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Abstract. Microarrays are able to measure the patterns of expression of 
thousands of genes in a genome to give profiles that facilitate much faster 
analysis of biological processes for diagnosis, prognosis and tailored drug 
discovery. Microarrays, however, commonly have missing values which can 
result in erroneous downstream analysis. To impute these missing values, 
various algorithms have been proposed including Collateral Missing Value 
Estimation (CMVE), Bayesian Principal Component Analysis (BPCA), Least 
Square Impute (LSImpute), Local Least Square Impute (LLSImpute) and K-
Nearest Neighbour (KNN). Most of these imputation algorithms exploit either 
the global or local correlation structure of the data, which normally leads to 
larger estimation errors. This paper presents an enhanced Heuristic Non 
Parametric Collateral Missing Value Imputation (HCMVI) algorithm which 
uses CMVE as its core estimator and Heuristic Non Parametric strategy to 
compute optimal number of estimator genes to exploit optimally both local and 
global correlations. 

1   Introduction  

Microarrays are used to measure expression levels of a myriad of genes under a 
variety of conditions and the resulting expression profiles have been utilized in a wide 
range of biological applications from diagnosis to drug discovery [1]. Depending on 
the application, this expression data may be analyzed by statistical, mathematical and 
machine learning algorithms [2-4] such as data dimension reduction, class prediction 
[5] and clustering [6]. Despite its pervasive usage, microarray data frequently contains 
at least 5% erroneous spots and in most datasets, at least 60% of genes have either one 
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or more erroneous values [7]. These spots are identified as missing values for a 
variety of reasons, including slide scratches, spotting problems, blemishes on the chip, 
hybridization error, image corruption or simply dust on the slide [8]. Sometimes for 
instance, a background colour has a higher intensity than a foreground colour due to 
hybridization failure or bleeding from neighboring spots, while background 
subtraction may also produce negative values which are subsequently marked as 
missing. These missing values can seriously impact upon subsequent data analysis 
methods such as significant gene selection and clustering algorithms [9, 10]. 

Several approaches to solving the missing data problem have been proposed, with 
the simplest being either the repetition of the experiment, though this is often not 
feasible for economic reasons or ignoring samples containing missing values, but 
again this is not recommended due to limited number of samples. Other alternatives 
include, row average/median impute (replacement by the corresponding row 
average/median) and zero impute (replacing the missing values by zero) though both 
these approaches are high variance approaches as neither takes advantage of inherent 
data correlations, so leading to higher estimation errors [11]. It has been well accepted 
that a better strategy is to attempt to accurately estimate the missing values by 
exploiting the underlying correlation structure of the data [10, 12]. This has been the 
catalyst for a number of imputation techniques including Collateral Missing Value 
Imputation (CMVE) [13], K-Nearest Neighbor (KNN), Least Square Imputation 
(LSImpute) [12], Local LSImpute (LLSImpute) [10] and Bayesian PCA (BPCA) [8]. 
The resulting estimation errors can still be high however, as some algorithms focus 
mainly on global data correlation (BPCA), while others exploit local correlations in 
the data (KNN) by using a fixed number of predictor genes. This provided the 
motivation for the development of new generic techniques that minimise prediction 
errors by optimising the number of predictor genes. Moreover, the comparative 
imputation performances of CMVE, BPCA, LSImpute, LLSImpute and KNN has 
traditionally been numerically evaluated using the Normalized Root Mean Square 
Error (NRMSE) measure, which is partial indicative of the estimation impact on any 
subsequent biological analysis. 

