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Abstract- In this paper, we focus on rootkits, a special type of 
malicious software (malware) that operates in an obfuscated 
and stealthy mode to evade detection. Categorizing these 
rootkits will help in detecting future attacks against the 
business community. 

We first developed a theoretical framework for classifying 
rootkits. Based on our theoretical framework, we then 
proposed a new rootkit classification system and tested our 
system on a sample of rootkits that use inline function hooking. 
Our experimental results showed that our system could 
successfully categorize the sample using unsupervised 
clustering. 

Keywords- rootkits; malware; behavioral analysis; 
classification; data mining 

I.  INTRODUCTION 
This paper focuses on rootkits, which refers to software 

that is used to hide the presence and activity of malware 
from the system administrator [1]. There has been an 
increase of several hundred percent in both the number and 
complexity of rootkits over the last few years [2]. Malicious 
software is already a very big worldwide problem. The 
emergence and proliferation of rootkits are only going to 
serve to escalate this problem.  

A large percentage of malware attacks target commercial 
enterprises with the intention of generating large profits for 
the malware’s authors, while the visibility of these threats is 
on the decline since stealth techniques, such as rootkits, are 
deployed to hide the malware. This trend is clearly illustrated 
in figure 1. Categorizing these rootkits, we believe, will help 
in detecting future attacks against the business community. 

The contributions of this paper are as follows. To address 
the limitations of the existing theoretical frameworks for 
classifying rootkit, we offer a revised framework. Based on 
this framework, we then propose a new system for 
categorizing rootkits and demonstrate the effectiveness of 
this system. 

The structure of this paper is outlined below: 
 
• Section II describes some of the previous theoretical 

studies that have been carried out in the field of 
computer virology and highlights, in particular, a 
recent study that was conducted at the Georgia 
Institute of Technology (Georgia Tech). 

 
Figure 1.   Visibility of Malware vs. Malicious Intent [3] 

• Based on the study at Georgia Tech, we propose a 
revised and generalized theoretical framework for 
classifying rootkits in section III. 

• In section IV, we explain the methodology of our 
Rootkit Behavioral Analysis and Classification 
System (RBACS). 

• In section V, we test our classification system on a 
sample of rootkits and describe the experimental 
results. 

• Finally, we provide a discussion of some of the 
related work in section VI, an outline of our future 
research plans in section VII, and a conclusion to the 
paper in section VIII.  

II. PREVIOUS STUDIES IN COMPUTER VIROLOGY 
Frederick Cohen was the individual that coined the 

phrase Computer Virus and gave the first abstract theory of 
computer viruses. Cohen [4] defined a computer virus as “a 
program that can infect other programs by modifying them to 
include a possibly evolved copy of itself”. He went on to 
explain that a virus can spread throughout a network and can 
infect the programs of every user. Each infected program can 
in turn infect other programs, and so the virus spreads all 
through the system. 

We found a recent theoretical study conducted at Georgia 
Tech that seems to have a similar research focus to ours. 
Levine et al. [5] developed a framework for classifying 
rootkits by making use of a previous framework for 
modeling Trojans and computer virus infections. Thimbleby 
et al. [6] categorized Trojans into four groups: 
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• DIRECT MASQUERADES: malicious programs that 
pretend to be normal programs, such as a program 
called dir that does NOT list a directory; 

• SIMPLE MASQUERADES: programs that seem so 
attractive that users are tempted to use them 
immediately, before having them fully tested, such 
as a program called sex; 

• SLIP MASQUERADES: programs having names that 
are very similar to legitimate program names, such 
as a program called dr that is activated if the user 
incorrectly types dir; and 

• ENVIRONMENTAL MASQUERADES: programs that are 
not easily identifiable and carry out some malicious 
activities in addition to the tasks that the programs 
were intended for, such as a music CD that plays 
music but also executes some damaging code as a 
side-effect. 

