
Discrete gradient method: Derivative-free method

for nonsmooth optimization1

Adil M. Bagirov2, Bülent Karasözen3, Meral Sezer4

Communicated by F. Giannessi

1The authors are grateful to the anonymous referee for comments improving the quality of the

paper. The first author is the recipient of an Australian Research Council Australian Research

Fellowship (Project number: DP 0666061).

2Corresponding author, Research Fellow, a.bagirov@ballarat.edu.au, Centre for Informatics and

Applied Optimization, School of Information Technology and Mathematical Sciences, University

of Ballarat, Victoria 3353, Australia

3Professor, Department of Mathematics & Institute of Applied Mathematics, Middle East Tech-

nical University, Ankara, Turkey.

4PhD student, Department of Mathematics, Middle East Technical University, Ankara, Turkey.

1

Abstract

A new derivative-free method is developed for solving unconstrained non-

smooth optimization problems. This method is based on the notion of a dis-

crete gradient. It is demonstrated that the discrete gradients can be used to

approximate subgradients of a broad class of nonsmooth functions. It is also

shown that the discrete gradients can be applied to find descent directions

of nonsmooth functions. The preliminary results of numerical experiments

with unconstrained nonsmooth optimization problems as well as the com-

parison of the proposed method with nonsmooth optimization solver DNLP

from CONOPT-GAMS and derivative-free optimization solver CONDOR are

presented.

Keywords: Nonsmooth optimization, Derivative-free optimization, Subdifferential,

Discrete gradients.

2

1 Introduction

Consider the following unconstrained minimization problem:

min f(x) s. t. x ∈ IRn (1)

where the objective function f is assumed to be Lipschitz continuous.

Nonsmooth unconstrained optimization problems appear in many applications.

Over more than four decades different methods have been developed to solve prob-

lem (1). The bundle-type methods (Refs. 1-8), algorithms based on smoothing

techniques (Ref. 9) and the gradient sampling algorithm (Ref. 10) are among them.

In most of these algorithms at each iteration the computation of at least one

subgradient or approximating gradient is required. However, there are many prac-

tical problems where the computation of even one subgradient is a difficult task. In

such situations derivative free methods seem to be better choice since they do not

use explicit computation of subgradients.

Among derivative free methods, the generalized pattern search methods are well-

suited for nonsmooth optimization (Refs. 11,12). However, their convergence are

3

proved under quite restrictive differentiability assumptions. It was shown in Ref.

12 that if the objective function f is continuously differentiable in IRn then the

limit inferior of the norm of the gradient of the sequence of points generated by the

generalized pattern search algorithm goes to zero. The paper Ref. 11 provides con-

vergence analysis under less restrictive differentiability assumptions. It was shown

that if f is strictly differentiable near the limit of any refining subsequence, the

gradient at that point is zero. However, in many important practical problems the

objective functions are not strictly differentiable at local minimizers.

In this paper, we develop a new derivative free method. First, we describe an

algorithm for the approximation of the subgradients. Then we introduce the notion

of a discrete gradient and prove that it can be used to approximate subdifferentials.

We also describe an algorithm for the computation of the descent directions and

study the convergence of the proposed method. Finally, we present the comparison

of this method with the nonsmooth optimization solver, DNLP from GAMS and the

derivative-free optimization solver CONDOR using results of numerical experiments.

4

The structure of the paper is as follows. Section 2 provides some preliminaries

and Section 3 presents nonsmooth optimization formulation of the clustering prob-

lem. Approximation of subgradients is discussed in Section 4. Discrete gradients

are introduced in Section 5. Section 6 presents an algorithm for the computation of

a descent direction and Section 7 presents the discrete gradient method. Results of

numerical experiments are given in Section 8. Section 9 concludes the paper.

2 Preliminaries

Let f be a locally Lipschitz continuous function defined on IRn. It is differentiable

almost everywhere and we can define for it a subdifferential (Ref. 13) by

∂f(x) = co
{
v ∈ IRn : ∃(xk ∈ D(f), xk → x, k → +∞) : v = lim

k→+∞
∇f(xk)

}
,

here D(f) denotes the set where f is differentiable, co denotes the convex hull of

a set. The mapping ∂f(x) is upper semicontinuous and bounded on bounded sets

(Ref. 13). The generalized directional derivative of f at x in the direction g is

5

defined as

f 0(x, g) = lim sup
y→x,α→+0

α−1[f(y + αg)− f(y)].

For the locally Lipschitz function f this derivative exists and f 0(x, g) = max{〈v, g〉 :

v ∈ ∂f(x)}, where 〈·, ·〉 stands for an inner product in IRn. f is called a regular

function on IRn, if it is differentiable in any direction g ∈ IRn and f ′(x, g) = f 0(x, g)

for all x, g ∈ IRn, where f ′(x, g) is a derivative of the function f at the point x in the

direction g. For a point x to be a local minimizer of a locally Lipschitz continuous

function f on IRn, it is necessary that 0 ∈ ∂f(x).

A function f : IRn → IR1 is called semismooth at x ∈ IRn, if it is locally Lipschitz

continuous at x and for every g ∈ IRn, the limit

lim
g′→g,α→+0

〈v, g〉, v ∈ ∂f(x + αg′)

exists (Ref. 14). The semismooth function f is directionally differentiable. Consider

the following set at a point x ∈ IRn with respect to a direction g ∈ Rn, ‖g‖ = 1:

R(x, g) = co
{
v ∈ IRn : ∃(vk ∈ ∂f(x + λkg), λk → +0, k → +∞) : v = lim

k→+∞
vk

}
.

It follows from the semismoothness of f that f ′(x, g) = 〈v, g〉 for all v ∈ R(x, g).

6

Moreover, for any ε > 0 there exists λ0 > 0 such that

∂f(x + λg) ⊂ R(x, g) + Sε, (2)

for all λ ∈ (0, λ0). Here Sε = {v ∈ IRn : ‖v‖ < ε}.

A function f is called quasidifferentiable at a point x, if it is locally Lipschitz

continuous, directionally differentiable at this point and there exist convex, compact

sets ∂f(x) and ∂f(x) such that:

f ′(x, g) = max{〈u, g〉 : u ∈ ∂f(x)}+ min{〈v, g〉 : v ∈ ∂f(x)}.

The set ∂f(x) is called a subdifferential, the set ∂f(x) is called a superdifferential

and the pair [∂f(x), ∂f(x)] is called a quasidifferential of f at x (Ref. 15).

