
RBACS: Rootkit Behavioral Analysis and Classification System

Desmond Lobo, Paul Watters and Xinwen Wu
Internet Commerce Security Laboratory

University of Ballarat
Ballarat, Australia

desmondlobo@students.ballarat.edu.au, {p.watters, x.wu}@ballarat.edu.au

Abstract- In this paper, we focus on rootkits, a special type of
malicious software (malware) that operates in an obfuscated
and stealthy mode to evade detection. Categorizing these
rootkits will help in detecting future attacks against the
business community.

We first developed a theoretical framework for classifying
rootkits. Based on our theoretical framework, we then
proposed a new rootkit classification system and tested our
system on a sample of rootkits that use inline function hooking.
Our experimental results showed that our system could
successfully categorize the sample using unsupervised
clustering.

Keywords- rootkits; malware; behavioral analysis;
classification; data mining

I. INTRODUCTION
This paper focuses on rootkits, which refers to software

that is used to hide the presence and activity of malware
from the system administrator [1]. There has been an
increase of several hundred percent in both the number and
complexity of rootkits over the last few years [2]. Malicious
software is already a very big worldwide problem. The
emergence and proliferation of rootkits are only going to
serve to escalate this problem.

A large percentage of malware attacks target commercial
enterprises with the intention of generating large profits for
the malware’s authors, while the visibility of these threats is
on the decline since stealth techniques, such as rootkits, are
deployed to hide the malware. This trend is clearly illustrated
in figure 1. Categorizing these rootkits, we believe, will help
in detecting future attacks against the business community.

The contributions of this paper are as follows. To address
the limitations of the existing theoretical frameworks for
classifying rootkit, we offer a revised framework. Based on
this framework, we then propose a new system for
categorizing rootkits and demonstrate the effectiveness of
this system.

The structure of this paper is outlined below:

• Section II describes some of the previous theoretical

studies that have been carried out in the field of
computer virology and highlights, in particular, a
recent study that was conducted at the Georgia
Institute of Technology (Georgia Tech).

Figure 1. Visibility of Malware vs. Malicious Intent [3]

• Based on the study at Georgia Tech, we propose a
revised and generalized theoretical framework for
classifying rootkits in section III.

• In section IV, we explain the methodology of our
Rootkit Behavioral Analysis and Classification
System (RBACS).

• In section V, we test our classification system on a
sample of rootkits and describe the experimental
results.

• Finally, we provide a discussion of some of the
related work in section VI, an outline of our future
research plans in section VII, and a conclusion to the
paper in section VIII.

II. PREVIOUS STUDIES IN COMPUTER VIROLOGY
Frederick Cohen was the individual that coined the

phrase Computer Virus and gave the first abstract theory of
computer viruses. Cohen [4] defined a computer virus as “a
program that can infect other programs by modifying them to
include a possibly evolved copy of itself”. He went on to
explain that a virus can spread throughout a network and can
infect the programs of every user. Each infected program can
in turn infect other programs, and so the virus spreads all
through the system.

We found a recent theoretical study conducted at Georgia
Tech that seems to have a similar research focus to ours.
Levine et al. [5] developed a framework for classifying
rootkits by making use of a previous framework for
modeling Trojans and computer virus infections. Thimbleby
et al. [6] categorized Trojans into four groups:

Visibility

Malicious Intent

worms

rootkits
fame and glory

highly profitable
cybercrime

Time

V
is

ib
ili

ty
 a

nd
 M

al
ic

io
us

 In
te

nt

2010 Third International Conference on Knowledge Discovery and Data Mining

978-0-7695-3923-2/10 $26.00 © 2010 IEEE

DOI 10.1109/WKDD.2010.23

75

• DIRECT MASQUERADES: malicious programs that
pretend to be normal programs, such as a program
called dir that does NOT list a directory;

• SIMPLE MASQUERADES: programs that seem so
attractive that users are tempted to use them
immediately, before having them fully tested, such
as a program called sex;

• SLIP MASQUERADES: programs having names that
are very similar to legitimate program names, such
as a program called dr that is activated if the user
incorrectly types dir; and

• ENVIRONMENTAL MASQUERADES: programs that are
not easily identifiable and carry out some malicious
activities in addition to the tasks that the programs
were intended for, such as a music CD that plays
music but also executes some damaging code as a
side-effect.

