
Learning Bayesian Networks based on
Optimization Approaches

Sona Taheri

This thesis is submitted in total fulfilment of the
requirement for the degree of Doctoral of Philosophy

School of Science, Information Technology
and Engineering (SITE)
University of Ballarat

PO Box 663
University Drive, Mount Helen
Ballarat, VIC 3353, Australia.

Thesis Supervisors:
Dr. Musa Mammadov, Assoc Prof. Adil Bagirov

October 2012



Abstract

Learning accurate classifiers from preclassified data is a very active research topic in machine

learning and artificial intelligence. There are numerous classifier paradigms, among which

Bayesian Networks are very effective and well known in domains with uncertainty. Bayesian

Networks are widely used representation frameworks for reasoning with probabilistic infor-

mation. These models use graphs to capture dependence and independence relationships be-

tween feature variables, allowing a concise representation of the knowledge as well as efficient

graph based query processing algorithms. This representation is defined by two components:

structure learning and parameter learning. The structure of this model represents a directed

acyclic graph. The nodes in the graph correspond to the feature variables in the domain,

and the arcs (edges) show the causal relationships between feature variables. A directed

edge relates the variables so that the variable corresponding to the terminal node (child) will

be conditioned on the variable corresponding to the initial node (parent). The parameter

learning represents probabilities and conditional probabilities based on prior information or

past experience. The set of probabilities are represented in the conditional probability table.

Once the network structure is constructed, the probabilistic inferences are readily calculated,

and can be performed to predict the outcome of some variables based on the observations of

others. However, the problem of structure learning is a complex problem since the number

of candidate structures grows exponentially when the number of feature variables increases.

This thesis is devoted to the development of learning structures and parameters in Bayesian

Networks. Different models based on optimization techniques are introduced to construct
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an optimal structure of a Bayesian Network. These models also consider the improvement

of the Naive Bayes’ structure by developing new algorithms to alleviate the independence

assumptions.

We present various models to learn parameters of Bayesian Networks; in particular we

propose optimization models for the Naive Bayes and the Tree Augmented Naive Bayes by

considering different objective functions.

To solve corresponding optimization problems in Bayesian Networks, we develop new opti-

mization algorithms. Local optimization methods are introduced based on the combination

of the gradient and Newton methods. It is proved that the proposed methods are globally

convergent and have superlinear convergence rates. As a global search we use the global

optimization method, AGOP, implemented in the open software library GANSO. We apply

the proposed local methods in the combination with AGOP.

Therefore, the main contributions of this thesis include (a) new algorithms for learning

an optimal structure of a Bayesian Network; (b) new models for learning the parameters of

Bayesian Networks with the given structures; and finally (c) new optimization algorithms

for optimizing the proposed models in (a) and (b). To validate the proposed methods, we

conduct experiments across a number of real world problems.
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Chapter 1

Introduction

The task of data classification is to assign objects to several predefined categories. Currently,

data classification is widely applied in numerous areas, and various techniques have been

developed. It is divided to supervised data classification and unsupervised data classifica-

tion. This research focuses on Bayesian Networks applied for supervised classifiers involving

optimization approaches. Bayesian Networks are among the most commonly used methods

in machine learning, and their use have received considerable attention [5, 6, 63, 68].

1.1 Background

The background of this research is presented in two subsections: Bayesian Networks and

optimization.

1.1.1 Bayesian Networks

Bayesian Networks are also known as belief networks, causal probabilistic networks, and

graphical probability networks. These networks have attracted much attention recently as a

possible solution to complex problems related to decision support under uncertainty.

Let us first give a brief discerption to the conditional probability and the Bayes’ Theorem

as they are fundamental components of BNs. The probability of event A (an hypothesis)
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conditional on the occurrence of some event B (evidence) is denoted by P (A|B). If we are

counting sample points, we are interested in the fraction of events B for which A is also true,

and we have

P (A|B) =
P (A,B)

P (B)
,

this is often written in the form

P (A,B) = P (A|B)P (B),

and referred to as the product rule, this is in fact the simple form of the Bayes Theorem. It is

important to realize that this form of the rule is not, as often stated, a definition. Rather, it

is a theorem derivable from simpler assumptions. The Bayesian Theorem can be used to tell

us how to obtain a posterior probability of a hypothesis A after observation of some evidence

B, given the prior probability of A and the likelihood of observing B were A to be the case:

P (A|B) =
P (B|A)P (A)

P (B)
. (1.1)

Bayesian Networks (BNs) are directed acyclic graphical representations of probabilistic

and conditional probabilistic relationships that are constructed by the set of variables. BNs

are very successful in reasoning between the variables via conditional probabilities, and have

long been used to encode expert knowledge about uncertain domains [54]. To augment

available expert knowledge, many researches have been done to construct BNs. Constructing

a BN from data is the learning process that is divided in two steps: structure learning

and parameter learning. The structure learning process needs to select the arcs (edges)

between variables (features) which connect child variables with the set of parent variables, and

therefore construct a network from data. In addition to providing a network that will allow us

to predict behavior under conditions that we have not seen, the structure can also incorporate
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domain expert knowledge to provide more reliable suggestions. Once the structure has been

specified, then training the network is straightforward. It consists of computing probabilities

and conditional probabilities called parameter learning. Given a set of variables, the more

challenging problem is to learn a structure to present the connections among the feature

variables.

The learning components of BNs, all together, define the joint probability distribution

P (X) for the set of variables X = {X1, X2, ..., Xn}, where Xi denotes both the variable and

its corresponding node. Let Pa(Xi) denote the set of parents of the node Xi. When there

is an arc from Xi to Xj , then Xj is called the child variable for the parent variable Xi. A

conditional dependency P (Xi|Pa(Xi)) connects a child variable with a set of parent variables.

In particular, given a structure, the joint probability distribution for X is given by

P (X) =
n∏

i=1

P (Xi|Pa(Xi))

Figure 1.1 illustrates a simple typical BN. It describes the causal relationships among the

season of the year (X1), whether rain falls (X2) during the season, whether the sprinkler

is on (X3) during that season, whether the pavement would get wet (X4), and whether the

pavement would be slippery (X5). The joint probability distribution for this sample is:

P (X1, X2, X3, X4, X5) = P (X1)P (X2|X1)P (X3|X1)P (X4|X2, X3)P (X5|X4).

1.1.2 Optimization Problems

Finding parameters and structures in BNs leads to optimization problems. To solve these

problems in this thesis, we apply local and global optimization methods. We introduce new

globally convergent local optimization methods. The idea in these methods is based on the

combination of the gradient and Newton methods. It is well known that the Newton methods

have a quadratic convergence rate. However, they are very sensitive to initial points which
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Figure 1.1: A Simple Bayesian Network

often lead to failure in practical applications. On the other hand, the gradient methods are

globally convergent but they have a linear convergence rate. The proposed methods in this

thesis are globally convergent and, at the same time, have high convergence rates. As a global

optimization method, we apply the AGOP method introduced in [86, 87]. This algorithm

was designed for optimization problems with box constraints. It uses a line search mechanism

where the descent direction is obtained via a dynamic systems approach. It is applicable to a

wide range of optimization problems requiring only function evaluations to work. We apply

this global optimization method in conjunction with the newly suggested local optimization

methods.

1.2 Motivation for the Research

The reasons for our choice of BNs are multiple: Firstly, they can encode dependencies among

all variables; therefore they readily handle situations where some data entries are missing.

BNs are also used to learn causal relationships, and hence can be applied to gain understand-

ing about a problem domain and to predict the consequences of intervention. Moreover, since

BNs in conjunction with Bayesian statistical techniques have both causal and probabilistic

semantics, they are an ideal representation for combining prior knowledge and data. In ad-
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dition, BNs in conjunction with Bayesian statistical methods offer an efficient and principal

approach for avoiding the over fitting of data [92].

There are several difficulties when applying BNs, which are mainly related to learning pro-

cess. Learning parameter with a given structure is one difficulty, whereas learning structure,

itself, is another problem. The structural BN learning is much harder problem compared to

parameter learning since the number of candidate networks grows exponentially when the

number of variables increases. In fact, it has been proved that learning an optimal BN is

an NP-hard problem [27, 55]. However, research in this direction is essential because of its

enormous usefulness, as much for end user applications.

1.3 Outline of the Thesis

This thesis focuses on BN models; in particular structure learning and parameter learning.

We find structures and parameters in BNs by introducing different strategies. Since the

definition of structures in BNs is a very difficult problem, priori or manually defined structures

are commonly used models for BNs. Naive Bayes (NB) [75] is the most commonly used model

of BNs due to its simple structure, fast learning and at the same time being able to provide

quite high accuracy in many data classification problems. However, the strong assumption

in the NB that all features are conditionally independent given the class is often violated

in many real world applications. In this research, we introduce different methods in order

to improve the performance of the NB. The first one is alleviating the feature independence

assumption. We propose two new algorithms to eliminate this assumption. In the first

algorithm, each feature depends on the class and at most one other feature. The dependency

between features in this algorithm is found by using conditional probabilities. The second

algorithm finds unrestricted dependencies between features iteratively. Each feature in this

algorithm has the class and several features as parents. Some features could have a large

number of parents, whereas others just have a few. The number of these parents is defined
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by the algorithm internally.

Another alternative without violating the feature independence assumption in the NB is

using feature (attribute) weights. We present a novel attribute weighted NB by assigning

weights to conditional probabilities. An objective function has been constructed based on

the NB structure and the attribute weights. The number of weights for each attribute is

considered as the number of class labels. These weights are considered in the form of powers

to conditional attribute class probabilities. The weights, then, are found by using a local

optimization method.

We also propose a new algorithm to find an optimal structure in BNs based on global

optimization. Although a BN can represent arbitrary feature dependencies, learning an

optimal BN from data is an NP-hard problem. To discover better structure, the application of

global optimization methods is natural. We apply global optimization method in conjunction

with the proposed local methods to find an optimal structure in a BN.

Once the best structure has been specified, then the network is trained by learning pa-

rameters. In this research, we introduce three different optimization models to find optimal

values of the NB’s parameters. We construct different objective functions with some unknown

variables corresponding to class probabilities and conditional feature class probabilities. To

optimize these functions to find optimal solutions, we apply newly developed local optimiza-

tion methods.

Tree Augmented Naive Bayes (TAN) is another important model in BNs. Unlike the NB,

the TAN [42] allows additional edges between features that capture correlations among them.

In fact each feature has the class and at most one other feature as parents. Friedman et al.

[42], showed that the TAN maintains the robustness of the NB, and at the same time displays

better accuracy. The TAN approximates the dependency between features by using a tree

structure imposed on the NB structure. In this research, we apply a similar strategy to the

NB’s for learning parameters of the TAN. We consider an objective function involving the

unknown variables for the class probabilities, and the optimal values of these variables are
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computed by applying the proposed local optimization method.

Finally, we introduce our novel local optimization algorithms to solve the models proposed

for BNs efficiently. The proposed algorithms are based on the combination of the gradient

and Newton based methods. Two different strategies are introduced in this research; in the

first one, the step length is determined only along the anti-gradient direction, and in the

second case the step length is considered along both directions.

Therefore, the following significant problems are formulated in this thesis:

1. To learn optimal structures in BNs by applying different strategies including optimization

techniques.

2. To learn parameters in BNs; in particular the Naive Bayes and the Tree Augmented Naive

Bayes, by using optimization formulation for finding the parameters of these models.

3. To develop new optimization methods to solve the optimization problems in 1 and 2

efficiently:

- Local methods: We mainly concentrate on the combination of the gradient method with

the Newton

based methods [88, 121, 122].

- Global methods: We apply the method AGOP introduced in [86, 87] in conjunction with

the newly suggested local optimization methods.

4. Application of the developed models to the real world problems. We validate the proposed

algorithms for BNs using real world data sets taken from the UCI machine learning repository

and the LIBSVM.

1.4 Structure of the Thesis

In this section a brief description of the format of the presented thesis (PhD by publication)

is given. An introduction is followed by explication of nine papers having different status

of publication. A literature review of BNs, local and global optimization methods and ap-
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plication of the optimization in BNs are provided in next Chapter. Chapters 3 to 5 present

the original formats of published, or submitted to publish of our research work related to

BNs, optimization and application of optimization in BNs. The semantic structure for Chap-

ters 3 to 5 with the links between the corresponding papers is shown on the next page in

a flow chart. In Chapter 3, we introduce new algorithms for learning BNs. In Chapter 4,

we propose new local optimization algorithms for solving systems of nonlinear equations and

unconstrained optimization problems. Chapter 5 presents applications of the optimization

in BNs. We conclude the thesis by providing final remarks and recommendation for future

work.
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Chapter 2

Literature Review

In this chapter, we present a literature review of Bayesian Networks as well as other concepts

and methods related to them which we require for our discussion in the latter part of the

Thesis. After a brief description of data classification in Section 2.1, we describe Bayesian

Network models in Section 2.2. Subsection 2.2.1 presents approaches to structure learning

of Bayesian Network models. In Subsection 2.2.2, we discuss learning the parameters of

Bayesian Networks once the structure is known. Some commonly used Bayesian Network

models are explained in Subsection 2.2.3 to Subsection 2.2.5. We present several advantages

of Bayesian Networks over alternative methods and also applications of them in Subsections

2.2.6 and 2.2.7, respectively. In Section 2.3, we review briefly optimization methods and

application of them to Bayesian Networks. Finally, in Section 2.4, we conduct a brief review

of discretization methods which we apply in our experiments.

2.1 Data Classification

Data classification is divided into two types: supervised data classification where labeled

objects as training sets are required to build the classifier, and unsupervised data classification

(clustering), where unlabeled data are fed to the learning system which then chooses an

internal organization on its own. The main distinguish between them is that supervised data
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classification require a list of predefined classes at the beginning, while unsupervised data

classification is given only unlabeled examples. Throughout this research we assume the

supervised data classification.

The task of supervised data classification is to assign objects to several predefined cate-

gories. For instance, documents can be categorized according to their contents. Examples

of classification applications include image and pattern recognition, medical diagnosis, loan

approval, detecting faults in industry applications, and classifying financial market trends.

Estimation and prediction maybe viewed as types of classification.

According to the number of classes, labels, of a classification problem, there are three main

classification categories [80].

1. Binary classification: In this category, there are two classes, such as Yes or No. All

examples in this setting will be assigned a positive (1) or negative (−1) integer based on

whether or not they belong to the corresponding class.

2. Multi-class classification: In the real world, examples generally have different topics

or belong to different classes based on their content. As multi-class setting attempts to

classify examples based on their main topic, so that examples can belong to one and only

one class. In order to deal with multi-class problems, different approaches have been ex-

plored in the literature. There are two types of approaches for multi-class classification. The

first one is constructing and combining several binary classifiers, called decomposition ap-

proaches. Another one is considering all data in one optimization formulation, called single

machine approaches. Several methods have been proposed for decomposition approaches, for

instance, one-vs-all approaches [9, 106], all-vs-all approaches [42, 50], and error-correcting

code approaches [2, 29, 32]. Unlike the decomposition approaches, the single machine ap-

proach attempts to solve a single optimization problem to find q functions simultaneously

rather than combine the solutions to a collection of binary problems [129] and [132].

3. Multi-label classification: If an example can belong to more than one class, then we

have a set of multi-labeled classification problems. There exists a number of multi-label
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classification methods. Similar to multi-class classification methods, [128] group the existing

multi-label classification methods into two main categories: problem transformation methods

and algorithm adaptation methods [80].

2.2 Bayesian Networks

Bayesian Networks (BNs) are high level representations of probability distributions over a set

of variables that are used for building a model of the problem domain. The benefit of BNs

lies in the way such a model (structure) can be used as a compact representation for many

naturally occurring and complex problem domains.

BNs were developed in the late 1970’s to model the semantic and perceptual combination

of evidence in reading. The capability for bidirectional inferences, combined with a rigorous

probabilistic foundation, led to the rapid emergence of BNs at the early 1980’s as the method

of choice for uncertain reasoning in artificial intelligence, expert system, statistic and data

mining [24, 53, 61, 100, 113]. For an introductory overview of BNs, we refer the reader to

[25, 61, 100] and for a detailed analysis, to [53, 62, 101].

A BN is associated with a directed acyclic graph. The nodes in the graph correspond to the

feature variables in the domain, and the arcs (edges) show the causal relationships between

feature variables. The direction of the arrow indicates the direction of causality. Edges also

determine some qualifying terms for nodes. When two nodes are joined by an edge, the

causal node is called the parent of the other node, and another one is called the child. Other

terminology you might encounter includes the term root node for any node without parents

and leaf node for any node without children. Therefore, a graph G = (V,E) is simply a

collection of variables V and edges E between variables.

How one node influences another is defined by the conditional probabilities for the nodes,

that describes the relationship between it and its parents. Conditional probabilities represent

likelihoods based on prior information or past experience. For each parent and each possible
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state of that parent, there is a row in the conditional probability table (CPT) that describes

the likelihood that the child node will be in some state. Nodes with no parents also have

CPTs, but they are simpler and consist only of the probabilities for each state of the node

under consideration.

A BN for a set of variables X = {X1, X2, ..., Xn} consist of a network structure B that

encodes a set of conditional dependencies assertions about variables in X, and a set P of

local probability distributions associated with each variable. Together, these components

define the joint probability distribution for X. The network structure B is constrained to be

acyclic. The nodes in B are in one to one correspondence with the variable X. We use Xi to

denote both the variable and its corresponding node. Let Pa(Xi) denote the set of parents

of the node Xi in X as well as variables corresponding to those parents. The lack of possible

arcs in B encode conditional independencies. In particular, given the structure B, the joint

probability distribution for X is given by

P (X) =
n∏

i=1

P (Xi|Pa(Xi)). (2.1)

In the light of the above information, properties of BNs can be summarized as below [109]:

1. It has a set of variables and a set of directed edges between variables.

2. Each variable contains a finite set of mutually exclusive states.

3. The variables coupled with the directed edges construct a directed acyclic graph (DAG).

4. Each variable Xi, 1 ≤ i ≤ n, with its parents has a conditional probability table (CPT)

associated with it.

5. It has a joint probability distribution for X = {X1, X2, ..., Xn}, given by formula (2.1).

If variable Xi, 1 ≤ i ≤ n, does not have any parents, then the conditional probability table

can be replaced by the probability P (Xi). A graph is acyclic if there is no directed path

X1 → X2...→ Xn such that X1 = Xn.

Most of BNs researches can be put into two main categories. First, given a BN model
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and its parameters, how can the values of hidden (unobservable) variables be inferred from

a set of observed variables. This process is referred to as BN inference [62]. Second, given a

collection of data, what is the most appropriate BNs model that describes it. In this research

we concentrate on the second category. BNs model identification can be separated into two

tasks: structure learning and parameter learning. Structure learning is related to a graph

and not to the values of the probabilities. Given a structure, parameter learning is related

to find probabilities and conditional probabilities among variables.

There are four classes of learning BNs from data:

1. Known structure and complete data

In this case, the problem is to calculate the conditional probability tables of each node in

the network from the complete data (parameter learning). This is a relatively easier problem

and has been studied extensively [117].

2. Known structure and incomplete data

The problem of learning parameters for a fixed network in the presence of missing values

or hidden variables studied by extending and adapting expectation-maximization (EM) al-

gorithm [43] and by Gibbs sampling. Both of these algorithms use a basic strategy that

is to estimate the missing data on the basis of available data and information about the

missing data. Another approach, called bound and collapse (BC) [110], first bounds the set

of possible estimates consistent with the available information by computing the optima of

estimates that are gathered from all possible completions of the database constraint by the

given pattern of the missing data and then collapses these bounds to a point estimate using

information about the assumed pattern of missing data. Genetic algorithm [91] is used to

evolve both the missing values and the structures to find an optimal BN.

3. Unknown structure and complete data

Our problem falls into this category in which we are given a complete data set and asked to

generate the structure of BNs that fits the data the best.

4. Unknown structure and incomplete data
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Since it is generally not feasible to compute exact solutions to this problem, approximate al-

gorithms generally employed. It is first attacked by a gradient-based algorithm [107] by using

structural EM (SEM) that optimizes parameters with structure search for model selection.

Convergence to a sub-optimal network and need for heavy computation during the learning

are major problems with the structural SEM algorithm. Another approach is to use above

mentioned BC for incomplete data [110]. The problem of learning an optimal structure of a

BN from incomplete data is also considered in [134].

The problem we attack falls into the third class in which we try to learn the structure of

BNs by using the observed data.

2.2.1 Structure Learning

Structure learning is the task of finding out one graph model that best characterizes the true

density of given data. Perhaps the most challenging task in dealing with a BN is learning the

structure. However, research in this direction is essential because of its enormous usefulness,

as much for end-user applications.

Structure learning can be categorized into two levels: micro-level (quantitative part) and

macro-level (qualitative part). In the micro-level, structure learning cares about whether

one edge in the graph should be existed or not. In this case, researchers usually employ the

conditional independence test to determine the importance of edges [26, 101, 118]. In the

macro-level, several candidate graph structures are known, and we need choosing the best

one out. In order to avoid over fitting, model selection methods, such as Bayesian scoring

function [28, 52], entropy-based method [56], and minimum descriptive length (MDL), etc

[22, 42] are often used. Therefore, learning structure of BNs can be divided in two main

categories:

1. Constraint-based Methods: Finding dependencies between the random variables; some

well known algorithms are IC [101], PC [118], and recently TPDA of Cheng et al. [26].

2. Score-based Methods: Using heuristic searching methods to construct a model and then
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evaluates it using a scoring method; we can cite Akaike Information Criteria (AIC) [1],

Bayesian Information Criteria (BIC) [112], Normalized Minimum Likelihood (NML) [72–

74], Mutual Information Tests (MIT) [21, 126] and Minimum Description Length (MDL)

principal [22, 42], Bayesian Dirichlet (BD) score [28], Bayesian Dirichlet equivalence (BDE)

[53], Bayesian Dirichlet equivalence uniform (BDEU) [14], BDgamma [12], CCL [48] and ACL

[16].

Both of these categories have their advantage and disadvantage. Generally the first one is

asymptotically correct when the probability distribution of data satisfies certain assumption,

but as Cooper et al. pointed out in [56], conditional independency tests with large condition

sets may be unreliable. The second one has less time complexity in the worst case, but it

may not find the best solution due to its heuristic nature.

2.2.2 Parameter Learning

Given a structure, learning the parameters are related to finding probabilities and conditional

probabilities. There are two approaches of parameter learning: generative and discrimina-

tive. In generative parameter learning, a model of joint probability of the features and

corresponding class label are learnt and then prediction is performed by using the Bayes’ rule

to determine the class posterior probability. Maximum likelihood (ML) estimation is usually

used to learn a generative classifier. Discriminative approaches model the class posterior

probability directly. Hence, the class conditional probability is optimized when we learn the

classifier which is the most important for classification accuracy.

There are some methods for finding parameters such as ML, ECL, ACL, and CGCL pa-

rameter learning [102]. Learning parameters from data, in detail, is discussed in [15, 116]

and [11, 46, 125].

Some well known BN models are Naive Bayes [36, 75], Tree Augmented Naive Bayes [42],

Super Parent BNs [69], and k-dependence BN [108] which will be presented in the following.

16



2.2.3 Naive Bayes Classifier

Naive Bayes classifier [75] has the simplest structure among BN models. It assumes that all

features are conditionally independent given the class; it means that all features have only

the class as a parent. The Naive Bayes (NB) is attractive as it has an explicit and sound

theoretical basis which guarantees optimal induction given a set of explicit assumptions.

There is a drawback, however, in that some of these assumptions will be violated in many

induction scenarios. In particular, one key assumption that is frequently violated is that the

features are independent with respect to the class. The NB has been shown to be remarkably

robust in the face of many such violations of its underlying assumptions [33].

Let us denote the class of an observation X by C, where C ∈ {C1, · · · , Cq}. To predict the

class of a test observation X by using Bayes’ rule, the highest probability of

P (C = c|X = x) =
P (C = c)P (X = x|C = c)

P (X = x)
, (2.2)

should be found, where c represents a particular class label and x = {x1, x2, ..., xn} stands for

a particular observed feature value. Since in the NB, features X1, X2, ..., Xn are conditionally

independent given the class C, the formula (2.2) could be written as

P (C = c|X = x) =
P (C = c)

∏n
i=1 P (Xi = xi|C = c)

P (X = x)
. (2.3)

Therefore, the NB classifies an observation X by selecting

arg max
1≤k≤q

P (Ck|X) ∝ arg max
1≤k≤m

P (Ck)

n∏

i=1

P (Xi|Ck). (2.4)

A sample of the NB classifier with n features is depicted in Figure 2.1.
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Figure 2.1: Naive Bayes

2.2.4 Tree Augmented Naive Bayes

Friedman et al. proposed Tree Augmented Naive Bayes (TAN) [42]. The TAN attempts to

add edges to the NB. In fact each feature has the class and at most one other feature as

parents. The TAN approximates the dependency between features by using a tree structure

imposed on the NB structure. They showed that the TAN maintains the robustness and com-

putational complexity of the NB, and at the same time displays better accuracy. Algorithm

TAN consists of five main steps:

Algorithm. Tree Augmented Naive Bayes Algorithm

Step 1. Compute the conditional mutual information I(Xi;Xj|C) for each pair of features

i 6= j, using (2.6).

Step 2. Build a complete undirected graph in which the vertices are the features X1, ..., Xn.

Annotate the weight of an edge connecting Xi to Xj by I(Xi;Xj|C).

Step 3. Build a maximum weighted spanning tree.

Step 4. Transform the resulting undirected tree to a directed one by choosing a root variable

and setting the direction of all edges to be outward from it.

Step 5. Construct the TAN model by adding a vertex labled by C and adding an arc from

C to each Xi.
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This procedure reduces the problem of constructing a maximum likelihood tree to finding

a maximal weighted spanning tree in a graph. The problem of finding such a tree is to select

a subset of arcs from a graph such that the selected arcs constitute a tree and the sum of

weights attached to the selected arcs is maximized.

The directions of edges in the TAN are crucial. In Step 4 of the TAN algorithm, a feature

is randomly chosen as the root of the tree and the directions of all edges are set outward

from it. Notice that the selection of the root feature actually determines the structure of the

resulting TAN. Figure 2.2 shows a sample of the TAN with n features.
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Figure 2.2: Tree Augmented Naive Bayes

In information theory, the mutual information of two nodes Xi, Xj is defined as

I(Xi;Xj) =
∑

xi∈Xi,xj∈Xj

P (xi, xj)log
P (xi, xj)

P (xi)P (xj)
(2.5)

and the conditional mutual information is defined as

I(Xi;Xj |C) =
∑

xi∈Xi,xj∈Xj ,c∈C
P (xi, xj , c)log

P (c)P (xi, xj , c)

P (xi, c)P (xj , c)
. (2.6)
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2.2.5 k-Dependency Bayesian Networks

In this subsection, we present an algorithm [108] which allows us to construct classifiers at

arbitrary points (values of k) along the feature dependence, while also capturing much of the

computational efficiency of the NB.

The k-dependence BN allows each feature Xi to have a maximum of k features as parents,

i.e., the number of variables in Pa(Xi) equals to k + 1; k features and 1 class. In the k-

dependence BN, the number k is a priori chosen. According to the definition, the NB is a

0-dependence BN.

Algorithm. k-dependency Algorithm

Step 1. For each feature Xi, compute mutual information I(Xi;C), using (2.5), where C is

the class.

Step 2. Compute class conditional mutual information I(Xi;Xj|C), using (2.6), for each

pair of features Xi and Xj , where i 6= j.

Step 3. Let the used variable list, S, be empty.

Step 4. Let the BN being constructed begin with a single class node, C.

Step 5. Repeat until S includes all domain features:

5.1. Select feature Xmax, which is not in S and has the largest value I(Xmax;C).

5.2. Add a node to the BN representing Xmax.

5.3. Add an arc from C to Xmax in BN.

5.4. Add m = min(|S|, k) arcs from m distinct features Xj in S with the highest value for

I(Xmax;Xj|C).

5.5. Add Xmax to S.

Step 6. Compute the conditional probability tables inferred by the structure of the BN.

20



2.2.6 Advantages of Bayesian Networks

BNs offer several advantages over alternative modeling approaches [54]. The most important

of these advantages are:

1. BNs encode dependencies among all variables, therefore, they readily handle situations

where some data entries are missing.

For example, consider a classification or regression problem where two of the variables are

strongly anti correlated. This correlation is not a problem for standard supervised learning,

provided all inputs are measured in every case. When one of the inputs is not observed,

however, many models will produce an inaccurate prediction, because they do not encode the

correlation between the variables. BNs offer a natural way to encode such dependencies.

2. BNs can be used to learn causal relationships, and hence, can be used to gain under-

standing about a problem domain and to predict the consequences of intervention.

Learning about causal relationships are important for at least two reasons. The process is

useful when we are trying to gain understanding about a problem domain, for example, during

exploratory data analysis. In addition, knowledge of causal relationships allows us to make

predictions in the presence of interventions. For example, a marketing analyst may want to

know weather or not it is worthwhile to increase exposure of a particular advertisement in

order to increase the sales of product. To answer this question, the analyst can determine

whether or not the advertisement is a cause for increased sales, and to what degree. The use

of BNs helps to answer such questions even no experiment about the effects of the increased

exposure is available.

3. Because BNs in conjunction with Bayesian statistical techniques have both causal and

probabilistic semantics, they are an ideal representation for combining prior knowledge (which

often comes in causal form) and data.

Anyone who has performed a real world modeling task knows the importance of prior or

domain knowledge, especially when data is scarce or expensive. The fact that some commer-
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cial systems can be built from prior knowledge alone is a testament to the power of prior

knowledge. BNs have a causal semantics that makes the encoding of causal prior knowledge

particularly straightforward. In addition, BNs encode the strength of causal relationships

with probabilities.

4. BNs in conjunction with Bayesian statistical methods offer an efficient and principal

approach for avoiding the over fitting of data.

2.2.7 Applications of Bayesian Networks

BNs have gained wide spread use in data mining [131]. They are offering a compact pre-

sentation of the interactions in a stochastic system by visualizing system variables and their

dependencies, and therefore, they have been applied in electricity distribution system risk

management [98]. BNs are risk modelings and analysis approaches that have been used for

various types of analysis for different purposes in industrial sectors [4, 65, 98, 127].

BNs are hand-built by medical experts and later used to infer likelihood of different causes

given observed symptoms,therefore, they have been used to build medical diagnostic systems

[40]. Similar systems have also been built for diagnosing problems in factories and other

mechanical systems [93]. In systems biology, a BN structure learning is used to infer different

types of biological networks from data [95].

Burnell and Horvitz [19] show how BNs and logical approaches can be married for program

understanding and debugging. Fung and Del Falvero described an application of BNs to

information retrieval [44]. Hekerman et al. [51] show how BNs can be used for troubleshooting

system failures, including software and hardware problems as well as mechanical failures of

cars and jet engines.

With the advent of small, powerful computers and GUI interfaces, modeling tools based on

BNs are seeing frequent use in real world applications including diagnosis [3], forecasting [49],

automated vision [81], sensor fusion [115], and manufacturing control [135]. BNs are general

modeling frameworks which have been extensively applied in business and finance, capital
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equipment, causal modeling, natural language processing, planning, psychology, scheduling,

speech recognition, vehicle control, forecasting, channel coding, and commonsense reasoning

problems [31, 94, 130].

2.3 Optimization in Bayesian Networks

Finding parameters and structures in BNs leads to some optimization problems. In this

section, we present a brief review about these optimization problems [8, 13, 97, 120], and

then we will give a literature review of optimization methods in BNs.

Optimization is a very important tool in decision science. To use it, we must first identify

some objective, a quantitative measure of the performance of the system under study. The

objective depends on certain characteristics of the system, called variables or unknowns.

The goal is to find values of the variables that optimize the objective. Often the variables

are restricted, or constrained, in some way. The process of identifying objective, variables,

and constraints for a given problem is known as modeling. Construction of an appropriate

model is the first step in the optimization process. If the model is too simplistic, it will not

give useful insights into the practical problem, but if it is too complex, it may become too

difficult to solve. Methods for solving optimization problems take two different approaches;

local optimization and global optimization. In local optimization, the compromise is to

give up seeking the optimal point, which minimizes the objective over all feasible points.

Instead we seek a point that is only locally optimal, which means that it minimizes the

objective function among feasible points that are near it, but is not guaranteed to have a lower

objective value than all other feasible points. Local optimization methods are fast, can handle

large scale problems, and are widely applicable. However, there are several disadvantages of

local optimization methods, beyond (possibly) not finding a globally optimal solution. The

methods require an initial guess for variables. This initial guess or starting point is critical,

and can greatly affect the objective value of the local solution obtained. To find a global
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solution of the optimization problem, one can use global optimization methods. Global

optimization is usually used for problems with a small number of variables, where computing

time is not critical. However, it is worthwhile to use it in cases where the value of finding a

global solution is very high, or the cost of being wrong about the reliability or safety is high.

Optimization problems could be classified according to the nature of the objective func-

tion and constraints (linear, nonlinear, convex), the number of variables (large or small),

the smoothness of the functions (smooth or non-smooth), and so on. Some models con-

tain variables that are allowed to vary continuously and others that can attain only integer

values; these models are called mixed integer programming problems. Possibly an impor-

tant distinction between problems is that have constraints on variables and those that do

not. Constrained optimization problems arise directly in many practical applications. Un-

constrained problems arise also as reformulations of constrained optimization problems, in

which the constraints are replaced by penalization terms in the objective function that have

the effect of discouraging constraint violations.

Optimization models constructed for BNs are usually constrained problems. To transform

these problems in to unconstrained cases, most of the researchers in this area used the La-

grange method [10], [59], [123], [102], [105], [58], [82], [90], [96], [47], [17], while others applied

the penalty method [114], [35], [123], [45], [83], [71] and [66].

To solve unconstrained problems, one can use local or global optimization methods. Exist-

ing local methods used for optimizing BNs are gradient-based methods; for instance, Wilson

et al.[133], Kitakoshi et al. [70], Jing et al. [63], Burge [16], Bang and Gil [7] applied the

Gradient method. Pernkopf and Wohlmayr [102], Hinsbergen et al. [57] and Greiner et al.

[47] used the Conjugate Gradient method. Quasi Newton method has been used by Zhang

et al. [82].

