 1, 1 < γ < γmax}, with high luminance neurons.The result of filtered

networks, Ῡγ
ε , obtained from networks in Figure 8.8 is presented in Figure 8.9.

In order to recognize an unknown image with its convolutional networks Ῡγ
ε ∈ Ī, we

reformulate equation (8.1) to be applicable for these sets of networks along with the filtered

training networks, Ψ̄y
j , j = 1, · · · , n̄y, in the sets M̄y, y = 0, · · · , 9. The reformulation

of equation (8.1), for comparing networks in the set Ī with trained networks in the sets

M̄y, y = 0, · · · , 9 to label an unknown input image is as follows:

ȳ = min
y

min
ε,γ

j=1,··· ,n̄y
E(Ψ̄y

j , Ῡ
γ
ε ) (8.3)

E(Ψ̄y
j , Ῡ

γ
ε ) =

|Ῡγε |∑
i=1

min
k
‖ŵi − wyk‖, w

y
k ∈ Ψ̄y

j , (8.4)
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Figure 8.9: The networks, Ῡγ
ε , with high resolution neurons only. These networks are the

results of equation (8.2) on the networks presented in Figure 8.8.

where y = 0, · · · , 9.

The handwritten digit recognition algorithm is presented as follows:

Algorithm 16. Handwritten digit recognition algorithm

Step 1. (Initilization) Set of unknown images Ξ = {P1, · · · , PN}. Initialize the parameters

ε, γ and get trained networks My for y = 0, · · · , 9 by applying Algorithm 15. Set filtering

parameter δ in equation (8.2). Set εt = e0 and γt = g0 as starting values with step lengths

sε and sγ , respectively. Set minE =∞ and ȳ = null.

Step 2. Apply filtering equation (8.2) on the setsMy to extract high luminance neurons. Set

extracted networks to M̄y for y = 0, · · · , 9, respectively.

Step 3. Select an images Pi in Ξ.

Step 4. (Training) Apply Algorithm 13 on the input image Pi. The result is the network Υγt
εt .

Step 5. Calculate the network Ῡγt
εt using equation (8.2).

Step 6. (Testing) Select a network Ψ̄y
j in sets M̄y for y = 0, · · · , 9 and calculate equation

(8.4) with Ψ̄y
j and Ῡγt

εt as input networks. If the result of E is less than minE, then minE = E

and ȳ = y.

Step 7. If all networks in trained sets M̄y for y = 0, · · · , 9 are visited then go to Step 8,

otherwise go to Step 6.

Step 8. Set all networks in trained sets M̄y for y = 0, · · · , 9 as un-visited. If εt > ε set

εt = e0 and go to Step 9, otherwise εt = εt + sε and go to Step 4.

Step 9. If γt > γ, set γt = g0 and go to Step 10, otherwise γt = γt + sγ and go to Step 4.

Step 10. Label Pi as ȳ. If all Pi ∈ Ξ are visited terminate, otherwise Set εt = e0, γt = g0 and

go to Step 3.
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In Step 1 of Algorithm 16, we initialize the parameters εt and γt, which are used to

produce different networks, Υγt
εt , from the input image. Though, we increment εt and γt

using parameters sε and sγ as step lengths, until reaching ε and γ, respectively. These

conditions are holding in Step 8 and 9 of the Algorithm 16. In Step 2, the low luminance

neurons are removed from the trained networks, which are the output of Algorithm 15, using

equation (8.2). Steps 4 and 5 calculate the network from the input image Pi and make it

ready for testing in Step 6. The Step 6 is executed for all trained networks in sets M̄y for

y = 0, · · · , 9.

8.4.1 Implementation of Algorithms 15 and 16

In the training phase, we start by running Algorithm 15. In Step 1 of the Algorithm 15

we initialize the values of n̄y as in the Table 8.2.

Table 8.2: Initialization of n̄y in Algorithm 15.
Image label 0 1 2 3 4 5 6 7 8 9

n̄y 5 7 3 21 1 2 19 18 14 22

In Step 3 of Algorithm 15 we apply Algorithm 14. In step 3 of Algorithm 14 where

Algorithm 13 is called, we initialize the parameters of Algorithm 13 as presented in the Table

8.3.

