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ABSTRACT 

Primarily the study aimed to establish the effectiveness of the grab, swing and 

rear-weighted track starts in swimming. In order to minimise bias of prior learning, 

twenty-three non-competitive swimmers participated in the study (mean age 19.9 ± 2.4 

yrs). Participants learned the techniques for 30 minutes weekly for an eight-week 

period. Testing involved two maximal trials of each technique in random order. 

Horizontal and vertical force components from the feet were measured using a Kistler 

force plate, and by the hands via a hand-bar instrumented with load cells. Video was 

used to measure temporal and kinematic variables. Analyses of variance and post-hoc 

tests were performed for each dependent variable. Significant differences were found 

between the grab and track starts in flight distance, take-off velocity, take-off angle and 

horizontal impulse, and between the swing and track starts in block time, total time, 

take-off velocity and vertical impulse. The grab and swing starts were significantly 

different in block time, total time and vertical impulse. No significant differences were 

found between any of the starts in flight time or entry angle. Almost all of the 

horizontal drive came from the legs during the grab start, with little arm contribution. 

In contrast, the arms contributed just over one-third of the total horizontal impulse in the 

track start and considerably more vertical impulse than the grab start. Results of the 

current study demonstrated a greater effectiveness of the track start over the grab and 

swing starts. 

The second part of the study sought to establish the effectiveness of a resistance-

training program, aimed at improving vertical jumping ability, on the grab, swing and 

rear-weighted track starts in swiinming. Participants were randomly assigned to a 

control group (N=l 1) or a resistance-framing group (N=12), who trained three times a 

week for nine weeks. Pre- and post-testing involved the performance of six dry-land 

tests - two countermovement jumps (with and without arms), two CES squats (25°/s 



and 40 /s bar speed) and two overhead shot throws (with and without back extension), 

with the best of three trials being recorded. The three dive techniques were also 

performed post-test using the same procedures and instrumentation as in part one of the 

study. A repeated measures MANOVA showed that resistance training significantly 

improved performance in the dry-land tests (p < 0.0001). No significant improvements 

due to training were found for any temporal, kinematic or kinetic variables within the 

grab or swing starts. Significant framing improvements (p < 0.05) were found within 

the track start for take-off velocity, take-off angle and horizontal impulse of the hands. 

Results suggested that the improved skill of vertical jumping was not transferred 

directly to the start, particularly in the grab technique. Non-significant trends toward 

improvement were observed within all starts for vertical force components, suggesting a 

need for practising the dives to retrain the changed neuromuscular properties. 
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CHAPTER ONE 

INTRODUCTION 

A fast start is an essential part of competitive swirnming, particularly in the 

shorter sprint races. Thayer and Hay (1984) stated that the dive start makes up 10.5% 

of the total time in a 50 yard freestyle sprint. By improving the start one can reduce the 

race time by at least one tenth of a second (Maglischo, 1993), which may be the 

difference between winning and missing out on a place altogether. The 50m freestyle 

sprint is an all-out power event beginning with an explosive dive off the blocks (O'Shea 

& O'Shea, 1991). Therefore, greater muscular leg power and improved jumping ability 

may be important in reducing the starting time and, consequently, overall race time. 

An effective swimming start requires a fast entry into the water, followed by a 

streamlined position in order to reduce drag and minimise the loss of horizontal velocity 

(Guimaraes & Hay, 1985). To produce a fast entry, the take-off velocity (the point at 

which the feet leave the block) must be high without adversely affecting the body 

position and creating increased body drag. The velocity might be increased by 

improving the technique or by enhancing the swimmer's jumping power. A minimal 

time spent on the block may also be beneficial by giving the swimmer a psychological 

advantage of being in front at the start and diving into smooth water (Juergens, 1994). 

However, it could be disadvantageous if the decreased force produced on the block, and, 

therefore the speed of entry, was sacrificed for time. Therefore, a trade-off is required 

between the time spent on the block and the amount of force produced. 

Swimming starts have had several changes in the past 30 to 40 years. Most 

research has compared different techniques, such as arm-swings versus the grab start. 

The grab start has been commonly accepted as the most effective technique for about 25 

years and the track start is becoming the favoured technique of many swimmers. 
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Hence, research that investigates biomechanical variables of these two starting 

techniques, could enhance starting performance. Previous research generally has agreed 

that the grab start is more effective than the swing start for beginning a race. 

Specifically, one spends a shorter time on the block with the grab start without 

significantly sacrificing the speed of take-off (Bowers & Cavanagh, 1975; Roffer & 

Nelson, 1972; Shierman, 1979; Wilson & Marino, 1983). 

The forward track start was originally developed as it was considered that the 

more forward CG and lower body position would decrease the block time without 

sacrificing the speed of take-off (Fitzgerald, 1973). However, some studies found that 

the flight distance and take-off speed were adversely affected (Shin & Groppel, 1986; 

Stone, 1988). This could perhaps be due to the rear leg contributing little to horizontal 

force production due to the slight weighting of the leg. Therefore, shifting the body 

weight backwards (rear-weighted track start) in position over the rear leg could increase 

the loading of the leg extensor muscles and increase the contribution of the arms to the 

amount of force production. However, this position requires greater horizontal 

displacement of the CG on the block, which could increase the amount of time spent on 

the block. 

Recent comparisons of the track start (with the body weight forwards) with the 

grab start have generally agreed that the track start is slightly quicker off the blocks but 

equally effective to a criterion distance (Allen, Miller, Pein & Oyster, 1999; Shin & 

Groppel, 1986; Stone, 1988). No research to date has investigated the effectiveness of 

the track start with the body-weight positioned over the rear leg. 

A swimmer's take-off speed might be improved by changing technique or by 

increasing the power and jumping ability (Adams, 1986; Lyttle & Ostrowski, 1994). 

Maglischo (1993) stated that the three requirements for a good start were a fast reaction 

time, great jumping power and a low resistance during gliding. Whilst little can be done 
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to improve reaction time, the other two factors can be improved through training. There 

has been considerable research on drag reduction and entry techniques aimed at 

speeding up the gliding phase of the start (Hay & Guimaraes, 1983), but there has been 

little research on the contribution of leg power to dive start performance. Some 

research has shown a significant positive correlation between vertical jumping ability 

and starting performance (Breed, 1998; Pearson, McElroy, Blitvich, Subic, & Blanksby, 

1998; Zatsiorsky, Bulgakova & Chaplinsky, 1979). If streamlining is maximised and 

maintained, then improving jumping ability and power should increase the take-off 

speed and enhance performance. 

The current study aimed to establish whether the grab, swing or rear-weighted 

track start was more effective by measuring several temporal, kinematic and kinetic 

performance variables. The study's second aim was to establish the effect of a 

resistance-fraining program, aimed at improving jumping ability, on the diving 

performance of the three dive techniques. 
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CHAPTER TWO 

REVIEW OF LITERATURE 

Introduction 

Hay (1988) classified swimming start research into three categories. These 

were: comparative studies of different techniques (Bloom, Hosier & Disch, 1978; 

Bowers & Cavanagh, 1975; Gibson & Holt, 1976; Shin & Groppel, 1986; Juergens, 

1994; Lewis, 1980; Stone, 1988; Wilson & Marino, 1983); descriptive studies, whereby 

starting techniques are separated into gross measures such as block time, flight time and 

distance, and glide time (Arellano, Moreno, Martinez & Ona, 1996; Havriluk, 1983); 

and, studies investigating the factors that influence the success of a given technique 

(Breed, 1998; Guimaraes & Hay, 1985; Miller, Hay & Wilson, 1984; Zatsiorsky et al., 

1979). Whilst the dive start only makes up a small proportion of a sprint race, any small 

time gains are advantageous as competitors may be placed within hundredths of a 

second in a race. 

Variables influencing the dive start 

The grab start combined with the hole entry method has been adopted widely as 

the most effective starting technique. Therefore, it may be necessary to analyse other 

aspects of dive performance in order to find influential variables that can be modified to 

improve start time. Before this can be done, the start should be divided into gross 

starting measures such as block time, flight time and glide time. Then, useful 

information is available for coaches, and key factors affecting the performance of the 

dive can be identified. 
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Four studies (Arellano et al., 1996; Breed, 1998; Hay & Guimaraes, 1983; 

Zatsiorsky et al., 1979) have found that the glide time of the start correlated highly (p < 

0.0001) with starting time, which ranged from 5.5m (Zatsiorsky et al., 1979) to 10m 

(Arellano et al., 1996). It accounted for no less than 8 8 % of the variance in the start 

time in any study. Flight time was a non-significant contributor to start time in all of the 

studies except Breed (1998), with an 'r' value of 0.63 (p = 0.01). However, it should be 

noted that the time spent in the air makes up a relatively small proportion of the total 

start time (with a small standard deviation), which makes the chance of finding 

significance less likely. Only Zatsiorsky et al. (1979) found the block time to correlate 

significantly (r = 0.60, p < 0.05) with start time. This suggested that selection of a 

shorter criterion starting distance could mean that the influence of the block time 

increases. 

Therefore, the time swimmers spent gliding was considerably more important 

than the time spent on the block or in the air (Hay, 1993). The time of gliding depended 

on the glide distance, which varied little between subjects and trials, and was not 

significant; and, the average glide velocity, which correlated highly with total start time 

(r = -0.84 and -0.91) in the respective studies of Hay & Guimaraes (1983) and Breed 

(1998). A s the glide velocity is dependent on several other factors that occur on the 

block or in the air, one must not overlook these variables. A biomechanical model (see 

Figure 2.1) helps to explain the relationship between these factors and provide a 

rationale for the current study. 
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Figure 2.1: The relationship between selected biomechanical starting variables 

(Adapted from Hay, 1993) 

Similar efficiencies have been observed for different starting techniques and, 

therefore, biomechanical variables may be more important than the specific techniques 

(Zatsiorsky et al., 1979). The glide speed is dependent on the horizontal speed in the air 

and the angle of entry into the water (to minimise the negative forces). Assuming that 

the air resistance is negligible, then the horizontal flight velocity is directly influenced 

by the take-off velocity and results from the actions on the block at the start. Whilst 

block time and flight time were non-significant contributors to starting time in the 
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studies by Arellano et al. (1996) and Hay and Guimaraes (1983), the actions and forces 

applied during these phases do influence the glide time. Miller et al. (1984) suggested 

that the time spent in the air should be made longer by increasing the flight distance (by 

increasing impulse), as the swimmer encounters less resistance during this phase. 

Therefore, assuming a constant mass of the swimmer, if horizontal impulse on the block 

was increased, a filtering down effect might occur which, in turn, could increase the 

velocity of take-off, speed of entry, glide speed and, consequently, decrease the overall 

start and race time. This could be achieved by improving the starting technique or by 

increasing the muscular power of the swimmer. 

Comparison of starting techniques 

The swing start 

Originally, the swing start was the most common starting technique, which 

involved using the arms to gain momentum during a wind-up. This progressed through 

variations in the preparatory positions for the arms, beginning with extension straight 

back, followed by the straight back-swing, and then the circular forward and back-swing 

method of starting. 

Three earlier studies compared three different arm swing techniques - a full 

circular arm-swing, a partial or straight back-swing and an arms-back technique (Lewis, 

1980; Maglischo & Maglischo, 1968; Russell, 1967). Russell (1967) used just four 

experienced male swimmers in his study and found no significant differences between 

any of the starts for block time or horizontal and vertical take-off velocities using force 

plate instrumentation. However, such a small sample would reduce statistical power 

and the likelihood of significant results. Maglischo and Maglischo (1968) used ten 



experienced competitive swimmers and compared the speed of each technique to a 

distance of 4.6m using a Dekan automatic performance analyser. The full arm-swing 

was significantly faster (p < 0.05) than the partial back-swing, but was no faster than the 

arms-back method of starting. No significant differences (p > 0.05) in speed were found 

between the arms-back and partial back-swing techniques. 

Lewis (1980) used 10 untrained subjects in order to eliminate any bias due to a 

preferred or well-practised technique. Individual preference and experience might have 

affected the results of Maglischo and Maglischo (1968) and Russell (1967), whose 

subjects were mainly familiar with the full circular arm-swing method of starting. The 

subjects of Lewis (1980) had 42 practice trials of each technique over a period of 6 

weeks. Performance to a distance of 8m was analysed using 16mm cine at 100 frames 

per second. No significant differences were found between the three swing techniques 

in the time to reach the 8m distance, take-off speed, angle of take-off, flight time or 

flight distance. However, the arms-back technique was significantly faster than the full 

arm-swing method, which also was significantly faster than the straight back-swing 

method, to leave the starting blocks (p < 0.05). As the subjects were non-competitive 

and were required to swim freestyle at full pace past the 8m distance, it was probable 

that considerable variation could have occurred between trials in the glide and stroking 

phases due to no competitive experience. That is, stieamlining underwater, surfacing 

and commencement of stroking could have been more inconsistent than for experienced 

swimmers. Hence, any differences that might have existed between the actual starting 

techniques may have been masked. 

The studies comparing arm-swing techniques did not generally agree or find any 

one method to be significantly superior. However, it was generally agreed that the full 

circular arm-swing method of starting had greater biomechanical advantages. The full 

arm-swing technique allowed for a greater amount of momentum to be built up prior to 
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the start than other arm-swing techniques (Maglischo & Maglischo, 1968). However, a 

longer time might be spent on the blocks during the full arm-swing start due to the extra 

angular distance that the arms must travel (Maglischo & Maglischo, 1968). A further 

advantage of using a full arm-swing could be that the loading of the leg extensor 

muscles is greater prior to take-off (Khalid, Amin & Bober, 1989; Shierman, 1979). As 

the time spent on the block is not a factor in relay races, the full circular arm-swing 

method of starting is currently the preferred technique during relay changeovers. 

The grab start 

The circular swing start was replaced by the grab technique as the favoured 

method of swimming start during the late 1960s (Hanauer, 1967). This involved 

swimmers grasping the blocks with their hands beside the feet. The technique has been 

almost universally accepted as the most effective start as it has some potential 

biomechanical benefits. The body position allows the centre of gravity (CG) to be 

moved closer towards the water (Gibson & Holt, 1976); the arm pull can increase the 

pre-tension of the leg muscles during the set position, thereby enabling a greater drive 

from the legs (Hay, 1993); and, the arms can assist by pulling the body towards the 

water faster (Hay & Guimaraes, 1983). One further advantage could be that the back 

extensor muscles contribute more force due to the smaller angle at the hip joint (Bloom 

etal., 1978). 

Variations in the grab technique were developed, involving different hand and 

feet positions, and degrees of knee and hip flexion. In an attempt to move the C G 

further forward over the edge of the block, the block was grasped at the sides behind the 

heels to be in an 'overbalanced' position (Gibson & Holt, 1976; Lewis, 1980). This was 

aimed at decreasing the response time for the start. One further advantage of this grab 



start variation could be that the arms may contribute more angular momentum than in 

the grab start (Gibson & Holt, 1976). Gibson and Holt (1976) found that the grab start 

tended to be faster off the blocks than the grab variation technique (0.89 s and 0.93 s, 

respectively), but not significantly so (p > 0.05). In contrast, Lewis (1980) showed the 

variation grab start to be significantly faster off the blocks than the grab start. These 

different findings could be due to Gibson and Holt (1976) having used 11 experienced 

competitive swimmers (mean age of 20 years) whereas Lewis (1980) used 10 college 

male beginners. The subjects in Lewis' (1980) study had no prior preference for any 

technique, whereas subjects in the study of Gibson and Holt (1976) had become 

accustomed to using the grab start during their competitive races. Therefore, the latter 

may have performed it at a comparatively higher level than other techniques. No 

significant difference was found between the two starts in either study to their 

respective distances of 7.62m and 8m (Gibson & Holt, 1976; Lewis, 1980). 

Woelber (1983) studied a grab start technique variation called the tuck start. 

The tuck start was designed to allow a lower and more forward CG with improved 

stability during the set position. To achieve this body position, the swimmer grasped 

the sides of the block behind the heels of the feet and lowered the body until the knees 

were tucked to the chest. Woelber (1983) suggested that the tuck start would require 

less time on the block and in the air than the grab start. However, no statistical 

investigation was performed and the conclusions were based on theory and 

observations. No mention of the subject types and numbers or experimental design was 

made in the theoretical discussion by Woelber (1983). The tuck start would be very 

unlikely to develop maximal take-off velocity, which is most important in an effective 

start (Gibson & Holt, 1976; Groves & Roberts, 1972; Miller, Hay & Wilson, 1984), 

because the leg extensor muscles must overcome a mechanically inefficient position due 

to the tight knee angle (Breed, 1998). Very little loading or pre-stretch prior to leg 
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extension would be utilised in the tuck position whereas the grab and swing starts use 

the arms to contribute to force development by increasing the loading of the leg 

extensor muscles (Pearson et al., 1998). 

Many studies on starting techniques have compared the grab and the swing starts 

(Ayalon, Van Gheluwe & Kanitz, 1975; Bloom et al., 1978; Bowers & Cavanagh, 1975; 

Gibson & Holt, 1976; Hanauer, 1972; Lewis, 1980; Lowell, 1975; Roffer & Nelson, 

1972; Shierman, 1979; Wilson & Marino, 1983; Zatsiorsky et al., 1979). However, 

there is some disagreement as to the overall effect of the different starts to set distances 

ranging from 3.66m (Roffer & Nelson, 1972) to 10.93m (Wilson & Marino, 1983). 

Such differences in criterion distances and experimental designs make it difficult to 

formulate comparisons and conclusions. All of the studies found that the mean start 

times for the grab position were marginally faster, or no slower, overall than any of the 

arm swing positions. Of these, three found the grab start to be significantly faster to a 

criterion distance (Bowers & Cavanagh, 1975; Lowell, 1975; Roffer & Nelson, 1972). 

However, Lowell (1975) tested the results at a 9 3 % level of confidence in contrast to the 

9 5 % level of the other studies. 

Roffer and Nelson (1972) used 1 6 m m cine to measure the performance of nine 

subjects unfamiliar with the grab start. The grab start (mean=l .31 s) was significantly 

faster than the circular arm-swing start (mean of 1.41 s) to reach a criterion distance of 

just 3.66m, with the block phase taking up most of the total time. This mean difference 

of 0.1 s was equivalent to the differences in the block time of the two starting 

techniques. N o significant differences in flight time were found. N o swimmer's body 

had entered the water by the criterion distance, although the hands of most subjects had 

just reached the water. Consequently, no part of the glide phase was included in 

analysis. Therefore, the results did not indicate which start was more effective as water 

velocities and drag factors were not taken into account. 
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It was generally agreed that any advantages in total time were due to the 

significantly shorter time spent on the blocks during the grab start (Bowers & 

Cavanagh, 1975; Gibson & Holt, 1976; Hanuer, 1972; Lewis, 1980; Lowell, 1975; 

Roffer & Nelson, 1972). This can be explained in part by the position of the C G which 

does not have to move as far forward towards the water in the grab position after the 

starting signal (Bloom et al., 1978). The swing techniques also require extra time for 

the arms to increase momentum and also loading of the legs. However, in the grab start, 

the legs are already loaded (or pre-tensed) prior to the starting signal due to the legs 

pushing in opposition to the arms (Guimaraes & Hay, 1985), which may help to reduce 

both the reaction time and movement time on the block (Pearson et al., 1998). 

Most of the comparative studies discussed so far have examined the block time 

and total time to a set distance. As the majority agree that significantly less time is 

spent on the blocks during the grab start than any of the swing techniques, it may be 

necessary to investigate other factors which could contribute to the difference between 

the starts. Initially it would appear that, by using the swing technique, more force could 

be produced as the arm swing increases momentum and therefore impulse. Hence, 

more horizontal velocity would be produced which should increase the speed of take-off 

and water entry and the flight distance (Gibson & Holt, 1976; Hanauer, 1972; Lewis, 

1980). However, several of the studies investigating other aspects of the start, including 

horizontal and vertical velocity at take-off, flight time and flight distance, found no 

significant differences between any of the starting techniques (Ayalon et al., Bloom et 

al., 1978; Bowers & Cavanagh, 1975; Shierman, 1979). This would suggest that any 

advantage gained using the grab start is due to a shorter time spent on the blocks and not 

from any events arising after take-off (Bowers & Cavanagh, 1975). 

A hand bar instrumented with strain gauges was mounted in front of the block to 

measure the forces applied by the hands in the studies of Hay and Guimaraes (1983) and 
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Cavanagh, Palmgren and Kerr (1975). Hay and Guimaraes stated that "the function of 

the arm pull was to pre-tense and thus facilitate the drive from the legs" (p. 14). Using 

24 competitive male high-school swimmers, their study supported this by significantly 

showing that, the greater the upward and forward impulse applied by the arms (which 

actually opposes the body's forward motion), the greater the horizontal impulse exerted 

by the feet. Cavanagh et al. (1975) used just one experienced male subject to study the 

forces applied by the hands in the grab start. They concluded that the force application 

by the hands was not directed at accelerating the body horizontally forward; rather, the 

arms appeared to be used as a "brace" against which the legs were able to press and pre

tense before the hands were released. This would suggest that the contribution of the 

arm-pull to the take-off compensates for the extra momentum that might be gained by 

using an arm-swing technique. This would support the findings of Hay and Guimaraes 

(1983) and Shierman (1979). 

Shierman (1979) used six male and five female subjects equally experienced in 

the grab and circular backswing starts to study the force patterns involved in each 

starting technique. The side-to-side force components were found to be negligible. The 

two techniques produced similar amounts of horizontal force. A more detailed analysis 

showed that the grab start exerted greater downward vertical force in the early 

preparation phase (simultaneous with the arm pull) and the swing start had greater 

downward force just prior to take-off. Shierman (1979) suggested that the additional 

impulse obtained in the grab start due to the initial presfretching of the leg extensors and 

the push of the arms against the block prior to take-off may be sufficient to make up for 

the loss of impulse due to the absence of an arm swing movement (Cavanagh et al., 

1975; Hay & Guimaraes, 1983). Also, a greater amount of trunk flexion during the grab 

position may allow a greater force contribution from the hip and back extensor muscles. 
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Such results would indicate that a trade-off between the time on the blocks and 

the amount of force generated is required (Gibson & Holt, 1976). Previous studies 

comparing techniques have primarily been concerned with decreasing the time spent on 

the block whilst mamtaining the amount of force production. However, an athlete could 

aim to increase leg and shoulder strength and power whilst mamtaining the block time. 

This would have the effect of increasing the velocity of take-off and flight distance of 

the start by increasing the block impulse (Adams, 1986; Lyttle & Ostrowski, 1994). 

Either of these improvements would increase the rate of force development, which may 

be an important aspect of diving that requires further investigation. 

The track start 

The track start was developed in the early 1970s as a possible superior starting 

technique over the swing start (Shin & Groppel, 1986). The track start has many of the 

same principles as the grab start, but employs a wider base of support. Hence, there is 

greater stability and a lower C G which enables the body weight to be shifted further 

over the front edge of the block (Fitzgerald, 1973). The lower body position of the track 

start also can be beneficial in producing a stronger horizontal force during take-off 

(LaRue, 1985). 

The track start in swimming was developed using similar concepts from the 

crouch start used in track sprinting. The crouch start in track was first used in 1887 in 

order to move the C G forward of the feet and increase horizontal force production 

(Desipres, 1973). Moving the weight forward assisted the athlete to overcome the 

initial inertia of the body. Starting blocks were introduced later to enable greater 

fraction and push-off in the horizontal plane. However, in swimming, F I N A (1998) 



rules state that the block in swimniing must have a downward slope of less than 10 , 

which rninimises the potential horizontal drive of the legs - in particular, the rear leg. 

Earlier studies of sprint starts in track mainly investigated the effect of different 

block spacing and body positions on starting performance (Dickinson, 1934; Gagnon, 

1976; Henry, 1952; Kistler, 1934; Menely & Rosemeir, 1968; Schot & Knutzen, 1992; 

Sigerseth & Grinaker, 1962; Stock, 1962). Henry (1952) identified three categories of 

sprint-running block spacing - bunched, medium and elongated. The bunched start 

involved the toes of the rear foot being placed next to the heel of the front foot; in the 

medium start the knee of the rear leg was placed next to the arch of the front foot; and, 

in the elongated start the knee of the rear leg was placed next to the heel of the front 

foot. The toe-to-toe distance of the bunch, medium and elongated starts is about 25-

30cm, 40-55cm and 60-70cm, respectively (Hay, 1993), with the variation dependent on 

the height of the athlete. Medium block spacing repeatedly has been shown to be the 

most effective start to reach distances ranging from 9.1m to 45.7m (Dickinson, 1934; 

Henry, 1952; Kistler, 1934; Menely & Rosemeir, 1968; Sigerseth & Grinaker, 1962; 

Stock, 1962). This may have implications for the track start in swimming, as the block 

designs in earlier studies did not allow for wider front to back stances (Ayalon et al., 

1975; LaRue, 1985; Zatsiorsky et al., 1979) which may provide for a greater horizontal 

drive from the legs. However, no studies in swimming have investigated the effect of 

different foot spacing on track start performance. 

The track start in swimming has been compared to the grab start by Allen, et al. 

(1999); Counsilman, Counsilman, Nomura and Endo (1988); Jeurgens (1994); Kirner, 

Bock and Welch (1989); LaRue (1985); Shin and Groppel (1986); and Stone (1988). 

The track start has been compared with the grab and swing starts by Ayalon et al. 

(1975) and Zatsiorsky et al. (1979). When investigating the track start, Ayalon et al. 

(1975) and LaRue (1985) used a supporting block for the back foot. Whilst Ayalon et 
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al. (1975) used inexperienced subjects and LaRue (1985) used competitive swimmers 

previously skilled in the grab start, both studies showed the track start to be faster than 

the grab start to water entry and to a set distance (5m and 4m, respectively). However, 

only the results of LaRue (1985) reached significance at the 9 5 % level of confidence. 

The criterion distances used in both studies were not representative of the whole start, as 

very little of the underwater phase, a highly significant predictor variable of starting 

performance, was included (Arellano et al., 1996; Breed, 1998; Guimaraes & Hay, 

1985). Therefore, this time advantage of the track start may be dissipated over a longer 

criterion distance. 

