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Abstract, This paper studies stability of error bounds for convex constraint systerns iu Banach
spaces. We show that certain known sufficient conditions for local and global error bounds actually
ensure error bounds for the family of functions being in a sense small perturbations of the given one.
A single inequality as well as semi-infinite constraint systems are considered.
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1. Introduction. In this paper we continue our study started in {21] of sta-
bility of error bounds of convex constraint systems under data perturbations. For
the summary of the theory of error bounds and its various applications to sensitivity
analysis, convergence analysis of algorithms, and penalty functions methods in math-
ematical programming, the reader is referred to the snrvey papers by Azé 2], Lewis
and Pang (18], Pang [24], as well as the book by Auslender and Teboule [1].

For an extended real-valued function f : X = Ry, 1= RU {400} on a Banach
space X the error bound property is defined by the inequality

1) d(z, S5) < clf(2)]+,
where Sy denotes the lower level set of f:
(2) Spi={zreX: f(z) <0},

¢ > 0, and the notation a, := max(«, 0) is used.

Given an Z € X with f(Z) = 0 we say that f admits a (local) error bound at Z
if there exist reals ¢ > 0 and 8 > 0 such that (1) holds for all © € Bs{Z). The best
bound—the exact lower bouud of all such c—coincides with [Er f{£)]~!, where

2 e tmint L)
o Br f(E) = N nl S )

is the ervor bound modulus [9] (also known as the conditioning rale [25]) of f at Z.
Thus, f admits an errar bonud at Z if and only if Er f(Z) > 0.
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STABILITY OF ERROR BOUNDS 3281

If {1) holds for some ¢ > 0 and all z € X, then we say that [ admits a global error
bound. In this case, the best bound—the exact lower bound of all such ¢-—coincides
with [Er fi~!, where

e @)
(4) Brf = W S

is the global error bound modufus. {In (3, 4] the last constant is denoted ag(f).)

An extensive literature deals with criteria for the error bonnd property in terms
of various derivative-like abjects defined either in the primal space (divectional deriva-
tives, slopes, etc.) or in the dual space {different kinds of subdifferentials) (3, 4, 5,
7, 9,10, 11, 12, 13, 15, 16, 18, 19, 20, 22, 23, 24, 25, 27, 28, 29]. The convex case
has altracted special attention, starting with the pioneering work by Hoflinan {14] on
error bounds for systems of affine functions; see [3, 7, 10, 18].

Lf f is a lower semicontinnous convex function, the following conditions are known
to provide sufficient criteria for the error bound property.

o Local criteria:
{L2) 0 ¢ Bdry df(2).
o Global criteria:
(G1) inf s(z)50 (0,8 f(2)) > 0;
(G2) inf (=0 d(0, Bdrydf(z)) > 0.
The following implications are true:

(L2) = (IL1), (G2) = (G1),

while conditions (L1) and (G1) are actually necessary and sufficient for the corre-
sponding error bound properties—see Theorems 1 and 22 below.

We show in Theorems 8 and 25 that the stronger conditions (L.2) and (G2) char-
acterize stronger properties than just the existence of local or global error bounds for
[; namely, they guarantee, respectively, the local or global error bound property for
the family of functions being in a sense small perturbations of f.

In this paper we consider also semi-infinite constraint systems of the form

(8) fulz) €0 forall teT,

where T' is a compact, possibly infinite Hausdorff space, and f; . X — R, t € T, are
given continuous functions such that t — f;(z) is continuous on T for each © € X,
and we establish similar characterizations of stability of local and global error bounds
with respect to perturbations of the functions fi—see Theorems 18 and 28.

The organization of the paper is simple: besides the current introdnctory section
it contains two more sections devoted to local and global error bounds, respectively.

If not specified otherwise, we consider extended real-valued functions on a Banach
space X. The class of all lower semicontinuous proper convex functions on X will be
denoted I'g{X}. Bs(Z) is the closed ball with center at & and radius 4. B* denotes
the dnal unit ball. For a set @, the notations int @ and Bdry 2 mean the interior and
the boundary of @, respectively.

2. Stability of local error bounds. In this section we discuss relationships
between the local error bonnd criteria (L1} and (L2) and establish conditions for
stability of local error bounds for the constraint systems (2) and (5).

Copytight © by SIAM. Unauthorized reproduction of this article is prohibited.
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THEOREM 1. Let f € To(X}, f(Z) = 0. Consider the following properties:

(i) f admits an error bound at T, that is, Er f(Z) > 0;

(i) 7(f,Z) :=Hm 'lrlfx_,,..,-;’f(_.,,)>_,r(ﬂ—,) d{0,8f(x)) > 0;

(ii1) s{f, T) == d(0,Bdry &f(z)) > 0;

(iv) 0 8/(2);

(v) 0 €intdf(3).

Each of the properties (1i)-(v} is sufficient for the error bound property (1). More-
over,

(a) <(f,7) S 7(f,2) = Er f(Z);

(b) [(iv) or (v)] & () = (1) < ().

Proof. (a) We first prove the ineqnality ¢(f, Z) < =(f,Z). If 0 € int 8 f(&}, then

flz) = "2 —%) forall v*eq(f,2)B* z € X,
and consequently
fzyz(f, @)z —xF| forall xze X.
On the other hand,
—f{z) 2 (=", 3—-x) forall ze X, =" € &f(x).
Adding the last two iuequalities together, we obtain
(z", v~y 2 ¢(f,E)|lx—z|| forall ze€ X, z* € df(z),
and consequently ||\z*| > ¢(f,z) if 2™ € 3f(z) and = # Z. Henee, 7(f, %) = <(f, F).
IL0 ¢ int2f(z), then ¢(f,T) = d{D,&f(Z)), and thus for any € > 0 there exists a
& > 0 such that ||z*|| = ¢(f, %) — ¢ for all z* € 0f(z) and = € Bs(Z). It follows that
=(f,3) 2 <(f, 2)-
The next step is to show that Er f(Z) <€ 7(f,Z). Consider any z € X with
f{z) > 0 and any ¥ € 8f{z). By definition of the subdifferential,
flw)— fle) 2 {z" u—2) lorall uweX.
In particular,
=flz) 2z e u—x) 2 =|lz"| ju—z|| forall u=e Sy,
and therefore

G
d(z, 5(f))

which iinmnediately implies the inequality Er f(z) < v(f, Z).