Recently, researchers were more interested using global search methods for BNs’ optimiza-

tion. Various problems to learn a structure of a BN using global optimization have been

defined [99], [77], [79], [78], [67], [111], [60], [140], [109], [30], [84], [22], [85]. Park and Cho
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[99] used the Genetic algorithm to optimize the structure in BNs and make a model more

efficient. A method of finding the most probable structure of BNs based on the intelligent

search made by the Genetic algorithm has been introduced by Larranaga et al. [79]. The

papers [77], [78], [103], [137], [136], and [37] present several new approaches based on the

Genetic algorithm to find the best BNs’ structure among alternative structures. Work by

Kabli et al. [67] illustrates a novel method for finding the structure of BNs using the Genetic

algorithm. They proposed a method that uses chain structures as a model for BNs that can

be constructed from given node orderings. The simulated annealing approaches to learning

the structure in BNs have been studied, for example, in [111], [60], [119]. Application of the

Particle Swarm optimization to discover the best structure of BNs is studied in [140], [109].

Daly and Shen [30] applied the Ant Colony optimization to the problem of learning BNs’

structure that provides a good fit to data. The papers [84], [20], [30] propose BNs’ structure

learning algorithms based on the Ant Colony optimization. Marinescu and Dechter [85] and

Cano et al. [23] applied the Branch and Bound method to learn the structure of BNs.

2.4 Discretization of Continuous Features

BNs learning needs to estimate probabilities and conditional probabilities for each class and

feature-class from data set. For a qualitative feature, its relevant probabilities can be esti-

mated from the corresponding frequencies. For a quantitative feature, its relevant probabil-

ities can be estimated if we know the probability distributions from which the quantitative

values are drawn. However, those distributions are usually unknown for real world data.

Thus how to deal with quantitative features is a key problem in BNs learning. Typically,

there are two approaches to tackling this problem.

The first approach is probability density estimation that makes assumptions about the

probability density function of a quantitative feature given a class. The relevant probabilities

can then be estimated accordingly. For instance, a conventional approach is to assume that
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a quantitative features probability within a class has a normal distribution. This assumption

is made because a normal distribution may provide a reasonable approximation to many real

world distributions [64], or because the normal distribution is perhaps the most well studied

probability distribution in statistics [89].

A second approach is discretization. Under discretization, a qualitative feature is created

for a quantitative feature. Each value of the qualitative feature corresponds to an interval

of values of the quantitative feature. The resulting qualitative features are used instead of

the original quantitative features to train a classifier. Since the probabilities of a qualitative

feature can be estimated from its frequencies, it is no longer necessary to assume any form

of distributions for the quantitative features.

For BNs learning, discretization is more popular than assuming probability density func-

tion. The main reason is that the true density is usually unknown for real world data, and

therefore, BN classifiers with discretization tend to achieve lower classification error than

those with unsafe probability density assumptions [34].

A typical discretization process broadly consists of four steps:

1. Sorting the continuous values of the feature to be discretized.

2. Evaluating a cut-point for splitting or adjacent intervals for merging.

3. According to some criterion, splitting or merging intervals of continuous value.

4. Finally stopping at some point.

After sorting, the next step in the discretization process is to find the best cut-point to split

a range of continuous values or the best pair of adjacent intervals to merge. One typical

evaluation function is to determine the correlation of a split or a merge with the class label.

A stopping criterion specifies when to stop the discretization process. It is usually governed

by a trade-off between lower arty with a better understanding but less accuracy and a higher

arty with a poorer understanding but higher accuracy. The number of inconsistencies caused

by discretization should not be much higher than the number of inconsistencies of the original

data before discretization. Two instances are considered inconsistent if they are the same in
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their feature values except for their class labels.

Generally, the discretization methods could be supervised or unsupervised. A distinction

can be made dependent on whether the method takes class information into account to find

proper intervals or not. The methods that do not make use of class membership informa-

tion during the discretization process are referred to as unsupervised methods. In contrast,

discretization methods that use class labels for carrying out discretization are referred to as

supervised methods. There are several supervised and unsupervised methods to discretize

quantitative features [138]. In following subsections, we present the most popular supervised

discretization method, Fayyad and Irani’s method, and the newest unsupervised discretiza-

tion algorithm, using sub-optimal agglomerative clustering method (SOAC).

2.4.1 Fayyad and Irani’s Discretization Method

In this subsection, we present Fayyad and Irani’s Discretization algorithm [38]. The Fayyad

and Irani’s Discretization method is based on a minimal entropy heuristic, and it uses the

class information entropy of candidate partitions to select bin boundaries for discretization.

Let us consider a given set of observations S, a feature X, and a partition boundary T ,

the class information entropy of the partition induced by T , denoted E(X,T ;S) is given by

E(X,T ;S) =
|S1|
|S| Ent(S1) +

|S2|
|S| Ent(S2),

where S1 ⊂ S be the subset of observations in S with X-values not exceeding T and S2 =

S − S1. Let there be q classes C1, ..., Cq, and P (Ci, S) be the proportion of observations in S

that have class Ci . The class entropy of a subset S is defined as:

Ent(S) = −
q∑

i=1

P (Ci, S) lg(P (Ci, S)),
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where the logarithm may be to any convenient base. When the base is 2, Ent(S) measures

the amount of information needed, in bits, to specify the classes in S.

For a given feature X, the boundary Tmin which minimizes the entropy function over all

possible partition boundaries is selected as a binary discretization boundary. This method

can then be applied recursively to both of the partitions induced by Tmin until some stopping

condition is achieved, thus creating multiple intervals on the feature X.

Fayyad and Irani make use of the minimal description length principle to determine a

stopping criteria for their recursive discretization strategy. Recursive partitioning within a

set of values S stops if

Gain(X,T ;S) <
lg2(N − 1)

N
+
4(X,T ;S)

N
,

where N is the number of observations in the set S, and

Gain(X,T ;S) = Ent(S)− E(X,T ;S),

4(X,T ;S) = lg2(3
q − 2)− [q.Ent(s)− q1.Ent(S1)− q2Ent(S2)],

and qi is the number of class labels represented in the set Si. Since the partitions along each

branch of the recursive discretization are evaluated independently using this criteria, some

areas in the continuous spaces will be partitioned very finely whereas others (which have

relatively low entropy) will be partitioned coarsely.

2.4.2 Discretization Algorithm using Sub-Optimal Agglomerative Clustering

In this section, we present the discretization algorithm using sub-optimal agglomerative clus-

tering (SOAC) [139]. Let us consider a finite set of points A in the n−dimensional space
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Rn, that is A = {a1, ..., am}, where ai ∈ Rn, i = 1, ...,m. Assume the sets Aj , j = 1, ..., k

be clusters, and each cluster Aj can be identified by its centroid xj ∈ Rn, j = 1, ..., k. The

Algorithm SOAC proceeds as follows.

Algorithm. Discretization Algorithm SOAC

Step 1. Set k = m, and a small value of parameter θ, 0 < θ < 1. Sort values of the current

feature in the ascending order. Each continuous feature requiring discretization is treated in

turn.

Step 2. Calculate the center of each cluster:

xj =
∑

a∈Aj

a

|Aj | , j = 1, ..., k

and the error Ek of the cluster system approximating set A:

Ek =

k∑

j=1

∑

a∈Aj

‖xj − a‖2.

Step 3. Merge in turn each cluster with the next tentatively. Calculate the error increase

Ek−1 − Ek after each merge and choose the pair of clusters giving the least increase. Merge

these two clusters permanently. Set k = k − 1.

Step 4. If Ek ≥ θE1, then stop, otherwise go to Step 2.
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Chapter 3

Bayesian Networks

3.1 Improving Naive Bayes Classifier using Conditional

Probabilities

This section is devoted to a new algorithm for improving Naive Bayes classifier. The Naive

Bayes classifier is the simplest among Bayesian Networks, and it performs very well on a

variety of data classification problems. However, the strong assumption that all features are

conditionally independent given the class is often violated in many real world applications.

The proposed algorithm, in this section, finds dependencies between features using conditional

probabilities. The performance of the algorithm is empirically validated using real world data

sets. The experimental results demonstrate that the proposed algorithm significantly improve

the performance of the Naive Bayes classifier, yet at the same time maintains its robustness.
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Abstract

Naive Bayes classifier is the simplest among Bayesian
Network classifiers. It has shown to be very efficient
on a variety of data classification problems. However,
the strong assumption that all features are condition-
ally independent given the class is often violated on
many real world applications. Therefore, improve-
ment of the Naive Bayes classifier by alleviating the
feature independence assumption has attracted much
attention. In this paper, we develop a new version
of the Naive Bayes classifier without assuming inde-
pendence of features. The proposed algorithm ap-
proximates the interactions between features by using
conditional probabilities. We present results of nu-
merical experiments on several real world data sets,
where continuous features are discretized by apply-
ing two different methods. These results demonstrate
that the proposed algorithm significantly improve the
performance of the Naive Bayes classifier, yet at the
same time maintains its robustness.

Keywords: Bayesian Networks, Naive Bayes, Semi
Naive Bayes, Correlation

1 Introduction

Classification is the task to identify the class labels
for instances based on a set of features, that is, a
function that assigns a class label to instances de-
scribed by a set of features. Learning accurate clas-
sifiers from pre classified data is an important re-
search topic in machine learning and data mining.
One of the most effective classifiers is Bayesian Net-
works (Shafer 1990, Heckerman 1995, Jensen 1996,
Pearl 1996, Castillo 1997). A Bayesian Network (BN)
is composed of a network structure and its conditional
probabilities. The structure is a directed acyclic
graph where the nodes correspond to domain vari-
ables and the arcs between nodes represent direct de-
pendencies between the variables. Considering an in-
stance X = (X1, X2, ..., Xn) and a class C, the clas-
sifier represented by BN is defined as

argmax

c∈C
P (c|x1, x2, ..., xn) ∝ argmax

c∈C
P (c)P (x1, x2, ..., xn|c),

(1)

where xi, c are the values of Xi, C respectively.
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However, accurate estimation of P (x1, x2, ..., xn|c)
is non trivial. It has been proved that learning an op-
timal BN is NP-hard problem (Chickering 1996, Heck-
erman 2004). In order to avoid the intractable com-
plexity for learning BN, the Naive Bayes classifier has
been used. In the Naive Bayes (NB) (Langley 1992,
Domingos 1997), features are conditionally indepen-
dent given the class. The simplicity of the NB has
led to its wide use, and to many attempts to extend
it (Domingos 1997). Since NB assumes the strong
assumption of independency between features, learn-
ing semi Naive Bayes has attracted much attention
from researchers (Langley 1994, Kohavi 1996, Paz-
zani 1996, Friedman 1997, Kittler 1986, Zheng 2000,
Webb 2005). The semi Naive Bayes classifiers are
based on the structure of NB, requiring that the class
variable be a parent of every feature. However, they
allow additional edges between features that capture
correlation among them. The main aim in this area
of research has involved maximizing the accuracy of
classifier predictions.

In this paper, we propose a new version of the
Naive Bayes classifier (semi Naive Bayes) without as-
suming independence of features. The proposed algo-
rithm finds dependencies between features using con-
ditional probabilities. This algorithm is a new al-
gorithm and different from the existing semi Naive
Bayes methods (Langley 1994, Kohavi 1996, Pazzani
1996, Friedman 1997, Kittler 1986, Zheng 2000, Webb
2005).

Most of data sets in real world applications often
involve continuous features. Therefore, continuous
features are usually discretized (Lu 2006, Wang 2009,
Ying 2009, Yatsko 2010). The main reason is that
the classification with discretization tend to achieve
lower error than the original one (Dougherty 1995).
We apply two different methods to discretize continu-
ous features. The first one, which is also the simplest
one, transforms the values of features to {0, 1} using
their mean values. We also apply the discretization
algorithm using sub-optimal agglomerative clustering
algorithm from (Yatsko 2010) which allows us to get
more than two values for discretized features. This
leads to the design of a classifier with higher testing
accuracy in most data sets used in this paper.

We organize the rest of the paper as follows. We
give a brief review to the Naive Bayes and some semi
Naive Bayes classifiers in Section 2. In Section 3, we
present the proposed algorithm. Section 4 presents
an overview of the discretization algorithm using sub-
optimal agglomerative clustering. The numerical ex-
periments are given in Section 5. Section 6 concludes
the paper.
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2 Naive Bayes and Semi Naive Bayes Classi-
fiers

The Naive Bayes (NB) assumes that the features are
independent given the class, it means that all features
have only the class as a parent (Kononenko 1990, Lan-
gley 1992, Domingos 1997, Mitchell 1997). A sample
of the NB with n features is depicted in Figure 1. The
NB, classifies an instance X = (X1, X2, ..., Xn) using
Bayes rule, by selecting

argmax

c∈C
P (c)

n�

i=1

P (xi|c). (2)

C

1X 2X 3X nX

Figure 1: Naive Bayes

NB has been used as an effective classifier for many
years. Unlike many other classifiers, it is easy to con-
struct, as the structure is given a priori. Although
the independence assumption is obviously problem-
atic, NB has surprisingly outperformed many sophis-
ticated classifiers, especially where the features are
not strongly correlated (Domingos 1997). In spite of
NB’s simplicity, the strong independency assumption
harms the classification performance of NB when it
is violated. On the other hand, learning BN requires
searching the space of all possible combinations of
edges which is NP-hard problem (Chickering 1996,
Heckerman 2004).

In order to relax the independence assumption of
NB, a lot of effort has focussed on improving NB.
The improved NB classifiers use exhaustive search to
join features based on statistical methods. There are
some improved algorithms of the NB. Langley and
Sage (Langley 1994) considered Backwards Sequen-
tial Elimination (BSE) and Forward Sequential Se-
lection (FSS) in which their methods select a subset
of features using leave-one-out cross validation error
as a selection criterion and establish a NB with these
features. Starting from the full set of features, BSE
successively eliminates the features whose elimination
most improves accuracy, until there is no further ac-
curacy improvement. FSS uses the reverse search di-
rection, that is iteratively adding the features whose
addition most improves accuracy, starting with the
empty set of features. The work of Pazzani (Paz-
zani 1996) introduces Backward Sequential Elimina-
tion and Joining (BSEJ). It uses predictive accuracy
as a merging criterion to create new Cartesian prod-
uct features. The value set of a new compound fea-
tures is the Cartesian product of the value sets of
the two original features. As well as joining features,
BSEJ also considers deleting features. BSEJ repeat-
edly joins the pair of features or deletes the features

that most improves predictive accuracy using leave-
one-out cross validation. This process terminates if
there is no accuracy improvement. Kohavi (Kohavi
1996) proposed the NB Tree, a strategy that is a hy-
brid approach combining NB and decision tree learn-
ing. It partitions the training data using a tree struc-
ture and establishes a local NB in each leaf. It uses
5-fold cross validation accuracy estimate as the split-
ting criterion. A split is defined to be significant if the
relative error reduction is greater than 5 percent and
the splitting node has at least 30 instances. When
there is no significant improvement, NB Tree stops
the growth of the tree. As the number of splitting
features is greater than or equals one, NB Tree is
an x-dependence classifier. The classical decision tree
predicts the same class for all the instances that reach
a leaf. In NB Tree, these instances are classified us-
ing a local NB in the leaf, which only considers those
non tested features. Friedman et al. (Friedman 1997)
introduced Tree Augment Naive Bayes (TAN) based
on tree structure. It approximates the interactions
between features by using a tree structure imposed
on the NB structure. In TAN, each feature has the
class and at most one other feature as parents. Super
Parent algorithm is proposed by Keogh and Pazzani
(Keogh 1999). This algorithm uses the same represen-
tation as the Tree Augment Naive Bayes, but utilizes
leave-one-out cross validation error as a criterion to
add a link. The Super Parent is the feature that is
the parent of all the other orphans, the features with-
out a non-class parent. There are two steps to add
a link: first selecting the best Super Parent that im-
proves accuracy the most, and then selecting the best
child of the Super Parent from orphans. This method
stops adding links when there is no accuracy improve-
ment. Zheng and Webb (Zheng 2000) developed Lazy
Bayesian Rules (LBR), which adopts a lazy approach,
and generates a new Bayesian rule for each test exam-
ple. The antecedent of a Bayesian rule is a conjunc-
tion of feature-value pairs, and the consequent of the
rule is a local NB, which uses those features that do
not appear in the antecedent to classify. LBR stops
adding feature value pairs into the antecedent if the
outcome of a one tailed pairwise sign test of error dif-
ference is not better than 0.05. As the number of the
feature value pairs in the antecedent is greater than or
equals one, LBR is anx-dependence classifier. Webb
et al. (Webb 2005) proposed Averaged One Depen-
dence Estimators (AODE), which averages the pre-
dictions of all qualified 1-dependence classifiers. In
each 1-dependence classifier, all features depend on
the class and a single feature.

In the next section, we introduce a new version
of the Naive Bayes classifier (semi Naive Bayes) with-
out assuming independence of features. The proposed
algorithm approximates the interactions between fea-
tures by using conditional probabilities.

3 The Proposed Algorithm

In this section, we present a new algorithm that main-
tains the basic structure of the NB, and thus ensure
that the class C is the parent of all features. The
proposed algorithm, however, removes the strong as-
sumption of independence in the NB by finding corre-
lation between features, while also capturing much of
the computational efficiency of the NB. In this algo-
rithm, the class has no parents and each feature has
the class and at most one other feature as parents.
Therefore, each feature can have one augmenting edge
pointing to it. The procedure for learning these edges
is based on the Pearson’s correlation and conditional
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probabilities. First, we construct a basic structure of
the NB with n features X1, X2, ..., Xn from the set
X and the class C. After that, we find the Pearson’s
correlations between each feature Xi and the class
C using the formula (3), Corr(Xi, C). Then we re-
order the set X as a set X∗ in a descending order of
|Corr(Xi, C)|. In the ordered set X∗, an arc from the
first feature is added to the second one. Finally, for
all remain features, we find the conditional probabil-
ities of each feature with the previous features given
the class values in the ordered set X∗, formula (4).
The highest value of these conditional probabilities
between features is used to recognize the parent of
each feature. The conditional probabilities described
in (4), first introduced by Quinn et al. (Quinn 2009)
and called influence weights, have been used directly
for data classification. However, here, we used them
for finding the dependencies between features.

The correlation coefficient (Graham 2008) between
two random variables Xi and Xj is defined as :

Corr(Xi, Xj) =

N
N�

i,j=1

XiXj −
N�

i=1

Xi

N�
j=1

Xj

�
(N

N�
i=1

X2
i − (

N�
i=1

Xi)
2)(N

N�
j=1

X2
j − (

N�
j=1

Xj)
2)

,

(3)

where N is the number of data points. This measure
has the property of |Corr(Xi, Xj)| ≤ 1. When this
value is close to 1, it denotes the perfect linear cor-
relation between Xi and Xj , and Corr(Xi, Xj) = 0
stands for no linear correlation.

The proposed algorithm consists of six main steps:

Algorithm. Proposed Algorithm

Step 1. Construct a basic structure of the
Naive Bayes with n features,
X = {X1, X2, ..., Xn}, and the class C.

Step 2. Compute the correlation between
each feature Xi, i = 1, ..., n and the class C
using the formula (3), Corr(Xi, C).

Step 3. Reorder X as a set
X∗ = {X∗

1
, X∗

2
, ..., X∗

n} in a descending order
of |Corr(Xi, C)|, i = 1, ..., n.

Step 4. Add an arc from X∗
1
to X∗

2
.

Step 5. For j = 3, ..., n:
5.1 Find X∗

i that has the highest value of

N�

k=1

|P (X∗
ki, X

∗
kj |C) − P (X∗

ki, X
∗
kj |C)|, i < j, (4)

where X∗
i = (X∗

1i, X
∗
2i, ..., X

∗
Ni)

T , N is
the number of instances and C = −C.
5.2 Add an arc from X∗

i to X∗
j .

Step 6. Compute the conditional
probability tables inferred by the new
structure.

Figure 2 shows the structure of Svmguide1 data
set, taken from LIBSVM, with four features (see Ta-
ble 1) using the proposed algorithm. The solid lines
are those edges required by the Naive Bayes classi-
fier. The dashed lines are correlation edges between
features found by our algorithm.

C

1X

2X

3X

4X

Figure 2: Proposed algorithm, Svmguide1

4 Discretization Algorithm Using Sub-
Optimal Agglomerative Clustering
(SOAC)

Discretization is a process which transform continu-
ous numeric values into discrete ones. In this paper,
we apply two different methods to discretize continu-
ous features. The first one, which is also the simplest
one, transforms the values of features to 0,1 using
their mean values. We also apply the discretization
algorithm using sub-optimal agglomerative clustering
algorithm which allows us to get more than two values
for discretized features. In this section, we introduce
discretization algorithm SOAC which is an efficient
discretization method for the NB learning. Details of
this algorithm can be found in (Yatsko 2010).

Consider a finite set of points A in the n di-
mensional space Rn, that is A = {a1, ..., am},
where ai ∈ Rn, i = 1, ...,m. Assume that the sets
Aj , j = 1, ..., k be clusters, and each cluster Aj can
be identified by its centroid xj ∈ Rn, j = 1, ..., k.
The discretization algorithm SOAC proceeds as
follows.

Algorithm. Discretization Algorithm SOAC

Step 1. Set k = m, and a small value of
parameter θ, 0 < θ < 1. Sort values of the
current feature in the ascending order. Each
feature requiring discretization is treated in
turn.
Step 2. Calculate the center of each cluster:

xj
=

�

a∈Aj

a

|Aj |
, j = 1, ..., k

and the error Ek of the cluster system
approximating set A:

Ek =

k�

j=1

�

a∈Aj

�xj − a�2.

Step 3. Merge in turn each cluster with the
next tentatively. Calculate the error increase
after each merge Ek−1 − Ek and choose the
pair of clusters giving the least increase.
Merge these two clusters permanently. Set
k = k − 1.
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Step 4. Once the error of the current cluster sys-
tem is over the set fraction of the maximum error
corresponding to the single cluster Ek ≥ θE1 stop,
otherwise go to Step 2.

5 Numerical Experiments

To verify the efficiency of the proposed algorithm, nu-
merical experiments with a number of real world data
sets have been carried out. We use 10 real world data
sets. The detailed description of the data sets used
in this experiments can be found in the UCI machine
learning repository, with the exception of “Fourclass”,
“Svmguide1” and “Svmguide3”. These three data
sets are downloadable on tools page of LIBSVM. A
brief description of data sets is given in Table 1. We
discritize the values of features in data sets using two
different methods. In the first one, we apply a mean
value of each feature variable to discritize the values
to {0, 1}. The second one is the discrization algorithm
SOAC (Yatsko 2010) which is presented in Section 4.

We conduct empirical comparison for the NB and
the proposed algorithm in terms of test set accuracy
using two different discritization methods. The re-
sults of the NB and the new algorithm on each data
set were obtained via 1 run of 10-fold cross valida-
tion. Runs were carried out on the same training sets
and evaluated on the same test sets. In particular,
the cross validation folds were the same for all exper-
iments on each data set.

The test set accuracy obtained by the NB and the
proposed algorithm on 10 data sets using mean values
for discretization summarized in Table 2. The results
presented in this table demonstrate that the test set
accuracy of the new algorithm is much better than
that of the NB. The proposed algorithm works well
in that it yields good classifier compared to the NB.
Its performance was further improved by introducing
some additional edges in the NB, using conditional
probabilities. Improvement is noticed mainly in large
data sets. In 8 cases out of 10, the new algorithm has
higher accuracy than the NB. The accuracy of this
algorithm is same with the NB in data sets Fourclass
and Svmguide1.

Table 3 presents the test set accuracy obtained
by the NB and the proposed algorithm on 10 data
sets using discretization algorithm SOAC. The results
from this table show that the accuracy obtained by
the new algorithm in all data sets are higher than
those obtained by the NB.

Figures 3 to 4 show the scatter plot comparing the
proposed algorithm with the NB, using two different
discritization methods. In these plots, each point rep-
resents a data set, where the x coordinate of a point
is the percentage of miss classifications according to
the NB and the y coordinate is the percentage of
miss classification according the proposed algorithm.
Therefore, points above the diagonal line correspond
to data sets where the NB performs better, and points
below the diagonal line correspond to data sets where
the proposed algorithm performs better.

According to the results explained above, the pro-
posed algorithm outperforms the NB, yet at the same
time maintains its robustness. However, the proposed
algorithm requires more computational effort than
the NB since we need to compute conditional prob-
abilities between features to recognize the parent of
each feature in our algorithm.

Table 1: A brief description of data sets
Data sets # Features # Instances

Congres Voting Records 16 435

Credit Approval 14 690

Diabetes 8 768

Fourclass 2 862

Haberman Survival 3 306

Heart Disease 13 270

Phoneme CR 5 5404

Spambase 57 4601

Svmguide1 4 7089

Svmguide3 21 1284

Table 2: Test set accuracy of NB and the proposed
algorithm using mean value for discretization
Data Sets Naive Bayes Proposed Algorithm

Congres Voting Records 90.11 91.47

Credit Approval 84.85 86.85

Diabetes 75.78 77.68

Fourclass 76.82 76.82

Haberman Survival 74.51 75.66

Heart Disease 84.14 85.18

Phoneme CR 75.96 78.30

Spambase 90.13 93.45

Svmguide1 92.17 92.17

Svmguide3 80.61 87.18

Table 3: Test set accuracy of NB and the proposed
algorithm using discretization algorithm SOAC
Data Sets Naive Bayes Proposed Algorithm

Congres Voting Records 90.11 91.47

Credit Approval 84.85 86.85

Diabetes 75.78 77.68

Fourclass 78.58 79.70

Haberman Survival 74.66 75.33

Heart Disease 78.62 79.31

Phoneme CR 77.01 79.36

Spambase 89.30 92.30

Svmguide1 95.61 97.54

Svmguide3 77.25 80.85

6 Conclusion

In this paper, we have developed the new version of
the Naive Bayes classifier without assuming indepen-
dence of features. An important step in this algorithm
is adding edges between features that capture correla-
tion among them. The proposed algorithm finds de-
pendencies between features using conditional prob-
abilities. We have presented the results of numeri-
cal experiments on 10 data sets from UCI machine
learning repository and LIBSVM. The values of fea-
tures in data sets are discritized by using mean value
of each feature and applying discretization algorithm
SOAC. We have presented results of numerical exper-
iments. These results clearly demonstrate that the
proposed algorithm significantly improve the perfor-
mance of the Naive Bayes classifier, yet at the same
time maintains its robustness. Furthermore, this im-
provement becomes even more substantial as the size
of the data sets increases.
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Figure 3: Scatter plot comparing miss classifications
of the proposed algorithm (y coordinate) with Naive
Bayes (x coordinate); using mean value for discritiza-
tion
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Figure 4: Scatter plot comparing miss classifications
of the proposed algorithm (y coordinate) with Naive
Bayes (x coordinate); using Algorithm SOAC for dis-
critization
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3.2 Structure Learning of Bayesian Networks using a New

Unrestricted Dependency Algorithm

This section introduces a new algorithm on learning the structure of Bayesian Networks for

binary classification problems. The structure of a Bayesian Network represents a set of condi-

tional dependence and independence relations that hold in the domain. Learning the structure

of Bayesian Networks that represents a domain can reveal insights into its underlying causal

structure. The proposed algorithm is a novel iterative unrestricted dependency algorithm

based on a combinatorial optimization model. The Algorithm is called UDBN meaning unre-

stricted dependency Bayesian Networks. The empirical results presented here show that the

Algorithm UDBN produces networks with significantly higher structural accuracy.
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Abstract—Bayesian Networks have deserved extensive atten-
tions in data mining due to their efficiencies, and reasonable
predictive accuracy. A Bayesian Network is a directed acyclic
graph in which each node represents a variable and each arc a
probabilistic dependency between two variables. Constructing
a Bayesian Network from data is the learning process that is
divided in two steps: learning structure and learning parameter.
In many domains, the structure is not known a priori and
must be inferred from data. This paper presents an iterative
unrestricted dependency algorithm for learning structure of
Bayesian Networks for binary classification problems. Numer-
ical experiments are conducted on several real world data
sets, where continuous features are discretized by applying two
different methods. The performance of the proposed algorithm
is compared with the Naive Bayes, the Tree Augmented Naive
Bayes, and the k−Dependency Bayesian Networks. The results
obtained demonstrate that the proposed algorithm performs
efficiently and reliably in practice.

Keywords-Data Mining; Bayesian Networks; Naive Bayes;
Tree Augmented Naive Bayes; k−Dependency Bayesian Net-
works; Topological Traversal Algorithm.

I. INTRODUCTION

Data Mining is defined as the nontrivial process of
identifying valid, novel, potentially useful, and ultimately
understandable patterns in data [6]. The whole process of
data mining consists of several steps. Firstly, the problem
domain is analyzed to determine the objectives. Secondly,
data is collected and an initial exploration is conducted to
understand and verify the quality of the data. Thirdly, data
preparation is made to extract relevant data sets from the
database. A suitable data mining algorithm is then employed
on the prepared data to discover knowledge represented
in different representations such as decision trees, neural
networks, support vector machine and Bayesian Networks.
Finally, the result of data mining is interpreted and evaluated.
If the discovered knowledge is not satisfactory, these steps
will be iterated. The discovered knowledge is then applied
in decision making. Recently, there is an increasing interest
in discovering knowledge represented in Bayesian Networks
[13], [14], [17], [15], [19] and [28]. Bayesian networks
(BNs), introduced by Pearl [21], can encode dependencies

among all variables; therefore, they readily handle situations
where some data entries are missing. BNs are also used
to learn causal relationships, and hence can be used to
gain understanding about a problem domain and to predict
the consequences of intervention. Moreover, since BNs in
conjunction with Bayesian statistical techniques have both
causal and probabilistic semantics, they are an ideal repre-
sentation for combining prior knowledge and data [10]. In
addition, BNs in conjunction with Bayesian statistical meth-
ods offer an efficient and principal approach for avoiding the
over fitting of data [20]. BNs have been applied widely for
data mining, causal modeling and reliability analysis [29].

This paper presents a novel unrestricted dependency algo-
rithm to learn knowledge represented in BNs from data. A
BN is a graphical representation of probability distributions
over a set of variables that are used for building a structure
of the problem domain. The BN defines a network structure
and a set of parameters, class probabilities and conditional
probabilities. Once the network structure is constructed, the
probabilistic inferences are readily calculated, and can be
performed to predict the outcome of some variables based
on the observations of others.

The main task of learning BNs from data is finding
directed arcs between variables, or, in other words, the struc-
ture discovery, which is the more challenging, and thus, more
interesting phase. Two rather distinct approaches have been
used widely to structure discovery in BNs: the constraint-
based approach [22], [27] and the score-based approach [1],
[5], [26]. In the the constraint-based approach, structure
learning cares about whether one arc in the graph should
be existed or not. This approach relies on the conditional
independence test to determine the importance of arcs [4]. In
the score-based approach, several candidate graph structures
are known, and we need choosing the best one out. In
order to avoid over fitting, investigators often use model
selection methods, such as Bayesian scoring function [5] and
entropy-based method [12]. Several exact algorithms based
on dynamic programming have recently been developed to
learn an optimal BN [16], [24], [25] and [31]. The main idea
in these algorithms is to solve small subproblems first and
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use the results to find solutions to larger problems until a
global learning problem is solved. However, they might be
inefficient due to their need to fully evaluate an exponential
solution space.

It has been proved that learning an optimal BN is NP-
hard [11]. In order to avoid the intractable complexity for
learning BNs, the Naive Bayes [18] has been used. The
Naive Bayes (NB) is the simplest among BNs. In the NB,
features are conditionally independent given the class. It
has shown to be very efficient on a variety of data mining
problems. However, the strong assumption that all features
are conditionally independent given the class is often vio-
lated on many real world applications. In order to relax this
assumption of the NB while at the same time retaining its
simplicity and efficiency, researchers have proposed many
effective methods [7], [23] and [28]. Sahami [23] proposed
the k−dependence BNs to construct the feature dependence
with a given number, value of k. In this algorithm, each
feature could have a maximum of k feature variables as
parents, and these parents are obtained by using mutual
information. The value of k in this algorithm is initially
chosen before applying it, k = 0, 1, 2, .... Friedman et
al. [7] introduced the Tree Augment Naive Bayes (TAN)
based on the tree structure. It approximates the interactions
between features by using a tree structure imposed on the
NB structure. In the TAN, each feature has the class and at
most one other feature as parents.

Although the mentioned methods were shown to be effi-
cient, the features in these methods depend on the class and
a priori given number of features; k = 0 dependence for the
NB, k = 1 dependence for the TAN, and an initially chosen
k for the k-dependence BNs. In fact, by setting k, i.e., the
maximum number of parent nodes that any feature may have,
we can construct the structure of BNs. Since k is the same
for all nodes, it is not possible to model cases where some
nodes have a large number of dependencies, whereas others
just have a few. In this paper, we propose a new algorithm
to identify the limitations of each of these methods while
also capturing much of the computational efficiency of the
NB. In the proposed algorithm, the number k is defined by
the algorithm internally, and it is an unrestricted dependency
algorithm.

The rest of the paper is organized as follows. In the next
section, we provide a brief description of BNs. In Section III,
we introduce a new algorithm for structure learning of BNs
from binary classification data. Section IV presents a brief
review of the Topological Traversal algorithm. The results
of numerical experiments are given in Section V. Section
VI concludes the paper.

II. REPRESENTATION OF BAYESIAN NETWORKS

A BN consists of a directed acyclic graph connecting
each variables into a network structure and a collection of
conditional probability tables, where each variable in the

graph is denoted by a conditional probability distribution
given its parent variables. The nodes in the graph correspond
to the variables in the domain, and the arcs (edges) between
nodes represent causal relationships among the correspond-
ing variables. The direction of the arc indicates the direction
of causality. When two nodes are joined by an arc, the causal
node is called the parent of the other node, and another one is
called the child. How one node influences another is defined
by conditional probabilities for each node given its parents
[21]. Suppose a set of variables X = {X1, X2, ..., Xn},
where Xi denotes both the variable and its corresponding
node. Let Pa(Xi) denotes a set of parents of the node Xi in
X. When there is an edge from Xi to Xj , then Xj is called
the child variable for a parent variable Xi. A conditional
dependency connects a child variable with a set of parent
variables. The lack of possible edges in the structure encodes
conditional independencies.

In particular, given a structure, the joint probability dis-
tribution for X is given by

P (X) =
n∏

i=1

P (Xi|Pa(Xi)), (1)

here, P (Xi|Pa(Xi)) is the conditional probability of Xi

given its parents Pa(Xi), where

P (Xi|Pa(Xi)) =
P (Xi, Pa(Xi))

P (Pa(Xi))
=
nXi,Pa(Xi)

nPa(Xi)
,

where nPa(Xi) denotes the number of items in the set
Pa(Xi), and nXi,Pa(Xi) is the number of items in Xi ∩
Pa(Xi).

