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TURNPIKE THEOREM FOR AN INFINITE HORIZON OPTIMAL
CONTROL PROBLEM WITH TIME DELAY∗

MUSA A. MAMMADOV†

Abstract. An optimal control problem for systems described by a special class of nonlinear
differential equations with time delay is considered. The cost functional adopted could be considered
as an analogue of the terminal functional defined over an infinite time horizon. The existence of
optimal solutions as well as the asymptotic stability of optimal trajectories (that is, the turnpike
property) are established under some quite mild restrictions on the nonlinearities of the functions
involved in the description of the problem. Such mild restrictions on the nonlinearities allowed us to
apply these results to a blood cell production model.
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1. Introduction. In this paper the problem of asymptotic stability of optimal
trajectories in nonlinear optimal control problems with time delay is investigated.
Such problems are tightly related to several recently developed mathematical models
having important practical applications. The phenomenon of stability of optimal tra-
jectories is often called the turnpike property after Chapter 12 in [8]. This property
states that, regardless of initial conditions, all optimal trajectories spend most of the
time within a small neighborhood of some optimal stationary point when the plan-
ning period is long enough. For a classification of different definitions for the turnpike
property, we refer to [5, 31, 39, 53], as well as [6] for the so-called exponential turnpike
property. Possible applications in Markov games can be found in a recent study [22].

A number of powerful theoretical approaches have been suggested for the study
of the turnpike property for both continuous and discrete systems. Some convexity
assumptions are sufficient for discrete systems [31, 39]; however, rather restrictive
assumptions are usually required for continuous time systems. We briefly mention
here some approaches developed for continuous time systems.

The majority of approaches in the literature involve optimal control problems
with (discounted and undiscounted) integral functionals (see [5, 53] and references
therein). Among the most successful approaches developed we mention here the ap-
proach developed by Rockafellar [46, 47] that applies related techniques from convex
analysis and the “direct” approach developed by Scheinkman, Brock, and collabora-
tors (see, for example, [30]) that applies the Maximum principle and then reduces
the main problem to the study of stability of ordinary differential equations with
unknown terminal values for costate variables. Several other approaches in this area
have been developed, including those considering a special class of problems (e.g.,
[14, 43, 50, 54]). An interesting class of control problems considered in [9, 10] involves
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long-run average cost functions where the asymptotic behavior of optimal solutions is
defined in terms of a probability measure.

It should be noted that quite restrictive assumptions are used in these studies,
especially when considering discounted integral functionals. In this sense, Rockafellar’s
approach is the most successful one, as can be seen from a recent publication [48] where
for a special convex problem (Ramsey’s problem) the turnpike property is established
without any additional restrictive assumptions.

Much stronger results are obtained for a special class of terminal functionals
defined as a lower limit at infinity of utility functions. This approach is introduced
in [34] (see [37] for more references), where stability results were established for some
classes of nonconvex problems with applications to environment pollution models.
Later, this class of terminal functionals was used to establish the turnpike theory in
terms of statistical convergence [36, 44], where the convergence of optimal trajectories
to some stationary point is proved in the sense of “almost” convergence while ordinary
convergence may not be true.

In this paper the turnpike property is established for an optimal control problem
described by time delay systems. Such systems find various applications in biology and
medicine [3, 12, 24, 40, 41], where the time delay arises naturally, for instance, as a time
lag required for cells to start dividing after they are activated. Some other applications
are in epidemiology and population dynamics [13, 23], laser optics [29, 33], power
systems and neural networks [2, 13, 25, 49], physiological processes [16, 3, 33], life
sciences and economics [12, 27], and other natural sciences [12, 29]. A comprehensive
modern exposition of recent theoretical achievements and various applications can be
found in monographs [7, 15, 23].

Note that many aspects of optimal control problems involving time delay systems
have been studied in the literature for many decades (see, for example, [45]); however,
the turnpike theory for these systems could be considered in its initial stage. This
is partly due to the highly complexity of such studies generated by the time delay
factor. To the best of our knowledge, there is only one successful approach developed
for continuous systems with delay. This approach, developed in [4] for a discounted
integral functional, considers the following system with infinite time delay:

(1.1) ẋ(t) = g(x(t), u(t)) +

∫ t

−∞
r(t− s)f(x(s))ds a.e. t ≥ 0,

Under some quite mild assumptions, the existence of catching up optimal solutions as
well as the convergence of these solutions to a unique optimal steady state are proved.
Later, this approach was further developed by [51], where the existence of overtaking
optimal solutions was established without boundedness assumptions, and in [52] the
turnpike property was established for solutions on finite intervals.

It is important to note that one of the assumptions in [4] applies the boundedness
of r(t), t ∈ R

+. For example, function r defined by

(1.2) r(t) =

{∞ if t = τ,
0 if t ≥ 0, t �= τ,

does not satisfy this assumption. Consequently, the results of [4] are no longer ap-
plicable to the case of singular time delay in the form f(x(t− τ)) (instead of infinite
time delay in (1.1)).

The first turnpike results for singular time delay are established in our recent pa-
pers [17, 38] by considering the above mentioned terminal functionals. Similar results
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for discrete optimal control models are presented in [18]. This paper extends these
results to a much broader class of systems in terms of nonlinearities of the functions
involved in the description of the system. In particular, function f, related to the
time delay terms (see system (2.1) below), is not assumed to be increasing. This is
the case, for example, in the blood cell production model from [28] that is considered
in section 5.

