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Abstract. Prudence analysis (PA) is a relatively new, practical and highly 

innovative approach to solving the problem of brittleness. PA is essentially an 

incremental validation approach, where each situation or case is presented to 

the KBS for inferencing and the result is subsequently validated. Therefore, 

instead of the system simply providing a conclusion, it also provides a warning 

when the validation fails. This allows the user to check the solution and correct 

any potential deficiencies found in the knowledge base. There have been a 

small number of potentially viable approaches to PA published that show a high 

degree of accuracy in identifying errors. However, none of these are perfect, 

very rarely a case is classified incorrectly and not identified by the PA system. 

The work in PA thus far, has focussed on reducing the frequency of these 

missed warnings, however there has been no studies on the affect of these on 

the final knowledge base’s performance. This paper will investigate how these 

errors in a knowledge base affect its ability to correctly classify cases. The 

results in this study strongly indicate that the missed errors have a significantly 

smaller influence on the inferencing results than would be expected, which 

strongly support the viability of PA.  

Keywords. Prudence analysis, knowledge acquisition, verification and 

validation, ripple-down rules, knowledge based systems 

1 Introduction 

Brittleness has been investigated from many possible sides. For instance, 

methodologies such as Knowledge Acquisition and Design Structuring (KADS) [1], 

were developed to help extract deeper forms of knowledge. Other systems such as 

Cyc [2] attempted to capture the majority of general knowledge to help soften the 

landing of KBSs when they left their core domain. A third area of investigation 

moved away from finding better methods of acquiring knowledge, and instead, 

developed a means of checking whether a KB was complete. This process is 

commonly referred to as Verification and Validation (V&V) [3]. 
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V&V, however, is performed with known cases, where the inferenced results can 

be verified by an expert. Once the system goes online, not all cases can be checked by 

the expert and any errors by the system go mostly unnoticed. Prudence analysis (PA) 

is a relatively new, practical and highly innovative approach to solving the problem of 

brittleness. A PA enabled KBS has the ability to detect when an inferenced solution to 

a case may be wrong. While the few attempts at developing a PA system have had 

varying degrees of success, none are perfect. Occasionally a case is classified 

incorrectly and not identified by the PA system. The work in PA thus far has focussed 

on reducing the frequency of these missed warnings, however there has been no 

studies on the affect of these on the final knowledge base’s performance.  

This paper will investigate how these errors in a knowledge base affect its ability to 

correctly classify cases. It will do this by focussing on one of the more successful 

approaches and determining the classification ability of a knowledge base developed 

by a user that trusts the PA system. Firstly, a discussion of the various PA systems 

will be discussed followed by an explanation of the system being used in this study. 

Finally, the experiments performed will be discussed along with their implications on 

the viability of PA.  

2 Prudence Analysis (PA) 

V&V attempts to identify whether all the possible cases are covered by the KBS. 

Alternatively, in the subfield of anomaly detection a system is analysed holistically to 

find structural anomalies, such as redundancies, conflicts or dead ends [4]. PA, 

however, only uses actual cases as they are presented. Currently, PA has only been 

studied by a minority of researchers, all of whom have centred their studies on a 

single family of KBSs, referred to as Ripple-Down Rules (RDR) [5]. The primary 

reason for this is that RDR is an incremental KA and maintenance methodology with 

a flexible and maintainable structure.  

The first work carried out relating to prudence checking was known as WISE by 

[6] and [7], which, after inferencing in standard RDR was complete, would search the 

RDR tree for repeated instances of the conclusion found. The paths to these 

conclusions were then compared to test the usefulness of storing the history of 

corrections. It was found that apart from adding to the explanation ability of the KBS 

it may be possible to also use such information for prudence checking [8]. 

WISE was later extended using reflective learning through what [7, 9, 10], termed 

prudence and credentials. The system developed was called Feature Recognition 

Prudence (FRP) which tested if further inferencing beyond the similarly matched 

conclusions was possible and resulted in different conclusions. Such situations 

indicated that there was a possibility of an error in the original conclusion found.  