However, accurate estimation of P (Xi|Pa(Xi)) is non
trivial. Finding such an estimation requires searching the
space of all possible network structures for one that best
describes the data. Traditionally, this is done by employing
some search mechanism along with an information criterion
to measure goodness and differentiate between candidate
structures met while traversing the search space. The idea
would be to try and maximize this information measure
or score by moving from one structure to another. The
associated structure is then chosen to represent and explain
the data. Finding an optimal structure for a given set
of training data is a computationally intractable problem.
Structure learning algorithms determine for every possible
edge in the network whether to include the edge in the final
network and which direction to orient the edge. The number
of possible graph structures grows exponentially as every
possible subset of edges could represent the final model.
Due to this exponential growth in graph structure, learning
an optimal BNs has been proven to be NP-hard [11].

During the last decades a good number of algorithms
whose aim is to induce the structure of the BN that better
represents the conditional dependence and independence
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relationships underlying have been developed [4], [5], [7],
[12], [16], [24] and [25]. In our opinion, the main reason for
continuing the research in the structure learning problem is
that mendelizing the expert knowledge has become an ex-
pensive, unreliable and time consuming job. We introduce a
new algorithm for structure learning of BNs in the following
section.

III. THE PROPOSED ALGORITHM FOR BAYESIAN
NETWORKS

In this section, we propose a new algorithm to learn the
structure of BNs for binary classification problems. Since
the learning process in BNs is based on the correlations
of children and parent nodes, we propose a combinatorial
optimization model to find the dependencies between fea-
tures. However, some features could be independent which
is considered by intruding a threshold K. Let us consider
an optimization model (2):

max
∑n

i=1

∑n
j=1(Kij −K)wij ,

j 6= i
(2)

subject to wij + wji ≤ 1,
where 1 ≤ i, j ≤ n, i < j and wij ∈ {0, 1}. wij is the
association weight (to be found), given by

wij =





1 if feature Xi is the parent of feature Xj ,

0 otherwise,
(3)

and for 1 ≤ i, j ≤ n, i 6= j,

Kij =

|Xj |∑

q2=1

|Xi|∑

q1=1

max{P (Xq2j |C1, Xq1i), P (Xq2j |C2, Xq1i)}.

(4)
Here, |Xj | and |Xi| are the number of values of features
Xj and Xi, respectively, and Xql shows the qth value of
the feature Xl, 1 ≤ l ≤ n. We assume binary classification;
C1 = 1 and C2 = −1 are class labels. K is a threshold such
that K ≥ 0.

From the formula (2), wij = 1 if Kij > Kji and Kij >
K, and therefore wji = 0 due to the constraint wij +wji ≤
1. It is clear that wii = 0, 1 ≤ i ≤ n. Thus problem (2) can
be solved easily. Let us denote the solution of the problem
(2) by W (K) = [wij(K)]n×n, where

wij(K) =





1 if Kij > Kji and Kij > K,

0 otherwise,
(5)

and the set of arcs presented by

A(W ) = {(i, j) : if wij = 1, 1 ≤ i, j ≤ n, i 6= j}, (6)

(i, j) shows the arc from Xi to Xj . If we have set of
arcs A(W ), then we have the corresponding matrix W
that satisfies (6). It is clear that A(W ) ⊂ I, where I =
{(i, j), 1 ≤ i, j ≤ n} is the set of all possible couples
(i, j).

The best value for K will be found based on the maximum
training accuracy for different values of wij(K), where 0 ≤
K ≤ Kmax, and

Kmax = max{Kij , 1 ≤ i, j ≤ n, i 6= j}. (7)

More precisely, we find the values of wij(Kr) for different
Kr = Kmax − εr, r = 0, 1, ... until Kr < 0, and we set
W (Kr) = [wij(Kr)]n×n. With the matrix W (Kr), the set
of arcs A(W (Kr)) and, therefore, a network will be learnt.
Based on the obtained network, the conditional probabilities
will be found:

P (C|X) ≡
n∏

i=1

P (Xi|C,Pa(Xi))P (C), (8)

where Pa(Xi) denotes the set of parents of the variable Xi

to be found with W (Kr). Now, based on these conditional
probabilities, we calculate:

C(X) =





1 if P (C1 = 1|X) > P (C2 = −1|X),

−1 otherwise,

and then the maximum training accuracy will be found using
the following formula:

accuracy(A(W (Kr))) =
100

ntr

ntr∑

i=1

δ(C(Xi), Ci), r = 0, 1, ...

(9)
where

δ(α, β) =





1 if α = β

0 otherwise.

We will choose that value of r corresponding to the high-
est training accuracy. Here, ntr stands for the number of
instances in the training set.

Since BNs are directed acyclic graphs, we should not
have any cycle in the structure obtained by A(W (Kr)).
Therefore, the maximum training accuracy subject to no
cycles will give the best value of Kr, denoted by K∗, and
consequently, the best structure A(W (K∗)). Here, we apply
the topological traversal algorithm to test if the correspond-
ing graph to the obtained network is acyclic.

According to explanations above, the proposed algorithm
constructs unrestricted dependencies between features based
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on the structure of the NB. The proposed algorithm elim-
inates the strong assumptions of independencies between
features in the NB, yet at the same time maintains its
robustness. It is clear that r = 0 in the proposed algorithm
gives the structure of the NB. In our algorithm, some features
could have a large number of dependencies, whereas others
just have a few. The number of these dependencies will
be defined by the algorithm internally. The steps of our
algorithm is presented in the following:

Step 1. Compute {Kij , 1 ≤ i, j ≤ n, i 6= j} using (4).

Step 2. Determine Kmax using (7). Set r = 0, and
p0 = 0.

Step 3. while Kmax − εr ≥ 0 do

3.1. Calculate Kr = Kmax − εr.

3.2. Compute wij(Kr), 1 ≤ i, j ≤ n, (i 6= j) using
(5), and let W (Kr) = [w(Kr)ij ]n×n.

3.3. Find dependencies between features by a set of
arcs A(W (Kr)) using (6).

3.4. Apply the topological traversal algorithm to
test the network obtained by A(W (Kr)) for
possible cycles. If any cycle is founds, then go to
Step 4.

3.5. Compute the training accuracy,
p = accuracy(A(W (Kr)), using (9). If p > p0
then set p0 = p, K∗ = Kr, r = r + 1.

end

Step 4. Construct the optimal structure based on the
basic structure of the NB and applying the set of arcs
A(W (K∗)) between features.

Step 5. Compute the conditional probability tables
inferred by the new structure.

Algorithm 1: Unrestricted Dependency BNs Algorithm

In this paper, we limit ourselves to binary classification,
though a brief discussion on multiple class classification
is warranted. The most straightforward approach in these
classification problems is finding maximum of m conditional
probabilities in the formula (4), where m is the number of
classes. Moreover, the one-versus-all classification paradigm
will be used to find either in the training accuracy, (9), or
the test accuracy in the experiments.

IV. TOPOLOGICAL TRAVERSAL ALGORITHM

The topological traversal algorithm [8] is applied for
testing a directed graph if there exists any cycle. The degree
of a node in a graph is the number of connections or
edges the node has with other nodes. If a graph is directed,
meaning that edges point in one direction from one node to

another node. Then nodes have two different degrees, the
in-degree, which is the number of incoming edges to this
node, and the out-degree, which is the number of outgoing
edges from this edge.

The topological traversal algorithm begins by computing
the in-degrees of the nodes. At each step of the traversal, a
node with in-degree of zero is visited. After a node is visited,
the node and all the edges emanating from that node are
removed from the graph, reducing the in-degree of adjacent
nodes. This is done until the graph is empty, or no node
without incoming edges exists. The presence of the cycle
prevents the topological order traversal from completing.
Therefore, the simple way to test whether a directed graph
is cyclic is to attempt a topological traversal of its nodes. If
all nodes are not visited, the graph must be cyclic.

V. EXPERIMENTS

We have employed 12 well-known binary classification
data sets. A brief description of the data sets is given in
Table I. The detailed description of the data sets used in
this experiments are downloadable in the UCI repository of
machine learning databases [2] and the tools page of the
LIBSVM [3]. The reason that we have chosen these data
sets is: they are the most frequently binary classification
data sets considered in the literature.

All continue features in data sets are discretized using two
different methods. In the first one, we apply a mean value
of each feature to discretize values to binary, {0, 1}. In the
second one, we use the discretization algorithm using sub-
optimal agglomerative clustering (SOAC) [30] to get more
than two values for discretized features.

We conduct an empirical comparison for the Naive
Bayes (NB), the Tree Augmented Naive Bayes (TAN), the
k−Dependency Bayesian Networks (k−DBN), and the pro-
posed algorithm (UDBN) in terms of test set accuracy. We
have compared our algorithm with the mentioned algorithms
because the basic structure of all, the TAN, the k−DBN and
the UDBN, is based on the the structure of the NB. In all
the cases we have used 10−fold cross validation. We report
the averaged accuracy over the ten test folds.

Table II presents the averaged test set accuracy obtained
by the NB, the TAN, the k−DBN and the UDBN on 12 data
sets, where continuous features are discretized using mean
values for discretization. The results presented in this table
demonstrate that the accuracy of the proposed algorithm
(UDBN) is much better than that of the NB, and the TAN in
all data sets. The UDBN also works better than the k−DBN
in most of data sets. In 10 cases out of 12, the UDBN
has higher accuracy than the k−DBN. The accuracy of this
method almost ties with the k−DBN in data sets Phoneme
CR and German.numer.

The averaged test set accuracy obtained by the NB, the
TAN, the k−DBN and the UDBN on 12 data sets using
discretization algorithm SOAC summarized in Table III. The
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results from this table show that the accuracy obtained by
the proposed algorithm in all data sets are higher than those
obtained by the NB, the TAN, and the k−DBN.

According to the results explained, the proposed algo-
rithm, UDBN, works well. It yields good classification
compared to the NB, the TAN and the k−DBN. In addition,
our algorithm is more general than the k−DBN. In the
k−DBN, the number k is a priori chosen. In fact, by setting
k, i.e., the maximum number of parent nodes that any
feature may have, the structure of BNs could be constructed.
Since k is the same for all nodes, it is not possible to
model cases where some nodes have a large number of
dependencies, whereas others just have a few. However, in
the proposed algorithm, the number k is defined by the
algorithm internally, and it is an unrestricted dependency
algorithm. It might be various for different data sets, and
even for each fold in the calculations. The computational
times are not presented in Tables II and III. It is clear that
the proposed algorithm needs more computational time than
the others, since for example, the NB appears as a special
case of UDBN when r = 0.

Table I
A BRIEF DESCRIPTION OF DATA SETS

Data sets # Instances # Features

Breast Cancer 699 10
Congressional Voting Records 435 16
Credit Approval 690 15
Diabetes 768 8
Haberman’s Survival 306 3
Ionosphere 351 34
Phoneme CR 5404 5
Spambase 4601 57
Fourclass 862 2
German.numer 1000 24
Svmguide1 7089 4
Svmguide3 1284 21

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a new algorithm for
learning of the structure in Bayesian Networks. An important
property of this algorithm is adding some numbers of
arcs between features that captures unrestricted dependency
among them. The number of arcs has been defined by the
proposed algorithm internally. We have carried out a number
of experiments on some binary classification data sets from
the UCI machine learning repository and LIBSVM. The
values of features in data sets are discritized by using
mean value of each feature and applying discretization algo-
rithm using sub-optimal agglomerative clustering. We have
presented results of numerical experiments. These results
clearly demonstrate that the proposed algorithm achieves

Table II
TEST SET ACCURACY AVERAGED OVER 10−FOLD CROSS VALIDATION

FOR DATA SETS USING MEAN VALUES FOR DISCRETIZATION. NB
STANDS FOR NAIVE BAYES, TAN FOR TREE AUGMENTED NAIVE

BAYES, k−DBN FOR k−DEPENDENCY BAYESIAN NETWORKS, k = 2,
AND UDBN FOR THE PROPOSED ALGORITHM

Data sets NB TAN k−DBN UDBN

Breast Cancer 97.18 96.52 97.31 97.66
Congressional Voting Records 90.11 93.21 94.62 95.48
Credit Approval 86.10 84.78 86.87 87.46
Diabetes 74.56 75.14 75.03 75.98
Haberman’s Survival 75.09 74.41 76.43 77.86
Ionosphere 88.62 89.77 88.35 89.98
Phoneme CR 77.56 78.31 80.58 80.16
Spambase 90.41 89.78 89.27 92.37
Fourclass 77.46 77.61 77.94 79.06
German.numer 74.50 73.13 76.35 76.27
Svmguide1 92.39 91.61 92.98 94.17
Svmguide3 81.23 82.47 83.64 85.41

Table III
TEST SET ACCURACY AVERAGED OVER 10−FOLD CROSS VALIDATION

FOR DATA SETS USING DISCRETIZATION ALGORITHM SOAC. NB
STANDS FOR NAIVE BAYES, TAN FOR TREE AUGMENTED NAIVE

BAYES, k−DBN FOR k−DEPENDENCY BAYESIAN NETWORKS, k = 2,
AND UDBN FOR THE PROPOSED ALGORITHM

Data Sets NB TAN k−DBN UDBN

Breast Cancer 96.12 95.60 96.76 97.65
Congressional Voting Records 90.11 91.42 92.61 94.16
Credit Approval 85.85 84.98 86.53 87.17
Diabetes 75.78 75.90 75.82 76.22
Haberman’s Survival 74.66 73.78 75.64 77.31
Ionosphere 85.92 86.18 85.94 88.62
Phoneme CR 77.01 78.53 80.41 81.01
Spambase 89.30 89.04 90.69 92.54
Fourclass 78.58 79.52 78.97 79.96
German.Numer 74.61 74.01 75.31 76.15
Svmguide1 95.61 94.91 96.32 97.54
Svmguide3 77.25 79.99 80.75 82.92

comparable or better performance in comparison with tradi-
tional Bayesian Networks.

Our future work is applying the proposed algorithm to
more complicated problems for learning BNs, e.g., problems
with incomplete data, hidden variables, and multi class data
sets.
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Chapter 4

Optimization Methods

4.1 A Globally Convergent Optimization Algorithm for Systems of

Nonlinear Equations

In this section, a new algorithm to solve systems of nonlinear equations has been introduced.

The idea in this algorithm is the combination of the gradient and Newton methods. We use the

Gradient method due to its global convergence property, and the Newton method to improve

the convergence rate. We consider two different combinations in this algorithm. In the first

one, the step length is determined only along the gradient direction. In the second one, we

find the step length along both the gradient and the Newton directions. The performance of

the proposed algorithm is tested using some well known systems of nonlinear equations. The

results provide evidence that this combination algorithm is robust and efficient.
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Abstract 

In this paper, a new algorithm is proposed for the 

solutions of system of nonlinear equations. This 

algorithm uses a combination of the gradient and 

Newton‟s methods. A novel dynamic combinator is 

developed to determine the contribution of the 

methods in the combination. Also, by using some 

parameters in the proposed algorithm, this 

contribution is adjusted. The efficiency of the 

algorithms is studied in solving system of nonlinear 

equations.  

 

Keywords: System of nonlinear equations, Line 

search, Descent direction, Newton‟s 

Method  

 

1. Introduction 

We consider the problem of finding solutions to a 

system of nonlinear equations of the form 

𝐹 𝑥 = 𝛩,   (1) 

where 𝛩 = (0,… ,0), 𝑥 = (𝑥1 , 𝑥2 ,… , 𝑥𝑛) and 

𝐹 = (𝑓1, 𝑓2 …𝑓𝑛) is a twice continuously 

differentiable function. At present, nonlinear systems 

of equations, due to frequently arise from various 

area of scientific and engineering computations, is 

still a topic research. These systems often arises 

when solving initial or boundary value problems in 

ordinary or partial differential equations ([1] and 

[2]). The application of nonlinear systems in load 

flow calculation in power system has been done by 

Spong and et all [3] in which their results of block 

Guass-Sidel iteration are compared with those of 

Newton-Raphson iteration. 

Most of the methods for solving (1) are optimization-

based methods in which Eq. (1) is reformulated as an 

optimization problem as follows: 

𝑓 𝑥 =
1

2
 𝐹(𝑥) 2,  (2) 

where, here and throughout the paper,  ∙  stands for 

the Euclidean norm. Obviously, global optimal 

solutions of problem (2) with the zero value of the 

objective function correspond to solutions of system 

(1). In the last decades, many publications in this 

area have been done both in theoretical and 

especially numerical issues. Many search direction 

methods such as gradient method, Newton‟s method, 

quasi-Newton methods, conjugate gradient and 

coordinate direction methods, have been applied to 

find a minimizer of (2). 

The steepest descent method (or gradient method) is 

a commonly used method. However, this method 

suffers from the slow speed and is easy plunging into 

local minima. In order to accelerate these difficulties, 

many methods have been used [4]. One way is the 

use of combination of different local optimization 

methods. It has been found that these methods show 

significant reduction in the number of iterations and 

the expense of function evaluations. In recent years, 

there has been a growing interest in applying these 

combination methods. Buckley [5] proposed a 

strategy of using conjugate gradient search direction 

for most iterations and using periodically a quasi-

Newton step to improve the convergence. This 

algorithm offers the user the opportunity to specify 

the amount of available storage. Wang and et al. [6] 

proposed a revised conjugate gradient projection 

method, that is, a combination of the conjugate 

projection gradient and the quasi-Newton for 

nonlinear inequality constrained optimization 

problems. Recently, Y. Shi [7] proposed a combined 

method of Newton‟s and steepest descent methods 

for solving nonlinear system of equation within each 

iteration. Further in [8], in order to deal with an 

unconstrained problem, the combination of steepest 

descent with Newton and quasi-Newton methods 

were developed and compared with some traditional 

and existing methods. It is shown that this method is 

global convergent and at the same time has a high 

convergence rate. 

Our procedure here for solving system of nonlinear 

equations is based on the gradient method and 

Newton‟s method which are combined into an 

integrated procedure, and especially the dynamic 

combination is of our interest challenge. The 

combined algorithms proposed in this paper is 

different from the existing algorithms [5,6,7,8]. In 

the other words, we propose a novel algorithm with a 

new combination which offers the user the 

opportunity to specify the amount contribution of the 

methods. 

 

2. Descent Methods 

Many techniques have been devoted for solving (2) 

as well as (1). These problems are usually carried out 



using iterative methods due to the fact that there are 

generally no analytical methods to solve these 

problems. Among the variety of the exiting methods, 

the descent direction methods are the most popular 

techniques because of their fast convergence 

property.  

Denote ∇𝑓(𝑥) by 𝑔(𝑥) and ∇𝑓(𝑥𝑘) by 𝑔𝑘 . Given an 

initial point 𝑥1 ∈ 𝑅𝑛  and an error tolerance 𝜖 > 0, 

each iteration 𝑘 = 1,2,… of a descent direction 

method contains the following steps: 

1. If  𝑔𝑘 < 𝜖, then stop; 

2. compute a descent direction 𝑑𝑘  at  𝑥𝑘  satisfying 

𝑔𝑘𝑑𝑘 < 0 (3) 

3. determine an appropriate step length 𝛼𝑘 > 0; 

4. set 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘 , and go to the next 

iteration. 

Depending on the choice of 𝑑𝑘  and 𝛼𝑘 , where 𝑑𝑘  is a 

descent direction and 𝛼𝑘  is a line search factor, 

different descent direction methods have been 

developed. There are some criterions for accepting 

𝛼𝑘  as an admissible step length such as backtracking 

method, Armijo, Goldestain and Wolfe line search 

rules. In Wolfe's case, the step length 𝛼𝑘  is 

determined by an inexact line search along the 

direction 𝑑𝑘  satisfying 

𝑓 𝑥𝑘 + 𝛼𝑑𝑘 ≤ 𝑓 𝑥𝑘 + 𝜌𝛼𝑔𝑘
𝑇𝑑𝑘    (4) 

𝑔𝑘+1
𝑇 𝑑𝑘 ≥ 𝜎𝑔𝑘

𝑇𝑑𝑘   (5) 

where ρ ∈  0,1  and σ ∈  ρ, 1  are fixed parameters. 

Denote Ω by the level set  𝑥 f x ≤ f x1   and 

consider the Wolfe conditions (4) and (5) to 

determine  in the above algorithm, then the global 

convergence of the above algorithm is given by the 

following Theorem. 

Theorem 1 ([9], Theorem 2.5.4]). Let αk  in the above 

descent algorithm be defined by (4) and (5). Let also 

dk  satisfy 

𝑐𝑜𝑠 𝜃𝑘 ≥ 𝛿   (6) 

for some δ > 0 and for all , where θk  is the angle 

between dk  and −gk . If g(x) exists and is uniformly 

continuous on the level set Ω, then either gk = 0 for 

some , or gk → 0. 

One of the most widely used methods satisfying 

Theorem 1 is the gradient method, in which dk =
−gk , for all . Although the method is global 

convergent and usually works well in some early 

steps, as a stationary point is approached, it may 

descend very slowly. In fact, it is shown that the 

convergence rate of the gradient method is at least 

linear, and the following bound holds 
 𝑥𝑘+1 − 𝑥∗ 

 𝑥𝑘 − 𝑥∗ 
≤

𝜆𝑚𝑎𝑥 − 𝜆𝑚𝑖𝑛

𝜆𝑚𝑎𝑥 + 𝜆𝑚𝑖𝑛

 
 

where λmax  and λmin  are the largest and smallest 

eigenvalues of the Hessian matrix respectively. 

In order to cope with the above-mentioned 

difficulties, one can use Newton‟s method with 

superlinear convergence property. At the 𝑘-th 

iteration, the classical Newton‟s direction is the 

solution of the following system 

𝐻𝑘𝑑 = −𝑔𝑘     (7) 

where Hk  is the Hessian matrix at xk . If 𝐻 is positive 

definite then the Newton‟s direction is a descent 

direction and consequently the system has a unique 

solution. Even when 𝐻 is positive definite, it is not 

guaranteed that Newton‟s method will be globally 

convergent. Although Newton‟s method generally 

converges faster than the gradient method, it depends 

on a starting point. On the other hand, the application 

of Newton‟s method to the solving of nonlinear 

equations is expensive for a large scale problem. A 

number of techniques avoiding the direct 

computation of 𝐻 may be used and upon different 

approximation there are different methods. In this 

category are the quasi-Newton methods which 

approximate second derivatives in a most subtle and 

efficient way. Another alternative is the use of a 

combined method of different local optimization 

methods which lead naturally to powerful algorithms 

and has been attracted extensive attention in recent 

years. One of the most successful methods of this 

category, introduced by Shi [8], uses a combination 

of the gradient method and Newton‟s method. 

Another algorithm in [8] uses quasi-Newton method 

instead of Newton‟s method in this combination. 

Here, we just compare our results with the first one 

introduced in [8]. We refer this algorithm by ShA. 

This algorithm is efficient algorithm for solving 

problem (2) due to its global convergence property 

and superlinear convergence rate. The direction in 

algorithm ShA is very close to Newton‟s direction. 

However, practical implementations show that, in 

some cases the gradient method can be a more 

suitable choice than Newton‟s method. For instance, 

when the difference of the function values, in two 

previous iterations, and also the value of the gradient 

in the previous iteration is large enough, the gradient 

method may work better than Newton‟s method. 

 

3. Proposed Algorithm 

Our aim here is to present an algorithm with two 

different combinations for solving problem (2), and 

as well as problem (1). The first case is the usual 

combination which has been developed in some 

research works. Another one is a combination of the 

gradient and standard Newton‟s methods. In this 

case, in each iteration αk  is determined only along 

the gradient direction. Both the proposed 

combinations are constructed so that they satisfy in 

the condition of descent methods and as well as 

Theorem 1. 

Let δ0, 𝜂, ρ and 𝜎 be four parameters so that 

0 < δ < 1, 0 < 𝜂 < 1, 0 < ρ <
1

2
 and ρ < 𝜎 < 1. 

Take any positive constants γ1, γ2 and bi , i = 1,2,3, 

such that γi > 1, 0 < b1 < 1, 1 < b2 < 1 δ  and 

b3 > 1 and initialize Λ0 by 1. By taking f x0 =
f(x1), the steps of our algorithm are as follows. 



0. Choose a starting point 𝑥1 ∈ 𝑅𝑛 , and an error 

tolerance 𝜖 > 0. Set 𝑘 = 1 and go to the next 

step. 

1. If  𝑓(𝑥𝑘) < 𝜖, then stop. 

2. If Newton‟s direction 𝑑1 is not computable, due 

to the singularity of the Hessian, then compute 

the gradient direction 𝑑2 = −𝑔𝑘  at 𝑥𝑘 , and go to 

step 8. 

3. Compute the gradient direction 𝑑2 and Newton‟s 

direction 𝑑1 at 𝑥𝑘  that satisfies (7). 

4. Set δ = δ0 and Λ = Λ0. If  𝑓 𝑥𝑘 − 𝑓 𝑥𝑘  > γ1 

and  𝑔𝑘 > γ2 then set δ ← b2δ0 and go to step 

7. 

5. If 𝑘 = 1 or if  𝑔𝑘 ≤  gk−1 , set 𝑥 = 𝑥𝑘 + 𝑑1 

and go to step 6. 

6. If  𝑓(𝑥) <  𝑓(𝑥𝑘)  and  𝑔(𝑥) ≤ 𝜂 𝑔𝑘 , then 

δ ← b1δ0. 

7. If 𝑑1
𝑇𝑑2 ≥ 0 go to step 9, otherwise go to the 

next step. 

8. Use rules (4) and (5) to determine a step length 

𝛼𝑘 > 0 along the direction 𝑑𝑘 = 𝑑2, set 

𝑠𝑘 = 𝛼𝑘𝑑𝑘  and go to step 12. 

9. Compute 𝜉 as follows: 

𝜉 =
1

𝛬 +  𝑓 𝑥𝑘 − 𝑓 𝑥𝑘  
 

(8) 

  and set 𝑑 𝜉 =  1 − 𝜉 𝑑2 + 𝜉𝑑1. 

10. If 𝑑(𝜉)𝑇𝑑2 < δ 𝑑(𝜉)  𝑑2 , set Λ ← b3Λ and 

and go back to step 9. 

11. Consider one of the following two versions to 

calculate 𝑠𝑘 :  

a. Use rules (4) and (5) to determine a step 

length 𝛼𝑘 > 0 along the direction 𝑑𝑘 = 𝑑2 and 

set 𝑠𝑘 = 𝛼𝑘 1 − 𝜉 𝑑2 + 𝜉𝑑1.  

b. Use rules (4) and (5) to determine a step 

length 𝛼𝑘 > 0 along the direction 𝑑𝑘 = 𝑑(𝜉) 

and set 𝑠𝑘 = 𝛼𝑘𝑑𝑘 . 

12. Set 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘  and go to step 1. 

 

 Parameters b1, b2 and b3 are positive constants so 

that they offer the user the opportunity to specify the 

amount contribution of the methods. More precisely, 

when the slope of the function is slight, the algorithm 

tends to Newton‟s method, otherwise it is considered 

close to the gradient method. In (8), by considering 𝛬 

is enough close to , when difference between two 

previous values of the function is high then  is close 

to , and ξ → 1 as  𝑓 𝑥𝑘 − 𝑓 𝑥𝑘  → 0. Moreover, 

this equation is a dynamic form and has a crucial rule 

in the algorithm so that it specifies the amount 

contribution of the methods. This guaranteed that, 

near the solution, we can get the optimal point with a 

superlinear convergence rate. 

In step 11 of the above Algorithm, we use two 

different strategies by means of the combination. 

Step 11. a is a new combination and different from 

the existing methods in the literature. In this 

combination, the step length is determined only 

along the gradient direction. In the other words, 

finally, we use a novel combination of pure 

Newton‟s method  (with 𝛼𝑘 = 1) and the gradient 

method. 

 

4. Global convergence Theorem 

Here, we establish the global convergence of the 

above algorithm based on the global convergence 

property of Theorem 1. 

Theorem 2. Consider using Algorithm 1 to solve 

problem (2). Assume that g(x) exists and is 

uniformly continuous on Ω. Then either 𝑔𝑘 = 0 for 

some 𝑘, or 𝑔𝑘 → 0. 

Proof. Let assume that 𝑔𝑘 ≠ 0 for all 𝑘. Here, we 

show that the direction 𝑑𝑘  obtained by the algorithm 

satisfies condition (6) of Theorem 1. Denote 

δ∗ ← b1δ0. Clearly, δ∗ ∈ (0,1). We show that  

condition (6) holds for δ∗; that is, 

𝑐𝑜𝑠 𝜃𝑘 ≥ 𝛿∗  (9) 

 for all 𝑘, where θk  is the angle between 𝑑𝑘  and 

𝑑2 = −𝑔𝑘 . 

Take any integer 𝑘. We have one of the following 

cases. 

Case 1. The direction 𝑑𝑘  is obtained at step 8. In this 

case 𝑑𝑘 = −𝑔𝑘  and, consequently, it is easy to see 

that cosθk = 1 > δ∗; that is, (6) holds. 

Case 2. The direction 𝑑𝑘  is obtained at step 11 in the 

form 𝑑𝑘 = 𝑑(𝜉). According to steps 9-10, the 

number 𝜉 is chosen so that the inequality 𝑑(𝜉)𝑇𝑑2 ≥
δ 𝑑(𝜉)  𝑑2 , holds, where δ ← b1δ0 or δ ← b2δ0. 

The existence of such a number 𝜉 follows from the 

fact that 𝑑(𝜉) → 𝑑2 as 𝜉 → 0 (or Λ → 0). Then, we 

have 

𝑐𝑜𝑠 𝜃𝑘 ≥
𝑑(𝜉)𝑇𝑑2

 𝑑(𝜉)  𝑑2 
≥ 𝛿 ≥ 𝛿∗  

(10) 

that is, (9) holds. 

In the above cases, the obtained direction, 𝑑𝑘 , satisfy 

in the assumption of Theorem 1, hence the remainder 

proof is similar to the proof of Theorem 1 given in 

[9]. 

 

5. Test results  

We have tested our algorithm described above on a 

several test problems given in [10] and [11]. The 

group of methods we have compared includes our 

proposed algorithms, the algorithm presented in [8] 

and also the gradient and Newton‟s method. 

In the proposed algorithm, we use two different 

combination as described in steps 11.a and 11.b; we 

refer these cases as 'Alg-a' and 'Alg-b', respectively. 

The group of methods we have compared includes 

Alg-a, Alg-b, the gradient method (GM), Newton‟s 

method (NM), and ShA presented in [8]. In all 

algorithms we used the wolfe line search rules to find 

acceptable step length. 

All the algorithms are terminated if the iteration 

number exceeds 500. Table 1 lists some functions to 

be tested the algorithms. Table 2 lists the 

performance of the above-mentioned algorithms 

relative to the number of iterations used. Table 3 



shows the summary of convergence results for the 

Table 2. Also, the summary of the convergence 

results of the algorithms with considering 50 initial 

random points is given in Table 4. In these tables, 

notations 'convergence', 'almost convergence (AC)' 

and 'not convergence (NoC)' mean as follows: 

'convergence' if  𝑓 𝑥𝑘  < 10−5; 'almost 

convergence' if 10−5 <  𝑓 𝑥𝑘  ≤ 10−2; otherwise 

'not convergence'. 

The parameters δ0, 𝜂, , , γi  and bi  used in this 

paper are: δ0 =  0.001, 𝜂 =  0.99, ρ = 0.001, 

σ =  0.9, γ1 = γ2 = n,  b1 = 0.01, b2 =
1

b1
 and 

b3 = 1.1. 

 

Table 1. Functions for testing the performance  

Problem n 

P1. 𝐹 x =  x1 + x2 , 2 x1
2 + x2

2 − 1 −
1

3
  

P2. Powell Singular [10] 

P3. Extended Kearfott [11] 

P4. Extended Rosenbrock [10] 

P5. Extended Eiger-Sikorski-Stenger[11]  

P6. Trigonometric [10] 

P7. Discrete Boundary Value [10] 

2 

4 

7 

8 

10 

10 

20 

 

Table 2. Functions for testing the performance  

 Point Alg-a Alg-b ShA NM GM 

 

P1 

𝑥0 

10𝑥0 

102𝑥0 

103𝑥0 

4 

8 

24 

11 

5 

8 

12 

19 

4 

11 

16 

22 

5 

12 

18 

24 

17 

20 

13 

23 

 

P2 

𝑥0 

10𝑥0 

102𝑥0 

103𝑥0 

7 

9 

31 

38 

10 

15 

39 

73 

11 

17 

21 

27 

11 

19 

NoC 

NoC 

135 

AC 

NoC 

NoC 

 

P3 

𝑥0 

10𝑥0 

102𝑥0 

103𝑥0 

13 

8 

13 

26 

10 

11 

13 

22 

9 

15 

24 

21 

NoC 

NoC 

NoC 

NoC 

10 

13 

15 

18 

 

P4 

𝑥0 

10𝑥0 

102𝑥0 

103𝑥0 

15 

69 

138 

498 

27 

382 

NoC 

NoC 

16 

38 

80 

195 

17 

39 

NoC 

NoC 

NoC 

NoC 

NoC 

NoC 

 

P5 

𝑥0 

10𝑥0 

102𝑥0 

103𝑥0 

10 

17 

20 

20 

5 

11 

17 

29 

7 

14 

18 

23 

NoC 

NoC 

NoC 

NoC 

6 

8 

17 

25 

 

P6 

𝑥0 

10𝑥0 

102𝑥0 

103𝑥0 

6 

11 

10 

11 

12 

AC 

9 

23 

8 

NoC 

NoC 

NoC 

9 

NoC 

NoC 

NoC 

7 

22 

16 

14 

 

P7 

𝑥0 

10𝑥0 

102𝑥0 

103𝑥0 

4 

12 

20 

29 

5 

14 

22 

31 

3 

7 

20 

29 

4 

8 

23 

NoC 

AC 

NoC 

NoC 

NoC 

Table 3. Summary of convergence results for Table 2 

Algorithm Convergence AC NoC 

Alg-a 100.00 0.00 0.00 

Alg-b 89.29 3.57 7.14 

ShA 89.29 0.00 10.71 

NM 42.86 0.00 54.14 

GM 60.71 7.14 32.15 

 

Table 4. Convergence results with 50 initial random 

points for each problem 

 

Algorithm Convergence AC NoC 

Alg-a 96.86 2.29 0.85 

Alg-b 88.57 1.43 10.00 

ShA 89.71 0.57 9.70 

NM 43.71 0.57 54.70 

GM 57.71 3.71 38.58 

 

6. Conclusion 

A combined algorithm of the gradient and Newton‟s 

methods has been presented for solving system of 

nonlinear equations. We have considered two 

different combinations. On of them is a simple case 

which has been recently introduced in some research 

works. Another one is a new combination and 

different from others in the literature. According to 

the above results, it is clear that the combination 

algorithms, especially the proposed algorithm with 

the new combination, are more efficient than others.  
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4.2 Solving Systems of Nonlinear Equations using a Globally

Convergent Optimization Algorithm

This section presents an extended version of the proposed algorithm in Section 4.1. The

proposed algorithm is based on a combination of the gradient and Newton methods, and it

can be applied for solving systems of nonlinear equations. To validate the proposed algorithm,

numerical experiments with a number of well known nonlinear equations systems have been

carried out. The results demonstrate the high efficiency of the algorithm.
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Abstract 

Solving systems of nonlinear equations is a relatively 

complicated problem for which a number of different 

approaches have been presented. In this paper, a new algorithm 

is proposed for the solutions of systems of nonlinear equations. 