This paper presents a Heuristic Non Parametric Collateral Missing Value 
Imputation (HCMVI) algorithm that employs a combination of correlated genes to 
estimate missing values by multiple imputation matrices. The basis of HCMVI is 
CMVE technique that has been demonstrated both theoretically and empirically, to be 
better than established algorithms including KNN, LSImpute and BPCA [14]. 
However, like KNN and LSImpute, CMVE does not automatically determine the 
optimal number of predictor genes k from the dataset and this can lead to higher 
estimation errors. For data with a local correlation structure, if a large k value is used 
then it may include genes which have no correlation with the gene that has missing 
values. Similarly, if data has a global correlation structure, then a small value of k 
ignores correlated genes in the prediction again resulting in a higher estimation error. 
It is therefore intuitive to try and calculate the best value of k, based upon the 
underlying correlation structure of the data. LLSImpute automatically determines k 
using computational intensive exhaustive search method, hence provides improved 
results than other LS regression based methods [10], though since this approach is 
based upon LS regression, therefore, estimation error is still high because LS 
regression is sensitive to outliers [15, 16] (See Section 2). HCMVI uses CMVE as its 
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core kernel together with a heuristic non-parametric estimator, to automatically 
determine k, thereby combining the intrinsic benefits of heuristics and CMVE with a 
strategy to automatically estimate the optimal number of predictor genes. The 
estimation performance of HCMVI has been rigorously tested and compared with 
four other well-established imputation techniques, namely CMVE, KNN, LLSImpute 
(An enhanced version of LSImpute [12] ) and BPCA in predicting randomly 
introduced missing values with probabilities ranging from 0.01 to 0.2 for six different 
ovarian and breast cancer datasets [17, 18]. To cross validate the performance of the 
different imputation strategies, six separate biological and statistical (both parametric 
and non-parametric) measures have been used to eliminate any bias towards a 
particular metric for a certain imputation methodology. The study in particular 
compared the impact of estimation on significant gene selection where HCMVI 
clearly demonstrated improved capability for both the breast cancer (locally 
correlated) and ovarian cancer (globally correlated) datasets. For instance, the 
KIAA1025 gene which is expressed in breast cancer cell lines and is co-regulated 
with several cancer causing genes such as estrogen receptors [19] was not selected 
when missing values were imputed using KNN, LLSImpute, BPCA and CMVE, but 
was correctly identified across a range of missing values when gene selection was 
preceded by HCMVI imputation (See supplementary materials1). For completeness, 
results are also compared using the conventional NRMSE [20] and Wilcoxon 
Ranksum Significance Test metrics to quantitatively assess the estimation 
performance of each imputation method, with results again consistently demonstra-
ting the improved accuracy and robustness of HCMVI over the entire missing value 
range. The next Section presents an overview of the existing imputation strategies 
with their respective merits and demerits.  

2   Overview of Existing Imputation Methods 

The following nomenclature is adopted in describing different imputation methods. A 
microarray gene expression matrix Y, contains m genes and n samples. In Y, every 
gene i is represented by gi. A missing value in gene i for sample j is thus expressed 
as ( , ) ( )iY i j g j= = Ξ . A short overview is now provided of the main features of the four 

imputation methods (KNN, LLSImpute, BPCA and CMVE) which are used in this 
paper to compare the performance of HCMVI. 

KNN [11] estimates missing values by searching for the k nearest genes normally 
using a Euclidean distance function, and then taking the weighted average of the k 
nearest genes. The method however, does not consider negative correlations [21] and 
has the drawback of using a predetermined value of k regardless of the dataset being 
used. Kim et al [10], introduced an improved Least Square regression based algorithm 
called Local Least Square Impute (LLSimpute), which automatically selects the 
number of predictor genes k using computational intensive exhaustive search method 
and then regresses using LS techniques to impute the missing values, though this 
regression makes the technique highly sensitive to outliers [15, 16] which leads to 
higher estimation errors (Section 1).  BPCA [8] uses Bayesian Principal Component 
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Analysis to impute missing values, though this only exploits global correlations within 
the data structure, which can lead to erroneous estimates if data possesses a strong 
local correlation [8]. CMVE algorithm generates multiple estimation matrices using 
Non-Negative Least Squares (NNLS), Linear Programming (LP) and LS regression 
techniques to approximate missing values, however despite its enhanced estimation 
capability, it still relies upon a preset parametric value of k, which limits its 
applicability. Importantly, despite their respective merits these imputation algorithms 
have not been analyzed on a-priori biological knowledge, which is ultimately a true 
evaluation for comparing imputation performance. This was the motivation to develop 
a new strategy to automatically determine the best value of k directly from the 
correlation structure of the data, while concomitantly providing significant 
improvement on both biological and statistical grounds. The next Section presents the 
HCMVI imputation technique which combines the estimation capability of CMVE 
with a strategy for deriving the optimal value of k directly from the correlation 
structure of the data. 