The modified block has the advantage of increased support for the rear leg to 

prevent slipping and therefore increasing the horizontal impulse when using the track 

start (LaRue, 1985). However, current FINA (1998) rules still prevent modifications, 

such as a rear leg support, to be made to the starting block. Another possible advantage 

of the modified block was that a medium (or wider based) stance could be used instead 

of a 'bunched' positioning of the feet. The problem of foot spacing that LaRue (1985) 

identified should not be a problem with today's blocks, most of which are 

approximately 60cm in length (Anti-wave). A wider stance tends to create a lower and 

more stable C M which may enable a greater horizontal impulse than the bunched style 

where the hips are higher (Jeurgens, 1994). Also, the joint angles of the hip and knee 

may be biomechamcally more efficient for maximising leg drive from the blocks. The 

studies in track sprinting support this theory by showing that a medium foot stance is 

superior to a bunched stance (Sigerseth & Grinaker, 1962; Stock, 1962). Henry (1952) 

stated that the production of force, and as a result velocity, was more important than 

start time in a fast sprint start. Therefore, perhaps the start generating the most velocity 

would be superior over an adequate criterion distance such as 10 metres. This also 

could be true for the swimming start. 



Shin and Groppel (1986) analysed the fastest grab and track start trial for 11 

skilled varsity subjects (six female and five men) to an 1 lm distance. The take-off time 

of the track start was significantly faster (p < 0.05) than that of the grab start (0.73 s and 

0.77 s, respectively) but was no faster over the criterion distance. This was consistent 

with the results of others (Allen et al., 1999; Ayalon et al., 1975; Jeurgens 1994; Kimer 

et al., 1989; LaRue, 1985; and, Stone, 1988). However, the horizontal take-off velocity 

and flight distance was significantly greater (p < 0.05) for the grab start than the track 

start (Allen et al., 1999; Counsilman et al., 1988; Stone, 1988; Welcher & George, 

1998). The most likely reason for this finding is that the track start utilises only one leg 

to push off the block, which would allow less forward momentum to be generated. 

Shin and Groppel (1986) found that the mean times of water entry and time to 

1 lm were not significantly different for the two starting techniques. The mean 1 lm 

time of the track start was 0.05 s faster than the grab start. However, a hand-timed 

stopwatch was used for the 1 lm time, which may reduce the confidence in the results 

due to factors such as human error and researcher bias. However, Shin and Groppel 

(1986) used a hip-marker, in contrast to the CG, for their kinematic measures. This may 

have contributed to some inaccuracies due to different body positions. There was no 

significant difference in angle of take-off between the two starts, but the ankle-hip angle 

at take-off was significantly greater for the track start which may reflect this. The CG is 

a more accurate representation for projectile motion. 

Stone (1988) studied 26 competitive male swimmers and found no significant 

difference between the two starts in reaction time (using a stand-up response test). This 

suggested that the shorter block time of the track start was due to decreased movement 

time. The general agreement in findings is mainly due to the further forward position of 

the CM and decreased fluctuations in vertical displacement of the track start than the 

grab start (Fitzgerald, 1973; LaRue, 1985). 



Stone (1988) found that the track start was significantly faster than the grab start 

for block time, time to water entry, water time to the first and second stroke and total 

time to the first and second stroke (p < 0.05). However, the grab start had a 

significantly greater horizontal flight distance and total distance to the first and second 

stroke. No significant differences between the two starts were found for the take-off 

and entry angles. This was supported by Allen et al. (1999), Juergens (1994) and Shin 

and Groppel (1986), because the velocities at the first and second stroke of the two 

starts were similar. Therefore, it was concluded that neither start was superior to the 

other in starting performance (Ayalon et al., 1975; Counsilman et al., 1988; Jeurgens, 

1994; Shin & Groppel, 1986). 

Zatsiorsky et al. (1979) compared 5.5m times of the track, grab and two swing 

start variations using 45 highly skilled male subjects. The track start was significantly 

slower than the three other techniques (p < 0.05). No information was provided to 

describe the specific techniques used, so their findings could have been influenced by 

the relatively short learning period of three days. As subjects had been experienced in 

performing the grab and swing starts, the bias of the preferred technique over the 

'novel' track start might have influenced the results. However, Ayalon et al. (1975) 

tested 20 untrained male swimmers with similar findings. The track start with no rear 

leg support was slower than the grab start to a distance of 5m and significantly slower (p 

< 0.05) than the swing start. 

The comparative studies using experienced, competitive swimmers had a 

training period to allow the starting techniques to be learned and practised (Counsilman 

et al., 1988; Kirner et al., 1989; LaRue, 1985; Stone, 1988; Zatsiorsky et al., 1979). The 

starting techniques were practised 100 times each in the study of Counsilman et al. 

(1988). Other studies simply specified the length of training, such as four 30 minute 

practice sessions for the grab and track starts (LaRue, 1985); five 45 minute sessions for 



four techniques (Kirner et al., 1989); and, three daily sessions for four techniques in the 

study of Zatsiorsky et al. (1979). However, in these studies, the grab start previously 

had been used repeatedly and favoured during competition. Therefore, it may be 

questioned whether the skill of the less familiar track start has been acquired to the same 

level as the grab start. 

The studies of Allen et al. (1999), Ayalon et al. (1975) and Juergens (1994) 

attempted to address the problem of subject bias for a particular technique. Ayalon et 

al. (1975) studied 20 untrained male swimmers and allowed them a total of 80 practice 

trials. However, this assumes that all of the techniques will reach a learning plateau 

following the framing period and that the different starts will be performed at the same 

level of skill. Juergens (1994) selected competitive swimmers who could use the grab 

and track starts interchangeably in competition, with their proficiency being assessed by 

three coaches. 

Allen et al. (1999) examined eight female and seven male competitive swimmers 

who were familiar with both the grab and track style starts. The grab start revealed a 

significantly greater flight distance, when normalised to body height, than the track start 

(p < 0.05) for all subjects. The grab start had a 13.1% increase in flight distance for 

those preferring the grab start and a 9.6% increase for those with the track start as their 

preferred method. The vertical force was significantly greater during the track start for 

subjects preferring the track technique than those preferring the grab start. Men who 

preferred the track start had a significantly faster start time (p < 0.05) for the track start 

than the preferred grab starters, which was not significantly different for the female 

subjects. No significant differences were found between techniques for take-off angle, 

body angle and entry angle. 

Other than LaRue (1985), who used a rear supporting block, no study has found 

the track start to be significantly faster than the grab start to set distances (Ayalon et al., 



1975; Counsilman et al., 1988; Shin & Groppel, 1986; Kirner et al., 1989; Zatsiorsky et 

al., 1979) ranging from 5m (Ayalon et al., 1975) to 1 lm (Shin & Groppel, 1986). 

However, most researchers have suggested that the track start is a viable and equally 

effective alternative to the grab start, depending on the individual (Allen et al., 1999; 

Counsilman et al., 1988; Kirner et al., 1989; Shin & Groppel, 1986; Stone, 1988). 

Therefore, it may be necessary to investigate different variations of the track start. No 

swimming study has looked at the effect of different foot spacing on the start. 

However, the performance differences may be too small to reach statistical significance 

once the swimmer has left the block. One area requiring investigation is the effect of 

body position and CG orientation on the start. Welcher and George (1998) compared 

the grab start with the two track start variations. The traditional method, with the CG 

positioned over the front foot, and the slingshot method with the CG positioned over the 

rear leg towards the back of the block, were studied. 

Welcher and George (1998) studied 20 Division I female swimmers, comparing 

the grab start with the two track start variations while performing three trials of each 

randomly ordered start to a distance of 5.16m. No kicking or stroking was permitted 

underwater. The hip was used as a representative point to determine the horizontal 

velocity of the swimmer at the 5.16m mark. No significant correlation was found 

between swimmers' fastest starts and their most experienced starts (r = 0.34) nor their 

preferred starts (r = -0.01). The slingshot start had the highest velocity of 2.19 m/s, 

followed by the grab start (2.16 m/s) and the track start (2.11 m/s). This was significant 

(p < 0.05) between the slingshot and track start, but not between the grab and track start, 

nor between the slingshot and grab start. However, more variables would be required, 

in particular temporal measures, to make any substantiated conclusions about the starts. 

The study provides enough questions to warrant further investigation into the effect of 

CG distribution on the different starting techniques. 



Flight and entry technique 

Most of the studies mentioned have been concerned primarily with the actions 

that maximise force production and minimise time on the block. A few studies have 

investigated the body position during flight and its effect on the start (Counsilman et al., 

1988; Gallivan & Hoshizaki, 1987; Guimaraes & Hay, 1985; Hobbie, 1980; Kirner et 

al., 1989; Wilson & Marino, 1983). A good entry technique is required to maximise the 

horizontal velocity during the water or glide phase of the start by reducing the drag. 

Arellano et al. (1996) stated that the tiaining of the swimming start should primarily aim 

to decrease the drag during the underwater phase. The hole entry technique is one in 

which the body enters the water at the same point as the hands. Therefore, the swimmer 

has less frontal area exposed to the water and reduces the forces of drag and lift 

(Gallivan & Hoshizaki, 1987). This method of flight, combined with the grab start 

technique, has become the most widely accepted method of starting. When using the 

flat entry method the body enters the water behind the hands, which might therefore 

increase water resistance (Counsilman et al., 1988). Whilst theoretically better, there is 

some disagreement concerning the contribution of the hole entry method towards 

improved dive performance. 

Wilson and Marino (1983) studied the hole and flat entry flight techniques and 

found the grab/hole entry position to be significantly faster to a 10.93m distance. 

However, there were no significant differences in times to water entry for any of the 

techniques. This suggested that the underwater part of the start was shorter, due to the 

increased angle of entry which reduced the inhibiting forces. Guimaraes and Hay 

(1985) found that greater heights of entry (of the CG) were associated with shorter 

starting times, which supports the hole entry method. Swimmers using the hole entry 

technique spend less time on the blocks as the body does not have to fall as far forward 



before take-off (Arellano et al., 1996). This is due to a greater angle of the body s C G 

to the horizontal at take-off. Whilst a shorter time is spent on the blocks during the 

grab/hole method, more time is spent in the air, which is necessary to prepare for a 

steeper angle of entry (Counsilman et al., 1988; Hobbie, 1980; Wilson & Marino, 1983). 

This may help to account for some of the non-significant findings of the comparative 

starting technique studies mentioned earlier. 

Hobbie (1980), however, found no significant differences in times to 6.9m 

between the different entry methods, whereas Counsilman et al. (1988) and Kirner et al. 

(1989) found the flat start to be the fastest to 12m and 8m, respectively. Well-trained 

subjects who generally favoured the flat start were used by Counsilman et al. (1988). 

Therefore, their findings could have been a result of the swimmers performing their 

preferred techniques at a higher level of skill. However, when they used less-skilled 

subjects in the second part of their study, the flat entry start still proved to be more 

effective - possibly due to its lesser complex nature than the hole entry method. This 

could have influenced the results in other comparative studies who also used novice 

subjects with the intent of removing any bias towards a particular technique (Ayalon et 

al., 1975; Bloom et al., 1978). Kirner et al. (1989) obtained similar results to 

Counsilman et al. (1988) with the flat start significantly faster than the hole entry to a 

criterion distance (p < 0.0001) and significantly faster to the point of entry (p < 0.001). 

They investigated one step further, and showed that the flat start entry was fastest, 

regardless of whether participants used a track or grab start (p < 0.05). 

The results of some studies could have been influenced by the subjects having a 

preference for one technique over another (Bowers & Cavanagh, 1975; LaRue, 1985; 

Wilson & Marino, 1983; Zatsiorsky et al., 1979). Hay (1988) stated that comparative 

studies almost invariably show that the most practiced and/or the least complicated 

technique yields the best result. Studies comparing swimming start techniques have had 
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some limitations and differences in research design, which have made findings 

inconclusive and difficult to compare. The most obvious difference was the range of 

distances to which starting times were measured. These were from 3.6m (Roffer & 

Nelson, 1972) to 12m (Counsilman et al., 1988) and affected the relative contribution of 

certain variables to the starting time, such as glide time. The spread or variance within a 

group (homogenous vs. heterogenous) could also affect the analysis of data. As 

previously discussed, the sample of subjects can influence findings and pose restrictions 

on the transferability of results (e.g. novice vs. skilled swimmers). Therefore, the 

amount of practice allowed to learn a technique could also contribute to the differences 

in findings. 

Physical characteristics of the swimmer 

Zatsiorsky et al. (1979) stated that "flight time and glide times for the grab start 

depend mainly on the jumping ability and size of the swimmer; details of technique 

(body positions, entry angle, and so forth) are less important." (p. 206). They found that 

starting efficiency to 5.5m depended significantly on the swimmer's jumping ability 

(vertical jump, r = -0.64), height (r = -0.67) and mass (r = -0.75). Breed (1998), 

Guimaraes and Hay (1985) and Pearson et al. (1998) all found similar V values for the 

height and mass when correlated with a criterion distance. These results were not 

surprising as mass is an important component of force production (Hay, 1993) and 

height affects the distance that the C G travels. 

Disch, Hosier and Bloom (1979) examined the effect of reach, height and mass 

on reaction time (RT), movement time (MT) and flight time (FT) of novice females to a 

3 m distance. Using a stepwise regression analysis, they found that mass accounted for 

27.1% of the R T and reach accounted for 24.6% of the FT. None of the variables 



significantly related to the M T . Only 13 - 29.5% of the variance of RT, M T and F T was 

accounted for by the combination of anthropometric variables. Therefore, 70 - 87% of 

the variability in swimming start components was related to other factors, such as leg 

strength, power or technique, all of which can be directly modified through coaching 

(Disch et al., 1979). The findings of this study would have been more informative had 

part of the underwater phase been included in the analysis. 

Measurement techniques in swimming starts 

The start is of vital importance in separating elite performers (Newble, 1982). 

Some of the previous methods used to evaluate swimming starts have been unreliable or 

too awkward to use at the pool side. Many of the older studies in this review employed 

cinematographic techniques for data collection (Gibson & Holt, 1976; Groves & 

Roberts, 1972; Havriluk, 1983; Hobbie, 1980). Whilst providing accurate information, 

there is a considerable delay in the analysis of the results and the costs are high. Bloom 

et al. (1978) used video successfully for data collection and suggested that they could 

not have tested as many subjects and trials using cinematographic techniques. 

Therefore, the low cost, ease of use, short processing time and immediate feedback 

makes the use of video the preferred method of data collection for researchers in this 

field (Kennedy, Wright & Smith, 1989). 

However, the accuracy of videography versus 16mm cine techniques has been 

questioned. Kennedy et al. (1989) filmed 20 known coordinates using both methods 

and found that the cine technique produced a mean error of 4.8mm compared to a 

5.8mm error for video. This represented only a 0.05% of a difference of the calibrated 

field. Whilst it was significantly different, a mean difference of just 1mm over an 8m3 

field is not important, especially as the fields are usually considerably much larger. 



Therefore, the use of video has been widely accepted as being accurate for the purpose 

of recording human motion (Abraham, 1987; Angulo & Dapena, 1992; Kennedy et al., 

1989; Newble, 1982). 

When using video and film techniques, errors may exist concerning the accurate 

recording of the data. The cameras need to be stable and maintained in a fixed position 

throughout recording. Therefore, it is recommended that at least three fixed reference 

points are located in the field of view at all times to allow film coordinates to be 

adjusted in case of film or camera movement (Shapiro, 1978). 

Two-dimensional cinematography was considered to be very limiting when 

analysing complex human motion. Shapiro (1978) suggested that, wherever possible, 

control points be located throughout the field of motion to reduce any errors concerned 

with calculating unknown points, or through lens and film distortion. The cameras 

should be positioned as far as possible away from the action with a high focal length 

(while mamtaining the optimum size of the object field) to increase the resolving power 

(or resolution in lines mm"1) and decrease the error caused by distortion of distances 

(parallax error). Alternately, filming an excessively large field or placing the camera 

too close to the movement plane decreases the resolving power (Susanka, Boswart & 

Boruvka, 1989). Kohl (1989) suggested that the cameras should be placed about 20 

times further away than the real size of the performance space (e.g., a hurdle or 

throwing circle). 

Previous methods of three-dimensional cinematographic measurement required 

an exact knowledge of multi-camera set-ups and orientation. This required considerable 

time and may have produced considerable amounts of error (Shapiro, 1978). A method 

developed in 1971 by Abdel-Aziz and Karara (in Mankoff & Bridges, 1985) allowed 

filming to be performed by any type of camera without needing the internal 

measurements or positions of the cameras. The cameras filmed a series of 'control' 



points with known spatial coordinates in the field of view of all cameras. The control 

point locations, with respect to a fixed point, were known. The spatial coordinates of 

unknown points could then be calculated (Wood & Marshall, 1986). This method is 

known as Direct Linear Transformation (DLT). 

The DLT method has been shown to be very accurate and therefore suitable for 

human motion analysis (Mankoff & Bridges, 1985). Shapiro (1978) showed that the 

mean error was no more than 5mm in either the X, Y or Z directions when using a static 

test to calculate unknown spatial coordinates. This error is small when considering the 

size of the field of view. They also performed a dynamic test to calculate the vertical 

acceleration of a ball to within 1% to 4% of the g value of-9.8m/s2. Wood and 

Marshall (1986) also found the method to be accurate, but significant errors were found 

when unknown points were extrapolated outside the control point distribution space. 

Their results also showed that the more control points used the better the point 

reconstruction values. It is therefore suggested that as many control points as possible 

be used and be well distributed throughout the space. Therefore, to limit errors in 

extrapolation, a large reference structure should be used to cover the object area. Whilst 

the minimum number of control points must be six, Shapiro (1978) stated that "usually 

12 to 20 control points will provide the best estimate of the DLT parameters" (p. 199). 

The main problem with three-dimensional analysis in swimming starts has been 

due to the different refractive indices of air, Perspex and water greatly affecting the 

accuracy of calculating results. Therefore, some means of simultaneously recording the 

above and below the water actions would be necessary. One way has been to use two 

cameras, with the underwater one being in a waterproof housing or a viewing pit (if 

available). This was not always feasible and problems existed in cine techniques with 

accurate synchronisation of the cameras and the extra time required for analysing the 

data. Mclntyre and Hay (1975) used an inverse periscope with the bottom lens 



reflecting both the above and under water actions to the upper mirror which reflected 

the picture onto the film. A few problems were associated with this method. The light 

intensity for the mediums of air and water were different, which would affect camera 

settings (when using cine techniques); wave action would partly distort the image; and, 

there would always be a small part of the swimmer obscured due to the positioning of 

the optical axis with the horizontal. 

Most of the studies mentioned in this review have been concerned primarily with 

the starting techniques only, rather than as a part of the overall performance. Newble 

(1982) used a method of video analysis by the pool-side that provided instant data and 

feedback for the swimmer and coach. It involved using a timing device which counted 

each cycle in a field (50 Hz) and displayed this time in 0.02 s on a display monitor. It 

was activated by the starting horn. Therefore, the gross starting times (and turning) 

could be accurately measured immediately and compared with total times by using the 

pause or freeze mode on the player. 

Specialised biomechanical equipment for digitising spatial coordinates from 

videotape, such as the Ariel Performance Analysis System (APAS), can be very 

expensive. Abraham (1987) described a method which used only a special-effects 

generator (SEG), or a fader, as a specialised device for this purpose. The fader mixed 

the video signal of the performance with a plain digitising surface, so that the cursor 

would be superimposed on the image. Placing the cursor on the video signal before it 

reached the monitor solved the previous problem of digitising errors due to camera and 

monitor lens distortion. A correlation coefficient of 0.9995 showed this method to be 

valid through correlating actual coordinates with digitised values. Kohl (1989) 

suggested that the main error associated with digitising was the random error of reading 

the individual points. This could be up to 2mm, which is partly due to the cursor 



parallaxes. This represents between 5 m m and 2 5 m m in real size coordinates (Abraham, 

1987), depending on the distance of the camera away from the subject. 

The sequence of measured coordinates is generally not smooth enough because 

of random errors in the process of digitisation (Kohl, 1989). Therefore, the smoothing 

of single coordinates in a sequence is necessary to remove as much error as possible and 

suppress higher frequency signals, such as noise. The digital filter, such as the 

Butterworth filter (second order smoothing), and spline functions such as cubic, 

polynomial and quintic (third order smoothing) are common types of smoothing 

functions (Kohl, 1989). Cubic spline functions have been recommended as being the 

most appropriate for smoothing data from projectile motions (McLaughlin, Dillman & 

Lardner, 1977; Zernicke, Caldwell & Roberts, 1976). 

Many different methods of measuring the times of swimming starts have been 

used in the above studies, including diverse criterion starting distances, using different 

parts of the body for measurement, and different instrumentation. Bloom et al. (1978) 

used an above-water video camera to record the block and flight phases of the start to a 

distance of 3m, assuming that none of the swimmers would have yet entered the water. 

Other researchers (Arellano et al., 1996; Hay & Guimaraes, 1983; Pearson et al., 1998) 

have used a bulkhead in the water which stops the timing when it is touched by the 

swimmer. The main limitation of this method is that the stieamlining of the swimmer 

may need to be altered in order to contact the bulkhead. Bowers and Cavanagh (1975) 

measured the time by manually operating a stopwatch until the head of the swimmer 

reached a marker at a 3m distance. This could have several errors associated with it, 

including the tester's concentration, any bias towards a particular technique by the tester 

and problems with determining when the head passes the marker (refraction of the light 

from water to air and the water clarity). One other method of timing the start was used 

by Zatsiorsky et al. (1979) and Hobbie (1980), which required a line to be attached to 



the swimmer's bathers so that when it reached the required distance, it pulled a peg out 

from a switch to stop the timer. This may have inhibited the swimmer physically or 

psychologically. 

Some studies have measured the forces applied to the blocks during swimming 

starts, including Breed (1998), Shierman (1979) and Zatsiorsky et al. (1979). A force 

plate mounted onto a starting block was the most common method to measure force and 

time variables in the X, Y and Z directions. However, the amount of force in the Y and 

Z directions should be calibrated using trigonometry (cosine rule) to allow for the 

downward angle of the starting block from the horizontal. Many of the researchers 

overlooked this, and, therefore, would have had slightly inaccurate values. As the grab 

start also involves a contribution from the arms, it would be more specific to measure 

the forces applied with the hands as well as the feet. Hay and Guimaraes (1983) and 

Stevenson and Morehouse (1979) used a steel bar situated under the front edge of the 

starting block with strain sensors at either end of the bar to measure the shearing forces 

applied to it by the hands of the swimmer. Values with less than 6% error in both 

directions of force had been calculated (Cavanagh et al., 1975), which make it a useful 

and informative tool for swimming start analysis. 

The current study uses a combination of several of the aforementioned methods 

of measurement, including above-water 2-D video, and force plate and load cell 

instrumentation in order to measure the dive start variables. An APAS is used for the 

analysis of the video data. 

The relationship between leg power, jumping ability and swimming starts 

Adams (1986) stated that lower body power is essential for fast starts and turns 

in swimming. However, research is limited on lower limb leg strength and power in 



relation to swimming start performance. Miyashita, Takahashi, Troup and Wakayoshi 

(1992) conducted one of the few studies in this particular area of swimming research. 

They found a statistically significant correlation (p < 0.05) between leg extensor power 

and starting performance to 5m (r = -0.68), and flight distance (r = 0.76). The leg 

power test involved a reclining seat and a footplate against which the subjects exerted as 

much force as possible, moving it away at a constant speed. A wide range of swimmers 

were used, including both male and female, and competitive age-group and open 

national swimmers, which may have contributed to higher correlation values. The 

distance to 5m gives little indication of the overall starting performance, as the glide 

phase, which accounts for a large proportion of the start (Arellano et al., 1996), 

contributes little over this distance. 

Several studies have correlated the standing vertical jump to starting 

performance over a criterion distance (Breed, 1998; Pearson et al., 1998; Zatsiorsky et 

al., 1979). Significant correlation values of-0.64, -0.57 and -0.64, respectively, were 

found in these studies. Breed (1998) used 15 state or national female age-group 

swimmers, in contrast to Pearson et al.'s (1998) mixed ability and mixed gender group, 

and the 60 mixed ability male swimmers of Zatsiorsky et al (1979). Similar findings in 

all of these studies may suggest that jumping ability is an important variable in dive 

starting performance at most skill levels. Breed (1998) also used a countermovement 

jump with no arm swing (CMJ) as a more reflective test of leg extensor power than a 

vertical jump with an arm swing (VJ). However, the CMJ test did not correlate 

significantly with 7m starting performance, unlike the leg power test and 5m start time 

ofMiyashitaetal.(1992). 

Counsilman and Counsilman (1994) stated that the use of the VJ to measure 

explosive power as a potential for speed in swimmers has been highly effective. 

Counsilman (1977,1986) and Ballow (1979) successfully used the VJ mainly for the 



purpose of estimating to which broad category (sprint, middle-distance or distance) of 

event a swimmer should belong. Counsilman (1977) also suggested that the VJ was an 

indication of power that could be produced by the rest of the body, including the arms, 

which produce most of the propulsive force in the freestyle stroke. 

There has been some research on the relationship between leg power tests and 

overall sprint race performance (varying in distances from 22.9m to 91.4m). It would 

be expected that these tests would correlate more highly with shorter swimming 

distances. Rohrs and Stager (1991) used the Margaria-Kalamen (M-K) Stair Climb Test 

as a measure of leg power in age-group competitive males and found it to correlate 

significantly (p < 0.05) to the 22.9m sprint (r = 0.54), but not to the 45.7m or 91.4m 

sprint. This suggested that there was a greater contribution of lower limb power in 

shorter distances. They also found the M-K test to be significantly correlated with peak 

power in a tethered swim. The actual test, however, had little resemblance to any of the 

movement patterns involved in a swimming start and so a more specific leg power test 

could have resulted in higher correlation values. 

In a study by Rohrs, Mayhew, Arabas and Shelton (1990), the VJ was used as a 

measure of leg power and it related significantly to 22.9m sprint swiniming velocity in 

males (r = 0.59), but not in females (r = 0.07). This may have been because the female 

group was considerably more homogenous than the male group, and therefore, it was 

not clear if the differences were due to gender or the group make-up. More research in 

this area would be necessary to clarify the issue. 

The VJ appears to be a more movement-specific land-based test of power for a 

swimming start than either the M-K test, as used by Rohrs and Stager (1991) and Rohrs 

et al. (1990), or the sledge apparatus used by Miyashita et al. (1992). The sledge 

apparatus was essentially a measure of concentric muscle contraction, rather than 

involving the stretch-shortening cycle (SSC) of the muscles, which is utilised in the 



movement-phase of the grab and swing starts. Shierman (1979) stated that the shape of 

the force curve for the 'gathering phase' of the dive start was similar to the shape of 

other vertical force curves elicited when performing dynamic movements such as the 

vertical jump. The VJ has the added advantage of being administered easily in the pool 

area during training sessions (Counsilman, 1986) and does not involve the time and 

equipment required by the two other leg power tests mentioned. 