 
The work by Levine et al. [5] is more specific and 

restricted as they tried to classify rootkits masquerading as 
existing programs, either as new rootkits or as modifications 
of existing rootkits. We followed Levine’s work to develop 
our framework as it is most applicable to the future trends of 
malware. However, we observe that Levine’s framework 
only addresses a small class of malware. We also discover 
the limitations of their framework by identifying its 
inadequacies in classifying all types of rootkits. Hence, we 
propose a new generalized framework that categorizes all 
existing rootkits as well as future polymorphic rootkits.  

Levine’s study introduced set theory to categorize 
rootkits. More specifically, they focused on the 
Environmental Masquerades mentioned in Thimbleby’s 
paper and started with the following two programs: 

 
• p1 was the original program, and 
• p2 was a malicious version of program p1 that 

provided some additional rootkit functionality.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Levine and his colleagues used {((pi))} to symbolically 
represent a set of possible functionalities for a program pi.  
Thus, it follows that {((p1))} ⊂ {((p2))}, but {((p1))} ≠
{((p2))} since there was at least one element in {((p2))} that 
did not belong in {((p1))}.  The difference Δ between p2 and 
p1 contained only those elements belonging to {((p2))} that 
were not in {((p1))}, and this difference was defined as 
{((p′))}  = {((p2))} \ {((p1))}. 

Next, they assumed that they had identified another 
rootkit of p1 called p3 and proceeded to check the following 
equation: 

 
{((p3))} - [{((p′))}∩{((p3))}] = {((p1))}  (1) 
 
They could then categorize p3 as either a brand new 

rootkit, a modification of an existing rootkit, or identical to 
an existing rootkit as follows. If equation 1 was true, Levine 
and his colleagues concluded that the rootkit p3 was the same 
as rootkit p2 and {((p3))} contained the same elements as 
{((p2))}. On the other hand, if the equation was not true but 
some elements of {((p′))} were contained in {((p3))}, then p3 
could be considered a modification of p2. If no elements of 
{((p′))} were contained in {((p3))}, then p3 was an entirely 
new rootkit. 

We wish to include the possibility that a newly 
discovered rootkit is a modification of two or more existing 
rootkits. It is not possible to extend the framework presented 
by Levine and his colleagues, however, as there is a 
fundamental flaw in their paper.  

Figure 2 illustrates this framework for the classification 
of rootkits. They considered only three out of a possible five 
cases for classifying a newly discovered rootkit. These three 
cases can occur when a rootkit is entirely new (part A), a 
modification of an existing rootkit (part B) or identical to an 
existing rootkit (part C).   

They failed to consider the case that a rootkit could be an 
extension of an existing rootkit (part D) and, more 
importantly, also failed to consider the possibility that the 
newly discovered rootkit could be a proper subset of an 
existing rootkit (part E). This is certainly possible: Rieck et 
al. [7] discovered that the Doomer worm is in fact an 
extension of the Gobot worm, and it is thus not 
inconceivable that we could find a rootkit that is an extension 
or subset of another rootkits. 

In part E, it might be the case that some malicious 
hackers first release a rootkit into the wild and then, at some 
later date, release a “more compact” newer version of the 
rootkit. If this was the situation, then Levine’s mathematical 
framework would fail to identify the newer version of the 
rootkit, as outlined below:  

For part E, if {((p3))} ⊂ {((p2))} and since {((p′))} = 
{((p2))}\{((p1))} was defined as the difference Δ 
between p2 and p1, it follows that {((p′))} ∩ 
{((p3))} = {((p3))} - {((p1))}. Thus, from equation 1, we 
have {((p3))} - [{((p′))} ∩ {((p3))}] = {((p3))} - [{((p3))} 
- {((p1))}] = {((p1))}.  

Since equation 1 is true, Levine and his colleagues would 
conclude that the new rootkit is identical to an existing 

Figure 2.   Theoretical Framework for Classifying Rootkits [5] 
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rootkit, which is not true. We propose to revise and 
generalize the framework in the following section. 