Table 8.3: Initialization of parameters in Algorithms 8 to 13.
Parameter γ ε λ η T

Algorithm 10 10 12 13 13
Initial Value 10 0.1 1.5 1 30

The Algorithm 12 generates 9 neurons (|gi|) around all neurons wi ∈ Ψ. Therefore the

total number of neurons is |Ψ| × |gi|+ |Ψ|. Parameter η in equation (7.25) is set to 1 for all

trained data.

In the testing phase we initialize the parameters of Algorithm 16 as Table 8.4.

Table 8.4: Initialization of parameters in Algorithms 16.
Parameter γ ε γ0 ε0 sγ sε δ

Initial Value 6 0.4 5 0.01 1 0.15 0.5

It should be noted that, in the Algorithm 16, the parameters λ, η and T are set to the

same values as presented in the Table 8.3.
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8.4.2 Application to handwritten digit data set

To demonstrate the effectiveness of the proposed algorithm, the experiments is done on

the well known MNIST data set. The Algorithms 1 to 16 have been coded in NetBeans IDE

under Java platform. Then the algorithms are tested on a MAC OSX with 2.7GHz core

i7 CPU and 10GB of RAM. The MNIST dataset consists of 60000 training samples from

approximately 250 writers and 10000 test samples from a disjoint set of 250 other writers.

We used the original 784-dimensional dataset which resembles 28x28 pixel grey level images

of the handwritten digits. The first 45 digits of the test samples are presented in Figure 8.10.

Figure 8.10: The first 45 digits of the test samples.

To validate the proposed method in the environments where there is not many training

data available, in the training phase, we select only 40 image samples for each class of 0 to

9, randomly, from the 60000 training samples. Therefore, 400 training samples used to train

the sets My, y = 0, · · · , 9. 100 training samples from the 400 training samples is presented

in the Figure 8.11.

One can see that the total number of networks that are trained for digits recognition is,

U =
9∑
y=0

n̄y.

The parameters n̄y, y = 0, · · · , 9 are set according to the values, which are presented in

the Table 8.2. The value n̄ plays an important role in classification accuracy. Assume that,

we have many misclassifications between digit 9 and 4. Then we set the values n̄9 and n̄4 in

a such way to increase |n̄9 − n̄4|. Though, in the Table 8.2, the parameter n̄y for image with

label 9 is set to 22 while this parameter for the image 4 is set to 1. This significant difference
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Figure 8.11: 100 training samples from the 400 training samples, which have been used to
train the sets My, y = 0, · · · , 9.

in n̄ leads to improvement in the misclassifications where image 9 misclassified as 4 and vice

versa. The same criteria is hold for images with label 7 and 1, 3 and 8 and also for images

with label 2 and 7. We have presented the networks Ψy
1, y = 0, · · · , 9 in Figure 8.12.
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Figure 8.12: The networks Ψy
1 ∈ My, y = 0, · · · , 9 after running Algorithm 15 on training

samples.

Recently, a number of handwritten digits recognition methods based on SOM have been

proposed. Comparing the existing methods, the best accuracy of %98.73 on MNIST dataset

is reported by [33]. In our experiment on MNIST dataset, the accuracy of %99.03 is obtained

by using the Convolutional Rec-MSOM on the 10000 test samples. Therefore, only 97 samples

were misclassified. The proposed method in this research boosted up the classification results

up to %23.62,
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(1.27− 0.97)/1.27× 100%,

compared with the method proposed by [33]. The comparative results of Convolutional Rec-

MSOM vs well known SOM-based handwritten digits recognition methods on MNIST dataset

are presented in the Table 8.5.

Table 8.5: Comparison of accuracy obtained by SOM-based handwritten digits recognition
methods on MNIST dataset.