The work by Levine et al. [5] is more specific and

restricted as they tried to classify rootkits masquerading as
existing programs, either as new rootkits or as modifications
of existing rootkits. We followed Levine’s work to develop
our framework as it is most applicable to the future trends of
malware. However, we observe that Levine’s framework
only addresses a small class of malware. We also discover
the limitations of their framework by identifying its
inadequacies in classifying all types of rootkits. Hence, we
propose a new generalized framework that categorizes all
existing rootkits as well as future polymorphic rootkits.

Levine’s study introduced set theory to categorize
rootkits. More specifically, they focused on the
Environmental Masquerades mentioned in Thimbleby’s
paper and started with the following two programs:

• p1 was the original program, and
• p2 was a malicious version of program p1 that

provided some additional rootkit functionality.

Levine and his colleagues used {((pi))} to symbolically
represent a set of possible functionalities for a program pi.
Thus, it follows that {((p1))} ⊂ {((p2))}, but {((p1))} ≠
{((p2))} since there was at least one element in {((p2))} that
did not belong in {((p1))}. The difference Δ between p2 and
p1 contained only those elements belonging to {((p2))} that
were not in {((p1))}, and this difference was defined as
{((p′))} = {((p2))} \ {((p1))}.

Next, they assumed that they had identified another
rootkit of p1 called p3 and proceeded to check the following
equation:

{((p3))} - [{((p′))}∩{((p3))}] = {((p1))} (1)

They could then categorize p3 as either a brand new

rootkit, a modification of an existing rootkit, or identical to
an existing rootkit as follows. If equation 1 was true, Levine
and his colleagues concluded that the rootkit p3 was the same
as rootkit p2 and {((p3))} contained the same elements as
{((p2))}. On the other hand, if the equation was not true but
some elements of {((p′))} were contained in {((p3))}, then p3
could be considered a modification of p2. If no elements of
{((p′))} were contained in {((p3))}, then p3 was an entirely
new rootkit.

We wish to include the possibility that a newly
discovered rootkit is a modification of two or more existing
rootkits. It is not possible to extend the framework presented
by Levine and his colleagues, however, as there is a
fundamental flaw in their paper.

Figure 2 illustrates this framework for the classification
of rootkits. They considered only three out of a possible five
cases for classifying a newly discovered rootkit. These three
cases can occur when a rootkit is entirely new (part A), a
modification of an existing rootkit (part B) or identical to an
existing rootkit (part C).

They failed to consider the case that a rootkit could be an
extension of an existing rootkit (part D) and, more
importantly, also failed to consider the possibility that the
newly discovered rootkit could be a proper subset of an
existing rootkit (part E). This is certainly possible: Rieck et
al. [7] discovered that the Doomer worm is in fact an
extension of the Gobot worm, and it is thus not
inconceivable that we could find a rootkit that is an extension
or subset of another rootkits.

In part E, it might be the case that some malicious
hackers first release a rootkit into the wild and then, at some
later date, release a “more compact” newer version of the
rootkit. If this was the situation, then Levine’s mathematical
framework would fail to identify the newer version of the
rootkit, as outlined below:

For part E, if {((p3))} ⊂ {((p2))} and since {((p′))} =
{((p2))}\{((p1))} was defined as the difference Δ
between p2 and p1, it follows that {((p′))} ∩
{((p3))} = {((p3))} - {((p1))}. Thus, from equation 1, we
have {((p3))} - [{((p′))} ∩ {((p3))}] = {((p3))} - [{((p3))}
- {((p1))}] = {((p1))}.

Since equation 1 is true, Levine and his colleagues would
conclude that the new rootkit is identical to an existing

Figure 2. Theoretical Framework for Classifying Rootkits [5]

E: Subset D: Extension

A: Entirely New B: Modification

Existing
Rootkit

New
Rootkit

p1

p1

C: Identical

p1

p1

p1

76

rootkit, which is not true. We propose to revise and
generalize the framework in the following section.

III. GENERALIZED THEORETICAL FRAMEWORK
We now revise and generalize the theoretical framework

for categorizing rootkits that was suggested by Levine and
his colleagues. In their framework, they considered the
possibility that a rootkit that has just been detected is actually
a modification of an existing rootkit. In our framework, we
wish to generalize this and include the possibility that the
newly discovered rootkit has adopted some of the
functionalities from two (or more) existing rootkits. This is
illustrated in figure 3 and is not beyond the realm of
possibility. With Rieck et al. [7] having found the coupling
of two different malware families, namely the
Backdoor.Zapchast and Worm.Parite families, it would
certainly not be surprising to find a rootkit that had emerged
from two distinct rootkit families.