The VJ is not solely a test of leg power. Rather, it is a combination of the leg, 

trunk and arm movements, and jumping skill. Research has found that the arms 

contribute 10-15% of the height obtained in the VJ (Khalid et al., 1989; Luhtanen & 

Komi, 1978; Shetty & Etnyre, 1989). A CMJ takes out the arm swing by having the 

hands remain on the hips throughout the jump. Therefore, it reduces the 

skill/coordination requirement of the test and focuses the effort more on the leg extensor 

muscles (Young, 1994a). 

In a swimmer's framing program, there is little emphasis on developing 

muscular leg strength and power through progressive overloading exercises (Adams, 

1986; Miyashita et al., 1992). This is due to the fact that the large proportion of the race 

is spent stroking, and only 10.5% of the 50m race time is spent on starting (Thayer & 

Hay, 1984). However, it has been well documented that the total time in 25 - 100m 

races largely relates to the efficiency of the start (Counsilman et al., 1988; Hay, 1988). 

There has been a need for more research to establish the relative usefulness of 

land-based leg power framing to starting performance, in order to establish the relative 

value of including leg power exercises in swimmers' framing programs. Miyashita et 

al. (1992) suggested that swimmers must work against high loads and speeds to 

guarantee maximal voluntary contractions, which are not achieved by using the 

resistance of water only. The easiest way to increase leg power is to increase leg 

strength (Miller et al., 1984). However, this could be offset by the risk of increasing 



muscle mass, which could decrease the swimmer's buoyancy and increase water 

resistance. Plyometric framing can be effective as it can produce increased gains in 

muscle power whilst nnnimising the risk of 'bulking up' (Lyttle & Ostrowski, 1994). 

However, there have been no training studies that show whether power training can 

improve dive start performance. 

Factors determining standing VJ height 

Vertical jumping performance is determined by the vertical velocity of the 

centre of gravity (CG) at take-off. The velocity depends on the mass and the vertical 

impulse - the result of upward acceleration of the different body segments in jumping 

(Oddson, 1989). Jumping performance is, in turn, influenced by the amount and rate of 

force that can be developed by the muscles, the ability to utilise elastic energy in 

stretched tissues, neural coordination and skill development. This requires the use of 

the muscles of the feet, calves, thighs, buttocks, back, neck, anterior deltoid, chest and 

biceps - the muscles used in most dynamic sporting activities (Sargent, 1921). 

Strength qualities 

Maximal strength contributes to jumping performance. Strength training studies 

that used subjects without a previous strength framing background, found marked 

improvements in VJ performance (Adams, O'Shea, O'Shea & Climstein, 1992; Bauer, 

Thayer & Baras, 1990; Clutch, Wilton, McGown & Bryce, 1983; Gemar, 1986; Lyttle, 

Ostrowski & Wilson, 1996). In contrast, very little improvement has been shown in 

previously strength-trained individuals (Hakkinen & Komi, 1985). In order to jump 

higher, the athlete must generate more power by increasing the strength and velocity of 

the muscle contraction (Adams et al., 1992). The rate of force development (RFD) is a 
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major contributor to take-off velocity and hence VJ performance (Hakkinen & Komi, 

1985). This can be calculated by determining the steepest portion of the force-time 

curve during a maximal strength test (Kraemer & Newton, 1994). Training the VJ with 

light loads may increase the ability to rapidly develop force (Blattner & Noble, 1979). 

Sanders and Wilson (1989) found that the biggest limitation in VJ height is the 

inability to maintain high forces when the knee angle is close to full extension. This has 

the effect of a deceleration in vertical velocity prior to take-off. Harman, Rosenstein, 

Frykman and Rosenstein (1990) found that vertical velocity was maximal 0.03 s before 

take-off and decreased by 6-7% at take-off. Jozsef and Tihanyi (1992) investigated the 

effect of different knee joint range on countermovement jump (CMJ) and squat or static 

jump (SJ) performance. They found that larger knee joint ranges did not result in higher 

vertical velocities at take-off, showing that a greater knee joint range cannot be utilised 

to improve performance. The maximal velocity was reached before full knee extension. 

There was no significant difference between vertical velocity of the SJ and CMJ, even 

though the velocity of the C M J increased more sharply than that of the SJ, suggesting a 

more marked deceleration of the C G prior to take-off. They also suggested that the hip 

and back extensors may be more important in increasing the vertical velocity than the 

knee extensors, particularly at the beginning of the concentric phase of a VJ. 

The ability of the individual to utilise the S S C affects jumping performance 

(Komi & Bosco, 1978). During the lengthening of the muscle in eccentric work, elastic 

energy is stored in the muscle. If this eccentric work is immediately followed by a 

concentric contraction, part of the stored elastic energy in the muscles can be recovered 

and used in this positive work (Komi & Bosco, 1978). A higher stretching speed has 

been associated with movements of smaller amplitudes. Studies have shown that jumps 

involving movements of smaller amplitude utilise the stored elastic energy more 

effectively than those involving movements of larger amplitudes (Bosco & Komi, 1983; 



35 

Sanders & Wilson, 1989). Sanders and Wilson (1989) suggested that increased amounts 

of knee flexion may decrease the timing of the larger forces produced by the presfretch 

in the leg extensors. Increasing the stretching speed and decreasing the pre-sfretch 

range or knee flexion, allows for a more efficient use of elastic energy (Bosco & Komi, 

1983). The muscle potentiation has also been shown to increase as the elapsed time 

between the muscle presfretch and contraction (amortisation phase) decreases (Komi & 

Bosco, 1978). 

A common method of measuring the effect of elastic energy on the leg extensor 

muscles is to compare a maximal VJ with and without countermovement (Harman et al., 

1990; Hudson, 1986; Khalid, Amin & Bober, 1989; Komi & Bosco, 1978; Oddson, 

1989; Sanders & Wilson, 1989; Shetty & Etnyre, 1989). However, in some studies the 

countermovement may not have been rapid enough to create effective elastic loading 

(Davies & Jones, 1993). The differences in the speed of contraction of the muscles may 

help to account for the varied findings of these studies. 

Skill and coordination of jumping 

The timing and coordination of the muscle groups affecting movements of the 

various segments is important in jumping performance. Bobbert (1990) stated that 

jumping ability could be improved by either increasing the individual muscle capacity 

to release energy or to improve the coordination of the different muscle actions. As 

skilled jumpers are likely to be optimally coordinated, they might benefit more from 

exercises aimed at increasing muscular power output. However, beginners might 

benefit more from exercises intending to improve coordination (Bobbert, 1990). 

Luhtanen and Komi (1978) used 8 well-trained males to perform segmented 

jumps and a full SJ. The total performance was 7 6 % of a theoretical maximum 



calculated from the segmental analysis. Optimal timing of the segments could have 

increased this to 84 percent.. This suggested that special.framing could improve well-

trained athletes' jumping abilities by at least eight percent. This improvement could be 

considerably more marked in athletes not trained for strength and power. The arm 

swing and coordination Of body segments in the VJ increases the ground reaction force 

(GRF), which increases the amount of pre-tension in the leg extensor muscles. 

Therefore, training the skill and coordination of the segmental actions could improve 

jumping performance. 

Hudson (1986) suggested three general patterns of coordination - sequential, 

simultaneous and modified simultaneous. The study investigated CMJ and SJ 

performance without an arm swing and found that the VJ was predominantly a 

simultaneous coordination of body segments. Based on a CIS (composite index of 

synchronisation), approximately 80% was simultaneous and 20% sequential 

coordination. In skilled jumping, the sequencing of the segments is less important than 

the timing (i.e., very small time delays between adjacent segments). 

Muscle groups and body segments 

The arm and trunk contributions in the V J can help to increase the amount of 

loading in the leg extensor muscles. Therefore, the leg extensor muscles can greater 

utilise the SSC through the extra energy stored in the leg muscles, as a result of the 

presfretching of the muscles during the preparatory phase (Lafortune & Cochrane, 

1988). 

Many studies have determined the contribution of the arms to vertical jumping 

ability by comparing a VJ with and without the use of arms (Lees & Barton, 1996; 

Shetty & Etnyre, 1989; Khalid et al., 1989; Harman et al., 1990; Davies & Jones, 1993; 



Payne, Slater & Telford, 1968). Such studies have attempted to remove the effect of the 

arms by crossing them to the chest, placing hands on hips, or hands grasping a light bar 

on the shoulders. Therefore, a CMJ reduces the skill/coordination requirement of the 

test and focuses the effort on the leg extensor muscles. (Young, 1994a). 

Payne et al. (1968) found that the arm swing added an extra late peak on the 

force-time curve, thereby adding extra force for the propulsion of the CG. The arm 

swing also increased the rise of height of the CG before take-off by amounts between 

12% (Payne et al., 1968) and 21% (Harman et al., 1990). Payne et al. (1968) also 

observed that the subjects tended to dip deeper when performing jumps without the use 

of arms. 

The arms generally contribute 10 to 15% of the height achieved in a VJ (Harman 

et al., 1990; Khalid et al., 1989; Luhtanen & Komi, 1978; Oddson, 1989; Shetty & 

Etnyre, 1989). Through the use of modified vertical jumps, Luhtanen and Komi (1978) 

investigated the segmental contributions to VJ performance and found that knee 

extension, plantar flexion, trunk extension, arm swing and head swing contributed 56%, 

22%, 10%, 10% and 2%, respectively. However, Ramey (1982) suggested that arm 

movement contributed 30-40% of the jump height. This high proportion was probably 

due to using a different interpretation, which involved comparing the peak forces 

produced when using arms (3.7 times body weight) against no use of arms (2.5 times 

body weight). Therefore, the VJ should not be used as a measure of leg power as it 

requires the athlete to coordinate various muscle groups other than the leg extensor 

muscles (Shetty and Etnyre, 1989). 

Narita and Anderson (1992) conducted the only study of the effects of upper 

body strength training on VJ performance. They found that a seven week training 

program for the shoulder flexor muscle groups significantly improved VJ height in 

female varsity volleyballers. It was concluded that the improvement in VJ performance 



was due to a greater angular momentum of the arm swing and not shoulder flexion 

velocity or acceleration. 

The difference between jumps with or without swinging the upper extremities is 

due more to higher strain on leg extensors than kinematical changes in movement 

executed by lower extremities (Khalid et al., 1989). The ground reaction force 

decreases below body weight as a countermovement is initiated. It has been shown 

through the use of force plates, that the unweighting during a CMJ is greater when the 

arms are not used (Harman et al., 1990; Khalid et al., 1989; Payne et al., 1968). 

Lees and Barton (1996) investigated the contribution of arms using a relative 

momentum approach, which quantified the momentum of each free limb relative to its 

joint attachment to the body. They found that, in a CMJ, the arms contributed to 12.7% 

of the body's total vertical momentum. Their definition ignores negative momentum, 

whereas other studies did not. The advantage of the arm swing being applied 

downwards before being exerted upwards is to apply more stress to the supporting legs. 

This highlights the importance of timing and coordination of limb actions to maximise 

their contribution to upward motion. Shetty and Etnyre (1989) found that the arms 

contribute 15% of the total power and 6% to the vertical velocity at take-off. As the 

arm movement is a skilled action, unskilled jumpers should not use the arms in testing 

for jumping ability. 

Davies and Jones (1993) found that the arm swing had a greater effect on 

jumping performance than a countermovement. The arms significantly increased 

performance in both the VJ (15%) and SJ (13%), but found no significant difference 

between the jumps with or without the use of arms. However, they found it difficult to 

completely prevent a dip during the S J, which may have affected their findings. 

Harman et al. (1990) found that the arm swing improved vertical ground reaction 

impulse by 10% in comparison to 3% produced by a countermovement. The arms also 



increased the rise of height of the C G by 2 1 % when compared with the 

countermovement's contribution of 6 percent. Payne et al. (1968) found that the arm 

swing added 12% to the CG's rise of height before take-off. Davies and Jones (1993) 

suggested that the effect of the arm swing decreases proportionally as the performance 

level increases. 

Training to improve vertical jumping 

Traditional strength training, explosive weight training, plyometric exercises and 

Olympic lifting can be effective for improving vertical jumping performance. However, 

the most effective form of training may be dependent on the individual athlete and their 

relative strengths and weaknesses (Kraemer and Newton, 1994). For example, athletes 

with a great strength base may benefit more from training at faster contraction velocities 

(Baker, 1996), whereas athletes with lower strength levels may benefit from virtually 

any form of training (Bauer et al., 1990; Clutch et al., 1983). Most studies that 

compared different training methods in non-strength trained subjects found that each 

method (WT, plyometrics or combined methods) improved VJ performance, but no one 

method was significantly better another (Adams et al., 1987; Bauer et al., 1990; Blattner 

and Noble, 1979; Clutch et al., 1983; Lyttle et al., 1996). 

The fast-twitch muscle fibres are mainly responsible for dynamic performances 

such as jumping and, therefore, when framing for strength, heavy loads must be used in 

order to ensure the recruitment of all motor units (Wilson et al., 1993). However, 

training with only heavy loads may produce an adaptation specific to the slow velocities 

used in lifting these loads. Hence, it is suggested that when training for jumping, the 

movement should be as explosive as possible (Kraemer and Newton, 1994). 



Plyometric training may improve R F D and, therefore, power. Dynamic weight 

training (i.e., relatively lightloads at a high speed) is designed to produce a higher 

mechanical power output of the muscles. It has been suggested that neuromuscular 

adaptations contributing to explosive power may occur very early in a training program, 

sometimes within two to four weeks (Adams et al., 1992; Gemar, 1986). Wilson et al. 

(1993) tested 64 previously weight-trained subjects after they had participated in 10 

weeks of either traditional squat strength exercises, depth jumps (DJ) or explosive 

weight training at 30% of 1RM. Whilst all experimental groups produced significant 

improvements in CMJ and SJ performance, the explosive weight training group 

improved significantly more than the other two groups in both the tests. This would 

support the specificity theory that plyometrics increase the ability to utilise the elastic 

and neural benefits of the SSC. 

Bauer et al. (1990) trained unskilled jumpers using a variety of training 

modalities - free weights, hydra gym, plyometrics, hydra gym/plyomefrics, free 

weights/plyomefrics. All training groups significantly improved in VJ height after 10 

weeks of training, but no one group improved significantly more than any other in 

jumping performance. Similar conclusions were made by Blattner and Noble (1979) 

following their three day per week (3DW) eight-week framing study. No significant 

difference existed between an isokinetic (hydra gym) squat and DJ training group in 

improving VJ height. 

Adams et al. (1987) studied 12 to 15 year old males and found no significant 

gains in VJ performance after 10 weeks of training in either a weight-training 

(WT)/max VJ or WT/drop jump (DJ) group. This may be due to the maturation of the 

subjects or because the post-testing was performed just three days after the completion 

of the training. Brown, Mayhew and Boleach (1986) found that a 3DW DJ program 

significantly improved VJ height, but not CMJ height. After a period of 12 weeks in 15 
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year old male basketballers, by comparing the relative increases in the C M J and VJ, it 

was suggested that approximately 5 7 % of the VJ gain was due to jumping skill 

improvement and the remainder from strength increases. However, it was not entirely 

clear how the authors arrived at this figure. 

Using a theoretical model, Bobbert and Van Soest (1994) found that, by 

strengthening the muscles without changing the timing of the actions, VJ height 

decreased rather than increased. Baker (1996) suggested that elite strength athletes do 

not seem to improve VJ performance even when maximum squat strength increases. 

However, studies have shown that strength weight training can improve VJ performance 

in athletes without a strength training background (Adams et al., 1992; Bauer et al., 

1990; Clutch et al., 1983; Gemar, 1986; Wilson et al., 1993). However, no comparative 

study has shown that traditional weight training for strength is any better at improving 

jumping performance than any other training method. 

Training programs aimed at improving jumping performance should include 

exercises that allow athletes to practise with their changed muscular properties, in order 

to optimise their timing (Bobbert & Van Soest, 1994). This would support the idea that 

strength training, accompanied by high-velocity training (i.e., plyometrics), is the most 

effective way of improving VJ ability (Adams et al., 1992; Bauer et al., 1990; Lyttle et 

al., 1996). Adams et al. (1992) found that a squat strength/plyomefric training group 

showed almost three times as much improvement in VJ performance than either a squat 

strength or plyometric six-week framing group. This finding was in agreement with 

Lyttle et al. (1996), who found that a WT/plyomefric training group tended to produce 

superior performances in SSC movements than a maximal power framing group. This 

supports the theory of "improving VJ by enhancing both the contractile and stretch 

reflex properties of the muscle rather than undertaking unidirectional training alone." 

(Baker, 1996, p.133). 



Drop jumping as a form of plyometric training has been shown to be an effective 

method of improving VJ performance in both skilled and unskilled jumpers (Bobbert, 

1990). However, comparisons are difficult because of differences in study design, 

duration of training period, frequency of sessions, number of repetitions per session, 

intensity of exercises and the jumping techniques used. As Bobbert (1990) stated, there 

is no clear pattern in the associated DJ training studies regarding their effectiveness, 

particularly when using unskilled subjects. Therefore, problems still exist in terms of 

designing the most effective DJ training program for maximum improvement in VJ 

performance. 

Poole and Maneval (1987) conducted one of the few studies on the effect of the 

frequency of plyometric training. They found that 2DW DJ training was significantly 

better in improving VJ performance than 3DW DJ training for a period of 10 weeks. It 

has been suggested that DJ framing for 3DW may not allow sufficient recovery time 

between sessions (Bobbert, 1990). However, the 10-week training period did not 

produce a performance plateau in either group, suggesting that a longer training period 

was required in order to reach optimal performance. 

Drop heights of about 40cm are the most effective in improving VJ performance 

(Brown et al., 1986). However, Blakey and Southard (1987) found no significant 

differences between a WT group, WT/1 .lm DJ group and a WT/40cm DJ group after 

eight weeks of framing. This was despite all training groups significantly improving in 

a test of dynamic leg strength and an M-K stair-climb test. A 16-week training study by 

Clutch et al. (1983) supported these findings. Whilst VJ performance improved by an 

average of 8.4cm, there were no significant differences between a WT/VJ training 

group, WT/0.3m DJ group and a WT/0.75-1 .lm DJ framing group. It was concluded 

that neither the athlete's level of strength nor the height of drop altered the resultant 

training effects of depth jumps. This could mean that athletes might receive benefits of 



a combined DJ/weights program without the added possibility of injury due to greater 

drop heights. However, the tests used by Blakey and Southard (1987) were not 

movement-specific to the DJ. Therefore, they might not have been able to show 

performance differences between the groups due to framing effects. 

Holcomb, Lander, Rutland & Wilson (1996a) stated that the DJ may not 

adequately train the hip extensors, as they contribute considerably more when 

performing a VJ. This could partly explain why many studies have not shown that DJ 

training is significantly better than any other training method in improving VJ 

performance. However, the DJ might decrease the length of the amortisation phase 

which increases the power output of the muscles (Holcomb, Lander, Rutland & Wilson, 

1996b). This is even more likely when a bounce DJ is used (Bobbert, 1990), which is 

differentiated by a small amplitude movement (i.e., shallower knee bend) and a shorter 

contact time. This is in contrast to the countermovement DJ {CDS) whereby the effects 

of the pre-sfretch are less pronounced, but the movement has a greater similarity to a 

regular vertical jump. Therefore, repetitions of the CDJ could improve the coordination 

of jumping (Bobbert, 1990). 

In designing a training program specific to jumping, it might be necessary to 

emphasise the most deficient component of an individual's jumping ability in order to 

achieve the greatest possible gains (Kraemer and Newton, 1994). The concept of 

periodisation should be used in a program, with the preparation phase aimed at 

improving the absolute strength of associated muscles used in jumping. Prior to the 

competition phase, more specific neural framing would be necessary, such as exercises 

emphasising high velocities and rapid force development with specific movements 

(Kraemer and Newton, 1994). During the competition phase, the maintenance of all 

aspects of jumping performance is important. This is in agreement with Bauer et al. 



(1990) who suggested that a plyometric program should be phased in once sufficient 

lower extremity strength has been achieved. 

Although there has been much research in comparing the relative effects of 

different training methods on jumping performance, many questions still remain 

unanswered. What method of training is the best for improving VJ performance in 

untrained and trained athletes? What height of DJ is the best? What length of training 

period is required for maximal gains? The current study aims to maximise vertical 

jumping performance by using common framing principles and then investigate the 

effect any jumping improvement may have on the grab, swing and track starts in 

swimming. 



CHAPTER THREE 

STATEMENT OF PURPOSE 

The purpose of the study was twofold. Firstly, the study sought to establish 

whether there were any significant differences between the grab, swing and track starts 

in several temporal, kinematic and kinetic variables. Secondly, the study aimed to 

examine whether a resistance-training program for improving jumping ability had 

affected selected performance variables of the three starting techniques. 

SIGNIFICANCE OF THE STUDY 

Using a number of performance variables, the current study compared the 

effectiveness of the rear-weighted track start with the grab and swing starts. These are 

currently the most frequently used start techniques in swimming races and during relay 

changeovers. Previous studies have compared the front-weighted track start with the 

grab start and have generally agreed that the track start is slightly quicker off the blocks 

but has no advantage to a criterion distance due to a slower take-off velocity. Such 

studies have been inconclusive and only compared temporal and kinematic variables, 

such as velocity and time (Shin & Groppel, 1986; Kirner, Bock & Welch, 1989; Stone, 

1988; Welcher & George, 1998). The current study investigated the mechanics and 

force contributions of the techniques. If the rear-weighted track start proved to be more 

effective than the currently preferred techniques used in starting and relay changeovers, 

then it would suggest that coaches and swimmers should practise the start in training as 

an alternative method of starting. 

Thayer and Hay (1984) stated that the dive start makes up 10.5% of the total 

time in a 50 yard freestyle sprint. As diving requires an explosive push-off, an 



improvement m leg extensor power and jumping ability should increase the velocity of 

take-off and the flight distance. Assuming that the time on the block is not increased, 

overall race time also could be reduced. If there is a significant improvement in starting 

performance due to improved jumping ability, it would suggest to swimmers that they 

should include explosive leg exercises during framing sessions to increase leg power 

and jumping ability. 

Very little research has investigated the effect of leg power and jumping ability 

on starting performance. Limited research has shown positive correlation between 

jumping ability and starting performance (Breed, 1998; Miyashita et al., 1992). Other 

research has shown a positive correlation between jumping ability and swimming 

performance (Ballow, 1979; Counsilman & Counsilman, 1994; Rohrs et al., 1990), but 

no studies to date have investigated the effect of a resistance-training program on 

starting performance. 

Currently, little time is spent developing muscular leg strength and power in a 

sprint swimmer's training program. The results of this study could have implications 

for the swimming coach by providing information relating to the value of framing 

jumping ability for sprint swimmers. Therefore, it would be necessary to find out if 

improvements in jumping ability lead to improved starting performance in order to 

justify a training program. 

RESEARCH HYPOTHESES 

PART ONE: A pre-intervention comparison of three diving techniques 

1. The flight distance will be significantly greater for the track and swing starts than 

the grab start, but not significantly different from each other. 



2. The resultant take-off velocity will be significantly greater for the track and swing 

starts than the grab start, but not significantly different from each other. 

3. There will be no significant differences between any of the starts in their angle of 

take-off and angle of entry. 

4. The block time and total time will be significantly shorter for the grab and track 

starts than the swing start, but not significantly different from each other. 

5. The flight time will be significantly greater for the track and swing starts than the 

grab start, but not significantly different from each other. 

6. The horizontal and vertical impulse will be significantly greater for the track and 

swing starts than the grab start, but not significantly different from each other. 

7. The grab start will have greater vertical hand force and impulse than the track start, 

but less horizontal hand force and impulse in the positive direction. 

PART TWO: The effect of resistance training on swiinming starts 

1. The resistance-fraining group will improve significantly more in all six dry-land 

tests then the control group following the nine-week intervention. 

2. The flight distance and resultant take-off velocity will increase significantly in all 

three techniques due to the training intervention. 

3. Temporal measures will not be significantly different for any of the starts due to the 

training intervention. 

4. Force and impulse components will increase significantly in all three starts due to 

the framing intervention. 
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DEFINITIONS 

Track start: 

A split stance of the feet with the body mass positioned over the rear leg of 

support. 

Grab start: 

One hand placed on top of the other with the block grasped between the feet. 

Swing start: 

Beginning with the arms pointing vertically downwards, the arms are swung 

forward and upward, then backward and downward to complete a full circular arm 

swing. 

Take-off velocity: 

The resultant velocity of the C G at the instant the feet left the starting block (the 

first video field in which the toes lost contact with the block). The resultant vector was 

calculated from the horizontal and vertical velocity components, found by digitising. 

Flight distance: 

The horizontal distance from the edge of the pool to the point of finger entry into 

the water. 



Take-off angle: 

The angle with respect to the horizontal at which the swimmer's centre of 

gravity (CG) was moving at the instant the feet left the block. The angle was calculated 

from the path of the CG. 

Entry angle: 

The angle measured at the point of finger entry into the water between the 

horizontal and the fingertips-to-hip line. 

Block time: 

The time taken from the starting signal to the moment at which the feet leave the 

block. 

Flight time: 

The time taken from the moment the feet leave the block until the moment of 

finger entry into the water. 

Total time: 

The time taken from the starting signal to the moment of finger entry into the 

water (block time + flight time). 

Leg extensor power: 

The muscular power of the leg extensor muscles as inferred from the jump 

height obtained in the countermovement jump. 



Jumping ability: 

The height of the jump achieved during a vertical jump (with a 

countermovement and the use of an arm swing). 

Centre of gravity (CG): 

The point at which the body's mass is centred. 

Stretch-shortening cycle fSSQ: 

This refers to the sequence of eccentric (muscle lengthening) and concentric 

(muscle shortening) contractions of the leg extensor muscles as used in jumping. 

DELIMITATIONS 

1. All of the participants were non-competitive swimmers in order to reduce the effect 

of performing preferred or well-practised techniques at higher levels of skill. 

2. No underwater analysis was performed and so a criterion measure to a set distance 

could not be used. It was considered that too much variation within participant trials 

would exist in the underwater phase due to their inexperience. Therefore, each 

variable was considered to be a dependent variable for the purpose of analysis. 

3. Two dimensional video and force analysis was performed as the dives were 

considered to be primarily single-planar movements. Lateral force components 

were not analysed as they were considered to be negligible. 

4. A practice period of eight half-hour sessions was used, which totalled 80 practice 

trials of each technique. This should have been sufficient to allow the dives to be 

performed at a good level of skill and coordination with equal competency in each 

of the three techniques. 
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5. Participants performed three trials for each dry-land test. This should have ensured 

their best performance in each test. 