Reference Method Accuracy (%)

[127] BTASOM 85.24
[80] GP+ASSOM+TM 93.20
[109] H2SOM 94.60
[110] H2SOM 95.80
[159] AOSSOM 97.30
[160] LMSOM 97.30
[161] LLOM 97.74
This Chapter CR-SOM 97.75
[33] CNN-SOM 98.73
This Chapter CR-MSOM 99.03

An up to date results on MNIST dataset by a Hybrid CNN-SVM method is presented

by [108]. The authors in [108] claim that there are 25 samples included in the test samples

which are the most challenging ones. However, their proposed method can predict only 6 out

of 25 samples, correctly. We have presented our results on these samples in the Tables 8.6

to Table 8.8. In these tables, the prediction results by the Algorithm 16 is indicated with

bold numbers. The screen network, Υ, with its parameters εt and γt is presented in columns

5, 6 and 7, respectively. This network is the result of training the shape in column 2 using

Algorithm 13 in the Step 5 of Algorithm 16. Then the network Υ is compared with all the

networks Ψy
j in the sets My, y = 0, · · · , 9, through the Steps 6 to 9 in the Algorithm 16.

The trained network Ψ, which is presented in column 8, is the solution to the minimization

problem (8.3). From the results presented in the Tables 8.6 toTable 8.8, one can see that,

the proposed method in this research can predict 24 samples correctly, thus outperforms the

previous results, significantly. The only misclassification is on the sample with the id-number

8409, which is predicted as 8→ 6 (see Table 8.8).

The 97 misclassified samples by using the proposed method in this research are presented

in Figure 8.13. In Figure 8.13, the ID of each sample is printed at the top and the prediction

is presented as label→prediction at the bottom. The results in Figure 8.13 show that there
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Table 8.6: The most challenging samples that reported in [108].
ID Shape Label Pred. Υ εt γt Ψ

741
0 5 10 15 20 25 30

0

5

10

15

20

25

30
4 4 5 10 15 20 25

5

10

15

20

25

0.16 5 5 10 15 20 25

5

10

15

20

25

939
0 5 10 15 20 25 30

0

5

10

15

20

25

30
3 3 5 10 15 20 25

5

10

15

20

25

0.31 6 5 10 15 20 25

5

10

15

20

25

948
0 5 10 15 20 25 30

0

5

10

15

20

25

30
8 8 5 10 15 20 25

5

10

15

20

25

0.31 5 5 10 15 20 25

5

10

15

20

25

1243
0 5 10 15 20 25 30

0

5

10

15

20

25

30
4 4 5 10 15 20 25

5

10

15

20

25

0.16 5 5 10 15 20 25

5

10

15

20

25

1879
0 5 10 15 20 25 30

0

5

10

15

20

25

30
8 8 5 10 15 20 25

5

10

15

20

25

0.01 6 5 10 15 20 25

5

10

15

20

25

1902
0 5 10 15 20 25 30

0

5

10

15

20

25

30
9 9 5 10 15 20 25

5

10

15

20

25

0.01 6 5 10 15 20 25

5

10

15

20

25

2036
0 5 10 15 20 25 30

0

5

10

15

20

25

30
5 5 5 10 15 20 25

5

10

15

20

25

0.31 6 5 10 15 20 25

5

10

15

20

25

2131
0 5 10 15 20 25 30

0

5

10

15

20

25

30
4 4 5 10 15 20 25

5

10

15

20

25

0.16 5 5 10 15 20 25

5

10

15

20

25

are 6 digits with label 1 which have been predicted as a sample with label 9. These digits

are a thick written number with label 1 which may caused the machine misclassifications.

There are also 5 misclassification as 3 → 8. By analysis such errors, we found that, most

of the errors are due to rotation, misalignment and broken structure in the handwritten

numerals. For example, the samples with the ID 342, 4079, 4815 and 6167 are rotated which

is caused by the people with bad habits in handwritings. The samples with the ID 620, 1045,

2381, 3845 and 6652 are related to the errors which are even hard for a human to predict

without displaying their labels. Some of other errors are introduced by scanning procedure,

like samples with ID 3061, 9630 and 9694. The confusion matrix of these misclassifications

is presented in the Table 8.9.
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Table 8.7: The most challenging samples that reported in [108].
ID Shape Label Pred. Υ εt γt Ψ