A second approach taken at the same time for prudence detection was Feature 

Exception Prudence (FEP), where, after a conclusion was generated, the system 

looked at the database and flagged features of the current case that have not been 

previously validated by the expert as permissible. If any flags are generated then the 

conclusion is identified as potentially invalid. These systems were used on the 

LabWizard ES showing the potential of finding all errors. However, it did suffer from 
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a large quantity of false positives [7, 9, 10]. A later study by [11] into prudence 

checking methods questions Edwards’s results claiming they are highly reliant on the 

expert, order of cases and the nature of the dataset used. 

While there are interesting features in Edwards’s work, the fundamental problem is 

that there must already be knowledge within the KB for it to be able to predict 

missing knowledge, which does not truly solve the full prudence problem. [12] took a 

new approach of comparing cases with previously seen cases within context, and 

provided warnings if they differed in some unusual way. Basically, the method 

compared individual value-attribute pairs and warned if they exceeded what had been 

previously seen. This simple method achieved a reasonably high level of accuracy on 

some datasets with significantly less false positives. However, it concluded that the 

results were still not sufficiently accurate and still produced too many warnings to be 

applied in a real world application.  

Recently two more studies have been conducted simultaneously. One is the basis 

of this study and will be discussed in detail in the next section while the other was a 

PhD thesis by [13]. This study continued [12] work by including two improvements. 

Firstly, the study included using attribute combinations to help reduce the amount of 

false negatives. The second improvement was to also develop a probabilistic profile 

of continuous attributes, which allowed a reduction in the number of false positives.  

This study’s results indicate a reduction in false positives and more accurate 

warnings.  

There is one significant difference between all of the above PA systems and the 

one used in this study. All the above systems based their warnings on the raw 

attributes of the case, either compared to the whole KB or in the context of the 

classification. Therefore, if a warning is missed for a particular case, it will always be 

missed for that case. This is because the case does not have the attributes required to 

cause the warning. The system used in this study produces warnings based on the 

structure of the knowledge base and the paths traversed during inferencing. 

Additionally, it learns which paths are used consistently. This allows the system to 

produce warnings for cases that earlier it may have missed.  

3   Methodology 

One problem with the above approaches is the reliance on attributes existence or 

absence in a case for warnings. This limit’s the methods ability to be applied 

primarily in domains with a controlled number of only relevant attributes. Domains 

with large amounts of irrelevant attributes such as free text classification will tend to 

produce large amounts of false positives. The work in this paper has taken a 

significantly different approach. Instead of looking at attributes, it analysis the 

structure of the rule base and the paths followed by the inferencing process. 

Therefore, the method described in this paper is knowledge driven, rather than the 

previous approaches which were data driven.  

The method developed is based on an algorithm built for classification and 

prediction, referred to as Rated MCRDR (RM). MCRDR (Multiple Classification 

Ripple-Down Rules) [14] is an extension of RDR developed to cater for multiple 
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conclusions per case. This section will first briefly overview MCRDR and RM. This 

will be followed by a discussion of how RM has been applied to prudence analysis. 

3.1   Multiple Classification Ripple-Down Rules 

Ripple-Down Rules is a maintenance centred methodology for a KBS based approach 

using the concept of fault patching [15] and was first proposed by [5]. It utilises a 

binary tree as a simple exception structure aimed at partially capturing the context that 

knowledge is obtained from an expert. The context is the sequence of rules that had 

evaluated to provide the given conclusion [5, 16-20]. Therefore, if the expert 

disagrees with a conclusion made by the system they can change it by adding a new 

rule. The new rule will only fire if the same path of rules is evaluated [18]. 