The proof of the opposite inequality 7{f, ) < Er f(Z) is a typical example of the
application of the Ekeland variational principle (8]. Suppose that Er f(Z) < a. We
are going to show that 7(f, &) < a. Choose a § € (v(f, Z),a). By definition (3), for
any & > 0 there exists an = € Bs/2(z) such that

< Jl=*il,

0 < flz) < Bd(x, S(f}).
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Consider a lower semicontinuous function g : X — Res given by glu) = {f(u)]s. It
holds that g(u) = 0 for all w € X and g(z) = f(z) < Bd(z,5(f}). By Ekeland’s
theorem, there exists an Z € X such that | — || € (8/c)d(z, S(f)) and

gluy—g@) +ojlu—-2] >0 forall ueX.

Since ||£ — )| < d(z, S(f)) and S is }ower semicontinuous, we have g(u) = f(u) for all
» near x, and it follows from the last inequality that j|z*|} € « for some z* € df(Z).
In addition, || ~ %|| < 2|z — Z|| € 4. Hence, 7(f, %) < .

{b) The equivaience {{iv) or (v)j « (iii) is obvious. The chain (iii} = (ii) < (i)
follows from (a). O

Remark 2. Constant 7(f, %) providing a necessary and snfficient characterization
of the local error bound property is also known as the strict outer subdifferential
slope |8f17(Z} of f at Z |9). Criterion (ii) was used in [18, Theorem 2.1 (c}}, {23,
Corollary 2 (it)], [25, Theorem 4.12}, [28, Theorem 3.1]. Criterion {iii) was used
in [10, Corollary 3.4}, [12, Theorem 4.2]. The equality Er f(Z) = 7(f, %) seems to
be well known. See also characterizations of linear and nonlinear conditionings in [6,
Theorem 5.2].

The inequality in (a) and the implication {iii) = (i1) in (b) in Thecrem 1 can be
strict.

Ezagmple 3. f(z) =0, z € B. Obviously 0 € Bdry 8f(), <(f,%) = 0, while
T(f, %) = o0 for any Z € R.

* Ezample 4. flz) =0ilz <0, and f(z) = z if x > 0. Then 3f(0) = 10,1] and
0 € Bdry &f(0), s{f,7) = 0, while 7{f,0) = 1.

Thus, condition (iii) in Theorem 1 is in general stronger than each of the equivalent
conditions {1} and (ii). It characterizes a stronger property than just the existence of
a local ervor bonud for f at Z; namely, it guaranties the local error bound property
for the family of functions being small perturbations of f.

DEFRINTTION 5. Let f{Z) < oo and ¢ > 0. We say that g : X — Ry is an
e-perturbation of f near & and write g € Pth{f,T,¢) if g(3} = f(Z) and

lotz) = (=)l _

6 limsu -
(©) i P

Obviously, if ¢ € Ptb (f,&,¢), then f € Ptb(g,%, ).

Remark 6. If the functions are continuons at T, then condition (6) implies g(Z) =
f{£). The last reqnirement can be dropped from Definition 3 if condition (6) is
replaced by a more general one:

- i s 1060) = J(2) = @) = F@N .

TE |z =z N

In this case, a perturbation function does not have to coincide with the given one at
the point of reference. In fact, the difference o ;= g(%) — f(T) can be arbitrarily large.
However, this seemingly more general case can be easily reduced to the above one: if
a function g satisfies (7), then the function z — g(z) — & satisfies (6).

Note also that neither g nor f in the above definition is assumed convex. The
characterization below is {partially) in terms of Fréchet subdifferentials which in the
convex case reduce to subdifferentials in the sense of convex analysis.

ProrosiTion 7. Let [ be conver, f{Z) < oo, ande > 0. Ifg € Ptb ([, F,¢), then

(i) Gg(z) C 8f(Z) +ecB”;

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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(i) d(0,0¢(z})) > d(0,0] (%)) - &;

(iif) d(0,Bdry 89(Z)) = d(0,Bdry 8/(x)) —e.

Proof. (i) Let z* € 9g(Z). Then, by definition of the Fréchet subdifferential and
by (6), for any £ > 0 there exists a § > 0 such that

olz) ~ol8) - "z -5 €
To— =y
W@ =i €
EEETR

for all z, 0 < |l@ — Zj| £ 6. Subtracting the second inequality from the first one and
recalling that ¢(%) = f{Z), we obtain

flx) tele—-z|| - f(2) - ("2~ T)
il — 2

z—£

for all z, 0 < ||z — Z|] £ 6, and consequently @* € &(f + €| - ~E|}(Z) = &f(Z) + ¢B".

(i) follows immediately from {i).

(iii) If € > d(0,Bdry 8f(Z)), the assertion is trivial. Let & < d(0, Bdry 8f(%)).
Then due to (i) zero is either outside both 8f(Z) and 8g(Z) or inside both of them.
In the first case, the assertion coincides with (ii), while in the second one, it follows
from {i). 0

The next theorem shows that condition {iii} in Theorem 1 provides a characteri-
zation of the “corbined” error bound property for the family of e-perturbations of f
near .