3   Heuristic Non Parametric Collateral Missing Value Imputation 
Method 

The HCMVI algorithm, which is formally presented in Fig. 1, imputes missing values 
in three stages. Firstly, the number of estimator genes k is computed using a Heuristic 
Non-Parametric algorithm that exploits data correlation structures. Secondly, the k 
most correlated genes with the gene (gi) containing missing value are selected from a 
given dataset, before gi is approximated using the CMVE algorithm and finally value 
is imputed using Non Negative Least Square and Linear Programming. 

To select the number of estimator genes k, the set of sub-matrices SM is chosen 
(Step 1, Fig. 1) which has the highest correlation with the rest of data, since this best 
represents the underlying correlation structure for the entire data Y. To construct such 
correlated sub-matrix which optimally represents the correlation of the entire data Y is  
 

Pre Condition: Gene expression matrix Y(m,n) where m and n are the number of genes and samples respectively; 
actual missing value location .
STEP 1 Select a set of sub-matrices m nSM  from Y using Monte Carlo simulation with uniform distribution. 
STEP 2 FOR i 1 to Rw

2.1 Compute mean Gw of gene expression vectors in sub-matrix  SMi
2.2 Calculate mean for all corresponding gene expression vectors GY from Y selected in SMi
2.3 Determine Pearson correlation ri between Gw and GY for sub-matrix SMi using (1) 

STEP 3 Rank the sub-matrices SM based on the magnitude of the correlation coefficients r.
STEP 4 Select the sub-matrix SMc with the highest r.
STEP 5 Select the expression locations v in Y which are present in SMc
STEP 6 FOR k 1 to m

6.1 Call Estimate using expression locations v and k as parameters 
6.2 Calculate NRMS error in (5) and save the corresponding k in 

STEP 7 Sort  in ascending order and select corresponding k as kopt for actual missing value estimation. 
STEP 8 Compute missing values using CMVE using  and kopt as parameters. 
END
Post Condition: Y with no missing values.  

Fig 1. The complete HCMVI Algorithm 
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Fig. 2. A selected Sub-Matrix SM for determining the optimal value of k 

an NP hard problem, so a pseudo-random generation strategy is adopted to select gene 
expressions from Y (Step 1, Fig. 1). A statistically conservative selection probability 
of 0.05 [22] is chosen for the objective function, such that there will be no missing 
values in the SM (See Fig. 2). In each sub-matrix SMi, genes G that are present in SMi 

(Step 2) are selected, such as 1[ ... ]T m n
nG G G ×= ∈  (Step 2). For example in Fig. 2, the 

SMI contains one gene expression value g12 from gene 1, three expression values {g21, 
g22, g2n} from gene 2, and two expression values from gene m {gm1, gm3}, while no 
expression was selected from gene 3 (which is normally very rare). All selected genes 
are represented by boxes in Fig. 2. This example highlights two key limitations for 
computing the correlation between Y and SMi: 1) The number of columns of SMi and 
Y are not equal 2) The number of rows of SMi and Y are unequal because not all the 
genes in Y are present in SMi, so in order to determine the correlation between Y and 
any sub-matrix SMi, only those genes that are selected from Y and also present in SMi, 
are chosen. Thus, in the Fig. 2 example, genes 1, 2 and m would be selected while 
gene 3 is ignored. The mean values GSM and GY of the genes vector in both Y and SMi 
are then computed (Step 2.1). The Pearson correlation of the data is calculated (Step 
2.3) to determine the maximum correlation between each selected SMi and Y from: 

2 2
2 2

( ) ( )

w y
w y

i

w y
w y
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G G
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G G

G G
N N

−
=

⎛ ⎞ ⎛ ⎞
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⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑∑
∑ ∑

 

(1) 

The reason for selecting Pearson correlation is that it has been consistently proven 
to provide better performance for microarray data compared with other similarity 
measures [23].  