Ripple-Down Rules has been shown to be a highly effective tool for knowledge 

acquisition (KA) and knowledge maintenance (KM). However, it lacks the ability to 

handle tasks with multiple possible conclusions. Multiple Classification Ripple-Down 

Rules (MCRDR) aim was to redevelop the RDR methodology to provide a general 

approach to building and maintaining a Knowledge Base (KB) for multiple 

classification domains. The methodology developed by [14] is based on the proposed 

solution by [17, 18]. The primary shift was to switch from the binary tree to an n-ary 

tree representation. The main difference between the systems is that RDR has both an 

exception (true) branch and an if-not (false) branch, whereas MCRDR only has 

exception branches.  

Knowledge is acquired by inserting new rules into the MCRDR tree when a 

misclassification has occurred. The new rule must allow for the incorrectly classified 

case, identified by the expert, to be distinguished from the existing stored cases that 

could reach the new rule [21]. This is accomplished by the user identifying key 

differences between the current case and each of the rules’ cornerstone cases. 

3.2   Rated MCRDR 

The hybrid methodology developed in this paper, referred to as Rated MCRDR (RM), 

combines MCRDR with an artificial neural network (ANN). This function fitting 

algorithm learns patterns of fired rules found during the inferencing process. The 

algorithm is shown diagrammatically in Fig 1. Firstly, a case is presented to the 

MCRDR tree, which classifies the case. Then for each rule in the inference, an 

associated input neuron will fire. The network then produces a vector of output 

values, v , for the case presented. The system, therefore, essentially provides two 

separate outputs; the case’s classifications and an associated set of values. 

Learning in RM is achieved in two ways. Firstly, the value for each corresponding 

value for v  receives feedback from the environment concerning its accuracy. The 

network learns by either using the standard backpropagation approach using a 

sigmoid thresholding function, and the MCRDR component still acquires knowledge 

in the usual way. The only exception is when the expert adds a new rule to MCRDR. 

As the input space grows,  new input nodes need to be added to the network in such a  
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Fig. 1. RM illustrated diagrammatically.  

way that does not damage already learned information. Therefore, the network 

structure needed to be altered by adding shortcut connections from any newly created 

input nodes directly to each output node and using these connections to carry a weight 

adjustment. When a new input node is added, additional hidden nodes are added. Fig 

2, illustrates the process for adding new input and hidden nodes, it shows where new 

connections are added and what weights are given. 

The single-step-∆-initialisation-rule, Equation 1, directly calculates the required 

weight for the network to step to the correct solution immediately. This is 

accomplished by reversing the feedforward process back through the inverse of the 

symmetric sigmoid. It is possible for the expert to add multiple new rules for the one 

case. In these situations the calculated weight is divided by the number of new 

features, m. Finally, the equation is multiplied by the step-distance modifier, Zeta (ζ). 

Zeta (ζ) should always be set in the range 10 ≤≤ ζ . It allows adjustments to how 

large a step should be taken for the new features.  
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Original connections (not changed) 

New connections (set to zero) 

New connections (given random values) 

New connections (calculated using the Single-step-∆-initialisation-rule) 

a) Adding input node only. b) Adding both input and hidden node. 

Connections key 

    bias 

New Input Nodes New Hidden Node 

 

Fig. 2. Process used for adding new input and hidden nodes in RM. (a) shows how inputs are 

added by themselves. (b) shows how input and hidden nodes are added simultaneously. 

3.3   RM Applied to Prudence Analysis 

The basic idea behind applying RM to PA is to allow MCRDR to develop 

classifications in the general way, while the network passively watches rules being 

added to the MCRDR tree. As it watches it also attempts to identify the correct 

classifications. Through classification testing it was found that the classifications 

between the MCRDR component and the network often differed when MCRDR 

misclassified [22]. Therefore, the prudence system developed identifies these 

differences and warns the user that the classification by MCRDR could be wrong.  