THEOREM 8. FLet f € T'o(X), f(Z) =0, ¢ » 0. The following assertions hold
true:

(i) Bro(@) 2 ¢(f,z) — € for any g € To{X) NPtL{f, F,8);

(il) if 0 € Bdry @f(Z), then the function g € To{X) NPtb (f, %, =) defined by

(8) g(w) = flu) +eflu-2l, weX,

satisfies Erg(F) < g;
(ii) if dim X < oo and 0 € Bdry8f(Z), then there erists an z* € B such that
the function g € I'p(X) NPtb{f, F, &) defined by

(9) glu) = flu)+{z",u—-3), uwelX,

satisfies BErg(r) < ¢.
Proof. (i) If g € To(X) NPth(f, L, €), then, due to Proposition 7 (iii) and Theo-
rem 1 {a), we have Br ¢(Z) > <(g,%) > ¢(f, %) — €.
{ii) Let 0 € Bdry 8f(z), £ > 0. Then
flu)>2 0 forallue X,

and there exists a u™ € (£/2)5* such that u* ¢ Jf({Z); that is, there is a y € Byg/q(E)
such that

flyy <lu',y—2) < (&/2)y - =

Obviously, ¢ £ z. By virtne of the Ekeland variational principle (8], we can select an
z € X satisfying |lz—yll < |ly—Z||/2 < £/3, such that the function uw— f(u)+E&||lu—x|
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attains its minimnm at . Hence © € B (Z)\ {%} and 0 € 8f{z} + £B*; that is, there
exists a v* € @f(x), such that |lv™|| < £. Then the function g € I'p(X) defined by (8)
obviously satisfies

g€ Ptb(/f, %, ¢),
9(z) 2 ¢llz - 2| » 0,
d(0, dg(x)) < € + .

As € > 0 can be chosen arbitrarily small, thanks to Theorem 1 (a), Erg(Z) = 7(9,%) <
(iil) Let dim X < co and 0 € Bdry 8f(z). Setting £ = 1/k in the above prool of
(i1) we obtain sequences {zx} C X and {v;} C X snch that

Flze) 20, 0 <l — 2l < 1/,
vy € f(zx), llogll < 1/k.

Without loss of generality (xx — Z)/l|lzx — Z|| = 2, |]zll = 1. Choose an = € X* such
that [Jz*|] = {&*,z) = ¢. Theu {z*,z, — Z} > 0 for all sufficiently large k. 1t lollows
that for such & the function g € I'g(X) defined hy (9) satisfies

g(mk) > 0: d(oaag(ﬁk)) < e+ ]/k

By virtue of Theorem 1 {a}, Erg(z) = 7{4,T) < . O

The last assertiou of the theorem providing a statement in terms of a pertnrbation
by a linear term is important wheu dealing with semi-infinite linear constraint systems
[21].

Given a Mmnction f & I'p{X) with f(Z) = 0 and a number ¢ > 0, denote

(10) Er {Ptb (f,%,€)}(%) := Erg(z).

inf
GETG(X)NPLb{f,%,e)
This number characterizes the error bound property for the whole family of convex
e-perturbations of [ near . Obviously, Ex {Pth (f,,2)HZ) < Fr f(Z) for any £ > 0.

COoROLLARY 9. Let [ € I'o{X), f(E) =0, € > 0. The following assertions hold
true:

) Br (Pth (1,2, 90} (2) 2 <(/,7) - &

(i) 4f 0 € Bdry 8f(z), then Er {Pth(f,Z,)}(%) = 0.

Due to Corellary 9 {1), condition 0 € Bdry &(z) is sufficient for the error bound
property of the family of e-perturbations of f aslong as e < <(f,Z). If 0 € Bdry (),
then, due to Corollary @ (i1}, no family of e-perturbations possesses the error bound
property.

CoroOLLARY 10. Let f € I'n(X), f{(Z) = 0. The following preperties are equiva-
lent:

(i) there exists an £ > 0 such that Br {Ptb{(f,Z,e)}(F) > 0;

(i1) 0 ¢ Bdry ().

We consider now a semi-infinite constraint system (5), where 7" is a compact,
possibly infinite Hausdorff space, f; : X - R, ¢t € T, are given continuous functions
such that ¢ — f;(z) is continuous on T for each x € X.

System (5) is equivalent to the single inequality

flz) <0

Copyright @ by SIAM. Unauthorized reproduction of this article is prohibited.
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in terrns of the continnous function f : X — R defined by

(11) flz) = sup fu(z).
tET

Stability of error bounds criterion for system (3) with respect to perturbations of the
function (11) is given by Theorem 8. We are looking here for stability criteria with
respect to perturbations of the original family of functions {f,}.c7.

Consider another family of continuous functions g: : X — R, ¢ € T, such that t —
g1{z) is continnous on T for each z € X, and the corresponding function g: X = R
defined by

9(@) = sup gu(a).
teT

Given Z € X and € 2 0, the following conditions can qualify as extensions to
families of functions of the e-perturbation property introduced in Definition 5:
{C1) limsup,_; Super lam =S <

[lz—2z]]
(C2) g(&) = f(z) and limsup, _,; sup,ep D =LENAUGELON <
(C3) g(z) = f(Z) and suP,e gy (ay\ (2}, reT l(geiz)=1e (?:)::i__is{l’ D=L < ¢ where 4 is

a given positive number.

All of the above conditions are symmetric, and consequently {g:},er is an £-per-
turbation of {fi}ier near T (with respect to any of these conditions) if and only if
{fiheT is an e-perturbation of {g:}ier.