III. GENERALIZED THEORETICAL FRAMEWORK 
We now revise and generalize the theoretical framework 

for categorizing rootkits that was suggested by Levine and 
his colleagues.  In their framework, they considered the 
possibility that a rootkit that has just been detected is actually 
a modification of an existing rootkit.  In our framework, we 
wish to generalize this and include the possibility that the 
newly discovered rootkit has adopted some of the 
functionalities from two (or more) existing rootkits. This is 
illustrated in figure 3 and is not beyond the realm of 
possibility. With Rieck et al. [7] having found the coupling 
of two different malware families, namely the 
Backdoor.Zapchast and Worm.Parite families, it would 
certainly not be surprising to find a rootkit that had emerged 
from two distinct rootkit families. 

For our proposed framework, we first start with the 
following two assumptions: 

 
• Assume that there are n-1 known rootkits of p1:  

p2, p3, p4, … , pn, and 
• Assume that a new rootkit pn+1 has been detected. 
 
Next, we define: {((Xi))} = [{((pn+1))}\{((p1))}]∩ 

[({((pi))}\{((p1))}] as the common functionalities of rootkit 
pi (for some i, where 2 ≤ i ≤ n) and the newly discovered 
rootkit pn+1, and then consider the following equation: 

 
[{((X2))}∪{((X3))}∪{((X4))}∪…∪{((Xn))}] = Φ   (2) 
 
If equation 2 is true, then {((Xi))} = Φ for all i (2 ≤ i ≤ n) 

and we can conclude that the new rootkit is completely 
different from each of the previously known rootkits. 

If equation 2 is not true, on the other hand, then there 
exists some j (2 ≤ j ≤ n) such that {((Xj))} ≠ Φ and we 
conclude that the new rootkit has some common 
functionality with at least one of the previously known 
rootkits, in this case rootkit pj.   

 

 
Figure 3.   Generalized Framework for Classifying Rootkits 

Since we are dealing with a finite number of rootkits, we 
can sequentially test each {((Xj))} (for j = 2, 3, 4, … , n) to 
find all the rootkits that have some common functionality 
with the new rootkit. 

A. Algorithm for Classifying Rootkit Variants 
One reason for the proliferation of rootkits is the ease 

with which these rootkits can be implemented [8]. The 
developers of these rootkits often sell different versions of 
their product that other malicious hackers can purchase and 
subsequently deploy. These “toolkits” can be used to 
generate variants within a particular family of rootkits. 
Using the toolkit, even criminally minded hackers with just 
a minimum amount of programming experience can 
configure the rootkit for the particular task that they require. 
For instance, the hacker could specify the precise URLs that 
will trigger the keylogging or form grabbing capabilities of 
the rootkit to begin capturing data. A unique variant is 
generated whenever the rootkit is used for a specific purpose 
by different individuals or groups.  

In this subsection, we describe an algorithm for 
classifying these rootkit variants. The algorithm makes use 
of our generalized theoretical framework for classifying 
rootkits, which will be useful in finding the functionalities 
that a newly discovered rootkit has in common with the 
existing rootkits. 

For our algorithm, we will use the following notation to 
represent the families of rootkits: 

 
Families of rootkits: F1, F2, F3, … 

 
Within each of these families, there will likely be several 

variants that have been generated using the toolkits 
mentioned previously, and we will use the following 
notation to represent these variants: 

 
 Variants within the Fi family of rootkits: pi2, pi3, pi4, … 

 
which are all malicious versions of program pi1 with some 
additional rootkit functionality.  

 
 

Figure 4.   Algorithm for Classifying Rootkit Variants 
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Find the particular functionalities of existing rootkits. 

