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Abstract 12 

High amylose based nanocomposites plasticized by xylitol were prepared via 13 

twin-screw extrusion. The synergistic interaction in the xylitol-plasticized 14 

nanocomposite was studied via various characterization methods and the unique 15 

behavior of the xylitol-plasticized nanocomposite had been discussed. As revealed in 16 

the XRD and TEM results, good intercalated/exfoliated morphology had been 17 

achieved in all the nanocomposites. Furthermore, the expansion of nanoclay basal 18 

spacing was related to the xylitol/nanoclay ratio. DSC analysis clearly proved the 19 

unique crystallization process of xylitol-plasticized samples. Moreover, in the 20 

crystallization domain results, two domains sized at approximately 93.7Å and 346Å 21 

were found. This observation points to a two-level complex effect from two aggregate 22 

domains; one, the re-aggregation of certain number of silicate layers into domains 23 

which trap some of the amylose polymer chains, and two, the bulk drying process 24 

which combines smaller amylose crystalline domains within a larger amorphous high 25 

amylose matrix. 26 
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1 Introduction 30 

Continuous interests have been drawn on the research related to the starch-based 31 

bionanocomposites in response to the blooming demands of material with 32 

tailored-properties (Kampeerapappun, Aht-ong, Pentrakoon & Srikulkit, 2007; Qiao, 33 

Tang & Sun, 2010; Rhim, 2011). Investigations on using nanoclay as the reinforcing 34 

phase, on account of their very high aspect ratio (100) and versatility (Rhim, Lee & 35 

Hong, 2011; Wang, Zhang, Han & Bai, 2009; Xiong, Tang, Tang & Zou, 2008)  have 36 

been widely carried out in the last decades. Most studies are focused on the 37 

examinations of the properties, mechanisms, and aiming for fabrication of 38 

properties-tailored materials via introducing different plasticizers (Averous, 2007; 39 

Follain, Joly, Dole, Roge & Mathlouthi, 2006; Rhim, 2011) with the aim to 40 

manipulate the bulk properties of the prepared composites. The dominant factor 41 

pertain to its relevant properties is the synergistic interactions in terms of basal 42 

spacing, crystallinity value, moisture content and hydrogen bonding changes among 43 

plasticizer/starch/nanoclay within the hydrophilic system. In a polysaccharide-based 44 

polymeric system, hydrogen bond is the most important bond and the interactions 45 

associated with it are complex and hardly well documented due to the intricate nature 46 

of such macromolecules. Therefore, most studies target to alter or balance the –OH 47 

related interaction from a molecular level, such as incorporating different type (based 48 

on different affinity) of smaller molecule hydrophilic plasticizer. As we have 49 

described before(Chaudhary & Liu, 2012; Liu et al., 2012), All the mentioned factors 50 

are believed to be of utmost importance in affecting and determining the synergistic 51 

interactions in such hydrophilic polymeric network which are in turn reflected as the 52 

different reported values in crystallinity, mechanical properties, and glass-transition 53 

temperature for nanocomposite plasticized by different plasticizers in literatures (Tang 54 

& Alavi, 2011). Although many studies had been published in the last few decades, a 55 

direct comparison of the various results in often difficult because most starch 56 

biopolymer based systems are complex in nature due to their varying ratio of 57 

amylopectin and amylose, presence of plasticizer and the processing conditions and 58 
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water activity of the final product tend to  affect the characterization results. In such 59 

context, under same processing condition, we studied two different plasticizers based 60 

on number of -OH group (glycerol and sorbitol) to illustrate the effect of the 61 

hydrophilicity, stereo-conformation, water activity on the final retrogradation 62 

behavior of the starch biopolymer matrix (Liu, Chaudhary, Yusa & Tadé, 2011b). 63 

Those studies highlighted the importance of the number of hydroxyl groups , 64 

molecule size and the intrinsic properties of the plasticizer in manipulating the  65 

synergistic interactions thereof (Chaudhary, 2010; Chaudhary, Adhikari & Kasapis, 66 