Since functions f; and g, are continuous, condition (C1) implies equality §,(%) =
fi(x) for all £ € T, and consequently equality g(%) = f(%) and the inequality in
{C2). Hence (C1) = (C2). Obviously (C3) = (C2} and, couversely, if {g;}ier is an
e-perturbation of { fi}ier near T in the sense of {C2), then for any £ > & there exists
a 8 > 0 such that {g,}ier is a E-perturbation of {fi}ier in the sense of {C3).

Condition (C1) looks like a natural generalization of condition (6).

ProrosiTion 11. Let € > 0. ff {g;}ier satisfies (C1), then g € Pt ([, &, €) and
Ag(z) Cof(z)+eB".

Proof. By {C1), we have g{(&) = f(Z), and for any £’ > ¢ there exists a 6 > 0 such
that

lge(z) - filz)| € lz—F|| for all z € Bs(Z), te T,
and consequently
l¢(z) — f{z)| < &llz —Z|| for all z € Bs().

Since €’ can be taken arbitrarily close to £, this condition implies (6). The inclusion

follows from Proposition 7 (i). O
The following denotation is used in what follows:
(12) Te(xy ={t€T: fi(z) = f(z)}.

Remark 12. Proposition 11 remains valid if instead of (C1} one employs the
following weaker set of conditions:

limsup sup __—_lgl{x) — {I{EN <z,
sz reTyay 1T — I

T,(2) = Tr(2).
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The requirerneut that g,(Z) = [i(Z) lor all t € T (even for all ¢ € T((F)) can
be too restrictive for applications. That is why conditions {(C2) and (C3) cau be of
interest. Unlike condition (C1), these weaker properties are not sufficient in general to
guarantee the conclusions of Proposition 11. Some additional assumptions are needed.

From now on in this section we limit ourselves to considering convex functions.
We shall denote by G(X,T} the class of all families {f+}:er of convex contimious
functions f; : X — R such that t ~» f;(x) is continuous on T for each ¢ € X. For
{fi}ier € G(X,T) the convex continuous function f and the set Ty{x) are defined by
{11) and (12}, respectively.

Under the assumptions made, if { fi}rer € G(X,T"), then the directional derivative
/(%) of f at Z is given by the formula (see, for instance, [17, Theorem 4.2.3|, (26,
Proposition 4.5.2])

(13) &)= sup fi(z;z), zeX.
LET,(7)

Given two families { fikser, {a: heer € G(X,T), denote
(14) apq(z) = flz) - inf fi(z).

LET (%)

Obviously aj (z) > 0, and ay4(z) = 0 if and only if Ty(z) € T¢(x). Note that in
general ag () # o5 o(2]).
PROPOSITION 13. Let £ > 0 end fomilies {fi}rer, {a}er € G(X,T) satisfy
condition (C2). The following assertions hold true:
(i) 89(2) € Usso Mocpcs [Uxesp(i) 8f(z) + (e + ayg(2)/0)B7];
(1) if of o(Z) = 0, that is, Ty(Z) C Ty(Z), then 8g(Z) C If(E) + B,
(ii1) 4f condition (C3) is sutisfied with some § > 0, then

ag(zx) € [ |} 07() + (e + ary(@)/0)B" |

0<p<d | z€B(E)
(iv) if in (i) & > € 1= /o o{2), then 89(2) € Upe g,y 9/ (@) + (€ + 6B
Proof. We first prove (ii). It follows from {C2) that
19:(Fx) — fi{Z o) <ellzll forallze X, teT,
and censequently {nsing (13) and inclusion Ty{Z) C Ty (Z))

¢ (Z;z) = sup giTiz) < sup fi(Tz)+ellzll = f1(Z2) +el|lz]] forallz e X.
T, () e Ty (2)

The conclusion foliows immediately.
(i) If as (%) = 0, then the assertion follows from (ii). Let oy g(Z) > 0 and
u* € 8¢(z). By (C3),

sup [{ge(z) = fe(@) —(0(Z) - fi@)] < elle - || for all z € Bs(Z).
L
Then for any = € Bs{Z) one has
(whr-3)<g¢(@mz—1)= sup g3z
tETG(E)

< sup (gilx) —g{2)) < sup (filw) — (@) + ellz — 7).
1ET, (&) LET, (%)
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At the same time,

sup (filz) = fu(®) £ sup fula) — FT) + ayy(2) < flz) = F(3) + op,4(F).

teTy(7) LET, (2
Hence, the continuous convex function
o(z) = flz) — Wz -3) +ellz - Z|, z€X,

satishes

2y < inf L)+ GralE).
{Z) zEB&(E)w(L) 1.5(%)

By virtue of the Ekeland variational principle, for any p € (0,4} we can find an
Z € B,(Z) such that

() + (arg(2)/p)llz — £l 2 (&) for all & € B ().
Since p < § it follows that

0¢ 8p(E) + (ay o)/ p)B" =8f(2) —v" + (e + ay 4(T)/ p)B".

Thus, v € Of () + (€ + ey {T)/p)B*.

Assertion (i} follows from (iii) since condition (C2) implies (C3) with a greater ¢
and some & > 0.