For our proposed framework, we first start with the
following two assumptions:

• Assume that there are n-1 known rootkits of p1:

p2, p3, p4, … , pn, and
• Assume that a new rootkit pn+1 has been detected.

Next, we define: {((Xi))} = [{((pn+1))}\{((p1))}]∩

[({((pi))}\{((p1))}] as the common functionalities of rootkit
pi (for some i, where 2 ≤ i ≤ n) and the newly discovered
rootkit pn+1, and then consider the following equation:

[{((X2))}∪{((X3))}∪{((X4))}∪…∪{((Xn))}] = Φ (2)

If equation 2 is true, then {((Xi))} = Φ for all i (2 ≤ i ≤ n)

and we can conclude that the new rootkit is completely
different from each of the previously known rootkits.

If equation 2 is not true, on the other hand, then there
exists some j (2 ≤ j ≤ n) such that {((Xj))} ≠ Φ and we
conclude that the new rootkit has some common
functionality with at least one of the previously known
rootkits, in this case rootkit pj.

Figure 3. Generalized Framework for Classifying Rootkits

Since we are dealing with a finite number of rootkits, we
can sequentially test each {((Xj))} (for j = 2, 3, 4, … , n) to
find all the rootkits that have some common functionality
with the new rootkit.

A. Algorithm for Classifying Rootkit Variants
One reason for the proliferation of rootkits is the ease

with which these rootkits can be implemented [8]. The
developers of these rootkits often sell different versions of
their product that other malicious hackers can purchase and
subsequently deploy. These “toolkits” can be used to
generate variants within a particular family of rootkits.
Using the toolkit, even criminally minded hackers with just
a minimum amount of programming experience can
configure the rootkit for the particular task that they require.
For instance, the hacker could specify the precise URLs that
will trigger the keylogging or form grabbing capabilities of
the rootkit to begin capturing data. A unique variant is
generated whenever the rootkit is used for a specific purpose
by different individuals or groups.

In this subsection, we describe an algorithm for
classifying these rootkit variants. The algorithm makes use
of our generalized theoretical framework for classifying
rootkits, which will be useful in finding the functionalities
that a newly discovered rootkit has in common with the
existing rootkits.

For our algorithm, we will use the following notation to
represent the families of rootkits:

Families of rootkits: F1, F2, F3, …

Within each of these families, there will likely be several

variants that have been generated using the toolkits
mentioned previously, and we will use the following
notation to represent these variants:

 Variants within the Fi family of rootkits: pi2, pi3, pi4, …

which are all malicious versions of program pi1 with some
additional rootkit functionality.

Figure 4. Algorithm for Classifying Rootkit Variants

Step 1
Find the particular functionalities of existing rootkits.

Step 2
Determine the common and prominent

functionalities of each family of rootkits F1, F2, F3, …

Step 3
Classify newly detected rootkits based
on the characteristics of each family.

Existing Rootkit

Existing Rootkit

New Rootkit

p1

77

The algorithm is illustrated in figure 4. In step 1, we first
search for particular functionalities of specific rootkits. In
this study, we focused on inline function hooks [12].
Rootkits create these types of hooks by overwriting the first
five bytes of an API function with a JUMP instruction. (The
first byte in the function is replaced with the value E9, the
opcode for a JUMP instruction in assembly language, and
the remaining four bytes contain a 32-bit address of some
malicious code.) Thus, in this step, we keep track of all of
the API functions that were found to be hooked and we also
note the associated Windows processes.

Step 2 is used to determine the prominent functionalities
of each family; for example, a particular family of rootkits
might hook certain API functions. We make the same
assumption that was made by Fu et al. [9]; that is, we
assume that there would only be some slight differences
between the functionality of the variants within a particular
family. In other words, we use the collection of inline
function hooks that were created by the rootkit to determine
which family it belongs to.

In step 3, we would be in a position to use the
characteristics of each of the families to classify newly
detected rootkits. In order to determine if such a new threat
is a variant that belongs to an existing family or possibly to
an entirely new family, there are several abstraction layers
that can be used to make this decision. Focusing on one of
the lower layers, such as content-based signatures, might be
insufficient to cope with the polymorphic techniques that
are being used to prevent such matching. Common
obfuscation methods that make it difficult to detect variants
within a family include [10]:

• NOP-INSERTION: insert dead-code into a program;
• CODE TRANSFORMATION: rearranging the order of

instructions;
• REGISTER REASSIGNMENT: replace the usage of one

register with another; and
• INSTRUCTION SUBSTITUTION: swap a set of

instructions with an equivalent set.