3 Data Clustering Problem

There are many problems where the objective and/or constraint functions are not

regular. The cluster analysis problem is one of them. It is an important area in

data mining. Clustering deals with the problems of organization of a collection of

patterns into clusters based on similarity. In cluster analysis a finite set of points

7

C = {c1, . . . , cm}, ci ∈ IRn, i = 1, . . . ,m is given. A partition clustering aims to

distribute the points of the set C into a given number q of non-empty disjoint subsets

Ci, i = 1, . . . , q with respect to predefined criteria such that Ci ⋂
Cj = ∅, i, j =

1, . . . , q, i 6= j and

C =
q⋃

i=1

Ci.

The sets Ci, i = 1, . . . , q are called clusters. The strict application of these rules

is called hard clustering. We assume that each cluster Ci, i = 1, . . . , q is identified

by its center. In Refs. 16,17 the partition clustering is reduced to the following

problem:

min f(x1, . . . , xq) s. t. (x1, . . . , xq) ∈ IRn×q, (3)

where

f(x1, . . . , xq) = (1/m)
m∑

i=1

min{‖xs − ci‖2 : s = 1, . . . , q}. (4)

Here ‖ ·‖ is the Euclidean norm and xs ∈ IRn stands for s-th cluster center. If q > 1,

the objective function (4) in problem (3) is nonconvex and nonsmooth. Moreover,

it is non-regular. This function can be represented as the difference of two convex

8

functions as follows: f(x) = f1(x)− f2(x), where

f1(x) = (1/m)
m∑

i=1

q∑
s=1

‖xs − ci‖2, f2(x) = (1/m)
m∑

i=1

max
s=1,...,q

q∑
k=1,k 6=s

‖xk − ci‖2.

It is clear that the function f is quasidifferentiable and its subdifferential and su-

perdifferential are polytopes at any point. This example demonstrates the impor-

tance of development of derivative-free methods for nonsmooth optimization.

4 Approximation of Subgradients

Consider a function f defined on IRn and assume that it is quasidifferentiable. As-

sume also that both sets ∂f(x) and ∂f(x) are polytopes at any x ∈ IRn that is

at a point x ∈ IRn there exist non-empty sets A = {a1, . . . , am} ⊂ IRn, B =

{b1, . . . , bp} ⊂ IRn such that ∂f(x) = co A, ∂f(x) = co B. We denote by F the

class of all semismooth, quasidifferentiable functions whose subdifferential and su-

perdifferential are polytopes at any x ∈ IRn. This class contains, for example,

functions represented as a maximum, minimum or max-min of a finite number of

smooth functions.

9

Let G = {e ∈ IRn : e = (e1, . . . , en), |ej| = 1, j = 1, . . . , n} be a set of all

vertices of the unit hypercube in IRn. For e ∈ G consider the sequence of n vectors

ej = ej(α), j = 1, . . . , n with α ∈ (0, 1], where ej = (αe1, α
2e2, . . . , α

jej, 0, . . . , 0).

We introduce the following sets:

R0(e) ≡ R0 = A, R0(e) ≡ R0 = B,

Rj(e) =
{
v ∈ Rj−1(e) : vjej = max{wjej : w ∈ Rj−1(e)}

}
,

Rj(e) =
{
v ∈ Rj−1(e) : vjej = min{wjej : w ∈ Rj−1(e)}

}
.

It is clear that

Rj(e) 6= ∅, ∀j ∈ {0, . . . , n}, Rj(e) ⊆ Rj−1(e), ∀j ∈ {1, . . . , n},

Rj(e) 6= ∅, ∀j ∈ {0, . . . , n}, Rj(e) ⊆ Rj−1(e), ∀j ∈ {1, . . . , n}.

Moreover

vr = ur ∀v, u ∈ Rj(e), wr = zr ∀w, z ∈ Rj(e), r = 1, . . . , j, (5)

Proposition 4.1 Assume that f ∈ F . Then Rn(e) and Rn(e) are singleton sets.

10

The proof immediately follows from (5). 2

Consider the following two sets:

R(x, ej(α)) =
{
v ∈ A : 〈v, ej〉 = max {〈u, ej〉 : u ∈ A}

}
,

R(x, ej(α)) =
{
w ∈ B : 〈w, ej〉 = min {〈u, ej〉 : u ∈ B}

}
.

We take any a ∈ A. If a 6∈ Rn(e) then there exists r ∈ {1, . . . , n} such that

a ∈ Rt(e), t = 0, . . . , r−1 and a 6∈ Rr(e). It follows from a 6∈ Rr(e) that vrer > arer

for all v ∈ Rr(e). For a ∈ A, a 6∈ Rn(e) we define d(a) = vrer − arer > 0 and then

introduce the following number d1 = min{d(a) : a ∈ A \ Rn(e)}. Since the set A is

finite and d(a) > 0 for all a ∈ A \Rn(e) it follows that d1 > 0.

We also take any b ∈ B. If b 6∈ Rn(e) then there exists r ∈ {1, . . . , n} such that

b ∈ Rt(e), t = 0, . . . , r− 1 and b 6∈ Rr(e). Then we get vrer < brer for all v ∈ Rr(e).

For b ∈ B, b 6∈ Rn(e) we define d(b) = brer − vrer > 0 and introduce the number

d2 = min{d(b) : b ∈ B \ Rn(e)}. d2 > 0 due to the fact that the set B is finite and

d(b) > 0 for all b ∈ B \Rn(e). Let d̄ = min{d1, d2}. Since the subdifferential ∂f(x)

and the superdifferential ∂f(x) are bounded on any bounded subset X ⊂ IRn, there

11

exists D > 0 such that ‖v‖ ≤ D and ‖w‖ ≤ D for all v ∈ ∂f(y), w ∈ ∂f(y) and

y ∈ X. We take any r, j ∈ {1, . . . , n}, r < j. Then for all v, w ∈ ∂f(x), x ∈ X and

α ∈ (0, 1] we have

∣∣∣∣∣∣
j∑

t=r+1

(vt − wt)α
t−ret

∣∣∣∣∣∣ < 2Dαn.

Let α0 = min{1, d̄/(4Dn)}. Then for any α ∈ (0, α0]

∣∣∣∣∣∣
j∑

t=r+1

(vt − wt)α
t−ret

∣∣∣∣∣∣ <
d̄

2
. (6)

In a similar way we can show that for all v, w ∈ ∂f(x), x ∈ X and α ∈ (0, α0]

∣∣∣∣∣∣
j∑

t=r+1

(vt − wt)α
t−ret

∣∣∣∣∣∣ <
d̄

2
. (7)

Proposition 4.2 Assume that f ∈ F . Then there exists α0 > 0 such that R(x, ej(α)) ⊂

Rj(e) and R(x, ej(α)) ⊂ Rj(e), j = 1, . . . , n for all α ∈ (0, α0].