The rest of this article is organized as follows. In the next section we formulate the
main problem, notation, and assumptions that are used throughout the paper. The
existence of optimal trajectories along with some preliminary results are provided in
section 3. The main theorem, the turnpike property, is proved in section 4. In section 5
two practical applications are considered: the generalized Ramsey model with time
delay and the blood cell production model. Note that it is a new initiative that for the
former model an optimal control problem is introduced by taking some parameters of
the model as time-dependent control variables.

2. Problem formulation. Consider the following system:

(2.1) ẋ(t) = u(t)f(x(t− τ))− g(x(t)) a.e. t ≥ 0,

(2.2) x(t) = x0(t), t ∈ [−τ, 0], u(t) ∈ [0, 1]∀t.

Here f, g : R
+ → R

+ are continuous on the positive semiaxis R+ = [0,∞), u(t) is a
measurable control function with values in the interval [0,1], τ > 0 is the delay, and
initial function x0 is nonnegative and continuous.

Given initial function x0 = x0(t), t ∈ [−τ, 0], and control u = u(t), t ≥ 0, an
absolutely continuous function x = x(t), t ≥ 0, satisfying (2.1)–(2.2), is called a
solution or a trajectory. We assume that for every initial function x0 and control u,
there exists a unique solution denoted by x = x(x0,u).

We do not address in detail the question of global existence of solutions to (2.1),
(2.2); the results are well known and readily available in the literature for different
types of systems. We only note that (2.1) has a special structure where terms x(t−τ)
and x(t) are separated. In this case the existence, uniqueness, and continuation of
solutions follow from related results for systems without time delay. Indeed, on each
interval [0, τ ], [τ, 2τ ], . . . , (2.1) becomes a differential equation without delay. There-
fore, for example, if g is Lipschitz continuous, then given any x0,u, problem (2.1),
(2.2) has a unique solution (see, e.g., Chapter 1, section 1.11, Theorem (Existence),
and Chapter 2, section 2.21, Theorem (Uniqueness) in [41]).

These kinds of equations has attracted significant interest in recent years due to
their frequent appearance in a wide range of applications. They serve as mathematical
models describing various real-life phenomena in mathematical biology, population
dynamics and physiology, electrical circuits and laser optics, economics, life sciences,
and other fields. See [1, 23, 28, 33] for a partial list of applications and further details.

Many economic models lead to differential delay equations of the form (2.1); a
partial list of economic applications is given in [11, 20, 27]. In these applications,
x stands for the capital and τ > 0 is the length of the production (investment)
cycle. The component f(x(t− τ)) describes a general commodity being produced at
time t and g(x(t)) stands for the “amortization” of the capital. After each cycle of
production a certain part of the commodity (capital) is used for the investment, while
the remaining part is consumed. This decision is controlled by parameter u(t) ∈ [0, 1].
We shall assume that at any time t > 0, the part u(t)f(x(t − τ)) is assigned for
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production purposes (investment), while the remaining part [1 − u(t)]f(x(t − τ)) is
consumed. From (2.1) we have

[1− u(t)]f(x(t− τ)) = f(x(t− τ))− g(x(t))− ẋ(t) a.e. t ≥ 0.

Given any solution x = x(x0,u), we define consumption c(t) as

c(t) = f(x(t− τ))− g(x(t))− ẋ(t) ∀t, where ẋ(t) exists.

The optimality is defined by the following functional:

(2.3) Maximize: C(x0,u) � lim inf
t→∞, ẋ(t) exists

[f(x(t− τ))− g(x(t))− ẋ(t)].

Functional (2.3) aims to maximize the lower level of consumption when t goes to
infinity. It can be considered as an analogue of the terminal functional defined for
an infinite time horizon. We refer to [37] for more information about the results on
stability of optimal trajectories in terms of similar functionals for systems without
time delay.

Given initial function x0, control u is called optimal if for any control ũ the
inequality

C(x0,u) ≥ C(x0, ũ)

holds. In this case the corresponding solution x to (2.1) will be called an optimal
solution.

Problem (2.1)–(2.3) is derived based on economic interpretations. However, it
might be suitable to describe problems from other areas as well. An example is the
blood cell production model considered in section 5.

There is a significant body of theoretical research on differential delay equation
(2.1) in the past 20 or 30 years. They address various aspects of the dynamics in such
equations including complicated behavior and chaos, among others. However, most
of it deals with the case of linear function g; that is, when g(x) = bx, b > 0. Papers
[19, 32] represent a partial list of related references.

It should be noted that even for a very simple case when considering a constant
control function, trajectories of (2.1) may have quite complicated structures, depend-
ing on initial functions. However, the trajectories that provide maximum possible
value to the functional (2.3) might be well structured; that is, the turnpike property
may still hold. Indeed, under some conditions it will be proved that given any ini-
tial function x0, there is an optimal solution to problem (2.1)–(2.3) and all optimal
trajectories converge to some unique stationary point as time goes to infinity.

The main conditions that will be used throughout the paper are provided below.
Assumption A.
• f, g : R+ → R

+ are continuous.
• g(0) = 0 and g(x) is strictly increasing; i.e., g(x1) < g(x2) for all 0 ≤ x1 < x2.
• There is X > 0 such that

(2.4) f(x) > g(x) > 0 ∀x ∈ (0, X) and f(x) < g(x) ∀x > X.

In addition, the Lipschitz continuity of g will be assumed in the main results of
this paper. However, it is important to note that no other conditions will be imposed
on the nonlinearity of f. In particular f does not need to be increasing. This is the
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major point in this paper that allows us to apply the results obtained to some practical
models in medicine and biology.

Denote

(2.5) c∗ = max{f(x)− g(x) : x ∈ R
+}

and define the set of optimal stationary points

(2.6) T = {x∗ ∈ R
+ : f(x∗)− g(x∗) = c∗}.