This algorithm uses a combination of the gradient and the 

Newton’s methods. A novel dynamic combinatory is developed 

to determine the contribution of the methods in the 

combination. Also, by using some parameters in the proposed 

algorithm, this contribution is adjusted. We use the gradient 

method due to its global convergence property, and the 

Newton’s method to speed up the convergence rate. We 

consider two different combinations. In the first one, a step 

length is determined only along the gradient direction. The 

second one is finding a step length along both the gradient and 

the Newton’s directions. The performance of the proposed 

algorithm in comparison to the Newton’s method, the gradient 

method and an existing combination method is explored on 

several well known test problems in solving systems of 

nonlinear equations. The numerical results provide evidence 

that the proposed combination algorithm is generally more 

robust and efficient than other mentioned methods on some 

important and difficult problems.  

 

Keywords: Systems of nonlinear equations, Newton’s Method, 

Gradient method, Line search, Global 

convergence  

 

1. Introduction 

The solutions of systems of equations have a well-developed 

mathematical and computational theory when solving linear 

systems, or a single nonlinear equation. The situation is much 

more complicated when the equations in the system do not 

exhibit nice linear or polynomial properties. In this general 

case, both the mathematical theory and computational practices 

are far from complete understanding of the solution process.  

Systems of nonlinear equations arise in various domains of 

practical importance such as engineering, medicines, chemistry, 

and robotics [15, 21, 37]. They appear also in many geometric 

computations such as intersections, minimum distance, creation 

of centenary curves, and when solving initial or boundary value 

problems in ordinary or partial differential equations [13] and 

[16]. The application of nonlinear systems in load flow 

calculation in power system has been done by Spong and et. all 

[32] in which their results of block Guass-Sidel iteration are 

compared with those of Newton-Raphson iteration. Solving 

such a system involves finding all the solutions of equations 

contained in the mentioned system.  

In this paper, we consider the problem of finding solutions to a 

system of nonlinear equations of the form ���� � �,   (1) 

where �: 
� � 
� , � � �0, … ,0�, and � refers to � variables, � �  ���, … , ���. We denote the �-th component of � by ��, 
where ��: 
� �  
 is a nonlinear function and twice 

continuously differentiable on a convex set � � 
�. 

There is a class of methods for the numerical solutions of the 

system (1), which arises from iterative procedure used for 

systems of linear equations [12]. These methods use reduction 

to simpler one-dimensional nonlinear equations for the 

components ��, �� …��.   
There are some iterative methods for solving systems of 

nonlinear equations in the book written by Kelley [15]. A wide 

range class of iterative methods for solving systems of 

nonlinear equations has been suggested in the papers [2, 11, 25, 

26]. 

Most of the methods for solving (1) are optimization-based 

methods [1, 4, 6, 11, 17, 22, 37]. In the approach proposed in 

[22], the system (1) is transformed in to a constraint 

optimization problem. At each step, some equations that are 

satisfied at the current point are treated as constraints and the 

other ones as objective functions.  In a strategy based on 

optimization methods, at each iteration, a quadratic function is 

minimized to determine the next feasible point to step to. The 

quadratic function is the squared norm of the original system.  

To find a solution of (1), one can transform the system (1) into 

an unconstrained optimization problem and then solving the 

new unconstrained problem instead by applying an optimization 

method. The transformed problem is formulated as: ���� � �� �������,                              (2) 

where, here and throughout the paper, �·� stands for the 

Euclidean norm. Obviously, optimal solutions of problem (2) 

with the zero value of the objective function correspond to 

global solutions of system (1).    

In the last decades, many publications, both in theoretical and 

especially numerical issues, have been done for solving the 

problem (2) [3, 5, 9, 10, 18, 24, 27, 31, 33, 35]. Many search 
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direction methods such as the gradient method, the Newton’s 

method, the quasi-Newton methods, the conjugate gradient and 

coordinate direction methods have been applied to find a 

minimizer of (2). 

The steepest descent method (or gradient method) is a 

commonly used method. It has the globally convergence 

property, however, this method suffers from the slow speed and 

is easy plunging into local minima. In order to accelerate these 

difficulties, many methods have been used [10]. One way is the 

use of combination of different local optimization methods. It 

has been found that these methods show significant reduction in 

the number of iterations and the expense of function 

evaluations. In recent years, there has been a growing interest in 

applying these combination methods [7, 29, 30, 36]. Buckley 

[7] proposed a strategy of using a conjugate gradient search 

direction for most iterations and using periodically a quasi-

Newton step to improve the convergence. This algorithm offers 

the user the opportunity to specify the amount of available 

storage. Wang and et al. [36] proposed a revised conjugate 

gradient projection method, that is, a combination of the 

conjugate projection gradient and the quasi-Newton methods 

for nonlinear inequality constrained optimization problems. 

Recently, Y. Shi [29] proposed a combined method of the 

Newton’s and the steepest descent methods for solving 

nonlinear systems of equations within each iteration. Further in 

[30], in order to deal with an unconstrained problem, the 

combination of the steepest descent with the Newton and the 

quasi-Newton methods were developed and compared with 

some traditional and existing methods.  

Our procedure here for solving systems of nonlinear equations 

is based on the combination of local optimization methods. We 

apply the gradient and the Newton’s methods for our 

combination algorithm. They are combined into an integrated 

procedure, and especially the dynamic combination is of our 

interest challenge. The combined algorithms proposed in this 

paper are different from the existing algorithms [7, 29, 30, 36]. 

In the other words, we propose a novel algorithm with a new 

combination which offers the user the opportunity to specify the 

amount contribution of the methods.  

The rest of the paper is organized as follows: Section 2 gives a 

brief review to preliminaries about optimization. In Section 3, 

we review the descent methods. We present the proposed 

combination algorithm in Section 4. The global convergence 

property of this algorithm has been proved in Section 5. We 

have demonstrated the efficiency of the proposed algorithm 

with some experiments in Section 6. Section 7 concludes the 

paper. 

 

2. Preliminaries 
Usually, optimization methods are iterative. The basic idea is 

that, with an initial guess of the optimal values of the variables, ����, an optimization method generates a sequence ���� of 

improved estimates until it reaches a solution. When ���� is a 

finite sequence, the last point is the optimal solution; when ���� 
is infinite, it has a limit point which is the optimal solution of 

the problem. The strategy used to move from one iterate to the 

next distinguishes one algorithm from another. A typical 

behavior of an algorithm which is regarded as acceptable is that 

the iterates ���� move steadily towards the neighborhood of a 

point local minimizer, and then rapidly converge to that point. 

When a given convergence rule is satisfied, the iteration will be 

terminated. In general, the most natural stopping criterion is ���� �  ,                                                                (3) 

where �� stands for !���� at �� and � is defined by (2).  " 0 

is a prescribed error tolerance.  

Let ��  be the #-th iterate, $� #-th search direction, and %� #-th 

step length, then the #-th iteration is ��&� � �� ' %�$� .                                                 (4) 

There are two fundamental strategies for moving from the 

current point �� to a new state ��&�:  Trust region [24, 38] and 

Line search [24, 28, 31, 33]. 

In the trust region strategy, the information gathered about � is 

used to construct a model function whose behavior near the 

current point �� is similar to that of the actual objective 

function �. When � is far from �� , the model may not be a good 

approximation of  �. Therefore, the search for a minimizer of 

the model is restricted to some region around ��. 

In the line search strategy, the algorithm chooses a direction $� 

and searches along this direction from the current iterate ��  for 

a new iterate with a lower function value.  

The line search and trust-region approaches differ in the order 

in which they choose the direction and distance of the move to 

the next iterate. Line search starts by fixing the direction $� and 

then identifying an appropriate distance, namely the step 

length %�. In trust region, firstly a maximum distance is chosen, 

the trust region radius, and then a direction and a step that attain 

the best possible improvement subject to this distance constraint 

is found. If this step proves to be unsatisfactory, the distance 

measure will be reduced and tried again [24].  

A trust region method is effective since it limits the step to a 

region of greater confidence in the local model and attempts to 

utilize more information from the local model for finding a 

shortened step. However, trust region models are more difficult 

to formulate and solve than a line search strategy [31]. In this 

paper, we will focus on line search strategies. 

 

2.1 Line Search 

Line search methods are traditional and efficient methods for 

solving unconstrained minimization problems. Its convergence 

has attracted more attention in recent years [3, 19, 35].  

The success of a line search method depends on effective 

choices of both the direction $�  and the step length %�. It is 

clarified that the search direction plays a main role in the 

algorithm and that step length guarantees the global 

convergence in some cases. 

There are two alternatives for finding the distance to move 

along $�  namely the exact line search and inexact line search 

[19, 28, 31, 33]. In the exact line search, the following one-

dimensional minimization problem will be solved to find a step 

length %: (��) ���� ' %$��.                                                  (5) 

If we choose %� such that the objective function has acceptable 

descent amount, i.e., it means the descent ����� *���� ' %�$�� " 0                                     (6) 

is acceptable by users, such a line search is called inexact line 

search. Since, in practical computation, exact optimal step 

length generally cannot be found, and it is also expensive to 

find almost exact step length, therefore the inexact line search 

with less computation load is highly popular.  

A simple condition we could impose on %� in an inexact line 

search is to require a reduction in �: ���� ' %�$�� � �����.                                           (7) 

It has been shown that this requirement is not enough to 

produce convergence to optimal point [24, 33]. The difficulty is 

that there is not always a sufficient reduction in � at each step, a 

concept we discuss next. 

There are several inexact line search rules for choosing an 

appropriate step length %�, for example the Armijo rule, the 
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Goldstein rule, and the Wolfe-Powell rules [24, 31, 33], which 

are described briefly in the following. 

 

Armijo Rule and Goldstein Rule 

Armijo rule is as follows: ����� * ���� ' +,-$�� . */+,0��1$�,     
where + 2 �0,1�, / 2 40, ��5,  and 0 " 0,                    (8)  ( � 0,1, …, are tried successively until the above 

inequality is satisfied for ( � (�. 
 

Goldstein presented the following rule. Let 6 � �% " 0: ���� ' %$�� � ������ 
be an interval. In order to guarantee the function 

decreases sufficiently, we want to choose α such that it 

is away from the two end points of the interval 6.  
The Goldstein conditions are ���� ' %$�� 7 ����� ' /%��1$� ,                           (9) 

and ���� ' %$�� . ����� ' �1 * /�%��1$� ,                  (10) 

which exclude those points near the right end point and 

the left end point. 

 

Wolfe-Powell Rule 

It is possible that the rule (10) excludes the minimizing value 

of % outside the acceptable interval. Instead, the Wolfe-Powell 

gives another rule to replace (10): ��&�1 $� . 8��1$�, 8 2 �/, 1�. 
Therefore, the step length %� in the Wolfe-Powell rule will be 

determined along the direction $� satisfying: ���� ' %$�� 7 ����� ' /%��1$� ,                          (11) 

and ��&�1 $� . 8��1$�, 8 2 �/, 1�.                                  (12) 

The Wolfe-Powell rule is a popular inexact line search rule. We 

will use it in our algorithm and all experiments in this paper. 

 

2.2. Search Directions  

The search direction in gradient-based methods often has the 

form $� � *9�:��� ,                                                         (13) 

where 9� is a symmetric and nonsingular matrix. For example, 

in the gradient method 9� is simply the identity matrix, $� �*��  ;3, 24, 33?. $� � *@�:�g� corresponds to the Newton’s 

method with @�:� being available, where  @� is an exact Hessian 

of � ;24, 33?. In quasi-Newton methods, 9� is an 

approximation to the Hessian @� that is updated at every 

iteration by means of a low-rank formula [5, 9, 24, 33]. In the 

conjugate gradient method, $� is defined by  $� � *�� ' +�$�:�, # . 2, and $� � *�� ; +�  is a parameter 

[8,18, 24, 33]. 

When $� is defined by (13) and 9� is positive definite, we 

have $�1�� � *��19�:��� � 0, and therefore $� is a descent 

direction. 

The search direction $�   is generally required to satisfy the 

descent condition: ��$� � 0.                                                                 (14) 

The condition (14) guarantees that $� is a descent direction of � 

at �� [24, 33]. 

 

3. Descent Methods 

Many techniques have been devoted for solving (2), as well as 

(1). These problems are usually carried out using iterative 

methods due to the fact that there are generally no analytical 

methods to solve these problems. Among the variety of the 

exiting methods, the descent direction methods are the most 

popular techniques because of their fast convergence property. 

A general descent direction algorithm is given in the Algorithm 

1. 

 

Algorithm 1. A General Descent Framework 

0. Lets �� 2 
� be a given initial point, and  " 0 an error 

tolerance. Each iteration # � 1,2, … of a descent direction 

method contains the following steps: 

1. If ���� �  , then stop. 

2. Compute a descent direction $� at  �� satisfying (14). 

3. Determine an appropriate step length %� " 0. 

4. Set ��&� � �� ' %�$�, and go to the next iteration. 

Let Ω � ��|���� 7 ������ be the level set, and consider the 

Wolfe-Powell conditions (11) and (12) to determine %�, then the 

global convergence of the Algorithm 1 is given by the following 

Theorem [33]. 

 

Theorem 1. Let %� in the above descent direction algorithm be 

defined by (11) and (12). Let also $� satisfies DEF G� . H, (15) 

for some H " 0 and for all k, where G� is the angle between $� 

and *��. If ���� exists and is uniformly continuous on the 

level set Ω, then either �� � 0 for some k, or �� � *∞, 

or �� � 0.  

Proof can be found in [33], Theorem 2.5.4.  

One of the most widely used methods satisfying Theorem 1 is 

the gradient method, in which d� � *�� for all #. Although the 

method is globally convergent and usually works well in some 

early steps, as a stationary point is approached, it may descend 

very slowly. In fact, it is shown that the convergence rate of the 

gradient method is at least linear, and the following bound holds  �KLMN:KO��KL:KO� 7 PQRS:PQTUPQRS&PQTU,                                          (16) 

where V,WK  and V,�� are the largest and the smallest 

eigenvalues of the Hessian matrix, respectively. 

In order to cope with the above-mentioned difficulties, one can 

use the Newton’s method with the quadratic convergence 

property. At the #-th iteration, the classical Newton’s direction 

is the solution of the following system:  @�$� � *�� , (17) 

where @�  is the Hessian matrix at ��. If @ is positive definite, 

then the Newton’s direction is a descent direction and 

consequently the system has a unique solution. Even when @ is 

positive definite, it is not guaranteed that Newton’s method will 

be globally convergent. Although the Newton’s method 

generally converges faster than the gradient method, it depends 

strongly on a starting point. On the other hand, the application 

of the Newton’s method for solving the nonlinear equations is 

expensive due to the direct calculations of second order 

derivatives of the function, @. A number of techniques avoiding 

the direct computation of @ may be used. Upon different 

approximation there are different methods. In this category are 

the quasi-Newton methods which approximate second 

derivatives in a most subtle and efficient way. Another 

alternative is the use of a fusion of different local optimization 

methods which lead naturally to powerful algorithms and has 

been attracted extensive attention in recent years. One of the 

most successful methods of this category, introduced by Shi 

[30], uses a combination of the gradient method and the 

Newton’s method. This algorithm is an efficient algorithm for 

solving problem (2) due to its global convergence property. In 

our experiments, we compare our results with this combination 

algorithm and refer it by ShA. The direction in algorithm ShA is 

very close to the Newton’s direction. However, practical 
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implementations show that, in some cases the gradient method 

can be a more suitable choice than the Newton’s method. For 

instance, when the difference of the function values, in two 

previous iterations, and also the value of the gradient in the 

previous iteration is large enough, the gradient method may 

work better than the Newton’s method. 

 

4. Proposed Algorithm 

Our aim here is to present an algorithm with two different 

combinations for solving the problem (2), as well as the 

problem (1). Both proposed combinations are constructed so 

that they satisfy in the condition of descent methods and as well 

as  the Theorem 1. 

Let H�, X, / and 8 be four parameters so that 0 � H � 1, 0 � X � 1, 0 � / � �� and / � 8 � 1. Take any positive 

constants 0�, 0� and Y�, � � 1,2,3, such that 0� " 1, 0 � Y� � 1, 1 � Y� � 1 H⁄  and Y[ " 1 and initialize \� by 1. Let also T, and τ  be very large and small positive numbers, respectively, and 

let ����� � �����. The steps of the proposed algorithm are as 

follows. 

 

Algorithm 2. A Combination of the Gradient and Newton’s 

Methods 

0. Choose a starting point �� 2 
�, and an error tolerance  "0. For # � 1,2, … do 

1. If �g����� �  , then stop. 

2. If the Newton’s direction $� is not computable, due to the 

singularity of the Hessian, then compute the gradient 

direction $� � *�� at  ��, and go to step 8. 

3. Compute the gradient direction $� and the Newton’s 

direction $� at �� that satisfies (17). 

4. Set H � H� and \ � \�. If |����� * ����:��| " 0� and �� " 0�, set H _ Y�H� and go to step 7. 

5. If # � 1 or if  ���� 7 ���:��, set � � �� ' $� and go to 

step 6. 

6. If ���� � ����� and ���� 7 X�� then H _ Y�H�. 

7. If $�1$� . 0 go to step 9, otherwise go to the next step. 

8. Use rules (11) and (12) to determine a step length %� " 0 

along the direction $� � $�, set F� � %�$� and go to step 

12. 

9. Compute ` as follows: ` � 1\ ' |����� * ����:��|     

(18) 

  and set $�`� � �1 * `�$� ' `$�. 

10. If $�`�1$� � H�$�`���$��, set \ _ Y[\ and and go back 

to step 9. 

11. Consider one of the following two versions to calculate F�:  

a. Use rules (11) and (12) to determine a step length %� " 0 along the direction $� � $� and set F�a �%��1 * `�$� ' `$�. If ���� '  F�a� 7 ����� *τ� F�a�  and %��d�� 7 T�d��, set F� �  F�a ; otherwise set  F� � αdd�. 
b. Use rules (11) and (12) to determine a step length %� " 0 along the direction $� � $�`� and set F� � %�$�. 

12. Set ��&� � �� ' F�. 

 

Parameters Y�, Y� and Y[ are positive constants so that they 

offer the user the opportunity to specify the amount contribution 

of the methods. More precisely, when the slope of the function 

is slight, the algorithm tends to the Newton’s method, otherwise 

the contribution of gradient is increased and is considered close 

to the gradient method. In (18), when a difference between two 

previous values of the function is high then ` is close to 0,  and ` � 1 as |����� * �����| � 0. Moreover, this equation is a 

dynamic form and has a crucial rule in the algorithm so that it 

specifies the amount contribution of the methods. It, also, 

guaranties that, near the solution, we get the optimal point with 

a super-linear convergence rate. 

In step 11 of the above algorithm, we use two different 

strategies by means of the combination. Step 11. e is a new 

combination and different from the existing methods in the 

literature. In this combination, the step length %� is determined 

only along the gradient direction. In other words, we use a 

novel combination of the pure Newton’s method (i.e., %� � 1) 

and the gradient method. The second one is the usual 

combination which has been developed in some research works. 

The step length in this case is found along a combination of the 

gradient and the Newton’s directions. 

 

5. Global convergence Theorem 

Here, we establish the global convergence of the proposed 

combination algorithm based on the global convergence 

property of the Theorem 1. 

 

Theorem 2. Consider using the Algorithm 2 to solve the 

problem (2). Assume that ���� exists and is uniformly 

continuous on the level set Ω. Then either �� � 0 for some #, or �� � *∞, or  �� � 0. 

Proof. Let assume that �� f 0 and �� is bounded below for 

all #. It is clear that in this case, �� � ��:� for all #. 
Denote HO _ Y�H�, clearly HO 2 �0,1�. We will show that the 

direction $� obtained by the algorithm satisfies condition (15) 

of the Theorem 1 for HO; that is, DEF G� . HO,  (19) 

for all #, where G� is the angle between $� and $� � *��. 

Suppose Fd is obtained at Step 8. Then $� � *�� (Step 8), and 

it is easy to see that DEF G� � 1 " HO; it means (15) holds. Now, 

we consider other cases: case 1: Fd is obtained via Step 11.b and 

case 2:  Fd is obtained via Step 11.a. We will proof each case 

separately as follows:  

Take any integer #.  

1.  In this case, we assume that Fd is obtained at Step 11.b. Then $� � $�`� is chosen as a descent direction and according to 

steps 9-10, the number ` can be chosen so that the 

inequality $�`�1$� . H�$�`���$��   holds, where H _ Y�H� 

or H _ Y�H�. Therefore, we have 

DEF G� . $�`�1$��$�`���$�� . H . HO,                    

(20)  

that is, (19) holds and therefore the obtained direction, $�, 

satisfies in the assumption of the Theorem 1, hence the 

remainder proof is similar to the proof of the Theorem 1 in [33]. 

2. In this case, we assume Fd is obtained at Step 11.a, i.e. Fd �%��1 * `�$� ' `$�.  

If the number of cases in Fd obtained by Step 11.a is finite, then 

it means Fd is defined by the gradient direction, $�, for all 

sufficiently large k,  and therefore the proof will be easily 

obtained.  

Now suppose it is not finite, i.e., there is a subsequence #, � ∞ such that F�Q is obtained via Step 11.a.  

By considering the first condition in 11.a, since �� is bounded 

below we have hF�Qh � 0 as #, � ∞. 
In addition, from $�$� . 0 we obtain hF�,h� . %�Q� �1 * ξ���$��� ' ξ��$���. 
Now, we are going to show �� � 0. Suppose it is not true. Then 

there exist a subsequence �#,� such that h��Qh .  j " 0, k#,.  
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Here we consider two cases: (i) �$�� � 0 as #, � ∞, and (ii)  �$�� does not converge to zero. The case (i) leads to 

contradiction by applying the second condition in Step 11.a. In 

the case (ii), let us consider h$�,�Qh .  ̃ " 0, k#,  which is 

contradiction by hF�Qh � 0. Therefore, the proof is complete, 

i.e., �� � 0 

 

6. Experiments and Results  

We have evaluated the performance of the proposed algorithm 

for several well known benchmark test problems given in [20, 

34].In the proposed algorithm, we use two different 

combination as described in steps 11.a and 11.b; we refer these 

cases as 'Ala' and 'Alb', respectively. The group of methods we 

have compared includes Ala, Alb, the gradient method (GM), 

the Newton’s method (NM), and ShA presented in [8]. In all 

algorithms we use the Wolfe-Powell line search rules to find an 

acceptable step length. 

The calculations were carried out using MATLAB. The 

comparison of the methods is based on the following criteria: all 

methods are terminated if the gradient converges to a 

predefined tolerance, �g����� �  ,  � 10:m, or the iteration 

number exceeds 500. 

The parameters H�, \�, X, /, 8, 0�, Y� , τ and T used in this paper 

are: H� �  0.001, \� � 1, X �  0.99, / � 0.001, 8 �  0.9, 0� � 0� � �,  Y� � 0.01, Y� � �oN , Y[ � 1.1, τ � 10:��and T � 10��. 
We have listed the following ten test problems used in the 

experiments. To define the test functions, the general formats 1 

to 3 have been adopted [20, 34]: 

1. Dimension, � . 

2. Function definition,  ��, �� …�,. 
3. Standard initial point, ��.  

 

Problem 1. Helical Valley function � �  ( � 3 ����� � 10;�[ * 10G���, ���? ����� � 10;����', �����.p * 1? �[��� � �[ 

where 

G���, ��� �
qr
s 12t arctan y����z ,            �� �� " 012t arctan y����z ' 0.5, �� �� � 0| �� � �*1,0,0�. 

 

Problem 2. Powell Singular function  � �  ( � 4 ����� � �� ' 10�� ����� � 5�.p��[ * �}� �[��� � ��� * 2�[�� �}��� � 10�.p��� * �}�� �� � �3,*1,0,1�. 
 

Problem 3. Wood function � �  4, ( � 6 ����� � 10��� * ���� ����� � 1 * �� �[��� � 90�.p��} * �[�� �}��� � 1 * �[ �p��� � 10�.p��� ' �} * 2� �m��� � 10:�.p��� * �}� �� � �*3,*1,*3,*1�. 
 

Problem 4. Watson function  2 7 � 7 31, ( � 31 

����� � ��� * 1��
��� ��  ���:� * ����  ���:��

��� �� * 1 

�� � �29 , 1 7  � 7 29 �[���� � ��, �[���� � �� * ��� * 1 

 

Problem 5. Extended Kearfott function  � �  ( � 7 ����� � ��� * ��&� ����� � ��� * �� �� � �0.1,0.1, … ,0.1�. 
 

Problem 6. Extended Eiger-Sikorski-Stenger � �  ( � 9 ����� � ��� * 0.1�� ' ��&� * 0.1 ����� � ��� * 0.1�� ' �� * 0.1  �� � �*2000,… ,*2000�. 
 

Problem 7. Variably dimensional function � variable, ( � � ' 2 ����� � �� * 1, � � 1,… , � 

��&���� � ����
��� �� * 1� 

��&���� � �∑ ������ �� * 1���       �� � 0�,  where 0� � 1 * 4��5. 

 

Problem 8. Discrete Boundary Value function � variable, ( � � 

����� � 2�� * ��:� * ��&� ' ����� ' �� ' 1�[2  

where � � ��&� , �� � ��, e�$ �� � ��&� � 0 �� � 0�  where 0� � ����� * 1�. 
 

Problem 9. Extended Rosenbrock function    � variable but even, ( � � ���:���� � 10���� * ���:�� � ������ � 1 * ���:� �� � 0� where 0��:� � *1.2, 0�� � 1. 
 

Problem 10. Trigonometric function � variable,     ( � � 

����� � � *�DEF�
��� �� ' ��1 * DEF��� * F���� 

�� � 4�� , �� , … , ��5. 

 

Table 1 lists the performance of the above-mentioned 

algorithms relative to the number of iterations used. We have 

multiplied the given initial points by 10 to have an additional 

initial point. In this table, “TP” and “IP” stand for test problem 

and initial point, respectively. Table 2 shows the summary of 

convergence results for the Table 1. In order to compare the 

algorithms with more initial points, we have generated 50 

random initial points uniformly distributed from their domains 

with the intersection of ;*10,10?. The summary of the 

convergence results of the algorithms considering these random 
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initial points is given in Table 3. In these tables, notations “AC” 

and “NC” stand for the almost convergence and not 

convergence, respectively. Convergence means that the method 

finds the solution and �g����� � 10:m, almost convergence 

means that the method finds a solution almost close to the 

optimal local solution and 10:m � �g����� 7 10:� ; otherwise 

not convergence.  

 

Table 1. Number of iterations for 10 test problems 

TP � IP Ala Alb ShA NM GM P1 

 

3 

 

�� 10��  
11 13  

11 21  
13 21  

25 NC  
�� ��  P2 

 

4 

 

�� 10�� 

 

7 9 

 

10 15 

11 17 

11 19 

135 �� 

P3 

 

4 

 

�� 10��  
20 19  

AC AC  
AC NC  

NC NC  
�� �� 

P4 

 

6 

 

�� 10��  
10 11  

12 18  
12 21  

75 77  
�� �� 

P5 

 

7 

 

�� 10�� 

 

13 8 

 

10 11 

 

9 15 

 

�� �� 

 

10 13 

 P6 

 

10 

 

�� 10�� 

 

10 17 

 

5 11 

 

7 14 

 

�� �� 

 

6 8 

 P7 

 

10 

 

�� 10��  
14 27  

17 34  
23 37  

24 38  
56 ��  P8 

 

20 

 

�� 10�� 

 

4 12 

 

5 14 

 

3 7 

 

4 8 

 

�� �C 

 P9 

 

100 

 

�� 10�� 

 

15 57 

 

17 73 

 

26 78 

 

�� �� 

 

�� �� 

 P10 

 

100 

 

�� 10�� 

 

19 23 

 

21 24 

22 27 

 

AC 34 

 

129 472 

 

 

Te numerical results in Tables 1 to 3, demonstrate the high 

performance of the proposed combination algorithm compared 

to other mentioned methods. This is confirmed by the number 

of iterations obtained, and the convergence properties. For 

example, the proposed algorithm, Ala, converges in all test 

problems for two different initial points. Alb converges in nine 

test problems out of ten. This algorithm finds the solution in the 

Wood function  almost near the optimal solution. Although the 

algorithm proposed by Shi, ShA, convergences in nine test 

problems out of ten, but it fails to find the solution in the 

problem 3. Also, the number of iterations obtained by ShA is 

more than the proposed algorithms, in average. This is worse 

for the Newton’s and the gradient methods with more AC and 

NC properties. 

 

Table 2. Summary of convergence results for Table 1 

Algorithm Convergence �� �  

Ala 100.00 0.00 0.00 

Alb 90.00   10.00       0.00 

ShA 90.00 5.00 5.00 

NM       50.00 5.00 45.00 

GM 40.00 35.00 25.00 

Table 3. Convergence results, by considering 50 initial random 

points for each test problem 

Algorithm Convergence �� �  

Ala 96.40 2.80 0.80 

Alb 88.80 9.40 1.80 

ShA 87.80 4.40 7.80 

NM 54.60 2.20 43.20 

GM 51.70 30.40 17.90 

 

7. Conclusion 
A combined algorithm of the gradient and the Newton’s 

methods has been presented for solving systems of nonlinear 

equations. We have considered two different combinations. One 

of them is a usual case which has been recently introduced in 

some research works. Another one is a new combination and 

different from others in the literature. According to the 

numerical experiments, it is clear the proposed algorithm, 

especially the proposed algorithm with the new combination, is 

more efficient than others.  
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4.3 Globally Convergent Optimization Methods for Unconstrained

Problems

In this section, the algorithm developed in the previous sections is extended to unconstrained

optimization problems. The algorithms are based on the combination of different local op-

timization methods. The first one is the the gradient method due to its global convergence

property. The second one is chosen, either the Newton method or the Quasi-Newton method

to improve the convergence rate. The performance of proposed algorithms are evaluated

by applying them to several well known unconstrained test problems. The numerical ex-

periments demonstrate the efficiency of proposed algorithms, and they have the global and

superlinear convergence properties which have been proved.
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New algorithms for solving unconstrained optimization problems are presented based on the
idea of combining two types of descent directions: the direction of anti-gradient and either
the Newton or Quasi-Newton directions. The use of latter directions allows one to improve
the convergence rate. Global and superlinear convergence properties of these algorithms are
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1. Introduction

Consider the following unconstrained minimization problem

min f(x) subject to x ∈ Rn (1)

where the function f is twice continuously differentiable. Let g(x) = ∇f(x) and
H(x) = ∇2f(x) be the gradient and the Hessian matrix of the function f , respec-
tively.

Numerical methods have been developed extensively for solving the minimiza-
tion problem (1). The gradient method is one of the simplest and commonly used
methods. Although this method is globally convergent, it suffers from the slow
convergence rate as a stationary point is approached. In order to improve the con-
vergence rate, one can use the Newton method. This method is one of the most
popular methods due to its attractive quadratic convergence, but it depends on the
initial point and sometimes the computation of the inverse of the Hessian could
be time consuming [18]. A number of different modified Newton methods have
been introduced to improve the performance of the Newton method [1, 8–10, 12].
However, the global convergence of these methods are not always guaranteed.

In order to avoid these difficulties, one way is the use of a combination of differ-
ent local optimization methods. In recent years, there has been a growing interest
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in applying such combined methods. De Luca et al. [5] considered a combination
of the gradient and the Newton methods for the solution of nonlinear comple-
mentarity problems. The work of Malik Hj et al. [13], employs a hybrid descent
direction strategy which uses a convex combination of the anti-gradient and the
Quasi-Newton as a search direction. Buckley [2, 3] proposed a strategy of using the
Conjugate gradient search direction for the most iterations and periodically using
the Quasi-Newton direction to improve the convergence. Wang et al. [19] proposed
a revised Conjugate gradient projection method, that is, a combination of the Con-
jugate gradient projection and the Quasi-Newton methods for nonlinear inequality
constrained optimization problems. Shi [16] introduced a method based on the
combination of the gradient and Newton methods for solving a system of nonlinear
equations. In [4], he proposed a combination of the modified Quasi-Newton and the
gradient method to find a solution for systems of linear equations. Furthermore, Shi
developed methods based on the combinations of the gradient method with New-
ton and Quasi-Newton methods for solving unconstrained optimization problems
[17]. Recently, the idea of combining the gradient method with the Newton and
the Quasi-Newton methods has been developed in [7, 11, 21]. These combinations
are also applied for minimizing the cost function during the training of Neural Net-
works [7]. More recently Yang [20] applied the Newton-Conjugate gradient method
for solitary wave computations.

In this paper, we propose new algorithms based on the idea of combining the anti-
gradient direction with either the Newton direction or the Quasi-Newton direction
for solving the problem (1). We call the algorithm involving combination of the
gradient and Newton methods as Algorithm CGN, and the combination of the
gradient and Quasi-Newton methods as Algorithm CGQN. These algorithms are
different from the existing combination algorithms [2–5, 7, 11, 13, 16, 17, 19–21].
We introduce a special parameter which allows us to control contribution from each
component method. We also define two different combinations. The first one is a
novel combination in which the step length, αk, is determined only along the anti-
gradient direction. The second one is similar to those developed in [4, 16, 17]. Under
some assumptions we prove that the proposed methods are globally convergent and
they have superlinear convergence rate.

The rest of the paper is organized as follows. In the next section, we present
a general scheme of the descent methods and some theorems which are used to
establish the convergence of the proposed methods. In Section 3, we describe the
proposed algorithms in details. The global and superlinear convergence proper-
ties of our algorithms are proved in Sections 4 and 5, which is followed by some
numerical experiments in Section 6, demonstrating the efficiency of the proposed
algorithms. Finally, some concluding remarks are made in Section 7.

2. Preliminaries

Consider the problem (1) and denote by gk = ∇f(xk), the gradient of the function
f at a point xk. A general descent method for solving Problem (1) proceeds as
follows:

Algorithm 1: A Descent Method

Initialization. Select a starting point x0 ∈ Rn, and a tolerance ε > 0, set k:=0.

