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Abstract

This research presents a classifier that aims to pro-
vide insight into a dataset in addition to achieving
classification accuracies comparable to other algo-
rithms. The classifier called, Automated Weighted
Sum (AWSum) uses a weighted sum approach where
feature values are assigned weights that are summed
and compared to a threshold in order to classify an
example. Though naive, this approach is scalable,
achieves accurate classifications on standard datasets
and also provides a degree of insight. By insight we
mean that the technique provides an appreciation of
the influence a feature value has on class values, rel-
ative to each other. AWSum provides a focus on the
feature value space that allows the technique to iden-
tify feature values and combinations of feature values
that are sensitive and important for a classification.
This is particularly useful in fields such as medicine
where this sort of micro-focus and understanding is
critical in classification.

Keywords: data mining, insight, conditional proba-
bility.

1 Introduction

Many classifiers provide a high level of classification
accuracy, yet their use in real world problems is lim-
ited because they provide little insight into the data.
The classifier presented in this research, Automated
Weighted Sum (AWSum), provides a degree of in-
sight into the data whist maintaining accuracy that
is comparable with other classifiers.

By insight we mean that the technique provides
an analyst with an appreciation of the influence that
a feature value has on the class value. For example it
is intuitive to ask the question: what influence does
high blood pressure have on the prospects of having
a heart disease? Or, does smoking suggest heart dis-
ease more than it suggests a lack of heart disease?
A classifier that can provide simple to grasp answers
to these sorts of questions could be expected to pro-
vide a degree of insight and be useful in real world
data mining, particularly if its classification accuracy
is comparable to other techniques.

Probabilistic approaches, such as Naive Bayes
(Duda and Hart 1973) rely largely on maximising the
probability that an example belongs to a given class
and only indirectly provide any indication of the in-
fluence the feature values have on the classification.
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Connectionist approaches such as neural networks of-
fer little or no direct insight although some attempts
at deriving meaning from internal connection weights
have been made (Setiono and Liu 1996). Geometric
approaches such as Support Vector Machines (SVM)
(Vapnik 1999) clearly identify the feature values in
the support vectors as being the most important but
it is difficult to generalise from this. Rule and tree
based approaches provide some insight, though fea-
tures are not certain to appear in the rules, or trees,
even if they are influential to classification.

A further advantage provided by AWSum, that
can be useful in real world data mining situations,
is an assessment of the confidence of a classification.
For example a forward feed neural network trained
with back propagation can indicate that an example
belongs to a given class but not whether this is a
strong assertion or a weak assertion. The ability to
assess the confidence of a classification is important
in many diverse real world situations. In the medical
field we may chose to medicate a patient if we are
only reasonably sure of a cancer diagnosis but operate
when we are very sure of the diagnosis. In a political
scenario we may choose not to direct campaign time
to those voters we are very confident will vote for us
but dedicate resources to those voters that we are only
mildly confident will votes for us.

AWSum focuses at the feature value level in or-
der to identify the feature values and combinations of
feature values that are sensitive and important to a
classification. This is useful in fields such as medicine
where a micro-focus on the influences on classification
and an understanding of the data is critical. Other
techniques such as trees and probabilistic approaches
consider the importance of the values of a feature as a
group. A simple example of this can be found in the
Cleveland Heart dataset. If the values of the feature
age are considered as a group, the relationship be-
tween age and heart disease identified would be that
as age increases so does heart disease as seen in fig-
ure 1. This fails to identify the reversal of trend as
we tend toward the extreme of age.

AWSum assesses the contribution of each feature
value to the classification individually by assigning it
a weight that indicates its influence on the class value.
A weighted sum approach is taken, combining these
influence weights into an influence score for the exam-
ple. Figure 2 shows the weights AWSum has assigned
to each feature value on a scale. The class values are
placed at the extremes of the scale, -1 and 1. These
extremes represent the points at which the probabil-
ity of the relevant class outcome is 1. The influence
weight of -0.03 assigned to age 50 indicates that this
value of age influences an outcome of heart disease
= yes approximately the same amount of times as it
influences an outcome of heart disease = no. The ra-
tio of the occurrence of heart disease = yes to heart
disease = no strengthens in favour of the class value
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represented at the extreme as it nears that extreme.
The reversal of the influence of age on heart disease
can now be readily identified.