Proof: We will prove the first inclusion. The second inclusion can be proved in

a similar way. Assume the contrary. Then there exists y ∈ R(x, ej(α)) such that

y 6∈ Rj(e). Consequently there exists r ∈ {1, . . . , n}, r ≤ j such that y 6∈ Rr(e)

and y ∈ Rt(e) for any t = 0, . . . , r − 1. We take any v ∈ Rj(e). From (5) we have

12

vtet = ytet, t = 1, . . . , r − 1, vrer ≥ yrer + d̄. It follows from (6) that

〈v, ej〉 − 〈y, ej〉 =
j∑

t=1

(vt − yt)α
tet

= αr

vrer − yrer +
j∑

t=r+1

(vt − yt)α
t−ret

 > αrd̄/2 > 0.

Since 〈y, ej〉 = max{〈u, ej〉 : u ∈ ∂f(x)} and v ∈ ∂f(x) we get

〈y, ej〉 ≥ 〈v, ej〉 > 〈y, ej〉+ αrd̄/2

which is the contradiction. 2

Corollary 4.1 Assume that the function f ∈ F . Then there exits α0 > 0 such that

f ′(x, ej(α)) = f ′(x, ej−1(α))+vjα
jej+wjα

jej, ∀v ∈ Rj(e), ∀w ∈ Rj(e), j = 1, . . . , n

for all α ∈ (0, α0].

Proof: Proposition 4.2 implies that R(x, ej(α)) ⊂ Rj(e) and R(x, ej(α)) ⊂ Rj(e), j =

1, . . . , n. Then there exist v ∈ Rj(e), w ∈ Rj(e), v0 ∈ Rj−1(e), w0 ∈ Rj−1(e) such

that f ′(x, ej(α))−f ′(x, ej−1(α)) = 〈v +w, ej〉−〈v0 +w0, ej−1〉 and the proof follows

from (5). 2

13

Let e ∈ G and λ > 0, α > 0 be given numbers. Consider the following points:

x0 = x, xj = x0 + λej(α), j = 1, . . . , n.

It is clear that xj = xj−1 + (0, . . . , 0, λαjej, 0, . . . , 0), j = 1, . . . , n. Let v =

v(e, α, λ) ∈ IRn be a vector with the following coordinates:

vj = (λαjej)
−1

[
f(xj)− f(xj−1)

]
, j = 1, . . . , n. (8)

For any fixed e ∈ G and α > 0 we introduce the set:

V (e, α) =
{
w ∈ IRn : ∃(λk → +0, k → +∞), w = lim

k→+∞
v(e, α, λk)

}
.

Proposition 4.3 Assume that f ∈ F . Then there exists α0 > 0 such that

V (e, α) ⊂ ∂f(x), ∀ α ∈ (0, α0].

Proof: It follows from the definition of vectors v = v(e, α, λ) that

vj = (λαjej)
−1

[
f(xj)− f(xj−1)

]

= (λαjej)
−1

[
f(xj)− f(x)− (f(xj−1)− f(x))

]

= (λαjej)
−1

[
λf ′(x, ej)− λf ′(x, ej−1) + o(λ, ej)− o(λ, ej−1)

]
14

where λ−1o(λ, ei) → 0, λ → +0, i = j−1, j. We take w ∈ Rn(e) and y ∈ Rn(e). By

Proposition 4.1 w and y are unique. Since Rn(e) = R(x, en) and Rn(e) = R(x, en) it

follows from Proposition 4.2 in (Ref. 15, p. 146) that w+y ∈ ∂f(x). The inclusions

w ∈ Rn(e) and y ∈ Rn(e) imply that w ∈ Rj(e) and y ∈ Rj(e) for all j ∈ {1, . . . , n}.

It follows from Corollary 4.1 that there exists α0 > 0 such that

vj(e, α, λ) = (λαjej)
−1

[
λαjej(wj + yj) + o(λ, ej)− o(λ, ej−1)

]

= wj + yj + (λαjej)
−1

[
o(λ, ej)− o(λ, ej−1)

]

for all α ∈ (0, α0]. Then for any fixed α ∈ (0, α0] we have

lim
λ→+0

|vj(e, α, λ)− (wj + yj)| = 0.

Consequently, limλ→+0 v(e, α, λ) = w + y ∈ ∂f(x). 2

5 Computation of Subdifferentials

In this section we present an algorithm for the computation of subdifferentials. This

algorithm is based on the notion of a discrete gradient. We start with the definition

of the discrete gradient, which was introduced in Refs. 18, 19.

15

Let f be a locally Lipschitz continuous function defined on IRn. Let

S1 = {g ∈ IRn : ‖g‖ = 1},

P = {z : z(λ) ∈ IR1, z(λ) > 0, λ > 0, λ−1z(λ) → 0, λ → 0}.

Here P is the set of univariate positive infinitesimal functions. We take any g ∈

S1, e ∈ G, a positive number α ∈ (0, 1] and compute i = argmax {|gk|, k =

1, . . . , n}. Define vectors ej(α), j = 1, . . . , n as in Section 4 and consider the points:

x0 = x + λg, xj = x0 + z(λ)ej(α), j = 1, . . . , n.

Definition 5.1 The discrete gradient of the function f at the point x ∈ IRn is the

vector Γi(x, g, e, z, λ, α) = (Γi
1, . . . , Γ

i
n) ∈ IRn, g ∈ S1 with the following coordinates:

Γi
j = [z(λ)αjej)]

−1
[
f(xj)− f(xj−1)

]
, j = 1, . . . , n, j 6= i,

Γi
i = (λgi)

−1

f(x + λg)− f(x)− λ
n∑

j=1,j 6=i

Γi
jgj

 .

It follows from Definition 5.1 that

f(x + λg)− f(x) = λ〈Γi(x, g, e, z, λ, α), g〉 (9)

16

for all g ∈ S1, e ∈ G, z ∈ P, λ > 0, α > 0.

Remark 5.1 The discrete gradient is defined in a direction g ∈ S1 and to compute

it, first we define a sequence of points x0, . . . , xn and compute the values of the

function f at these points that is we compute n+2 values of this function including

the point x. n−1 coordinates of the discrete gradient are defined similar to those of

the vector v(e, α, λ) from Section 4 and i-th coordinate is defined so that to satisfy

the equality (9) which can be considered as some version of the mean value theorem.