Step 1. If ‖gk‖ < ε, then stop.
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Step 2. Compute a descent direction dk at xk satisfying

gTk dk < 0. (2)

Step 3. Determine an appropriate step length αk > 0.

Step 4. Set xk+1 := xk + αkdk, k := k + 1 and go to Step 1.

Depending on the choice of dk and αk, where dk is a descent direction and αk is
a step length, different descent direction methods have been developed. There are
two alternatives for finding αk, namely using the exact and inexact line search. In
practical implementations, the finding an exact optimal step length is, in general,
difficult or expensive [18], therefore, the inexact line search with less computa-
tional load is highly popular. There are some inexact line search techniques such
as Armijo, Goldstein and Wolfe-Powell rules. Given descent direction dk, the Wolfe-
Powell rule suggests the following relations to find the step length αk > 0 [18]

f(xk + αkdk) ≤ f(xk) + ραkg
T
k dk, (3)

gTk+1dk ≥ σgTk dk, (4)

where ρ ∈ (0, 1/2) and σ ∈ (ρ, 1).
Let us consider the Wolfe-Powell conditions (3) and (4) to determine αk in the

descent direction algorithm. The global convergence of the general descent direction
algorithm is given by the following theorem [18].

Theorem 2.1 : Let αk in the descent direction algorithm be defined by (3) and
(4). Let also dk satisfy

cos(θk) ≥ δ (5)

for some δ > 0 and for all k, where θk is the angle between dk and −gk. If g(x)
exists and is uniformly continuous on the level set {x ∈ Rn| f(x) ≤ f(x0)}, then
either gk = 0 for some k, or fk → −∞, or gk → 0.

One of the simplest and the most fundamental minimization methods satisfying
Theorem 2.1 is the gradient method, in which dk = −gk, for all k. Although this
method is globally convergent and usually works well in some early steps, as a
stationary point is approached, it may descend very slowly.

In order to improve the convergence rate, one can use the Newton method. At
the k-th iteration, the classical Newton direction dk is the solution to the following
system:

Hkdk = −gk, (6)

where Hk is the Hessian matrix at xk. In general, the Newton method is not glob-
ally convergent. Moreover, this method requires the computation of the inverse
of the Hessian in order to find descent directions which can be time consuming.
One technique, for instance, is the Quasi-Newton method which uses approxima-
tions with a positive definite matrix. However, these approximations still will not
guarantee the global convergence. A common strategy that is recently applied to
guarantee the global convergence is the use of methods based on the combination
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of different local optimization methods [2–5, 7, 11, 13, 16, 17, 19–21]. Most of these
methods are efficient for solving the problem (1) due to their global convergence
property and high local convergence rate. We propose new combined methods in
the next section.

The following theorems will be used to prove the convergence of the proposed
methods. Their proofs can be found in [18].

Theorem 2.2 : Let g : Rn → Rm be continuously differentiable in the open
convex set D ⊂ Rn. Assume that H is Lipschitz continuous in D with a Lipschitz
constant γ ≥ 0. Then for any u, v, x ∈ D, we have

‖g(u)− g(v)−H(x)(u− v)‖ ≤ γ ‖u− x‖+ ‖v − x‖
2

‖u− v‖. (7)

Theorem 2.3 : Let g and H satisfy the conditions of Theorem 2.2. Assume that
H−1(x) exists. Then there exist ε > 0 and µ > β > 0 such that for all u, v ∈ D,
when max{‖u− x‖, ‖v − x‖} ≤ ε, we have

β‖u− v‖ ≤ ‖g(u)− g(v)‖ ≤ µ‖u− v‖. (8)

3. The Proposed Algorithms

In this section, we introduce our new algorithms, called CGN and CGQN, for solv-
ing the unconstrained optimization problem (1). Algorithm CGN is based on the
idea of combining anti-gradient and Newton directions. In Algorithm CGQN, we
use the Quasi-Newton direction in the combination with the anti-gradient direction.

Throughout the paper d1,k denotes the anti-gradient direction at xk and d2,k

stands for the second direction at xk to be used in the combination with d1,k. The
steps of our combined methods are presented in Algorithm 2.

Algorithm 2: Algorithms CGN and CGQN

Initialization. Select a starting point x0 ∈ Rn, and a tolerance ε > 0, η and δ be
small positive numbers and ϑ > 1, ω and L are two fixed numbers. Set k:=0.

Step 1. If ‖g(xk)‖ < ε, then stop.
Step 2. Compute the direction d1,k at xk, d1,k = −gk.
Step 3. Compute a second direction d2,k at xk . If the direction d2,k at xk is not
computable, then go to Step 5.

Step 4. If dT2,kd1,k ≥ 0, go to Step 6.

Step 5. Use rules (3) and (4) to determine a step length αk > 0 along the direction
dk = d1,k, set sk := αkdk and go to Step 10.

Step 6. Set j := 0, η0 := η.

Step 7. Compute ξk as follows:

ξk =





1
1+ηj‖g0‖ if k = 0,

1
1+ηj |fk−fk−1| if k > 0,

(9)
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and set d(ξk) := (1− ξk)d1,k + ξkd2,k.

Step 8. If d(ξk)
Td1,k < δ‖d(ξk)‖‖d1,k‖, set ηj+1 := ϑηj and j = j + 1, and go to

Step 7.

Step 9. Compute sk using one of the following two approaches:

9.1. Use rules (3) and (4) to determine a step length αk > 0 along the direction
d1,k and set sk := αk(1 − ξk)d1,k + ξkd2,k. If f(xk + sk) ≤ f(xk) − ω‖sk‖ and
αk‖d1,k‖ ≤ L‖d2,k‖, set sk := sk; otherwise set sk := αkd1,k.

9.2. Use rules (3) and (4) to determine a step length αk > 0 along the direction
dk = d(ξk) and set sk := αkdk.

Step 10. Set xk+1 := xk + sk, k := k + 1 and go to Step 1.

The direction d2,k can be either the Newton direction or the Quasi-Newton di-
rection. In Algorithm CGN, when the Hessian at xk is singular or d2,k is not
computable then we use the anti-gradient direction. Moreover, if dT2,kd1,k < 0 then
the Newton direction tends to increase the function value. In this case, again, we
take the anti-gradient direction as indicated in Step 5.

In Algorithm CGQN, we use the Quasi-Newton direction as the second direction
in the combination with the anti-gradient direction. In the Quasi-Newton method,
an approximation Bk is used instead of the Hessian Hk. At the k-th iteration, the
Quasi-Newton direction is the solution to the following system:

Bkdk = −gk, (10)

where Bk is a positive definite matrix. There are some well known formulas for
updating Bk in the Quasi-Newton method [18]. In this paper, Bk is updated by
the BFGS formula as follows:

Bk+1 = Bk −
Bksks

T
kBk

sTkBksk
+
yky

T
k

sTk yk
, (11)

where sk = xk+1 − xk and yk = gk+1 − gk.
In practical implementations, when sTk yk = 0 (or sTk yk is too small), then Bk

and consequently d2,k may not be computable and we use only the anti-gradient
direction as indicated in Step 5.

In equation (9), parameter ξk is in the interval [0, 1] that weights two different
directions in the combination. When the slope of the function is slight, the algo-
rithm tends to the second direction, d2,k, otherwise it is close to the anti-gradient
direction, d1,k. More precisely, when the difference between function values is a
large number, and consequently ξk is close to 0, the gradient method may work
better. Also, it is clear from (9) that, near the solution, we can get the optimal
point with a high convergence rate.

In Step 7, we consider two different conditions for choosing ξk. At the first step,
k = 0, the value of |f(xk)− f(xk−1)| is not defined, so we will use ‖g0‖ instead.

In Step 9, we use two different strategies for the combination. Step 9.1 is a new
combination and is different from the existing methods in the literature [4, 16, 17].
In this combination, the step length αk is determined only along the anti-gradient
direction. In this strategy, we define two conditions that make the new direction
to be a descent direction. In Step 9.2, the step length αk is determined along the
combination of both directions d1,k and d2,k.
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4. Global Convergence

The following theorem shows that Algorithms CGN and CGQN are globally con-
vergent.

Theorem 4.1 : Consider using Algorithm 2 to solve the problem (1). Assume that
g(x) exists and is uniformly continuous on the level set {x ∈ Rn| f(x) ≤ f(x0)}.
Then either gk = 0 for some k, or fk → −∞, or gk → 0.

Proof : Let us assume that gk 6= 0 and fk is bounded below for all k. Clearly in
this case fk < fk−1 for all k. We need to show that gk → 0.

Denote by θk the angle between dk and −gk. Consider iterations xk+1 = xk + sk.
There are two versions to be considered. In the first version sk is calculated using
Steps 5 and 9.2 of Algorithm 2, in the second version sk is calculated using Steps
5 and 9.1.

Version 1. If sk is obtained at Step 5, then dk = d1,k = −gk and consequently

cos(θk) =
−dkgk
‖dk‖‖gk‖

= 1 > δ. (12)

Now suppose sk is obtained at Step 9.2. Then dk = d(ξk) is chosen as a descent
direction and according to Steps 7-8, the number ξk can be chosen so that the
inequality d(ξk)

Td1,k ≥ δ‖d(ξk)‖‖d1,k‖ holds. Then we have

cos(θk) =
d(ξk)

Td1,k

‖d(ξk)‖.‖d1,k‖
≥ δ, (13)

Therefore, in this version for all k the inequality cos(θk) ≥ δ > 0 holds and the
proof of the theorem follows from Theorem 2.1.

Version 2. Suppose sk is obtained at Steps 5 and 9.1. In this case we have
xk+1 = xk + sk where sk is defined by

sk = αkd1,k (14)

or

sk = αk(1− ξk)d1,k + ξkd2,k. (15)

Here we note that according to Step 9.1 the step length αk > 0 is determined by
the Wolfe-Powell rule along the direction d1,k; that is, the following two inequalities
are satisfied:

f(xk + αkd1,k) ≤ f(xk) + ραkg
T
k d1,k, (16)

g(xk + αkd1,k)
Td1,k ≥ σgTk d1,k, (17)

where d1,k = −gk = −g(xk).
If the number of cases when sk is defined using (15) is finite, that is, sk is defined
by (14) for all sufficiently large k, then the proof follows from Theorem 2.1 in view
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of (12).
Assume that there is a subsequent km →∞ such that

skm = αkm(1− ξkm)d1,km + ξkd2,km . (18)

According to Step 9.1, this in particular means that the following two relations
hold:

f(xkm + skm) ≤ f(xkm)− ω‖skm‖, for all km (19)

and

αkm‖d1,km‖ < L‖d2,km‖, for all km. (20)

Since sequence fk is bounded below, it follows from (19) that it follows

‖skm‖ → 0 as km →∞. (21)

Moreover, since dT1kd2k ≥ 0, ∀k, from (18) we have

‖skm‖2 ≥ α2
km(1− ξkm)2‖d1,km‖2 + ξ2

km‖d2,km‖2. (22)

We need to show that

d1,km = −gkm = −g(xkm)→ 0.

Assume the contrary, that is this is not true. For the sake of simplicity, assume
that there exists ε̃ such that

‖gkm‖ ≥ ε̃ > 0, ∀km. (23)

We will show that this leads to a contradiction by considering two possible
cases with respect to the sequence ‖d2,km‖. In the first case we assume that this
sequence converges to zero, in the second case it does not.

(i) Let

‖d2,km‖ → 0 as km →∞.

In this case from (20) we have

αkm‖d1,km‖ = αkm‖g(xkm)‖ → 0 as km →∞. (24)

Then from uniformly continuity of g we obtain that

‖g(xkm − αkmg(xkm))− g(xkm)‖ → 0 as km →∞. (25)
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From (17) it follows

g(xkm + αkmd1,km)Td1,km ≥ σg(xkm)Td1,km .

Letting d1,km = −g(xkm) from the last enequality we obtain

[g(xkm − αkmg(xkm))− g(xkm)]T g(xkm) ≤ (σ − 1)g(xkm)T g(xkm);

or

σ ≥ 1 +
[g(xkm − αkmg(xkm))− g(xkm)]T g(xkm)

‖g(xkm)‖2 .

Then from (23) and (25) we have σ ≥ 1 that is a contradiction.

(ii) Now we assume that the sequence ‖d2,km‖ does not converge to zero. For the
sake of simplicity assume that ‖d2,km‖ ≥ µ > 0 for all km. Then from (21) and (22)
it follows that ξkm → 0 and therefore (24) is satisfied. Then we get a contradiction
as in the case of (i).

Therefore (23) leads to a contradiction; that is, g(xkm)→ 0. �

5. Superlinear Convergence

Theorem 4.1 in the previous section establishes the convergence of gradients g(xkm)
that is the stoping criterion for Algorithm 2. In this section, we assume that the
sequence of points {xk} generated by the algorithm also converges to some point
x∗. In this case we aim to investigate the convergence rate of Algorithm 2.

Denote by D ⊂ Rn some convex neighborhood of x∗ that contains all elements
xk for sufficiently large k. Since we are interested in the convergence rate of {xk}
to x∗, we assume that xk ∈ D for all k = 0, 1, 2, . . . .

We recall that the function f is assumed to be twice continuously differentiable.
In addition we will use the following assumptions.

(AS1) x∗ ∈ D is a strong local minimizer of the function f , (for definition see [18]),
with H(x∗) symmetric and positive definite.
(AS2) There is a constant γ ≥ 0 such that

‖H(x)−H(x)‖ ≤ γ‖x− x‖,∀x, x ∈ D.

In the following theorem, we show that under some assumptions Algorithm
CGQN, with Step 9.1, is superlinearly convergent; that is,

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖

= 0.

Theorem 5.1 : Let the function f be twice continuously differentiable and
Assumptions AS1-AS2 be satisfied. Consider a sequence xk → x∗, xk ∈ D,
xk+1 = xk + sk, that is generated by Algorithm CGQN with a sequence of sym-
metric bounded and positive definite matrices Bk. Moreover, suppose there is k0

such that for all k ≥ k0: cos(θ0
k) ≥ δ > 0, where θ0

k is the angle between d1,k and



November 25, 2012 6:13 Optimization cgn-optimization

Optimization 9

d2,k; and the iterations sk in Step 9.1 utilize the formula

sk = αk(1− ξk)d1,k + ξkd2,k.

Then {xk} converges superlinearly to x∗ if and only if

lim
k→∞

‖[Bk −H(x∗)](xk+1 − xk)‖
‖xk+1 − xk‖

= 0. (26)

Proof : The proof of the theorem is based on the following equivalence:

lim
k→∞

‖[Bk −H(x∗)](xk+1 − xk)‖
‖xk+1 − xk‖

= 0⇐⇒ lim
k→∞

‖gk+1‖
‖xk+1 − xk‖

= 0

⇐⇒ lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖

= 0. (27)

1. First we prove that {xk} converges to x∗ superlinearly if the relation (26) holds.
If g(xk) = 0 for some k then the theorem is true. Assume that ‖g(xk)‖ > 0 and
g(xk) → 0 as k → ∞. Denote d(ξk) = (1 − ξk)d1,k + ξkd2,k, with d1,k = −gk, and
let θk be the angle between d(ξk) and d1,k.

Since ξk < 1 and dT1,kd2,k ≥ 0 for all k ≥ k0, it is clear that θk < θ0
k and therefore

by the assumption of the theorem cos(θk) > cos(θ0
k) ≥ δ > 0.

This in particular means that the required inequality in Step 8 is achieved at the
first round for η0; that is, ξk has the form

ξk =
1

1 + η0|fk − fk−1|
, ∀k ≥ k0.

Since |fk − fk−1| → 0 we obtain that

ξk → 1. (28)

By assumption, for all k ≥ k0, the increments sk are obtained in Step 9.1 of
Algorithm CGQN; that is,

xk+1 = xk − αk(1− ξk)gk − ξkB−1
k gk. (29)

From (29), we have

[Bk −H(x∗)](xk+1 − xk) =

−αk(1− ξk)Bkgk − ξkgk −H(x∗)(xk+1 − xk) =

gk+1 − gk −H(x∗)(xk+1 − xk)− gk+1 + (1− ξk)(gk − αkBkgk). (30)
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Taking here the norm and dividing by ‖xk+1 − xk‖, we obtain

‖gk+1‖
‖xk+1 − xk‖

≤ ‖[Bk −H(x∗)](xk+1 − xk)‖
‖xk+1 − xk‖

+
‖gk+1 − gk −H(x∗)(xk+1 − xk)‖

‖xk+1 − xk‖
+
‖(1− ξk)(gk − αkBkgk)‖

‖xk+1 − xk‖
. (31)

We note that all the assumptions of Theorems 2.2 and 2.3 are satisfied on the open
convex set D. By applying Theorem 2.2 we have

‖gk+1 − gk −H(x∗)(xk+1 − xk)‖
‖xk+1 − xk‖

≤ γ

2
(‖xk+1 − x∗‖+ ‖xk − x∗‖)→ 0. (32)

Now consider the third term on right hand side of (31). Denoting by I the unit
matrix, we have

‖(1− ξk)(gk − αkBkgk)‖
‖xk+1 − xk‖

=
‖gk − αkBkgk‖

‖αkgk + ξk
1−ξkB

−1
k gk‖

≤

‖I − αkBk‖
‖αk gk

‖gk‖ + ξk
1−ξkB

−1
k

gk
‖gk‖‖

.

Since ‖Bk‖ is assumed to be bounded for all k ≥ k0 the relation ξk → 1 from (28)
yields

∥∥∥∥
ξk

1− ξk
B−1
k

gk
‖gk‖

∥∥∥∥→∞ as k →∞.

Indeed, if this is not true, then ‖B−1
km

gkm

‖gkm‖‖ → 0 for some km →∞ that contradicts

∥∥∥∥Bkm
(
B−1
km

gkm
‖gkm‖

)∥∥∥∥ = 1, ∀km.

Thus

‖(1− ξk)(gk − αkBkgk)‖
‖xk+1 − xk‖

→ 0 as k →∞. (33)

Therefore, it follows from (26), (32) and (33) that

lim
k→∞

‖gk+1‖
‖xk+1 − xk‖

= 0. (34)

The remaining part of the proof is similar to the proof of Theorem 5.4.3 from

[18] which yeilds limk→∞
‖xk+1−x∗‖
‖xk−x∗‖ = 0. This means that the sequence {xk} is

convergent to x∗ superlinearly.
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2. Now suppose that xk converges to x∗ superlinearly. Clearly g(x∗) = 0. From
the proof of Theorem 5.4.3 [18] it follows that the relation (34) is true. Therefore,
from (30) we obtain

‖[Bk −H(x∗)](xk+1 − xk)‖
‖xk+1 − xk‖

≤ ‖gk+1 − gk −H(x∗)(xk+1 − xk)‖
‖xk+1 − xk‖

+
‖gk+1‖

‖xk+1 − xk‖
+
‖(1− ξk)(gk − αkBkgk)‖

‖xk+1 − xk‖
. (35)

which gives (26) by using (32), (33) and (34). �

Similar to Theorem 5.1, for Algorithm CGN with Step 9.1 we have the following
theorem.

Theorem 5.2 : Let the function f be twice continuously differentiable and As-
sumptions AS1-AS2 be satisfied. Consider a sequence xk → x∗, xk ∈ D, xk+1 =
xk + sk, that is generated by Algorithm CGN. Moreover, suppose there is k0 such
that for all k ≥ k0: cos(θ0

k) ≥ δ > 0, where θ0
k is the angle between d1,k and d2,k;

and the iterations sk in Step 9.1 utilize the formula

sk = αk(1− ξk)d1,k + ξkd2,k.

Then {xk} converges to x∗ at a superlinear rate.

Proof : From assumption AS2, there is a constant γ ≥ 0 such that

‖[Hk −H(x∗)](xk+1 − xk)‖
‖xk+1 − xk‖

≤ ‖Hk −H(x∗)‖‖xk+1 − xk‖
‖xk+1 − xk‖

= ‖Hk −H(x∗)‖ ≤ γ‖xk − x∗‖. (36)

Since {xk} converges to x∗, we have

lim
k→∞

‖[Hk −H(x∗)](xk+1 − xk)‖
‖xk+1 − xk‖

= 0. (37)

The remaining of the proof follows from the proof of Theorem 5.1 with considering
Hk instead of Bk. �

6. Numerical Experiments

In this section, the performance of the proposed algorithms are evaluated by apply-
ing them to some unconstrained test problems taken from [15]. Out of 18 uncon-
strained minimization problems we use 15 problems in the numerical implementa-
tions excluding the 3 problem that are global optimization problems. Table 1 gives
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a brief description about each test problem, where n is a given integer number by
a user. More details can be found in [15].

The group of methods we compare includes our algorithms, algorithms presented
by Shi [17], the Newton method (NM), the Quasi-Newton method (QNM) and the
gradient method (GM). In the CGN and CGQN algorithms we use two different
versions, as described in Steps 9.1 and 9.2. We refer algorithms using Step 9.1 as
CGN1 and CGQN1, and algorithms using Step 9-2 as CGN2 and CGQN2. From
[17], we apply Algorithms 2 and 4, and we refer them as Shi1 and Shi2 that are
the Newton and Quasi-Newton based methods, respectively.
The termination criteria are the same for all algorithms. Algorithms terminate
when either ‖g(x)‖ ≤ ε or the number of iterations exceeds 500. Parameters in
Algorithms CGN and CGQN are chosen as follows: ε = 10−6, η = 10−3, δ = 10−3,
ϑ = 1.1, ω = 10−10, L = 1010. Also we select ρ = 10−3, σ = 0.9 for the Wolfe-
Powell rule.

The number of iterations (to find the local optimal solutions) used by the algo-
rithms for given initial points are reported in Table 2. In this table, TP stands for
test problems, Dim for dimention and IP for initial points. The initial points are
taken from [15, 17]. “AC” and “NC” stand for the “almost convergent” and “not
convergent”, respectively. Convergence means that the method finds the solution
xk where ‖gk‖ < 10−6, almost convergence means that the method finds a solution
xk where 10−6 ≤ ‖gk‖ ≤ 10−2; otherwise we accept that a method fails to find a
solution, that is, it is not convergent.

Based on Table 2, the number of iterations used by Algorithm CGN is, overall,
less than those used by other Newton based methods. Especially CGN1 (using
Step 9.1) has the lowest iteration numbers in comparison with other Newton based
methods. In the Quasi-Newton based methods, our algorithm (CGQN) has found
the local optimal solutions using the lowest number of iterations. The gradient
method is almost convergent or not convergent in most of the cases.

In order to compare the algorithms with more initial points, we generate 50 ran-
dom initial points uniformly distributed in [−10, 10]n ⊂ Rn for each test problem
1. Table 3 presents the summary of convergence results in percentage for all test
problems. Results from this table demonstrate that Algorithm CGN has the high-
est convergence rate among Newton based methods. Similarly, Algorithm CGQN
has the highest convergence rate among Quasi-Newton based methods.

New algorithms for solving unconstrained optimization problems are presented
based on the idea of combining two types of descent directions: the direction of
anti-gradient and either the Newton or Quasi-Newton directions. The use of lat-
ter directions allows one to improve the convergence rate. Global and superlinear
convergence properties of these algorithms are established. Numerical experiments
using some unconstrained test problems are reported. Also the proposed algorithms
are compared with some existing similar methods using results of experiments. This
comparison demonstrates the efficiency of the proposed combined methods.

7. Conclusion

In this paper, we have developed new algorithms which combine the anti-gradient
direction with either the Newton direction or the Quasi-Newton direction. We have
proved that under some conditions, the first version is both globally and superlinear
convergent, while the second version is only globally convergent.

We have carried out a number of experiments using fifteen unconstrained test
problems. The numerical results clearly demonstrate the efficiency of proposed
algorithms.
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Table 1. Some test problems taken from [15], n is a user given integer

Problem Function name Dimension

P1 Freudenstein and Roth function 2
P2 Box three demential function 3
P3 Gaussian function 3
P4 Gulf research and development function 3
P5 Helical valley function 3
P6 Brown and Dennis function 4
P7 Wood function 4
P8 Biggs EXP6 function 6
P9 Watson function n
P10 Extended Powell singular function n
P11 Penalty function1 n
P12 Penalty function2 n
P13 Trigonometric function n
P14 Variably dimensioned function n
P15 Extended Rosenbrock function n
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Table 2. Number of iterations for 15 test problems obtained by combination of gradient and Newton methods (CGN1 and CGN2), combination

of gradient and Quasi Newton methods (CGQN1 and CGQN2), Shi’s methods [17] (Shi1, Shi2), Newton method (NM), Quasi-Newton method

(QNM) and gradient method (GM)

TP Dim IP Newton based methods Quasi-Newton based methods
CGN1 CGN2 Shi1 NM CGQN1 CGQN2 Shi2 QNM GM

P1 2 (0.5,−2) 6 8 8 14 9 9 24 17 AC
P1 2 (5,−20) 7 10 13 24 17 17 26 27 253

P2 3 (0, 10, 20) 7 7 9 10 23 23 25 41 AC
P2 3 (0, 100, 200) 12 15 36 NC 14 20 29 31 37

P3 3 (0.4, 1, 0) 2 3 4 5 2 2 6 6 10
P3 3 (4, 10, 0) 9 15 12 NC 18 20 22 27 180

P4 3 (5, 2.5, 0.15) 4 8 11 11 19 34 48 48 66
P4 3 (−5,−2.5,−0.15) 3 5 14 14 13 13 13 13 18

P5 3 (−1, 0, 0) 10 10 13 24 17 17 28 22 AC
P5 3 (−10, 0, 0) 14 20 19 NC 20 20 37 35 NC

P6 4 (25, 5,−5,−1) 10 12 13 19 39 44 44 44 320
P6 4 (500, 100,−100,−20) 16 16 18 18 64 74 67 69 430

P7 4 (−3,−1,−3,−1) 21 AC AC NC 31 37 81 62 NC
P7 4 (3, 1, 3, 1) 9 10 11 11 18 27 64 57 AC

P8 6 (1, 2, 1, 1, 1, 1) 20 23 24 NC 64 64 102 87 AC
P8 6 (10, 20, 10, 10, 10, 10) 27 30 66 NC 24 26 33 32 AC

P9 6 (0, 0, 0, 0, 0, 0) 6 11 14 14 28 34 36 38 AC
P9 6 (0.1, 0.1, 0.1, 0.1, 0.1, 0.1) 8 9 9 NC 29 34 37 35 AC
P9 30 (0, 0, ..., 0) 7 10 10 14 45 54 59 58 AC
P9 30 (0.1, 0.1, ..., 0.1) 55 57 66 72 73 94 95 99 AC

P10 4 (3,−1, 0, 1) 12 12 13 18 20 23 23 25 AC
P10 4 (30,−10, 0, 10) 17 19 29 18 24 27 36 35 AC
P10 40 (3,−1, 0, 1, ..., 3,−1, 0, 1) 13 14 20 24 68 73 77 93 AC
P10 40 (30,−10, 0, 10, ..., 30,−10, 0, 10) 25 28 33 35 53 55 55 59 AC

P11 10 (1, 2, ..., 9, 10) 5 7 12 10 5 8 14 15 17
P11 10 (10, 20, ..., 90, 100) 7 9 15 13 13 13 16 18 24
P11 100 (1, 2, ..., 90, 100) 8 11 26 NC 15 18 19 22 NC
P11 100 (10, 20, ..., 900, 1000) 14 14 15 NC 21 23 23 28 NC

P12 10 (0.5, 0.5, ..., 0.5) 6 6 6 8 10 11 14 14 71
P12 10 (5, 5, ..., 5) 9 12 17 14 22 22 32 27 48
P12 100 (0.5, 0.5, ..., 0.5) 22 27 AC NC 73 89 94 174 AC
P12 100 (5, 5, ..., 5) 29 30 AC NC 80 91 102 127 NC

P13 10 (0.1, 0.1, ..., 0.1, 0.1) 10 15 14 AC 18 19 20 21 104
P13 10 (1, 1, ..., 1, 1) 11 11 14 14 29 39 46 57 123
P13 100 (0.01, 0.01, ..., 0.01, 0.01) 16 17 20 AC 39 56 54 135 137
P13 100 (0.1, 0.1, ..., 0.1, 0.1) 24 23 29 30 440 452 468 480 489

P14 10 (0.9, 0.8, ..., 0.1, 0) 10 11 14 21 16 20 21 22 27
P14 10 (9, 8, ..., 1, 0) 9 12 12 26 11 12 22 31 AC
P14 100 (0.99, 0.98, ..., 0.01, 0) 15 19 24 26 24 24 29 38 57
P14 100 (9.9, 9.8, ..., 0.1, 0) 29 32 32 36 14 17 20 31 AC

P15 10 (−1.2, 1, ...,−1.2, 1) 10 18 25 NC 81 87 104 95 AC
P15 10 (−12, 10, ...,−12, 10) 41 52 71 NC 97 108 115 114 NC
P15 100 (−1.2, 1, ...,−1.2, 1) 16 18 24 NC 327 355 383 411 AC
P15 100 (−12, 10, ...,−12, 10) 51 58 62 NC 217 238 241 295 NC

Table 3. Summary of average convergence results over 15 test problems given in Table 1 with 50

random initial points

Algorithm Convergence Almost convergence Non convergence

Newton CGN1 98.27 1.36 0.37
based CGN2 95.72 2.82 1.46
methods Shi1 94.91 3.55 1.54

NM 56.18 4.45 39.37
Quasi CGQN1 96.72 1.91 1.37
Newton CGQN2 95.54 2.36 2.10
based Shi2 94.82 2.18 3.00
methods QNM 93.12 2.09 4.79

GM 53.45 26.27 20.28



Chapter 5

Optimization in Bayesian Networks

5.1 Learning Naive Bayes Classifier with Optimization Models

In this section, three optimization models for Naive Bayes classifier are proposed. These

models are constructed by introducing different objective functions, where class probabilities

and conditional probabilities are considered as unknown variables. Optimal values of these

variables can be found by applying optimization techniques. The performance of proposed

models are evaluated on some real world binary classification problems. The results obtained

demonstrate that the proposed models achieve high accuracy than the Naive Bayes classifier.
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Naive Bayes is among simplest probabilistic classifiers. It has shown to be very efficient on many real world applications.
The Naive Bayes classifier often performs surprisingly well in practice, even though the strong assumption that all features
are conditionally independent given the class. In the learning process of this classifier with the known structure, class
probabilities and conditional probabilities are calculated using training data, and then values of these probabilities are used
to classify new observations. In this paper, we introduce three novel optimization models for the Naive Bayes classifier
where both class probabilities and conditional probabilities are considered as variables. Values of these variables are found
by solving the corresponding optimization problems. Numerical experiments are conducted on several real world binary
classification data sets, where continuous features are discretized by applying three different methods. The performances
of these models are compared with the Naive Bayes classifier, Tree Augmented Naive Bayes, SVM and C4.5. The results
obtained demonstrate that the proposed models can significantly improve the performance of the Naive Bayes classifier, yet
at the same time maintains its simple structure.

Keywords: Bayesian Networks, Naive Bayes Classifier, Optimization, Discretization

1. Introduction

Bayesian Networks (BNs) introduced by Pearl (Pearl,
1988) are high level representations of probability dis-
tributions over a set of variables X = {X1, X2, ..., Xn}
that are used for learning process. The learning of BNs
are divided in two steps: structure learning and parameter
learning. The structure learning is constructing a directed
acyclic graph from the set X. In the graph, each node cor-
responds to the variable and each arc denotes the causal
relationship between two variables, the direction of the arc
indicates the direction of the causality. When two nodes
are joined by an arc, the causal node is called the parent
of the other node, and another one is called the child. We
use Xi to denote both the variable (feature) and its corre-
sponding node, and Pa(Xi) to denote the set of parents
of the node Xi. Given a structure, finding local probabil-
ity distributions, class probabilities and conditional prob-
abilities, associated with each variable is called parameter
learning (Campos et al., 2002).

In particular, the joint probability distribution for X

is given by

P (X) =

n∏

i=1

P (Xi|Pa(Xi)), (1)

however, accurate estimation of P (Xi|Pa(Xi)) needs to
find the structure which is non trivial. It has been proved
that learning an optimal structure of a BN is an NP-hard
problem (Chickering, 1996; Heckerman et al., 2004). In
order to avoid the intractable complexity of the struc-
ture learning in BNs, the Naive Bayes classifier (Langley
et al., 1992) with the known structure has been used. In
the Naive Bayes (NB), features are conditionally indepen-
dent given the class. It means that each feature has the
class as an only parent. The efficiency of the NB has wit-
nessed its widespread development in real world applica-
tions including medical diagnosis, recommender systems,
email filtering, web page perfecting and fraud detection
(Crawford et al., 2002; Kononenko, 2001; Miyahara and
Pazzani, 2000; Zupan et al., 2001).

In this paper, our aim is to improve the performance
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of the NB by applying optimization techniques, yet at
the same time maintains its simple structure. We con-
sider class probabilities and conditional probabilities as
unknown variables, whose optimal values can be com-
puted applying optimization techniques. We introduce
three different optimization models for the NB using dif-
ferent definitions of unknown variables.

Most of data sets in real world applications involve
continuous features. The most well known attempt for im-
proving the performance of the NB with continuous fea-
tures is the discretization of the features into intervals, in-
stead of using the default option to utilize the normal dis-
tribution to calculate probabilities. The main reason is that
the NB with discretization tends to achieve lower classifi-
cation error than the original one (Dougherty et al., 1995).
It has been shown that the performance of the NB classi-
fier significantly improves when features are discretized
using an entropy based method (Dougherty et al., 1995).
In this paper, therefore, we use the Fayyad and Irani’s
method (Fayyad and Irani, 1993), a method based on a
minimal entropy heuristic to discretize continuous fea-
tures. We also apply two other different discretization
methods. The first one, which is also the simplest one,
transforms the values of features to {0, 1} using their
mean values. The second one is the discretization algo-
rithm recently introduced by Yatsko et al. Yatsko et al.
(2011), using sub-optimal agglomerative clustering algo-
rithm (SOAC).

The structure of the paper is as follows. In the next
section, we provide a brief description of the NB classifier.
In Section 3 with the preliminaries, we briefly describe the
globally convergent optimization method, a combination
of the Gradient and the Newton’s methods (CGN), and
discretization algorithms, respectively, which we require
for our discussion in the latter part of the paper. In Section
4, we introduce three different optimization models for the
NB classifier. The results of numerical experiments are
given in Section 5. Section 6 concludes the paper.