Training is a simple process of identifying the correct classification that the expert 

has agreed to when accepting a case. Obviously, however, this can only be done when 

a warning has actually been generated. When no warning is generated the system is 

unable to train because the system cannot be certain whether the expert would have 

wanted to alter the classification. When a warning is given and the expert confirms a 

classification the reward is a positive value at the output where it should have been 

classified as a particular case and a negative value otherwise. 

Thresholding is performed on a per class basis. Basically, if the MCRDR and ANN 

classes were the same, then a warning was not generated. However, if the network’s 

absolute rating for a particular class was below a certain threshold then it was 

interpreted as the network being unsure of its rating, and therefore, a warning would 

be generated. This second method of warning only occurred when the network had 

the same result as the MCRDR inference engine. This simple tool was found to be 

highly effective at improving prediction. 
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The thresholding value was found to only really be needed during the early phase 

of knowledge acquisition. Therefore, the thresholding value was also made 

dynamically adjustable. When a warning was warranted, the threshold was increased 

and when the warning was not needed, the threshold was reduced. Once again, it 

could not be adjusted when there was no warning generated.  

4   Experimental Method 

The method was previously tested and compared against [12], where it performed 

well [23]. The purpose of this study is to test whether the performance in this earlier 

study have a significant impact on the resulting knowledge based system. It is 

possible that even a relatively small amount of inaccuracy in a prudence based system 

could result in large problems in the knowledge base. For instance, when an expert 

does not correct a rule, because it was not warned about, any of the following could 

result: 

1. The system may simply notice the next time a similar case arrives and warn 

the expert at this later stage. This option is not possible with the earlier forms 

of PA discussed in section 2. 

2. The missed rule may never be created and the prudence system may not 

warn about future cases that may have also caused the creation of the rule. 

3. The missed rule may have a compounding effect, where it causes rules that 

would have produced warnings later to now be missed because the 

knowledge base is damaged. This is a problem that potentially exists with the 

structurally based PA system in this paper but would not be expected in the 

earlier attribute based PA methods discussed in section 2. 

4. The compounding effect could be exponential resulting in a KB that is 

woefully inadequate. This also would not be a problem in the earlier attribute 

based approaches to PA. 

Without testing, it is unclear which of these results would occur. The greatest 

obstacle to the idea of prudence analysis using the structure of knowledge as a viable 

technique would be the compounding effect described in the last two points. The 

second issue will arise if the rules not created because of the missed warnings result in 

a KBS that is significantly damaged, which potentially would be the same for all PA 

methods. Therefore, the aim of this section is to determine the effect on the final KB 

when developed by a trusting expert. This has been tested by performing two separate 

experiments. The first result investigates the number of rules created to determine 

how well the KB progresses over time. The second test compares the trusted KB 

against the full KB when classifying unseen cases. Firstly, a description of the 

simulated experts and datasets used will be discussed. 

4.1 Simulated Experts 

One of the greatest difficulties in KA and KBSs research is how to evaluate the 

methodologies developed [24]. This is because any evaluation requires the use of 

people to actually build the system. Furthermore, the same experts would ideally be 
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used to compare two systems. Clearly, for this comparison to be meaningful they 

should also be built around the same domain. Therefore, the expert will have accrued 

some experience when building the first system and would provide better quality 

knowledge for the second system built. Even if the results of such a comparison could 

be gained in a meaningful way then finding an expert that is willing to provide their 

time to build two expert systems is next to impossible and would be prohibitively 

expensive.  

The solution to this evaluation problem taken by the majority of RDR based 

research has been to build a simulated expert, from which knowledge can be acquired 

(Compton 2000). Generally, this has been accomplished by first building a KB using 

another KBS. The KA tool being tested can then use the simulated expert as its source 

of knowledge. This allows the method being tested to build a new KBS which should 

have the same level of competence as the original KBS. It is this approach that has 

been taken in this paper. This section will discuss the two simulated experts created 

for the tests performed in this paper. 