The sub-matrix SMc with the maximum absolute correlation with Y represents the 
best correlation of Y (Step 4). Each individual value of SMc is then treated as a 
missing value and iteratively estimated for a range of different k values (Step 5). 
Since, these values are already known; the NRMSE can be computed for these 
estimations, so the k value which generates the minimum Root Mean Square Error 
(RMSE) is designated as the optimal value (kopt). This is subsequently used in the 
actual estimation of missing value Yij of gene i and sample j, which involves three 
separate estimates Ф1, Ф2 and Ф3 being generated, and the final estimate χ computed 
by their fusion using CMVE [13].  The CMVE technique is explained in the context 
of HCMVI in Appendix A (See supplementary material). 
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4   Analysis and Discussion of Results  

4.1   Test Data 

To analyze and compare the performance of the proposed HCMVI algorithm with 
CMVE, BPCA, LLSImpute and KNN, six microarray cancer datasets from two 
different studies on breast and ovarian cancer tissues were used. The data was log 
transformed and normalized to 0=x  and 12 =σ  to remove experimental variations. 
The rationale behind selecting these particular datasets is that in general, cancer data 
lacks molecular homogeneity in tumour tissues so missing values are hard to predict 
in cancerous data [24].  

The locally correlated breast cancer data set contained 7, 7, 8 samples of BRCA1, 
BRCA2 and Sporadic mutations (neither BRCA1 nor BRCA2) respectively [18], 
while the globally correlated ovarian cancer dataset contained 16, 16 and 18 samples 
respectively of BRCA1, BRCA2, Sporadic mutations [17]. Each breast cancer data 
sample contained microarray data of 3226 genes and there were 6445 genetic 
expressions per sample for the ovarian dataset.  

To compare the performance of the HCMVI algorithms with CMVE and KNN, 
k=10 was used throughout the experiments, since the insensitivity of KNN to values 
of k in the range from 10 to 20 was observed by Troyanskaya et al, [11] who 
confirmed that the best estimation results were achieved in this interval and using a 
similar rationale CMVE [13] employed k=10. In contrast, LLSImpute determines the 
value of k using computational intensive exhaustive search method, while HCMVI 
automatically determines the optimal value of kopt using a non-parametric heuristic 
algorithm (Fig. 1), which exploits the underlying correlation structure of the data, 
thereby reducing the computational complexity and avoiding problems of large and 
small values of k highlighted in Section 1. Following six metrics are used to evaluate 
the performance of the new HCMVI algorithm. 

4.2   Gene Regulatory Network Reconstruction 

To further evaluate the influence of missing values on GRN reconstruction, the 
ARACNe has been employed because a study in [25] demonstrated its improved 
performance compared to the commonly used algorithms, like Bayesian networks 
[26]. Moreover the method has been tested for mammalian gene network 
reconstruction and compared with other techniques that are normally applied to 
simple eukaryotes, such as Saccharomyces cerevisiae [27].  

ARACNe firstly computes gene-gene co-regulation using mutual information.  The 
method then prunes indirect regulatory relationships that are co-regulated by one or 
more intermediate genes using data processing inequality. To comparatively evaluate 
the respective imputation performances on GRN reconstruction, the number of 
Conserved Links was determined, which represents whether a particular co-regulation 
link is present in both GRNorg and GRNimputed. The gene network GRNorg was initially 
constructed from the original data Y with no missing values using ARACNe. 
Iteratively, up to 20% missing values were randomly introduced and then respectively 
estimated using imputation methods. The corresponding gene networks GRNimputed  
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Fig. 3. Comparison of original GRN and the GRN constructed after imputation where missing 
values were randomly introduced in a) BRCA2-breast cancer data b) BRCA1-ovarian cancer 
data 

were then constructed from the imputed data and GRNorg and GRNimputed compared, to 
ascertain the conserved links. 