The intuition behind AWSum’s approach is that
each feature value has an influence on the classifica-
tion that can be represented as a weight and that
combining these influence weights gives an influence
score for an example. This score can then be com-
pared to a threshold in order to classify the example.

The algorithm for calculating and combining
weights, and determining thresholds is explained in
section 2.

Figure 1: Feature level focus

Figure 2: AWSum feature value focus

2 The Algorithm

The algorithm can be split into two major parts de-
scribed separately below;

• Influence - Influence weights are established for
each feature value that give a measure of the fea-
ture value’s influence on the outcome and thresh-
old/s are calculated

• Classification - New examples are classified by
calculating an influence score for the example
from the influence weights of the component fea-
ture values. This can be seen as a combination
of evidence for the classification.

2.1 Influence

The first phase of the AWSum approach lays the foun-
dations for classification and provides insight into the
dataset by providing an influence weight for each fea-
ture value. For simplicity we will only consider bi-
nary classification tasks. Higher order tasks will be
discussed later in section 5. For any feature value the
sum of the conditional probabilities for each possible
class value is 1 as the events are mutually exclusive,
as illustrated for a binary outcome in equation 1.

Pr(O1|Fv) + Pr(O2|Fv) = 1 (1)

Where: O1 and O2 are the first and second value on
the class feature. Fv is the feature value.

A feature value’s influence weight, W represents
its influence on both class values and so it needs to si-
multaneously represent both probabilities from equa-
tion 1. To do this we arbitrarily consider one class
outcome to be positive, and map probabilities to a
range of 0 to +1. The other class is considered to
be negative and map probabilities to a range of 0
to -1. The range of mapped probabilities for both
feature values is therefore -1 to +1. By summing
the two mapped probabilities we arrive at a single
influence weight that represents the feature value’s
influence on both class values. Equation 2 demon-
strates this calculation and figure 3 shows an example
where Pr (O1|Fv1) = 0.2, or -0.2 when mapped and
Pr (O2|Fv) = 0.8.

W = Pr (O1|Fv) + Pr (O2|Fv) (2)

Figure 3: Binary class example

Additional assumptions are required to be made
in the case of class features that are ternary or of a
higher order. This is discussed below in Section 5.

2.2 Classification

Classification of an example is achieved by combin-
ing the influences from each of the example’s feature
values into a single score. By summing and averag-
ing feature value influences we are able to arrive at a
score that represents the evidence that the example
belongs to one class and not to another. Equation 3
depicts this. Performing the combination by summing
and averaging assumes each feature value influence
is equally comparable. Although this is a relatively
naive approach, it is quite robust as described later
in this section.

e1 =
1
n

n∑
m=1

Wm (3)

e1 = the influence weight of the ith example
n = the number of examples

The influence score for an example is compared
to threshold values that divide the influence range
into as many segments as there are class values. For
instance, a single threshold value is required for a
binary classification problem so that examples with
an influence score above the threshold are classified
as one class value, and those with a score below the
threshold are classified as the other class value. Each
threshold value is calculated from the training set by
ordering the examples by their weight and deploying
a search algorithm based on minimising the number
of incorrect classifications. This is a simple linear op-
timisation problem that is solved by calculating the
misclassification rate at each point along the scale.
For instance, the examples with total influence scores
that fall to the left of the threshold in Figure 4 are
classified as class outcome A by AWSum. This how-
ever includes two examples that belong to class B in
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the training set so these two examples are misclassi-
fied. Two examples to the right of the threshold are
misclassified as class B when they are A’s. In cases
where there are equal numbers of correctly and incor-
rectly classified examples the threshold is placed at
the mid-point under the assumption that misclassifi-
cation of class A and B is equally detrimental.

New examples can be classified by comparing the
example’s influence score to the thresholds. The ex-
ample belongs to the class in which its influence score
falls.

Figure 4: Threshold optimisation

AWSum is suited to nominal feature values and
class outcomes although it is not necessary that they
are ordinal. Continuous numeric features require dis-
cretisation before use in AWSum.

Classification accuracy of the AWSum approach
compares favourably with that of many other algo-
rithms. Experimental results are presented in section
4.