4.1.1 C4.5 Simulated Expert 
The first simulated expert created is similar to those used in other RDR research such 

as the one used by [12]. The only purpose of the simulated expert is to select which 

differences in a difference list are the primary ones. It uses its own KB to select the 

symbols that will make up the new KB. C4.5 [25] is used to generate the simulated 

expert’s knowledge base. The resulting tree then classifies each case presented, just 

like our KB under development. If the KB being constructed, incorrectly classifies a 

case then the simulated expert’s decision tree is used to find attributes within rules 

that led to the correct classification. Any attributes that appear in the different list and 

are in the path of rules between the root and the concluding leaf node, are used to 

select the attributes. A maximum of two attributes were selected from the top down. 

This is similar to the ‘smartest’ expert created by [26]. 

4.1.2 Multi-Class Simulated Expert 
The fundamental problem with the above simulated expert is that it requires an 

induction system, such as C4.5, to generate a complete KB prior to its use. This is a 

problem because no such system is available that can create such a tree for a multiple 

classification domain. In C4.5, while there can be many conclusions, each case can 

only have a single associated class. However, the system being tested in this paper 

also targets multiple classification domains. Therefore, a second simulated expert was 

created specifically designed for handling a particular multiple classification based 

dataset.  

This heuristic based simulated expert calculates classifications based on a case’s 

attributes. The expert uses a table of randomly generated values, representing the 

level that each attribute, Aa ∈ , contributes to each class, Cc ∈ . Two rules were used 

in generating this stage of the expert’s classification. Firstly, each attribute contributes 

to one class positively (1 to 3) and one class negatively (-1 to -2) and the remaining 

classes are given a value of zero. Secondly, each class has one positive and one 

negative attribute from every |C| number of attributes. An example of an expert’s 

attribute table used is shown in Table 1. 
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 a b c d e f g h i j k l 

C1 0 0 -1 3 0 0 0 0 0 0 -1 3 

C2 0 0 0 -2 2 0 0 -2 0 0 1 0 

C3 0 -2 1 0 0 0 0 0 0 1 0 -1 

C4 -1 3 0 0 0 0 1 0 -1 0 0 0 

C5 0 0 0 0 -2 2 -2 0 2 0 0 0 

C6 2 0 0 0 0 -2 0 1 0 -2 0 0 

Table 1. Example of a randomly generated table used by the non-linear multi-class simulated 

expert. Attributes a - l are identified across the top, and the possible classes C1 – C6 down the 

left. 

When a case is presented to the expert it is tested to see which class it belongs by 

adding all the associated values for each attribute in each class. The expert will then 

classify the case according to which classes provided a positive, > 0, total. The reason 

for setting up the expert in this way was to ensure that every case presented to the 

expert would be classified in at least one or more classes. When creating a new rule, 

the expert selects the attribute from the difference list that distinguishes the new case 

from the cornerstone case to the greatest degree. 

4.3 Datasets 

Below is a list describing each of the three dataset used from the University of 

California Irvine Data Repository [27]. Each has a brief description and details the 

number of attributes each case has. 

 

• CHESS – Using the Chess end game of King+Rook (black) vs King+Pawn (white) 

on a7. This dataset has 36 attributes with a binary classification over 3196 cases. 

 

• TIC-TAC-TOE (TTT) – This dataset uses the complete collection of possible 

terminating board configurations for Tic-Tac-Toe. This dataset has 9 attributes 

with a binary classification over 958 cases. 

 

• GARVAN – This dataset uses a subsection of the full dataset that provided medical 

diagnoses for thyroid problems. This dataset has 29 attributes with 60 

classification. 

 

These three datasets were used as they are the same as those used by [12] study and 

thereby can be compared. A fourth dataset, the MULTI-CLASS dataset was also used 

to investigate how well the system performs in a multi-classification domain. The 

multi-class dataset had a variable number, between 3 and 9 of attributes per case. 