To avoid such difficulties, we suggest a higher
abstraction layer. We follow the methodology that was
suggested by Bailey et al. [11] and define malware by what
it actually does, such as hooking certain API functions.

In section V, we describe in detail the cross-validation
technique that we used to verify that a sample of rootkits
was classified into appropriate families.

IV. METHODOLOGY
In this section, we describe our Rootkit Behavioral

Analysis and Classification System (RBACS) and outline the
process for conducting our experiment. An overview of the
system is illustrated in figure 5.

Sun Microsystem’s VirtualBox was installed on an
Ubuntu host operating system and Microsoft’s Windows XP
was then installed inside the virtual environment as a guest

operating system. We obtained 78 rootkit samples from the
Offensive Computing website and ran each sample, one by
one, in the virtual environment. After running each sample,
we restored the system back to its original settings.

Rootkits make use of several different hooking
techniques to remain hidden, such as import address table
(IAT) hooking, export address table (EAT) hooking, inline
function hooking and system service descriptor table (SSDT)
hooking [12]. To test our system, we focused in this case
strictly on rootkits that use inline function hooking
techniques, but plan to include the other hooking techniques
in our future research.

For each rootkit sample, we used McAfee’s Rootkit
Detective to detect the hooks had been created within the
Windows XP operating system. After running this tool, a log
file containing all the inline function hooks was generated.
Pyroto’s Parse-O-Matic parser was then used to extract the
important information about each hook from the log file: the
Windows process that was being affected and the API
function that was being hooked.

Prior to executing the rootkits, we observed that there
were a total of 26 processes running on the clean system.
Furthermore, after testing all 78 rootkit samples and
combining the log files that had been generated, we counted
a total of 60 different API functions that had been hooked.
Using a spreadsheet, we then created a large table with 78
rows (one row for each rootkit) and 1560 columns (60
columns for each of the 26 processes). The table contained
0/1 binary values, with a 1 meaning that a particular rootkit
had managed to hook a certain API function in a specific
Windows process. In total, the 78 rootkit samples had
created 11,159 inline function hooks.

The final step in the process involved taking the binary
data in the table and creating a dataset. The dataset, thus,
consisted of 1560 attributes and 78 instances. We then
applied the expectation-maximization (EM) algorithm on the
dataset. The EM algorithm was available for implementation
in the Wakaito Environment for Knowledge Analysis
(WEKA) [13]. The results of our experiment are described in
the next section.

Figure 5. System Overview

Controlled Environment
for Testing Rootkits

Rootkit Hook Detector

Parser

Data Mining Software

Spreadsheet

78

TABLE I. EXPERIMENTAL RESULTS

Number of Samples Antivirus Labels

21 ClamAV Worm.Korgo.Z
BitDefender Backdoor.Berbew.Be.DAM

13 ClamAV Trojan.Crypted-29
FProt W32.Berbew.F

11 ClamAV Trojan.Crypted-29
FProt W32.Berbew.G

1 ClamAV Trojan.Qukart-8
FProt W32.Berbew.F

1 ClamAV Trojan.Qukart-10
FProt W32.Berbew.F

1 ClamAV Trojan.Qukart-17
FProt W32.Berbew.F

6
ClamAV Trojan.Crypted-28
AVGScan I-Worm.Nuwar.N
FProt W32.Berbew.F

2
ClamAV Trojan.Crypted-28
BitDefender Trojan.Spy.Qukart.Z
FProt W32.Berbew.G

2 ClamAV Trojan.Bancos-6278

14 ClamAV Worm.Feebs.AE
BitDefender Win32.Worm.Feebs.1.Gen

1 Kaspersky Worm.Win32.Feebs.a

1 BitDefender Trojan.PWS.Papras.A

1 BitDefender Trojan.PWS.Papras.O

1 BitDefender Trojan.PWS.Papras.F

2 BitDefender Trojan.PWS.Papras.L

V. EXPERIMENTAL RESULTS
As mentioned, the rootkit samples for our experiment had

all been obtained from the Offensive Computing website.
This website uses five different antivirus scanners to label
their malware samples:

FProt
BitDefender
Kaspersky
ClamAV

AVGScan

The 78 samples that we had obtained from this website
had each been labeled by at least one of these antivirus
scanners. For our experiment, however, we chose NOT to
use these labels. We instead preferred to build a model using
unsupervised clustering, where the instances had not been
pre-classified. Successfully categorizing samples using
unsupervised clustering would show greater evidence of the
strength of our system than if we had used supervised
clustering.