LIMITATIONS 

1. The sample was limited to twenty-three females. The results could only be 

generalised to non-competitive female swimmers. 

2. The video cameras operated at a frequency of 50Hz, and therefore video time frames 

were measured to an accuracy of 0.02 s. 

3. Some of the participants m a y have learned the dry-land testing techniques more 

easily and, therefore, could better utilise the elastic properties and function of their 

neuro-muscular system. 

4. The overhead shot throws were unfamiliar to most participants, so they may not 

have been performing these at an appropriate skill level due to the limited practice 

time. 

5. During the intervention period, the participants' activities outside of training time 

could not be controlled, which m a y have had an adverse or enhancing effect on the 

post-test results. 
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CHAPTER FOUR 

METHODOLOGY 

Sample selection 

Twenty-eight female students from the University of Ballarat volunteered as 

participants in the study. Prior to the study, participants were required to complete an 

informed consent form (see Appendix A) . Five participants withdrew from the study 

throughout its course for various reasons (N = 23). The participants were studying in 

Physical Education and Human Movement courses and were enrolled in a swimming 

unit. The participants were all competitive athletes from a range of sporting disciplines, 

including netball, tennis, basketball and running. This was considered important, as it 

was necessary that all participants would acquire equal standards of the techniques in 

each of the starts in order to minimise performance bias. 

Table 4.1 summarises the descriptive data for the sample group. The complete 

set of individual data is attached as Appendix B. 

Table 4.1: Participant Descriptive Data 

Variable 

Age (years) 

Mass (kg) 

Height (cm) 

Mean 

18.9 

64.9 

166.1 

Std Dev 

1.5 

5.2 

6.6 

Minimum 

17.6 

54.5 

154.5 

Maximum 

29.4 

78.0 

179.0 



Procedures and instrumentation 
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Dive technique training 

Prior to the pre-testing sessions, participants were taught the techniques of three 

dives over three 20 minute sessions. The dives were the grab, swing and rear-weighted 

track starts. Following this initial learning period, participants were supervised and 

coached whilst practising the techniques during one 30 minute session a week for a 

period of eight weeks. Ten dives of each technique were performed during each session 

following a light warm-up of swimming in the pool. Participants were videotaped 

during weeks two and five of training to assist with learning and feedback. 

The final training session was a simulation of the actual testing session. A 

warm-up consisting of five minutes of light swimming in the pool and three practice 

trials of each technique were performed. The starting commands as used in competitive 

racing were used for each trial. Following the warm-up, participants were videotaped 

performing two trials of each diving technique. A video recorder (Panasonic MS-5) 

was positioned perpendicular to the horizontal plane of the dive so that two-dimensional 

block and flight starting components could be later analysed. 

The videotape was viewed and assessed by two independent competitive 

swimmers/coaches who were not aware of the purpose of the study. The assessors 

independently viewed each trial. Participants who did not perform technically adequate 

starts for each dive were excluded from the study (N=2). The three starting techniques 

are described below. 
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1. Grab start: 

Participants stood with feet shoulder width apart and the distal joints of the toes over 

the front edge of the block. One hand was placed on top of the other with the distal 

finger joints grasping the underside of the block's front edge, between the feet. The 

legs were bent slightly with the arms straight (see Figure 4.1). O n the command of 

'take your marks', participants pushed upwards with their legs until almost straight in 

order to develop pretension in the muscles. O n the starting signal, the body was pulled 

down and forward towards the water until the legs were flexed to about 90°. The head 

was then lifted as the body was extended forcefully and explosively. Once full 

extension of the body was reached, the chin was tucked to the chest to prepare for a 

more efficient entry into the water. 

Figure 4.1: The grab start 
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2. Track start: 

The track technique used in this study was rear-weighted. Participants stood 

with the ball of one foot close to the back edge of the block, with the distal toe joints of 

the other foot over the front edge of the block. This represented a medium track stance 

of approximately 50cm (front toe to back toe distance). The distal finger joints were 

placed under the front edge of the block at shoulder width apart. Most of the body's 

mass was positioned over the back leg with the arms preventing the body falling 

backwards. Recent changes to the rules (FINA, 1998) allowed the swimmers to begin 

in this starting position. O n the command of 'take your marks', the body mass was 

lowered slightly and shifted as far back as possible with the arms remaining straight. 

The leg muscles were pre-tensed with knee angles of approximately 150° for the front 

leg and 90° for the rear leg (see Figure 4.2). O n the starting signal, participants pulled 

back hard against the block keeping the arms straight and propelling the body forwards 

as quickly as possible. The head was lifted just prior to the hands leaving the block and 

was then tucked to the chest as the body fully extended. One hand was placed on top of 

the other to prepare for a streamlined entry. 

Figure 4.2: The track start 
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3. Swing start: 

Participants stood with feet shoulder width apart and the distal joints of the toes 

over the front edge of the block. The legs were slightly bent with approximately 90° of 

flexion at the hip joint. The upper body was approximately parallel to the surface of the 

water with the arms hanging vertically downward (see Figure 4.3). The muscles were 

tensed on the command of "take your marks". O n the start command, the arms were 

swung forwards and upwards, then backwards and downwards until a full circular arm 

swing had been performed. During the upswing of the arms the upper body stayed 

close to horizontal. A s the arms swung down and back, the body started to fall towards 

the water with the knees bending to approximately 90°. The head was then lifted as the 

legs began to extend. At full extension of the body the chin was tucked to the chest and 

one hand was placed on top of the other. 
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Figure 4.3: The swing start 
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Testing protocols 

Pre-testing and post-testing sessions consisted of 2 parts: (1) six dry-land tests of 

strength, power and jumping ability; and, (2) the performance of three dive start 

techniques. The dry-land and dive testing protocols were identical for both the pre-test 

and post-testing sessions. The dry-land pre-testing session was conducted seven days 

prior to the dive start tests. Dry-land post-testing was performed five days after the 

completion of the resistance training program and two days prior to dive start testing. 

Immediately following the pre-test participants were informed of their random 

allocation to either a control (C) group (N=12) or resistance-framing (RT) group 

(N=14). More participants were allocated to the R T group as the risk of dropout was 

deemed to be more likely from this group. The C group were instructed to continue 

with their normal daily routines whilst the R T group participated in a nine-week training 

program designed to enhance jumping ability. Throughout the course of the study, one 

participant withdrew from the C group (N=l 1) and two from the R T group (N=12) due 

to injury (non-study related) or time constraints. 

Dry-land tests 

Six tests of muscular function were used in this study, which included two 

vertical jumping tests, two overhead shot throws and two 1 R M squat exercises. The 

tests and their abbreviations are listed below. The main quality assessed by each test is 

included in Table 4.2 in order to help justify the inclusion of the six tests. 

(1) Countermovement jump, with arm swing (VJ) 

(2) Countermovement jump, without arm swing (CMJ) 

(3) Seated overhead shot throw, without back extension (OT) 



(4) Seated overhead shot throw, with back extension (OTB) 

(5) CES concentric squat, bar speed of 40°/s (SQ40) 

(6) CES concentric squat, bar speed of 25°/s (SQ25) 

Table 4.2: Dry-land Tests and the Quality Assessed 

TEST QUALITY ASSESSED 

VJ Standing vertical jumping ability 

CMJ Leg extensor power, specific to standing vertical jump 

OT Shoulder power 

OTB Back extensor power and shoulder power 

SQ40 Leg extensor power, no jumping skill required 

SQ25 Leg extensor strength 

In groups of four, participants performed the tests during an allotted time. 

Before each testing session each group performed a standardised warm-up. The aerobic 

warm-up consisted of 12 shuttle runs the length of the gymnasium (approximately 

30m), touching the line at each end, in the order of four slow lengths, two at 50% effort, 

two at 75% effort, two slow, two of bounding and finally two very slow lengths. This 

was followed by static stretching of the hamstring, quadricep, calf, back extensor and 

posterior deltoid muscles. 

Each group performed the tests in random order to counterbalance any possible 

ordering effects, such as learning and fatigue. Participants were coached before each of 

the six tests until they were confident and produced good, consistent techniques. Three 

minutes rest between each test was given. Three trials were performed for each test, 



with 30 srest between each trial. The best performance of the three trials was used for 

analysis. 

(A) Vertical jumping tests: 

The VJ is a commonly accepted test of power used by many researchers in 

swiniming (Ballow, 1979; Breed, 1998; Counsilman & Counsilman, 1994; Rohrs et al., 

1991). The VJ was selected in this study as a measure of jumping ability. A Yardstick, 

which is a stand with movable vanes at centimetre intervals (Swift Performance 

Equipment, Australia), was used to measure the height of jump for the VJ to the nearest 

centimetre. The participants' standing height was measured on the Yardstick by fully 

extending the body with the preferred arm raised above the head, non-preferred arm by 

the side and feet together with heels on the floor (see Figure 4.4). The VJ involved a 

standing double foot take-off with unlimited countermovement and arm swing. During 

the warm-up jumps, participants were coached to find the most appropriate range of 

movement and encourage a rapid speed of stretch-shortening of the leg extensors. 

Participants were instructed to jump explosively for maximum height to reach and 

knock the Yardstick vanes at the highest possible point of their jump (see Figure 4.5). 

The displaced vanes were not replaced between trials in order to give participants a 

target for motivation. The jump height was calculated by measuring the distance from 

the standing reach height to the final height. 



Figure 4.4: Zeroing the yardstick Figure 4.5: Displacing vanes during the VJ 

For the CMJ test, participants stood on a 78 x 52cm contact mat (Young, Pryor 

& Wilson, 1995) with hands on hips. The contact mat was linked to a laptop computer 

so that the height data could be recorded and calculated. When ready, participants 

dipped down (countermovement) and then jumped up immediately by extending the 

legs and feet, ensuring that the hands remained on the hips at all times (see Figure 4.6). 

During the warm-up jumps, participants were coached to ensure an efficient use of the 

back and leg extensors (appropriate hip and knee flexion) and that the heels remained on 

the floor during the preparation phase of the jump (see Figure 4.6). On landing, 

participants were instructed to be in the same body position as during take-off (i.e. hip, 

knees and ankles in an extended position) to reduce the variation associated with the 



time spent in the air. If this position was not achieved then participants repeated the 

trial after the required rest period. 

The software calculated jump height (rise of height of CG) from the flight time, 

based on the formula of g.t2^ (Bosco et al., 1983). This formula assumes that the 

height of the CG at landing is the same as during take-off. Therefore, the hands must 

remain fixed on the hips throughout the entire jump and the body should land in an 

extended position. 

Figure 4.6: The C M J 

(B) Seated overhead shot throws: 

A 61b metal shot was used for both tests (OT and OTB). The shot was thrown 

onto two 13m long gymnastic tumbling mats (Acromat) placed side by side. Before 

each throw the shot was covered in magnesium chalk powder to enable the landing to be 

seen easily. Using a tape measure, the distance was calculated by measuring from 



between the back chair legs to the nearest chalk mark made by the shot on landing. The 

reading was rounded down to the nearest whole centimetre. 

For the OT test, participants sat in a chair with their back facing the direction of 

the throw. The participants' heels were placed against the front legs of the chair with 

their back pressed against the chair upright. Participants were instructed to hold the 

shot with both hands, beginning with the arms extended and forearms resting on their 

thighs (see Figure 4.7). When ready, participants were instructed to throw the shot over 

their head for maximum distance whilst keeping their arms straight. The back was 

required to be pressed against the chair throughout the throw, with no countermovement 

of the shoulders or trunk allowed. If there was any countermovement then the trial was 

repeated. This was necessary in order to isolate and assess concentric shoulder muscle 

function. 

In the OTB test, the participants began by sitting in the chair with heels against 

the chair legs and their back facing the direction of the throw. Holding the shot in both 

hands, the participant leaned forward until the hands were resting on the ground 

between the feet and in line with the toes (see Figure 4.8). When ready, the participant 

was instructed to throw the shot over their head for maximum distance by explosively 

extending the back and keeping the arms straight. The trial was repeated if there was 

any initial countermovement of the back or shoulders. Two spotters were used to hold 

the back upright of the chair to ensure that no tipping occurred in the follow through 

during both the OT and OTB tests. 
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Figure 4.7: The O T test Figure 4.8: The O T B test 

(C) Squat performance tests: 

An Ariel 5000 Computerised Exercise System (CES) was used to assess the 

combined concentric muscular strength and power of the hip and knee extensors during 

a squat exercise. Peak strength was measured at an angular velocity of 25°/s and peak 

power was measured at a velocity of 40°/s (Ashley & Weiss, 1994). The force was 

calibrated dynamically prior to both testing sessions using 20 and 40kg Cybex weights. 

The participants positioned their shoulders directly under the apex of the 

shoulder pads with the whole body in a vertical plane. The hands rested comfortably on 

top of the bar. A manual goniometer was used to determine a 90° range of motion for 

each participant before the tests. The range of motion was found by squatting down 

slowly until 90° was reached at the knee joint and then fully extending the legs to 

complete the whole movement. 
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Participants began from a standing position. O n an audible signal from the CES, 

participants dipped down slowly whilst keeping the trunk vertical until another audible 

signal was heard, representing that 90° knee flexion had been reached (see Figure 4.9). 

In order to make the test one of purely concentric muscle function, the participants were 

instructed to hold this squat position for about VA seconds. Participants then reacted to 

a verbal 'go' signal by exploding upwards as quickly and forcefully as possible. Before 

each test (SQ25 and SQ40) participants had a number of practice trials (at 50-75% 

effort) to familiarise themselves with both the technique and the speed of bar 

movement. The C E S bar was set at angular velocities of 25°/s and 40°/s for the two 

tests (SQ25 and SQ40). 

Figure 4.9: Squat performance using the C E S 



Swimming tests 
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The testing sessions were conducted at the University of Ballarat aquatic 

research centre in a heated indoor 25m swimming pool. Participants were randomly 

assigned to one of three groups for testing purposes only. Each group completed the 

testing session approximately 15 minutes before the commencement of the next group. 

Prior to a warm-up in the pool the participants had their height and mass measured. Ten 

anatomical points (see Table 4.4) were marked on each participant with a black water-

resistant marking pen, with one further point (external auditory meatus) represented by 

wearing a yellow swimming cap with black markings (see Figure 4.2). This was to 

facilitate later digitising. The warm-up included five minutes of light swimming 

followed by three practice trials, performed at a maximal effort under race conditions 

for each of the diving techniques. During the practice, participants were required to fry 

each dive technique from the modified starting block to familiarise themselves with it 

before the testing began. 

In random order, participants performed two trials of each technique on the 

modified starting block and force platform. One trial was performed by each participant 

before a second trial was attempted, in the same random dive order. This allowed about 

six minutes rest between each trial, ensuring that fatigue did not affect the results. The 

commands as used in competitive racing starts applied. If participants false-started (as 

judged by the starter or an official viewing the monitor) they repeated the trial after a 

sufficient rest period. 



Dive start instrumentation 
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Modified starting block 

A 0.6 x 0.4m waterproof Kistler force plate (model 9253 Al 1) was mounted on a 

modified steel starting block to measure the propulsive forces of the feet and the time 

during the block phase. The modified block was made from VA inch hollow square-

section stainless-steel tubing. Cross struts were welded into the block for added 

strength and reduce the possibility of torsion affecting the readings from the force plate. 

The modified block was bolted into lane four of the pool deck in place of the original 

block (see Figure 4.10). The front edge of the block was a height of 0.62m above the 

water with the force plate set at an angle of 9° in compliance with FINA (1998) laws. 

The full dimensions of the modified block can be found in Appendix D. 

Hand bar and frame 

A steel frame constructed from 3!4 inch hollow square-section steel was bolted 

separately from the modified block into the pool deck. Four holes were drilled and 

metal sleeves fitted into the concrete deck to allow the frame to be firmly bolted down. 

The rectangular base of the frame measured 112cm by 63cm. Rectangular uprights with 

solid steel brackets were welded to the base on either side of the block (see Figure 4.10). 

The full dimensions of the frame can be found in Appendix D. 

At the front of the frame, a stainless-steel "L" shaped bar was fixed to allow the 

hands to grasp it during the grab and track starts. Left and right load cells were bolted 

to the brackets on the frame to measure the amount of strain and time of force 



application applied by the hands to the bar. The hand bar was welded to two universal 

joints (100kg maximal force) which were bolted to each load cell (see Figure 4.11). 

Figure 4.10: Modified starting block 

Figure 4.11: Hand bar set-up 

The hand bar measured 500mm x 2 0 m m x 20mm. The top of the bar was 

mounted 25mm below the front edge of the force platform to allow the distal joints of 



the toes to curl over the edge without influencing the force readings from the hand bar. 

Before each trial the researcher checked that the toes were not touching the hand bar. A 

3 m m gap was provided between the hand bar and the force plate so that the slight 

bending of the bar during the arm pull would not influence the force plate readings. 

Force acquisition 

Prior to the pre and post-testing sessions the force plate was calibrated by using 

15kg and 30kg Cybex weights. The force plate and load cells sampled at a rate of 2000 

Hertz. A Kistler eight-channel amplifier collected the analog signals from the force 

plate and load cells (see Table 4.3) which were then converted to digital data using an 

AP30 A/D module. 

Table 4.3: Force Acquisition Channel Set-up 

Channel Instrument Measurement 

1 

2 

3 

4 

5 

6 

7 

8 

F Y 

Fz 

F Y 

Fz 

F Y 

F Z 

Force plate 

Force plate 

Starting horn signal 

Left load cell 

Left load cell 

Right load cell 

Right load cell 

Horizontal (sagittal) plane 

Vertical plane 

Hand bar horizontal force a 

Hand bar vertical force * 

Hand bar horizontal force a 

Hand bar vertical force * 

( a Channel 5 and 7 values were added to give total horizontal hand values) 

(b Channel 6 and 8 values were added to give total vertical hand values) 



This information was saved via AP30 software (A. Pearce, University of 

Western Australia). Lateral forces (Fx) were not measured, as they were not deemed to 

be important for the purpose of this study. A starting horn was linked to a channel of 

the amplifier. The horn sent an electrical charge, which triggered the AP30 computer 

system to begin collecting force data for a period of 2 seconds. Force and time data for 

each channel was represented in graphical form and saved to file to be used for later 

analysis. 

Video data collection 

One Panasonic MS-5 VHS camera sampling at 50 Hz was used in this study. A 

shutter speed of l^O"1 second was selected, with extra light being provided by a 2500 

watt cinema light. The camera was positioned perpendicular to the plane of the dive, 

approximately 10m away (see Figure 4.12). The camera was connected to a timing box 

(For-A video timer) which allowed the image and time code (every 0.02 s) to be 

recorded onto a SVHS tape using a Panasonic SVHS video recorder (model AG7350). 

The timing box was activated by the starting signal and was reset to zero before each 

trial. A schematic diagram of the measuring system can be seen in Figure 4.13. 

An above-water reference structure with the dimensions of 2m x lm x lm was 

positioned lm away from the edge of the starting block to allow calculations of spatial 

coordinates to be made (see Appendix E). As 2-D analysis was used in the study, the 

side of the reference structure nearest the camera was aligned with the Y-axis of the 

block (plane of the dive). The structure was filmed immediately prior to the first trial 

and then removed from the pool. This enabled the velocity of take-off and joint 

positions throughout the dive to be calculated later using the Ariel Performance 

Analysis System (APAS). 
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Figure 4.12: Equipment layout 
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Figure 4.13: A schematic model of the dive start measuring system 



Video Analysis 

Temporal and kinematic dive start variables were obtained directly from the 

video tape. The time code for B T was taken from the first field in which the feet had 

left the block and, for FT, the first field that the fingertips entered the water. Block time 

and F T were combined to give the T T to water entry. Therefore, the times were 

accurate to 0.02 second. Two-dimensional video was used for analysis of the three dive 

techniques. A n A P A S (Windows 95) was used to digitise eight points of the body for 

the grab and swing starts and eleven points for the track start (see Table 4.4). 

Table 4.4: Anatomical Landmarks used for Digitising 

Landmark Location (joint) Segment 

1 Distal end of the fifth metatarsal. Lateral 

side 

2 Lateral malleolus of the fibula (ankle) Left foot 

3 Lateral epicondyle of the femur (knee) Left lower leg 

4 Greater trochanter (hip) Left shank 

5 Lateral greater tubercle of the humerus (shoulder) Trunk 

6 External auditory meatus (ear) Head/neck 

7 Lateral epicondyle of the humerus (elbow) Left upper arm 

8 Styloid process of the ulna (wrist) Left forearm 

9* Distal end of the first metatarsal. Medial 

side 

10* Medial malleolus of the fibula (ankle) Right foot 

11 * Medial epicondyle of the femur (knee) Right lower leg 

Right shank 

* Extra digitising points for the track start. 
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Segmental models for each start can be found in Figures 4.14 and 4.15. The 

body's C G was calculated from the C M of these segments. A scale provided by the 

reference structure enabled the raw joint positions, displacement and velocity of the C G 

to be measured. Once the digitising process for the participant was completed the data 

was transformed using the D L T method and each joint was smoothed using a cubic 

spline algorithm, which is recommended for data smoothing of projectile motion 

(McLaughlin et al., 1977). This allowed higher noise frequencies, such as digitising 

error, to be filtered out. 

4 

5 

8 1 

Figure 4.14: Segmental model for the grab and swing starts 
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Figure 4.15: Segmental model for the track start 

Force analysis 

AP30 software was used to calculate the force and impulse. Force-time curves 

of the seven channels were displayed graphically. The data was smoothed using a 

fourth order Butterworth filter set at a frequency of 10 Hertz. Force readings of each 

channel were taken from the starting signal until the point at which the line graph 

crosses the zero mark, representing the point where the feet have cleared the block or 

the hands have cleared the strain bar. The AP30 software calculated the time between 

these two points, the area under the curve, peak forces and average forces in the Y and 

Z directions. Lateral (X-axis) forces were not measured as they were deemed to be 

unimportant for the purpose of the study. As the starting block had a downward slope 

of 9°, results were adjusted using trigonometry to give true horizontal and vertical force 

components. The following equations (Jeurgens, 1994) were used: 

Fy7 = FY cos 0 + Fz sin 0 

?z = -FY sin 0 + FZ cos 0 



where 0 was equal to 9 and F Y and F z were the respective forces acting in a parallel 

and perpendicular direction to the block surface. FY
; was the adjusted force parallel to 

the pool deck and Fz
7 was the adjusted force perpendicular to the pool deck (see 

Appendix F). The left and right load cell readings were added to give total forces for 

the horizontal and vertical directions of the hand pull. 

Resistance training 

Initially, fourteen participants were randomly selected to perform resistance 

training for a period of nine weeks, with a two-week maintenance program over a 

semester holiday break. All of the participants had some experience and knowledge in 

resistance framing, but no participant had previously used strength training programs 

specific to their chosen sport. Three training sessions per week were performed by the 

RT group. If a participant missed more than five sessions over the nine-week training 

period, they were excluded from the analysis (N=2). 

The main purpose of the program was to enhance vertical jumping performance. 

The program was periodised to initially improve strength and power, mainly through 

traditional weight-training exercises. The main muscle groups used in vertical jumping 

were trained, which included the leg extensors, lower trunk and shoulders (Khalid et al., 

1989; Luhtanen & Komi, 1978). More specific exercises for vertical jumping were 

included in the latter part of the program, with maintenance of general lower and upper 

body strength and power. A combination of weight training methods and plyometric 

jumping exercises have repeatedly been shown to be successful in improving vertical 

jumping ability (Adams et al., 1992; Bauer et al., 1990; Clutch et al., 1983; Lyttle et al., 

1996). The program is shown in Table 4.5. Detailed explanations of the exercises can 

be found in Appendix G. 
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Table 4.5: Nine-week Resistance Training Program 

WEEK 1-3 

Session 1 & 3 
Clean pull 4x5 (8RM) 

Barbell press (behind neck) 3 x 8 (10RM) 
Parallel squat (Smith machine) 3x8(10RM) 
Back extension 3x10-15 
Prone hold 3 x 20-30 sees 

W E E K 4-6 

Session 1 & 3 
Barbell jump squat 
Dumbbell overhead press 

Barbell lA squat 
Back extension 
Twisting crunch 

4x4(35-45 lb) 
4x6 (6RM) 

4x6 (6RM) 
2x8 (5-10 kg) 
2 xmax. 

Session 2 
Barbell jump squat 5x5 (25-
35 lb) 
Backextension 3x10-15 
Prone hold 3 x 20-30 sees 

Session 2 
Weighted belt jumps 5 x 5 (20 lb) 
Back extension 2 x 8 (5-
10 kg) 
Twisting crunch 2 x max. 

HOLIDAY BREAK (2 WEEK MAINTENANCE) 

WEEK 1 (3 sessions) 
Drop jump 4x5 (35-40 cm) 

Explosive push-up 4 xmax. 

WEEK 2 (3 sessions) 
Drop jump 5x5 (40-
50 cm) 
Explosive push-up 4 x max. 

W E E K 7-8 

Session 1 & 3 
Drop jump 
Forward pulley thrust 

Weighted belt jump 
Incline shoulder raise 
Side hold 

5x5 (50-60 cm) 
5 x 5 (8 RM) 

5x5 (20-30 lb) 
5x5(5RM) 
3 x 20-30 sees 

Session 2 
Barbell V4 squat 4x5 (5RM) 
Barbell jump squat 4 x 5 (35-
45 1b) 

WEEK 9 (TAPER) 

Session 1 & 3 
Drop jump 3x5 (50-60 cm) 
Forward pulley thrust 3 x 5 (8 R M ) 

Weighted belt jump 
Incline shoulder raise 
Side hold 

3x5 (20-30 lb) 
3 x 5 (5 RM) 
2 x 20-30 sees 

Session 2 
Barbell lA squat 3 x 5 (5 R M ) 
Barbell jump squat 3x5(35-
451b) 



Prior to the commencement of the framing program participants had two 

familiarisation sessions in the gym to practice and learn the correct techniques of the 

exercises. During these sessions the starting weights for the exercises were found for 

each participant. At least two of the three framing sessions a week that the participants 

attended were required to be supervised sessions. This enabled their progress and the 

program to be followed closely. Participants were required to fill out the details for 

each completed session of their program. 

Each training session began with participants performing a 5-10 minute aerobic 

warm-up on a bicycle ergometer, stepper or treadmill. Before each resistance exercise, 

the participants performed two warm-up sets slowly and with light weights 

(approximately half the starting weight of the first set). All of the exercises, other than 

those targeting abdominal and back extensor muscles, were performed with an 

explosive upward phase of the lift. Participants were instructed to have complete rests 

between sets. 