Therefore, it contained 3938 possible cases. 
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4.2   Rule Creation Comparison 

This first test was performed to investigate how many rules are created in a system 

where the expert trusts the prudence analysis. In these experiments each dataset was 

run with ten different parameter settings. These were selected to give a range of 

performances. For instance in the first run parameters were set to produce the highest 

accuracy while in the 10
th

 test it was set to the lowest accuracy for the system. In the 

experiment the rules were only corrected if there was a warning generated. Fig 3 

shows the results gathered in four stacked area charts, one for each dataset.  

The bottom area in each of the charts in Fig 3 show the percentage of rules created 

by the trusting expert against the total number a full expert would have created. In a 

system with full accuracy these would be the same giving an area of 100%. However, 

in systems with less accuracy this percentage would reduce. The second dark-grey 

area shows the percentage of rules we know were not warned about from the previous 

study [23]. If missed corrections are not fixed but all other rules are, as per the second 

point above, then the stacked percentage should be approximately 100%. This would 

be the theoretical result of the attribute based approaches from the earlier studies 

(section 2). If the missed rules are warned about later, as per the first point, then the 

percentage of the bottom area will increase resulting in the combined total for the two 

areas going over 100%. Thi is only possible in the structural based PA system in this 

paper and would indicate a significant advantage over the attribute based methods. If 

missed rules cause a compounding effect, where rules correctly warned about in the 

previous study are now missed because the knowledge base is incomplete, then the 

combined areas will drop below 100%. The attribute based approaches will not suffer 

from this and this would indicate a failing of the structural based approach.  
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Fig. 3. Four stacked area charts showing the effect on a KB when rules are missed. Error bars 

show the 95% confidence range. They are not shown on the top area as they are too small. 
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Upon inspection, it can be seen that the results are mixed. Both GARVAN and the 

Multi dataset maintain a total area above 100% for the majority of parameter set-

tings. This is an extremely promising result and indicates that the only rules missed 

are those not warned about and that some of these are even found later during the 

development cycle. This is a feature that would not be expected in the earlier attribute 

based systems as they contained no facility to find rules previously missed. However, 

the last two GARVAN results do start to degrade marginally, suggesting that this 

promising result is only possible when the accuracy is sufficiently high. The multi-

class dataset does not show the same drop on average but the error bars do indicate 

that this performance was beginning to be affected by the order cases were presented. 

Both the chess and TTT datasets’ results, however, are not as impressive. It can be 

seen that they drop off relatively quickly. These show that unless near perfect 

accuracy is achieved then there is a severe compounding effect. Not only did these 

experiments miss the rules not warned about but the damaged KB caused additional 

results not to be warned. While this degrading performance does not appear to be 

exponential, it does appear immediate. Unlike the GARVAN and multi dataset which 

tolerated a degree of missed rules, the chess and TTT datasets dropped off the 

moment the degree of accuracy started to reduce. The issue with these datasets is that 

they are both constructed from rigid environments where the smallest change in the 

position of a piece can significantly alter the case. Therefore, missed cases are more 

likely to have an affect on the resulting knowledge base.  

4.3 Classification Accuracy 

The promising results in the last section show that the only rules not created are those 

not warned about and that even some of these are still found later on. This is 

important for the viability of structurally based prudence analysis, however, it does 

not show what effect even these few missed rules have on the classification ability of 

the resulting knowledge base. To judge the overall affect on the KB, a generalisation 

test was performed on each dataset with both the full and trusting experts. Fig 4 

shows four charts showing nine classification tests. Each of the nine indicates how 

many 1/10th segments were used for training prior to being tested on the last 1/10th 

segment. The parameters chosen for each experiment all had the lower level of 

accuracy and therefore should result in the worst performance. 

Interestingly, the trusted KBs performed nearly as well across each of the datasets. 