From (2.4) it follows that T ⊂ [0, X) and c∗ > 0. Moreover, f(x∗) > 0 for each point
x∗ ∈ T.

In terms of applications in economics, value c∗ will be interpreted as a maximum
steady consumption that could be achieved in problem (2.1)–(2.3). Accordingly, each
point in T is as a steady state (stationary point) guaranteing consumption c∗. Clearly,
T is a closed set and it may contain more than one point.

Given a stationary point x∗ and corresponding constant initial function x0(t) ≡
x∗, the function x(t) ≡ x∗ is a solution to (2.1) corresponding to the constant control
u(t) ≡ u∗ with

(2.7) u∗ = 1− c∗

f(x∗)
=

g(x∗)
f(x∗)

< 1.

3. The existence of optimal trajectories. We start with some preliminary
results about the structure of trajectories of system (2.1). Denote

(3.1) Mf = max
x∈[0,X]

f(x), Mg = sup
x∈R+

g(x).

Clearly, Mf < ∞ and, since g is increasing, Mg = limx→∞ g(x).
Proposition 3.1. Suppose that Assumption A holds. Then solutions x = x(t),

t ≥ 0, to (2.1) are bounded; that is, there is a number M < ∞ such that

lim sup
t→∞

x(t) ≤ M ∀x.

In addition, if f is increasing, then

lim sup
t→∞

x(t) ≤ X ∀x.

Proof. Take any initial function x0 and control u. Let x = x(t) be the corre-
sponding solution.

1. First we show that x(t) is bounded. Consider two cases related to the numbers
Mf and Mg defined in (3.1).

1a. Let Mf ≥ Mg.
From Assumption A it follows that for all x ≥ X the inequality

f(x) ≤ g(x) < Mg ≤ Mf

holds. Then f(x) ≤ Mf and g(x) ≤ Mf are satisfied for all x ≥ 0. From (2.1) we
have

ẋ(t) ≤ u(t)f(x(t− τ))− g(x(t)) ≤ Mf a.e. t ≥ 0.
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On the other hand, ẋ(t) ≥ −g(x(t)) ≥ −Mf a.e. t ≥ 0, and therefore,

|ẋ(t)| ≤ Mf a.e. t ≥ 0.

This means that there is a number M ′ < ∞ such that

(3.2) |x(t)− x(t− τ)| ≤ M ′, ∀t.

Now assume to the contrary that x(t) is unbounded. Then there is a sequence tn
such that

(3.3) ẋ(tn) ≥ 0, x(tn) → ∞ and x(tn − τ) ≤ x(tn).

From (3.2) it follows x(tn − τ) → ∞ and, therefore, x(tn − τ) > X for sufficiently
large n. In this case taking into account u(tn) ≤ 1, x(tn− τ) ≤ x(tn) and Assumption
A, we have

ẋ(tn) ≤ u(tn)f(x(tn − τ))− g(x(tn))

≤ f(x(tn − τ))− g(x(tn)) ≤ f(x(tn − τ))− g(x(tn − τ)) < 0.

This contradicts ẋ(tn) ≥ 0 in (3.3). This means that x(t) should be bounded.
1b. Now consider the case Mf < Mg, and on the contrary assume that x(t) is

unbounded.
By Assumption A there is x̃ > X and a positive number a such that

g(x) ≥ Mf + a ∀x ≥ x̃.

Since x(t) is unbounded, for any x′ ≥ x̃ there is t′ (not necessarily unique) for which
the equality x(t′) = x′ is satisfied. Let t′ = argmin{t ≥ 0 : x(t′) = x′}; that is, the
following hold:

x(t′) = x′ and x(t) < x(t′) ∀t < t′.

Then, we can construct an increasing sequence tn such that

tn → t′, ẋ(tn) ≥ 0 and x(tn − τ) ≤ x(tn) ∀tn.

Clearly, tn can be chosen so large that the inequality

(3.4) g(x(tn)) ≥ g(x′)− a/2 ≥ (Mf + a)− a/2 ≥ Mf + a/2

holds. Consider two cases:
(i) Let x(tn−τ) > X, whereX is defined in Assumption A. Then, since x(tn−τ) ≤

x(tn), from Assumption A we have

f(x(tn − τ)) < g(x(tn − τ)) ≤ g(x(tn)).

Thus

ẋ(tn) = u(tn)f(x(tn − τ))− g(x(tn)) ≤ f(x(tn − τ))− g(x(tn)) < 0.

This is a contradiction.
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(ii) Let x(tn − τ) ≤ X. In this case f(x(tn − τ)) ≤ Mf . Then, for tn satisfying
(3.4) we have

ẋ(tn) ≤ f(x(tn − τ))− g(x(tn)) ≤ Mf − (Mf + a/2) = −a/2 < 0.

Again, this is a contradiction.
Therefore, we have proved that x(t) is bounded.
2. Now assume that f is increasing. Let ξ � lim supx(t). Then, there is a sequence

tn → ∞ such that

(3.5) ẋ(tn) ≥ − 1

n
, x(tn) → ξ, x(tn − τ) → η ≤ ξ.

For example, such a sequence could be generated as follows. Take any k ∈
{1, 2, . . .} and let s̃ such that x(s̃) ∈ (ξ − 1

k , ξ + 1
k ). Then we show there is sk ≥ s̃

satisfying

(3.6) ẋ(sk) ≥ −1

k
and x(sk) ∈

[
ξ − 1

k
, ξ +

1

k

]
.