Treatment of data 

An SPSS (version 7.5) statistical package was used for all analyses in this study. 

In the comparison of the three dive techniques, a criterion distance including an 

underwater phase of the start was not used (eg. dive time to 7m) due to the 

inexperienced nature of the sample group. Hence each measure of dive performance 

was treated as a separate dependent variable. Means and standard deviations were 

calculated for all variables. A univariate analysis of variance test was conducted in 

order to compare the three starts in nine selected dependent variables. Variables 

measured by the load cells were only common to the grab and track start and, therefore, 

were not included in the three-way comparison of the techniques. 



In part two of the study, a repeated measures multiple analysis of variance 

(MANOVA) test was conducted to find out if there was a framing effect across all six 

dry-land tests. The MANOVA was a 2 x 2 design, consisting of group 

(confroVresistance-fraining) by time (pre/post-test), with six repeated measures of dry

land test results. Comparatively small participant numbers would have limited the 

usefulness of the MANOVA. Univariate analysis of variance (ANOVA) results were 

derived for each of the six dependent measures to find out which tests significantly 

improved by training. 

Nine separate 2x2 (group by time) repeated measures MANOVA tests, one for 

each dependent variable used in part-one of the study, were conducted across each 

diving technique (within-subject factors of grab, track and swing). ANOVA results 

were derived for each starting technique to find out which technique was improved by 

framing. 
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CHAPTER FIVE 

RESULTS 

The results of the current study, which aimed to identify the most effective 

starting technique and the effect of a resistance-framing program on each start, are 

discussed in two parts. In part one, the pre-intervention data for all participants (N=23) 

was used for analysis. For part two of the study the participants were randomly selected 

into a control (C) or a resistance-training group (R), and were re-tested following the 

nine-week intervention of resistance training. 

PART 1: A pre-intervention comparison of the three diving techniques. 

Nine dive performance variables were selected for statistical analysis between 

the grab, track and swing starts. These variables included the block time (BT), flight 

time (FT), total time to entry (TT), flight distance (FD), resultant take-off velocity (V), 

take-off angle (TA), entry angle (EA), vertical impulse (VI) and total horizontal impulse 

(HI). Paired samples within each start were performed in order to compare the first and 

second trial across the nine variables. N o significant differences between trials were 

found at a 9 9 % level of confidence. Therefore, an average of the two trials for each 

variable was used for analysis. The results of the paired-samples test can be found in 

Appendix H. 

N o direct force measure of arm contribution could be measured for the swing 

start using the equipment available for this study. Therefore, kinetic measures provided 

by the arms were not included in a three-way statistical comparison of the techniques. 

However, means and standard deviations of selected measures obtained from the strain 

bar by the hands are included in Table 5.2 for a general comparison and later discussion 



of the grab and track techniques. Horizontal impulse was included for statistical 

comparison of the techniques, as it is an important variable contributing to velocity and 

flight distance (Bowers & Cavanagh, 1975; Hay & Guimaraes, 1983; Miller et al., 

1984). Positive horizontal hand forces were added to the adjusted horizontal force plate 

readings as they were deemed to directly contribute to the body's horizontal 

momentum. This was not the same for vertical impulse, as the arms generally act to 

pre-tense the muscles and hence increase force production during starts involving a 

grasping of the block (Shierman, 1979; Pearson et al., 1998). Therefore, the vertical 

impulse of the feet was used for statistical comparison of the three starts. 

The means and standard deviations within each start for selected temporal and 

kinematic variables are shown in Table 5.1, and selected kinetic variables are shown in 

Table 5.2. Vertical impulse of the feet is adjusted to allow for body mass. 

Table 5.1: Summary of Selected Temporal and Kinematic Variables 

Grab start Track start Swing start 

Variable Mean S D Mean S D Mean S D 

BT(s) 

FT(s) 

TT(s) 

FD(m) 

V(m/s) 

TA (deg) 

EA (deg) 

0.93 

0.25 

1.18 

2.65 

3.14 

-6.7 

39.4 

0.06 

0.07 

0.08 

0.24 

0.26 

7.3 

7.4 

0.96 

0.26 

1.22 

2.83 

3.44 

-12.1 

39.4 

0.07 

0.07 

0.09 

0.24 

0.26 

7.3 

7.3 

1.14 

0.26 

1.40 

2.72 

3.17 

-8.1 

37.2 

0.08 

0.07 

0.08 

0.22 

0.26 

7.1 

6.8 

The swing start was considerably slower to enter the water than either the grab 

or track starts. As F T was similar for all three starts, this difference in T T was almost 



entirely due to the B T differences. The track start travelled the furthest in the air, 

mainly due to its faster take-off velocity. The E A was very similar for all three starts, 

whereas the track start had the flattest T A and the grab start the highest. The greatest 

spread of results (standard deviations) occurred with the angular kinematics. 

Table 5.2: Summary of Selected Kinetic Variables 

Variable 

Grab start 

Mean S D 

Track start 

Mean S D 

Swing start 

Mean SD 

HI(Ns) 180.8 15.8 

HI, feet (Ns) 174.4 19.0 

HI, hands (Ns) 6.4 10.9 

Total peak hor. force (N) 631.8 49.2 

Peak hor. force, feet (N) 603.2 54.5 

Peak hor. force, hands (N) 28.6 29.3 

VI (Ns) 58.8 33.1 

VI, hands (Ns) 155.6 69.6 

Time of hand contact (s) 0.59 0.08 

199.7 30.8 

129.5 23.1 

70.2 27.4 

553.4 85.9 

363.4 48.8 

190.0 67.8 

79.2 30.9 

191.5 74.4 

0.63 0.09 

197.0 21.4 

197.0 21.4 

743.7 79.6 

743.7 79.6 

103.1 21.3 

W h e n comparing the grab and track starts, the hand contribution of the track start 

is considerably greater, particularly in the horizontal direction. The HI of the track and 

swing start is similar. Figures 5.1, 5.2 and 5.3 show typical unadjusted force traces for 

each start technique. This allows visual comparison of the mechanisms involved in the 

starting performance of the three techniques. In all graphs, time point no.l (X-axis) 

represents the starting signal. Each number on the time axis equals 0.5 m s (i.e. 1000 is 

equal to 500 m s or 0.5 s). 
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Figure 5.1: Typical force trace of the grab start 
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Figure 5.2: Typical force trace of the track start 



Figure 5.3: Typical force trace of the swing start 

In the force trace of the grab start (see Figure 5.1), point-A represents the body's 

mass and the pre-tension of the legs. Vertical peaks of the hands and feet were reached 

shortly after the reaction to the starting stimulus (point-B). Vertical force traces of the 

hands and feet followed a similar pattern, although the magnitude of the hands was 

considerably less, as a greater force production of the arms contributed to increased pre

tension (and hence power output) of the legs. Horizontal force of the arms was 

negligible, with the magnitude depending on the amount of body lean of the participant 

prior to the start. Point-C represents a decrease in the vertical force of the feet as the 

body dropped downwards, corresponding with a decrease in arm contribution just prior 

to the hands leaving the block. A flattening of the horizontal force trace, along with this 

decrease in vertical force, was in part due to a switching of eccentric to concentric 

contraction of the leg extensor muscles, as the knee angle reached about 90 and the 

body moved into its line of push. Another smaller flattening out occurs (point-D) in the 



force traces just prior to the final peaks, caused mainly by the arms being swung 

upwards and forwards. 

The pre-tension developed in the legs was greater in the track technique (see 

Figure 5.2) than in the grab technique (point-A). As in the grab start, the vertical force 

traces of the arms follow a similar pattern to the vertical force pattern of the feet. 

Although considerably less in magnitude (point-B), the arms were used in the vertical 

direction mainly to pre-tense the leg muscles and keep the body stable whilst in a low 

and backward position. An initial negative horizontal force of the feet is caused by the 

backward body position of the track start, which is overcome by the horizontal pulling 

of the arms to propel the body forwards. Shortly after the hands leave the bar, the rear-

leg provides extra horizontal and vertical drive (point-C) just prior to leaving the block 

(point-D). Horizontal force increases as the front leg extends and has stronger joint 

positions for providing maximal drive (point-E). 

In the swing start (see Figure 5.3) there is a slight increase in vertical and 

horizontal force as the participant reacts to the starting stimulus (point-A). Although 

less in magnitude, the horizontal force trace follows a very similar pattern to the vertical 

trace, unlike those of the grab and track starts. A large dip in the graph coincided with 

the arms being swung upwards, with the lowest point on the vertical line being when the 

hands, and hence CG, were at their highest point (point-B). The force production 

increased as the arms were swung downwards (point-C), with a small decrease in force 

as the arms were brought upwards and forwards (point-D) to be extended above the 

head in preparation for the maximal effort in the line of push. 

Within each start technique homogeneity of variance P-P plots were performed 

for each variable. Further analysis using Levene's test of homogeneity of variance 

showed that all variables, other than horizontal impulse, met the assumptions required 

for more detailed analysis (see Appendix I). A univariate one-way ANOVA was 



performed to find if significant differences existed between each dive technique for the 

nine dependent variables (see Table 5.3). 

Table 5.3: Univariate Analysis of Variance 

Variable df MS F SigofF 

BT 

FT 

TT 

FD 

V 

TA 

EA 

VI 

HI 

3,69 

3,69 

3,69 

3,69 

3,69 

3,69 

3,69 

3,69 

3,69 

0.298 

0.001 

0.320 

1723.691 

5989.468 

179.468 

37.919 

11312.344 

2402.378 

57.205 

0.254 

43.249 

3.323 

8.976 

3.411 

0.733 

13.562 

4.351 

0.000* 

0.777 

0.000* 

0.042* 

0.000* 

0.039° 

0.484 

0.000* 

0.017° 

a p<0.05 * p < 0.001 

The results of the univariate ANOVA showed that significant differences (p < 

.05) existed between seven of the nine variables. Significant differences existed 

between the starting techniques for BT, TT, V and VI at the 99.9% level of confidence, 

and for FD, TA and HI at the 95% level of confidence. 

A Tukey HSD post-hoc test was used for further analysis to show which of the 

diving techniques were significantly different within the significant variables (see Table 

5.4). As the data for HI was not normally distributed, Tamhanes non-parametric post-

hoc test was used for analysis of that variable (see Table 5.5). 



85 

Table 5.4: Tukev H S D Post-hoc Test for Significant Variables 

Variable 

BT 

TT 

FD 

V 

TA 

VI 

Start type 

Grab 

Track 

Swing 

Grab 

Track 

Swing 

Grab 

Track 

Swing 

Grab 

Track 

Swing 

Grab 

Track 

Swing 

Grab 

Track 

Swing 

Grab 

.297 

.000c 

.180 

.000c 

.021° 

.521 

.001* 

.926 

.038° 

.802 

.050 

.000c 

Track 

.297 

.000c 

.180 

.000c 

.021* 

.229 

.001* 

.003* 

.038° 

.153 

.050 

.018* 

Swing 

.000c 

.000c 

.000c 

.000c 

.521 

.229 

.926 

.003* 

.802 

.153 

.000c 

.018* 

flp<0.05 *p<0.01 cp<0.001 

The grab and track starts were significantly different for V at the 9 9 % level of 

confidence, and for FD, TA and HI (see Table 5.5) at the 95% level. The grab and 

swing starts were significantly different for BT, TT and VI at the 99.9% level of 

confidence. The track and swing starts were significantly different for BT and TT at the 

99.9% level of confidence, and for V and VI at the 95% level. 
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Table 5.5: Tamhanes Post-hoc Test for Horizontal Impulse 

Variable Start type Grab Track Swing 

Grab .022° .058 

HI Track .022° .918 

Swing .058 .918 

a p<0.05 

PART 2: The effect of resistance training on swimming starts 

For part two of this study, participants were randomly selected to a control (C) 

group (N = 11) or a resistance-training (R) group (N = 12). The R group participated in 

a 9-week program designed to enhance jumping ability. Part two of this study set out 

primarily to address two questions. Firstly, did resistance training improve vertical 

jumping ability and other tests of muscle function? Secondly, did the diving 

performance of the three starting techniques improve due to training? 

Normal P-P plots were performed for all sets of data, which were found to be 

normally distributed. Individual participant raw data for each dry-land test can be found 

in Appendix B. Levene's test of equality of variances was conducted on all pre and post 

test dry-land data, with the error variance of all dependent variables being equal across 

groups at a 99% level of confidence (see Appendix J). Table 5.6 shows the means and 

standard deviations for the C and R groups both pre and post-test. Significant results of 

the univariate repeated measures analysis of variance (ANOVA), for a group by time 

effect, are indicated in bold type. Results of the ANOVA test can be found in Appendix 

K. Time of testing was the within-subjects factor (time effect) and the group was the 

between-subjects factor (group effect). 
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Table 5.6: Drv-land Test Descriptive Data 

VJ 

(cm) 

CMJ 

(cm) 

SQ40 

(kg) 

SQ25 

(kg) 

OT 

(m) 

OTB 

(m) 

Pre 

Post 

Change 

Pre 

Post 

Change 

Pre 

Post 

Change 

Pre 

Post 

Change 

Pre 

Post 

Change 

Pre 

Post 

Change 

CONTROL 

Mean 

40.2 

40.7 

+1.2% 

26.7 

26.9 

+0.7% 

111.7 

113.5 

+1.6% 

126.9 

130.4 

+2.7% 

5.01 

5.07 

+1.2% 

7.61 

7.92 

+3.9% 

SD 

5.0 

4.8 

3.9 

2.8 

14.7 

8.8 

17.3 

14.7 

0.62 

0.66 

1.29 

1.14 

RESISTANCE 

Mean 

37.8 

43.1 

+123%* 

27.3 

30.6 

+10.8%* 

113.4 

131.6 

+13.8%** 

136.2 

148.2 

+8.1% 

5.51 

5.68 

+3.0% 

8.33 

8.51 

+2.2% 

SD 

6.9 

6.2 

4.8 

4.7 

19.8 

19.9 

26.9 

22.2 

0.66 

0.74 

1.21 

1.08 

*p<0.001 **p<0.05 

Results of a repeated measures multivariate analysis of variance ( M A N O V A ) 

showed that there was no between-subject group difference (F= 1.258, Sig of F= 

0.330) for all tests. However, there was a significant time effect (F- 13.989, Sig of F= 

0.000), indicating an improvement in results from pre to post test of both groups 

collectively. More importantly, a significant time by group effect was found (F= 

10.245, Sig of F= 0.000), which was of primary interest to the first hypothesis of part 
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two in this study. The significant result of the M A N O V A indicated that the resistance 

training improved performance in the dry-land tests. 

Significant improvements over time were found for both jumping tests (VJ and 

CMJ) and CES squat tests (SQ40 and SQ25), showing that both groups collectively 

increased in performance (see Appendix K). No significant differences were found over 

time or group by time for the OT or OTB tests. The SQ40 test of leg power showed the 

largest improvement due to resistance framing. A group by time effect was found in the 

VJ, CMJ and SQ40 tests (see Table 5.6), whereby the R group improved in performance 

significantly more than the C group. Figures 5.4, 5.5 and 5.6 show the mean training 

effect for the significant group by time univariate ANOVA results. 

44 
43 
42 
41 

Height 40 
(cm) 39 

38 
37 
36 
35 

Control 

Resistance 

Pre Post 

Figure 5.4: Group bv time effect for the VJ 



Control 

Resistance 

Pre 

Figure 5.5: Group bv time effect for the C M J 

Post 

4 — Control 

Resistance 

Pre 

Figure 5.6: Group by time effect for SO40 

Post 

All of the above figures show a slight increase in mean performance by the C 

group over time (from pre to post-test). The steeper slope of the lines for the R group 

indicates much greater improvements in performance due to framing. 

A Pearson's bivariate correlation was performed on selected post-test variables 

to indicate what relationship existed between jumping ability and dive performance. 

Flight distance (FD) was used as a key indicator of dive performance. Figure 5.4 shows 

the correlation values between the VJ, CMJ and FD of all three diving techniques. 
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0.14* 

VJ 

0.69* 

0^4*"""--^^ 

FD 

TRACK 

FD 

SWING 

0.71* 

0.63** 

^ ^ - ^ 0 6 5 * * 

CMJ 

p < 0.001 **p<0.01 

Figure 5.7: Relationship between jumping tests and flight distance 

The F D of all three dives were significantly correlated with both jumping tests -

the VJ as a measure of jumping ability, and the CMJ as a measure of leg power in 

jumping. The VJ was more highly correlated with all three dives than the CMJ test. 

One further pattern that arose was that the swing start had the highest correlation with 

both jumping tests. 

Nine separate repeated measures MANOVA tests for each dive start variable 

(BT, FT, TT, FD, V, TA, EA, HI and VI) were performed across the three techniques 

(repeated measures), with time of testing being the within-subjects factor and group 

being the between-subjects factor. Three further repeated measures MANOVA tests 

were performed across the grab and track starts for the kinetic variables of horizontal 

impulse of the feet (HIF), horizontal impulse of the hands (HIH) and vertical impulse of 

the hands (VIH). This was done to compare any changes in arm contribution to impulse 
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due to framing. The M A N O V A results can be found in Appendix M . Results indicated 

no significant differences between groups for any variable (p > 0.05) across the three 

starts. Significant time effects (p < 0.05) were found within FT, TA, HI, VI, HIF, HIH 

and VIH. This indicated a change in results from pre to post test of both groups 

collectively. Of primary interest to the research hypotheses, group by time effects (p < 

0.05) were found for TA, HI and HIH. 

The means and standard deviations for all dive starts by group are shown in 

Tables 5.7, 5.8 and 5.9 as kinematic, temporal and kinetic descriptive data, respectively. 

Significant results for the group by time effects of the univariate repeated measures 

ANOVA are indicated in bold type. Univariate results were used as follow up tests for 

the main effect. All of the descriptive data by group and time and, complete A N O V A 

results by variable, can be found in Appendix N. Normal P-P plots indicated that data 

for each variable were normally distributed. Levene's test for homogeneity of variances 

showed that all dependent variables had equal variance across the three starts at a 9 9 % 

level of confidence (see Appendix L). 

Univariate results from the kinematic data revealed significant group by time 

differences for the track start in V and T A (see Table 5.7). N o significant group by time 

differences were found for any other variable within the grab or swing starts (p > 0.05). 

However, within V and FD the group by time effect of the swing and track starts 

showed considerably greater improvements than in the grab start. 
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Table 5.7: 

FLIGHT DISTANCE 

GRAB 

TRACK 

SWING 
-

VELOCITY 

GRAB 

TRACK 

SWING 

TAKE-OFF ANGLE 

GRAB 

TRACK 

SWING 

ENTRY ANGLE 

GRAB 

TRACK 

SWING 

Pre 
Post 

Change 

Pre 
Post 

Change 

Pre 
Post 

Change 

Pre 
Post 

Change 

Pre 
Post 

Change 

Pre 
Post 

Change 

Pre 
Post 

Change 

Pre 
Post 

Change 

Pre 
Post 

Change 

Pre 
Post 

Change 

Pre 
Post 

Change 

Pre 
Post 

Change 

Mean SD 

CONTROL 

2.64 

2.66 

+0.8% 

2.86 

2.82 

-1.4% 

2.73 

2.74 

+0.4% 

Mean 

3.16 

3.07 

-2.9% 

3.46 

3.33 

-3.9% 

3.12 

3.11 

-0.3% 

Mean 

-5.2 

-5.1 

+2.0% 

-10.8 

-10.2 

+5.9% 

-6.8 

-6.2 

+9.7% 

Mean 

41.0 

39.8 

-3.0% 

40.7 

40.7 

0.0 

38.6 

39.1 

+1.3% 

0.24 

0.21 
— 

0.18 

0.23 
— 

0.18 

0.22 
— 

SD 
0.30 

0.26 
— 

0.28 

0.30 
— 

0.33 

0.36 
— 

SD 
8.5 
7.6 
— 

7.3 
7.6 
— 

7.3 
6.9 
— 

SD 

6.9 
7.5 
— 

6.6 
8.1 
— 

6.5 
7.4 
— 

Mean SD 

RESISTANCE 

2.65 

2.65 

0.00 

2.80 

2.85 

+1.8% 

2.71 

2.78 

+2.6% 

Mean 

3.13 

3.16 

+0.9% 

3.42 

3.48 

+1.7%* 

3.21 

3.34 

+3.9% 

Mean 

-8.1 

-7.6 

+6.6% 

-13.3 

-10.1 

+31.7%* 

-9.3 

-7.6 

+22.3% 

Mean 

38.0 

39.3 

+3.3% 

38.3 

39.8 

+3.8% 

35.9 

37.2 

+3.5% 

0.24 

0.35 
— 

0.28 

0.31 
— 

0.24 

0.33 
— 

SD 

0.23 

0.34 
— 

0.25 

0.26 
— 

0.18 

0.35 
— 

SD 
6.1 
6.2 
— 

7.4 
5.6 
— 

7.1 
6.9 
— 

SD 

7.9 
6.0 
— 

8.0 
6.3 
— 

7.1 
6.9 
— 



Table 5.8: Dive Start Descriptive Data for Temporal Variahles 

BLOCK TIME Mean SD Mean SD 

CONTROL RESISTANCE 

Pre 0.93 0.05 0.93 0.07 

GRAB Post 0.96 0.10 0.95 0.05 

Change +3.1% «- +2.1% 

TRACK 

SWING 

FLIGHT TIME 

GRAB 

TRACK 

SWING 

TOTAL TIME 

GRAB 

TRACK 

Pre 
Post 

Change 

Pre 
Post 

Change 

Pre 
Post 

Change 

Pre 
Post 

Change 

Pre 
Post 

Change 

Pre 
Post 

Change 

Pre 
Post 

Change 

0.96 

0.95 

-1.1% 

1.13 

1.10 

-2.7% 

Mean 

0.25 

0.27 

+7.4% 

0.27 

0.29 

+6.9% 

0.27 

0.29 

+6.9% 

Mean 

1.19 

1.23 

+3.3% 

1.23 

1.23 

0.00 

0.07 

0.08 
— 

0.10 

0.08 
— 

SD 
0.09 

0.08 
— 

0.08 

0.07 
— 

0.07 

0.08 
— 

SD 
0.09 

0.13 
— 

0.11 

0.08 
— 

0.97 

0.93 

-4.3% 

1.15 

1.11 

-3.6% 

Mean 

0.24 

0.27 

+11.1% 

0.25 

0.28 

+10.7% 

0.25 

0.29 

+13.8% 

Mean 

1.17 

1.22 

+4.1% 

1.22 

1.21 

-0.8% 

0.08 

0.08 
— 

0.07 

0.09 
— 

SD 
0.06 

0.08 
— 

0.07 

0.07 
— 

0.06 

0.07 
— 

SD 
0.08 

0.07 
— 

0.08 

0.11 
— 

Pre 1.40 0.10 1.41 0.07 

SWING Post 1.39 0.09 1.40 0.11 

Change -0.7% — -0.7% 



Table 5.9: Dive start descriptive data for kinetic variables 

HORIZONTAL IMPULSE Mean SD Mean SD~ 

CONTROL RESISTANCE 
Pre 176.7 14.0 184.5 17.0 

GRAB Post 163.8 10.1 175.9 16.0 
Change -7.9% — -4.9% 

TRACK 

SWING 

Pre 
Post 

Change 

Pre 
Post 

Change 

VERTICAL IMPULSE 

GRAB 

TRACK 

SWING 

Pre 
Post 

Change 

Pre 
Post 

Change 

Pre 
Post 

Change 

HORIZONTAL IMPULSE - FEET 

GRAB 

TRACK 

Pre 
Post 

Change 

Pre 
Post 

Change 

HORIZONTAL IMPULSE - HANDS 

GRAB 

TRACK 

Pre 
Post 

Change 

Pre 
Post 

Change 

VERTICAL IMPULSE - HANDS 

GRAB 
Pre 
Post 

Change 

202.0 

198.2 

-1.9% 
187.6 

180.9 

-3.7% 

Mean 

59.2 

62.4 

+5.1% 

74.7 

69.3 

-7.8% 

100.3 

110.5 

+9.2% 

Mean 

168.1 

157.9 

-6.5% 

126.7 

121.3 

-4.5% 

Mean 

8.6 
5.9 
-45.8% 

75.3 

77.0 

+2.2% 

Mean 

166.1 

169.9 

+2.2% 

26.7 

33.6 

15.9 

13.8 
— 

SD 
31.3 

32.4 
— 

22.4 

36.1 
— 

17.1 

26.8 
— 

SD 
16.2 

11.7 
— 

22.2 

23.3 
— 

SD 
7.3 
7.5 
— 

20.6 

19.9 
— 

SD 
72.8 

77.8 
— 

197.6 

221.4 

+103%* 
205.6 

196.4 

-4.7% 

Mean 

58.5 

66.1 

+11.5% 

83.4 

92.0 

+9.3% 

105.7 

127.5 

+17.1% 

Mean 

180.2 

170.0 

-6.0% 

132.1 

126.4 

-4.5% 

Mean 

4.3 
6.0 
+28.3% 

65.6 

94.0 

+30.2%* 

Mean 

146.0 

178.2 

+18.1% 

35.2 

39.0 
— 

22.8 

21.6 
— 

SD 
36.0 

23.8 
— 

37.6 

36.5 
— 

25.0 

35.6 
— 

SD 
20.3 

18.1 
— 

24.6 

22.7 
— 

SD 
13.3 

7.3 
— 

32.7 

41.2 
— 

SD 
68.3 

65.9 
— 

Pre 195.4 62.0 187.8 86.9 
TRACK Post 222.5 90.1 240.8 75.1 

Change +12.2% — +22.0% --
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Table 5.8 shows that no significant group by time differences existed within the 

techniques for any temporal variable (p > 0.05). A general trend existed in all three 

starts whereby both groups increased in flight time. Whilst not significant, the R group 

improved more than the C group in the time of flight for all three starts. 

Table 5.9 shows a significant group by time effect within the track start for HI (p 

< 0.05). The increase in total HI was mainly due to the significant group by time 

improvement of the hand impulse (p < 0.01). The swing and grab starts decreased in HI 

for both groups. Whilst not significant, the R group increased more than the C group in 

VI for all three starts. 



CHAPTER SIX 

DISCUSSION 

PARTI: A pre-intervention comparison of the three diving techniques. 

Flight distance 

It was hypothesised that the FD of the track and swing starts would be 

significantly greater than the grab start, but not significantly different from each other. 