Fig.3 shows that the ARACNe method, which was reported to be robust [28] for 
GRN construction, could not maintain its performance in the presence of missing 
values, especially for ZeroImpute. In contrast, when HCMVI was applied, ARACNe 
conserved the number of links even at higher missing value probabilities. For 
example, in BRCA1 breast cancer data, the transcriptional link between ADP-
Ribosylation Factor 3 (ARF3) and General Transcription Factor II, I, Pseudogene 
1(GTF2IP1) was overlooked when missing values were imputed by comparative 
methods (Fig. 3(a)), but was correctly inferred when values were imputed using 
HCMVI. Similarly, the link between HS1 Binding Protein and Mitogen-Activated 
Protein Kinase 3 in BRCA2 breast cancer data was reconstructed when values were 
imputed using HCMVI but was neglected by all other imputation techniques. The 
results of Sporadic breast cancer data revealed similar observations. For example, the 
interaction between ARF3 and EST, which is similar to NSAP1 protein, was found 
when data was imputed using the HCMVI method. But it was missed by the other 
imputation strategies. These results further highlight the importance of accurate 
imputation in improving GRN reconstruction performance (See supplementary 
materials for details). 

4.3   Gene Selection 

This Section provides rigorous analytic review of gene selection results. Since, 
different gene selection methods produce different sets of significant genes [29] 
therefore; we compared the performance of imputation methods using two widely 
used methods namely: standard t-test and Between Sum of Squares to Within Sum of 
Squares (BSS/WSS). 

4.3.1   Gene Selection Using t-Test 
To investigate the impact of each estimation algorithm upon significant gene 
selection, genes were selected from both breast and ovarian cancer datasets using  
 



376 M.S.B. Sehgal et al. 

HCMVI CMVE BPCA LLSImpute KNN ZeroImpute

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

F
al

se
 P

os
iti

ve
 R

at
e 

(F
P

R
)

Imputation Methods

FPR for Sporadic-BRCA1 Breast Cancer Data using t-test

HCMVI CMVE BPCA LLSImpute KNN ZeroImpute

0

0.1

0.2

0.3

0.4

0.5

0.6

F
al

se
 P

os
iti

ve
 R

at
e 

(F
P

R
)

Imputation Methods

FPR for BRCA1-BRCA2 Ovarian Cancer Data using t-test(a) (b) 

 

Fig. 4. False Positive Rate of Gene Selection in a) Breast and b) Ovarian Cancer Data 

t-test [30] with the established statistical P-value of 0.05 [24]. These selected genes 
were then, marked as Standard Genes. After that the values were randomly removed 
from the data with the probability range of 0.01 to 0.20 and were marked as missing. 
These missing values were then, imputed using above mentioned imputation methods 
and followed by gene selection using t-test using the same P-value of 0.05. The 
selected genes were then compared with the Standard Genes to compute False 
Positive Rate (FPR) [31] using: 

False Positive
FPR

True Positive + False Positive
=  (2) 

Fig.4 demonstrates FPR of gene selection results after imputation by the above 
mentioned estimation methods (See supplementary materials for the rest of the 
results). The results show that HCMVI had minimum FPR for both the datasets, in all 
the selected groups, while most of the imputation methods could not retain their 
performance for all the datasets. For instance, CMVE showed better FPR for Breast 
cancer data (Fig. 4(a)) but since the method doesn’t consider global correlations it 
could not hold similar performance for ovarian cancer data (Fig. 4(b)). Similarly, 
BPCA showed better performance for ovarian cancer data (Fig. 4(b)) due to its ability 
to exploit global correlation but couldn’t retain the same performance for breast 
cancer data (Fig. 4(a)). Both the LLSImpute and KNN methods also, showed mixed 
performance while not surprisingly, ZeroImpute method had highest FPR due to its 
inability to exploit latent correlation of the data. 