3 Extending the algorithm

The combining of influence weights for single feature
values into a total influence score for an example and
using this to classify is intuitively based however, it is
plausible that feature values may individually not be
strong influences on a class outcome but when they
occur together the pair is a strong influence. For ex-
ample both drug A and drug B may individually be
influential toward low blood pressure but taken to-
gether lead to an adverse reaction that results in ex-
ceedingly high blood pressure. This sort of insight
into a dataset can be very useful, particularly in med-
ical domains.

The influence weights for each feature value pair
can be calculated in the same way as they were for
the single feature values. Equation 4 shows this cal-
culation.

W = Pr (O1|Fv1, Fv2) + Pr (O2|Fv1, Fv2)+ (4)

· · ·Pr (Ok|Fv1, Fv2)

Where:
W =the influence weight of the pair.
O1 is the first class value and Ok is the kth class
values.
Fv1 is the 1st feature value of the pair and Fv2 is
the 2nd.

These pairs have the ability to both increase in-
sight because the influences on the outcome are now
more granular and increase accuracy. When using a
feature value pair in the classifier the corresponding
single feature weights are not used in order to avoid
double counting the influence of the feature values.

3.1 Model selection

There is a need to select which feature value pairs
to include in the classifier. There have been 2 meth-
ods employed in testing. The first , used on the UCI
Cleveland Heart, Mushroom and Vote datasets is to
include each feature value pair into the classifier and
retain it if it improves classification accuracy. The
second method, used on the Iris dataset was to select
a support threshold for the feature value pairs and in-
clude all pairs that meet this threshold. The support
for a feature value pair weight is a calculation of the
number of times the pair occurs divided by the total
number of examples.

3.2 Fine tuning

AWSum includes a technique that can be used to em-
phasise important feature values. A power is applied
to the influence weights. This process occurs before
the threshold algorithm is applied. Equation 5 shows
the new calculation for the example weights. Note
that the original sign of the influence weight is kept.
This fine tuning technique gives more emphasis to in-
fluence weights whose absolute weight is larger.

e1 =
1
n

n∑
m=1

W p
m (5)

e1 = the weight of the ith example
n = the number of examples
p = the power to which the features values are raised
nb. the original sign of the influence weight is kept

4 Experiments

Four datasets were sourced from the University
of California, Irvine’s Machine Learning Repository
(Blake et el 1988) for the comparative evaluation of
the AWSum approach:

• Cleveland Heart- 14 numeric features, 2
classes, 303 instances, 6 missing values

• Iris- 5 numeric, continuous features, 3 classes -
1 linearly inseparable, 150 instances, 0 missing
values

• Mushroom - 22 nominal features, 2 classes,
8124 instances, 2480 missing values

• Vote - 17 boolean features, 2 classes, 435 in-
stances, 0 missing values

Classification accuracy has been assessed using 10
fold stratified cross validation. Table 1 represents
classification accuracy using single influence weights
only. The classification accuracy of AWSum on the
four UCI datasets is comparable though not better
than the Naive Bayes Classifier, TAN, C4.5 and the
Support Vector Machine.

Table 1: Classifier comparison
Data AWSum NBC TAN C4.5 SVM
Heart 83.14 84.48 81.51 78.87 84.16
Iris 94.00 94.00 94.00 96.00 96.67

Mush 95.77 95.83 99.82 100 100
Vote 86.00 90.11 94.25 96.32 96.09
Avg 89.72 91.11 92.40 92.80 94.23
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Table 2 shows the classification accuracies
achieved by including influence pairs and they are
quite comparable with other approaches. AWSum
performs better than the others on the Cleveland
Heart dataset and better than Naive Bayes and TAN
on the Iris set. The Support Vector Machine out-
performs all others on Iris, C4.5 and SVM perform
perfectly on the Mushroom dataset and C4.5 outper-
forms the others on the Vote data.

Table 2: Classifier comparison including influence
pairs
Data AWSum NBC TAN C4.5 SVM
Heart 85.83 84.48 81.51 78.87 84.16
Iris 94.67 94.00 94.00 96.00 96.67

Mush 99.37 95.83 99.82 100 100
Vote 95.86 90.11 94.25 96.32 96.09
Avg 93.93 91.11 92.40 92.80 94.23

Table 3 shows the best results achieved using in-
fluence values, influence pairs and the power based
fine tuning method discussed in section 3.2. The av-
erage classification using 10-fold cross validation over
the four sample datasets is slightly higher than the
other approaches. The objective of this study was
to advance a classifier that demonstrated comparable
classification accuracy while providing some degree
of insight about influential factors. Results indicate
AWSum achieves comparable accuracy.