We chose to use the EM algorithm for clustering our
dataset. An advantage of using the EM algorithm is that the
most appropriate number of clusters can be found
automatically. This differs from the k-means algorithm, for
example, where the number of clusters needs to be specified
a priori.

For each instance, the EM algorithm calculates the
probability that it belongs to each of the different clusters

and proceeds as follows. The number of clusters is initially
set to one. The dataset is then randomly split into ten folds,
with nine folds making up the training set and one fold
designated as the test set. This procedure is repeated 10
times, using a different fold as a test set each time. The
loglikelihood is calculated each time and the results are then
averaged over all ten trials. If the loglikelihood increases,
then the number of clusters is increased by one and the
procedure is repeated. [13]

This cross-validation method produced the following
results. The 78 samples were clustered into five families:

• The 21 samples that had been labeled as Berbew by

the BitDefender Antivirus scanner were all grouped
into the same family F1.

• The 35 samples that had been labeled as Berbew by
the FProt antivirus scanner were all grouped into the
same family F2.

• The two samples that had been labeled as Bancos
were both grouped into the same family F3.

• The 15 samples that had been labeled as Feebs were
all grouped into the same family F4.

• The five samples that had been labeled as Papras
were all grouped into the same family F5.

The results of our experiment are summarized in table I.

We have shown that our system can be used to successfully
categorize a sample of rootkits that use inline function
hooking. It is important to reiterate that the sample was NOT
pre-classified; we only used the labels that were assigned by
the five antivirus scanners to validate our results.

Our hope is that system administrators might benefit
from this system. If a system administrator detects some
inline function hooks on a particular machine, he or she
could then use our classification system to determine the
family of that rootkit. Armed with that knowledge, the
system administrator could then proceed and take further
action.

VI. RELATED WORK
Kolter et al. [14] extracted n-grams from malicious

executable files and, like our work, used the WEKA data
mining software package to classify the malware samples
into families. Their approach involved a static analysis of the
executable files. Our goal, on the other hand, used a dynamic
analysis approach and attempted to address a situation that a
system administrator might be faced with. System
administrators often find one of their machines behaving
abnormally because of a rootkit infection and his or her
immediate concern would be to try to determine what he or
she was dealing with. Our system tries to deal with this
concern.

Bayer et al. [15] had a more similar system design to ours
in that they started with a dynamic analysis of each sample in
a controlled environment and ended up with clusters of
families. The goal of their system was to cluster malware
samples based on their behavior. Our research was more

79

focused, however, as we used the rootkit hooks to
differentiate between the various families.

VII. FUTURE WORK
This research focused on a sample of rootkits that used

inline function hooking techniques. As mentioned earlier, we
plan to expand our system by adding other types of rootkits
and test on a larger sample set; in particular, we plan to
analyze rootkits that hook the IAT, EAT and SSDT.

In addition to detecting the hooks that had been created on
a system, an investigator might find other clues from a
rootkit-infected machine. It might be the case, for example,
that a rootkit disables the antivirus software or turns off the
firewall on a system. We intend to add these and other
functionalities to our dataset in the future.

When conducting our experiment, we tested just one
rootkit sample at a time on a clean system, and then restored
the system back to the clean state before testing the next
sample. In reality, though, it is often the case that a machine
is found with more than one infection. In future experiments,
we would like to determine if our system can handle the
situation in which more than one rootkit is running on a
system.

Finally, having a large and sparse dataset, we plan to look
into the possibility of using techniques from principal
components analysis (PCA) for our study.

VIII. CONCLUSION
The first contribution of our paper was to address the

limitations of the existing theoretical frameworks for
classifying rootkits and to then develop a revised framework.
The second contribution was to propose a new system for
categorizing rootkits that was based on this framework. Our
system managed to categorize 78 rootkit samples into five
groups using unsupervised clustering. We then used the
labels from five different antivirus scanners to verify the
effectiveness of our clustering algorithm.