2010; Liu, Chaudhary, Yusa & Tadé, 2011a, b) which were reflected as bulk properties 67 

such as crystallinity, glass-transition temperature and extent of ‘locked’ moisture as 68 

seen through bonding changes in FTIR spectra etc. 69 

 In this study, to further understand the impact of type of plasticizer on the properties 70 

of nanocomposites, a five –OH group plasticizer, xylitol, is investigated. 71 

Comprehensive characterization works were carried out including XRD, DSC and 72 

synchrotron measurements. Particular attentions were paid to distinguishing the 73 

behavior of xylitol-plasticized bionanocomposites in this study, when compared to the 74 

glycerol and/or sorbitol plasticized nanocomposites (based on our previous 75 

publications).  76 

2 Material and Method 77 

2.1 Materials, nomenclature and processing 78 

High-Amylose starch (about 70% amylose), HA-starch, was purchased from National 79 

Starch Company (New Jersey, USA), xylitol was obtained from Food Dept Ltd. 80 

(Melbourne, Australia) and nanoclay (99.5% pure) was generously supplied by 81 

NichePlas Ltd. (Sydney, Australia). 11 samples were prepared at different ratio of 82 

nanoclay/xylitol concentration. Each formulation was presented as a label such as 83 

X105, where ‘X’ refers to the plasticizer type (xylitol, in the current work), the first 84 

digit, ‘1’, refers to the nanoclay content in weight percent (e.g., 1 wt% in X105) and 85 

the last two digits ‘05’ refer to the weight percent of xylitol within the sample. The 86 
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sample nomenclatures are listed in Table 1, where PS refers to the HA-starch sample.          87 

2.2 Characterization  88 

2.2.1 X-ray diffraction  89 

XRD measurements of the prepared samples were performed in a Bruker Discover 8 90 

diffractometer operating at 40kV and 40mA with a 2θ range from 3° to 30° at a 91 

scanning rate of 0.5 °/sec. The basal spacing of the nanoclay was determined from the 92 

Bragg’s equation, λ=2dsinθ (where θ is the diffraction position and λ is the 93 

wavelength). The d-spacing for the pristine nanoclay used in the current study is 94 

11.7Å as provided by the supplier. 95 

2.2.2 Transmission electron microscopy 96 

TEM was performed on ultrathin sections, 150nm in thickness, at JEM-2100 97 

microscope (JEOL, Tokyo, Japan), operating at an accelerating voltage of 200 kV. The 98 

representative samples were sectioned at room temperature with diamond knife using 99 

a Leica Ultramicrotome (EM UC7, Tokyo, Japan). The obtained sections were 100 

sandwiched between two 400-mesh copper grids for TEM observation.  101 

2.2.3 Measurement of glass transition temprature (Tg)  102 

DSC measurement was performed on SEIKO 6200 (Seiko, Japan). About 10mg 103 

sample was placed in an aluminum sealed sample pan. The sample was heated from 104 

-50°C to 250°C at a heating rate of 5°C /min, kept at 250°C for 1 minutes followed by 105 

cooling down to 25°C at 10°C /min. The glass transition temperature (Tg) was taken 106 

as the inflection point of the increment of specific heat capacity. Melting temperature 107 

was recorded for analysis as well.  108 

2.2.4 Synchrotron measurements  109 

Synchrotron beamline BL40B2(Inoue, Oka, Miura & Yagi, 2004) at SPring-8 110 

synchrotron facility (Hyogo, Japan) was used to characterize the prepared samples via 111 

Small Angle X-ray Scattering technique (SAXS). One aluminum filter block was 112 
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employed to decrease the strength of the X-ray so as to obtain an optimized pattern. 113 

The beam was monochromatized to a wavelength of 0.1 nm with an object distance of 114 

1151.76mm. All patterns were recorded on a CCD camera that was calibrated by the 115 

diffraction rings from an AgBH (silver behenate) reference sample. The measurement 116 

time per sample was chosen to eliminate the radiation damage on the tested samples, 117 

which was subsequently determined to be 10 seconds. The diffraction profiles were 118 

normalized to the beam intensity and corrected using an empty background. The data 119 

reduction of the 2-D X-ray scattering patterns was completed with NIKA macros 120 

(Ilavsky & Jemian, 2009) based on Igor 6.02 (Wavemetrics, Lake Oswego, Oregon). 121 

Using the low Q region from the SAXS data, valuable information on the size 122 

distribution of crystalline fractions within the polymer could be determined. The 123 