This was expected based on prior findings of the swing start's superiority over the grab 

start in flight distance (Gibson & Holt, 1976; Lewis, 1980), mainly due to the ability to 

build up extra momentum with the full arm swing. The track start was also expected to 

travel further in the air due to the added contribution of the shoulders and rear 

positioning of the CG adding to the total horizontal momentum. A Tukey HSD post-

hoc test revealed that the FD of the track start was significantly greater than in the grab 

start (p < 0.05). There were no significant differences between the track and swing, nor 

the grab and swing starts (p > 0.05). Therefore, the hypothesis was rejected. 

The track start travelled a mean of 0.18m further in the air than the grab start and 

0.1 lm further than the swing start. Whilst the latter was not significant, 0.1 lm could be 

quite important in a close race, especially when considering the extra time that would be 

required to make up this distance in the water when compared to travelling through air 

as a medium. At a hypothetical swimming speed of 2.0 m/s, it would take 0.06 s to 

make up 0.1 lm, which could mean the difference between placing or not placing in a 

competitive race. A similar reasoning could be used for the 0.07m superiority of the 

swing start over the grab start. However, a greater FD might not be advantageous if the 
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water entry velocity is less or the time to water entry is longer. This will be discussed in 

later sections. 

The flight distance of the body depends primarily on the speed of take-off, angle 

of take-off and the height of take-off. According to the formula for the range of a 

projectile, differences in velocity will have the greatest effect upon the range of the 

body due to the 'squaring' of the velocity component (Hay, 1993): 

R = v2sin 9 cos 9 + v cos 6 ">/ (v sin 9? + 2gft 
G 

In the current study, there were very little differences between the techniques in the 

height of CG at take-off and water entry. Within most participants, only 0.01-0.02m 

varied between techniques, which would have negligible effect on the flight distance. 

Therefore, height of CG at take-off and entry were not used as variables in a statistical 

comparison of the dive techniques. The take-off velocity is the most important factor in 

determining flight distance and will therefore be discussed in detail. 

Take-off velocity 

It was hypothesised that the track and swing starts would leave the blocks at 

significantly higher velocities than the grab start, but not significantly different from 

each other. This hypothesis was formulated as it was expected that more horizontal 

impulse would be produced during the track and swing starts than in the grab start, 

mainly due to a greater arm contribution to force production. The track start was 

significantly faster than both the grab and swing starts (p < 0.01). Of the 23 

participants, 21 found that the track start generated the highest take-off velocity. 

However, there was no significant difference in V between the grab and swing start (p > 

0.05), thus rejecting the hypothesis. 



The latter finding was in agreement with several studies (Ayalon et al., 1975; 

Bloom et al., 1978; Bowers & Cavanagh, 1975; Shierman, 1979). Similar to the current 

study, Ayalon et al. (1975) and Bloom et al. (1978) used inexperienced swimmers who 

were trained in the swing and grab starts. Therefore, the swing start may not have been 

performed at the same quality of the other starts due to its more complex coordination 

requirement. However, Bowers and Cavanagh (1975) and Shierman (1979) had similar 

findings using swimmers experienced in both starts. The increased pre-tension of the 

legs during a grab start may, in part, compensate for the extra momentum that can be 

built up by using an arm swing technique. This would suggest that any advantage 

gained using the grab start is due to a shorter time spent on the blocks and not from any 

events arising after take-off (Bowers & Cavanagh, 1975). 

No research to date has investigated the effectiveness of the track start with the 

body mass positioned over the rear leg. It was suggested that this may have possible 

biomechanical advantages over the grab or front-weighted track starts in terms of force 

production, but may take longer to leave the blocks. No studies have found the front-

weighted track start to generate a higher velocity than the grab start (Counsilman et al., 

1988; Shin & Groppel, 1986; Stone, 1988; Welcher & George, 1998). However, the 

current study showed that the rear-weighted track start left the blocks with a mean 

velocity of 0.30 m/s and 0.27 m/s faster than the grab and swing starts, respectively (see 

Table 5.1). Guimaraes and Hay (1985) stated that a good swimming start requires a fast 

entry into the water, followed by a streamlined position in order to reduce drag and 

minimise the loss of horizontal velocity. As the angles of entry were not significantly 

different between techniques (p > 0.05), then the track start technique should begin the 

gliding phase at a faster speed than the other two techniques, assuming that air 

resistance is negligible. 



A n effective dive also requires a niinimal time to be spent on the block, 

requiring a trade-off between the time spent on the block and the amount of force 

produced. A short block time can give the swimmer a psychological advantage of being 

in front at the start and diving into smooth water (Juergens, 1994). However, shorter 

block times would disadvantage the swimmer if the amount of force and resultant speed 

of entry produced on the block was sacrificed for time. As a mean block time of only 

0.03 s separated the grab and track starts, it could suggest that the track start is a more 

effective starting method as its take-off velocity, and hence flight distance, is 

considerably greater. 

The grab start was developed with this trade-off concept in mind and was 

generally shown to be more effective than the swing start (Bowers & Cavanagh, 1975; 

Bloom et al., 1978; Lewis, 1980). The forward track start was also developed as it was 

considered that the more forward CG and lower body position would decrease the block 

time without sacrificing the take-off speed. However, several studies found that the 

flight distance and horizontal speed were adversely affected (Allen et al., 1999; Ayalon 

et al., 1975; Zatsiorsky et al., 1979). This could best be explained in that there is little 

weighting of the rear leg and a small resultant contribution to horizontal force 

production. Therefore, shifting the body weight backwards (rear-weighted track start) 

positions the mass over the rear leg and could increase the loading of the leg extensor 

muscles. This is particularly so for the rear leg and the backward arm pull may also 

increase the amount of force production. However, this rear-weighted body position 

required a greater horizontal displacement of the CG on the block, which could 

contribute to an increase in the amount of time spent on the block. However, as the 

arms were not used primarily to pull the body down towards the water, less time was 

needed to displace the CG in the vertical direction. 



Entry angle and take-off angle 

The E A was calculated by taking the angle made by the line between the wrist 

and hip joint markers and the horizontal. This was deemed to be more informative than 

using the angle of the CG's path to the horizontal at the point of finger entry into the 

water, which gives little indication of the body position prior to entry and, therefore, 

streamlining. The entry and take-off angles were used to indicate whether there were 

any changes in body position due to different techniques performed on the block. 

A null hypothesis was used, stating that neither the EA or TA would be 

significantly different for any of the starts. Results showed that there were no 

significant differences between the body positions of the techniques at the point of 

entry, hence supporting the null hypothesis for entry angle. The mean entry angles in 

this study were very similar to those of Pearson et al. (1998) who recorded 42.6° for the 

grab start; and, Kirner et al. (1989) who found 40.3° and 39.9° for the grab and forward-

weighted track starts, respectively. This could suggest that there is little difference in 

body position within subjects during flight and water entry due to technique. 

However, a significant difference existed between starts in their take-off angles, 

thus rejecting the null hypothesis. As the feet left the block, the CG was moving at a 

significantly lower angle in the track start than the grab start (see Table 5.1). One 

possible explanation for the lower angle of the track start could be due to the 

instrumentation, whereby the bottom edge of the hand-bar was mounted 5cm below the 

front edge of the block. This may have an effect of pulling the body down more than if 

the block was grasped at the same level as the feet. It was not known if the TA's were 

close to optimum for each starting technique. Whilst significant, a mean difference of 

5.4° would have minimal effect on the flight distance, according to the range formula in 

Hay (1993). However, the results for the grab and swing starts were in line with the 

findings of Hobbie (1980) and Wilson and Marino (1983). The studies of Allen et al. 
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(1999), Jeurgens (1994) and Stone (1988) showed that the T A of the front-weighted 

track start tended to be less than the grab start, although not significant (p > 0.05). 

In the current study, the grab and swing starts were characterised by an initial 

vertical drop of the C G , followed by a gradual downward path towards the water (see 

Figure 6.1). In contrast, the rear-weighted track start had considerably less vertical 

displacement of the C G throughout the block phase than either the swing or grab starts. 

Using the track technique it m a y be more advantageous, in terms of take-off angle, to 

begin with a lower hip position (at about shoulder height) as this may help to project the 

body upwards and prevent the arms pulling the body towards the water. However, this 

would result in a smaller angle of the rear leg, potentially a mechanically weaker 

position for maximal force production. 

Block time 

It was hypothesised that BT for the grab and track starts would not be 

significantly different from each other, but both techniques would be significantly faster 

off the blocks than the swing technique. This was based on the findings of previous 

studies and biomechanical knowledge of the grab and swing starts (Bowers & 

Cavanagh, 1975; Roffer & Nelson, 1972). W h e n compared to the grab start, it was 

thought that the extra arm-pull required in the track start would help to account for the 

greater horizontal distance the C G would travel by increasing the body's acceleration. 

N o significant difference in B T was found between the grab and track start, with just 

0.03 s separating them. However, the swing start was found to be significantly slower 

(p < 0.001) than either the grab or track technique. Hence, the hypothesis was 

supported by these results. 



The mean difference of 0.21 s between the grab and swing technique was greater 

than in the reviewed literature. The Bowers and Cavanagh (1975) study of six females 

of similar age to those in this current study, but who were experienced in both starts, 

found the grab starters left the blocks 0.17 s faster than the swing starters (p < 0.001). 

Bloom et al. (1978) attributed the grab start shorter take-off times over the swing start to 

a lower and more forward CG. Therefore, less time was required to push/pull the body 

towards the water. More time is also required in order to complete the full circular arm 

swing. 

Whilst studies comparing the grab and swing techniques generally agreed that 

the grab start was significantly quicker off the blocks than the swing start, the mean 

differences were smaller than in the current study (Bloom et al., 1978,0.09 s; Gibson & 

Holt, 1976, 0.10 s; Lewis, 1980, 0.06 s). This may be due to different samples studied. 

Lewis (1980) used inexperienced males and Gibson and Holt (1976) used a mixed 

sample, experienced in both starts. In the current study, the swing start might have been 

performed at a lower skill level than either the grab or track start, reflected mainly by 

the large differences in block time. However, it was noted from the video and force 

traces that it took considerably longer for participants to begin the forward arm swing 

than to move in the grab and track starts. Disregarding BT, the swing start was 

nevertheless, marginally superior to the grab start in its flight distance and velocity. As 

the swing start requires more coordination of body segments and timing than the other 

techniques, it is possible that inexperienced swimmers require more learning time on 

this technique. 

Wilson and Marino (1983) used a mixed gender sample and found the 

movement time of the grab start to be 0.16 s faster than the swing start. The difference 

in overall block time may have been even greater had the reaction time been included in 

the analysis. Two previous studies (Bowers & Cavanagh, 1975; Bloom et al., 1978) 
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found the reaction time of the grab start to be 0.02 s faster than the swing start, but this 

was not significant. However, reaction time measures may not be accurate as they were 

defined as the time from the start signal until the first movement was made, using video 

as a means of measurement. Reaction time could not be accurately measured from the 

force-time curves in the current study. However, when viewing the video and force 

graphs of the current study, it was observed that participants generally took longer to 

produce the first movement during the swing start than either the grab or track starts. In 

the force traces of the swing start (Figure 5.3), there was a slight increase in vertical and 

horizontal force prior to the arm swing as the participants reacted to the starting 

stimulus, probably due to extra pre-tensing of the muscles in preparation for the dive. 

Time on the block could have been shorter in the swing start had the muscles been pre-

tensed and in a more active state. This could in part help to explain the relatively long 

BT of the swing start when compared to the grab and track starts, whereby the legs were 

already pre-tensed and more active prior to the start. Increased pre-tension of the 

muscles could reduce the reaction time of the swimmer following a starting signal 

(Pearson etal., 1998). 

Previous studies have shown the track start, with the body mass positioned over 

the front leg, to be faster off the blocks than the grab start (Ayalon et al., 1975, Shin & 

Groppel, 1986, Stone, 1988). However, no studies have investigated the track start with 

the mass positioned over the rear leg. Originally, it was considered that this rear 

weighting was a disadvantage due to the extra distance and resultant time the body's 

CM would need to move to reach full extension at take-off. However, observed 

fluctuations in the vertical displacement of the CM on the block for the track start were 

less than the other techniques (see Figure 6.1), which may help to offset the extra time 

required to move the CM horizontally further. It was also perceived that the arms 
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contributed considerably more force from starting in this position, and, therefore, could 

increase the forward momentum of the body. 

0«».»0..,»..,....«T««"""«'
,P 

IEGEND: 

Grab start 

........... Swing start 

Trade start 

.xPahofCG 

Figure 6.1: Segmental models of the starting positions for each starting technique 

Flight and total time 

It was hypothesised that the track and swing starts would have a significantly 

longer F T than the grab start, but not with each other. This was based on similar 

reasoning to the velocity and flight distance hypotheses - that the techniques of these 

two starts would allow greater momentum to be built up on the block due to their 

increased arm contributions. N o significant differences existed between any of the start 

techniques for F T (see Table 5.3), therefore supporting a null hypothesis. Only 0.01 s 

separated the three starts in flight time. Therefore, any differences in the T T to finger 

entry were due to the differences in block time. N o significant difference in T T existed 



between the grab and track start (p < 0.001) with only 0.04 s separating the two starts. 

The swing start was significantly slower to the moment of finger entry into the water 

than either the grab or track starts (p > 0.05). This supported the hypothesis relating to 

BT and total time. 

Kinetic variables 

Several kinetic variables were measured by the force plate (forces applied 

through the feet) and load cells (forces applied through the hands), including peak force 

and impulse in the horizontal and vertical planes of movement. The track start 

produced significantly greater HI than either the grab or swing start (p < 0.05), which 

were not significantly different from each other. These results were supported by the 

findings of Shierman (1979) and Juergens (1994). The hypothesis was rejected, as it 

was expected that both the track and swing starts would produce significantly greater 

amounts of HI than the grab start. The hypothesis for HI was developed using the same 

reasoning as the velocity and flight distance hypotheses, as HI is a major determinant of 

take-off velocity (Breed, 1998; Hay & Guimaraes, 1983; Jeurgens, 1994; Miller et al., 

1984). 

The track start had a mean HI of 18.9 Ns greater than the grab start, which would 

in part help to account for its superiority in V and flight distance. However, the HI of 

the track and swing start was similar, partly attributable to the considerably longer time 

spent on the block in the swing start (F x t), which might suggest a more inefficient 

performance of the swing technique. This was supported by the swing start having a 

slower take-off velocity than the track start (Table 5.1). Therefore, the 'trade-ofF 

between force and time might not have been close to maximal in the swing start. 

However, the swing techniques used by participants enabled them to generate a slightly 
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greater velocity and flight distance than in the grab start, although not significant (p > 

0.05). 

When the total horizontal impulse was separated into feet and hand 

contributions, the grab and track starts showed two quite different starting mechanisms. 

The main purpose of the arms in the grab start was to act as a 'brace' in which the legs 

could push against, with a very small amount of horizontal push as the body began to 

fall forward towards the water. Almost all of the horizontal drive came from the legs 

during the grab start, which was in support of previous literature (Cavanagh et al., 1975; 

Guimaraes & Hay, 1985). In contrast, about 3 5 % of the total horizontal impulse came 

from the arms in the track start (see Table 5.2). Due to the backward body position of 

the track start, the legs were primarily pushing against the direction of intended travel 

and therefore creating a negative horizontal impulse, hence considerably lower HI of the 

feet than in the other techniques. Initially then, the role of the arms was to pull back 

against the block in order to overcome the body's inertia and accelerate the C G forward. 

The role of the arms then decreased as the legs began to push back against the block 

(see Figure 5.2). 

The swing start produced significantly greater VI than both the grab and track 

starts, whilst the track and grab start almost reached significance at a 95% level of 

confidence (see Table 5.4). This finding rejected the research hypothesis, in which the 

track and swing starts were expected to have significantly greater VI than the grab start, 

but not with each other. 

Unexpectedly, the arms contributed more vertical impulse during the track start 

than in the grab start (see Table 5.2), as participants were instructed to pull back against 

the bar as forcefully as possible, not upwards to pull the body down towards the water. 

As mentioned earlier, this finding might have been in part due to the hand-bar being 

mounted 0.05m below the feet and, therefore, the arms could have contributed more to 
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pulling the body downwards rather than forwards. The extra horizontal and vertical 

impulse provided by the arms (see Figure 6.2) might help to explain the superiority of 

the track start over the grab and swing starts in take-off velocity and flight distance. 

Note that the VI of the feet was adjusted for effect of body mass. 

LEGEND: 

Grab 

Track 

= 50Ns 

Figure 6.2: Schematic horizontal and vertical force components 



Conclusion to part one of study 

The findings of the current study support the possible superiority of the track 

technique over the grab and swing starts. Whilst the track starters entered the water an 

average of 0.04 s slower than the grab starters, they travelled 0.18m further in the air 

and entered at a significantly higher velocity. Therefore, assuming similar body 

positions at entry and underwater, the rear-weighted track technique should be more 

effective. When comparing the track to the swing start, the track starters travelled 

0.1 lm further in flight (p > 0.05) and entered at a significantly higher velocity. Even 

when ignoring the significant time difference to entry (as it is not a factor in a relay 

changeover), the track technique was potentially more effective than the swing start in 

this study. 

Once a swimmer has established their most appropriate technique, they might be 

able to improve their take-off velocity and flight distance further by developing greater 

leg power and jumping ability. Previous researchers have suggested a positive 

relationship between jumping ability and starting performance (Adams, 1986; Breed, 

1998; Miyashita et al., 1992; Zatsiorsky et al., 1979). However, no research to date has 

investigated the effect of a resistance-fraining program on diving performance. 

PART TWO: The effect of resistance training on swimming starts 

Relationship between dry-land tests and dive performance 

Using the pre-test data, the dry-land tests were correlated with FD (which was 

used as a key measure of dive performance). The VJ was correlated most highly of all 



tests to F D m all three starts (p < 0.001). This finding was expected, as the VJ uses 

similar muscle groups to the swimming start. In addition, the muscle groups are 

recruited mainly simultaneously, rather than sequentially, during the VJ (Hudson, 1986; 

Lees & Barton, 1996). Robertson and Stewart (1998) confirmed a similar contribution 

of joint moments and coordination patterns for the grab start in swimming. However, 

the swim start would have higher skill associated with it, as an optimal angle of take-off 

must be found along with a forward rotation of the body. 

The highest correlation between the VJ and FD of the swing start (see Figure 

5.7) might be attributable to the similar movement patterns involved between the two 

actions. A similar reasoning could be used for the overall higher correlation of the VJ 

and FD than the CMJ and FD for all three starts, in that the extra muscle coordination 

and skill involving the use of the arms most closely resembles the movement patterns of 

the starts. Both the VJ and swim starts involve complex actions involving the ankle, 

knee, hip, elbow and shoulder joints. 

The squat tests of power (SQ40) and strength (SQ25) were not significantly 

correlated with FD in any start technique (p > 0.05). This might be attributable to the 

higher level of skill associated with diving. Therefore, skill and coordination might be 

more important factors in determining dive performance than strength and power in the 

current study. The significant correlation of the OT and OTB tests with the FD might 

support this, in that they involved higher levels of skill, such as release angle and 

greater muscle coordination, than the squat tests. The correlation matrix can be found in 

Appendix O. 
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The significant group by time M A N O V A result (p < 0.0001) supported the first 

hypothesis, which stated that the resistance training would improve performance in the 

dry-land tests. The follow up univariate test indicated that three of the six tests, the VJ, 

CMJ and SQ40, improved in performance due to framing (see Table 5.6). The SQ40 

test was included as a direct measure of lower body power output and a less-skilled 

measure of leg extensor power than the CMJ, which involves greater coordination and 

timing of body segments (leg and back extensors). As performance in SQ40 and the 

jumping tests increased, the 9-week framing program was successful in achieving its 

primary aims of improving muscular power and jumping ability. 

The 5.3cm (12.3%) increase in VJ height of the training group was similar to the 

significant findings in the studies of Bauer et al. (1990), Blattner and Noble (1979), 

Holcomb et al. (1996), Lyttle et al. (1988) and, Poole and Maneval (1987). The training 

periods of all these studies were between eight and ten weeks. In the study of Poole and 

Maneval (1987), VJ performance was measured throughout training and showed that a 

training plateau was not reached by the tenth week. This might suggest that greater 

gains could be made in these studies with longer training periods. The framing period 

of the current study was limited to nine weeks with a two-week maintenance program 

during semester holidays. However, most of the research in this area of study has used 

male sample groups, making it difficult to make direct comparisons with the current 

study. 

There was a significant time effect (p < 0.0001) for all tests (MANOVA). The C 

group improved marginally in all tests, which might suggest that participants had 

retained the skills for the tests from the pre-test session. The SQ25 test of squat strength 

improved over time (p < 0.01), but not for time by group, even though the R group 
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increased maximum strength by 12kg compared to the C group's 3.5kg. Part of this 

improvement in strength could be due to an increase in body mass by both groups of 

approximately 1kg. However, the framing program was periodised so that only the first 

three weeks emphasised strength, with the main emphases during weeks 4-9 being on 

developing muscular power and jumping ability. Whilst some strength exercises were 

included in the latter parts of the program, they were only intended for maintenance 

purposes (Kraemer & Newton, 1994). It would not be desirable to have large increases 

in muscle mass due to strength training in swimming, as this could reduce the 

swimmer's buoyancy (Adams, 1986; Lyttle & Ostrowski, 1994). Participant pre-test 

squat strength (SQ25) in the current study was about 20kg more than in the study of 

Ashley and Weiss (1994), who used 50 females of similar age to those in the current 

study. Using this as a direct comparison, participants in the current study had a good 

initial base-strength level prior to training. Therefore, the early general strength training 

was mainly to condition the neuromuscular system to help reduce injuries and muscle 

soreness associated with high intensity jumping and power exercises. 

The OT and OTB tests were not improved by framing. These tests were 

considered to measure shoulder power and back extensor/shoulder power, respectively. 

Less emphasis was placed on isolated shoulder strength and power exercises than 

jumping ability in the training program. However, similar small improvements were 

found in both the C and R groups, which might suggest that the participants had not 

fully learned the skill and coordination of the techniques. As these tests involved a high 

amount of skill and had an unusual movement pattern for the participants, they might 

not have been sensitive to training improvements of the upper body. One further skill 

variable of the throwing tests that the other tests did not have, was finding the optimal 

angle of release. The VJ and CMJ tests were quite specific to many movement patterns 
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involved in the training exercises (i.e., jump squats, weighted jumps), where as the 

throwing tests were not. 

Dive start variables 

Kinematic measures 

Results showed that no significant differences (p > 0.05) existed for group, time 

or group by time effects for either FD or V (see Appendix M), thus rejecting hypothesis 

two. The limitation of small participant numbers in each group (C=l 1 and R=12) might 

have decreased the possibility of reaching significance. Therefore, non-significant 

trends will also be discussed as a follow up to significant results. 

As discussed in part one, FD is a very important performance variable in dive 

starting, particularly as the body can travel considerably faster through the air than in 

water (Miller et al., 1984; Robertson & Stewart, 1998). Resistance training did not 

significantly improve the FD of any starting technique (p > 0.05). This finding was 

unexpected, as VJ ability improved considerably whilst it correlated highly with FD in 

all three techniques. This would suggest that improvements in jumping ability were not 

directly transferred to the skill of diving. Even though similarities exist in the timing 

and muscle segmental contributions of the VJ and grab start (Robertson & Stewart, 

1998; Shierman, 1979), improvements in jumping ability might not be observed in dive 

performance due to the extra skill involved in starting. For example, dive starting 

requires changes in body position during flight and finding an optimal take-off angle. 

When comparing the three techniques in FD, some non-significant trends were 

observed. No change in FD occurred in the grab start for the R group (see Table 5.7). 

However, the mean FD of the track and swing starts changed by 0.09m and 0.06m, 
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respectively, when comparing the C and R groups. This might suggest that some 

jumping skill improvement has transferred to the track and swing start, but not the grab 

start. Whilst not significant (p > 0.05), such improvements gained in flight could equate 

to approximately 0.03-0.04 s time advantage in the water. This difference could be vital 

in determining places of a 50m sprint race. 

Take-off velocity is the main determinant of FD (Hay, 1993), thus similar trends 

would be expected for both variables. The univariate analysis found that V of the track 

start increased significantly (p < 0.05) due to training. Whilst the R group improved by 

only 0.06 m/s, the C group decreased by 0.13 m/s and, therefore, the significant effect 

might in part be due to the C group performing the track start at a lower level of skill 

during post-testing. Whilst not significant, the swing start improved by 0.14 m/s when 

comparing the two groups, which might in part account for the improvement in flight 

distance. Little change in V was found for the grab start. A possible explanation for 

this finding could be the relatively small contribution to force production and power 

from the arms during the grab start when compared to the track and swing starts. 

Vertical jump studies have found that the arms contribute about 15% of the body's total 

power in jumping (Davies & Jones, 1993; Shetty & Etnyre, 1989). 

As vertical velocity of the CG at take-off determines the height of a VJ (Oddson, 

1989), it is logical that an improvement in VJ performance could lead to increased V in 

a dive start. However, much smaller increases due to training were made in V when 

compared to jump height. This might suggest that the improved skill of jumping was 

not transferred directly to the start, particularly the grab technique, which showed no 

improvements in FD or velocity. 

N o significant or non-significant trends were observed for the entry angle of any 

start due to training, suggesting that the body position prior to entry was unaffected by 

improvements in jumping ability. However, hypothesis two was rejected, as a 
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significant multivariate time by group effect (p < 0.05) was found for the take-off angle 

(TA). Whilst a similar trend was found for all starts, in that the R group increased in 

TA more than the C group, only the track start increased significantly (p < 0.01), 

suggesting that improving jumping ability increased the take-off angle. This would also 

help to account for the increase in FD and V, as the TA of the track start was very low 

when compared to the other techniques and other literature (Breed, 1998; Hobbie, 1980; 

Pearson et al., 1998; Stone, 1988). 

The higher TA could be due to an increase in vertical velocity during the start, 

also responsible for improved VJ performance. An increase in vertical velocity, and 

hence TA, might indicate a need for practising the dives to refrain the changed 

neuromuscular properties due to the resistance training. Bobbert and Van Soest (1994) 

used a model to simulate vertical jump squats. When the input stimulation was 

increased (representing higher strength levels) and timing remained the same, jump 

height decreased. Thus, an increase in power output might result in a decrease in jump 

height unless jumping is practised so that skill and control mechanisms are re-

optimised. This is a likely explanation for the very small improvements in diving 

performance when compared to the increases in VJ height. Therefore, it is quite 

possible that larger improvements would have been observed in dive performance had 

they been practised throughout the resistance-training period in order to adapt the 

timing of the muscles. 