Indeed, if this is not true, then ẋ(sk) < − 1
k < 0 for almost all s ≥ s̃ satisfying

x(s) ∈ [ξ − 1
k , ξ +

1
k ], which means that x(t) leaves the interval [ξ − 1

k , ξ +
1
k ]. In this

case, since x(t) is continuous and ξ is a limit point, there exist s1, s2 > s̃ defined by

s1 = argmin

{
t ≥ s̃ : x(t)= ξ − 1

2k

}
and s2 = argmax

{
t ∈ (s̃, s1) : x(t) = ξ − 1

k

}
.

Thus x(s2) < x(s1) and there exists sk ∈ (s2, s1) satisfying ẋ(sk) > 0 ≥ − 1
k and

consequently (3.6).
Now consider sequence sk generated by (3.6). Clearly x(sk) → ξ. Moreover, we

can chose a subsequent tn = skn
such that x(skn

− τ) also converges, say, to some
point η. Then ẋ(tn) ≥ − 1

kn
≥ − 1

n that leads to (3.5).
Thus, there exists a sequence tn satisfying (3.5). Since u(tn) ≤ 1

ẋ(tn) = u(tn)f(x(tn − τ))− g(x(tn)) ≤ f(x(tn − τ))− g(x(tn))

and we have 0 ≤ f(η) − g(ξ). As f is increasing, f(η) ≤ f(ξ) and thus f(ξ) ≥ g(ξ).
Then from Assumption A it follows that ξ ≤ X; that is, lim supx(t) ≤ X.

Proposition 3.1 is proved.
Proposition 3.2. Suppose that Assumption A holds. Then for every solution

x = x(x0,u) to (2.1) the following inequality holds:

C(x0,u) ≤ c∗.

Proof. Take any initial function x0 and control u. Consider corresponding solution
x = x(x0,u) = x(t), t ≥ 0. Recall that

(3.7) C(x0,u) = lim inf
t→∞, ẋ(t) exists

[f(x(t− τ))− g(x(t))− ẋ(t)].

Denote ξ = lim supt→∞ x(t) < ∞, and let tn → ∞ be a sequence satisfying (3.5)
considered in the proof of Proposition 3.1. From (3.7) we have

C(x0,u) ≤ lim
n→∞

[
f(x(tn − τ))− g(x(tn)) +

1

n

]
≤ f(η)− g(ξ).
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Here η ≤ ξ and therefore g(η) ≤ g(ξ). Then from definition of c∗ we obtain

C(x0,u) ≤ f(η)− g(η) ≤ c∗.

Proposition 3.2 is proved.
Proposition 3.3. Suppose that Assumption A holds and g is Lipschitz continu-

ous. Then for any given nonzero continuous initial function x0 and any optimal sta-
tionary point x∗ ∈ T there is a control u such that corresponding solution x = x(x0,u)
to (2.1) converges to x∗ and

C(x0,u) = c∗

holds.
Proof. Take any optimal stationary point x∗ ∈ T and any nonzero initial function

x0 = x0(t), t ∈ [−τ, 0]. We will construct required control u in three steps.
1. Taking u(t) = 1, from (2.1) we have

ẋ(t) = f(x(t− τ))− g(x(t)), t ≥ 0.

Denote the solution to this equation by x̃(t). Since x0(t) is continuous and nonzero,
x0(t) > 0 is satisfied on some interval belonging to [−τ, 0]. Thus there is t̃ > 0 such
that x̃(t̃) > 0. We set ũ(t) = 1 for t ∈ [0, t̃] with the corresponding solution x̃(t).

2. Continue control ũ(t) by setting ũ(t) = 0 for t > t̃. We have

ẋ(t) = −g(x(t)), t ≥ t̃, x(t̃) = x̃(t̃).

Let x̃(t) be the solution to this equation. Since g is Lipschitz continuous and x ≥ 0,
we have g(x) ≤ Lx for all x ≥ 0, and therefore

˙̃x(t) ≥ −Lx̃(t), t ≥ t̃.

Applying Gronwall’s inequality we obtain

x̃(t) ≥ x̃(t̃) exp(−Lt) > 0, t ≥ t̃.

From Assumption A we have ˙̃x(t) = −g(x̃(t)) < 0 for all t ≥ t̃. Then it is not
difficult to observe that x̃(t) → 0. Therefore, there are x̃ > 0 and sufficiently large
t1 > τ such that

(3.8) x̃(t) < x̃ ∀t ∈ [t1 − τ, t1].

Thus, on the interval t ∈ (t̃, t1], we define ũ(t) = 0 with the corresponding solution
x̃(t) satisfying (3.8).

3. Next, we continue the above solution for t ≥ t1 by taking

(3.9) ũ(t) = min

{
1,

g(x∗)
f(x̃(t− τ))

}
, t ≥ t1,

with the corresponding solution x̃(t) satisfying

(3.10) ˙̃x(t) = ũ(t)f(x̃(t− τ))− g(x̃(t)), t ≥ t1.

Clearly, ũ(t) ∈ [0, 1] for all t ≥ t1, which means that ũ(t) is a feasible control. By
Proposition 3.1 solution x̃(t) is bounded and therefore it is defined on [t1,∞).
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Given any t ≥ t1, there are two possibilities:

• If f(x̃(t− τ)) ≥ g(x∗), then ũ(t) = g(x∗)
f(x̃(t−τ)) and

(3.11) ˙̃x(t) = g(x∗)− g(x̃(t)).

• If f(x̃(t− τ)) < g(x∗), then ũ(t) = 1 and

(3.12) ˙̃x(t) = f(x̃(t− τ))− g(x̃(t)) < g(x∗)− g(x̃(t)).

Therefore

(3.13) ˙̃x(t) ≤ g(x∗)− g(x̃(t)) ∀t ≥ t1.