Maximum Entropy Method (MEM) developed by Potton et al.(Potton, Daniell & 124 

Rainford, 1988) for Irena modeling macros (Ilavsky & Jemian, 2009) was employed 125 

to understand and quantify the crystalline domain morphologies within the polymer 126 

system (Potton, Daniell & Rainford, 1988).  127 

3 Result and Discussion 128 

3.1 XRD results  129 

The XRD patterns for the prepared samples, in Figure 1(a), showed that the basal 130 

spacing (d-spacing) of all the samples increased to different extents regardless of the 131 

nanoclay content. The basal spacing value also suggested that starch and/or xylitol 132 

molecules had successfully migrated into the gallery of nanoclay. Meanwhile, the 133 

TEM images for the representative samples (X210 and X420) are shown in Figure 1 134 

which indicated that most of the samples achieved mixed morphologies 135 

(intercalated/exfoliated co-existed).  136 

It could be also read from Table 1 that, when the nanoclay concentration is fixed, the 137 

d-spacing value increased upon increasing the xylitol content, except the 4% nanoclay 138 

sample where dX420(17.6 Å) is slightly smaller than dX410(17.9 Å). There is no obvious 139 



7 
 

trend that could be found when comparing the sample with different concentration of 140 

nanoclay for same xylitol concentration, and this is different to what was reported in 141 

the glycerol/sorbitol plasticized samples where a positive trend between increase in  142 

nanoclay concentration and increases in the d-spacing can be seen (Liu, Chaudhary, 143 

Yusa & Tadé, 2011a, b).    144 

The MMT characteristic peak occurred in all the samples with xylitol concentration 145 

less than 10% (X105, X210, X305 and X410). This observation was different to what 146 

was found in the glycerol- and sorbitol-plasticized samples (Liu, Chaudhary, Yusa & 147 

Tadé, 2011a, b), where such peak broadening occurred in the 5% plasticizer loading 148 

samples only. In other words, more xylitol (10% compared to 5% in glycerol/sorbitol 149 

samples) is required to achieve the same amount of well-formed crystal structure 150 

(sharp peak) arrangement as observed from the XRD measurement. When compared 151 

to glycerol behavior, this suggested that xylitol hinders the formation of crystal 152 

structure with xylitol/MMT/amylose at low plasticizer concentration. In other words, 153 

when the xylitol amount is less than 10%, the nucleation is relatively more 154 

heterogeneous as reflected as the broaden peak in the corresponding samples. 155 

However, when the concentration is greater than 10%wt, the XRD data can be 156 

interpreted which indicates that relatively greater uniformity in the crystal structure 157 

existed in xylitol-plasticized systems compared to that from glycerol/sorbitol sample 158 

at same plasticizer level. We think that one reason behind this is the strong 159 

plasticizer/plasticizer interaction of xylitol which enhanced the extent of nanoclay 160 

intercalation with the amylose polymer and thus sustained uniform crystal growth. 161 

This is further discussed in the crystallization section.  162 

Furthermore, as shown in Table 1, the basal spacing for different samples is overall 163 

larger than that from glycerol-plasticized nanocomposites but smaller than 164 

sorbitol-plasticized sample. Such results clearly indicated that the expansion degree of 165 

the nanoclay gallery is related to the size of the plasticizer incorporated in the 166 

complex system. In other words, the d-spacing was primarily determined from the 167 
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molecular size of the plasticizer. This is consistent with the findings in our previous 168 

publications on the glycerol/sorbitol plasticizer nanocomposites.  169 

3.2 Crystallinity analysis  170 

The crystallinity results of the prepared samples showed some very interesting results, 171 

especially for the application of flexible and clear packaging materials. The 172 

composites crystallinity was determined from the XRD patterns based on the method 173 

introduced in the previous publication (Lopez‐Rubio, Flanagan, Gilbert & Gidley, 174 

2008), the results are shown in Table 1, standard deviations for crystallinity 175 

calculations are within ± 1%. There are two main factors affecting the crystallinity 176 

(Xc%) of the composites, they are nanoclay and plasticizer concentrations and it is 177 

well known that increasing nanoclay concentration enhances polymer crystallinity due 178 

to its typical nucleation effect, whereas increasing the amount of plasticizer  179 

decreased overall crystalline structure through typical plasticization. 180 

The native crystallinity obtained for high amylose starch is around 10%, and we have 181 

reported in our earlier work that our samples of high amylose starch from corn 182 

showed around 8% bulk crystallinity (Liu, Chaudhary, Yusa & Tadé, 2011b). It has 183 

also been reported that crystallinity values are extremely important to understand 184 

starch retrogradation, where the bulk crystallinity can increase up to 20%. As shown 185 

in Table 1, the incorporation of nanoclay tends to increase the crystallinity slightly, 186 