If ey 4(Z) = 0, then assertion (iv) coincides with (ii); otherwise it is a particular
case of (jil} with p = ¢. O

Remark 14. Analyzing the proof of Proposition 13 (iii) one can easily notice that
it remains true if the inequality in condition (C3) is replaced by a weaker one;

o [02) < 2D~ 05 - L@

+€ D5 (NN (2}, 16T, (8) liz — Z||

Furthermore, since the assertion establishes a “one-sided relation” {(inclusion), it is
sufficient to require a one-sided estimate:

(ge(x) — fe(x)) — (9:(%) — fu(2}) <e.

su =
o€ Bs(T)\{Z}, tET, (%) flz — ]

Similarly, the inequality in condition (C2) can be replaced by the following one:

limsup sup (9,‘(35) — f*(T)) - (91(5) — fg(:f))
s X 3€Tg(:':) ”3.’ - .i”

<g.

fNtemark 15. The number oy 4(Z) in Proposition 13 is determined by the values
f(z) and fi(Z). Note that it also depends on the other family of functions {g,} since
the infimum in its definition is taken over ¢ € T,(Z). If g(Z) = f{Z), which is a part of
any of the conditions (C1}, (C2), and (C3}, then a 4(F) can be rewritten equivalently
as

ape(Z) = sup (g.(3) ~ filg)).
€T, (2)

Proposition 13 yields certain relations between distances from zero to subdiffer-
entials of g and f aud their boundaries.

PROPOSITION 16. Let the conditions of Proposition 13 be satisfied. The following
assertions hold true:
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(i) of0 € 89(T) and Ty(Z) C Tr(T}, then d(0,Bdry dg(Z)) < d{0, Bdry df(Z)) +¢;
(i) d(0,89(z)) > infizo SUPgepcs [iRfzen,(zy d(0, Of(x)) — arq(E)/p] —€;
(iil) +f condition (C3) is satisfied with some & > 0, then
d(0,39(Z)) = supPgepes [inf:EEBP(’I:) d{0,0f(x)) — ayg(E)/p] — e

(iv) #fin (i) 0 > € = /oy, (T}, then d(0.09(%)) 2 inl,ep, (7 d(0,0f(z)) ~e—¢;

(v) if 0 & 8f(Z), then for sufficiently small § the subdifferentials in (iii) end {iv)

can be replaced by their boundaries.

Proof. {i) Denote r = d(0,Bdry dg(z)). If < e, the assertion is trivial. If
r > £, then vB* C 9¢(T) and, due to Proposition 13 (it), {r —e)B* C 8f(x). Hence
0 €t df(3) and d(0,Bdry 8f{Z)) > v — =

The estimates in (i), (iii), and (iv} follow from Proposition 13 (i), {iii), and (iv),
respectively.

(v) IF 0 € @f(Z), then 0 ¢ 3f(x) and consequently 4(0, & f(x)) = d(0, Bdry 8f{x))
for all # near Z. If the estimate in (iii) (or (iv)) is nontrivial, that is, the right-hand
side of the corresponding inequality is positive, then it implies d{0, 8g(z)) > 0, and
consequently 0 & 8g(x) and d(0, dg(Z)) = d(0, Bdry dgiz)). 0

In Proposition 16 (i} the subdifferentials of f and g are computed at . In all
other assertions in Proposition 16 the subdilferentials of f are computed at nearby
points, which is not exactly what is needed for establishing stability of error bounds
estimates. Fortunately Proposition 16 (iv} allows us to establish the desired estimate
in terms of 8f(Z).

ProposiTioN 17, Let {fi}ier € G(X,T). Then for any & > 0 and & > 0 there
exisis an £ > 0 such that for all {g; }ier € G(X,T) satisfying condition (C3) and

(15) arq %) <e
it holds that
d(0.99(z)) > (0, 8f(z)) — €.

Proof. Let £ > 0 be given, Due to the upper semicontinuity of the subdiflerential
mapping, there exists an 7 > 0 such that d(0,8f(z)) > 4(0,95(%)) — £/3 for all
z € By(%). Take a positive € < min(§/3,£%/9,%,70?). If the family {g:}.er € G{X,T)
satisfies the assnmptions of the proposition, then € := /a; ,{Z) < min(4, n,£/3) and
it follows from Proposition 16 (iv) that

d(0,09()) 2 _inf _d(0.0](c)) —€ - € 2 d(0,0f(2)) ~&. O

The [ollowing theorem gives a characterization of the stability of local error
bounds for system (5).
THEOREM 18. Let {filter € G(X.T) and f(Z) = 0. The following assertions
hold true:
() IFO < r < ¢(f,8), & > 0, then there exists an € > 0 such that for any
{gehier € G(X, T satisfying
(a) condition (C2) and Ty(Z) C Ty(2) 4f 0 € int 8f(3), or
{b) conditions (C3) and (15) otherwise,
one has Erg{z) > 7.
(i) If ¢(f,Z) = 0, then for any € > O there exists a family {g: }er € G(X,T)
satisfying condition (C1) such that Erg(Z) < ¢.
Proof. (i) Let 0 < 7 < ¢<(f,Z), {geher € G(X,T). By the definition of ¢(f, &),
0 & Bdry df (), that is, either 0 €int f(Z) or 0 & 3f(Z).
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If 0 € ntdf(z), then it is sufficient to take ¢ = ¢{f,Z) — 7. Indeed, by the
definition of <(f,Z) one has <(f,T)B* C 8f(Z). If condition (C2) is satisfied and
T¢(z) € Ty{Z), then, by Propositicn 13 (ii), ¢(f, Z}B* € dg(z) +eB*. Tt follows that
TB* C d3¢(%), and consequently, by Theorewn 1, Erg(Z) > ¢(g, %) = 7.

Suppose now 0 ¢ f(Z). Then ¢(f, ) = d(0,8(z)). Take any £ € (0,¢(f,T) — 7).
Propasition 17 implies the existence of an € > 0 such that for any {g:}rer € G{(X,T)
satisfying conditions (C3) and (15) it holds that

4(0,99(2)) 2 d(0, (&) ~ £ > .

Hence 0 ¢ 39(Z) and, by Theorem 1, Erg(z) = 4(0,89(z)) > 7.