Denote p1 = lim inf x̃(t) and p2 = lim sup x̃(t).
3.a. By the definition of p2 there is a sequence tn → ∞ such that

˙̃x(tn) ≥ 0 ∀n and x̃(tn) → p2.

Then from (3.13) we have 0 ≤ g(x∗) − g(p2). Since g is increasing it follows that
p2 ≤ x∗.

3.b. Suppose that p1 < x∗. Then there is a sequence tn → ∞ such that

(3.14) ˙̃x(tn) ≤ 0, x̃(tn) → p1 and x̃(tn − τ) → x′ ≥ p1.

If the set of indices {n : f(x̃(tn − τ)) ≥ g(x∗)} is infinite, then from the relation
(see (3.11))

˙̃x(tn) = g(x∗)− g(x̃(tn))

we have g(x∗)− g(p1) ≤ 0 or p1 ≥ x∗, which is a contradiction.
If the set {n : f(x̃(tn − τ)) ≥ g(x∗)} is finite, then {n : f(x̃(tn − τ)) < g(x∗)} is

infinite. In this case from relation (see (3.12))

˙̃x(tn) = f(x̃(tn − τ))− g(x̃(t))

we have f(x′)− g(p1) ≤ 0 or g(p1) ≥ f(x′). From 3.a we know that lim sup x̃(t) ≤ x∗.
Then, x′ ≤ x∗ < X and from Assumption A it follows f(x′) > g(x′). Therefore,
g(p1) ≥ f(x′) > g(x′), which leads to p1 > x′. This contradicts the last relation in
(3.14).

Therefore, the assumption p1 < x∗ leads to a contradiction. Then we have p1 =
lim inf x̃(t) ≥ x∗ and p2 = lim sup x̃(t) ≤ x∗, which means that solution x̃(t) converges
to x∗ : x̃(t) → x∗ as t → ∞.

Now consider the control function ũ(t). Since f(x∗) > g(x∗) and x̃(t) → x∗, from
(3.9) it follows that ũ(t) < 1 for sufficiently large t, and ũ(t) → g(x∗)

f(x∗) as t → ∞. Then

lim
t→∞

˙̃x(t) = lim
t→∞[ũ(t)f(x̃(t− τ))− g(x̃(t))] = 0.

Denote the control ũ(t) and solution x̃(t) constructed in this way by u and x =
x(x0,u), respectively. The value of the functional in this case is

C(x0,u) = lim
t→∞[f(x̃(t− τ))− g(x̃(t))− ˙̃x(t)] = f(x∗)− g(x∗) = c∗.

Proposition 3.3 is proved.
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From Propositions 3.2 and 3.3 we conclude the following theorem about the exis-
tence of optimal solutions.

Theorem 3.4 (existence). Suppose that Assumption A holds and g is Lipschitz
continuous. Then given any nonzero continuous initial function x0 there exists an
optimal control u such that corresponding solution x = x(t) converges to some optimal
stationary point and the objective function achieves its maximum possible value c∗:

C(x0,u) = c∗ and x(t) → x∗ ∈ T as t → ∞.

4. Stability of optimal solutions. Theorem 3.4 shows that given any nonzero
continuous initial function x0 there is an optimal control u such that the objective
function achieves its maximum possible value c∗. Moreover, one of such optimal solu-
tions converges to some optimal stationary point. The aim of this section is to prove
that all the optimal solutions are stable in a sense that each of them converges to some
stationary point; that is, the turnpike property holds for the problem (2.1)–(2.3).

First we present the following proposition.
Proposition 4.1. Suppose that Assumption A holds. Let x = x(x0,u) =

x(t), t ≥ 0, be a solution to (2.1) such that C(x0,u) = c∗. Then for every ε > 0
there is Tε < +∞ such that

(4.1) ẋ(t) ≤ g(x(t− τ))− g(x(t)) + ε a.e. t ≥ Tε.

Moreover

(4.2) lim sup
t→∞

x(t) ∈ T.

Here T is the set of optimal stationary points defined by (2.6).
Proof. We have

C(x0,u) = lim inf
t→∞, ẋ(t) exists

[f(x(t− τ))− g(x(t))− ẋ(t)] = c∗.

Then, for every ε > 0 there is Tε < +∞ such that

f(x(t− τ))− g(x(t))− ẋ(t) ≥ c∗ a.e. t ≥ Tε.

By the definition of c∗ in (2.5) we have

f(x(t− τ))− g(x(t− τ)) ≤ c∗.

From the last two inequalities we obtain (4.1). Now we show (4.2).
Denote p = lim supt→∞ x(t). As in (3.5), there is a sequence tn → ∞ such that

(4.3) ẋ(tn) ≥ − 1

n
, x(tn) → p, x(tn − τ) → η ≤ p.

We have

(4.4) c∗ ≤ lim inf
n→∞ [f(x(tn − τ))− g(x(tn))− ẋ(tn)] ≤ f(η)− g(p).

Now, if p > η, then g(p) > g(η) and therefore c∗ < f(η) − g(η), which is a
contradiction. If p = η, then c∗ ≤ f(p)− g(p), which yields p ∈ T.

Proposition 4.1 is proved.
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Proposition 4.1 describes the structure of optimal solutions x satisfying C(x0,u) =
c∗ when t is sufficiently large. In what follows we consider the case when the set of
optimal stationary points T has an empty interior. In this case the convergence of
optimal solutions to some steady state will be proved. Such a property of optimal
solutions is called the turnpike property [21, 37, 53]. We note that it is quite difficult
to prove the turnpike property in the case when the set T contains more than one
optimal stationary points, even in the absence of time delay (see, for example, [35]).