primarily due to the nucleating effect. However, it is also well known that not only 187 

nanoclay, which is very important for enhanced physical/barrier properties, 188 

plasticizers are needed to improve the flexibility and optical clarity of the amylose 189 

polymer (in the form of thin films), but higher nanoclay concentration possess a 190 

dispersion issue and higher plasticizer concentration increases the retrogradation 191 

behavior. Therefore, it is very interesting to observe that as we increased the nanoclay 192 

and xylitol concentration, their interplay and their interactions with the amylose 193 

polymer balanced the bulk crystallinity. It was also found that the crystallinity value 194 
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of xylitol-plasticized sample were significantly higher than that from 195 

glycerol/sorbitol-plasticized ones.   196 

This finding is very important for the application of such biopolymer nanocomposites 197 

in the field of packaging because the two observations regarding nanoclay 198 

characteristic peak occurred at higher xylitol concentration (higher than 10%) and 199 

overall higher and stable crystallinity values of the nanocomposites suggested that the 200 

xylitol-plasticized system increases the threshold crystallinity of the bulk matrix, and 201 

prevents further polymer reorganization and thus starch retrogradation.   202 

3.3 Avrami Equation analyses based on DSC-crystallization mechanism  203 

As widely known, in polymer–clay systems, the endotherm peak can provide 204 

information on the crystalline phases in the nanocomposites when the clay platelets 205 

have nano-scale interactions. To gain an improved understanding of these interactions 206 

on the bionanocomposites’ crystallization behavior, the crystallization process was 207 

modeled as a combination of several infinitesimal isothermal steps (Lee et al., 1999). 208 

The Avrami equation (Eq 1), which is widely applied in investigating crystallization 209 

behaviors of polymer systems (Lee et al., 1999), was employed to study the 210 

non-isothermal crystallization kinetics of the prepared bionanocomposites  211 

dt
dt

dH
dt

dt
dH

X
t

t
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t

c
t ∫∫ ∞
=

00
/

                                                    (1)                                                                              212 

All the curves had a partial sigmoid shape, and the analysis of the development of 213 

relative crystallinity could be obtained using )exp(1 n
t ktX −−= . A plot of 214 

log[−ln(1 − Xt)] vs. log(t) could provide n, the value depending upon the mechanics 215 

of nucleation and the form of crystal growth, and k, a rate constant containing the 216 

nucleation and growth parameters. The exponent n and the factor k from Avrami 217 

Equation analyses are presented in Table 2. 218 

The n values for the composite samples increased with increasing the xylitol c% at 219 

each fixed MMT amount; same finding was observed with increasing MMT amount 220 
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at fixed xylitol concentration. Because a lower n (composites) compared to n (PS) 221 

indicated the more heterogeneous nucleation. It could be read that, the n value for 222 

<10% xylitol samples are overall smaller (more heterogeneous nucleation) than that 223 

for the >10% xylitol samples. This mutually support the finding from XRD that <10% 224 

xylitol samples showed broaden peak in XRD pattern (corroborate with the finding 225 

more heterogeneous nucleation).  Furthermore, clearly, the increasing of MMT 226 

amount led to an increased in n value which means the nucleation process is 227 

becoming relatively homogenous (higher n value in high MMT samples). this 228 

observation could be explained based on the well-known nucleation effect of MMT 229 

which is becoming the dominant role in a MMT-rich scenario which balanced the 230 

competitive nucleation effect from xylitol and led to relatively homogenous 231 

nucleation process. On the other hand, the next factor k (related to the rate of crystal 232 

growth), which showed a large variation. The high xylitol samples showed an overall 233 

lower value than that from the low xylitol samples regardless the amount of MMT 234 

presented.  235 

3.4 Synchrotron results  236 

Specific models have been developed for SAXS data analysis in different 237 

characteristic systems (Roe, 2000). The background of the sample holder was 238 

subtracted from the raw 2-D X-ray diffraction patterns for representative composites, 239 

as shown in Figure 2.  240 

As shown in Figure 2 the scattering patterns (shape and the intensity) of different 241 

samples were greatly influenced by varying the loading of nanoclay and/or xylitol. 242 