4.3.2   Gene Selection Using BSS/WSS 
To investigate the impact of each estimation algorithm upon significant gene 
selection, a set of p genes (Gorg) was selected from the original data Y using the 
BSS/WSS method [32], which identified those genes that concomitantly had large 
inter-class and small intra-class variations. For any gene i in m nY ×∈ , BSS/WSS is 
calculated as follows:  

2

1 1

2

1 1

( )( )
( ) / ( ) ,

( )( )

T Q
t qi it q

T Q
t it qit q

F L q Y Y
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−
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 (3) 



 Heuristic Non Parametric Collateral Missing Value Imputation 377 

where T is the training sample size, Q the number of classes and F(•) is a Boolean 
function having value = 1 if the condition is TRUE and zero otherwise. iY denotes the 

average expression level of gene i across all samples and qiY
−

is the average expression 

level of gene i across all samples belonging to class q. Genes are then ranked from the 
highest to the lowest BSS/WSS ratio to form a significant gene expression matrix ϑ, 
where the first p genes are selected for subsequent analysis. 

To fully test the robustness of the HCMVI algorithm, experiments were performed 
for missing values up to 20%, with values being iteratively removed from the original 
gene expression matrix Y. Missing values were then estimated using KNN, 
LLSImpute, BPCA, CMVE and HCMVI to form Yest, before respective sets of p 
genes Gest were selected using BSS/WSS, for each estimated matrix. Finally, these 
selected genes were compared with Gorg to give the %Accuracy. 
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Fig. 5. Gene Selection Accuracy for 50 Significant Genes in a) Breast and b) Ovarian Cancer 

To eliminate performance variations with respect to the number of selected genes in 
the BSS/WSS method, all imputation techniques were tested for 1000 and 50 
significant genes with the graphs in Fig. 5 displaying the gene selection performance 
for 50 significant genes (Supplementary materials for the results on 1000 significant 
genes). The results reveal the consistent better performance of HCMVI over the other 
imputation methodologies because of its ability to exploit both local and global 
correlations within the data. HCMVI performed equally well for both types of data 
with the average overall improvement being 60% and 48% for breast and ovarian 
cancer datasets respectively. The results also highlighted some other noteworthy 
points: even though HCMVI consistently performed better than comparative 
algorithms, its performance was better for the breast cancer dataset than ovarian cancer 
because the latter contained some actual missing values which influence gene 
selection. The CMVE algorithm using a fixed k performed better than BPCA, 
LLSImpute, KNN and ZeroImpute (Fig. 5(a)) for the locally correlated Breast cancer 
data, but was unable to maintain this performance for the ovarian cancer (globally 
correlated) data (Fig. 5(b)). Similarly, BPCA performed better than the aforementioned 
algorithms for the ovarian cancer data because of its inherent ability to exploit global 
correlations, though in contrast its performance deteriorated significantly for breast 
cancer data. The next Section focuses on non-parametric significance test results. 
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Fig .6. Significance Test Results for a) BRCA1-Breast and b) BRCA-2 Ovarian Cancer Data 

4.4   Wilcoxon Rank Sum Significance Test 

To evaluate the estimation performance of all the imputation algorithms on empirical 
grounds and variance stability, the two-sided Wilcoxon Rank sum statistical 
significance test was applied. The motivation for using this particular test is that 
compared to some other parametric significance tests such as t-test [33], it does not 
mandate the data has to have equal variance, which is vital given the variance of data 
can be disturbed due to erroneous estimation, especially for ZeroImpute. To test the 
hypothesis H0, Y = Yest where Y and Yest are the actual and estimated matrices 
respectively, the P-Value of the hypothesis is calculated as: 

1 )0, r rH  P-Value 2P (R y= − ≤  (4) 

where yr is the sum of the ranks of observations for Y and R is the corresponding 
random variable. Fig. 6 plots the P-Value of similarity between the actual and 
estimated matrices. The results again corroborate that HCMVI performed better than 
all the other comparative algorithms for both locally and globally correlated datasets 
because of its better estimation capability. A similar trend is observed by the 
imputation strategies in terms of the statistical significance test results as witnessed 
for significant gene selection in the above Section. It is interesting to note that 
HCMVI performed consistently better for all the datasets, as shown in Fig. 6, where 
the performance of other algorithms was highly data dependent. 