Proposition 5.1 Let f be a locally Lipschitz continuous function defined on IRn

and let L > 0 be its Lipschitz constant. Then, for any x ∈ IRn, g ∈ S1, e ∈ G, λ >

0, z ∈ P, α > 0

‖Γi‖ ≤ C(n)L, C(n) = (n2 + 2n3/2 − 2n1/2)1/2.

Proof: It follows from the definition of the discrete gradients that |Γi
j| ≤ L for all

17

j = 1, . . . , n, j 6= i. For j = i we get

|Γi
i| ≤ L

|gi|−1‖g‖+
n∑

j=1,j 6=i

|gi|−1|gj|

 .

Since |gi| = max{|gj|, j = 1, . . . , n} we have |gi|−1|gj| ≤ 1, j = 1, . . . , n and |gi|−1‖g‖ ≤

n1/2. Consequently |Γi
i| ≤ L(n + n1/2 − 1). Thus, ‖Γi‖ ≤ C(n)L. 2

For a given α > 0 we define the following set:

B(x, α) = {v ∈ IRn : ∃(g ∈ S1, e ∈ G, zk ∈ P, zk → +0, λk → +0, k → +∞),

v = lim
k→+∞

Γi(x, g, e, zk, λk, α)}. (10)

Proposition 5.2 Assume that f ∈ F . Then, there exists α0 > 0 such that

coB(x, α) ⊂ ∂f(x), ∀ α ∈ (0, α0].

Proof: Since the function f is semismooth it follows from (2) that for any ε > 0

there exists λ0 > 0 such that v ∈ R(x, g)+Sε for all v ∈ ∂f(x+λg) and λ ∈ (0, λ0).

We take any λ ∈ (0, λ0). It follows from Proposition 4.3 and the definition of

the discrete gradient that there exist α0 > 0 and z0(λ) ∈ P such that for any

18

α ∈ (0, α0], z ∈ P, z(λ) < z0(λ) can be found v ∈ ∂f(x + λg) so that |Γi
j − vj| <

ε, j = 1, . . . , n, j 6= i. (2) implies that ‖v − w‖ < ε for some w ∈ R(x, g). Then

|Γi
j − wj| < 2ε, j = 1, . . . , n, j 6= i. (11)

Since w ∈ R(x, g) and the function f is semismooth f ′(x, g) = 〈w, g〉 and

f(x + λg)− f(x) = λ〈w, g〉+ o(λ, g) (12)

where λ−1o(λ, g) → 0 as λ → +0. It follows from (9) and (12) that

Γi
i − wi =

n∑
j=1,j 6=i

(wj − Γi
j)gjg

−1
i + (λgi)

−1o(λ, g).

Taking into account (11) we get

|Γi
i − wi| ≤ 2(n− 1)ε + n1/2λ−1|o(λ, g)|. (13)

Since ε > 0 is arbitrary it follows from (11) and (13) that limk→+∞ Γi(x, g, e, zk, λk, α) =

w ∈ ∂f(x). 2

Remark 5.2 The discrete gradient contains three parameters: λ > 0, z ∈ P and

α > 0. z ∈ P is used to exploit semismoothness of the function f . If f ∈ F then for

19

any δ > 0 there exists α0 > 0 such that α ∈ (0, α0] for all y ∈ Sδ(x). In the sequel

we assume that z ∈ P and α > 0 are sufficiently small.

Consider the following set at a point x ∈ IRn:

D0(x, λ) = cl co
{
v ∈ IRn : ∃(g ∈ S1, e ∈ G, z ∈ P) : v = Γi(x, g, e, λ, z, α)

}
.

Proposition 5.1 implies that the set D0(x, λ) is compact and convex for any x ∈ IRn.

Corollary 5.1 Assume that f ∈ F and in the equality

f(x + λg)− f(x) = λf ′(x, g) + o(λ, g), g ∈ S1,

λ−1o(λ, g) → 0 as λ → +0 uniformly with respect to g ∈ S1. Then, for any ε > 0,

there exists λ0 > 0 such that D0(x, λ) ⊂ ∂f(x) + Sε for all λ ∈ (0, λ0).

Proof: We take ε > 0 and set ε̄ = ε/Q̄, where Q̄ = (4n2 + 4n
√

n− 6n− 4
√

n + 3)
1/2

.

It follows from the proof of Proposition 5.2 and upper semicontinuity of the subdif-

ferential ∂f(x) that for ε̄ > 0 there exists λ1 > 0 such that

min


n∑

j=1,j 6=i

(
Γi

j(x, g, e, λ, z, α)− vj

)2
: v ∈ ∂f(x)

 < ε̄, j = 1, . . . , n, j 6= i (14)

20

for all λ ∈ (0, λ1). Let

A0 = Argmin v∈∂f(x)

n∑
j=1,j 6=i

(
Γi

j(x, g, e, λ, z, α)− vj

)2
.

It follows from (13) and the assumption of the proposition that for ε̄ > 0 there exists

λ2 > 0 such that

min
{∣∣∣Γi

i(x, g, e, λ, z, α)− vi

∣∣∣ : v ∈ A0

}
≤

(
2(n− 1) + n1/2

)
ε̄ (15)

for all g ∈ S1 and λ ∈ (0, λ2). Let λ0 = min(λ1, λ2). Then (14) and (15) imply that

min
{
‖Γi(x, g, e, λ, z, α)− vi‖ : v ∈ ∂f(x)

}
≤ ε

for all g ∈ S1 and λ ∈ (0, λ0). 2

Corollary 5.1 shows that the set D0(x, λ) is an approximation to the subdifferen-

tial ∂f(x) for sufficiently small λ > 0. However it is true at a given point. In order

to get convergence results for a minimization algorithm based on discrete gradients

we need some relationship between the set D0(x, λ) and ∂f(x) in some neighborhood

of a given point x. We will consider functions satisfying the following assumption.

Assumption 5.1 Let x ∈ IRn be a given point. For any ε > 0 there exist δ > 0

21

and λ0 > 0 such that D0(y, λ) ⊂ ∂f(x + S̄ε) + Sε for all y ∈ Sδ(x) and λ ∈ (0, λ0).

Here,

∂f(x + S̄ε) =
⋃

y∈S̄ε(x)

∂f(y), S̄ε(x) = {y ∈ IRn : ‖x− y‖ ≤ ε}.