The shape of the scattering pattern changed from approximately circular (X105) to 243 

obviously elliptical (X410), which reflected the growth of lamellar structure/ 244 

crystalline domains within the composites. The SAXS profiles for the obtained 245 

samples are shown in Figure 3. 246 

From Figure 3, the sharp d001 in high xylitol content (15% and 20% xylitol) samples 247 

strongly indicated a closely packed structure of polymer-MMT and polymer-xylitol 248 
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assemblages. In other words, 10% xylitol acted like the critical point in determining 249 

the morphologies of corresponding nanocomposites which is mutually agree with the 250 

suggestion from XRD analysis where only broad peaks were observed in samples 251 

containing less than 10% xylitol. Samples with xylitol content larger than 10% tended 252 

to show an overall tighter molecular packing within the polymeric network regardless 253 

the nanoclay loading. Furthermore, it has been suggested that a closely packed starch 254 

network was an indication of lower polymer chain mobility (Vodovotz & Chinachoti, 255 

1998). This could be linked back to the high Tm values observed for the high xylitol 256 

samples where high xylitol samples showed higher Tm value compared with that from 257 

low xylitol samples.  258 

3.5 Size distribution of the crystalline domains 259 

Two domains were observed in all samples, where the diameters of scatters were 260 

denoted as 1d (around 104.1Å) and 2d (around 350.5Å), Table 3. This finding initiated 261 

the assumption that, the interaction in this complex polymeric system could be 262 

considered as a two scale interaction which led to two different crystalline domains at 263 

two different size ( 1d  and 2d ). Firstly, the smaller molecular components 264 

(xylitol/MMT) start to form crystals at a smaller size 1d (around 100 Å), after that, the 265 

dominate rearrangement of starch chains at a larger-scale promoted the formation of 266 

the second larger size crystalline domain 2d .  267 

As shown in Table 3, the mean scatter diameter for 1d  ranged from 95.3Å to 119.4Å 268 

and the crystal size increased as increasing the MMT concentration except in 1% 269 

MMT samples. This indicated that the crystallize domain size is primarily depended 270 

on the MMT amount, where larger MMT amount led to slightly bigger crystalline size 271 

during the first stage of crystallization process ( 1d ) where the smaller molecular 272 

components (xylitol/MMT) start to form crystals at a smaller size. We can relate this 273 

to the finding from XRD and TEM that the higher degree of intercalation are found 274 
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when increasing the MMT concentration. Higher degree of intercalation is resulted 275 

from the enhanced the MMT/xylitol interaction. On the other hand, the enhanced 276 

MMT/xylitol interaction could in turn slightly increase the size of the crystal 277 

assemblage as well as shown in Table 3. Furthermore, when increasing the xylitol 278 

amount at a fixed MMT%, the MMT/xylitol interactions might led to the formation of 279 

smaller crystalline domains due to the nucleating effect of MMT. Additionally, this 280 

was reflected in the reduced scatter diameter with changing xylitol concentrations.  281 

It had been reported that the formation of another larger size domains could be 282 

correlated to the well-defined retrogradation phenomenon, where the rearrangement 283 

of amylose chains at a larger-scale becomes a dominant process during ageing (Farhat, 284 

Blanshard & Mitchell, 2000).  As showed in Table 3, 2d value (possibly the 285 

rearrangement of the starch polymer chains) is affected by the amount of MMT and 286 

xylitol, where increasing MMT% decreased the 2d value to different extent. 287 

Meanwhile, increasing xylitol amount at a fixed MMT% decreased the 2d  value as 288 

well.  Further, the presence of MMT provides local sites for polymer aggregation 289 

and leads to the formation of larger domains. In other words, emergence of the larger 290 

crystalline domain is the combined effect of, first the re-aggregation of certain number 291 

of silicate layers in to ordered domains during drying (Jasmund & Lagaly, 1993) and 292 

second, the retrogradation of the high-amylose starch polymer which caused the 293 

reorganization of the polymer chains. This is well comply with the hypothesis put 294 

forwarded earlier that the interactions in this complex system should be treated as a 295 

two-level process. Such observations suggested that the crystallization domain 296 

formation in the complex ternary system is system-specific progress that as a result of 297 

the interplay of the two-way interactions such as starch/plasticizer, starch/MMT, 298 

MMT/plasticizer and the interactions within the same component. 299 
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4 Conclusion   300 