Temporal measures 

Hypothesis three was accepted in that no temporal variable significantly changed 

due to training (p > 0.05). Non-significant trends were observed for block time (BT) 

and flight time (FT). For the grab start, both groups spent marginally longer on the 
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blocks (see Table 5.8) in the post-testing. However, the R group decreased their B T 

slightly more than the C group for the track and swing starts. This could suggest that 

these starts were being performed at a higher level of skill following the resistance-

training period - particularly for the swing start, which was leaving the blocks 

comparatively slower than in other studies (Bowers & Cavanagh, 1975; Gibson & Holt, 

1976). When both groups were analysed collectively, the track start left the block 

0.01 s faster than the grab start, compared with the grab start's 0.03 s superiority in the 

pre-test. 

All three starts had an increase in flight time (FT), particularly the R group 

(p > 0.05). This helps to explain the slightly further FD achieved in the track and swing 

starts. A longer FT might also suggest that the starts were being performed at a slightly 

higher level of skill than in pre-testing. The small improvement in the C group's 

performance could suggest the diving skills were well retained. However, as only 

0.02-0.03 s differences were observed between or within groups for FT, no decisive 

conclusions can be formulated. 

Kinetic measures 

The total horizontal impulse (HI) of the track start increased significantly due to 

resistance training (p < 0.05). However, both groups within the grab and swing starts 

had similar decreases in HI (see Table 5.9), suggesting that improvements due to 

training were only transferred to the track start in the horizontal direction of force 

production. The HI was broken down into feet and hand impulse (HIP and HIH) for the 

grab and track starts and analysed separately. No improvements in HIF were found for 

either start. However, the HIH of the track start increased by about 30% (p < 0.01) due 

to training, which would explain the significant improvements in HI and take-off 



velocity. This further supports the theory that the arms have a large role in providing 

horizontal momentum of the body during the rear-weighted track start. Therefore, it 

would have been expected that significant improvements would have been made in the 

dry-land overhead throw tests, but they might not have been specific enough to the dive. 

Even though the HIH increased for the grab start, the role of the arms in producing 

horizontal drive was negligible (approximately 6N). 

Whilst not significant, it was observed that training might have improved the 

vertical impulse (VI) in all three starts (see Table 5.9). This finding would help to 

account for the increased take-off angles of the starts - particularly the track technique. 

When the hands were analysed separately (VIH), an improvement in VIH was noticed 

in the track and grab starts due to framing. This might further support the concept that 

the role of the arms in the vertical direction is to pre-tense and increase the loading of 

the leg extensors (Cavanagh et al., 1975; Hay & Guimaraes, 1983; Juergens, 1994). 

Conclusion to part two of study 

The findings were unexpected, as it was considered that the swing start had the 

most specific muscle movement patterns to vertical jumping. Due to the plyometric and 

explosive training, the participants' ability to utilise the elastic and neural benefits of the 

SSC would have been enhanced (Wilson et al., 1996). One possible reason for the lack 

of skill transfer could be due to the slower speed of muscular contraction, particularly 

during the eccentric phase (Harman et al., 1990). This slower contraction speed is 

needed to allow for forward rotation of the body to move into its line of push. The track 

start might have had better improvements in performance due to training than either the 

grab or swing start as it appears to use a slightly different mechanism for starting. The 
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body is pulled directly forwards with little 'dipping', therefore less emphasis is placed 

on the SSC, rather than on pre-tensing of the leg-extensors. 

The performance of the track start might have been enhanced due to an 

improvement in jumping ability. It appears that improved jumping ability might have 

an effect on the vertical components of all three techniques, suggesting that there was 

not a direct transfer of skill to the grab and swing starts, as no significant improvements 

were found for horizontal force components or flight distance. This finding would 

further support the need to adapt the control mechanisms to the diving techniques 

through practice (Bobbert & V a n Soest, 1994). 
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CHAPTER SEVEN 

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

Summary 

A swimmer's take-off speed might be improved by altering starting technique or 

by increasing power and jumping ability. The current study aimed to establish whether 

the grab, swing or rear-weighted track start was more effective by measuring several 

temporal, kinematic and kinetic performance variables. The study's second aim was to 

establish the effect of a resistance-training program, aimed at improving jumping 

ability, on the diving performance of the three dive techniques. 

Twenty-three non-competitive swimmers participated in the study (mean age 

19.9 + 2.4 yrs). Participants practised each start equally 30 minutes a week for an eight-

week period. Testing involved two maximal trials of each technique in random order. 

Feet and hand forces were measured using a Kistler force plate and load cells, 

respectively. Kinematic and temporal variables were measured using video. Analyses 

of variance and post-hoc tests were performed for nine dependent variables. The track 

start was significantly superior to the grab start in flight distance, take-off velocity and 

horizontal impulse, and significantly superior to the swing start in block time, total time, 

take-off velocity and vertical impulse. The grab start was significantly superior to the 

swing start in block time, total time and vertical impulse. N o significant differences 

were found between any of the starts in flight time or entry angle. The arms provided 

little horizontal drive in the grab start whereas they contributed just over one-third of 

the total horizontal impulse in the track start and considerably more vertical impulse 

than the grab start. The findings suggested a greater effectiveness of the track start over 

the grab and swing starts. 
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In the second part of the study, participants were randomly assigned to a control 

group (N=l 1) or a resistance-training group (N=12), who trained three times a week for 

nine weeks. Six dry-land tests were performed for pre- and post-testing - two 

countermovement jumps (with and without arms), two CES squats (25°/s and 40°/s bar 

speed) and two overhead shot throws (with and without back extension), with the best 

of three trials being recorded. Post-testing of the three dive techniques was also 

performed using the same pre-test procedures and instrumentation. Resistance training 

significantly improved performance in the dry-land tests (p < 0.0001). Resistance 

training had no significant effect on any temporal, kinematic or kinetic variables within 

the grab or swing starts. Significant training improvements (p < 0.05) were found 

within the track start for take-off velocity, take-off angle and horizontal impulse of the 

hands. Non-significant trends toward improvement were observed within all starts for 

vertical force components, suggesting a need for practising the dives to refrain the 

changed neuromuscular properties. Results implied that the improved skill of vertical 

jumping was not transferred directly to the start, particularly in the grab technique. 

Part one: Conclusions 

On the basis of the findings in part one of this study it was concluded that: 

1. The flight distance of the track start was significantly greater than the grab start 

(p < 0.05), but no significant differences existed between the track and swing, nor 

the grab and swing starts. 

2. The track start recorded a significantly faster take-off velocity than the grab (p < 

0.01) and swing (p < 0.01) starts. There was no significant difference in take-off 

velocity between the grab and swing start. 
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3. N o significant differences existed between any of the starts in the body angle at 

entry (F= 0.733, p = 0.484). 

4. The track start had a significantly lower angle of take-off than the grab start (p < 

0.05). N o significant differences existed between the track and swing nor the grab 

and swing starts. 

5. No significant difference in block time or total time was found between the grab and 

rear-weighted track start (p > 0.05). However, both the grab and track starts were 

significantly quicker to leave the blocks and enter the water than the swing start (p < 

0.0001). 

6. There were no significant differences in flight time between any of the start 

techniques (F= 0.254, p = 0.777). 

7. The total horizontal impulse of the track start was significantly greater than the grab 

start (p < 0.05), but no significant differences existed between the track and swing, 

nor the grab and swing starts. 

8. The swing technique produced significantly more vertical impulse than the grab (p < 

0.001) and track techniques (p < 0.01). N o significant difference in vertical impulse 

was found between the grab and track starts. 

Part two: Conclusions 

On the basis of the findings in part two of the study it was concluded that: 

1. Vertical jump, countermovement jump and C E S squat power test performance 

significantly improved due to resistance training (p< 0.05). 

2. N o significant improvements due to training were found for C E S squat strength, 

overhead throw and overhead throw with back extension tests. 

3. Take-off velocity and take-off angle significantly increased for the track start due to 

resistance framing (p< 0.05). 



4. Total horizontal impulse and horizontal impulse of the hands significantly increased 

for the track start due to resistance framing (p < 0.05). 

5. Resistance framing had no significant effect on the grab or swing starts within any 

dive start variable (p > 0.05). 

Recommendations 

It is recommended that: 

1. A comparison of the three start techniques be made with elite or high-performance 

swimmers 

2. Both female and male sample groups are used in comparing the starting techniques 

3. A criterion distance including part of the gliding phase is used as a more realistic 

measure of diving performance 

4. The rear-weighted track start is investigated further in terms of joint angles and hip 

height aimed at providing maximal push and appropriate take-off angle 

5. The rear-weighted track start is investigated when grasping the handles at the sides 

of the block, as this might improve the joint angles, take-off angle and horizontal 

arm contribution, thus improving the effectiveness of the technique. 

6. The rear-weighted track start is investigated as an alternative start during relay 

changeovers. 

7. Practice of the dive techniques is continued throughout resistance training in order 

to re-optimise the skill and control mechanisms of the neuromuscular system. 

8. Testing throughout framing should be performed in order to calculate when a 

framing plateau is reached in both the dry-land training and dive start technique 

training. 

9. Work and power around the joint moments be calculated for each start technique to 

provide information on joint contributions to the overall performance. This would 
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allow closer comparison to vertical jumping performance and assist with designing a 

specific framing program. 

10. The rear-weighted track start should be practised during training in order to compare 

it with the individual's current preferred technique. 

11. Individual swimmers should experiment with using different body positions of the 

rear-weighted track start eg. foot spacing, hip height, as slight variations might 

improve the performance. 

12. If starting block handles are available, the rear-weighted track start should be 

practised with and without grasping the handles in order to identify preference and 

superiority of each method. 
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PLAIN LANGUAGE STATEMENT AND PARTICIPANT CONSENT FORM 



136 

UNIVERSITY OF BALLARAT 
PLAIN LANGUAGE STATEMENT AND INFORMED CONSENT 

PROJECT TITLE: 'The Effect of Resistance Training on the Grab, Swing and Track Starts in swimming' 

INVESTIGATOR: Ray Breed 

PLAIN LANGUAGE 
STATEMENT 

• The aim of the study is to establish the effect of a specific resistance training program on 
performance in the grab, swing and track starts in swimming. 

Procedures: 

11th. May - 20th. July: Y o u will learn the techniques of the three different starts during 
class-times. Y o u will also be required to participate in one 15 minute coached training 
session per week at a time provided. 

27th. July - 7th. August:: Pre-testing. You will be filmed performing three trials of the 
three dive techniques. Y o u will also perform two different vertical jumping tests, two 
squat tests and two overhead seated-shot throw tests. 

10th. August - 23rd. October: During semester time (not including the break), you will 
be randomly assigned to either a control group or a resistance-training group. The control 
group will not perform any extra training activities outside of their normal daily routines. 
The resistance-training group will perform three supervised training sessions per week in 
the U of B toning point. 

26th. October - 30th. October: Post-testing. You will be tested in the three dives and 
the land-based tests in the same way as the pre-testing session. 

1. L of 

hereby consent to participate as a subject in the above research study. 

2. The research program in which I a m being asked to participate has been explained fully to me, verbally and in 
writing, and any matters on which I have sought information have been answered to m y satisfaction. 

I understand that 

• all information I provide (including questionnaires) will be coded by number and stored separately from any 

listing that includes m y name and address. 

• aggregated results will be used for research purposes and may be reported in scientific and academic journals. 

. I am free to withdraw my consent at any time during the study in which event my participation in the research 
study will immediately cease and any information obtained from it will not be used. 

SIGNATURE DATE: 
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APPENDIX B: 

INDIVIDUAL PARTICIPANT PRE AND POST DRY-LAND TEST DATA 



KEY TO TABLE: 

SYMBOL MEASURE 

NO 

MASS 

PMASS 

HGT 

PHGT 

VJ 

PVJ 

CMJ 

PCMJ 

SQ40 

PSQ40 

SQ25 

PSQ25 

OT 

POT 

OTB 

POTB 

Participant ID number 

Body mass (pre-test) 

Body mass (post-test) 

Height (pre) 

Height (post) 

Vertical jump, with arms (pre) 

Vertical jump, with arms (post) 

Vertical jump, no arms (pre) 

Vertical jump, no arms (post) 

C E S squat power test (pre) 

C E S squat power test (post) 

C E S squat strength test (pre) 

C E S squat strength test (post) 

Overhead throw (pre) 

Overhead throw (post) 

Overhead throw, with back extension (pre) 

Overhead throw, with back extension (post) 
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APPENDIX C: 

INDIVIDUAL PARTICIPANT RAW DATA FOR DIVE START VARIABLES 



KEY TO ABBREVIATIONS: 

'G' AFTER ABBREVIATION = GRAB START 

T AFTER ABBREVIATION = TRACK START 

'S' AFTER ABBREVIATION = SWING START 

' 1' OR '2' AT END = TRIAL NUMBER 

EG. BTG2 = BLOCK TIME, GRAB START, TRIAL 2. 

BT = BLOCK TIME 

FT = FLIGHT TIME 

TT = TOTAL TIME 

FD = FLIGHT DISTANCE 

V = TAKE-OFF VELOCITY 

TA = TAKE-OFF ANGLE 

EA = ENTRY ANGLE 

HI = HORIZONTAL IMPULSE 

VI = VERTICAL IMPULSE 

HIF = HORIZONTAL IMPULSE, FEET 

HIH = HORIZONTAL IMPULSE, HANDS 

VIH = VERTICAL IMPULSE, HANDS 

HF = HORIZONTAL PEAK FORCE 

HFF = HORIZONTAL PEAK FORCE, FEET 

HFH = HORIZONTAL PEAK FORCE, HANDS 

VF = VERTICAL PEAK FORCE 

VFH = VERTICAL PEAK FORCE, HANDS 

HT = HAND TIME (TIME OF HAND CONTACT WITH HAND-BAR) 
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Pre-test Raw Data 
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APPENDIX D: 

MODIFIED STARTING BLOCK AND FRAME DIMENSIONS 
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APPENDIX E: 

REFERENCE STRUCTURE 
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APPENDIX F: 

ADJUSTMENT OF FORCE VALUES 



FY
 =
 F Y COS • + Fz sin • 

Fz7 = -FY sin • + FZ COS • 

STARTING B L O C K 

Where: 

F Y = parallel force to block surface (unadjusted) 

FY; = true horizontal force (adjusted) 

Fz = perpendicular force to block surface (unadjusted) 

Fz
; = true vertical force (adjusted) 

When: 

• =9° 
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APPENDIX G: 

DESCRIPTION OF RESISTANCE TRAINING EXERCISES 



Exercise 1: Clean Pull 

Participants place hands on the bar slightly wider than shoulder width apart. 
Feet are slightly less than shoulder width apart with the toes level with the bar. 
The back is straight (no arching), head up and eyes facing straight ahead. The shins 
almost touch the bar and the body mass is positioned over the heels. 
W h e n ready the bar is lifted explosively straight up to chest height. 

( O 

Exercise 2: Barbell Press 

In a standing position, the barbell is placed across the shoulders behind the head. 
Hands are positioned so that a 90° angle exists at the elbow joints. 
The barbell is pushed explosively upwards to full extension of the arms then 
lowered slowly. 



Exercise 3: Parallel Squat (Smith machine) 

• Stand with the bar across the shoulders with the feet forward of the bar so that the 
heels are in line with the bar. Feet are shoulder width apart. 

• Keeping the back straight (no arching), lower the bar slowly until the thighs are 
parallel to the ground. Push explosively upwards until the legs are fully extended. 

Exercise 4: Back Extension 

• Crossing the arms to chest, lower and lift the upper body slowly and controlled. If 
required, hold a weight to the chest. 

• Keep the back flat the whole time and only move through a 90° range (no 
hyperextension of the lower back). 

Exercise 5: Prone Hold 

• An isometric abdominal strengthening exercise. Place feet on a box (30-40cm in 
height) and lie facing towards the floor. 

• Hold the body up off the floor on the elbows. Back stays flat with no arching of the 
lower back. 

Exercise 6: Barbell Jump Squat 

• The bar is placed across the shoulders (using padding on the bar) and the feet are 
about shoulder width apart. 

• Participants dip down quickly to a knee angle of about 90 and then explode 
immediately upwards to jump as high as possible. 

• As they dip down, the heels stay on the ground and the trunk is flexed forwards 

(about 45° to the vertical). 
• Repetitions are not continuous (about 2-3 s between each) and are performed 

maximally. 



Q ). 

i JO 

Exercise 7: Dumbbell Overhead Press 

In a standing position the dumbbells are held in front of the shoulders level with the 
neck, and then pushed explosively upwards until arms reach full extension 
Dumbbells are lowered slowly 

Exercise 8: Barbell Vi Squat 

• Using a squat rack, the bar is placed across the shoulders and the participant lowers 
their body slowly until a 90° angle at the knee joint is reached. The back stays firm 
and flat. 

( JO !, 
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Exercise 9: Twisting Crunch 

• Lie on back with one knee raised so that both the hip and knee joint are at about 90° 
of flexion. The other leg is kept straight whilst it is lifted until the heel is about 6 
inches above the ground. This position is held. 

• With the fingers lightly touching the side of the head, sit up by bringing the opposite 
elbow across to the raised knee 

• Repeat using the other side (to maximum repetitions) 

Exercise 10: Weighted Belt Jump 

• A weight-lifting belt with weights attached to the back is worn. 
• A maximal vertical jump using the arms is performed (repetitions are not 

continuous, 3-5 s break between each). 
• A vertical jump board mounted to a wall with horizontal lines at 4 cm intervals is 

used to provide a motivational target. 

Exercise 11: Drop Jump 

• Participants stand on a wooden box (ranging from 40-60cm) 
• Step off the box to land with feet shoulder width apart 
• Dip down until the knees are approximately 90° then explode up immediately to 

jump for maximal height 
• Use the arms for extra height and coordination 
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Exercise 12: Explosive Push-up 

Begin fully extended in a regular push-up position (or from the knees if not 
sufficient strength to perform 6 continuous push-ups from the feet) 
Lower body rapidly until the elbows reach approximately 90°, then explode up 
immediately to raise the body off the ground quickly. Hands should leave the 
ground. 
Absorb the impact and then begin the next repetition from full extension after 1-2 s. 

Exercise 13: Forward Pulley Thrust 

Using a Universal G y m pulley system, participant stands with a wide split of the 
feet from front-to-back for balance and control 
Holding both pulley handles, start with elbows behind the body at about 90 
Explosively pull handles forward until arms are fully extended in front of the body 

at shoulder height 
Slowly let weights down to begin the next rep in the same starting position 
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Exercise 14: Incline Shoulder Raise 

• Sitting on a bench with the back inclined at 45°, begin with dumbbells and arms 
hanging down vertically. Arms should be kept tensed by holding the elbow joint at 
about 150° throughout the whole movement 

• Explosively raise the dumbbells together until an angle of approximately 90° at the 
shoulder joint is reached 

• Slowly let them back down to the starting position 

Exercise 15: Side Hold 

• Lying on the side, put feet up on a 40cm box whilst supporting body off the ground 
by leaning on the elbow 

• Hold a straight body position to feel stretch along underside of body 
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APPENDIX H: 

PAIRED-SAMPLES STATISTICS 



Grab start - Trial 1 and Trial 2 
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VARIABLE 

BT 

FT 

TT 

FD 

V 

TA 

EA 

VI 

HI 

PAIRED SAMPLES CORRELATIONS 

correlation 

0.584 

0.860 

0.720 

0.871 

0.855 

0.668 

0.714 

0.811 

0.740 

significance 

0.003 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

PAIRED SAMPLES TEST 

t-value 

1.845 

0.099 

1.703 

0.380 

0.089 

-0.489 

-0.503 

-0.070 

-1.937 

significance 

0.079 

0.922 

0.103 

0.708 

0.930 

0.630 

0.620 

0.945 

0.066 

Track start - Trial 1 and Trial 2 

VARIABLE 

BT 

FT 

TT 

FD 

V 

TA 

EA 

VI 

HI 

PAIRED SAMPLES CORRELATIONS 

correlation 

0.677 

0.913 

0.786 

0.931 

0.787 

0.901 

0.856 

0.686 

0.878 

significance 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

PAIRED SAMPLES TEST 

t-value 

1.531 

0.643 

1.768 

-2.044 

-2.736 

0.940 

0.347 

0.580 

-0.465 

significance 

0.140 

0.527 

0.091 

0.053 

0.012 

0.357 

0.732 

0.570 

0.647 



Swing start - Trial 1 and Trial 2 
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VARIABLE 

BT 

FT 

TT 

FD 

V 

TA 

EA 

VI 

HI 

PAIRED SAMPLES CORRELATIONS 

correlation 

0.819 

0.872 

0.716 

0.936 

0.859 

0.852 

0.789 

0.859 

0.809 

significance 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

PAIRED SAMPLES TEST 

t-value 

1.035 

-2.630 

-0.357 

-2.087 

1.927 

-2.048 

-1.137 

-2.110 

-0.666 

significance 

0.312 

0.015 

0.725 

0.049 

0.067 

0.053 

0.268 

0.046 

0.512 
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APPENDIX I: 

ANOVA - TEST FOR HOMOGENEITY OF VARIANCES FOR 

DIVE START VARIABLES 
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VARIABLE LEVENE STATISTIC SIGNIFICANCE 

BT 

FT 

TT 

FD 

V 

TA 

EA 

VI 

HI 

1.1 

0.12 

0.034 

0.099 

0.031 

0.025 

0.114 

1.078 

5.463 

0.339 

0.887 

0.967 

0.906 

0.97 

0.976 

0.893 

0.346 

0.006 
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APPENDIX J: 

LEVENE'S TEST OF EQUALITY OF ERROR VARIANCES 

FOR DRY-LAND TESTS 



VARIABLE 

VJ 

PVJ 

CMJ 

PCMJ 

SQ40 

PSQ40 

SQ25 

PSQ25 

OT 

POT 

OTB 

POTB 

FVALUE 

0.658 

1.238 

0.488 

2.641 

3.816 

5.579 

2.839 

1.532 

0.028 

0.114 

0.015 

0.044 

SIGNIFICANCE OF F 

0.426 

0.278 

0.492 

0.119 

0.064 

0.028 

0.107 

0.229 

0.869 

0.739 

0.903 

0.837 

KEY: 

VJ Vertical jump 

CMJ Vertical jump, no arms 

SQ40 CES squat, power test 

SQ25 CES squat, strength test 

O T Overhead throw 

OTB Overhead throw, back extension 

P Post test 
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APPENDIX K: 

UNIVARIATE REPEATED MEASURES ANOVA - DRY-LAND TESTS 
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SOURCE 

TIME 

TIME BY GROUP 

VARIABLE 

VJ 

CMJ 

SQ40 

SQ25 

OT 

OTB 

VJ 

CMJ 

SQ40 

SQ25 

OT 

OTB 

F VALUE 

56.752 

34.296 

11.641 

9.433 

2.462 

4.288 

37.644 

26.626 

7.891 

2.861 

0.468 

0.365 

SIGNIFICANCE O F F 

0.000 

0.000 

0.003 

0.006 

0.132 

0.051 

0.000 

0.000 

0.011 

0.106 

0.501 

0.552 
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APPENDIX L: 

LEVENE'S TEST OF EQUALITY OF ERROR VARIANCE 

FOR DIVE START VARIABLES 
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VARIABLE 

BT 
PBT 

FT 

PFT 

TT 

PTT 

FD 

PFD 

V 

PV 

TA 

PTA 

EA 
PEA 

HI 

PHI 

VI 

PVI 

HIF 

PHIF 

HIH 

PHIH 

VIH 

PVIH 

GRAB 

F 

0.948 

4.872 

4.126 

0.055 

0.308 

5.909 

0.007 

4.261 

0.405 

0.839 

1.115 

0.29 

1.178 

0.361 

0.385 

1.269 

0.59 

0.334 

1.057 

2.285 

2.324 

0.057 

0.413 

0.342 

Sig of F 

0.341 

0.039 

0.055 

0.817 

0.585 

0.024 

0.935 

0.052 

0.531 

0.37 

0.303 

0.596 

0.29 

0.554 

0.542 

0.273 

0.451 

0.569 

0.316 

0.146 

0.142 

0.813 

0.527 

0.565 

TRACK 

F 

0.001 

0.101 

0.244 

0 

0.073 

2.526 

2.314 

0.68 

0.002 

0.015 

0.791 

0.532 

1.242 

0.643 

1.252 

0.011 

1.723 

0.021 

0.034 

0.088 

0.438 

5.738 

0.872 

1.015 

~ ~ " ~ • " " " • 

Sig of F 

0.973 

0.753 

0.626 

0.986 

0.789 

0.127 

0.143 

0.419 

0.963 

0.904 

0.384 

0.474 

0.278 

0.432 

0.276 

0.918 

0.203 

0.887 

0.856 

0.77 

0.515 

0.026 

0.361 

0.325 

SWING 

F 

1.06 

0.266 

0.16 

0.051 

1.811 

0.05 

0.978 

1.742 

1.389 

0.232 

0.003 

0.003 

0.302 

0.033 

0.513 

3.565 

0.828 

1.571 

— 

— 

— 

— 

— 

Sig of F 

0.315 

0.611 

0.693 

0.824 

0.193 

0.825 

0.334 

0.201 

0.252 

0.635 

0.956 

0.956 

0.589 

0.858 

0.482 

0.073 

0.373 

0.224 

— 

— 

— 

— 

— 

* "P" before a variable name refers to post-test. 
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APPENDIX M: 

REPEATED MEASURES MANOVA RESULTS FOR 

DIVE START VARIABLES 
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VARIABLE 

BT 

FT 

TT 

FD 

V 

TA 

EA 

HI 

VI 

HIF 

HIH 

VIH 

GROUP 

F 

0.289 

0.319 

0.234 

0.172 

1.195 

0.355 

0.300 

1.669 

0.791 

1.579 

0.202 

0.105 

Sig of F 

0.833 

0.812 

0.871 

0.914 

0.338 

0.786 

0.825 

0.207 

0.514 

0.231 

0.819 

0.901 

TIME 

F 

2.913 

6.278 

2.532 

0.689 

2.668 

8.967 

0.878 

16.221 

3.786 

13.254 

5.402 

7.083 

Sig of F 

0.061 

0.004 

0.088 

0.570 

0.077 

0.001 

0.470 

0.000 

0.028 

0.000 

0.013 

0.005 

GROUP 

F 

0.214 

0.264 

0.041 

0.912 

2.973 

3.605 

1.261 

3.685 

1.320 

0.000 

4.801 

1.452 

*TIME 

Sig of F 

0.885 

0.850 

0.989 

0.454 

0.058 

0.032 

0.316 

0.030 

0.297 

1.000 

0.020 

0.258 
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APPENDIX N: 

DESCRIPTIVE DATA AND UNIVARIATE ANOVA RESULTS FOR 

DIVE START VARIABLES - SPSS OUTPUT 



BLOCK TIME 
179 

Descriptive Statistics 

grab 

PbfU 

block time 
track 

HBI 1 

block time 
swing 

PBTS 

GROUP 

2.00 

Total 
1.00 

2.00 

Total 

•TOO 
2.00 

Total 
1.00 

2.00 

Total 
1.00 ' 

2.00 

Total 
1.00 

2.00 

Total 

Mean 
.934b 

.9258 

.9300 

.9582 

.9458 

.9517 

.9555 

.9679 

.9620 

.9455 

.9308 

.9378 

1.1286 

1.1533 

1.1415 

1.0964 

1.1142 

1.1057 

Std. 
Deviation 

?.847E-ci5 
7.051 E-02 

6.053E-02 

.1072 

5.213E-02 

8.139E-02 

7.289E-02 

7.545E-02 

7.281 E-02 
h 8.214E-02 

7.763E-02 

7.833E-02 

9.626E-02 

6.830E-02 

8.187E-02 

8.334E-02 

8.597E-02 

8.328E-02 

N 

^1T™ 
12 

23 

11 

12 

23 

11 

12 

23 

11 

12 

23 

11 

12 

23 

11 

12 

23 

Univariate Tests 

Sphericity Assumed 

Source 
11Mb 

TIME* 
GROUP 

Error(TIME:) 

Measure 
GkAB 
TRACK 

SWING 

GRAB 
TRACK 
SWING 

GRAB 
TRACK 

SWING 

Type III 
S u m of 
Squares 

5.454E-03 
6.361 E-03 

1.465E-02 

3.794E-05 

2.105E-03 

1.364E-04 

5.933E-02 

6.451 E-02 

5.378E-02 

df 
1 
1 

1 

1 

1 

1 

21 

21 

21 

Mean 
Square 

5.464E-03 
6.361 E-03 
1.465E-02 

3.794E-05 

2.105E-03 

1.364E-04 

2.825E-03 

3.072E-03 

2.561 E-03 

F 

1.934 
2.071 
5.719 

.013 

.685 

.053 

Sig. 