Table 3: Classifier comparison including influence
pairs, fine tuned
Data AWSum NBC TAN C4.5 SVM
Heart 87.18 84.48 81.51 78.87 84.16
Iris 96.00 94.00 94.00 96.00 96.67

Mush 99.93 95.83 99.82 100 100
Vote 97.01 90.11 94.25 96.32 96.09
Avg 95.03 91.11 92.40 92.80 94.23

4.1 Insight

Insight is provided by identifying the influence that
feature values have in classification. This can be im-
portant in identifying key features in a problem do-
main as well as eliminating features that are not im-
portant. Being able to represent the influence that
feature values have on class values graphically pro-
vides a informative description of the problem do-
main. Figure 5 shows this information for the Cleve-
land Heart dataset. The figures in braces on the right
of the scale are the influence pairs added to the clas-
sification model, although all pair weighings are cal-
culated and can be used for insight.

Insight can be drawn from this figure. For exam-
ple, if a patient does not get exercise induced angina
(exang no) this has an influence weight of -0.39 indi-
cating a moderate influence toward no heart disease.
Similarly if the number of major vessels coloured by
fluoroscopy is 0 (ca 0) there is a moderate influence
toward no heart disease with an influence weight of
-0.47, but if these two factors occur together there is a
strong influence toward no heart disease as indicated
by the influence pair weight of -0.72. These types
of insights can help confirm an understanding of the
problem domain or provide new and interesting paths
for investigation.

The pairs included in figure 5 fall into two cate-
gories. Influence pairs, cp - Typical angina and slope

- down and cp - typical angina and thal - fixed de-
fect are examples of rare cases. They appear in the
dataset 1% of the time but always lead to the same
outcome. It can be important, particularly in a field
such as medicine to be able to identify rare cases.
Most techniques fail to identify rare cases because
they are concentrating at a feature level. For example
a rare case may not be include in a tree based classifier
if collectively the values of the feature don’t split the
data well. Likewise an important dependency may
not be modeled in an augmented Bayesian approach
if collectively the values of the features are not im-
portant. The other three pairs in Figure 5 occur fre-

Figure 5: feature value and feature value pair weights

quently and indicate interesting relationships between
the feature values in the pair. This interest occurs be-
cause their influence as a pair is markedly different to
their influence as single values. Their inclusion both
increases accuracy and provides insight. Currently, a
heuristic search is deployed to locate pairs of possible
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interest. Rare item pairs are considered interesting.
Pairs that are not rare are considered interesting if the
influence the pair has is markedly different from the
average of the influences of each member of the pair.
In this way we can identify both rare cases and im-
portant relationships that have high levels of support.
Work is in progress to apply other search algorithms
to enable pairs, triples and higher order pairings that
are interesting to be identified.

Tree based classifiers tend to provide more insight
than most classifiers and so the insights provided by
AWSum are compared to those provided by the im-
plementation of C4.5 (Quinlan 1993) provided by the
Weka data mining tool (Witten and Frank 2000). The
tree generated selects nodes from the root that are
good for splitting the data with regard to the class
values. The features closer to the root of the tree
could be seen as more important in some senses but
this does not convey the relative influence of the fea-
ture values in the same way as conveyed by AWSum.

The C4.5 tree generated on the Cleveland Heart
dataset uses 9 of the 13 features. Those omitted in-
cludes chol, fbs, trestbps and thalach. It can also be
seen that the tree does not necessarily contain all the
important or influential features. For instance, tha-
lach is identified as important in both AWSum and
two feature selection techniques, first best and infor-
mation gain attribute evaluator (Witten and Frank
2000) yet does not appear in the decision tree. This
is understandable because features selected as nodes
for a decision tree are those that represent the great-
est information gain of the features in contention.