Consider problem (1) where f : IRn → IR1 is arbitrary function.

Proposition 5.3 Let x∗ ∈ IRn be a local minimizer of the function f . Then there

exists λ0 > 0 such that 0 ∈ D0(x
∗, λ) for all λ ∈ (0, λ0).

The proof follows from the fact that the set D0(x
∗, λ) is compact and convex for

any λ > 0. 2

Proposition 5.4 (Ref. 19) Let x ∈ IRn, λ > 0 and 0 6∈ D0(x, λ) that is ‖v0‖ =

min{‖v‖ : v ∈ D0(x, λ)} > 0. Then, g0 = −‖v0‖−1v0 is a descent direction at x.

Thus, the set D0(x, λ) can be used to compute descent directions. However, the

computation of this set is not easy. In the next section we propose an algorithm for

the computation of descent directions using a few discrete gradients from D0(x, λ).

22

6 Computation of Descent Directions

Let z ∈ P, λ > 0, α ∈ (0, 1], the number c ∈ (0, 1) and a tolerance δ > 0 be given.

Algorithm 6.1 Algorithm for the computation of the descent direction.

Step 1. Choose any g1 ∈ S1, e ∈ G, compute i = argmax {|gj|, j = 1, . . . , n} and a

discrete gradient v1 = Γi(x, g1, e, z, λ, α). Set D1(x) = {v1} and k = 1.

Step 2. Compute the vector ‖wk‖2 = min{‖w‖2 : w ∈ Dk(x)}. If ‖wk‖ ≤ δ, then

stop. Otherwise go to Step 3.

Step 3. Compute the search direction by gk+1 = −‖wk‖−1wk.

Step 4. If f(x + λgk+1)− f(x) ≤ −cλ‖wk‖, then stop. Otherwise go to Step 5.

Step 5. Compute i = argmax {|gk+1
j | : j = 1, . . . , n} and a discrete gradient

vk+1 = Γi(x, gk+1, e, z, λ, α),

construct the set Dk+1(x) = co {Dk(x)
⋃{vk+1}}, set k = k + 1 and go to Step 2.

Some explanations to Algorithm 6.1 are necessary. In Step 1 we compute the

discrete gradient with respect to an initial direction g1 ∈ IRn. The distance between

23

the convex hull Dk(x) of all computed discrete gradients and the origin is computed

in Step 2. This problem is solved using the algorithm from Ref. 20 (for more

recent approaches to this problem, see Refs. 21, 22). If this distance is less than

the tolerance δ > 0 then we accept the point x as an approximate stationary point

(Step 2), otherwise we compute another search direction in Step 3. In Step 4 we

check whether this direction is a descent direction. If it is we stop and the descent

direction has been computed, otherwise we compute another discrete gradient in this

direction in Step 5 and update the set Dk(x). At each iteration the approximation

of the subdifferential of the function f is improved.

Next we prove that Algorithm 6.1 terminates after a finite number of iterations.

Proposition 6.1 Let f be a locally Lipschitz function defined on IRn. Then, for

δ ∈ (0, C̄) Algorithm 6.1 terminates after finite number of steps m, where

m ≤ 2(log2(δ/C̄)/ log2 r + 1), r = 1− [(1− c)(2C̄)−1δ]2,

C̄ = C(n)L and C(n) is a constant from Proposition 5.1.

24

Proof: First, we will show that if both conditions for the termination of the algo-

rithm do not satisfy, then a new discrete gradient vk+1 6∈ Dk(x). Indeed, in this case

‖wk‖ > δ and f(x + λgk+1)− f(x) > −cλ‖wk‖. It follows from (9) that

f(x + λgk+1)− f(x) = λ〈Γi(x, gk+1, e, z, λ, α), gk+1〉

= λ〈vk+1, gk+1〉 > −cλ‖wk‖.

Then we have

〈vk+1, wk〉 < c‖wk‖2. (16)

On the other hand, since wk = argmin {‖w‖2 : w ∈ Dk(x)}, the necessary condition

for a minimum implies that 〈wk, w−wk〉 ≥ 0 for any w ∈ Dk(x) or 〈wk, w〉 ≥ ‖wk‖2.

The latter and (16) mean that vk+1 6∈ Dk(x).

Now we will show that the algorithm is a terminating. We will get an upper

estimation for the number of the computed discrete gradients m, when ‖wm‖ ≤ δ.

It is clear that ‖wk+1‖2 ≤ ‖tvk+1 + (1− t)wk‖2 for all t ∈ [0, 1]. Then

‖wk+1‖2 ≤ ‖wk‖2 + 2t〈wk, vk+1 − wk〉+ t2‖vk+1 − wk‖2.

25

It follows from Proposition 5.1 that ‖vk+1 − wk‖ ≤ 2C̄. Hence taking into account

the inequality (16), we have ‖wk+1‖2 < ‖wk‖2 − 2t(1 − c)‖wk‖2 + 4t2C̄2. For t =

(1− c)(2C̄)−2‖wk‖2 ∈ (0, 1) we get

‖wk+1‖2 <
{
1− [(1− c)(2C̄)−1‖wk‖]2

}
‖wk‖2. (17)

Let δ ∈ (0, C̄). It follows from (17) and the condition ‖wk‖ > δ, k = 1, . . . ,m−1 that

‖wk+1‖2 <
{
1− [(1− c)(2C̄)−1δ]2

}
‖wk‖2. We denote by r = 1− [(1− c)(2C̄)−1δ]2.

It is clear that r ∈ (0, 1). Then we have

‖wm‖2 < r‖wm−1‖2 < . . . < rm−1‖w1‖2 < rm−1C̄2.

If rm−1C̄2 ≤ δ2, then ‖wm‖ ≤ δ and therefore, m ≤ 2(log2(δ/C̄)/ log2 r + 1). 2

7 Discrete Gradient Method

Let sequences δk > 0, zk ∈ P, λk > 0, δk → +0, zk → +0, λk → +0, k → +∞,

sufficiently small number α > 0 and numbers c1 ∈ (0, 1), c2 ∈ (0, c1] be given.

Algorithm 7.1 Discrete Gradient Method

26

Step 1. Choose any starting point x0 ∈ IRn and set k = 0.

Step 2. Set s = 0 and xk
s = xk.

Step 3. Apply Algorithm 6.1 for the computation of the descent direction at x =

xk
s , δ = δk, z = zk, λ = λk, c = c1. This algorithm terminates after a finite number

of iterations l > 0. As a result we get the set Dl(x
k
s) and an element vk

s such that

‖vk
s‖2 = min{‖v‖2 : v ∈ Dl(x

k
s)}.