Theorem 4.2 (turnpike property). Suppose that Assumption A holds, g is Lip-
schitz continuous, and the set of optimal stationary points T has an empty interior.
Then given any nonzero continuous initial function x0 and any optimal control u in
the problem (2.1)–(2.3), there is a stationary point x∗

x0,u ∈ T such that corresponding
optimal solution x = x(x0,u) = x(t), t ≥ 0, converges to that point; that is,

(4.5) lim
t→∞x(t) = x∗

x0,u ∈ T.

Proof. Take any optimal solution x = x(x0,u) = x(t), t ≥ 0, to problem (2.1)–
(2.3). By Theorem 3.4 we know that C(x0,u) = c∗. Denote

q := lim inf
t→∞ x(t) and p := lim sup

t→∞
x(t).

From Proposition 4.1 it follows that p ∈ T. If q = p, then (4.5) is true. Consider the
case q < p.

Since g is Lipschitz continuous, there is L < ∞ such that

(4.6) |g(p)− g(x)| ≤ L|p− x| ∀x ≥ 0.

Take any integer number K satisfying K > (2L+ 1) τ. Clearly K ≥ 1.
Let η > 0 be an arbitrary small number such that

(4.7) η <
p− q

2K+1
.

Denote δ = 2K−1η. Clearly δ < p−q
4 and q < p− 2δ < p− δ < p.

By the definition of p and q, there are sequences t1n < sn < t2n such that t1n → ∞
and the following hold:

• x(t1n) = x(t2n) = p− δ for all n = 1, 2, . . . ;
• x(t) < p− δ for all t ∈ (t1n, t

2
n);

• x(sn) = p− 2δ;
• x(t) ∈ (p− 2δ, p− δ) for all t ∈ (sn, t

2
n).

Since x(t) < p−δ < p for all t ∈ (sn, t
2
n), and g is increasing, from (4.6) we have

(4.8) g(p)− g(x(t)) ≤ L(p− x(t)) ∀t ∈ (sn, t
2
n).

Take any small number ε ∈ (0, η
2 ). Clearly ε < δ

2K
or

(4.9) 2K
ε

δ
< 1.

Since g is continuous and strictly increasing, by definition of p given number ε
there is T 1

ε < ∞ such that the inequality g(x(t − τ)) < g(p) + ε is satisfied for all
t ≥ T 1

ε . Then from (4.1), by assuming Tε is large enough to satisfy Tε ≥ T 1
ε , we obtain

that

(4.10) ẋ(t) ≤ g(p)− g(x(t)) + 2ε a.e. t ≥ Tε.
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A. Now we take any n such that t1n > Tε and perform the following K ≥ 1 steps.
A.1. Since p− x(t) < 2δ for all t ∈ (sn, t

2
n), from (4.8) and (4.10) we obtain

(4.11) ẋ(t) ≤ L(p− x(t)) + 2ε ≤ 2Lδ + 2ε a.e. t ∈ (sn, t
2
n).

Denote a1 = sn, b1 = t2n. Then

δ = x(b1)− x(a1) =

∫ b1

a1

ẋ(t)dt ≤ (2Lδ + 2ε)(b1 − a1)

or

b1 − a1 ≥ 1

2L+ 21(ε/δ)
.

From (4.9) we have 21(ε/δ) ≤ 2K(ε/δ) < 1 and therefore

(4.12) b1 − a1 ≥ 1

2L+ 1
.

A.2. (if K ≥ 2) Consider p − δ
2 ∈ (p − δ, p) and let a2 ≥ b1 and b2 > a2 be

chosen so that x(a2) = p− δ, x(b2) = p− δ
2 , and

x(t) ∈
(
p− δ, p− δ

2

)
∀t ∈ (a2, b2) and x(t) ≤ p− δ

2
∀t ∈ [b1, a2].

Note that since x(t) is continuous and p is a limit point, such points a2, b2 exist and
are given by

b2 = argmin{t : t > b1, x(t) = p− δ/2}, a2 = argmax{t : t ∈ (b1, b2), x(t) = p− δ}.

Now, similar to (4.11), since p− x(t) < δ for t ∈ (a2, b2) we have

ẋ(t) ≤ Lδ + 2ε a.e. t ∈ (a2, b2).

Then

δ

2
= x(b2)− x(a2) =

∫ b2

a2

ẋ(t)dt ≤ (Lδ + 2ε)(b2 − a2)

or

b2 − b1 ≥ b2 − a2 ≥ 1

2L+ 22(ε/δ)
.

Now, again from (4.9) we have 22(ε/δ) ≤ 2K(ε/δ) < 1 and therefore

b2 − b1 ≥ b2 − a2 ≥ 1

2L+ 1
.

We can continue this process by constructing ai, bi, i = 2, . . . ,K, such that

bi−1 ≤ ai < bi, x(ai) = p− δ

2i−2
, x(bi) = p− δ

2i−1
,
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and

bi − bi−1 ≥ bi − ai ≥ 1

2L+ 1
∀i = 2, . . . ,K,

(4.13)

x(t) ∈
(
p− δ

2i−2
, p− δ

2i−1

)
∀t ∈ (ai, bi), and x(t) ≤ p− δ

2i−1
∀t ∈ [bi−1, ai].

Therefore we obtain

bK − a1 = (b1 − a1) +
∑

i=2,...,K

(bi − bi−1) ≥
∑

i=1,...,K

1

2L+ 1
≥ K

2L+ 1
> τ.

B. Thus we have shown that for any number n, for which t1n > Tε, there is a point
s̄n=̇bK such that

x(s̄n) = p− δ

2K−1
= p− η.

Moreover x(sn) = p− δ and s̄n − sn = bK − a1 > τ. Therefore s̄n − τ ∈ (sn, s̄n) and
(4.13) yields x(s̄n − τ) < p− η.