2. Naive Bayes Classifier
The Naive Bayes classifier (Domingos and Pazzani, 1997;
Langley et al., 1992) assumes that each feature only de-
pends on the class as depicted in Figure 1. It means that
each feature has only the class as a parent. The NB is
attractive as it has an explicit and sound theoretical basis
which guarantees optimal induction given a set of explicit
assumptions. There is a drawback in which the indepen-
dency assumptions of features with respect to the class
is violated in some real world problems. However, it has
been shown that the NB is remarkably robust in the face of
such violations (Domingos and Pazzani, 1996; Friedman
et al., 1997). Domingos has found that this limitation has
less impact than might be expected Domingos and Pazzani
(1997). The NB is fast, easy to implement with the sim-

ple structure, and an effective classifier. It is also useful
for high dimensional data as probability of each feature
is estimated independently. The NB is one of the 10 top
algorithms in data mining as listed in (X. et al., 2008).

Let C denotes the class of an observation X. To pre-
dict the class of the observation X by using the Bayes rule,
the highest posterior probability of

P (C|X) =
P (C)P (X|C)

P (X)
, (2)

should be found.
In the NB classifier, using the assumption that fea-

tures X1, X2, ..., Xn are conditionally independent of
each other given the class, we get

P (C|X) =
P (C)

∏n
i=1 P (Xi|C)

P (X)
. (3)

In classification problems, Equation (3) is sufficient
to predict the most probable class given a test observation.

To estimate class probabilities P (C) and conditional
probabilities P (Xi|C), i = 1, ..., n, in the formula (3),
we introduce three different optimization models in this
paper.

3. Preliminaries
In this section, we briefly review the optimization method,
CGN, and discretization algorithms, the Fayyad and
Irani’s method and the Algorithm SOAC which we use
in the latter part of the paper.

3.1. Combination of the Gradient and the Newton’s
methods (CGN). In this section, we present the recently
introduced optimization algorithm, a combination of the
Gradient and the Newton’s methods (CGN) (Taheri and
Mammadov, 2012). The CGN is a new globally conver-
gent optimization algorithm for solving systems of nonlin-
ear equations and unconstrained optimization problems.
The idea in this algorithm is combining two directions
from different local optimization methods. The first di-
rection is the gradient direction due to its global conver-
gence property. The second one is the Newton’s direction
to speed up the convergence rate. Two different combina-
tions are considered in this algorithm. The first one is a
novel combination in which the step length is determined
only along the gradient direction. In the second one, the
step length is considered along both directions.

Let us consider the following unconstrained mini-
mization problem

min f(x) (4)

where x ∈ Rn. Let g(x) = ∇f(x) and H(x) = ∇2f(x)
be correspondingly the gradient and the Hessian matrix of
the function f . Let δ, η, ρ, and σ be four parameters so
that 0 < δ < 1, 0 < η < 1, 0 < ρ < 1/2 and ρ < σ < 1.
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Fig. 1. Naive Bayes

Take any positive constants γ1, γ2 and bi, i = 1, 2, 3
such that γ1, γ2 > 1, 0 < b1 < 1, 1 < b2 < 1/δ and
b3 > 1 and initialize Λ by Λ0. Let also T, and τ be very
large and small positive numbers, respectively, and let
f(x0) = f(x1). The steps of the Algorithm CGN are as
follows.

Algorithm. Optimization Algorithm CGN

Choose an initial point x1 ∈ Rn, and an error toler-
ance ε > 0.
For k = 1, 2, ... do:
Step 1. If ‖g(xk)‖ < ε, then stop.
Step 2. If the Newton’s direction d1 is not computable,
due to the singularity of the Hessian, then compute the
gradient direction d2 = −gk at xk, and go to step 8.
Step 3. Compute the gradient direction d2 and the
Newton’s direction d1 at xk.
Step 4. Set δ = δ0 and Λ = Λ0. If
|f(xk) − f(xk−1)| > γ1 and ‖gk‖ > γ2, set δ ← b2δ0
and go to step 7.
Step 5. If k = 1 or if ‖gk‖ ≤ ‖gk−1‖, set x = xk + d1
and go to step 6.
Step 6. If |f(x)| < |f(xk)| and ‖g(x)‖ ≤ η‖gk‖ then
δ ← b1δ0.
Step 7. If dT1 d2 ≥ 0 go to step 9.
Step 8. Use Wolfe-Powell rules to determine a step length
αk > 0 along the direction dk = d2, set sk = αkdk and
go to step 12.
Step 9. Compute ξ as follows:

ξ =
1

Λ + |f(xk)− f(xk−1)| , (5)

and set d(ξ) = (1− ξ)d2 + ξd1.
Step 10. If d(ξ)T d2 < δ‖d(ξ)‖‖d2‖, set Λ← Λb3 and go
back to step 9.
Step 11. Consider one of the following two versions to
calculate sk :
a. Use Wolfe-Powell rules to determine a step
length αk > 0 along the direction dk = d2 and set
s̃k = αk(1− ξ)d2 + ξd1. If f(xk + s̃k) ≤ f(xk)− τ‖sk‖
and αk‖d2‖ ≤ T‖d1‖, set sk = s̃k; otherwise set

sk = αkd2.
b. Use Wolfe-Powell rules to determine a step length
αk > 0 along the direction dk = d(ξ) and set sk = αkdk.
Step 12. Set xk+1 = xk + sk.

Parameters b1, b2 and b3 are positive constants so
that they offer the user the opportunity to specify the
amount contribution of the methods. In this algorithm,
when the slope of the function is slight, the algorithm
tends to the Newton’s method, otherwise the contribu-
tion of the Gradient method is increased. Global conver-
gence as well as superlinear convergence rate of this al-
gorithm are established under some conditions in (Taheri
and Mammadov, 2012; Taheri et al., 2012).

3.2. Fayyad and Irani’s Discretization Method. In
order to apply the NB classifier to data sets with contin-
uous features, one should first discretize those features.
Discretization is a process which transform continuous
numeric values into discrete ones. In this paper, we apply
three different methods to discretize continuous features.
The first one, which is also the simplest one, transforms
the values of features to {0, 1} using their mean values.
We also apply two other methods which allows us to get
more than two values for discretized features.

In this section, we give a brief description of the
Fayyad and Irani’s Discretization method (Fayyad and
Irani, 1993) which is the most applied discretization
method in the literature. The Fayyad and Irani’s Dis-
cretization method is based on a minimal entropy heuris-
tic, and it uses the class information entropy of candidate
partitions to select bin boundaries for discretization.

Let us consider a given set of observations S, a fea-
ture X , and a partition boundary T , the class information
entropy of the partition induced by T , denotedE(X,T ;S)
is given by

E(X,T ;S) =
|S1|
|S| Ent(S1) +

|S2|
|S| Ent(S2),

where S1 ⊂ S be the subset of observations in S with
X-values not exceeding T and S2 = S − S1. Let there
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be m classes C1, ..., Cm, and P (Ci, S) be the proportion
of observations in S that have the class Ci . The class
entropy of a subset S is defined as:

Ent(S) = −
m∑

i=1

P (Ci, S) lg(P (Ci, S)),

where the logarithm may be to any convenient base. When
the base is 2,Ent(S) measures the amount of information
needed, in bits, to specify the classes in S.

For a given feature X , the boundary Tmin which
minimizes the entropy function over all possible partition
boundaries is selected as a binary discretization boundary.
This method can then be applied recursively to both of the
partitions induced by Tmin until some stopping condition
is achieved, thus creating multiple intervals on the feature
X .

Fayyad and Irani make use of the minimal descrip-
tion length principle to determine a stopping criteria for
their recursive discretization strategy. Recursive partition-
ing within a set of values S stops if

Gain(X,T ;S) <
lg2(N − 1)

N
+
4(X,T ;S)

N
,

where N is the number of observations in the set S, and

Gain(X,T ;S) = Ent(S)− E(X,T ;S),

4(X,T ;S) =

lg2(3m−2)− [m.Ent(s)−m1.Ent(S1)−m2Ent(S2)],

and mi is the number of class labels represented in the set
Si. Since the partitions along each branch of the recur-
sive discretization are evaluated independently using this
criteria, some areas in the continuous spaces will be par-
titioned very finely whereas others (which have relatively
low entropy) will be partitioned coarsely.

3.3. Discretization Algorithm SOAC. In this sec-
tion, we give a brief description of the discretization al-
gorithm SOAC which is recently introduced in (Yatsko
et al., 2011).

Let consider a finite set of points A in the n-
dimensional space Rn, that is

A = {a1, ..., am},
where ai ∈ Rn, i = 1, ...,m. Assume the sets
Aj , j = 1, ..., k be clusters, and each cluster Aj can be
identified by its centroid xj ∈ Rn, j = 1, ..., k. The
Algorithm SOAC proceeds as follows.

Algorithm. Discretization Algorithm SOAC

Step 1. Set k = m, and a small value of parameter
θ, 0 < θ < 1. Sort values of the current feature in
the ascending order. Each continuous feature requiring
discretization is treated in turn.
Step 2. Calculate the center of each cluster:

xj =
∑

a∈Aj

a

|Aj | , j = 1, ..., k

and the error Ek of the cluster system approximating set
A:

Ek =
k∑

j=1

∑

a∈Aj

‖xj − a‖2.

Step 3. Merge in turn each cluster with the next ten-
tatively. Calculate the error increase Ek−1 − Ek after
each merge and choose the pair of clusters giving the
least increase. Merge these two clusters permanently. Set
k = k − 1.
Step 4. If Ek ≥ θE1, then stop, otherwise go to Step 2.

In the next section, we introduce three optimization
models to improve the performance of the NB classifier.
In the proposed models, class probabilities and condi-
tional probabilities are considered as unknown variables,
and the optimal values of these variables are computed by
applying optimization techniques.

4. Optimization Models
Consider a data set D =
{(X1, C1), (X2, C2), ..., (XN , CN )}, where N is the
number of observations; Xi = {Xi1, Xi2, ..., Xin}, n is
the number of features. We assume binary classification;
that is Ci ∈ {−1, 1}, i = 1, ..., N , and we use the
notation C = −C.

From the Bayes rule, we know that

P (Ci|Xi) =
P (Xi|Ci)P (Ci)

P (Xi)
, (6)

where P (Xi) = P (Xi|Ci)P (Ci) + P (Xi|Ci)P (Ci).
Since Ci and Ci are complimentary to each other, and
P (Ci), P (Ci) are probabilities, we have

P (Ci) + P (Ci) = 1, 0 ≤ P (Ci), P (Ci) ≤ 1. (7)

In the NB classifier, it is assumed that all features are in-
dependent of each other given the class. This means that:

P (Xi|Ci) =
n∏

j=1

P (Xij |Ci). (8)
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Therefore the formula (6) for the NB can be rewritten as
P (Ci|Xi) =

∏n
j=1 P (Xij |Ci)P (Ci)∏n

j=1 P (Xij |Ci)P (Ci) +
∏n
j=1 P (Xij |Ci)P (Ci)

. (9)

Similarly P (Ci|Xi) =

∏n
j=1 P (Xij |Ci)P (Ci)∏n

j=1 P (Xij |Ci)P (Ci) +
∏n
j=1 P (Xij |Ci)P (Ci)

.

(10)
Using definition of the conditional probability

P (Xij |Ci) =
P (Xij , Ci)

P (Ci)
, (11)

(9) and (10) can be represented as

P (Ci|Xi) =

∏n
j=1 P (Xij ,Ci)(
P (Ci)

)n−1

∏n
j=1 P (Xij ,Ci)(
P (Ci)

)n−1 +
∏n

j=1 P (Xij ,Ci)(
P (Ci)

)n−1

, (12)

and

P (Ci|Xi) =

∏n
j=1 P (Xij ,Ci)(
P (Ci)

)n−1

∏n
j=1 P (Xij ,Ci)(
P (Ci)

)n−1 +
∏n

j=1 P (Xij ,Ci)(
P (Ci)

)n−1

. (13)

Considering that Ci is the class of the observation
Xi, the value of P (Ci|Xi) is expected to be greater than
the value of P (Ci|Xi) for the majority of observations,
i = 1, ..., N.

In the next three subsections, we present three differ-
ent optimization models for the NB classifier by consid-
ering class probabilities and conditional probabilities as
unknown variables.

4.1. Model 1: Optimization Model based on Class
Probabilities. In this subsection, we consider class
probabilities as variables. We introduce the variable v1 for
the probability P (1), and v2 for the probability P (−1).
Since v1 + v2 = 1, we take the variable w = v1 and so
v2 = 1− w. Let us consider

ξ(w;C) =





w if C = 1,

1− w if C = −1,
(14)

then the objective functions for (12) and (13) can be writ-
ten as

f1(w) =
N∑

i=1

∏n
j=1 P (Xij ,Ci)(
ξ(w;Ci)

)n−1

∏n
j=1 P (Xij ,Ci)(
ξ(w;Ci)

)n−1 +
∏n

j=1 P (Xij ,Ci)(
ξ(w;Ci)

)n−1

, (15)

and

f2(w) =
N∑

i=1

∏n
j=1 P (Xij ,Ci)(
ξ(w;Ci)

)n−1

∏n
j=1 P (Xij ,Ci)(
ξ(w;Ci)

)n−1 +
∏n

j=1 P (Xij ,Ci)(
ξ(w;Ci)

)n−1

. (16)

By considering Ci as the class of Xi, it is quite natural
that the value of f1(w) should be maximized, meanwhile
the value of f2(w) to be minimized. Therefore, the NB
classifier leads to a multi-criteria optimization problem:

maximize : f(w)
.
=
(
f1(w),

1

f2(w)

)
(17)

subject to 0 ≤ w ≤ 1.
In this paper, instead of multi-criteria optimization
problem, we consider a single objective maximization
problem by taking ψ(w) = f1(w)

f2(w) :

maximize : ψ(w) =

N∑

i=1

∏n
j=1 P (Xij , Ci)

(
ξ(w;Ci)

)n−1
∏n
j=1 P (Xij , Ci)

(
ξ(w;Ci)

)n−1 , (18)

subject to 0 ≤ w ≤ 1.

4.2. Model 2: A Simplified Version of Model 1. In
this subsection, for simplicity we consider only the vari-
able w for the probability P (1), and 1− w for the proba-
bility P (−1) in formulas (9) and (10). Therefore, the sec-
ond optimization model for the NB classifier under these
assumptions and using (14) can be described by the fol-
lowing objective functions:
f̃1(w) =

N∑

i=1

∏n
j=1 P (Xij |Ci)ξ(w;Ci)

∏n
j=1 P (Xij |Ci)ξ(w;Ci) +

∏n
j=1 P (Xij |Ci)ξ(w;Ci)

, (19)

and f̃2(w) =

N∑

i=1

∏n
j=1 P (Xij |Ci)ξ(w;Ci)

∏n
j=1 P (Xij |Ci)ξ(w;Ci) +

∏n
j=1 P (Xij |Ci)ξ(w;Ci)

. (20)

Then we can consider an optimization problem in a
similar way to (17), and a single objective maximization
problem can be formulated by taking φ(w) = f̃1(w)

f̃2(w)
:

maximize : φ(w) =

N∑

i=1

∏n
j=1 P (Xij |Ci)ξ(w;Ci)∏n
j=1 P (Xij |Ci)ξ(w;Ci)

, (21)

subject to 0 ≤ w ≤ 1.
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Since problems in Models 1 and 2 are univariate opti-
mization problems, we partition the constraint 0 ≤ w ≤ 1
in to 1000 intervals and we find the maximum value of the
objective function in each model.

4.3. Model 3: Optimization Model based on Class
Probabilities and Conditional Probabilities. In the
third optimization model for the NB classifier, we dis-
cretize the values of all features to binary values, {0, 1},
by applying mean value of each feature. Since we have
binary classification 1,−1, we consider not only P (1)
and P (−1), but also the conditional probabilities P (1|1),
P (0|1), P (1| − 1) and P (0| − 1) as variables. For
each feature j, j = 1, ..., n, we introduce four vari-
ables: v1j for P (jth feature is 1|class is 1),
v2j for P (jth feature is 0|class is 1), v3j for
P (jth feature is 1|class is − 1) and v4j for
P (jth feature is 0|class is − 1). As a result we
have a matrix of 4n variables

V =




v11 v12 ... v1n
v21 v22 ... v2n
v31 v32 ... v3n
v41 v42 ... v4n


 . (22)

Since we have constraints v1j + v2j = 1 and v3j + v4j =
1, j = 1, ..., n, the matrix V can be rewritten as

W =

(
w11 w12 ... w1n

w21 w22 ... w2n

)
, (23)

where w1j = v1j and w2j = v3j , j = 1, ..., n. Clearly
v2j = 1− w1j and v4j = 1− w2j , j = 1, ..., n.

Similar to (14) we introduce

ζ(α, β;X,C) =





α if X = 1, C = 1,

1− α if X = 0, C = 1,

β if X = 1, C = −1,

1− β if X = 0, C = −1.

(24)

Then using (14) and (24), the formulas (19) and (20) will
be

f̂1(w,W ) =

N∑

i=1

∏n
j=1 ζ(w1j , w2j ;Xij , Ci)ξ(w;Ci)

P
,

(25)

and

f̂2(w,W ) =
N∑

i=1

∏n
j=1 ζ(w1j , w2j ;Xij , Ci)ξ(w;Ci)

P
,

(26)

where
P =

n∏

j=1

(
ζ(w1j , w2j ;Xij , Ci)ξ(w;Ci) + ζ(w1j , w2j ;Xij , Ci)ξ(w;Ci)

)
.

Therefore, the maximization problem for this model is

maximize : ϕ(w,W ) =

N∑

i=1

∏n
j=1 ζ(w1j , w2j ;Xij , Ci)ξ(w;Ci)∏n
j=1 ζ(w1j , w2j ;Xij , Ci)ξ(w;Ci)

, (27)

subject to 0 ≤ w,w1j , w2j ≤ 1, j = 1, ..., n.

The problem (27) is a constrained optimization prob-
lem. We apply the penalty method to reduce this problem
to an unconstrained one. The unconstrained problem is as
follows:
maximize :

$(w,W, µ) = ϕ(w,W )− µ
{

[max(0,−w,w − 1)]2+

n∑

j=1

(
[max(0,−w1j , w1j − 1)]

2
+[max(0,−w2j , w2j − 1)]

2)}
, (28)

where µ > 0 is a penalty parameter.
For solving the nonlinear and nonconvex uncon-

strained optimization problem (28), we use the new glob-
ally convergent optimization method, CGN, (Taheri and
Mammadov, 2012) which is briefly introduced in Section
3. The reason for choosing this method is that it has a bet-
ter performance than some well known local optimization
methods such as the Gradient method and the Newton’s
method. We showed this fact in the numerical section.

The Model 3 can be generalized to any discrete fea-
tures. We have not considered such a model in this paper
that could be a topic for a separate research paper.

5. Numerical Experiments
To verify the efficiency of the proposed models, numerical
experiments with a number of real world data sets have
been carried out. We have chosen 14 binary classifica-
tion data sets in which they are the most frequently binary
classification data sets considered in the literature. A brief
description of these data sets is given in Table 1. The de-
tailed description of them can be found in the UCI ma-
chine learning repository (Asuncion and Newman, 2007),
and tools page of the LIBSVM (Chang and Lin, 2001).

We discretize the values of features in data sets using
three different methods. In the first one which is the sim-
plest method, we apply a mean value of each feature to
discretize the values to {0, 1}. In the second one, we ap-
ply the well known method, Fayyad and Irani’s discretiza-
tion method. The third one is the recently introduced dis-
cretization method, Algorithm SOAC; the parameter θ in
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this algorithm is chosen as 0.2. This parameter has not
been fitted by preliminary experimentation, and is similar
to the one used for other problems in (Yatsko et al., 2011).

The efficiency of the CGN method when applied to
the Model 3 have been tested on some data sets randomly
chosen from Table 1: such as credit approval, diabetes and
heart disease, and we have compared this method with the
Gradient method (GM) and the Newton’s method (NM).
Tables 2 to 4 show the average maximum value of the ob-
jective function of the Model 3, $max(w,W, µ), over 10
fold cross validation for three different data sets. Fail (fail)
occurs when the constraints are not satisfied. All the op-
timization methods are terminated if the number of iter-
ations to find the solution exceeds 100 or ‖gk‖ < 10−3

or |fk − fk−1| < 10−3. The penalty parameter in the
problem (28) is chosen as µ = 106. We have chosen 9
initial points for w from the box (0, 1), and therefore for
1 − w ∈ (0, 1), and conditional probabilities are taken
as initial points for W . The parameters of the Algorithm
CGN are chosen: δ0 = 0.001,Λ0 = 1, η = 0.99, ρ =
0.001, σ = 0.9, γ1 = γ2 = n, b1 = 0.01, b2 = 1/b1, b3 =
1.1, τ = 10−10 and T = 1010; these parameters have
the same values as chosen in the paper (Taheri and Mam-
madov, 2012).

From Tables 2 to 4, it is shown that the values of
the objective function for the maximization problem (28)
obtained by the Algorithm CGN are higher than those ob-
tained by the Gradient and the Newton’s methods. In the
credit approval data set, the values of the objective func-
tion are 410.326 at different initial points using the CGN
method, while they vary using the Gradient method and
the Newton’s method. The Gradient method has even less
value at initial points (0.1, 0.9) and (0.9, 0.1) which is
350.1. In addition, the values of the objective function
when applying the Newton’s method fails at some initial
points. The values obtained by this method are the same as
the values for the CGN method only at few initial points.
This means that the Newton’s method is heavily depen-
dent on initial points.

For diabetes data set, the CGN method gives the val-
ues of the objective function 249.570 at all initial points
which is the highest value for this data set. However, the
values vary using the Gradient and the Newton’s meth-
ods. It is notable that in the Gradient method, the objective
function value is 152.3 at the initial points (0.2, 0.8) and
(0.8, 0.2). Even, the Gradient method fails at the point
(0.1, 0.9). Moreover, it can be observed that the New-
ton’s method has approximately the same objective func-
tion values at some initial points as the CGN method, but it
fails in some others. In summary, in the heart disease data
set we have similar results to data sets credit approval and
diabetes, where the CGN method outperforms the Gra-
dient method and the Newton’s method. Therefore, the
CGN method is more robust and efficient local optimiza-
tion method to be applied in the Model 3 to find a better

solution.
We have also compared the test set accuracy of the

proposed models with the NB, the Tree Augmented Naive
Bayes (TAN), the SVM and the C4.5 using different dis-
cretization methods. The Model 3 is not suitable when
applying the discretization methods Fayyad and Irani and
SOAC as it needs binary values for features. The results
in Tables 5 to 7 are the average values of test set accuracy
over 10 fold cross validation. Run with the various meth-
ods are carried out on the same training sets and evaluated
on the same test sets. In particular, the cross validation
folds are the same for all classifiers on each data set.

Table 5 demonstrates the test set accuracy obtained
by the NB, the TAN, the SVM, the C4.5, Models 1, 2 and
3 on 14 data sets using mean values for discretization. The
results presented in this table demonstrate that the test set
accuracy of Models 2 and 3 in all data sets are better than
those obtained by the NB. The Model 1 has also the higher
accuracy than the NB in the majority of data sets. In 12
cases out of 14, the Model 1 shows better accuracy than
the NB. In data sets credit approval and spam base, the
accuracy of this model almost ties with those obtained by
the NB. Table 5 also shows that the proposed models have
much better accuracy than the TAN in all data sets. Ob-
serve from this table, the Model 2 has better accuracy than
the SVM in 11 cases out of 14, and the Model 1 performs
better than the SVM in 9 cases out of 14. The Model 2 has
the greater accuracy than C4.5 in 12 data sets, and the ac-
curacy obtained by the Model 1 is higher than C4.5 in 10
cases out of 14. The results from this table also show that
the Models 3 outperform the SVM and C4.5 in all data
sets.

Table 6 presents the test set accuracy obtained by the
NB, the TAN, the SVM, the C4.5, Models 1 and 2 on 14
data sets, where continuous features are discretized by ap-
plying the Fayyad and Irani’s method (FaI). The results
presented in this table demonstrate that the accuracy of
Models 1 and 2 are significantly better than those of the
NB in all data sets. On 12 data sets out of 14, these mod-
els perform better than the TAN, where as the TAN has
slightly higher accuracy in data sets Ionosphere and Sonar.
The results from Table 6 also indicate that Models 1 and
2 have the greater accuracy than the SVM in 11 data sets.
Compared to the C4.5, Table 6 shows higher accuracy for
Models 1 and 2 in 10 data sets.

The test set accuracy obtained by the NB, the TAN,
the SVM, the C4.5, Models 1 and 2 on 14 data sets using
discretization algorithm SOAC is summarized in Table 7.
The results from this table show that the accuracy obtained
by Models 1 and 2 in all data sets are higher than those
obtained by the NB. The accuracy of Models 1 and 2 are
better than those of the TAN on most of data sets. In 13
cases out of 14, Models 1 and 2 have greater accuracy than
the TAN. The results from Table 7 also demonstrate that
the Model 2 has the greater accuracy than the SVM in 12
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data sets out of 14, and the later method outperforms the
Model 1 in diabetes, german.numer and sonar data sets.
Table 7 indicates higher accuracy for the Model 2 in 13
data sets, and 11 cases for the Model 1 when compared to
the C4.5.

The numerical results generally demonstrate that the
proposed models can significantly improve the perfor-
mance of the Naive Bayes classifier, yet at the same time
maintains its simple structure. Especially the Model 3 has
a dramatic increase in the test set accuracy, and it is rea-
sonable due to considering more variables replacing class
probabilities and conditional probabilities which allows to
build more accurate model. However, these models re-
quire more training time than the Naive Bayes classifier
due to applying optimization techniques.

6. Conclusion
In this paper, we have introduced three different optimiza-
tion models for the Naive Bayes classifier by consider-
ing class probabilities and conditional probabilities as un-
known variables. Then, we have applied optimization
techniques to find the optimal values for these variables.
We have compared the proposed models with the NB, the
TAN, the SVM, and the C4.5 on 14 real world binary clas-
sification data sets. The values of features in data sets are
discretized by using mean value of each feature and ap-
plying two different discretization algorithms, the Fayyad
and Irani’s method and the Algorithm SOAC. We have
presented results of numerical experiments. The results
demonstrate that the proposed models perform better than
the NB, the TAN, the SVM, and the C4.5 in terms of ac-
curacy, yet at the same time maintains the simple structure
of the NB. How these optimization models for the Naive
Bayes classifier perform in multi class data sets, and also
generalizing the Model 3 to any discrete features remain

Table 1. A brief description of data sets.
Data sets # Observations # Features
Breast Cancer 699 10
Congres Vote 435 16
Credit Approval 690 15
Diabetes 768 8
German.numer 1000 24
Haberman 306 3
Heart Disease 303 14
Hepatitis 155 19
Ionosphere 351 34
Liver Disorders 345 6
Sonar 208 60
Spambase 4601 57
Svmguide1 7089 4
Svmguide3 1284 21

Table 2. Average maximum value of the objective function in
Model 3 over 10 fold cross validation for Credit Ap-
proval data set.

Initial point CGN GM NM
(0.1, 0.9) 410.326 350.128 410.326
(0.2, 0.8) 410.326 398.232 408.322
(0.3, 0.7) 410.326 367.914 fail
(0.4, 0.6) 410.326 407.562 406.453
(0.5, 0.5) 410.326 409.525 410.326
(0.6, 0.4) 410.326 407.578 fail
(0.7, 0.3) 410.326 398.765 fail
(0.8, 0.2) 410.326 381.209 408.276
(0.9, 0.1) 410.326 350.119 410.323

Table 3. Average maximum value of the objective function in
Model 3 over 10 fold cross validation for Diabetes data
set.

Initial point CGN GM NM
(0.1, 0.9) 249.570 fail 249.569
(0.2, 0.8) 249.570 152.392 fail
(0.3, 0.7) 249.570 207.392 fail
(0.4, 0.6) 249.570 207.426 249.569
(0.5, 0.5) 249.570 207.561 249.568
(0.6, 0.4) 249.570 207.269 fail
(0.7, 0.3) 249.570 239.962 249.570
(0.8, 0.2) 249.570 152.302 fail
(0.9, 0.1) 249.570 247.292 249.569

Table 4. Average maximum value of the objective function in
Model 3 over 10 fold cross validation for Heart Dis-
ease data set.

Initial point CGN GM NM
(0.1, 0.9) 170.472 162.844 170.472
(0.2, 0.8) 170.472 161.274 167.001
(0.3, 0.7) 170.472 168.441 170.472
(0.4, 0.6) 170.472 168.441 fail
(0.5, 0.5) 170.472 168.441 170.472
(0.6, 0.4) 170.472 168.441 fail
(0.7, 0.3) 170.472 161.238 fail
(0.8, 0.2) 170.472 168.441 170.472
(0.9, 0.1) 170.472 142.305 170.472
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Table 5. Average test set accuracy over 10 fold cross validation
for 14 data sets using mean value for discretization.

Data Sets NB TAN SVM C4.5 Model1 Model2 Model3
Breast 96.10 95.71 95.15 91.06 97.18 97.61 97.94
Congress 90.31 91.42 96.02 95.51 96.43 96.81 96.92
Credit 84.95 82.88 85.31 87.47 84.62 88.37 89.21
Diabetes 75.90 76.48 76.72 75.98 76.72 77.16 78.54
German 75.41 74.13 76.11 72.43 75.74 75.81 78.18
Haberman 75.01 73.85 73.34 71.60 75.80 77.84 78.46
Heart 81.12 84.12 80.14 81.53 86.61 87.52 88.49
Hepatitis 83.61 83.14 83.61 82.97 83.97 84.12 84.53
Ionosphere 82.90 84.02 85.94 86.20 84.12 85.89 88.17
Liver 61.86 61.89 60.16 60.79 63.19 65.84 65.94
Sonar 75.18 75.44 76.98 76.65 76.19 76.41 79.92
Spambase 90.03 89.69 90.17 91.89 89.98 92.18 92.97
Svmguide1 92.57 91.99 93.24 93.62 93.71 94.79 96.84
Svmguide3 81.51 83.04 80.16 81.24 83.17 83.81 86.78

Table 6. Average test set accuracy over 10 fold cross validation
for 14 data sets using discretization Method FaI.

Data Sets NB TAN SVM C4.5 Model1 Model2
Breast Cancer 97.18 96.52 96.52 94.11 97.72 97.78
Congress Vote 90.11 93.21 95.04 95.32 95.81 96.12
Credit Approval 86.10 84.78 85.03 84.87 86.93 87.71
Diabetes 74.56 75.14 75.51 73.83 76.42 75.84
German.numer 74.50 73.13 76.41 71.92 75.95 76.81
Haberman 75.09 74.41 73.20 71.24 77.14 76.87
Heart Disease 82.93 81.23 81.67 82.85 83.56 85.62
Hepatitis 84.56 83.91 85.16 83.87 85.76 85.81
Ionosphere 88.62 89.77 89.67 89.98 88.96 89.57
Liver Disorders 63.26 63.18 62.03 62.15 64.83 65.72
Sonar 76.32 76.47 77.96 77.31 76.40 76.37
Spambase 90.41 89.78 90.43 92.97 92.84 92.51
Svmguide1 92.39 91.61 94.31 95.99 94.88 93.98
Svmguide3 81.23 82.47 80.37 81.38 84.90 86.12

Table 7. Average test set accuracy over 10 fold cross validation
for 14 data sets using discretization Algorithm SOAC.

Data Sets NB TAN SVM C4.5 Model1 Model2
Breast Cancer 96.12 95.60 95.31 91.16 97.85 97.99
Congress Vote 90.11 91.42 96.75 95.12 96.81 96.97
Credit Approval 85.85 84.98 86.11 87.54 86.94 88.51
Diabetes 75.78 75.90 76.68 75.63 76.17 78.12
German.Numer 74.61 74.01 76.35 72.21 76.08 76.19
Haberman 74.66 76.08 73.36 72.15 75.61 75.32
Heart Disease 78.62 77.37 77.96 79.17 79.44 84.11
Hepatitis 82.93 81.54 84.24 82.34 85.83 86.37
Ionosphere 85.92 86.18 86.15 86.71 86.98 88.23
Liver Disorders 65.82 65.73 63.69 64.98 66.51 66.94
Sonar 75.09 75.76 77.74 76.41 76.13 76.81
Spambase 89.30 89.04 91.56 93.73 92.89 93.43
Svmguide1 95.81 94.91 95.94 96.91 97.38 97.75
Svmguide3 77.25 79.99 78.32 78.49 82.11 82.27

important questions for the future work.
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1 Introduction

Classification is the task of identifying the class labels for instances based on
a set of attributes. Learning accurate classifiers from pre-classified data is a
very active research topic in machine learning and data mining. Classification
learning is the process of predicting a discrete class label C ∈ {C1, · · · , Cm}
for a test instance X = (X1, · · · , Xn).

One of the most effective classifiers is the Bayesian Network (BN) intro-
duced by Pearl [20]. A BN is composed of a network structure and its condi-
tional probabilities. The structure is a directed acyclic graph where the nodes
correspond to domain variables and the arcs between nodes represent direct
dependencies between the variables. The classifier represented by the BN can
be expressed as:

arg max
1≤k≤m

P (Ck|X ) = arg max
1≤k≤m

P (Ck)P (X|Ck)

P (X )
; (1)

this rule is called Bayes rule. We can see that for each class, the denominator
of equation (1) is the same and it will not interfere in classification. So, the
BN classifier can be rewritten as:

arg max
1≤k≤m

P (Ck|X ) ∝ arg max
1≤k≤m

P (Ck)P (X|Ck). (2)

However, accurate estimation of P (X|Ck) is non trivial. It has been proved
that learning an optimal BN is NP-hard [4] [10]. In order to avoid the in-
tractable complexity for learning the BN, the Naive Bayes (NB) classifier has
been used. In the NB [15] [22], attributes are conditionally independent given
the class. Compared to other supervised machine learning methods, the NB
classifier is perhaps one of the simplest, yet surprisingly powerful, techniques
to construct predictive models from labeled training sets. The NB classifier is
important for several reasons. It is easy to construct and implement because
the structure is given a priori (no structure learning procedure is required) and
it needs only to compile a table of class probabilities and conditional probabil-
ities from the training instances. Therefore, it may be readily applied to huge
data sets. It is easy to interpret, and even unskilled users in classifier tech-
nology can understand why it is making the classification it makes. Finally, it
may not be the best possible classifier in any particular application, but it can
usually be relied on to be robust and to do quite well [5].