(ii) By Theorem 8 (ii), for any & > 0 there exists a g € I'o{X)NPtb (f, Z,€), given
by (9), such that Erg(%) < &. Since f is continnous, g is continuous too. For ¢ € T" and
2 € X, set gi(s) = fu(e)+9(x) — F(s). Then {g:}eer € G(X,T), 9(a) = supyer g:(c),
and condition (C1) is satisfied. o

Remark 19. Due to the equivalent representation of ay ,{Z) formulated in Re-
mark 15, condition {15) in Theorem 18 is equivalent to the following one:

sup (ge(2) — f:(2)) < &
LeTy(2)

The last inequality is obviously ensured by a stronger condition from [21, Theorem 3|

sup lg: (%) — f1(Z)] < e
teT

The next corollary strengthens {21, Theorem 3].

CoroLLary 20. Let {fihier € G{X,T) and f(T) = 0. The following properties
are equivalent:

(i) there emists an & > 0 such that Brg(Z) > £ for any {g:}hier € G(X,T)

satisfying the conditions in Theorem 18 (i};

(i) 0 ¢ Bdry 85(%).

Remark 21. The inclusion T¢(Z) € T,(Z) in Theorem 18 {b) cannot be dropped—
see [21, Remark 3|.

3. Stability of global error bounds. In this section, we deal with the error
bound property of the set Sy = {z € X : f{z) £ 0} without relating it to a
particular point Z € §7 := {x € X : f{z) = 0}. The next theorem represents a
nonlocal analogue of Theorem 1.

THEOREM 22. Let f € I'o(X), Sy # 0. Consider the following properties:

(i) f admits a global error bound, that is, Br f > 0;

{ii) 7(f}y = inff(5)50d(0,0f(x)) > 0;

(iii) ¢(f) = infp(z)=0 @{0, Bdry & (x}} > 0;

(iv) infpy=0d(0, 8f(x)) > O;

(v} 0 €int@f(x) for some x such that f(z) = 0.

Each of the properties (11)—(v) is sufficient for the error bound property (). More-
over,

(2) {f)=7{f)=EBErf;

by [iv) or (v)] <= (i) = () <« (4.

Proof. The equality in {a) is well known (see {4, Theorem 3.1], [29, Theorem 7]).

If 0 € int 8f(z) for some Z € ST, then S; = {F}, ¢(f) = <(f,%), and <(f)B* C
af(z). It follows that

flz) 2 o(Hllz - ZI|.
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On the other hand, if £~ € §f{z) lor some x # T, then
~f(z) = (2%, —z}.
Adding the last two inequalities together, we obtain
{r*.x— %) 2 <(f)llz - Z||.

Hence, llz*|| = <{f), and consequently 7(f} > <(f).

IE0 ¢ int 8f(u) for allw € 57, then ¢(f) = inl¢y)=p ¢(0, 0 {2)) and the inequality
in (a) follows from [4, Theorem 3.2].

The equivalence [{iv) or (v)] < (iil) in {b) is obvious, while the other one, (ii)
< (1), and the implication (iii) = (i) follow from {(a). 0

Examples 3 and 4 in section 2 are also applicable to global error bounds to show
that inequality (a) and implication {iii) = (ii) in Theorem 22 can be strict. Theo-
rem 22 (a) guarantees that ||z*[l = ¢{f) for any z* € &f(z) with f{z) > 0. The next
asymptotic gualification condition {AQC) ensures the limiting form of this estimate
also for elements of f(2) at some points z with f(z) < 0.

{(AQC) liminfyoo Jzill = <{f) for any sequences zx € X with f(zx) < 0 and z; €
Af(ze), £ =1,2,..., satislying the following:
(a) ether the sequence {z}} is bounded and limp—eo f{zk) =0,
(b) or limg oo [|zk]| = o0 and limgeo f(er)/zkll = 0.

Note that if dim X < oo and Sy is closed, then part (a) of (AQC) automatically
implies liminfy_,c |l2)|| = <(f) and consequently ((AQC) coincides with the asymp-
totic qualificatiou condition introduced in [21].

PropPOSITION 23. Let f € T'g{X), S5 # @, and O ¢ nt8f(z) for all x € 57.
Supposc that (AQC) holds true. Then

s(f) = sup d(0, 8/ (x))

inf
e>0 flz)>—ellz—zu|l -«
Jorany g e X.
Proaf. Since 0 ¢ int 0f(z) for all z € 57, thanks to Theorem 22 {a) we have

SU) = int d0.0/() = inf d(0,0/(z).

Hence,

(16) d(0,df(x}) < 5(f).

sup inf

50 J(Z)> —£llz—xoll—¢
Consider sequences €x 1 0, zx € X, and z} € 8f(zy), £ = 1,2, ..., such that
(17) —eillzr — moll —ex < fzx) < 0.

If {x} is bounded, then it follows from (17) that f(zx) — 0, and consequently part
{a) of (AQC) is satisfied. If {z}} is unbounded, we can assume that ||zx|| -+ oc. Then
(17) implies that limex—co f{zx)/|lze)] = 0; that is, part (b) of (AQC) is satisfied. In
both cases, thanks to (AQC), iminfr e jl2zE|l 2 <(f). Together with (16) this proves
the assertion. 0

Condition {jii) in Theorem 22 corresponds to the existence of a global error bonnd
for a family of functions being small perturbations of f.
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DEMNITION 24. Let Sy # & and £ > 0. We say that g - X - By is an
g-perturbation of f relative to g € dom [ and write g € Pib, (f, €) if Sy # @ and

(18) lg(xo) — f(zo)] S,
(19) up 1090 = J(2)) = (o) = JI
wu e — ull

Condition (19} constitutes the Lipschitz continuity {with modulus £) property of
the difference ¢ — f. Unlike the case of Definition 5, this condition does not involve
the reference point g, which participates only in condition (18).