This process can be repeated for any n̄ > n, satisfying t1n̄ > max{Tε, s̄n}. In this
way we can construct sequences of points snm

< s̄nm
− τ < s̄nm

, snm
→ ∞, such that

(4.14) x(snm
) = p− δ, x(s̄nm

) = p− η, x(s̄nm
− τ) < p− η,

and x(t) < p− η for all t ∈ (snm
, s̄nm

).
Then, it is not difficult to observe that we can construct a sequence of points

ξnm
< s̄nm

such that

s̄nm
− ξnm

→ 0, snm
< ξnm

, ẋ(ξnm
) ≥ 0, and x(ξnm

− τ) < p− η.

We note that the solution x(t) to (2.1) is Lipschitz continuous and that is why
x(ξnm

) → p − η. Moreover, we can choose a convergent subsequence of the sequence
{x(ξnm

− τ)}. For simplicity let x(ξnm
− τ) → p̄. Obviously, p̄ ≤ p− η.

Thus from (2.3) we have

c∗ = C(x0,u) ≤ lim inf
m→∞ [f(x(ξnm

− τ))− g(x(ξnm
))− ẋ(ξnm

)]

or

c∗ ≤ f(p̄)− g(p− η).

Now, if p̄ < p − η, then g(p̄) < g(p − η) and we obtain a contradiction c∗ <
f(p̄)− g(p̄). Then the equality p̄ = p−η should be satisfied. In this case from the last
inequality we obtain c∗ = f(p− η)− g(p− η), which yields p− η ∈ T.

Since η is an arbitrary number satisfying (4.7), we have shown that

p− η ∈ T ∀η ∈
(
0,

p− q

2K−1

)
.

This contradicts the assumption that T has an empty interior.
Theorem 4.2 is proved.
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5. Examples.

5.1. Generalized Ramsey model with time delay. This model is a special
case of problem (2.1)–(2.3) when f is a production function in the form f(x) =
Axα with A > 0, α ∈ (0, 1), and function g is linear: g(x) = ax with a > 0. The
corresponding system (2.1) assumes the form

ẋ(t) = u(t)Axα(t− τ)− a x(t) a.e. t ≥ 0.

For any u ∈ (0, 1], this equation has a unique positive stationary point xu given by

xu =
(
Au
a

) 1
1−α . An optimal stationary point is unique and corresponds to the control

u(t) = α. This optimal stationary point x∗ and corresponding steady consumption c∗

are defined by

x∗ =

(
Aα

a

) 1
1−α

, c∗ = A(1− α)

(
Aα

a

) α
1−α

.

It is not difficult to show that all the assumptions of Theorems 3.4 and 4.2 are
satisfied. Then, given any nonzero initial function x0(t), there exists an optimal
solution. Moreover, all optimal solutions converge to x∗.

5.2. Blood cell production model. This model was proposed in several pa-
pers [12, 26, 28] as a mathematical description of human blood cell production. It
was used to describe and justify certain experimental data, in particular in the case
of chronic myelogenous leukemia [28]. The equation reads

(5.1) ẋ(t) = kβ(x(t− τ))x(t− τ)− [β(x(t)) + δ]x(t),

where the nonlinear function β(x) = β0/(1 + xn) is a monotone Hill function and
β0, k = 2 e−γτ , n, δ are all positive constants defined by the physiological process
behind the equation (see [28] for more details). We assume that parameters of the
model satisfy the following conditions:

(5.2)
(n− 1)2

4n
<

δ

β0
< 1.

The stability of equilibria and the existence of periodic solutions depending on
the parameters of the model have been well investigated. However, no optimal control
problem based on this equation has been introduced yet. In this paper we formulate
one such optimal control problem considering the factor e−γτ in the definition of
parameter k and the coefficient β0 as time-dependent control variables.

5.2.1. Introducing optimal control problem. The blood cell production
model considered in [28] consists of two phases: resting phase G(0) and prolifera-
tive phase P. Equation (5.1) related to the resting phase. In particular, function

xβ(x) = β0
x

1 + xn

describes the number of cells entering phase P in a unit time period. Parameter β0

here is subject to discussion. It is numerically defined by the mean of data fitting;
however, it can also be considered as a time-dependent control variable β0(t) with
values in some interval, say, [0, β0], that controls the rate of cells entering phase P.
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On the other hand, parameter k = 2 e−γτ describes the attenuation in the cell
proliferation due to apoptosis (programmed cell death). We can consider the factor
e−γτ ∈ (0, 1) in a more general setting. We assume that k = 2u, where u ∈ [0, 1]
is a time-dependent control parameter describing the fraction of cells xβ(x) that are
actually divided.

Therefore by employing two control parameters β0 and u, model (5.1) can be
represented in the form

(5.3) ẋ(t) = u(t)β0(t− τ)
2x(t− τ)

1 + xn(t− τ)
−
[

β0(t)

1 + xn(t)
+ δ

]
x(t).

This equation describes the dynamics of the number of cells in the resting phase.
However, the control variables β0 and u are related to both phases G(0) and P. It
is quite natural to assume that the cell division process happens in an optimal way;
that is, the control parameters β0 and u follow some optimality criteria.

The following are two possible criteria that can be considered.
Criteria 1. Maximize the number of cells β0x

1+xn entering the proliferation phase.

Criteria 2. Minimize the number of dividing cells u β0x
1+xn .

The first criteria relating to the resting phase is, in some sense, an attribute
of living systems. It targets maximizing the number of cells in the resting phase by
“sending” as many cells as possible to divide. The second criteria is related to the
second phase P. It can be considered as a minimization of cost/energy required for
division.