On the multi-class dataset the KB is almost identical while the GARVAN dataset only 

degraded by less than 1%. This is remarkable as the KB had lost approximately 7% of 

its rules because the expert did not receive a warning. Likewise, a similar 

performance can be seen on the chess and TTT datasets. For instance, the chess 

dataset only lost a little over 1% in its classification ability even though it had lost 

over 30% of its rule base and TTT had lost less than 15% of its classification even 

though it lost more than 40% of its rules.  
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Fig. 4. Compares the full and trusting experts’ knowledge bases after training. Each chart 

shows the KB’s performance for the full system (where the expert checks every case) and the 

trusted system (where corrections are only made if a warning is generated). Error bars are also 

shown at a 95% confidence range. The full expert is shown with filled triangles and solid lines 

while the trusting expert has hollow triangles and dotted lines. 

At first glance this seems remarkable that the KBs could still maintain such a high 

level of accuracy. This result though is most likely related to the general nature of 

KBSs. For instance, between 1984 and 1987 the GARVAN-ES1 KBS increased its 

number of rules by approximately 80% but only improved its level of accuracy from 

96 to 99.7% accuracy [5, 28]. Therefore, like in the GARVAN-ES1 system, the rules 

RM fails to warn on appear to be the more specialised rules that only cater for the 

occasional rule. This can-not be proven in this study but the high degree of accuracy 

after losing many rules indicates that the rules remaining are more general in nature. 

4.4 Non-Perfect Humans 

The above results compared trusting the prudence system against an expert that 

checks every case. This is fine in a simulated environment. However, in a real world 

knowledge acquisition (KA) task, a human expert is rarely in a situation to fully check 

every case. It could be argued that, in fact the human expert is likely to miss the 

occasional misclassification in the full system. This is likely to be especially prevalent 

during the later stages of KA as they become more complacent towards the system’s 

accuracy. It is entirely possible that the human expert could fail to notice more 

misclassifications than RM. For instance, it would not seem unlikely that a human 
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expert could easily miss 5-10% of errors in the KB. The results for RM, however, can 

achieve a much improved level of accuracy. 

It could be further argued that a human expert is more likely to pay closer attention 

to a case when the prudence system produces a warning. Therefore, they are much 

less likely to miss a misclassification after a warning. Thus, it may be that in a real 

world system, the small reduction in performance of the trusted KB would be entirely 

dissipated or even reversed. Unfortunately, the performance of an expert in the two 

different environments is beyond the scope of this paper. 

6 Conclusion 

Prudence analysis represents a method for predicting when a case requires knowledge 

beyond the system’s current KB. It is one way of attempting to resolve the issue of 

brittleness in current knowledge based systems. In theory, prudence analysis would be 

a very powerful tool when performing knowledge acquisition and maintenance. 

Previous work in this area, however, has yielded results that are not of sufficient 

accuracy, or that produce too many warnings, to make such a system viable.  

Previously, no study had been undertaken to test the application of a prudence 

system and it was feared that the missed errors could compound through the KB 

development, resulting in a significantly flawed KB. Results, however, indicate that 

compounding of errors only occurs with very low levels of accuracy or in particularly 

rigid datasets where the smallest change in the case results in a different conclusion. 

In fact, some evidence was found to suggest that missed errors appear to be noticed 

and corrected in subsequent cases.  

The most impressive result found in this paper was that, even though a number of 

rules may not be created because no warning was produced, a high level of 

classification accuracy could still be expected. For example, the KB built with the 

GARVAN dataset lost approximately 7% of its total rule base. However, this only 

caused a loss of less than 1% of the KB’s classification ability.  

It was further argued that in many application domains the resulting KB may even 

be better than one fully checked by an expert. This is due to the expert having less 

complacency when checking cases warned about by a prudence system than when 

every case must be verified. This advantage would be most prevalent when warnings 

are kept to a minimum. Therefore, the RM system presented in this paper represents a 

truly viable solution to prudence analysis. 
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