Step 2 
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functionalities of each family of rootkits F1, F2, F3, … 
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The algorithm is illustrated in figure 4. In step 1, we first 
search for particular functionalities of specific rootkits. In 
this study, we focused on inline function hooks [12]. 
Rootkits create these types of hooks by overwriting the first 
five bytes of an API function with a JUMP instruction. (The 
first byte in the function is replaced with the value E9, the 
opcode for a JUMP instruction in assembly language, and 
the remaining four bytes contain a 32-bit address of some 
malicious code.) Thus, in this step, we keep track of all of 
the API functions that were found to be hooked and we also 
note the associated Windows processes. 

Step 2 is used to determine the prominent functionalities 
of each family; for example, a particular family of rootkits 
might hook certain API functions. We make the same 
assumption that was made by Fu et al. [9]; that is, we 
assume that there would only be some slight differences 
between the functionality of the variants within a particular 
family. In other words, we use the collection of inline 
function hooks that were created by the rootkit to determine 
which family it belongs to. 

In step 3, we would be in a position to use the 
characteristics of each of the families to classify newly 
detected rootkits.  In order to determine if such a new threat 
is a variant that belongs to an existing family or possibly to 
an entirely new family, there are several abstraction layers 
that can be used to make this decision.  Focusing on one of 
the lower layers, such as content-based signatures, might be 
insufficient to cope with the polymorphic techniques that 
are being used to prevent such matching. Common 
obfuscation methods that make it difficult to detect variants 
within a family include [10]: 

 
• NOP-INSERTION: insert dead-code into a program; 
• CODE TRANSFORMATION: rearranging the order of 

instructions; 
• REGISTER REASSIGNMENT: replace the usage of one 

register with another; and 
• INSTRUCTION SUBSTITUTION: swap a set of 

instructions with an equivalent set. 
 

To avoid such difficulties, we suggest a higher 
abstraction layer.  We follow the methodology that was 
suggested by Bailey et al. [11] and define malware by what 
it actually does, such as hooking certain API functions.  

In section V, we describe in detail the cross-validation 
technique that we used to verify that a sample of rootkits 
was classified into appropriate families.  

IV. METHODOLOGY 
In this section, we describe our Rootkit Behavioral 

Analysis and Classification System (RBACS) and outline the 
process for conducting our experiment. An overview of the 
system is illustrated in figure 5. 

Sun Microsystem’s VirtualBox was installed on an 
Ubuntu host operating system and Microsoft’s Windows XP 
was then installed inside the virtual environment as a guest 

operating system. We obtained 78 rootkit samples from the 
Offensive Computing website and ran each sample, one by 
one, in the virtual environment. After running each sample, 
we restored the system back to its original settings. 

Rootkits make use of several different hooking 
techniques to remain hidden, such as import address table 
(IAT) hooking, export address table (EAT) hooking, inline 
function hooking and system service descriptor table (SSDT) 
hooking [12]. To test our system, we focused in this case 
strictly on rootkits that use inline function hooking 
techniques, but plan to include the other hooking techniques 
in our future research. 

For each rootkit sample, we used McAfee’s Rootkit 
Detective to detect the hooks had been created within the 
Windows XP operating system. After running this tool, a log 
file containing all the inline function hooks was generated. 
Pyroto’s Parse-O-Matic parser was then used to extract the 
important information about each hook from the log file: the 
Windows process that was being affected and the API 
function that was being hooked. 

Prior to executing the rootkits, we observed that there 
were a total of 26 processes running on the clean system. 
Furthermore, after testing all 78 rootkit samples and 
combining the log files that had been generated, we counted 
a total of 60 different API functions that had been hooked. 
Using a spreadsheet, we then created a large table with 78 
rows (one row for each rootkit) and 1560 columns (60 
columns for each of the 26 processes). The table contained 
0/1 binary values, with a 1 meaning that a particular rootkit 
had managed to hook a certain API function in a specific 
Windows process. In total, the 78 rootkit samples had 
created 11,159 inline function hooks. 