A sample of the NB classifier with n attributes is depicted in Figure 1. The
NB classifies an instance X = (X1, · · · , Xn) by selecting

arg max
1≤k≤m

P (Ck|X ) ∝ arg max
1≤k≤m

P (Ck)

n∏

i=1

P (Xi|Ck). (3)
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Fig. 1 Naive Bayes

However, the attribute independence assumption made by the NB classi-
fier harms its classification performance when it is violated in reality. In order
to relax the attribute independence assumption of the NB classifier while at
the same time retaining its simplicity and efficiency, researchers have proposed
many effective methods. These methods have been proposed in order to im-
prove the performance of the Naive Bayes classifier by alleviating the attribute
independence assumption. Among the variety of works, semi NB classifiers
[14] [16] [19] show significant improvements in the NB classifier by using the
selected subset of attributes. The Tree Augmented Naive Bayes (TAN) [8] uti-
lizes the tree structure to find relations between attributes. The Super Parent
[13] uses the same representation as the TAN, but utilizes leave-one-out cross
validation error as a criterion to add a link. The Improved Naive Bayes (INB),
proposed by Taheri et al. [22], uses conditional probabilities for finding the
dependencies between attributes.

Another way to mitigate its attributes independence assumption is assign-
ing weights to important attributes in the classification. Since attributes do
not play the same role in many real world applications, some of them are more
important than others. A natural way to extend the NB classifier is to assign a
weight to each attribute. This is the main idea of the algorithm called attribute
weighted NB. Much work to evaluate the importance of attributes has been
done in recent years [9] [11] [18] [26] [33] [31]. Jiang and Zhang [11] developed
the improved NB called weightily averaged one-dependence estimators based
on the idea of a model introduced by Webb et al. [25]. Hall [9] presented a
simple filter method for setting attribute weights to use in the NB classifier.
The assumption made is that the weight assigned to a predictive attribute
should be inversely related to the degree of dependency it has on other at-
tributes. More recently Wu and Cai [26] used differential evolution algorithms
to determine the weights of attributes in the model introduced by Hall [9]
and then they used these weights in the developed weighted NB classifier. The
paper [31] investigates how to learn a weighted NB classifier with accurate
ranking from data, or more precisely, how to learn the weights of a weighted
NB classifier to produce accurate ranking.

In this paper, we propose a new attribute weighted NB classifier, called
AWNB, which assigns more than one weight for each attribute. The number
of weights for each attribute is considered as the number of class labels. These
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weights are written in the form of powers to the conditional attribute-class
probabilities. An objective function is constructed based on the NB structure
and the attribute weights. The weights, then, are determined by using a local
optimization method, which here is the quasisecant method [2]. The initial
weights for the quasisecant method are set to unity; this means that the NB
classifier is taken as an initial point. More precisely, our aim is improving
the NB classifier by modelling a proper objective function and optimizing
the attribute weights. To find a global solution, one can also apply a global
optimization, however the complexity of the problem will increase.

Most of data sets in real world applications often involve continuous at-
tributes. The most well known attempt for improving the performance of the
NB with continuous attributes is the discretization of the attributes into inter-
vals, instead of using the default option to utilize the normal distribution to
calculate probabilities. Numerous discretization methods have been examined
for the NB learning [17] [24] [28] [29] [30]. The performance of the NB classifier
significantly improves when attributes are discretized using an entropy based
method [6]. In this paper, we use Fayyad and Irani’s discretization method [7];
a method based on a minimal entropy heuristic. We also apply the discretiza-
tion algorithm using sub-optimal agglomerative clustering algorithm which is
an efficient discretization method, recently introduced in [28].

The rest of the paper is organized as follows. In the next section, we present
a brief review of the quasisecant method. Section 3 reviews briefly two different
discretization methods, Fayyad and Irani’s method and sub-optimal agglom-
erative clustering based method, respectively. The leaning of the proposed
method is illustrated in Section 4, which follows by the experiments and dis-
cussion on the experiments in Section 5. Section 6 concludes the paper followed
by a few directions for future work.

2 A Brief Review of the Quasisecant Method

The quasisecant method [2] is a local method for solving nonsmooth, noncon-
vex optimization problems. In general, this method is applicable for solving
the following unconstrained minimization problem:

minimize f(x) (4)

where x ∈ Rd, and the objective function f is assumed to be locally Lipschitz.
Formally, quasisecants are defined as follows. Let S = {x ∈ Rd : ‖x‖ = 1}

be the unit sphere. A vector v ∈ Rd is called a quasisecant of the function f
at the point x in the direction g ∈ S with the length h > 0 iff

f(x+ hg)− f(x) ≤ h〈v, g〉.

Here 〈v, g〉 is the inner product of vectors v, g ∈ Rd. The above inequality
is called a quasisecant inequality. Quasisecants provide overestimation to the
function f in some neighborhood of a point x. There are many vectors v
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satisfying the quasisecant inequality. We consider only those which provide
approximation to the function. Subgradient-related quasisecants introduced
in [2] provide such approximations and they converge to tangents of the graph
of the function f .

Any quasisecant is defined with respect to a given direction g ∈ S and with
given length h > 0. The choice of h allows one to compute descent directions
with different lengths. Therefore, one can compute descent directions even from
some shallow local minimizers using quasisecants. This observation makes the
quasisecant method applicable to nonconvex problems and compute a “deep”
local minimizers.

On the other hand, the quasisecant method uses a bundle of quasisecants
at a given point to compute descent directions which makes it similar to the
well-known bundle methods in nonsmooth optimization. Therefore, it is ap-
plicable to solve nonsmooth optimization problems. Results presented in [2]
demonstrate that the quasisecant method is efficient and robust method for
solving nonsmooth, nonconvex optimization problems.

3 Discretization Methods

In order to apply the NB classifier to data sets with continuous attributes, one
should first discretize the attributes. Discretization is a process which trans-
forms continuous numeric values into discrete ones. In this paper, we apply
two different methods in our experiments to discretize the attributes. The first
one is the Fayyad and Irani’s discretization method, and the second one is dis-
cretization algorithm using sub-optimal agglomerative clustering proposed by
Yatsko et al. [28].

3.1 Fayyad and Irani’s Method

The Fayyad and Irani’s Discretization method is based on a minimal entropy
heuristic, and it uses the class information entropy of candidate partitions
to select bin boundaries for discretization. In this subsection, we give a brief
review to this method, and details can be found in [7].

Let us consider a given set of instances X, an attribute X, and a partition
boundary T , the class information entropy of the partition induced by T ,
denoted E(X,T ;X) is given by

E(X,T ;X) =
|X(1)|
|X| Ent(X

(1)) +
|X(2)|
|X| Ent(X

(2)),

where X(1) ⊂ X be the subset of instances in X with X-values not exceeding
T and X(1) = X −X(1). Let there be m classes C1, ..., Cm. Let P (Ci,X) be
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the proportion of instances in X that have the class Ci . The class entropy of
a subset X is defined as:

Ent(X) = −
m∑

i=1

P (Ci,X) lg(P (Ci,X)),

where the logarithm may be to any convenient base. When the base is 2,
Ent(X) measures the amount of information needed, in bits, to specify the
classes in X.

For a given attribute X, the boundary Tmin which minimizes the entropy
function over all possible partition boundaries is selected as a binary dis-
cretization boundary. This method can then be applied recursively to both of
the partitions induced by Tmin until some stopping condition is achieved, thus
creating multiple intervals on the attribute X.

Fayyad and Irani make use of the minimal description length principle to
determine a stopping criteria for their recursive discretization strategy. Recur-
sive partitioning within a set of values X stops if

Gain(X,T ;X) <
lg2(N − 1)

N
+
4(X,T ;X)

N
,

where N is the number of instances in the set X, and

Gain(X,T ;X) = Ent(X)− E(X,T ;X),

4(X,T ;X) = lg2(3m − 2)− [m.Ent(X)−m1.Ent(X
(1))−m2Ent(X

(2))],

and mi is the number of class labels represented in the set X(i). Since the
partitions along each branch of the recursive discretization are evaluated in-
dependently using this criteria, some areas in the continuous spaces will be
partitioned very finely whereas others (which have relatively low entropy) will
be partitioned coarsely.

3.2 Sub-Optimal Agglomerative Clustering based Method(SOAC)

In this section, we give a brief description of the discretization algorithm
SOAC. Details of this algorithm can be found in [28]. Consider a finite set
of points X in the n−dimensional space Rn, that is X = {X1, ...,XN}, where
Xi ∈ Rn, i = 1, ..., N . Assume the sets Aj , j = 1, ..., k be clusters, and each
cluster Aj can be identified by its centroid Xj ∈ Rn, j = 1, ..., k. The dis-
cretization algorithm SOAC proceeds as follows.
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Step 1. Set k = N, and a small value of parameter θ, 0 < θ < 1. Sort values of the
current feature in the ascending order. Each continuous feature requiring
discretization is treated in turn.

Step 2. Calculate the center of each cluster, Xj =
∑
X∈Aj

X
|Aj | , j = 1, ..., k and the

error Ek of the cluster system approximating set X, Ek =
∑k

j=1

∑
X∈Aj

‖Xj −X‖2.

Step 3. Merge in turn each cluster with the next tentatively. Calculate the error
increase Ek−1 − Ek after each merge and choose the pair of clusters giving the least
increase. Merge these two clusters permanently. Set k = k − 1.

Step 4. If Ek ≥ θE1, then stop, otherwise go to Step 2.

Algorithm 1: Discretization Algorithm SOAC

4 Learning the Proposed Attribute Weighted Naive Bayes using
Optimization

Good attribute weighting can eliminate the effects of noisy or irrelevant
attributes. In this section, we propose a weighting procedure, in which each
conditional attribute-class probability has its own power as a weight. The
number of weights for each attribute is equal to the number of class labels.
The idea of our weighting method is similar to the works in [26] [33], how-
ever constructing a proper objective function and utilizing the new weighting
procedure are different from the existing methods.

Let us consider D = {Xi, Ci}, 1 ≤ i ≤ N , where N is the number
of instances and Ci ∈ {C1, ..., Cm}. Xi is an n-dimensional vector, Xi =
(Xi1, Xi2, ..., Xin), n is the number of attributes, and Ci is the class label.
In this paper, we consider the binary classification and assume that the two
classes are, 1 and −1. Then, for each attribute, we define two weights, one
corresponding to the class C1 = 1 and another to the class C2 = −1. By con-
sidering two weights for each attribute, the attribute weighted NB classifies
an instance Xi by selecting:

arg max
1≤k≤2

P (Ck)
n∏

j=1

P (Xij |Ck)wjk . (5)

In equation (5), there are two alternatives for k in wjk. We denote these
cases by wj and wj if Xi is allocated to the real class and its counterpart,
respectively. Considering that Ck is the real class of Xi, the value of P (Ck|Xi) is
expected to be greater than the value of P (Ck|Xi) for the majority of instances,
i = 1, ..., N, where Ck = −Ck. Then, it is quite natural that the value of

P (Ck)
n∏

j=1

P (Xij |Ck)wj (6)

should be maximized, while the value of
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P (Ck)

n∏

j=1

P (Xij |Ck)wj (7)

to be minimized. Therefore one possible objective function for the NB classifier,
by considering the weights for attributes, can be written as follows:

maximize f(w) =
N∑

i=1

P (Ck)
∏n

j=1 P (Xij |Ck)wj − P (Ck)
∏n

j=1 P (Xij |Ck)wj

P (Ck)
∏n

j=1 P (Xij |Ck)wj + P (Ck)
∏n

j=1 P (Xij |Ck)wj
,

(8)
where w = (w1, w1, w2, w2, ..., wn, wn) is a set of unknown variables (attribute
weights). The objective function (8) is similar to the objective function pre-
sented in [23]. The weights in (8) are considered as positive numbers. Also, we
put an upper limit for these weights to prevent large numbers. So, we maximize
the above objective function over a hyper box [a, b]. Therefore, the problem
(8) can be formulated as a constrained optimization problem:

minimize − f(w) (9)

subject to wi, wi ∈ [a, b], 1 ≤ i ≤ n.
Different methods can be applied to transfer the problem (9) to an uncon-

strained optimization. One of the well-known methods is the penalty method,
which is used here. To find the weights in (9), a local optimization method
is applied, which here is the quasisecant method presented in Section 2. The
NB classifier is taken as a starting point for the quasisecant method. More
precisely, we initialize all the weights to unity, then we use the quasisecant
method to find the attribute weights for further improvement. In other words,
we search for an optimal classifier starting with the NB classifier. It is noted
that a global optimization is also applicable to find the global solution of the
problem (9), but the complexity of the problem will increase.

5 Experiments

5.1 Data collections

This paper studies 16 benchmark data sets taken from the literature. A brief
description of the data sets is given in Table 1. The detailed description of
the first eleven data sets used in this experiments can be found in the UCI
repository of machine learning databases [1], and the last five data sets are
downloadable on the tools page of the LIBSVM [3]. These data sets have been
analyzed quite frequently by the current data mining approaches. Another
reason for selecting these data sets were that conventional approaches have
analyzed them with variable success.
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5.2 Results and discussion

We conduct empirical comparison for the Naive Bayes (NB), the Tree Aug-
mented Naive Bayes (TAN), the improved Naive Bayes (INB) proposed by
Taheri et al. [22], and the attribute weighted Naive Bayes (AWNB) in terms
of accuracy. The structure of the TAN and the INB are originated from the
structure of the NB, in which each attribute has at most one augmenting edge
pointing to it. The relations between attributes in the TAN are found by using
the tree procedure [8], while the INB uses conditional probabilities for finding
the correlations [22].

We discretize the values of continuous attributes in data sets using two
different methods. In the first one, we apply Fayyad and Irani’s discretization
method [7]. The second one is the discretization algorithm SOAC [28].

For each method, we run 50 trials and then the average accuracy over the
50 runs are calculated. The accuracy of the methods in each run is calculated
using 10-fold cross validation with random orders of data records in partition-
ing training and test data sets to have more reliable results. More precisely,
each fold contained 10% of the data set randomly selected (without replace-
ment). For consistent comparison, the same folds, including the same training
and test data sets, are used in implementing the methods.

The penalty parameter is chosen as µ = 106. We set the lower and upper
limits in (9) as a = 0.1, b = 10.

Table 2 presents the average accuracy obtained by the NB, the TAN, the
INB and the AWNB on 16 data sets, where continuous attributes are dis-
cretized by applying Fayyad and Irani’s method [7]. The results presented in
this table demonstrate that the accuracy of the proposed method (AWNB) is
much better than that of the NB in all data sets. It is also shown a higher
accuracy of the AWNB, in general, compared to the results obtained by the
TAN and the INB. The proposed method outperforms the both methods (the
TAN and the INB) in most of data sets, and the accuracy of this method
slightly less or almost ties with the TAN and the INB in a few cases.

The results of the average accuracy obtained by the methods on 16 data
sets using discretization algorithm SOAC are reported in Table 3. The results
show that the accuracy obtained by the proposed method (AWNB) in all data
sets are higher than those of the NB. The accuracy of the AWNB is also higher
than those of the TAN and the INB in most of data sets, and the accuracy of
the AWNB almost ties with those of the TAN and the INB in a few cases.

Figure 2 shows the scatter plots comparing the average miss-classifications
of the proposed attribute weighted Naive Bayes, AWNB, with those of the
NB, the TAN and the INB using two different discretization methods. In these
plots, each point represents a data set, where the horizontal axis shows the per-
centage of miss-classifications according to the NB, the TAN and the INB and
the vertical axis is the percentage of miss-classification according to the pro-
posed method, AWNB. Therefore, points below the diagonal line correspond
to data sets where the AWNB performs better, and points above the diago-
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nal line correspond to data sets where the other mentioned methods perform
better.

According to the results explained above, the proposed attribute weighted
Naive Bayes, AWNB, works well in that it improves the results of the NB
classifier. Moreover, in general, it outperforms the TAN and the INB so that
it’s accuracy in most of the data sets are higher than those of the the TAN
and the INB. In a few cases, the TAN and the INB perform slightly better
than the proposed method, and the results are acceptable as the two methods
are also developments on the NB classifier.

The complexities of the methods are not compared in this work, since dif-
ferent softwares are used to implement the methods. The proposed method
is coded in Matlab, while others are coded in Fortran. It is clear that the
complexity of the proposed method is higher than the others due to the com-
plexity of the optimization procedure. A global optimization is also applicable
to determine the weights for the attributes. Although it may cause a better
accuracy, a higher level of computational effort is required.

6 Conclusions

In this paper, we proposed a classifier based on attribute weighted Naive Bayes,
AWNB. A novel weighting method for attribute weighted NB classifier was in-
troduced, in which for each attribute we used more than one weight depending
on the number of class labels. An objective function consisting of the attribute
weights based on the structure of the NB classifier was then modeled to opti-
mize the attribute weights. This objective function was optimized by a local
optimization using the quasisecant method. The initial values in the quasise-
cant method were chosen as one; meaning that the NB classifier was taken as
a starting point.

We carried out a number of experiments on some data sets obtained from
the UCI machine learning repository and LIBSVM. The numerical results
demonstrated that the proposed method has positive impact on the NB accu-
racy as expected. How this attribute weighting for the NB classifier performs
in multi class data sets remains an important question for future work.
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Table 1 A brief description of data sets

Data sets # Instances # Attributes

Breast Cancer 699 10
Congressional Voting Records 435 16
Credit Approval 690 15
Diabetes 768 8
Haberman’s Survival 306 3
Heart Disease 303 14
Ionosphere 351 34
Liver Disorders 345 6
Phoneme CR 5404 5
Sonar 208 60
Spambase 4601 57
Fourclass 862 2
German.numer 1000 24
Splice 3175 60
Svmguide1 7089 4
Svmguide3 1284 21
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Table 2 Test set accuracy averaged over 50 runs for data sets using Fayyad and Irani’s
discretization method. NB stands for Naive Bayes, TAN for Tree Augmented Naive Bayes,
INB for improved Naive Bayes and AWNB for attribute weighted Naive Bayes

Data sets NB TAN INB AWNB

Breast Cancer 97.18 96.52 97.63 97.74
Congressional Voting Records 90.11 93.21 93.47 94.24
Credit Approval 86.10 84.78 86.72 86.91
Diabetes 74.56 75.14 76.06 75.98
Haberman’s Survival 75.09 74.41 77.03 76.83
Heart Disease 82.93 81.23 83.36 85.57
Ionosphere 88.62 89.77 88.98 89.61
Liver Disorders 63.26 63.18 64.89 65.79
Phoneme CR 77.56 78.31 77.71 78.22
Sonar 76.32 76.47 76.41 76.39
Spambase 90.41 89.78 92.87 92.43
Fourclass 77.46 77.61 78.61 78.91
German.numer 74.50 73.13 75.91 76.79
Splice 95.43 94.87 95.91 95.88
Svmguide1 92.39 91.61 94.04 93.97
Svmguide3 81.23 82.47 84.98 87.44

Table 3 Test set accuracy averaged over 50 runs for data sets using discretization algorithm
SOAC. NB stands for Naive Bayes, TAN for Tree Augmented Naive Bayes, INB for improved
Naive Bayes and AWNB for attribute weighted Naive Bayes

Data Sets NB TAN INB AWNB

Breast Cancer 96.12 95.60 96.45 96.56
Congressional Voting Records 90.11 91.42 91.47 94.52
Credit Approval 85.85 84.98 86.85 86.79
Diabetes 75.78 75.90 77.68 77.53
Haberman’s Survival 74.66 76.08 75.33 75.91
Heart Disease 78.62 77.37 79.31 82.41
Ionosphere 85.92 86.18 85.97 86.11
Liver Disorders 65.82 65.73 66.51 66.85
Phoneme CR 77.01 78.53 79.36 79.65
Sonar 75.09 75.76 75.83 75.69
Spambase 89.30 89.04 92.30 92.44
Fourclass 78.58 79.52 79.70 79.76
German.Numer 74.61 74.01 75.23 75.81
Splice 92.12 93.04 92.39 92.87
Svmguide1 95.61 94.91 97.54 97.43
Svmguide3 77.25 79.99 80.85 81.23
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Fig. 2 Scatter plot comparing the average miss-classifications of the proposed method
(AWNB) with Naive Bayes (NB), Tree Augmented Naive Bayes (TAN), Improved Naive
Bayes (INB); Using Fayyad and Irani’s discretization method (FAIR) and Sub-Optimal
Agglomerative Clustering based Method (SOAC)
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In this section, a new optimization model for Tree Augmented Naive Bayes is introduced.
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Bayesian Networks are increasingly popular methods of modeling uncertainty in artificial intelligence
and machine learning. A Bayesian Network consists of a directed acyclic graph in which each node rep-
resents a variable and each arc represents probabilistic dependency between two variables. Constructing
a Bayesian Network from data is a learning process that consists of two steps: learning structure and
learning parameter. Learning a network structure from data is the most difficult task in this process. This
paper presents a new algorithm for constructing better structures based on optimization techniques. The
main advantage of the proposed method is that the maximal number of parents for variables is not fixed
a priory, it is defined during the optimization procedure. The efficiency of the proposed algorithm is
demonstrated on several real world data sets taken from the UCI machine learning repository and the
LIBSVM, where continuous features are discretized by applying three different methods. Several closely
related algorithms, as well as, benchmarks algorithms SVM and C4.5 are employed for comparison.

Keywords: Data Classification, Bayesian Networks, Global Optimization, Discretization

1. Introduction

Classification is a basic task in data mining that requires the construction of a classifier, that is, a func-
tion which assigns a class label to observations described by a set of feature variables. Learning accurate
classifiers from preclassified data is a very active research topic in machine learning and artificial intel-
ligence. One of the most effective classifiers is Bayesian Networks.

Bayesian Networks (BNs) are widely used representation frameworks for reasoning with probabilis-
tic information Castillo et al. (1997); Heckerman D et al. (1995); Jensen1 (1996); Pearl (1988); Shafer
& Pearl (1990). These models use graphs to capture dependence and independence relationship between
feature variables, allowing a concise representation of the knowledge as well as efficient graph based
query processing algorithms. This representation is defined by two components: structure learning and
parameter learning. The structure of this model represents a directed acyclic graph. The nodes in the
graph correspond to the feature variables in the domain, and the arcs (edges) show the causal relation-
ships between feature variables. A directed edge relates the variables so that the variable corresponding
to the terminal node (child) will be conditioned on the variable corresponding to the initial node (par-
ent). More incoming edges into a node result in a conditional probability of the corresponding variable
with conjunctional condition containing all its parents. The parameter learning represents probabilities
and conditional probabilities based on prior information or past experience. The set of probabilities
are represented in the conditional probability table (CPT). For each parent and each possible state of
that parent, there is a row in the CPT that describes the likelihood that the child node will be in some

c© Institute of Mathematics and its Applications 2012; all rights reserved.
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state. Nodes with no parents also have CPT, but they are simpler and consist only of the probabilities for
each state of the node under consideration. Once the network structure is constructed, the probabilistic
inferences are readily calculated, and can be performed to predict the outcome of some variables based
on observations of others. However, the problem of structure learning is a much more complex problem
since the number of candidate structures grows exponentially when the number of features increases
Robinson (1997).

In recent years, the search for the structure of a BN able to reflect all existing relations of dependence
in a data base has constituted a research topic of fundamental importance. Given a set of features and a
data set composed of all features, the problem is to build a structure to present the connections among the
features. This structure learning process needs to select the arcs between them, and therefore construct
a network from data. Developing a structure is very useful for a variety of applications in general,
for example, where there are masses of data available and we want to understand what underlies the
knowledge or which features are correlated. In addition to providing a network that will allow us to
predict behavior under conditions that we have not seen, the structure can also incorporate domain
expert knowledge to provide more reliable suggestions. Nevertheless, there still remains the problem of
building such a network structure. It is an important task, therefore, to develop some methods capable
of learning a network structure directly from data.

Nowadays, the problem of learning structure of a BN from data is receiving increasing attention
within the community of researchers into uncertainty in artificial intelligence and machine learning.
Learning such a structure is a global optimization problem. Various optimization problems for finding
a structure of a BN have been defined Campos et al. (2002); Daly & Shen (2009); Janzura &Nielsen
(2006); Kabli et al. (2007); Larranaga et al. (1996, 1997, 1996); Marinescu & Dechter (2009); Park &
Cho (2006); Sahin et al. (2007); Schleip et al. (2009); Taheri & Mammadov (2012); Zhao et al. (2009);
Ji et al. (2009). Park and Cho Park & Cho (2006) used the Genetic algorithm to optimize the structure in
BNs and make a model more efficient. A method of finding the most probable structure of BNs based on
the intelligent search made by the Genetic algorithm has been introduced by Larranaga et al. Larranaga
et al. (1997). The paper Larranaga et al. (1996) presents new approaches based on the Genetic algorithm
to find the best BNs’ structure among alternative structures. Work by Kabli et al. Kabli et al. (2007)
illustrates a novel method for finding the structure of BNs using the Genetic algorithm. The Simulated
Annealing approaches to learn the best structure in BNs have been studied, for example, in Janzura
&Nielsen (2006); Schleip et al. (2009). Application of the Particle Swarm optimization to discover the
best structure of BNs is studied in Sahin et al. (2007); Zhao et al. (2009). Daly and Shen Daly & Shen
(2009) applied the Ant Colony optimization to the problem of learning a BN structure that provides a
good fit to a set of data. The papers Campos et al. (2002); Ji et al. (2009) propose BNs’ structure
learning algorithms based on the Ant Colony optimization. In Marinescu & Dechter (2009), the Branch
and Bound method is applied for constructing a structure in a BN. More recently, we have introduced the
unrestricted dependency Bayesian Networks algorithm based on the combinatorial optimization Taheri
& Mammadov (2012).

In this paper, we propose a new algorithm to learn an optimal structure of a BN by extending the
idea considered in Taheri & Mammadov (2012). The proposed algorithm is based on optimization ap-
proaches. It has two main phases; first we define an optimization model similar to the one introduced
in Taheri & Mammadov (2012) to find the most probable networks. Then, we apply optimization tech-
niques to delete the possible cycles to have an acyclic network structure. We apply two different methods
for the second phase. The first one is a simple case when we have a small number of cycles. In this case,
we chose an optimal network from the all possible combinations of deleting some arcs in the existing
cycles. In the second case, when we have a large number of cycles, we apply the global optimiza-
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tion algorithm AGOP introduced in Mammadov et al. (2004, 2005) in combination with the recently
developed local optimization algorithm CGN Taheri & Mammadov (2012); Taheri et al. (2012).

The paper is structured as follows: we begin in Section 2 with the preliminaries, where we briefly
describe the concepts and methods related to BNs, discretization, the global and local optimization
methods. In Section 3, we develop a new algorithm based on optimization for structure learning in
BNs. In Section 4, we present some experimental results to compare the proposed algorithm with some
well-known classification methods. Finally, Section 5 contains the concluding remarks.

2. Preliminaries

In this section, we briefly review some basic concepts related to BNs, as well as other concepts about
discretization and optimization.

2.1 Bayesian Networks

A BN is a directed acyclic graph containing nodes and edges and a set of conditional probability dis-
tributions. Suppose a set of variables X = {X1,X2, ...,Xn}, where Xi denotes both the feature variable
and its corresponding node. Let Pa(Xi) stand for the set of parents of the node Xi as well as the feature
variables corresponding to those parents. When there is an edge from Xi to X j, then X j is called the
child variable for the parent variable Xi. A conditional dependency connects a child variable with a set
of parent variables. The lack of possible edges encode conditional independencies.

Throughout this paper, we will refer to the collection of edges (arcs), the conditional dependence
and independence relations among the variables, as the structure of BNs. In particular, given a structure,
the joint probability distribution for X is given by

P(X) =
n

∏
i=1

P(Xi|Pa(Xi)). (2.1)

However, accurate estimation of P(Xi|Pa(Xi)) is non trivial. Finding such an estimation requires
searching the space of all possible network structures for one that best describes the data. Structure
learning algorithms determine for every possible edge in the network whether to include the edge in the
final network and which direction to orient the edge. The number of possible graph structures grows
exponentially as every possible subset of edges could represent the final model. Due to this exponential
growth in graph structures, even a restricted form of structure learning has been proven to be an NP-hard
problem Chickering (1996); Heckerman et al. (2004).

k-dependence BNs introduced by Sahami Sahami (1996) is one of the restricted models in BNs. In
this algorithm, each feature variable could have a maximum of k feature variables as parents, and these
parents are obtained by using mutual information. The value of k is initially chosen before applying
the k-dependence BNs, k = 0,1,2, .... Naive Bayes (NB) Langley et al. (1992) is a very simple form of
this algorithm when k = 0. In the NB, feature variables are conditionally independent given the class.
Although the NB is a very efficient method on a variety of data mining problems, the strong assumption
that all features are conditionally independent given the class is often violated on many real world
applications. Friedman et al. Friedman et al. (1997) introduced Tree Augment Naive Bayes (TAN). The
TAN is a special form of the k-dependence BNs when k = 1. In the TAN, each feature variable has the
class and at most one other feature variable as parents.

Although the mentioned methods were shown to be efficient, the features in these methods depend
on the class and a priori given number of features; k = 0 dependence for the NB, k = 1 dependence
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for the TAN, and an priory given k for the k-dependence algorithm. In fact, by setting k, i.e., the
maximum number of parent nodes that any feature may have, the best structure of BNs have been
constructed. Since k is the same for all nodes, it is not possible to model cases where some nodes have
a large number of dependencies, whereas others just have a few. In the paper Taheri & Mammadov
(2012), we have developed an unrestricted dependency algorithm, where the number k is defined by the
algorithm internally. Although this algorithm performs well and the results are promising, it does not
involve all possible networks. The algorithm considers only acyclic networks and choose a network
structure with the maximum training accuracy. However, there might be a cyclic network that results an
optimal solution. In the present paper, we address this challenge by developing a new algorithm based
on optimization approaches. The aim of optimization is to remove some edges in the cyclic networks
to obtain acyclic ones. The best structure is a network with the highest accuracy among all proposed
networks.

2.2 Detection of Cycles in a Directed Graph

There are many algorithms that can be applied to detect cycles in a directed graph. One algorithm
to detect the presence of cycles in a directed graph is the topological traversal algorithm Bender et al.
(2009); Haeupler et al. (2008). Another one which determines also edges of cycles, is the DFS algorithm
Sedgewick (1983); Tucker (2006).

The degree of a node in a graph is the number of connections or edges the node has with other nodes.
If a graph is directed, meaning that edges point in one direction from one node to another node. Then
each node has two different degrees, the in-degree, which is the number of incoming edges to this node,
and the out-degree, which is the number of outgoing edges from this edge. The topological traversal
algorithm begins by computing the in-degrees of the nodes. At each step of the traversal, a node with
in-degree of zero is visited. After a node is visited, the node and all the edges emanating from that node
are removed from the graph, reducing the in-degree of adjacent nodes. This is done until the graph is
empty, or no node without incoming edges exists. The presence of the cycle prevents the topological
order traversal from completing. Therefore, the simple way to test whether a directed graph is cyclic is
to attempt a topological traversal of its nodes. If all nodes are not visited, the graph must be cyclic.

In the DFS algorithm, all nodes are initially marked white. When a node is encountered, it is
marked grey, and when its descendants are completely visited, it is marked black. If a grey node is ever
encountered, then there is a cycle.

2.3 Fayyad and Irani’s Discretization Method

In order to apply the BNs to data sets with continuous features, one should first discretize those features.
Discretization is a process which transform continuous numeric values into discrete ones. In this paper,
we apply three different methods to discretize continuous features. The first one, which is also the
simplest one, transforms the values of features to {0,1} using their mean values. We also apply two
other methods which allows us to get more than two values for discretized features.

In this section, we give a brief description of the Fayyad and Irani’s Discretization method Fayyad
& Irani (1993) which is the most applied discretization method in the literature. The Fayyad and Irani’s
Discretization method is based on a minimal entropy heuristic, and it uses the class information entropy
of candidate partitions to select bin boundaries for discretization.

Let us consider a given set of observations S, a feature X , and a partition boundary T , the class
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information entropy of the partition induced by T , denoted E(X ,T ;S) is given by

E(X ,T ;S) =
|S1|
|S| Ent(S1)+

|S2|
|S| Ent(S2),

where S1 ⊂ S be the subset of observations in S with X-values not exceeding T and S2 = S− S1. Let
there be q classes C1, ...,Cq, and P(Ci,S) be the proportion of observations in S that have class Ci . The
class entropy of a subset S is defined as:

Ent(S) =−
q

∑
i=1

P(Ci,S) lg(P(Ci,S)),

where the logarithm may be to any convenient base. When the base is 2, Ent(S) measures the amount
of information needed, in bits, to specify the classes in S.

For a given feature X , the boundary T min which minimizes the entropy function over all possible
partition boundaries is selected as a binary discretization boundary. This method can then be applied
recursively to both of the partitions induced by T min until some stopping condition is achieved, thus
creating multiple intervals on the feature X .

Fayyad and Irani make use of the minimal description length principle to determine a stopping
criteria for their recursive discretization strategy. Recursive partitioning within a set of values S stops if

Gain(X ,T ;S)<
lg2(N−1)

N
+
4(X ,T ;S)

N
,

where N is the number of observations in the set S, and

Gain(X ,T ;S) = Ent(S)−E(X ,T ;S),

4(X ,T ;S) = lg2(3
q−2)− [q.Ent(s)−q1.Ent(S1)−q2Ent(S2)],

and qi is the number of class labels represented in the set Si. Since the partitions along each branch
of the recursive discretization are evaluated independently using this criteria, some areas in the contin-
uous spaces will be partitioned very finely whereas others (which have relatively low entropy) will be
partitioned coarsely.

2.4 Discretization Algorithm Using Sub-Optimal Agglomerative Clustering (SOAC)

In this section, we give a brief description of the discretization algorithm SOAC which is recently
introduced in Yatsko et al. (2011).

Let consider a finite set of points A in the n-dimensional space Rn, that is

A = {a1, ...,am},
where ai ∈ Rn, i = 1, ...,m. Assume the sets A j, j = 1, ...,k be clusters, and each cluster A j can be
identified by its centroid x j ∈ Rn, j = 1, ...,k. Algorithm SOAC proceeds as follows:
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Algorithm 2.1 (Discretization Algorithm SOAC)

Step 1. Set k = m, and a small value of parameter θ , 0< θ < 1. Sort values of the current feature in the
ascending order. Each feature requiring discretization is treated in turn.

Step 2. Calculate the center of each cluster:

x j = ∑
a∈A j

a
|A j| , j = 1, ...,k,

and the error Ek of the cluster system approximating set A:

Ek =
k

∑
j=1

∑
a∈A j

‖x j−a‖2.

Step 3. Merge in turn each cluster with the next tentatively. Calculate the error increase Ek−1−Ek
after each merge and choose the pair of clusters giving the least increase. Merge these two clusters
permanently. Set k = k−1.

Step 4. If Ek > θE1, then stop, otherwise go to Step 2.