.179 

.165 

.026 

.909 

.417 

.820 

Noncent. 
Parameter 

1.934 

2.071 

5.719 

.013 

.685 

.053 

Observed 
Power3 

.264 

.279 

.626 

.051 

.124 

.056 

a- Computed using alpha = .05 

FLIGHT TIME 
Descriptive Statistics 

GROUP 
nigni 

time grab 

PFTCi 

flight 
time track 

PFTT 

flight 
time 
swing 

PFTS 

2.00 

Total 

1.00 

2.00 

Total 

1.00 

2.00 

Total 

2.00 

Total 

1.00 

2.00 
Total 
1.00 

2.00 

Total 

Mean 
.itiii 

.2425 

.2474 

.2745 

.2717 

.2730 

.2727 

.2508 

.2613 

.2891 

.2825 

.2857 

.2673 

.2517 

.2591 

.2927 

.2867 

.2896 

Std. 
Deviation 

y.lbbfc-UZ ' 

5.770E-02 

7.424E-02 

7.866E-02 

8.077E-02 

7.795E-02 

7.682E-02 

7.292E-02 

7.394E-02 

6.774E-02 

7.149E-02 

6.821 E-02 

7.143E-02 

6.118E-02 

6.522E-02 

7.564E-02 

6.746E-02 

6.990E-02 

N 

12 

23 

11 

12 

23 

11 

12 

23 

11 

12 

23 

12 

23 

12 

23 



Sphericity Assumed 

Univariate Tests 
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Source 

TIMfc 

TIME* 
GROUP 

Error(TlM£) 

Measure 

GRAB 
TRACK 

SWING 

GRAB 
TRACK 

SWING 

GRAB 
TRACK 

SWING 

Type III 

S u m of 
Squares 

7:459E-03 
6.620E-03 

1.049E-02 

1.550E-04 

6.720E-04 

2.615E-04 

1.293E-02 

2.041 E-02 

1.329E-02 

df 

21 

21 

21 

Mean 

Square 
1 7:459E-u3 
6.620E-03 

1.049E-02 

1.550E-04 

6.720E-04 

2.615E-04 

6.156E-04 

9.719E-04 

6.327E-04 

F 

12.117 
6.811 

16.576 

.252 

.691 

.413 

Sig. 

.002 

.016 

.001 

.621 

.415 

.527 

Noncent. 
Parameter 

12.117 
6.811 

16.576 

.252 

.691 

.413 

Observed 

Power8 

.913 

.702 

.973 

.077 

.125 

.094 

a- Computed using alpha = .05 

TOTAL TIME 
Descriptive Statistics 

GROUP 

entry grab 

P1IG 

time to 
entry track 

Pin 

time to 
entry 
swing 

PTTS 

2.00 

Total 

1.00 

2.00 

Total 

1.60 

2.00 

Total 

100 

2.00 

Total 

1.00 

2.00 

Total 

1.00 

2.00 

Total 

Mean 
™1.1bV3 

1.1683 

1.1774 

1.2327 
1.2175 

1.2248 

1.2282 
1.2179 

1.2228 

1.2345 
1.2133 

1.2235 

1.3959 

1.4050 

1.4007 

1.3891 

1.4008 

1.3952 

Std. 
Deviation 

7.673E-02 

8.330E-02 

.1304 
6.482E-02 

9.945E-02 

.1062 
8.058E-02 

9.166E-02 

7.866E-02 
.1081 

9.364E-02 

.1015 
6.512E-02 

8.260E-02 

9.093E-02 
.1052 

9.657E-02 

N 
11 
12 

23 

11 
12 

23 

11 
12 
23 

11 
12 
23 

11 
12 
23 

11 
12 
23 

Univariate Tests 

Sphericity Assumed 

Source 
11Mb 

TIME * " 
GRO U P 

Measure 
UKAB 
TRACK 

SWING 
GRAB 

TRACK 

SWING 

Error(TIMb) GRAB 
TRACK 

SWING 

Type III 
Sum of 
Squares 

9.095E-06 
3.463E-04 

3.954E-05 

3.439E-04 

2.017E-05 

6.798E-02 

6.376E-02 

6.565E-02 

a- Computed using alpha = .05 

df 

21 
21 

21 

Mean 
Square 

2.55yh-u2" 

9.095E-06 
3.463E-04 

3.954E-05 

3.439E-04 

2.017E-05 

3.237E-03 
3.036E-03 

3.126E-03 

F 
T53B" 

.003 

.111 

.012 

.113 

.006 

Sig. 
"TJTO" 
.957 

.743 

.913 

.740 

.937 

Noncent 
Parameter 

.003 

.111 

.012 

.113 

.006 

Observed 
Power3 

7BT 
.050 
.062 

.051 

.062 

.051 
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FLIGHT DISTANCE 

Descriptive Statistics 

distance, 

grab 

PFDG" 

flight 
distance, 

track 

PFDT 

flight 
distance, 

swing 

PI-DtJ 

GROUP 
1.UU 

2.00 

Total 

1.00 
2.00 

Total 

1.00 

2.00 

Total 

1.00 

2.00 

Total 

1.00 

2.00 

Total 

1.00 

2.00 

Total 

Mean 

264.473 
264.542 

264.509 

265.636 

265.167 

265.391 

286.373 

280.025 

283.061 

282.364 

284.833 

283.652 

273.023 

270.842 

271.885 

274.182 

277.833 

276.087 

Std. 

Deviation 
""24.269/ 

23.7303 

23.4372 

20.5732 

34.9567 

28.3449 

18.1327 

28.5212 

23.8053 

22.7124 

30.8658 

26.6912 

18.4749 

24.3218 

21.2641 

22.2792 

32.5292 

27.5350 

N 
11 

12 

23 

11 

12 

23 

11 

12 

23 

11 

12 

23 

11 
12 

23 

11 
12 
23 

Univariate Tests 

Sphericity Assumed 

Source 
IIMfc 

TIME* 
GROUP 

Measure 
UWAB 

TRACK 
SWING 

GRAB 
TRACK 
SWING 

ErrortJIMfc) GRAB 

TRACK 

SWING 

Type III 
Sum of 
Squares 

1.833 

190.639 

.833 
223.100 

97.620 

1390.091 
2303.797 

2182.797 

df 
Mean 
Square 

-9TTS0" 
1.833 

190.639 

.833 
223.100 

97.620 

66.195 
109.705 

103.943 

— T 3 T 
.017 
1.834 

.013 
2.034 

.939 

Sig. 
TTT 
.898 
.190 

.912 

.169 

.344 

Noncent. 
Parameter 

Observed 
Power3 

-T3T 
.017 
1.834 

.013 
2.034 
.939 

T58T 
.052 
.253 

.051 

.275 

.152 

a Computed using alpha = .05 



VELOCITY 
Descriptive Statistics 

GROUP 
resuiiani 
velocity 
grab 

PVU 

resultant 
velocity 
track 

PVT 

resultant 
velocity 
swing 

PVS 

I.UU 

2.00 

Total 

1.00 

2.00 

Total 

1.00 

2.00 

Total 
1.00 

2.00 

Total 

1.00 

2.00 

Total 

1.00 
2.00 
Total 

Mean 
"' JMo.Woo 

313.0375 

314.2370 

307.3273 

315.7833 

311.7391 

345.6500 

341.5250 

343.4978 

333.0818 

347.9250 

340.8261 

312.4636 

321.3000 

317.0739 

311.3727 

333.8917 

323.1217 

Std. 
Deviation 

22.5883 

25.7145 

26.3259 

34.1340 

30.2695 

27.5262 

25.0221 

25.7274 

29.6874 

25.6033 

28.0330 

33.2834 

17.6295 

26.0519 

35.5354 

35.4069 

36.5116 

N 
TT-

12 

23 

11 

12 

23 

11 

12 

23 

11 

12 

23 

11 

12 

23 

11 

12 

23 

Univariate Tests 

Sphericity Assumed 

Source 
IIMt 

TIME* 
GROUP 

ErronTIME) 

Measure 
UKAb 

TRACK 

SWING 

GRAB 
TRACK 

SWING 

GRAB 
TRACK 
SWING 

Type III 
S u m of 
Squares 

55.934 
109.177 
379.550 

344.949 
1032.446 
537.220 

1785.867 
2987.508 
3491.504 

df 
1 

21 

21 

21 

Mean 
Square 
85.934 

109.177 

379.550 

344.949 

1032.446 

537.220 

85.041 

142.262 

166.262 

F 

1.010 
.767 

2.283 

4.056 
7.257 
3.231 

Sig. 
.326 

.391 

.146 

.057 

.014 

.087 

Noncent 
Parameter 

I.OIfl 
.767 

2.283 

4.056 

7.257 

3.231 

Observed 
Power3 

.160 

.133 

.303 

.485 

.729 

.404 

a Computed using alpha = .05 

TAKE-OFF ANGLE 
Descriptive Statistics 

taKe-orr 
angle grab 

PTAG 

take-on 
angle 
track 

PTAT 

take-off 
angle 
swing 

PTAS 

GROUP 

2.00 
Total 

" 1.06 
2.00 

Total 
1.00 

2.00 

Total 
" 1.00 

2.00 

Total 
- 1.06 

2.00 

Total 
1.00 ' 

2.00 

Total 

-o.24bo 
-8.1000 

-6.7348 

-5.1091 

-7.6000 

-6.4087 

-10.7864 

-13.3167 

-12.1065 

-10.1909 

-10.1167 

-10.1522 

-6.8045 

-9.2708 

-8.0913 

-6.1545 

-7.5833 

-6.9000 

Std. 
Deviation 

8.4636 

6.0936 

7.2974 

7.5718 

6.1640 

6.8320 

7.3479 

7.4142 

7.3278 

7.6020 

5.6018 

6.4776 

7.2617 

7.1212 

7.1352 

6.9155 

6.9157 

6.7959 

N 
11 

12 

23 

11 
12 

23 

12 

23 

12 

23 

12 

23 

12 

23 



Sphericity Assumed 

Univariate Tests 
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Source 

unfit 

-

TIME* 
GROUP 

ErrorCTIME) 

Measure 

UKAb 
TRACK 

SWING 

GRAB 
TRACK 

SWING 

GRAB 

TRACK 

SWING 

Type III 
Sum of 
Squares 

1.162 
41.337 

15.679 

.379 

19.466 

3.089 

30.898 

38.166 

| 29.540 

df 

21 

21 

21 

Mean 
Square 

1.162 
41.337 

15.679 

.379 

19.466 

3.089 

1.471 

1.817 

1.407 

F 
.790 

22.745 

11.146 

.258 

10.711 

2.196 

Sig. 

.3W 

.000 

.003 

.617 

.004 

.153 

Noncent 
Parameter 

.790 
22.745 

11.146 

.258 

10.711 

2.196 

Observed 
Powei3 

.135 

.995 

.889 

.077 

.877 

.293 

a- Computed using alpha = .05 

ENTRY ANGLE 

•6TOT" 
angle 

grab 

-PERT 

entry 
angle 

track 

•PEKT 

errtry 

angle 

swing 

TEES" 

GROUP 
I.UU ' 

2.00 

Total 

T O D 

2.00 

Total 

T O O — 
2.00 

Total 

TOO 
2.00 

Total 

TUB 
2.00 

Total 

T O O — 
2.00 

Total 

Descriptive Statistics 

Mean 

38.0000 

39.4217 

39.7591 

39.3083 

39.5239 

40.6636 

38.2500 

39.4043 

40.7227 

39.7917 

40.2370 

38.5591 

35.9333 

37.1891 

39.1273 

37.2375 

38.1413 

Std. 
Deviation 

irsTO-
7.9326 

7.4456 

7.5183 

5.9803 

6.6052 

6.5995 

8.0200 

7.3128 

8.0549 

6.3355 

7.0559 

6.5077" 

7.1061 

6.8042 

7.4580 

6.8865 

7.0659 

TT 
12 

23 

11 

12 

23 

11 

12 

23 

11 

12 

23 

TT 
12 

23 

11 

12 

23 



Sphericity Assumed 

Univariate Tests 

Source 
IIMfc 

Measure 
bNIANUU 

ENTANGT 
ENTANGS 

TIME* bNTANGG 
GROUP ENTANGT 

ENTANGS 
brror(HME) bNTANGG 

ENTANGT 

ENTANGS 

Type III 
Sum of 
Squares 
2\ob-02 
7.353 
10.060 
18.251 
6.307 

1.554 
122.647 
221.707 
283.559 

df 

a Computed using alpha = .05 

HORIZONTAL IMPULSE 

Mean 
Square 

TBFoT 
7.353 
10.060 
18.251 
6.307 
1.554 
5.840 
10.557 
13.503 

Univariate Tests 

Sphericity Assumed 

"TJbT 
.696 
.745 

3.125 
.597 
.115 

184 

Sig. 

.413 

.398 

.092 

.448 

.738 

Noncent 
Parameter 

TJDT 
.696 
.745 

3.125 
.597 
.115 

Observed 
Power* 

TJoTT 

Descriptive Statistics 

GROUP 

impulse, 
grab 

rHICi 

hor 
impulse, 
track 

KHII 

hor 
impulse, 
swing 

PHIS 

I.UU 

2.00 

Total 

1.00 
2.00 

Total 

1.00 
2.00 

Total 

1.00 
2.00 

Total 

1.00 
2.00 

Total 

1.00 

2.00 

Total 

Mean 

184.533 

180.802 

163.836 

175.933 

170.148 

201.968 

197.646 

199.713 

198.236 

220.392 

209.796 

187.618 

205.554 

196.976 

180.891 

196.350 

188.957 

Std. 
Deviation 

"••T4.ul66 

17.0160 

15.8095 

10.1171 

16.0443 

14.6086 

26.6806 

35.2016 

30.7899 

33.6419 

39.0016 

37.4574 

15.8754 

22.8009 

21.4108 

13.7858 

21.5949 

19.5422 

N 
TT 
12 
23 
11 
12 
23 

11 

12 

23 

11 

12 

23 

11 

12 

23 

11 

12 

23 

Source 
11Mb 

TIME* 

GROUP 

Error(TIME) 

Measure 

GRAB 
TRACK 

SWING 

GRAB 
TRACK 

SWING 

O
 
7i
 

Type III 
S u m of 
Squares 

1325.895 
1037.442 

728.327 

52.946 

2011.755 

17.605 

959.201 

7365.687 

2217.210 

df 

21 

21 

21 

Mean 
Square 

1325.895 
1037.442 

728.327 

52.946 

2011.755 

17.605 

45.676 

350.747 

105.581 

F 
29.028 
2.958 

6.898 

1.159 

5.736 

.167 

Sig. 

.000 

.100 

.016 

.294 

.026 

.687 

Noncent 
Parameter 

29.028 
2.958 

6.898 

1.159 

5.736 

.167 

Observed 
Power3 

.999 

.375 

.707 

.177 

.627 

.068 

a- Computed using alpha = .05 



VERTICAL IMPULSE 
185 

Descriptive Statistics 

GROUP 
I.UU 
2.00 

Total 

•Pvnr T5u-
2.00 

Total 

"vTT TW 
2.00 
Total 

TvTT 
2.00 

Total 

•715" "ToTT 
2.00 

Total 
•PvTS- "Too-

2.00 

Total 

Mean 
—"5STOB" 

58.4708 

58.8022 

62.4273 

66.1000 

64.3435 

74.6636 

83.3625 

79.2022 

Std. 
Deviation 

35.9788 

33.0537 

32.3779 

23.8208 

27.6359 

TT 
12 

23 

68.3182 

92.0083 

80.6783 

100.3409 

105.6500 

103.1109 

110.5000 

127.4750 

119.3565 

22.3719 

37.6459 

30.9168 

36.1254 

36.5451 

37.5150 

17.1279 

25.0316 

21.3071 

26.7880 

35.6007 

32.1723 

11 

12 

23 

"TT 
12 

23 

11 

12 

23 

Univariate Tests 

Sphericity Assumed 

Source 
11Mb 

TIME* 
GROUP 

Error(TIME) 

Measure 
IjKAB 
TRACK 
SWING 

GRAB 
TRACK 
SWING 

GRAB 
TRACK j 
SWING 

Type III 
Sum of 
Squares 
340.483 
15.185 

2935.514 

54.688 
644.902 

390.529 

6267.374 
4384.050 

4954.651 

df 

21 
21 

21 

Mean 
Square 

340.483 
15.185 

2935.514 

54.688 

644.902 

390.529 

298.446 
208.764 

235.936 

F 
•1.141 
.073 

12.442 

.183 

3.089 

1.655 

Sig. 
.298 
.790 
.002 

.673 

.093 

.212 

Noncent. 
Parameter 

•1.141 
.073 

12.442 

.183 

3.089 
1.655 

Observed 
Power8 

.175 

.058 

.920 

.069 

.389 

.233 

a- Computed using alpha = .05 

HORIZONTAL IMPULSE - FEET 
Descriptive Statistics 

Hll-b 

PHIFG 

HIFT 

PHIM 

GROUP 

2.00 
Total 

1.00 
2.00 
Total 

1.00 
2.00 
Total 

1.00 
2.00 

Total 

Mean 

ie&.wi 
180.2083 
174.4304 

157.9182 
170.0000 
164.2217 

126.7045 
132.0542 
129.4957 

121.2636 
126.4417 
123.9652 

Std. 
Deviation 

16.1619 

20.2512 
19.0226 

11.6576 
18.0762 
16.2242 

22.1683 
24.5557 
23.0724 

23.3238 
22.6897 
22.6203 

N 
11 
12 
23 

11 
12 
23 

11 
12 
23 

11 
12 
23 



186 
Univariate Tests 

Sphericity Assumed 

Source Measure 

TRACK 

GROUP TRACK 

brror( 11 McJ GRAB 
TRACK 

a- Computed using alpha 

Type III 
Sum of 
Squares 

1196.239 
350.597 

1.647E-06 
8.449E-02 

904.877 
4805.170 

= .05 

df 

21 
21 

Mean 
Square 
1195.239" 
350.597 

1.647E-06 
8.449E-02 

43.089 

228.818 

F 

1.532 

.000 

.000 

Sig. 
.000" 
.229 

1.000 

.985 

Noncent 
Parameter 

27.7B2-

1.532 

.000 

.000 

Observed 
Power* 

.995-

.219 

.050 

.050 

HORIZONTAL IMPULSE - HANDS 
Descriptive Statistics 

riiiitj 

PHIHG 

HIHT 

PHIHT 

GROUP 
I.UU 

2.00 

Total 

1.00 
2.00 
Total 

1.00 
2.00 
Total 

1.00 
2.00 
Total 

Mean 
U.o'lHS 
4.3250 
6.3717 

5.9182 
5.9583 
5.9391 

75.2636 
65.5917 
70.2174 

77.0091 
93.9500 
85.8478 

Std. 
Deviation 

/.33U8 

13.3197 
10.8588 
7.4818 
7.3058 
7.2203 
20.5533 
32.6611 
27.3824 

19.9421 
41.1618 
33.2082 

N 
11 

12 
23 
11 
12 
23 
11 
12 
23 
11 
12 
23 

Univariate Tests 

Sphericity Assumed 

Source 
11Mb 

Measure 
"URBB— 
TRACK 

TTMTr* GRAB 
GROUP TRACK 
ErrorfriMt) GRAB 

TRACK 

Type III 
Sum of 
Squares 

-37ToT 
2600.509 

53.545 
2032.356 

630.686 
4920.713 

df 
Mean 
Square 
TTSF 

2600.509 
53.545 

2032.356 

30.033 
234.320 

.lUD 

11.098 

1.783 
8.673 

Sig. 
-74T 
.003 

.196 

.008 

Noncent. 
Parameter 

TTJT 
11.098 

1.783 
8.673 

Observed 
Power8 

TJBT 
.888 

.247 

.802 

a- Computed using alpha = .05 

VERTICAL IMPULSE - HANDS 

Descriptive Statistics 

-vTrTG 

PVIHG 

VIM 

PVIHI 

GROUP 

2.00 
Total 

1.00 
2.00 
Total 

1.00 
2.00 
Total 

1.00 
2.00 
Total 

Mean 
1bb.ut>b4 

145.9708 
155.5913 

169.9091 
178.1917 
174.2304 

195.4045 
187.8375 
191.4565 

225.5182 
240.8417 

233.5130 

Std. 
Deviation 

""Ti./oSto 
68.3044 
69.6016 

77.7852 
65.9121 
70.2876 

62.0262 
86.9300 
74.4453 

90.0703 
75.1298 

81.0621 

N 

12 
23 

12 
23 

11 
12 
23 

11 
12 

22J 
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Univariate Tests 

Sphericity Assumed 

Source 
(1Mb 

TIME* 
GROUP 

Error(TIME) 

Measure 
UKAB 
TRACK 

GRAB 
TRACK 
GRAB 
TRACK 

Type 111 
Sum of 
Squares 

3727.562 
19824.590 

2314.168 

1503.584 

20710.207 

34509.996 

df 
1 
1 
1 

1 

21 

21 

Mean 
Square 

3727.562 
19824.590 

2314.168 

1503.584 

986.200 

1643.333 

F 
3.780 

12.064 

2.347 

.915 

Sig. 
.065 
.002 

.140 

.350 

Noncent 
Parameter 

3.780 
12.064 

2.347 

.915 

Observed 
Power3 

.456 

.912 

.310 

.150 

a- Computed using alpha = .05 
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APPENDIX O: 

PEARSON'S BIVARIATE CORRELATION MATRIX - DRY-LAND TESTS 

AND FLIGHT DISTANCE 



PVJ PCMJ PLEGPOWE PLEGSTRG PSHOT1 PSHOT2 

PVJ 

PCMJ 

PLEGPOWE 

PLEGSTRG 

PSHOT1 

PSHOT2 

PFDG 

PFDS 

PFDT 

1 
( 
p= 

( 
p= 

( 
p= 

( 
p= 

( 
p= 

( 
p= 

( 
p= 

( 
p= 

( 
p= 

0000 
23) 

.7132 
23) 
.000 

.5138 
23) 
.012 

.1637 
23) 
.456 

.6144 
23) 
.002 

.4312 
23) 
.040 

.7359 
23) 
.000 

.8352 
23) 
.000 

.6896 
23) 
.000 

( 
P= 

1 
( 
P= 

( 
P= 

( 
P= 

( 
P= 

( 
P= 

( 
P= 

( 
P= 

( 
P= 

.7132 
23) 
.000 

.0000 
23) 

.7141 
23) 
.000 

.4505 
23) 
.031 

.7118 
23) 
.000 

.4040 
23) 
.056 

.5975 
23) 
.003 

.6499 
23) 
.001 

.6270 
23) 
.001 

( 
P= 

( 
P= 

1 
( 
P= 

( 
P= 

( 
P= 

C 
P= 

( 
P= 

( 
P= 

( 
P= 

.5138 
23) 
.012 

.7141 
23) 
.000 

.0000 
23) 

.7692 
23) 
.000 

.6074 
23) 
.002 

.3507 
23) 
.101 

.3095 
23) 
.151 

.3285 
23) 
.126 

.3362 
23) 
.117 

( 
P= 

( 
P= 

( 
P= 

1 
( 
P= 

( 
P= 

( 
P= 

( 
P= 

( 
P= 

( 
P= 

.1637 
23) 
.456 

.4505 
23) 
.031 

.7692 
23) 
.000 

.0000 
23) 

.1858 
23) 
.396 

.1085 
23) 
.622 

.1322 
23) 
.548 

.0954 
23) 
.665 

.1903 
23) 
.384 

( 
P= 

( 
P= 

( 
P= 

( 
P= 

1 
( 
P= 

( 
P= 

( 
P= 

( 
P= 

( 
P= 

.6144 
23) 
.002 

.7118 
23) 
.000 

.6074 
23) 
.002 

.1858 
23) 
.396 

0000 
23) 

7030 
23) 
.000 

4274 
23) 
.042 

.4771 
23) 
.021 

.4393 
23) 
.036 

( 
P= 

( 
P= 

( 
P= 

( 
P= 

( 
P= 

1 
( 
P= 

( 
P= 

( 
P= 

( 
P= 

.4312 
23) 
.040 

.4040 
23) 
.056 

.3507 
23) 
.101 

.1085 
23) 
.622 

.7030 
23) 
.000 

.0000 
23) 

.4005 
23) 
.058 

.4465 
23) 
.033 

.5645 
23) 
.005 