2448
0 5 10 15 20 25 30

0

5

10

15

20

25

30
4 4 5 10 15 20 25

5

10

15

20

25

0.31 5 5 10 15 20 25

5

10

15

20

25

2598
0 5 10 15 20 25 30

0

5

10

15

20

25

30
5 5 5 10 15 20 25

5

10

15

20

25

0.16 5 5 10 15 20 25

5

10

15

20

25

2655
0 5 10 15 20 25 30

0

5

10

15

20

25

30
6 6 5 10 15 20 25

5

10

15

20

25

0.31 5 5 10 15 20 25

5

10

15

20

25

3226
0 5 10 15 20 25 30

0

5

10

15

20

25

30
7 7 5 10 15 20 25

5

10

15

20

25

0.01 5 5 10 15 20 25

5

10

15

20

25

3423
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Considering the misclassifications among 10 classes of images, which is presented in the

Table 8.9, the max number of misclassification is 25 on the images with label 7. We present

the set M7 in the Figure 8.14.

The set of networks presented in the Figure 8.14 are used to classify images with label

7. By comparing these networks with the digits with label 7 in the Figure 8.13, one can see

that the most errors are on the images which are written in a thick shape, like images with

ID 1207, 6742, 7903, 7904 and 7928. The same criteria is true for the images with the label

1 in the Figure 8.13. There are 1028 images with label 7 included in the 10000 test samples.

It should be noted that by learning only 40 images with label 7, the set M7 misclassified 25

samples which is about %2.4 of the total images with the label 7. This denotes the superiority
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Table 8.8: The most challenging samples that reported in [108].
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of the proposed classifier where the number of training samples are limited.

8.4.3 Reliability of the proposed method

To demonstrate the performance of the proposed method in the sense of reliability, we

compare our method with the SOM-based method, CNN-SOM, in [33]. We present the

reliability based on the same rejection procedure, which is introduced by [33]. If we consider

the solution and the second best solution to the problem (8.4) as emax1 and emax2 , respectively,
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Figure 8.13: The 97 misclassified samples from the 10000 test samples.

then a test sample is rejected if the value of the following equation,

Ē =
|emax1 − emax2 |

2
, (8.5)

is less than a predefined threshold. In the Figure 8.15, the error and rejection rates on

the MNIST test dataset is presented, furthermore, the reliability of the proposed method is

compared with the results that are reported by [33].

From the results, which are presented in the Figure 8.15, one can see that the reliability

of the Convolutional Rec-MSOM reached to a high recognition rate of %99.59 with a low

rejection rate of %6.34. These results outperform the previous results, which are obtained

by the CNN-SOM [33], where the recognition rate is reported as %99.55 while the rejection

rate is %7.45. This denotes the effectiveness of the proposed method and its dominance over

the existing SOM-based methods, which are proposed for hand written digits recognition.
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Table 8.9: Confusion matrix.
Truth Prediction

0 1 2 3 4 5 6 7 8 9
0 1 3 1 2
1 4 1 1 1 6
2
3 2 1 2 6 4
4
5
6 3 1 1 3 3 1
7 11 2 1 1 1 9
8 2 1 1 3 4
9 2 1 3 1 3 4
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Figure 8.14: The set M7 used to classify images with label 7.

8.5 Summary

The problems of handwritten digits recognition are discussed in this chapter. A convolu-

tional structure based on the MSOM is proposed to cope with diversity of shapes and styles

in handwritten digits data set. The proposed model is tested on the well-known MNIST data

set and its accuracy is compared with existing SOM-based approaches for handwritten digits

recognition.
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Figure 8.15: The reliability of CR-MSOM vs CNN-SOM [33] on 10000 test samples.
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Conclusion and future work

In this thesis, we presented different optimization models for the hard clustering prob-

lems. We demonstrated that the use of the nonsmooth nonconvex optimization model has

some advantages over other optimization models of the clustering problems. The nonsmooth

nonconvex optimization model allows one to easily apply different similarity measures in clus-

tering problems. In particular, one can use similarity measures based on the L1, the squared

L2 and L∞ norms. Applying this approach algorithms for solving clustering problems are

designed. The proposed clustering algorithms are based on the incremental approach and

involves a special procedure for finding starting points for cluster centers. Starting points

are found by minimizing the so-called auxiliary cluster function. Three different algorithms

are introduced to minimize both the auxiliary and cluster functions. These algorithms in-

clude the k-means type heuristic algorithm, the discrete gradient method of the nonsmooth

optimization and the algorithm based on the smoothing of the cluster functions.