2.5 The Global Optimization Algorithm - AGOP

In this subsection, we present the global optimization algorithm AGOP Mammadov et al. (2004, 2005)
implemented in the open software library GANSO. This global optimization algorithm is designed for
solving optimization problems with defined box constraints. It uses a line search mechanism where the
descent direction is obtained via a dynamic systems approach. It is applicable to a wide range of opti-
mization problems requiring only function evaluations to work. The efficiency of the algorithm has been
demonstrated in solving many difficult practical problems where objective functions were discontinuous
Kouhbor et al. (2006); Mammadov & Orsi (2005) and even piecewise constant Tilakaratne et al. (2009).
Some variations of this method are suggested in Maroosi & Amiri (2010); Richter & Fettweis (2012).

Consider the problem of maximization the function f (x) : Rn → R over the box x ∈ B. Briefly,
the global optimization procedure in AGOP is performed as follows. First a set of some initial points
Ω = {x(t) ∈ B, t = 1,2,3, ...,T} is constructed from the edge points of box B. Suppose that x∗ ∈ Ω is
the best of the points in Ω ; that is, f (x∗) > f (x) : ∀x ∈ Ω . The set Ω and the values of f at each of
the points in Ω are used to generate a dynamical system. This dynamical system determines a possible
search direction v at the point x∗ . See for details Mammadov et al. (2004, 2005). In the next step, a line
search performed as

x̂(T +1) = x∗+α∗v (2.2)

where the step α∗ is calculated by taking small step size ε > 0 as follows

α∗ = argmax
α
{ f (x∗+αv) : α = kε,k = 1,2, ...,x∗+αv ∈ B}. (2.3)

A local search about x̂(T + 1) is then carried out. This is done using a direct search method called
local variation. This is an efficient local optimization technique that does not explicitly use derivatives
and can be applied to a wide range of functions. A good survey of direct search methods can be found
in Kolda et al. (2003). Letting x(T + 1) denote the optimal solution of this local search, the set Ω is



Structure Learning of Bayesian Networks using Global Optimization 7 of 20

augmented to include x(T + 1). Starting with this updated set Ω , the whole process can be repeated.
The process is terminated when v is approximately 0 or a prescribed bound on the number of iterations
is reached. The solution returned is the current x∗; that is, the point in Ω with the highest objective
function value. If the objective function f is continuously differentiable then this solution will be local
maxima.

2.6 The Local Optimization Algorithm - CGN

In this section, we present the recently introduced optimization algorithm, a combination of the gra-
dient and Newton methods (CGN) Taheri & Mammadov (2012); Taheri et al. (2012). The CGN is a
new globally convergent optimization algorithm for solving systems of nonlinear equations and uncon-
strained optimization problems. The idea in this algorithm is combining two directions from different
local optimization methods. The first direction is the gradient direction due to its global convergence
property. The second one is the Newton direction to improve the convergence rate. Two different com-
binations are considered in this algorithm. The first one is a novel combination in which the step length
is determined only along the gradient direction. In the second one, the step length is considered along
both directions.

Consider the problem of minimization the function f (x) where x ∈ Rn. Let g(x) = ∇ f (x) and
H(x) = ∇2 f (x) be correspondingly the gradient and the Hessian matrix of the function f . We denote
the gradient direction at xk by d1,k and let d2,k stand for the Newton direction at xk. The steps of the
combined methods are presented in Algorithm 2.2.

Algorithm 2.2 (Local optimization algorithm - CGN)

Initialization. Select a starting point x0 ∈Rn, and a tolerance ε > 0, η and δ be small positive numbers
and ϑ > 1, ω and L are two fixed numbers. Set k:=0.

Step 1. If ‖g(xk)‖< ε, then stop.

Step 2. Compute direction d1,k at xk, d1,k =−gk.

Step 3. Compute the Newton direction d2,k at xk. If direction d2,k at xk is not computable, then go to
Step 5.

Step 4. If dT
2,kd1,k > 0, go to Step 6.

Step 5. Use Wolfe-Powell rules (Sun & Yuan (2006)) to determine a step length αk > 0 along the
direction dk = d1,k, set sk = αkdk and go to Step 10.

Step 6. Set j = 0, η0 = η .

Step 7. Compute ξk as follows:

ξk =





1
1+η j‖g0‖ if k = 0,

1
1+η j | fk− fk−1| if k > 0,

(2.4)

and set d(ξk) = (1−ξk)d1,k +ξkd2,k.
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Step 8. If d(ξk)
T d1,k < δ‖d(ξk)‖‖d1,k‖, set η j+1 = ϑη j and j = j+1, and go to Step 7.

Step 9. Compute sk using one of the following two approaches:

9.1. Use Wolfe-Powell rules (Sun & Yuan (2006)) to determine a step length αk > 0 along the direction
d1,k and set sk = αk(1− ξk)d1,k + ξkd2,k. If f (xk + sk) 6 f (xk)−ω‖sk‖ and αk‖d1,k‖ 6 ϖ‖d2,k‖, set
sk = sk; otherwise set sk = αkd1,k.

9.2. Use Wolfe-Powell rules (Sun & Yuan (2006)) to determine a step length αk > 0 along the direction
dk = d(ξk) and set sk = αkdk.

Step 10. Set xk+1 = xk + sk, k := k+1 and go to Step 1.

In this algorithm, when the slope of the function is slight, the algorithm tends to the Newton method,
otherwise the contribution of the gradient method is increased. Global convergence as well as superlin-
ear convergence rate of this algorithm are established under some conditions in Taheri & Mammadov
(2012); Taheri et al. (2012).

3. A New Algorithm for Structure Learning in Bayesian Networks

In this section, we propose a new algorithm to learn an optimal structure of a BN. Since the learning
process in BNs is based on the correlations of children and parent nodes, we propose a combinato-
rial optimization model to find the dependencies between features. However, some features could be
independent which is considered by intruding a threshold K. We consider the following optimization
model

Maximize ∑n
i=1 ∑n

j=1(Ki j−K)wi j,

j 6= i
(3.1)

s.t. wi j ∈ {0,1}, wi j +w ji 6 1, 1 6 i, j 6 n, i< j.

Given 1 6 i, j 6 n, i 6= j, the value wi j is the association weight (to be found), defined by

wi j =





1 if feature Xi is the parent of feature X j,

0 otherwise.
(3.2)

and

Ki j =
|X j |

∑
ν2=1

|Xi|
∑

ν1=1
max{P(Xν2 j|C1,Xν1i),P(Xν2 j|C2,Xν1i), ...,P(Xν2 j|Cq,Xq1i)}. (3.3)

Here, |X j| and |Xi| are the number of values of features X j and Xi, respectively, and Xν l shows the ν th
value of feature Xl , 1 6 l 6 n.C1,C2, ...,Cq are class labels. K is a threshold such that K > 0.

From formula (3.1), wi j = 1 if Ki j > K ji and Ki j > K, and therefore, w ji = 0 due to the constraint
wi j +w ji 6 1. It is clear that wii = 0, 1 6 i 6 n. Thus problem (3.1) can be solved easily.

Let us denote the solution of the problem (3.1) by W (K) = [wi j(K)]n×n, where

wi j(K) =





1 if Ki j > K ji and Ki j > K,

0 otherwise,
(3.4)
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and the set of arcs is represented by

A(W ) = {(i, j) : i f wi j = 1, 1 6 i, j 6 n, i 6= j}. (3.5)

Here, (i, j) shows the arc from Xi to X j. It is clear that A(W )⊂ I, where I = {(i, j), 1 6 i, j 6 n} is the
set of all possible couples (i, j).

The best value for K will be found based on the maximum training accuracy for W (K), defined by
(3.4), that is a solution to (3.1). K is in the interval [0,Kmax] where

Kmax = max{Ki j, 1 6 i, j 6 n, i 6= j}. (3.6)

We will consider different values K =Kr=̇Kmax−εr, r = 0,1, ... until Kr < 0.Given Kr, let W (Kr) =
[wi j(Kr)]n×n be the matrix defined by (3.4). With the matrix W (Kr), the set of arcs A(W (Kr)) and, there-
fore, a network will be learnt.

Since the network structure is constrained to be acyclic, we should not have any cycle in the network
obtained by A(W (Kr)). Suppose we have m cycles in the network found by A(W (Kr)), and consider

C (W (Kr)) = ∪m
l=1Cl(W (Kr))

where Cl(W (Kr)) denotes the set of arcs which makes l-th cycle, l = 1,2, ...,m. Clearly Cl(W (Kr)) ⊂
A(W (Kr)) for all l = 1, ...,m, and if (i, j) ∈ Cl(W (Kr)) then wi j = 1.

We define C (W (Kr)) = I \∪m
l=1Cl(W (Kr)). Let us denote by

V (Kr) = {vr1 ,vr2 , ...,vrm}, (3.7)

all arcs that are at least in one cycle in the network obtained by A(W (Kr)), where each r related to an
arc (ir, jr) and vr = wir jr = 1.

The aim is to delete a minimal number of arcs to have an acyclic structure. Deleting existing arcs in
(3.7) means setting 0 to some vri , l = 1, ...,m. We apply an optimization procedure to existing arcs in
cycles (3.7). We utilize two different methods.

1. The first one is a simple case that can be used if the number m is small. In this case, we can
consider all the possible combinations of deleting arcs in the existing cycles. Let us denote by

V= {Vs(Kr), s = 1,2, ...,ρ}, (3.8)

the set of all possible combinations of m dimensional vectors Vs(Kr) with values 0 and 1.Clearly ρ = 2m.
Then we chose a vector V ∗ = (v∗r1

,v∗r2
, ...,v∗rm

) that has a maximal norm ‖V ∗‖ provided that the corre-
sponding network is acyclic.

2. We consider continuous variables (vr1 ,vr2 , ...,vrm) with vri ∈ [0,1], i = 1, ...,m, to formulate an
optimization problem. Let denote by B a binary transformation B(vr1 ,vr2 , ...,vrm) = (ṽr1 , ṽr2 , ..., ṽrm),
where for i = 1, ...,m

ṽri =





0 if vri 6 1
2 ,

1 if vri >
1
2 .

(3.9)
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Let γ(B(vr1 ,vr2 , ...,vrm)) denote the number of cycles in the corresponding structure. For a large
number m, ρ will grow exponentially, and searching an acyclic network by considering all the possible
combinations with the maximal norm ‖V‖ will be impossible. In this case, we generate an optimization
problem involving variables vri , i = 1, ...,m, as follows:

Maximize
m

∑
i=1

(
(vri −

1
2
)2 +ζvri

)
−µγ(B(vr1 ,vr2 , ...,vrm)), s.t. vri ∈ [0,1], ∀ i. (3.10)

Here ζ ∈ (0, 1
2 ) and µ is a penalty parameter assigned to the number of cycles.

Problem (3.10) attempts to find an acyclic network with the largest number of arcs. We apply
algorithm AGOP and CGN to solve problem (3.10). Let (v∗r1 ,v

∗
r2 , ...,v

∗
rm
) be a global optimal solu-

tion to (3.10). The proposition below shows that it is a binary vector. Therefore, we can set V ∗ =
(v∗r1

,v∗r2
, ...,v∗rm

) = (v∗r1 ,v
∗
r2 , ...,v

∗
rm
).

Proposition: Let (v∗r1 ,v
∗
r2 , ...,v

∗
rm
) is a global optimal solution to problem (3.10). Then it is a binary

vector; that is, v∗ri ∈ {0,1},∀ i; and the corresponding structure is acyclic: γ(B(v∗r1 ,v
∗
r2 , ...,v

∗
rm
)) = 0.

Proof: The fact γ(B(v∗r1 ,v
∗
r2 , ...,v

∗
rm
)) = 0 is a direct result of applying a large penalty parameter µ;

thus, the corresponding structure is acyclic. Now we show that the vector (v∗r1 ,v
∗
r2 , ...,v

∗
rm
) is binary.

Take any 1 6 i 6 m, and denote x = v∗ri . For the sake of simplicity, let i = 1. After fixing all other
elements v∗rj , j 6= i, we obtain

ψ(x) = ϕ(x)+λ , (3.11)

where
ϕ(x) = (x− 1

2
)2 +ζ x, (3.12)

and
λ = ∑

j 6=i

(
(vrj −

1
2
)2 +ζvrj

)
−µγ(B(x,vr2 , ...,vrm)). (3.13)

By assumption x = v∗r1 is a global maximum of ψ(x). On the contrary, assume that v∗r1 is not binary.

It is clear that the function ϕ(x) has one minimum at x = 1−ζ
2 . Moreover, ϕ(0) = 1

4 and since
0< ζ < 1

2 , we have

ϕ(
1
2
) =

1
2

ζ <
1
4
.

Therefore, ϕ(x) has one global maximum x∗ = 0 on the interval [0, 1
2 ]; and has one global maximum

x∗∗ = 1 on the interval [0,1].

Now, if v∗r1 ∈ ( 1
2 ,1), then taking x = 1, from (3.9), we have B(1,v∗r2 , ...,v

∗
rm
) = B(v∗r1 ,v

∗
r2 , ...,v

∗
rm
)

and, therefore, γ(B(1,v∗r2 , ...,v
∗
rm
)) = 0. Then ψ(1)> ψ(v∗r1) which is a contradiction.
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If v∗r1 ∈ (0, 1
2 ], then taking x = 0, from (3.9), we have B(0,v∗r2 , ...,v

∗
rm
) = B(v∗r1 ,v

∗
r2 , ...,v

∗
rm
) and,

therefore, γ(B(0,v∗r2 , ...,v
∗
rm
)) = 0. Then ψ(0)> ψ(v∗r1) that is again a contradiction. 2

Once the acyclic network structure (ANS) is found, the training accuracy for the ANS, accuracy(ANS),
is calculated for each r. Based on the highest training accuracy, the corresponding value for r and, there-
fore, the best value for Kr is chosen.

According to explanations above, we present the following algorithm for learning an optimal struc-
ture of a BN, and we call it Algorithm OpBN.

Algorithm 3.1 Algorithm OpBN

Step 1. Compute {Ki j, 1 6 i, j 6 n, i 6= j} using (3.3).

Step 2. Determine Kmax using (3.6), and set r = 0.

Step 3. While Kr = Kmax− εr > 0 :
3.1. Compute {wi j(Kr), 1 6 i, j 6 n, i 6= j}, using (3.4). Set wi j(Kr) = 0 for i = j, and let W (Kr) =
[wi j(Kr)]n×n.

3.2. Find the set of arcs A(W (Kr)) using (3.5).

3.3. Apply the topological traversal algorithm (see Section 2.2) to detect possible cycles in the network
obtained by A(W (Kr)). If there is no cycle, then calculate the training accuracy, accuracy(A(W (Kr)));
set r = r+1 and go back to Step 3.

3.4. Apply the DFS algorithm (see Section 2.2) to determine a vector V (Kr) in (3.7).

3.5. Find V, using (3.8), and determine ρ . If ρ > ρ0 go to 3.10.

3.6. For s = 1,2, ...,ρ , check the network obtained by A(W s(Kr)) for any possible cycle, using the topo-
logical traversal algorithm, where W s(Kr) = [wi j(Kr)]n×n, and

wi j(Kr) =





wi j(Kr) if (i, j) ∈ C (W (Kr)),

vrτ if (irτ , jrτ ) ∈ C (W (Kr)).

3.7. Set Ṽ= {Ṽs̃(Kr), s̃ = 1,2, ..., ρ̃} including those vectors from the set V that are acyclic, and ρ̃ 6 ρ .

3.8. Let V̂= {V̂ŝ(Kr), ŝ = 1,2, ..., ρ̂} combines all vectors in the set Ṽ having maximum norm. Clearly
ρ̂ 6 ρ̃ and often there are several vectors with the same maximum norm; that is ρ̂ might be greater than
1.

3.9. Find the maximum training accuracy, accuracy(A(Ŵ ∗(Kr))) between the network structures ob-
tained by Ŵŝ(Kr), ŝ = 1,2, ..., ρ̂ corresponding to V̂ŝ(Kr) and set W (Kr) = Ŵ ∗(Kr); set r = r+1 and go
back to Step 3.

3.10. Solve the optimization problem (3.10) by applying algorithm AGOP; denote the solution found
by V ′(Kr). Then apply algorithm CGN starting from this solution to obtain a vector V ∗(Kr). After this
optimization procedure we create corresponding matrix W ∗(Kr). Set W (Kr) =W ∗(Kr), and find the new
acyclic network structure by a set of arcs A(W (Kr)) using (3.5).
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3.11. Compute the training accuracy, accuracy(A(W (Kr)); set r = r+1 and go back to Step 3.

Step 4. Find the best K∗r where accuracy(A(W (K∗r ))) has the maximum value among the training accu-
racies, accuracy(A(W (Kr))), r = 1,2, ....

Step 5. Return an optimal acyclic structure using a set of arcs A(W (K∗r )).

4. Numerical Experiments

This paper studies 22 benchmark data sets taken from the UCI machine learning repository Asuncion
& Newman (2007) and the tools page of the LIBSVM Chang & Lin (2001). These data sets have been
considered quite frequently in the literature. A brief description of the data sets is given in Table 1.

We use three different methods to discretize the continuous features. In the first one, we apply a
mean value of each feature to discretize values to binary, {0,1}. In the second one, we apply the Fayyad
and Irani’s discretization method Fayyad & Irani (1993). The third one is Algorithm SOAC Yatsko et
al. (2011); the parameter θ in this algorithm is chosen as 0.2. This parameter has not been fitted by
preliminary experimentation, and is similar to the one used for other problems in Yatsko et al. (2011).

We conduct experiments to compare the proposed algorithm (OpBN) with the Naive Bayes (NB),
the Tree Augmented Naive Bayes (TAN), the k-Dependency Bayesian Networks (k-DBN), k = 2, the
unrestricted dependency BNs algorithm (UDBN), the SVM and the C4.5 in terms of the test set accuracy.
In all cases we use 10-fold cross validation. Runs with the various classifiers were carried out on the
same training sets and evaluated on the same test sets. In particular, the cross validation folds are the
same for all experiments on each data set.

In calculations, we take η = 10−3, ϑ = 1.1, δ = 10−3, ω = 10−10, ϖ = 1010 for the CGN and we
set µ = 103, ε = 0.1, ρ0 = 210 for the proposed algorithm.

4.1 Results

In this section, we present accuracies obtained with the proposed algorithm OpBN. We compare the
OpBN by means of the predictive accuracies obtained with some well-known classifiers such as the NB,
the TAN, the k-DBN, the UDBN, the SVM, and the C4.5. The predictive accuracy of each method is
the percentage of test sets for which it predicts the class correctly. The predictive accuracies, for each
classifier in each data set, are summarized in Tables 2 to 4, where continuous features are discretized
by using mean values, the Fayyad and Irani’s method and discretization algorithm SOAC, respectively.
Since the UDBN is an algorithm proposed for binary classification, we do not have the accuracy results
for multi class data sets.

Figure 1 shows the scatter plots comparing the proposed algorithm with the NB, the TAN, the k-
DBN, the UDBN, the SVM, and the C4.5 on different data sets using the Fayyad and Irani’s method
discretization method. In these plots, each point represents a data set, where the x coordinate of a point
is the percentage of miss classifications according to the proposed algorithm, and the y coordinate is the
percentage of miss classification according to the chosen classifier for comparison. Therefore, points
above the diagonal line correspond to data sets where the proposed algorithm performs better, and points
below the diagonal line correspond to data sets where the chosen classifier performs better.

The results presented indicate that the proposed algorithm has produced more accurate results: it
has the highest average accuracies for all discretizing methods. Now, we summarize the highlights as
follows.

The test set accuracies of the proposed algorithm (OpBN), using mean values for discretization, are
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significantly higher than the NB, the TAN and the k-DBN in all data sets. The OpBN has also better
accuracies than the UDBN in the majority of data sets. In 21 cases out of 22, the OpBN shows higher
accuracies than the UDBN. It has the same accuracy as the UDBN in the data set Svmguide3, which is
85.41 percent. The proposed algorithm also has much better accuracies than the SVM in the most of
data sets. In 2 cases out of 22, accuracies of this algorithm almost ties with those obtained by the SVM.
Observe from the results, the OpBN has greater accuracies than the C4.5 in 20 cases out of 22.

The proposed algorithm, where continuous features are discretized by applying the Fayyad and
Irani’s method (FaI), also performs significantly better than the NB, the TAN and the k-DBN in all data
sets. Compared to the UDBN, it has better accuracies in 20 cases out of 22 data sets. The accuracies of
data sets Spambase and Svmguide3 are equal in both algorithms. These results also show that the OpBN
has higher accuracies than the SVM in 21 data sets out of 22, where as the later method has slightly
higher accuracy than the former method in the data set Waveform. It is also notable that the proposed
algorithm has greater accuracies than the C4.5 in 20 data sets. In the data set Letter Recognition, it has
the same accuracy as the C4.5, with the value of 87.68 percent, and it almost ties with the later one in
the data set Image Segmentation.

The accuracies obtained by the proposed algorithm, using the discretization algorithm SOAC, in
all data sets are higher than those obtained by the NB, the TAN and the k-DBN. The accuracies of this
algorithm are better than those of the UDBN in the most of data sets. In 21 cases out of 22, the OpBN has
greater accuracies than the UDBN. They have the same value of accuracy for the data set Svmguide3,
which is 82.92 percent. The results also demonstrate that the OpBN has significantly higher accuracies
than the SVM in 21 data sets out of 22, and the accuracy for these methods almost ties in the data set
Lymphography. The proposed algorithm has higher accuracies in 19 data sets when compared to the
C4.5.

4.2 Dynamic structures generated by OpBN

As mentioned above the main advantage of the proposed method is that it does not set the number of
parents a priory. This number comes from the optimization procedure; it might be different for different
folds on the same data. To demonstrate this we consider one example.

Table 5 shows the structure of the Diabetes data set with 8 features (see Table 1) obtained by Al-
gorithm OpBN. Four different structures obtained by the proposed algorithm when applying 10-folds
cross validation. For instance parents of feature X7 are: features X3,X4,X5 for folds 1 and 5-10; features
X4,X5 for folds 2 and 3. This feature (X7) does not have any parent in the structure obtained for fold 4.

5. Conclusion

In this paper, we present a new algorithm to learn an optimal structure of a Bayesian Network from data.
The proposed algorithm is based on a new combinatorial optimization formula. We utilize this formula
to find the most probable networks. Then, we apply optimization techniques to have the best acyclic
structure in a Bayesian Network. When there is a small number of cycles, we search the network for
different combinations of deleting some arcs in the existing cycles. In the second case, when there is a
large number of cycles, we apply optimization methods, AGOP and CGN.

Benchmark tests are performed to evaluate the effectiveness of the proposed algorithm and compare
its performance with other commonly used classifiers. The data set are chosen from the UCI machine
learning repository and the LIBSVM, and the continuous features are discretized by applying three
different methods. The results from the tests indicate that the new algorithm outperforms the other
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mentioned algorithms for accuracy. An interesting aspect of the presented algorithm and its learning
method is that it discovers unrestricted edges between nodes (dependencies between features) which is
common in real life data sets.
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TABLE 1 A brief description of data sets.

Data sets # Observations # Features # Classes

Breast Cancer 699 10 2
Congres Vote 435 16 2
Credit Approval 690 15 2
Diabetes 768 8 2
German.numer 1000 24 2
Glass Identification 214 10 7
Haberman Survival 306 3 2
Heart Disease 303 14 2
Hepatitis 155 19 2
Image Segmentation 2310 19 7
Ionosphere 351 34 2
Iris 150 4 3
Letter Recognition 20000 16 26
Liver Disorders 345 6 2
Lymphography 148 18 4
Sonar 208 60 2
Soybean-Large 307 35 19
Spambase 4601 57 2
Svmguide1 7089 4 2
Svmguide3 1284 21 2
Vehicle Silhouettes 946 18 4
Waveform-21 5000 21 3
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TABLE 2 Average predictive accuracy over 10 fold cross validation for 22 data sets using mean value for discretiza-
tion.

Data sets Bayesian Network Classifiers Benchmark Classifiers
NB TAN k-DBN UDBN OpBN SVM C4.5

Breast Cancer 96.10 95.71 97.31 97.66 97.89 95.15 91.06
Congress Vote 90.31 91.42 94.62 95.48 96.93 96.02 95.51
Credit 84.95 82.88 86.87 87.46 88.14 85.31 87.47
Diabetes 75.90 76.48 75.03 75.98 77.81 76.72 75.98
German 75.41 74.13 76.35 76.27 78.30 76.11 72.43
Glass 69.40 68.95 69.64 — 73.74 71.14 69.35
Haberman 75.01 73.85 76.43 77.86 78.92 73.34 71.60
Heart Disease 81.12 84.12 84.27 84.71 84.85 80.14 81.53
Hepatitis 83.61 83.14 84.12 85.25 86.08 83.61 82.97
Image Seg 90.65 85.01 91.08 — 93.10 89.35 93.13
Ionosphere 82.90 84.02 88.35 89.98 90.21 85.94 86.20
Iris 95.66 95.66 95.66 — 96.11 95.66 95.66
Letter 64.65 73.01 73.91 — 86.98 82.10 87.41
Liver 61.86 61.89 62.22 64.17 65.73 60.16 60.79
Lymphography 79.71 66.89 71.43 — 86.24 86.31 77.12
Sonar 75.18 75.44 75.61 76.89 78.92 76.98 76.65
Soybean 91.08 92.02 92.27 — 94.28 93.52 91.85
Spambase 90.03 89.69 89.27 92.37 94.12 90.17 91.89
Svmguide1 92.57 91.99 92.98 94.17 97.09 93.24 93.62
Svmguide3 81.51 83.04 83.64 85.41 85.41 80.16 81.24
Vehicle 59.15 68.70 68.91 — 76.18 73.98 69.99
Waveform-21 76.98 75.12 75.86 — 85.51 85.59 74.51
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TABLE 3 Average predictive accuracy over 10 fold cross validation for 22 data sets the discretization method FaI.

Data sets Bayesian Network Classifiers Benchmark Classifiers
NB TAN k-DBN UDBN OpBN SVM C4.5

Breast Cancer 97.18 96.52 96.92 97.72 97.98 96.52 94.11
Congress Vote 90.11 93.21 94.73 95.12 96.71 95.04 95.32
Credit 86.10 84.78 86.44 87.21 88.93 85.03 84.87
Diabetes 74.56 75.14 75.12 75.85 77.84 75.51 73.83
German 74.50 73.13 76.32 76.27 79.82 76.41 71.92
Glass 69.63 69.15 69.84 — 74.30 71.50 69.58
Haberman 75.09 74.41 76.89 77.91 79.18 73.20 71.24
Heart Disease 82.93 81.23 83.45 85.14 85.31 81.67 82.85
Hepatitis 84.56 83.91 83.90 85.17 86.87 85.16 83.87
Image 91.15 85.31 91.18 — 93.58 89.52 93.62
Ionosphere 88.62 89.77 89.83 91.10 92.62 89.67 89.98
Iris 95.87 95.87 95.87 — 96.11 95.87 95.87
Letter 64.93 73.41 73.86 — 87.68 82.22 87.68
Liver 63.26 63.18 64.17 65.91 66.86 62.03 62.15
Lymphography 79.70 66.85 76.34 — 87.94 86.48 77.01
Sonar 76.32 76.47 76.49 76.74 79.35 77.96 77.31
Soybean 91.19 92.10 92.52 — 94.12 93.85 91.97
Spambase 90.41 89.78 89.39 93.18 93.18 90.43 92.97
Svmguide1 92.39 91.61 92.76 94.45 97.22 94.31 95.99
Svmguide3 81.23 82.47 83.23 84.42 84.42 80.37 81.38
Vehicle 58.27 67.85 67.88 — 77.32 74.34 72.45
Waveform-21 77.87 75.35 76.71 — 86.50 86.68 74.68
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TABLE 4 Average predictive accuracy over 10 fold cross validation for 22 data sets using the discretization Algo-
rithm SOAC.

Data sets Bayesian Network Classifiers Benchmark Classifiers
NB TAN k-DBN UDBN OpBN SVM C4.5

Breast Cancer 96.12 95.60 96.76 97.65 97.94 95.31 91.16
Congress Vote 90.11 91.42 92.61 94.16 96.97 96.75 95.12
Credit 85.85 84.98 86.53 87.17 89.11 86.11 87.54
Diabetes 75.78 75.90 75.82 76.22 78.02 76.68 75.63
German 74.61 74.01 75.31 76.15 79.14 76.35 72.21
Glass 69.52 69.02 69.76 — 73.84 71.62 69.46
Haberman 74.66 76.08 75.64 77.31 79.24 73.36 72.15
Heart Disease 78.62 77.37 79.54 81.69 83.46 77.96 79.17
Hepatitis 82.93 81.54 84.21 85.93 86.12 84.24 82.34
Image 91.37 85.51 91.24 — 93.41 89.47 93.72
Ionosphere 85.92 86.18 85.94 88.62 90.23 86.15 86.71
Iris 93.43 93.42 94.11 — 95.36 94.18 94.18
Letter 64.80 73.71 73.98 — 87.34 82.41 87.71
Liver 65.82 65.73 65.95 65.97 66.81 63.69 64.98
Lymphography 79.76 66.95 71.81 — 86.34 86.73 77.11
Sonar 75.09 75.76 75.85 76.91 79.31 77.74 76.41
Soybean 91.21 92.15 92.31 — 94.79 93.81 91.99
Spambase 89.30 89.04 90.69 92.54 93.26 91.56 93.73
Svmguide1 95.81 94.91 96.32 97.54 97.91 95.94 96.91
Svmguide3 77.25 79.99 80.75 82.92 82.92 78.32 78.49
Vehicle 62.23 69.97 69.78 — 75.24 73.81 72.88
Waveform-21 76.98 74.58 75.64 — 88.78 86.12 74.06

TABLE 5 Parents of each features Xi of the data set ’Diabetes’ obtained by Algorithm ’OpBN’.

Features Parents
Folds: 1, 9, 10 Folds: 2, 3 Fold: 4 Folds: 5, 6, 7, 8

X1 X3−X5,X7 X3−X5,X7 X3−X5,X7 X3−X5,X7
X2 X1,X3−X8 X1,X3−X8 X1,X3−X8 X1,X3−X8
X3 X4,X5 X4,X5,X7 X4,X5,X7 X4,X5
X4 no parent no parent X7 no parent
X5 X4 X4 X4,X7 X4
X6 X1,X3−X5,X7,X8 X1,X3−X5,X7,X8 X1,X3−X5,X7 X1,X3−X5,X7
X7 X3−X5 X4,X5 − X3−X5
X8 X1,X3−X5,X7 X1,X3−X5,X7 X1,X3−X7 X1,X3−X7
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FIG. 1. Scatter plots comparing miss classifications of the proposed algorithm (x coordinate) with competing methods (y coordi-
nate); using the discretization method FaI



Chapter 6

Conclusions and Future Work

This chapter includes the key contributions that this research has made to knowledge. The

suggestions for further research are also presented.

6.1 Summary of Contributions

The learned structure of Bayesian Networks can be used for guiding future action and un-

derstanding the causal mechanisms of a system if structure learning algorithms are able to

learn accurate structure and certain assumptions are met. Once an optimal structure has

been specified, then the network is trained by learning parameters. It consists of computing

probabilities and conditional probabilities.

The goal of this thesis is to develop new algorithms to learn structure and parameters of

Bayesian Networks. The proposed algorithms apply different optimization problems. To solve

these problems, novel optimization algorithms are introduced. Therefore, this thesis makes

the following contributions towards improving the process of learning Bayesian Networks:

1. Development of new algorithms to learn an optimal structure in a Bayesian Network.

We introduce three different algorithms for structure learning. The first one is improving

the Naive Bayes’ structure by alleviating the feature independence assumption. We use

conditional probabilities to find dependencies between features. In the proposed algorithm,
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each feature has the class and at most one other feature as parents. The second one is

an unrestricted dependency algorithm in which some features could have a large number of

parents, whereas others just have a few. We present a combinatorial optimization problem

to find the dependency between features. The number of parents of each feature is found

by the proposed algorithm internally. We also propose a new algorithm to find an optimal

structure in Bayesian Networks using global optimization method.

Another alternative to improve the performance of the Naive Bayes without violating the

feature independence assumption is using feature (attribute) weights. We present a novel

attribute weighted Naive Bayes by assigning weights to conditional probabilities. An objective

function has been constructed based on the Naive Bayes’ structure and the attribute weights.

These weights are considered in the form of powers to conditional attribute class probabilities.

The weights, then, are found by using a local optimization method.

2. Development of new models to learn parameters of Bayesian Networks. We introduce three

different optimization models to learn parameters in the Naive Bayes. The objective functions

are constructed by considering some unknown variables corresponding to class probabilities

and conditional feature class probabilities. To optimize these functions to find optimal values

of variables, we apply newly developed local optimization method. We consider the similar

strategy to the Tree Augmented Naive Bayes by introducing a different objective function.

3. Development of novel optimization algorithms for optimizing the proposed models in 1

and 2 efficiently:

- Local methods: We propose new local optimization algorithms based on the combination

of the gradient method and Newton based methods. The gradient method is globally conver-

gent, but it suffers from the slow convergence rate as a stationary point is approached. The

Newton method has a high convergence rate, but it depends on initial point. We develop the

combined algorithms with the global and superlinear convergence properties.

- Global methods: We apply the Algorithm AGOP introduced by Mammadov et al. in

conjunction with the newly suggested local optimization methods.
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4. Application of the developed methods to the real world problems. To validate the proposed

methods for Bayesian Networks, we conduct experiments across a number of real world data

sets from the UCI machine learning repository and the LIBSVM. We also verify the efficiency

of the optimization algorithms when utilize to several well known test problems and Bayesian

Network models including real world data sets.

6.2 Looking Beyond

According to author’s opinion, a possible avenue for further research in this direction could

be:

We have verified the efficiency of proposed algorithms for learning structure of BNs in

several well known data classification problems. Exploring the robustness of these algorithms

under the variety of feature selection and the clustering problems would be the future work.

We have introduced new algorithms to learn an optimal structure in a BN and presented

different optimization models to learn parameters in the NB and the TAN, when applied to

binary classification problems. The proposed algorithms will be extended to multi class and

multi label data sets.

We have discretized the values of continues features in data sets using the existing al-

gorithms, Fayyad and Irani’s discretization method and the Algorithm SOAC, sub-optimal

agglomerative clustering method. Although these methods are robust and efficient, they

were initially developed in learning contexts other than BNs learning. Because it is likely

to find more dependencies when discretizing the data to only few intervals than when using

many intervals, we require a method to guarantee that each of the intervals has a reasonable

amount of observations. Developing an appropriate discretization method for BNs that takes

into account the interactions of each feature variable with the other feature variables would

be an interesting research.

We have applied the Algorithm AGOP as a global method to solve the optimization prob-
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lem corresponding to learning an optimal structure in a BN. Developing new strategies for

generating initial points for this global search method would be another research topic.
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