Furthermore either ‖vk
s‖ ≤ δk or for the search direction gk

s = −‖vk
s‖−1vk

s

f(xk
s + λkg

k
s)− f(xk

s) ≤ −c1λk‖vk
s‖. (18)

Step 4. If ‖vk
s‖ ≤ δk, then set xk+1 = xk

s , k = k + 1 and go to Step 2. Otherwise go

to Step 5.

Step 5. Compute xk
s+1 = xk

s + σsg
k
s , where σs is defined as follows

σs = argmax
{
σ ≥ 0 : f(xk

s + σgk
s)− f(xk

s) ≤ −c2σ‖vk
s‖

}
.

Step 6. Set s = s + 1 and go to Step 3.

For the point x0 ∈ IRn we consider the set M(x0) = {x ∈ IRn : f(x) ≤ f(x0)} .

27

Theorem 7.1 Assume that the function f ∈ F , Assumption 5.1 is satisfied on IRn

and the set M(x0) is bounded for any x0 ∈ IRn. Then, every accumulation point of

{xk} belongs to the set X0 = {x ∈ IRn : 0 ∈ ∂f(x)}.

Proof: Since the function f is continuous and the set M(x0) is bounded

f∗ = inf {f(x) : x ∈ IRn} > −∞. (19)

First we will show that the loop between Steps 3 and 5 stops after a finite number of

steps. In other words for any k > 0 there exists s ≥ 0 such that ‖vk
s‖ ≤ δk. Indeed,

since c2 ∈ (0, c1] it follows from (18) that σs ≥ λk. Then we can write

f(xk
s+1)− f(xk

s) ≤ − c2σs‖vk
s‖ ≤ − c2λk‖vk

s‖.

If ‖vk
s‖ > δk for all s ≥ 0 then we have f(xk

s+1)− f(xk
s) ≤ −c2λkδk or

f(xk
s+1) ≤ f(xk

0)− (s + 1)c2λkδk. (20)

Since λk > 0 and δk > 0 are fixed for any k > 0 it follows from (20) that

f(xk
s) → −∞ as s → +∞. This contradicts (19), that is the loop between

Steps 3 and 5 terminates after a finite number of steps and we get a point xk+1

28

where min{‖v‖ : v ∈ Dl(x
k+1)} ≤ δk. Since Dl(x

k+1) ⊂ D0(x
k+1, λk), we have

min{‖v‖ : v ∈ D0(x
k+1, λk)} ≤ δk. Replacing k + 1 by k we get

min{‖v‖ : v ∈ D0(x
k, λk−1)} ≤ δk−1. (21)

Since {f(xk)} is a decreasing sequence xk ∈ M(x0) for all k > 0. Then the

sequence {xk} is bounded and therefore it has at least one accumulation point.

Assume x∗ is any accumulation point of the sequence {xk} and xki → x∗ as i → +∞.

Then we have from (21)

min{‖v‖ : v ∈ D0(x
ki , λki−1)} ≤ δki−1. (22)

According to Assumption 5.1 at the point x∗ for any ε > 0 there exist β > 0 and

λ0 > 0 such that

D0(y, λ) ⊂ ∂f(x∗ + S̄ε) + Sε (23)

for all y ∈ Sβ(x∗) and λ ∈ (0, λ0). Since the sequence {xki} converges to x∗ for

β > 0 there exists i0 > 0 such that xki ∈ Sβ(x∗) for all i ≥ i0. On the other hand

since δk, λk → 0 as k → +∞ there exists k0 > 0 such that δk < ε and λk < λ0 for

all k > k0. Then there exists i1 ≥ i0 such that ki ≥ k0 + 1 for all i ≥ i1. Thus it

29

follows from (22) and (23) that min{‖v‖ : v ∈ ∂f(x∗ + S̄ε)} ≤ 2ε. Since ε > 0 is

arbitrary and the mapping ∂f(x) is upper semicontinuous 0 ∈ ∂f(x∗). 2

Remark 7.1 Since Algorithm 6.1 computes descent directions for any values of

λ > 0 we take λ0 ∈ (0, 1), some β ∈ (0, 1) and update λk, k ≥ 1 by the formula λk =

βkλ0, k ≥ 1. Thus, in the proposed method we use approximations to subgradients

only at the final stage which guarantees convergence. In most of iterations we do

not use approximations of subgradients. Therefore it is a derivative-free method.

Remark 7.2 There are similarities between the discrete gradient and bundle meth-

ods. More specifically, the method presented in this paper can be considered as a

derivative-free version of the bundle method introduced in Ref. 8. Algorithms for

the computation of descent directions in these two methods are similar. However,

in the proposed method discrete gradients are used instead of subgradients.

Remark 7.3 It follows from (18) and the condition c2 ≤ c1 that always σs ≥ λk.

In order to compute σs we define a sequence θm = mλk, m ≥ 1 and σs is defined

as the largest θm satisfying the inequality in Step 5.

30

8 Numerical Experiments

The efficiency of the proposed algorithm was verified by applying it to some un-

constrained nonsmooth optimization problems. In numerical experiments we use 20

unconstrained test problems from Ref. 23: Problems 2.1-7 (P1-P7), 2.9-12 (P9-P12),

2.14-16 (P14-P16), 2.18-21 (P18-P21), 2.23-24 (P23, P24).

Objective functions in these problems are maximum functions and they are reg-

ular. Objective functions in Problems 2.1, 2.5, 2.23 are convex and they are noncon-

vex in all other problems. This means that the same algorithm may find different

solutions starting from different initial points and/or different algorithms may find

different solutions starting from the same initial point. The brief description of these

problems is given in Table 1 where the following notation is used:

• n number of variables;

• nm number of functions under maximum;

• fopt optimum value (as reported in Ref. 23).

31

For the comparison we use the DNLP model of the CONOPT solver from The

General Algebraic Modeling System (GAMS) and the CONDOR solver. DNLP is a

nonsmooth optimization solver (Ref. 24). CONDOR is a derivative free optimization

solver based on quadratic interpolation and trust region approach (see, Ref. 25 for

more details).

Numerical experiments were carried out on PC Pentium 4 with CPU 1.6 MHz.