The proposed algorithms are tested on twelve real world data sets using different sim-

ilarity measures. These results demonstrate that these algorithms are efficient in finding

global or near global solutions to clustering problems with different similarity measures. The

comparison of the algorithm with the use of the discrete gradient method with a number

of other clustering algorithms is also presented. This comparison demonstrate that the pro-

posed algorithm is more accurate than other algorithms in many data sets. In some data sets

the performance of the proposed algorithm, the Hartigan and the k-means++ algorithms are

quite similar.

Data visualization is another crucial task in mining and pattern recognition. Among

the existing data visualization algorithms, the Self Organizing Maps has been shown to be

a promising tool. However, the quality of data visualization depends on the SOM learning
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algorithm. In this thesis, we develop a modified learning algorithm for the SOM. The aim

is to propose a learning algorithm which restricts the neighborhood adaptations to only

those neurons that are not far from the best matching unit in the n-dimensional space.

Therefore, we introduced an adaptive constraint parameter. This parameter is a decreasing

function with respect to iterations of the SOM learning process. The adaptive constraint

parameter selected as linear, hyperbolic and sigmoid functions. The experiments on eight

real-world data sets demonstrate the superiority of the proposed algorithm over the SOM

in the sense of accuracy. Moreover, the results demonstrate that the CSOM requires less

computational efforts than the SOM. The results show the superiority of CSOM over similar

topology preservation algorithms in large data sets.

In this research, a modified version of the Self Organizing Maps is developed to the

problems in the large high dimensional data sets visualization. The aim is to design a new

more efficient version of the SOM by using a new algorithm for initialization of neurons and

a new topology which restricts the neighborhood adaptations to only those neurons that are

not in different dense areas. For this purpose the Split and Merge algorithm is introduced

to generate neurons. This algorithm is a part of the initialization algorithm in the Modified

SOM and the numerical results show that the initialization algorithm generates neurons close

to the optimal solution. A topology is introduced to generate neurons in high dense areas of

input data space and to prevent attraction of neurons from different such areas. The results

show that this restriction reduces the quantization and distortion errors. Numerical results

on eight data sets are presented to demonstrate the efficiency of the Modified SOM and

compare it with other four algorithms including the classical SOM. These results show that

the Modified SOM is more accurate than all other algorithms. Results for the distinctness

error confirm that the Modified SOM is able to distribute neurons over the input data space

more efficiently than any other algorithm. Moreover visualization of clusters obtained by

different algorithms show that the proposed algorithm is more efficient in identifying dense

areas and generating neurons in such areas. Although the Modified SOM is faster than

the classical SOM on some data sets it requires more computational time than other three

algorithms used in comparison.

We developed a Convolutional Recursive Modified SOM for the problem of handwrit-
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ten digits recognition. First, we presented a modified version of the Self Organizing Maps.

The aim was to propose an initialization algorithm and a new topology which restricts the

neighborhood adaptations to only those neurons that are not in different dense areas. We

introduced split and merge algorithm to initialize the neurons optimally. The experiments

show that the initialization is close to optimal solution. We presented a topology for SOM to

generate neurons in high dense areas of input data space and not to connect neurons which

are in separate dense areas. The experiments show that this restriction reduces the quanti-

zation error, E. Furthermore, demonstrate the improvements in topology preservation of the

Modified SOM. The new topology also reduced the complexity of neighborhood adaptations

from quadratic to a linear one, in comparison with the conventional SOM. We proposed a

recursive form of Modified SOM for training process, in order to learn the diversity of shapes

and styles of incoming images. Finally, a convolutional structure introduced to label the

unknown handwritten digits images. The experiments on the well known data set, MNIST,

demonstrate the superiority of the proposed algorithm over the existing SOM-based methods

in the sense of accuracy.

Future work

As the data sets become larger and more diverse, new algorithms and modifications of

existing algorithms are required to solve clustering problems in such data sets. With the

increasing availability of very large, dynamic, and time-varying data sets and especially mas-

sive datasets from various sources, most clustering algorithms are not capable of generating

satisfactory results. Development of new and extension of algorithms proposed in this thesis

for solving clustering problems in such data sets will be a part of future research.