Such a multicriteria problem can be reduced to a single criteria to combine the
interests of both phases. In this paper, we consider the simplest way of generating
such a single criteria by taking their difference, for example, in the form

J(t|u, β0) = [1− u(t)]
2β0(t− τ)x(t− τ)

1 + xn(t− τ)
.

The aim would be to maximize J(t|u, β0) when t goes to infinity. In this way, we can
formulate a control problem for system (5.3) by involving two control variables u(t)
and β0(t).

First we discuss some strategies for generating better control function β0(t) to
maximize J(t|u, β0). Consider stationary points of (5.3) corresponding to stationary
control u(t) ≡ u, β0(t) ≡ β0 with u > 0.5 and β0 > δ (see condition (5.2)). We have

x =

(
β0

2u− 1

δ
− 1

) 1
n

.

In this case, the value of J(t|u, β0) is

J(t|u, β0) =
2δ(1− u)

2u− 1

(
β0

2u− 1

δ
− 1

) 1
n

.

Clearly, in terms of maximization of functional J(t|u, β0) the choice of larger β0

is preferable. In other words, it is clear that the optimal β0(t) could be expected to
be at its maximal possible value. We do not provide any particular mathematical
formulations to support this claim; however, it is true at least in terms of stationary
states. Taking into account this factor, we can set β0(t) ≡ β0, where β0 is assumed
to be the possible maximum value for this parameter. This in particular means that



16 MUSA A. MAMMADOV

the number of cells entering the proliferative phase is controlled as a feedback control
β0x
1+xn .

Therefore, a trade-off situation is most likely related to the control parameter u
rather than β0. This is itself a very interesting observation. In the provided mathe-
matical modeling, it means that a “real” control in the blood cell production process
happens in the proliferative phase that in turn may depend on existing environment
(nutritious, competition, etc.).

After fixing the control β0(t) at a constant level β0, we can formulate the following
optimal control problem:

(5.4) ẋ(t) = u(t)
2β0 x(t− τ)

1 + xn(t− τ)
− β0 x(t)

1 + xn(t)
− δ x(t), u(t) ∈ [0, 1];

(5.5) Maximize lim inf
t→∞, ẋ(t) exists

[
2β0 x(t− τ)

1 + xn(t− τ)
− β0 x(t)

1 + xn(t)
− δx(t)− ẋ(t)

]
.

In this case, problem (5.4), (5.5) reduces to problem (2.1)–(2.3) after denoting

f(x) =
2β0x

1 + xn
and g(x) =

β0x

1 + xn
+ δx.

5.2.2. Turnpike property. First we check the assumptions of Theorems 3.4
and 4.2.

1. Consider function g(x). Clearly g(0) = 0 and g(x) > 0 for all x > 0. We show
that d

dxg(x) > 0 for all x > 0. We have

d

dx
g(x) =

β0(1 + xn)− β0nx
n + δ(1 + xn)2

(1 + xn)2
.

Denote ξ = 1 + xn. Then, the equation d
dxg(x) = 0 leads to

δξ2 − β0(n− 1)ξ + β0n = 0.

However, this equation does not have any positive solution ξ thanks to condition (5.2),
which yields β2

0(n− 1)2 − 4δβ0n < 0.
Therefore, d

dxg(x) > 0; that is, g(x) is strictly increasing. On the other hand,

taking into account d
dxg(0) = β0 + δ and limx→∞ d

dxg(x) = δ < ∞, it is not difficult
to observe that function g(x) is Lipschitz continuous on R

+.
2. Now consider function f(x). Clearly f is continuous and f(0) = 0. Consider

the difference

�(x) =̇ f(x)− g(x) =
β0x

1 + xn
− δx.

Clearly �(0) = 0. There is only one positive point X, for which �(X) = 0, given
by

(5.6) X =

(
β0

δ
− 1

) 1
n

.

From condition (5.2) it is clear that X > 0 is well defined. Moreover �(x) > 0 if
x ∈ (0, X) and �(x) < 0 if x > X. Therefore, condition A is satisfied.
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3. Now we calculate optimal stationary points. It is not difficult to show that the
equation d

dx�(x) = 0 has only one positive solution x∗ given by

x∗ = (b− 1)
1
n , where b =

−β0(n− 1) +
√

β2
0(n− 1)2 + 4β0δn

2δ
> 1.

Thus there is only one optimal stationary point. The corresponding control value (the
proportion of cells to divide) is

u∗ =
1

2

(
1 +

δ

β0
b

)
< 1.

Therefore, all the assumptions of Theorems 3.4 and 4.2 are satisfied. This means
that if the parameters of the model (5.4) satisfy condition (5.2), then the turnpike
property is true; that is, not depending on initial conditions, all optimal solutions
converge to the unique stationary point x∗.

4. In [28] it is proved that system (5.1) may have periodic solutions that have
been observed in chronic myelogenous leukemia. A unique positive stationary point
of (5.1) is given by

x∗ =

[
β0

δ
(2e−γτ − 1)− 1

] 1
n

.

Clearly, both stationary points x∗ and x∗ are in the interval (0, X), where X is defined
in (5.6). Moreover, x∗ is also a stationary point of the system (5.4) corresponding to
the control u∗ = e−γτ < 1.

If parameters γ and τ satisfy the relation

γτ = − ln

(
1

2
+

1

4

[√
(n− 1)2 + 4nδ/β0 − (n− 1)

])
,

then the stationary point x∗ of (5.1) coincides with the optimal stationary point x∗

of the problem (5.4), (5.5).
The result obtained above (the turnpike property) shows that the existence of

periodic solutions to (5.1) may be an indication of nonoptimal functioning in the
proliferative phase.
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