We used 20 random initial points for each problem and initial points are the same

for all algorithms. The results are presented in Table 2 where the following notation

is used:

• fbest and fav the best and average objective function values over 20 runs,

respectively;

• nfc the average number of the objective function evaluations (for the discrete

gradient method (DGM) and CONDOR);

• iter the average number of iterations (for DNLP);

• DN stands for DNLP and CR for CONDOR;

32

• F means that an algorithm failed for all initial points.

One can draw the following conclusions from Table 2:

(i) The DGM finds the best known solutions for all problems whereas the CON-

DOR solver could find the best known solutions only for Problems 1.1-3,7 and

the DNLP solver only for Problems 1.1, 1.4.

(ii) Average results over 20 runs by the DGM are better than those by the DNLP

and CONDOR solvers, except Problems 2.2, 2.3, 2.6, 2.7 and 2.24 where the

CONDOR solver produces better results.

(iii) For convex problems 2.1, 2.5 and 2.23 the DGM always finds the best known

solutions. However, this is not the case for the DNLP and CONDOR solvers.

(iv) For most of test problems results by the DNLP solver are worse than those by

the CONDOR solver and the DGM. For some problems the values of objective

functions and/or their gradients is too large and the DNLP solver fails to solve

such problems. Results for Problems 2.6 and 2.23 demonstrate it. However

33

the CONDOR solver and the DGM are quite effective to solve such problems.

(v) As it was mentioned above the most of the test problems are global optimiza-

tion problems. Results presented demonstrate that the derivative-free methods

are effective than Newton-like methods to solve global optimization problems.

(vi) One can see from Table 2 that the number of function calls by the CONDOR

solver is significantly less than those by the DGM. However, there is no any

significant difference in the CPU time used by different algorithms.

Since the most of test problems are nonconvex we suggest the following scheme

to compare the performance of algorithms for each run. Let f̄ be the best value

obtained by all algorithms starting from the same initial point. Let f 1 be the

value of the objective function at the final point obtained by an algorithm. If

f 1 − f̄ ≤ ε(|f̄ | + 1), then we say that this algorithm finds the best solution with

respect to the tolerance ε > 0. Tables 3 and 4 present pairwise comparison and the

comparison of three algorithms, respectively. The numbers in these tables show how

many times an algorithm could find the best solution with respect to the tolerance

34

ε = 10−4. Results presented in Table 3 demonstrate that the CONDOR produces

better results than the DNLP in 90 % of runs, the DGM outperforms the DNLP

in more than 95 % of runs and finally the DGM produces better results than the

CONDOR in almost 80 % of runs.

Results from Table 4 show that the DGM produces better results than other two

solvers for all problems except Problems 2.3 and 2.7 where the CONDOR is best.

9 Conclusions

In this paper we have proposed a derivative free algorithm, the discrete gradient

method for solving unconstrained nonsmooth optimization problems. This algo-

rithm can be applied to a broad class of nonsmooth optimization problems.

We have tested the new algorithm on some nonsmooth optimization problems.

For comparison we used nonsmooth optimization algorithm: the DNLP solver from

GAMS which is based on the smoothing of the objective function and the derivative

free CONDOR solver which is based on the quadratic approximation of the objec-

35

tive function. Preliminary results of numerical experiments show that the DGM

outperforms other two algorithms for the most of test problems considered in this

paper. We can conclude that the discrete gradient method is a good alternative to

existing derivative-free nonsmooth optimization algorithms.

References

[1] FRANGIONI, A., Generalized bundle methods, SIAM Journal on Optimiza-

tion, Vol. 113, pp. 117-156, 2002.

[2] GAUDIOSO, M. and MONACO, M.F., A bundle type approach to the un-

constrained minimization of convex nonsmooth functions, Mathematical Pro-

gramming, Vol. 23, pp. 216-226, 1982.

[3] HIRIART-URRUTY, J.B. and LEMARECHAL, C., Convex Analysis and

Minimization Algorithms, Springer Verlag, Heidelberg, Vols. 1 and 2, 1993.

[4] KIWIEL, K.C., Methods of Descent for Nondifferentiable Optimization, Lec-

ture Notes in Mathematics, Springer-Verlag, Berlin, Vol. 1133, 1985.

36

[5] LEMARECHAL, C., An extension of Davidon methods to nondifferentiable

problems , Nondifferentiable Optimization, Balinski, M.L. and Wolfe, P. (eds.),

Mathematical Programming Study, Vol. 3, pp. 95-109, North-Holland, Ams-

terdam, 1975.

[6] MIFFLIN, R., An algorithm for constrained optimization with semismooth

functions , Mathematics of Operations Research, Vol. 2, pp. 191-207, 1977.

[7] ZOWE, J., Nondifferentiable optimization: A motivation and a short intro-

duction into the subgradient and the bundle concept , In: NATO SAI Series,

Vol. 15, Computational Mathematical Programming, Schittkowski, K., (ed.),

pp. 323-356, Springer-Verlag, New York, 1985.

[8] WOLFE, P.H., A method of conjugate subgradients of minimizing nondiffer-

entiable convex functions , Mathematical Programming Study, Vol. 3, pp. 145-

173, 1975.

[9] POLAK, E. and ROYSET, J.O., Algorithms for finite and semi-infinite min-

max-min problems using adaptive smoothing techniques , Journal of Optimiza-

37

tion Theory and Applications, Vol. 119, pp. 421-457, 2003.

[10] BURKE, J.V., LEWIS, A.S. and OVERTON, M.L., A robust gradient sam-

pling algorithm for nonsmooth, nonconvex optimization, SIAM Journal on Op-

timization, Vol. 15, pp. 751-779, 2005.

[11] AUDET, C. and DENNIS, J.E., Jr., Analysis of generalized pattern searches ,

SIAM Journal on Optimization, Vol. 13, pp. 889-903, 2003.

[12] TORZCON, V., On the convergence of pattern search algorithms , SIAM Jour-

nal on Optimization, Vol. 7, pp. 1-25, 1997.

[13] CLARKE, F.H., Optimization and Nonsmooth Analysis, New York: John Wi-

ley, 1983.

[14] MIFFLIN, R., Semismooth and semiconvex functions in constrained optimiza-

tion, SIAM J. Control and Optimization, Vol. 15, pp. 959-972, 1977.

[15] DEMYANOV, V.F. and RUBINOV, A.M., Constructive Nonsmooth Analysis,

Peter Lang, Frankfurt am Main, 1995.

38

[16] BAGIROV, A.M., RUBINOV, A.M., SOUKHOROUKOVA, A.V., and YEAR-

WOOD, J., Supervised and unsupervised data classification via nonsmooth and

global optimisation, TOP: Spanish Operations Research Journal, Vol. 11, pp.