In many applications, clustering is an off-line task. In such applications the CPU time

required by clustering algorithms is not very crucial. However, there some other applications

where decisions have to be made in real time. The problem of real time clustering is a

challenging problem, which refers to solving clustering problems in a given period of time.

Developing real time clustering algorithms based on the clustering algorithms, developed in

this thesis, is a part of the future work.

The cluster analysis algorithms such as k-means and fuzzy c-means are known to be
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sensitive to noisy data or data sets with outliers. The performance of introduced clustering

algorithms in this thesis on noisy data and their modifications to the problems in data sets

with outliers are other parts of future work.
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[33] H. Cecotti and A. Beláıd. A new rejection strategy for convolutional neural network

by adaptive topology. In M. Kurzyn̈ski, E. Puchala, M. Woz̈niak, and A. Zolnierek,

editors, Computer Recognition Systems, volume 30 of Advances in Soft Computing,

pages 129–136. Springer Berlin Heidelberg, 2005.

[34] M. E. Celebi, H. A. Kingravi, and P. A. Vela. A comparative study of efficient initializa-

tion methods for the k-means clustering algorithm. Expert Systems with Applications,

40:200–210, 2013.

[35] H. Chang and D.-Y. Yeung. Robust path-based spectral clustering. Pattern Recogn.,

41(1):191–203, 2008.

[36] B. B. Chaudhuri and G. Garai. Grid clustering with genetic algorithm and tabu search

process. Journal of Pattern Recognition Research, 4(1):152–168, 2009.

[37] N. Chen, B. Ribeiro, A. Vieira, and A. Chen. Clustering and visualization of bankruptcy

trajectory using self-organizing map. Expert Systems with Applications, 40(1):385–393,

January 2013.

[38] X. Chen, X. Liu, and Y. Jia. Discriminative structure selection method of gaussian

mixture models with its application to handwritten digit recognition. Neurocomputing,

74(6):954–961, 2011.

[39] C.-H. Cheng. A branch and bound clustering algorithm. Systems, Man and Cybernetics,

IEEE Transactions on, 25(5):895–898, 1995.

[40] K.-O. Cheng, N.-F. Law, W.-C. Siu, and A. W.-C. Liew. Identification of coherent

patterns in gene expression data using an efficient biclustering algorithm and parallel

coordinate visualization. BMC bioinformatics, 9(1):210, 2008.

[41] S.-S. Cheng, H.-C. Fu, and H.-M. Wang. Model-based clustering by probabilistic self-

organizing maps. IEEE transactions on neural networks, 20(5):805–26, 2009.

150



[42] Y.-M. Cheung and L.-T. Law. Rival-model penalized self-organizing map. IEEE trans-

actions on neural networks: a publication of the IEEE Neural Networks Council, 18(1):

289–95, 2007.

[43] S.-C. Chi and C. C. Yang. Integration of ant colony SOM and k-means for cluster-

ing analysis. In Proceedings of the 10th international conference on Knowledge-Based

Intelligent Information and Engineering Systems - Volume Part I, KES’06, pages 1–8,

2006.

[44] S.-C. Chi and C.-C. Yang. A two-stage clustering method combining ant colony SOM

and k-means. Journal of Information Science and Engineering, 24(5):1445–1460, 2008.

[45] Z. Chi, H. Yan, and T. Pham. Fuzzy Algorithms: With Applications to Image Processing

and Pattern Recognition. Advances in fuzzy systems - applications and theory. World

Scientific, 1996.

[46] H. Choi. Data visualization for asymmetric relations. Neurocomputing, 124:97 – 104,

2014.

[47] F. H. Clarke. Optimization and nonsmooth analysis. Canadian Mathematical Society

series of monographs and advanced texts. Wiley, 1983.

[48] E. Come, M. Cottrell, M. Verleysen, and J. Lacaille. Aircraft engine fleet monitoring

using self-organizing maps and edit distance. In Proceedings of the 8th international

conference on Advances in Self-Organizing Maps, WSOM’11, pages 298–307, Berlin,

Heidelberg, 2011.