There still remains one unanswered question, though. Just
a quick look through table 1 would be enough to conclude
that there is quite a large discrepancy in the way that
antivirus companies label their malware samples. The
question is, why is there such a lack of consistency between
antivirus labels? Bailey et al. [11] attempted to address this
issue. They conjectured that some antivirus companies had
the “ability to more effectively differentiate small variations
in a family of malware”. An antivirus company with this
ability would obviously assign a greater number of unique
labels to their malware samples.

 From a network or system administrator’s point of view,
having several different labels for the same infection would
certainly cause confusion. These administrators would be
especially concerned during outbreaks since they could not
be certain if the protection that they had in place would be
adequate. Having a common label that is shared among all
antivirus companies would help to alleviate this confusion
and there are projects underway, such as the Common
Malware Enumeration (CME) [16], to accomplish just this.
Our hope is that our research would also benefit projects
such as the CME.

ACKNOWLEDGMENT
This research was supported in part by the Westpac

Banking Corporation, IBM Australia and the Victorian
Government in Australia.

We would like to thank Prof Lynn Batten for her helpful
comments.

REFERENCES
[1] A. Emigh, “The Crimeware Landscape: Malware, Phishing,

Identity Theft and Beyond”, Journal of Digital Forensic
Practice, Vol. 1(3), Sept. 2006, pp. 245-260

[2] McAfee, “Rootkits - Part 1 of 3: The Growing Threat”,
McAfee Inc., Apr. 2006

[3] OECD, “Malicious Software (Malware): A Security Threat to
the Internet Economy”, Organization for Economic Co-
operation and Development, June 2008, OECD Ministrial
Meeting on the Future of the Internet Economy

[4] F. Cohen, “Computer Viruses: Theory and Experiments”,
Computer and Security, Vol. 6(1), Feb. 1987, pp. 22-35,
Elsevier Advanced Technology Publications

[5] J. F. Levine, J. B. Grizzard, and H. L. Owen, “Detecting and
Categorizing Kernel-Level Rootkits to Aid Future Detection”,
IEEE Security & Privacy, Vol. 4(1), Jan. 2006, pp. 24-32

[6] H. Thimbleby, S. Anderson, and P. Cairns, “A Framework for
Modelling Trojans and Computer Virus Infection”, Computer
Journal, Vol. 41(7), 1998, pp. 444-458, British Computer
Society

[7] K. Rieck, T. Holz, C. Willems, P. Düssel1 and P. Laskov,
2008, "Learning and Classification of Malware Behavior",
Detection of Intrusions and Malware, and Vulnerability
Assessment, Lecture Notes in Computer Science, Volume
5137, pp. 108-125, Springer

[8] S. Hultquist, “Rootkits: the next big enterprise threat?”,
Information Age, Aug./Sept. 2007

[9] W. Fu, J. Pang, R. Zhao, Y. Zhang and B. Wei, "Static
Detection of API-Calling Behavior from Malicious Binary
Executables", Proceedings of the International Conference on
Computer and Electrical Engineering, 2008, pp. 388-392,
IEEE Computer Society

[10] M. Christodorescu and and S. Jha, “Static analysis of
executables to detect malicious patterns”, Proceedings of the
12th conference on USENIX Security Symposium, Vol. 12,
2003

[11] M. Bailey, J. Oberheide, J. Andersen, Z. M. Mao, F. Jahanian
and J. Nazario, 2007, “Automated Classification and Analysis
of Internet Malware”, Recent Advances in Intrusion
Detection, Lecture Notes in Computer Science, Vol. 4637,
pp. 178-197, Springer

[12] G. Hoglund, and J. Butler, “Rootkits: Subverting the
Windows Kernel”, 2005, Addison-Wesley Professional

[13] I. H. Witten and E. Frank, “Data Mining: Practical machine
learning tools and techniques”, 2nd Edition, 2005, Morgan
Kaufmann

[14] J. Z. Kolter, “Learning to Detect and Classify Malicious
Executables in the Wild”, The Journal of Machine Learning
Research, Vol. 7, Dec. 2006, pp. 2721-2744

[15] U. Bayer, P. Milani Comparetti, C. Hlauschek, C. Kruegel
and E. Kirda, “Scalable, Behavior-Based Malware
Clustering”, Proceedings of the 16th Annual Network &
Distributed System Security Symposium, 2009

[16] D. Beck and J. Connolly, “The Common Malware
Enumeration Initiative”, Proceedings of the Virus Bulletin
Conference, 2006

80