1-93, 2003.

[17] BAGIROV, A.M. and YEARWOOD, J., A new nonsmooth optimisation algo-

rithm for minimum sum-of-squares clustering problems , European Journal of

Operational Research, Vol. 170, pp. 578-596, 2006.

[18] BAGIROV, A.M., Minimization methods for one class of nonsmooth functions

and calculation of semi-equilibrium prices , Progress in Optimization: Con-

tribution from Australasia, Edited by A. Eberhard et al., Kluwer Academic

Publishers, Dordrecht, pp. 147-175, 1999.

[19] BAGIROV, A.M., Continuous subdifferential approximations and their appli-

cations , Journal of Mathematical Sciences, Vol. 115, pp. 2567-2609, 2003.

[20] WOLFE, P.H., Finding the nearest point in a polytope, Mathematical Pro-

gramming, Vol. 11, pp. 128-149, 1976.

39

[21] FRANGIONI, A., Solving semidefinite quadratic problems within nonsmooth

optimization algorithms , Computers & Operations Research, Vol. 23, pp. 1099-

1118, 1996.

[22] KIWIEL, K.C., A dual method for certain positive semidefinite quadratic pro-

gramming problems , SIAM J. Sci. Statist. Comput. Vol. 10, pp. 175-186, 1989.

[23] LUKS̃AN, L. and VLC̃EK, J., Test Problems for Nonsmooth Unconstrained

and Linearly Constrained Optimization, Technical Report 78, Institute of

Computer Science, Academy of Sciences of the Czech Republic, 2000.

[24] GAMS: The Solver Manuals , GAMS Development Corporation, Washington,

D.C., 2004.

[25] BERGEN, F. V., CONDOR: a constrained, non-linear, derivative-free parallel

optimizer for continuous, high computing load, noisy objective functions , PhD

thesis, Université Libre de Bruxelles, Belgium, 2004.

40

List of tables

1. Table 1. The brief description of test problems

2. Table 2. Results of numerical experiments: best and average values

3. Table 3. Pairwise comparison of algorithms

4. Table 4. Comparison of algorithms

41

Table 1: The brief description of test problems

Prob. n nm fopt Prob. n nm fopt

P1 2 3 1.95222 P12 4 21 0.00202

P2 2 3 0 P14 5 21 0.00012

P3 2 2 0 P15 5 30 0.02234

P4 3 6 3.59972 P16 6 51 0.03490

P5 4 4 -44 P18 9 41 0.00618

P6 4 4 -44 P19 7 5 680.63006

P7 3 21 0.00420 P20 10 9 24.30621

P9 4 11 0.00808 P21 20 18 133.72828

P10 4 20 115.70644 P23 11 10 261.08258

P11 4 21 0.00264 P24 20 31 0.00000

42

Table 2: Results of numerical experiments: best and average values

Pr. fbest fav iter nfc

DN CR DGM DN CR DGM DN CR DGM

P1 1.9523 1.9522 1.9522 18.6631 1.9563 1.9522 44 88 314

P2 0.0014 0.00000 0.0000 12.6534 0.0021 0.9075 145 97 5018

P3 0.0000 0.0000 0.0000 66.6476 0.0000 0.2200 161 848 8943

P4 3.5998 3.6126 3.5997 9.7501 3.80643 3.5997 44 233 1079

P5 -43.9236 -43.9970 -44 -41.1455 -43.8039 -44 48 352 2862

P6 F -43.9966 -44 F -43.8198 -42.8657 F 433 10120

P7 0.0475 0.0042 0.0042 0.0586 0.0054 0.0416 6 215 1316

P9 0.0152 0.02581 0.0081 0.2142 0.0443 0.0179 47 279 5441

P10 116.4907 115.7644 115.7064 256.2033 116.7891 115.7064 51 283 2152

P11 0.0354 0.0103 0.0029 5.3347 0.1679 0.0032 46 343 2677

P12 0.0858 0.0398 0.0125 0.3957 0.1269 0.0628 48 314 2373

P14 2.1643 0.0350 0.0011 2.6490 0.2886 0.1826 34 937 3575

P15 0.7218 0.1405 0.0223 42.9887 0.3756 0.2787 40 592 4656

P16 0.3957 0.0548 0.0349 1.1809 0.4786 0.2872 25 796 7410

P18 0.3085 0.0814 0.0356 0.7024 0.2460 0.1798 43 1289 9694

P19 716.6131 686.0436 680.6301 803.8032 689.7816 680.6301 50 725 2654

P20 35.4217 24.9150 24.3062 60.0370 27.0316 24.3062 121 1892 12926

P21 118.5468 97.8171 93.9073 286.5167 102.7173 94.4516 120 9301 43633

P23 F 3.7053 3.7035 F 3.7107 3.7035 F 3054 3886

P24 0.8953 0.4278 0.3987 15.2643 0.6523 0.8337 58 7418 17928

43

Table 3: Pairwise comparison of algorithms

Prob. First pair Second pair Third pair

DNLP CONDOR DNLP DGM CONDOR DGM

P1 5 16 1 20 7 20

P2 1 19 3 17 8 17

P3 3 20 5 16 20 4

P4 10 10 2 20 0 20

P5 2 18 0 20 1 20

P6 0 20 0 20 3 18

P7 0 20 6 20 15 5

P9 4 16 1 19 0 20

P10 0 20 0 20 0 20

P11 5 15 0 20 0 20

P12 6 14 1 19 3 17

P14 0 20 0 20 2 18

P15 2 18 0 20 6 14

P16 1 19 0 20 4 16

P18 1 19 1 20 5 15

P19 0 20 0 20 0 20

P20 0 20 0 20 0 20

P21 0 20 0 20 1 19

P23 0 20 0 20 0 20

P24 0 20 1 19 8 12

Total 40 363 21 390 83 335

44

Table 4: Comparison of algorithms

Prob. DNLP CONDOR DGM Prob. DNLP CONDOR DGM

P1 1 7 20 P12 1 3 16

P2 1 7 17 P14 0 2 18

P3 3 20 4 P15 0 6 14

P4 2 0 20 P16 0 4 16

P5 0 1 20 P18 0 5 15

P6 0 3 18 P19 0 0 20

P7 0 15 5 P20 0 0 20

P9 1 0 19 P21 0 1 19

P10 0 0 20 P23 0 0 20

P11 0 0 20 P24 0 8 12

Total 9 82 333

45