Interestingly, HCMVI proved to be robust for both cancer datasets which is 
certainly not the case for other imputation techniques who performed well for one 
data type, but failed for the other (Fig.3-6). For instance, CMVE, generally performed 
better than BPCA, KNN, ZeroImpute, and LLSImpute for breast cancer data (Figs. 
3(a) - 6(a)), but this was not sustained for ovarian cancer data (Figs. 3(b) - 6(b)), 
where BPCA proved a better choice for this globally correlated dataset. Not 
surprisingly, ZeroImpute exhibited the widest disparity on statistical grounds, so 
inculcating the importance of estimating any missing values rather than simply 
imputing zeros. 

4.5   Normalized Root Mean Square Error 

For completeness the estimation performance of HCMVI and comparative imputation 
methods was also analyzed using the traditional parametric Normalized Root Mean  
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Fig. 7. NRMSE in Sporadic-Ovarian Cancer Data 

Square Error (NRMSE) measure, despite its limitations in reflecting the true impact 
of missing values on subsequent biological analysis. NRMSE is defined as: 

( )

( )
estRMS Y Y

RMS Y

−Θ =  (5) 

where Y is the original data matrix and Yest is the estimated matrix using HCMVI, 
CMVE, BPCA, LLSImpute and KNN respectively. This particular measure has been 
used by Sehgal et al, [13], Ouyang et al, [20] and Tuikkala et al [7] for error 
estimation because Θ =1 for zero imputation.  

Fig.7 shows boxplot of NMRS Error for different imputation algorithms (See 
supplementary material for the rest of the results). It again confirms the better 
performance of HCMVI and reiterates the value of accurately exploiting information 
about the underlying correlation structure of the data instead of using a preset value. 
Interestingly LLSImpute exhibited similar performance to HCMVI so justifying the 
merit of using other metrics to dispassionately compare the performance of different 
imputation strategies. As highlighted earlier, accurate imputation plays a crucial role 
in selecting the correct set of genes for a given biological process, so an analysis of 
the biological significance of the various imputation results has been undertaken with 
the key finings presented in the next Section. 

4.6   Biological Significance  

As alluded to earlier, different analytical methods will by virtue of their underlying 
assumptions generate differing gene lists, so an attempt has been made to assess the 
significance of the results for HCMVI from a biological perspective. Any superior 
imputation technique can be reasonably expected to return genes that have been 
implicated in the biological process when independent experiments are studied. 
Indeed, as microarray experiments effectively serve as a hypothesis generation step, it 
is constructive to ascertain whether a method not only identifies known genes, but 
also novel genes including hypothetical ones, about which little is known so that 
appropriate additional experiments can be performed. This may provide not only 
valuable information for the design of basic mechanistic, diagnostic and biomarker 
studies, but also further data for use in the construction of gene networks and 
pathways involved in processes like oncogenesis and resistance to tumour induction.  
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Table 1. KIAA1025 (KIAA) and Plakophilin2 (PKP2) Selection in Breast Cancer Dataset and 
MHC Class II=DQ alpha (MHCα) and MHC Class II=DQ beta (MHCβ) Selection in Ovarian 
Cancer across the Range of Missing Values Across the Range of Missing Values  

% MV HCMVI CMVE LLSImpute BPCA KNN ZeroImpute 
1 KIAA

PKP2
MHC
MHC

KIAA
PKP2
MHC

KIAA

MHC MHC

KIAA

MHC

5 KIAA
PKP2
MHC
MHC

KIAA
PKP2

MHC

KIAA KIAA

10 KIAA
PKP2
MHC
MHC

KIAA
PKP2

    

15 KIAA
PKP2
MHC
MHC

KIAA
PKP2

   

20 KIAA
PKP2
MHC
MHC

     

 

 
While the final validation of HCMVI as an imputation strategy will only be truly 
achieved when the role of newly predicted genes are validated in biological 
experiments, it is instructive to examine the list of candidate genes to determine 
whether any are independently validated.  