Clearly ¢ € Ptbo,(f,e) = g+ f(wo) — g{za) € Pib(f, 20, ¢). Basically an &-
perturbation is a result of a small shift and a small retation of the original function.
Note that if there is an =z € X such that f(z) < 0 (in particular, if 0 & @f(%) for
some & € S7), then condition Sy # @ in Definition 24 is satisfied antomatically for a
sufficiently sinall €.

THEOREM 25. Let f € To{X), Sy # 9, and 29 € dom f. The following assertions
hold true:

(i) Suppose that either 0 € intdf(Z) for some T € ST or (AQC) holds. If

0 < 1 < g(f), then there erists an € > 0 such that Erg > 7 for any g €
To(X)NPtb o, (f ).
(it) Suppose that ¢(f)=0. Fore >0 ond I € ST sel

{20) £ = emin(1/2, {lxg — |71,
(21) g(u) = flu) +Elu—z), ueX.

Then g € To(X)NPtb,,{(f.¢) and Erg < e

(iit) Suppose that dim X < oo and (f) = 0. Fore > 0 and @ € S7 let £ > 0 be
defined by (20). Then there exists an x* € £58™ such that the function g in
assertion (1) can be replaced by the following one:

(22) gu) = flu)+ {z",u—7), uwelX.

Proof. (i) Let 0 < 7 < ¢(f). If 0 € int 0f(Z) for some z € ST, then &y = {Z},
and ¢(f} = ¢(f, 7). Take an ¢ € (0,¢{f) — 7). I g € I'o{X) N Ptb,,(f, &), then
g — g(%) € Ptb(f.%, ¢), and it follows from Proposition 7 (iii) that 0 € int dg(Z)
and ¢{g — ¢(Z)) = ¢{9,%) 2 ¢(f)—e > 7. [ =z # & and z* € dg(z), then, due to
Theorem 22, |jz*|| > T. Since, by assumption, S, % @, applying Theorem 22 again,
we conclude that Erg > 7.

Let 0 ¢ int 0 f(z) for all z € ST, let (AQC) hold, and let 7 € (7,<(f)). Then it
follows from Proposition 23 that there exists an ¢ € (0, 7' — 7] snch that l|z*|| > =’ if
z* € 8f(z) and f{x) > —¢llz — zolj — . Consider a function g € Ty (X)NPtb ., ([, 2)-
By definition,

Fflz) 2 g(z)—¢eflz —xpl| —¢ forall zeX.
Hence, if g{z) > 0, then f(z) > —¢ljz — zy]| — ¢, and consequently
d(0,8g(z)) > d(0,8f(z)) —e =27 —e =T

The conclnsion follows from Theorem 22.
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(ii) Let s(f) = 0,£ > 0, and @ € S7. If the function g € Tp(X) is defined by (21},
then g — f is obviously Lipschitz continuous with modulus £ and |g{ze) — f(zo)] < €.
Hence g € Ptb ., (/. ). We need to show that Erg < e.

By defiuition of ¢(f), there exists a y € S} and an »” € Bdry 8f(y) such that
™|l < /2. If it is possible to choovse y # Z, then g{y) > 0 and 7(g) < |lu*|| + £ < &;
thanks to Theorem 22, Brg < £. Otherwise, ||u*|| > £/2 for any v* € Bdry df{y)
with 4 € ST\ {Z}. Since ¢(f) = 0 this means that 0 € Bdry 8f(Z). Then, by
Theorem 8 (ii), Erg<Erg(z)<¢<e.

(i3) Let dim X < 00, ¢(f) = 0,& > 0, and £ € §7. If in the above proof of (ii} it is
possible to choose y # &, then take y* € X” such that (y*,v—Z) = |ly—-Z[, ly"| =1
aud set 7 = £y*; otherwise apply Theorem 8 (iii) instead of (ii). In both cases, if the
function g € [p{X) is defined by (22), then g € Ptb 4, (f,€) and Erg < ¢. ]

Given a function f € To{X) with §; £ @, a point zp € dom f, and a number
g 2 0, denote

(23) Er {Ptha, ([, €)} = Erg.

inf
g€l (X)NPLb =0 (f.€)

This number characterizes the error bound property for the whole family of convex
g-perturbations of f relative to zg. Obviously, Er {Ptb,,(f, &)} € Er f for any 2 €
dom f and £ > 0.

CoroLLARY 26. Let [ € Tw(X), Sy # @, and 50 € dom f. The following
assertions hold frue:

(i) Suppose that either 0 € int8f(Z) for some T € ST or {AQC) holds. Then

sup,q Er {Pib,,(f,6)} > <(f).

(i) Ifs(f) =0, then sup_y, Br{Ptb.,(f )} =0

Due to Corollary 26 {i), under the assumption that either 0 € int /(%) for some
% € 57 or {AQC) holds, condition <(f) > 0 is sufficient for the error bound property
of the family of e-perturbations of f if £ > 0 is sufficiently small. If <(f) = 0, then,
due to Corollary 26 (i1}, the “uniform” error bound property does not hold.

CoROLLARY 27. Let f € To{X) and §; # 0. Suppose that either 0 € it 3f(Z)
for some T € 57 or (AQC) holds. The following properties are equivalent:

(1) for any zp € dom f there exists an € > 0 such that Br {Ptb. ([, )} > O;

(it} for some mq € dom f there exists an £ > 0 such that Er {Ptb ., (f.€)} > 0,

(i) ¢(f) > 0.