[49] G. Cormode and S. Muthukrishnan. An improved data stream summary: the count-min

sketch and its applications. Journal of Algorithms, 55(1):58–75, 2005.

[50] M. Cottrell, P. Gaubert, C. Eloy, D. Francois, G. Hallaux, J. Lacaille, and M. Verleysen.

Fault prediction in aircraft engines using self-organizing maps. Security, pages 37–44,

2009.

[51] M. Cutajar, E. Gatt, J. Micallef, I. Grech, and O. Casha. Digital hardware implemen-

151



tation of self-organising maps. In Melecon 2010, 15th IEEE Mediterranean Electrotech-

nical Conference, pages 1123–1128. IEEE, 2010.

[52] N. Das, J. M. Reddy, R. Sarkar, S. Basu, M. Kundu, M. Nasipuri, and D. K. Basu.

A statistical-topological feature combination for recognition of handwritten numerals.

Applied Soft Computing, 12(8):2486–2495, 2012.

[53] R. M. C. R. de Souza and F. d. A. T. de Carvalho. Clustering of interval data based

on city-block distances. Pattern Recognition Letters, 25:353–365, 2004.

[54] V. F. Demyanov, A. Astorino, and M. Gaudioso. Nonsmooth problems in mathematical

diagnostics. In Advances in Convex Analysis and Global Optimization, pages 11–30.

Springer US, 2001.

[55] L. Deng. The MNIST database of handwritten digit images for machine learning re-

search [best of the web]. Signal Processing Magazine, IEEE, 29(6):141–142, Nov 2012.

[56] V. Dey, D. K. Pratihar, and G. L. Datta. Genetic algorithm-tuned entropy-based fuzzy

c-means algorithm for obtaining distinct and compact clusters. Fuzzy Optimization and

Decision Making, 10(2):153–166, 2011.

[57] I. S. Dhillon, J. Fan, and Y. Guan. Efficient clustering of very large document collec-

tions. In R. L. Grossman, C. Kamath, P. Kegelmeyer, V. Kumar, and R. Namburu, ed-

itors, Data Mining for Scientific and Engineering Applications, pages 357–382. Kluwer

Academic Publishers, 2001.

[58] K. A. J. Doherty, R. G. Adams, and N. Davey. Non-Euclidean norms and data nor-

malization. In Proceedings of ESANN, pages 181–186, April 2004.

[59] C. Faloutsos. FastMap: A fast algorithm for indexing, and data-mining and visualiza-

tion of traditional and multimedia datasets. Computer, pages 163–174, 1995.

[60] F. Farnstrom, J. Lewis, and C. Elkan. Scalability for clustering algorithms revisited.

ACM SIGKDD Explorations Newsletter, 2(1):51–57, 2000.

152



[61] A. Fiannaca, G. Fatta, S. Gaglio, R. Rizzo, and A. Urso. Improved SOM learning using

simulated annealing. In Artificial Neural Networks AI ICANN 2007, volume 4668 of

Lecture Notes in Computer Science, pages 279–288. Springer Berlin Heidelberg, 2007.

[62] A. Fiannaca, G. Di Fatta, R. Rizzo, A. Urso, and S. Gaglio. Simulated annealing

technique for fast learning of som networks. Neural Computing and Applications, 22

(5):889–899, 2013.

[63] E. W. Forgy. Cluster analysis of multivariate data: efficiency versus interpretability of

classifications. Biometrics, 21:768–769, 1965.

[64] P. Fränit and O. Virmajoki. Iterative shrinking method for clustering problems. Pattern

Recognition, 39:761–765, 2006.
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Appendix

Data sets

Table 10: The brief description of data sets
Data sets Number of Number of

instances attributes

German towns 59 2
Bavaria postal 1 89 3
Bavaria postal 2 89 4

Fisher’s Iris Plant 150 4
Heart Disease 297 13
Breast Cancer 683 9
TSPLIB1060 1060 2

Image Segmentation 2310 19
TSPLIB3038 3038 2
Page Blocks 5473 10

D15112 15112 2
Gamma Telescope 19020 10

NE 50000 2
Pla85900 85900 2
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