In examining both the breast and ovarian cancer datasets, HCMVI identified a 
number of genes overlooked by all the other algorithms and which, independent 
experiments [34] confirm, alter expressions in tumor lines and so could be important 
in oncogenesis. This set of genes has not only been selected by BSS/WSS algorithm 
but has been revalidated using the modified t-test with greedy pairs method [35] 
which minimizes the bias of the gene selection strategy towards either a particular 
imputation technique or a set of genes. 

For example, as the results in Table 1 reveal, the KIAA1025 protein has not been 
selected when values are imputed using KNN, LLSImpute, BPCA and CMVE, but 
has been identified when gene selection is preceded by HCMVI imputation (See also 
supplementary material). This is an important protein which is co-regulated with 
estrogen receptors for both in vivo and clinical data, which are expressed in more than 
66% of human breast tumors [19]. Another gene selected by HCMVI across the range 
of missing values is plakophilin 2 (PKP2) which is a common protein and exhibits a 
dual role, appearing as both a constitutive karyoplasmic protein and a desmosomal  
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plaque component for all the desmosome-possessing tissues and cell culture lines. 
The gene is found in breast carcinoma cell lines [36] and furthermore, because of its 
significance it can serve as a marker for the identification and characterisation of 
carcinomas derived either from or corresponding, to simple or complex epithelia [37] 
(See Table 1). 

Similar observations can be made in the study of significant genes in the ovarian 
cancer dataset. For instance, MHC Class II=DQ alpha (MHCα) and MHC Class 
II=DQ beta (MHCβ) genes are linked to the immune system and have been shown to 
be down-regulated for ovary syndrome [38]. Also, the allele gene is present at a 
higher frequency in patients with malignant melanoma than in Caucasian controls. 
These genes help in particular to diagnose melanoma patients in the relatively 
advanced stages of the disease and/or patients who are more likely to have a 
recurrence [39]. The results reveal that these genes have been correctly identified by 
HCMVI while being consistently missed by other imputation methods, especially for 
higher numbers of missing values (See Table 1 and supplementary material). 

For both cancer datasets, in every case these regulated genes have been correctly 
identified when gene selection followed imputation by HCMVI for the full range of 
missing values from 1% to 20% as confirmed in Tables 1 and 2. Summarizing, these 
biological significance results demonstrate the robustness of the HCMVI algorithm in 
correctly estimating missing values for different data types by adapting to both the 
causal global and local correlation structures of the data in contrast to all other 
imputation algorithms, especially for higher numbers of missing values. 

5   Conclusions 

This paper has presented a new Heuristic Non Parametric Collateral Missing Value 
Imputation (HCMVI) algorithm based upon the concept of constructing an optimal 
sub-matrix of the most correlated genes to determine the optimal value of k predictor 
genes to be applied in the imputation process. HCMVI has demonstrated an ability to 
adapt to both the local and global correlations, with experimental results for gene 
selection, statistical significance tests, biological significance and the Normalized 
Root Mean Square Error measure proving that it provided lower estimation errors 
compared to existing missing value imputation algorithms including CMVE, KNN, 
LLSImpute, ZeroImpute and BPCA. In particular, GRN reconstruction results showed 
the improved performance of 90% and 35% for both breast and ovarian cancer data. 
Similarly, gene selection results revealed an overall improved selection performance 
of 60% and 48% respectively for breast and ovarian cancer data, while the biological 
significance results upon selected genes demonstrated that key breast cancer genes 
like plakophilin2, KIAA1025 and MHC Class II=DQ are consistently correctly 
identified by HCMVI for the full range of missing values, while being overlooked by 
other imputation methods. The HCMVI strategy of exploiting a combination of 
underlying correlations in a dataset together with the automatic selection of the 
optimal k using a Heuristic Non Parametric approach has proven to be more 
effective, less computational intensive and robust than using either a preset k value or 
determining its value by exhaustive search. 
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