The next theorem gives a characterization of the stability of global error bounds
for the infinite convex constraint system (5). Along with the family of continuous
functions {fitier we consider the function f : X — R, and set-valued mapping
Ty . X = T defined by (11) and {12), respectively. To forinulate stability criteria we
need another family of continuous functions {g:}eer together with the corresponding
mappings g and T,. Recall that G(X,T) denotes the class of all families {f:}ier of
convex continuous functions f; : X — R such that ¢ =+ fi(z) is continuous on T [or
each z € X. If {fihier € G(X,T), then f is obviously convex continuous too. If
{fihier € G(X,T) and {g}1er € (X, T), then oy (x) is defined by {14).

THEOREM 28. Let {fi}ier € G(X,T), S5 # §, and zo € X. The folicwing
assertions hold true:

(i) If 0 < 7 < 5(f), then there exists an € > 0 such that Br g > 7 for any

{g:}rer € G(X,T) satisfying Sy # & and one of the following two groups of
conditions:
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{(a) If 0 €intOf(F) for some T € 57, then

00 tmsupeny 1) =) = (08 = L@ _
2I LET H:C - J_';” -
(25) T (Z) C Ty(Z).
(b) IfO&8f(z) for all z € ST, then (AQC) holds and
o) vy 1002 = 1) — ()~ S _
oku, t€T ”:"' —‘U,H
{27) sup |g¢(xa) — fi(za)l < &
teT

{(ii) If s(f) = 0, then for any £ > 0 there exists o family {giher € G(X,T),

satisfying (25)-(27), such that Brg < ¢.

Praof. {i) Let 0 < 7 < ¢(f), {g1hrer € G(X,T). By the definition of ¢(f), two
cages are possible.

(a} 0 € int Of(Z) for some Z € §7. Then §; = {7}, <(f) = <([, %), and <(f) B~ C
Of(Z). Let ¢ € (0.¢(f) — 7). 1f condition (24) is satisfied, then the family {g, —
9(Z) her € G(X,T) satisfies condition {C2) formulated in section 2. 1f additionally
condition (25) is satisfied, then, by Proposition 13 (ii}, ¢(f)B* € 99(Z) + £B™. 1t
follows that (¢(f) —¢}B* € 89(%), and consequently S,_gzy = {Z} and (g — (%)) =
<{f)— > 7. By Theorem 22, 7(g — g(2)) 2 <{g — g{&)) > 7. Since 5, £ B, we have
g(Z) <0, and consequently

Erg=7{g) = inf d(0,0¢(x)) = inf d(0,8¢(z))=+(g—g(Z)) >
§(=)>0 olw)>g(2}

(b) 0 € &f(u) for all w € 7. Then ¢(f) = infyuy=0d(0,8f(x)). For any u € X

and t € Ty{u) we have

glu) — f(u) = gu(u) — sup fo(w) < golw) = fe(u) < lgelu) - fiuw)l,
and consequently
(28) lg(u) = f(u)l < suplge(w) — fe(u)].
teT
By definition (14),
29) ) = F0) - il )

= f{u) —glu) + sup {g:(w) - fi(u)) < 2Zsup |ge(u) — fe(w)].
€T, (u) [AsK
Let 77 € (r,¢{f)). If (AQC) holds true, then it follows from Proposition 23
that, for a sufficiently sinall £ > 0, one has ||[u”]| = 7" if * € 9f{u) and fu) >
=&(|lr = 2ol +1). Choose an £ > 0 satislying /e(r+e)+ 3¢ < fand e +2/e < 77 —T.
Let z* € dg(z) for some z € X with g{z) > 0. If conditiou (26) holds true, then
the family {g: — g(z)hier € G(X, T} satisfies condition {C3) {with £ = x) for any
4 > 0. It follows from Proposition 13 (iii) that

(30) e | )+ (e +aplx)/o)B,
vel,(z)
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where p := /£(||lz — 75| + 1). Thanks te (30), for any v € B{z), it holds that

(31} J) = flz) 2 =(le"| + € + as0(2) /v — 2l 2 =p(llz"|| +€) + ety ().

1f, additionally, condition (27) holds true, then it follows rom (28) and (29) that
(32) Sz} 2 g(x) - sup lg:(za) = filwo)l = €llz — woll > ~&(llz — 2ol + 1),
t

(33)  apglr) < 2sup lg:{w0) = fulza)l + 2¢liz — 2ol < 2e{|fz — @0l +1).

Suppose that ||z7]l < 7. Then (31}, (32), aud (33) yield

fv) > ~[Ve(r + &) + 3¢](Jlz — zoll + 1) = —&(llx — ol + 1),
ctapg(a)fpet2/esT -1

Hence, ||u*l] = 7 for any u* € @f(v) and, thanks to (30), ||z7}| = 7. By Theorem 22,
Erg=r7(g) > 7. '
{i1) By Theorem 25 {ii), for any £ > 0 there exists a g € To(X)NPtb,,{f,€), given
by (22}, such that Er g < €. Since [ is continuous, ¢ is continuous teo. For ¢ € 7" and
x € X, set go{z) = fule) +glz) — Flz). Then {gi}eer € GIX,T), glz) = supyer ge(2),
Ty{z) = Ty(x), and conditions (26), (27) are satisfied. O
The next corollary strengthens [21, Theorem 7).
COROLLARY 29. Lef {fitier € G(X.T) and Sy # &. The following properties
are equivalent:
(i) for any =9 € X there exists an £ > 0 such that Erg = < for all {gi}ier €
G(X,T) satisfying the conditions in Theorem 28 (1);
{ii) for some zg € X there exists an € > 0 such that Erg > € for all {g:}er €
G(X.T) satisfying the conditions tn Theoremn 28 (i),
() {f) = 0.
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