The synergistic interaction in the xylitol-plasticized nanocomposite was studied via 301 

various characterization methods and the unique behavior of the xylitol-plasticized 302 

nanocomposite had been discussed. Based on the results from XRD, it could be 303 

concluded that the achievable basal spacing of nanoclay was primarily determined 304 

from the molecular size of the plasticizer. Compared to the glycerol and sorbitol 305 

plasticized samples, the two observations (high Xc% and broadening of XRD patterns 306 

at higher xylitol loading) strongly suggested that in xylitol-plasticized system, the 307 

form of crystal were likely to be slower (broadened XRD pattern) due to the 308 

competitive nucleation effect from both xylitol and MMT, but the total amount of 309 

crystal, higher Xc % values. 310 

Compared to glycerol/sorbitol plasticized samples, as revealed from the DSC results, 311 

starch/xylitol/nanoclay nanocomposite tended to from a firmer polymeric network in 312 

terms of molecular mobility within the system. Amylose starch chains in xylitol 313 

plasticized samples required larger amount of energy before getting mobilized when 314 

compared to the glycerol/sorbitol samples. Two domains sized at approximately 315 

104.1Å and 354.62Å were found. These observations resulted from the combined 316 

effect of the re-aggregation of certain number of silicate layers in to ordered domains 317 

during drying and the retrogradation behavior of the high-amylose starch polymer.  318 

       319 
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Figure Captions 

Figure 1  (a) WAXD diffractograms for xylitol – plasticized samples; where the dotted line 
indicated the position of clay peak in the XRD curve (b) TEM images for X210 
and X420 

Figure 2  Raw 2-D SAXS patterns for X105/X305 and X210/X410. 

Figure 3 SAXS Profiles for xylitol-plasticized samples. 

 

 

  



 

 
Figure 1  (a) WAXD diffractograms for xylitol – plasticized samples; where the dotted line 
indicated the position of clay peak in the XRD curve (b) TEM images for X210 and X420. 

 
  

Dotted line indicated the 
position of Pclay after extrusion

50nm

50nm



 
Figure 2  Raw 2-D SAXS patterns for X105/X305 and X210/X410. 

  



 

Figure 3 SAXS Profiles for xylitol-plasticized samples. 
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Table captions 

Table 1 Basal spacing, characteristic nanoclay peak position (Pclay), glass-transition 
temperature (Tg) and melting te mperature (Tm) for xylitol-plasticized nanocomposites. 

Table 2 The exponent n and the factor k obtained from a non-isothermal crystallization 
analysis for nanocomposite samples plasticized by xylitol. 

Table 3 Radius values (Å) from size distribution calculated by MEM method for xylitol-
plasticized low moisture content samples. 

 

 

  



Table 1  
Basal spacing, characteristic nanoclay peak position (Pclay), crystallinity, glass-transition 
temperature (Tg) and melting temperature (Tm) for xylitol-plasticized nanocomposites. 

Sample 
ID PS** X200** X400** X105 X115 X210 X220 X305 X315 X410 X420 

Xc*(%) 7.48 8.23 12.5 7.05 11.4 13.4 11.26 9.7 9.34 10.09 9.01 
Tg (°C) 49.5 60.17 68.95 55.7 49.6 56.25 39.7 58.5 50.6 50.0 48.6 
Tm (°C) 128.5 124.43 120.55 218 204 233 237 133 213 153 246 
Pclay(o)    5.09 4.73 5.03 4.83 5.2 4.72 4.92 5.02 
d-spacing 
(Å) - 16.5 18.2 17.3 18.7 17.6 18.3 17.0 18.7 17.9 17.6 

*crystallinity calculated from the method described in Lopez-Rubio et al. 2008 
**reproduced from (Liu, Chaudhary, Yusa & Tadé, 2011b)  

 

  



Table 2  
The exponent n and the factor k obtained from a non-isothermal crystallization analysis for 
nanocomposite samples plasticized by xylitol. 

Sample ID X105 X115 X210 X220 X305 X315 X410 X420 
n 0.62 0.73 0.52 1.50 0.71 1.42 1.11 1.61 
k -1.21 -2.4 -1.69 -1.32 -1.26 -2.38 -2.91 -1.12 

 
  



Table 3  
Radius values (Å) from size distribution calculated by MEM method for xylitol-plasticized 
low moisture content samples. 

Sample ID 1d *( Å ) 2d *( Å ) 

X105 119.3 357.7 
X115 99.7 341.3 
X210 98.3 364.1 
X220 95.1 345.1 
X305 104.2 350.1 
X315 101.6 336.2 
X410 106.3 348.1 
X420 102.3 338.6 

* d : mean scatter diameter (Å) 
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