4.2 Discussion

The AWSum approach represents a concentration on
feature values that most other techniques do not take.
Other techniques tend to consider the values of a fea-
ture as a group and identify them as important or
otherwise collectively. Probabilistic approaches such
as augmented Bayes either relax Naive Bayes’ inde-
pendence assumptions by including dependencies be-
tween selected features or they look for independent
features. In either case the feature values of a given
feature are selected if they are collectively significant
Tree based classifiers also focus on features as they
search for the best features to split the data on at
each node. This again is a collective consideration
of the feature values of a given feature. Connection-
ist approaches such as neural networks include hid-
den nodes in a pragmatic approach that consumes
any concentration on feature values. Geometrical ap-
proaches such as SVM (Vapnik 1999) consider a select
number of important boundary instances, or support
vectors, in order to construct a linear function to sep-
arate the class and so are not focusing on identifying
the influence of feature values.

In contrast to many other classifiers, AWSum is
simple, scalable and easy to implement. Classifica-
tion processes are easily understood by the non ex-
pert and this is often as important as the classifica-
tion itself. AWSum’s use of conditional probability
is markedly different to that of Bayesian approaches,
such as Naive Bayes. NB compares the probability
that the example’s feature values were derived by the
class outcome, scaled by the prior probability of the
class. AWSum, on the other hand, uses conditional
probability to calculate a weight that indicates a fea-
ture values influence on the class value and combines
these influences for each example, comparing the re-
sult with a threshold. This style of approach can be
seen as a combination of evidence although it is a very
different approach to that of the Dempster/Schafer
work (Shafer 1976).

The use of pairs or combinations of feature val-
ues in AWSum differs from that of probabilistic ap-
proaches like Naive Bayes. These style of approaches
look for computationally economical ways to model
probabilities. Rather than this AWSum is looking for
combinations of feature values that may have a strong
influence on the class value, and using these as pieces
of evidence for a given class outcome.

The addition of pairs involves calculating a weight
for each feature value pair in the dataset and so adds
to the approach computationally. These calculations
can be done in a single pass of the dataset and used
in a lookup table to classify. This means that the
overhead is not large.

5 Higher dimension class features

In order to represent 3 or more class values on a linear
scale certain assumptions need to be made. The class
values need to be considered as ordinal. For example
if the 3 class outcomes are light, medium and heavy
and we have 5 light examples, 0 medium examples and
5 heavy examples we have conditional probabilities
of Pr(light|Fv) = 0.5, Pr(medium|Fv) = 0.0 and
Pr(heavy|Fv) = 0.5. The feature value, Fv would
be assigned a weight of 0 using AWSum which places
it in the middle of the influence scale. In terms of
conditional probability this is inconsistent as there
are no medium examples, but in terms of influence on
the outcome it is intuitive because we can reasonably
say that the influence of 5 heavy examples and 5 light
examples is the same as 10 medium examples. This
approach can be demonstrated to classify well even in
cases such as the Iris dataset where the outcomes are
not ordinal but the visualisation may be misleading
in that a value at the middle of the scale could appear
there either because there is a high probability of that
outcome or because class values at the extremes have
the same probability.

For a ternary class outcome, as illustrated in figure
6, the influence value weight can be decided using
the the conditional probabilities of the 2 class values
represented at the extremes of the scale. Equation 6
illustrates the calculation.

Problems that contain 4 or more class values can
simply be seen as combinations of scaled binary out-
comes that can be summed to give an influence
weight. Figure 7 shows a situation with 4 class values.
Each binary feature weight is calculated as per equa-
tion 2, with the weight for outcomes 2 and 3 being
scaled and summed as per equation 7. This approach
to calculating feature value weights can be extrapo-
lated to any number of feature values

W =
−Pr (O1|Fv)− Pr (O3|Fv)

2
(6)

W = WO1,4 +
1
3
WO2,3 (7)

Figure 6: Three class values
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Figure 7: Four class values

6 Conclusion

AWSum demonstrates that classification accuracy
can be maintained whist providing insight into the
problem domain. This sort of insight can provide im-
portant information in itself or be used in prepro-
cessing the data for another approach. It is not in-
tended that AWSum replace traditional approaches
but rather that it provides a different and possibly
useful resource for analysts to use in approaching real
world datasets. It may be that its usefulness is in
identifying important features, visualising the prob-
lem domain or in its classification ability. It is hoped
that in providing insight with classification that data
mining can be made more understandable and acces-
sible to the non expert. Future directions for this
work include the addition of influence weights for
three and four feature value combinations to both test
any increase in accuracy and to provide insight into
important combinations of feature values. It is also
envisaged that when classifying data with more than
two class outcomes that a multidimensional scale may
be useful to classification if not visualisation.
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