The final step in the process involved taking the binary 
data in the table and creating a dataset. The dataset, thus, 
consisted of 1560 attributes and 78 instances. We then 
applied the expectation-maximization (EM) algorithm on the 
dataset. The EM algorithm was available for implementation 
in the Wakaito Environment for Knowledge Analysis 
(WEKA) [13]. The results of our experiment are described in 
the next section. 

 

 
Figure 5.   System Overview 
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TABLE I.  EXPERIMENTAL RESULTS 

Number of Samples Antivirus Labels 

21 ClamAV Worm.Korgo.Z  
BitDefender Backdoor.Berbew.Be.DAM 

13 ClamAV Trojan.Crypted-29  
FProt W32.Berbew.F 

11 ClamAV Trojan.Crypted-29  
FProt W32.Berbew.G 

1 ClamAV Trojan.Qukart-8  
FProt W32.Berbew.F 

1 ClamAV Trojan.Qukart-10  
FProt W32.Berbew.F 

1 ClamAV Trojan.Qukart-17  
FProt W32.Berbew.F 

6 
ClamAV Trojan.Crypted-28  
AVGScan I-Worm.Nuwar.N  
FProt W32.Berbew.F 

2 
ClamAV Trojan.Crypted-28  
BitDefender Trojan.Spy.Qukart.Z  
FProt W32.Berbew.G 

2 ClamAV Trojan.Bancos-6278 

14 ClamAV Worm.Feebs.AE  
BitDefender Win32.Worm.Feebs.1.Gen 

1 Kaspersky Worm.Win32.Feebs.a 

1 BitDefender Trojan.PWS.Papras.A 

1 BitDefender Trojan.PWS.Papras.O 

1 BitDefender Trojan.PWS.Papras.F 

2 BitDefender Trojan.PWS.Papras.L 

 

V. EXPERIMENTAL RESULTS 
As mentioned, the rootkit samples for our experiment had 

all been obtained from the Offensive Computing website. 
This website uses five different antivirus scanners to label 
their malware samples: 

FProt 
BitDefender 
Kaspersky 
ClamAV 

AVGScan 
 

The 78 samples that we had obtained from this website 
had each been labeled by at least one of these antivirus 
scanners. For our experiment, however, we chose NOT to 
use these labels. We instead preferred to build a model using 
unsupervised clustering, where the instances had not been 
pre-classified. Successfully categorizing samples using 
unsupervised clustering would show greater evidence of the 
strength of our system than if we had used supervised 
clustering. 

We chose to use the EM algorithm for clustering our 
dataset. An advantage of using the EM algorithm is that the 
most appropriate number of clusters can be found 
automatically. This differs from the k-means algorithm, for 
example, where the number of clusters needs to be specified 
a priori. 

For each instance, the EM algorithm calculates the 
probability that it belongs to each of the different clusters 

and proceeds as follows. The number of clusters is initially 
set to one. The dataset is then randomly split into ten folds, 
with nine folds making up the training set and one fold 
designated as the test set. This procedure is repeated 10 
times, using a different fold as a test set each time. The 
loglikelihood is calculated each time and the results are then 
averaged over all ten trials. If the loglikelihood increases, 
then the number of clusters is increased by one and the 
procedure is repeated. [13] 

This cross-validation method produced the following 
results. The 78 samples were clustered into five families: 

 
• The 21 samples that had been labeled as Berbew by 

the BitDefender Antivirus scanner were all grouped 
into the same family F1. 

• The 35 samples that had been labeled as Berbew by 
the FProt antivirus scanner were all grouped into the 
same family F2. 

• The two samples that had been labeled as Bancos 
were both grouped into the same family F3. 

• The 15 samples that had been labeled as Feebs were 
all grouped into the same family F4. 

• The five samples that had been labeled as Papras 
were all grouped into the same family F5. 

 
The results of our experiment are summarized in table I. 

We have shown that our system can be used to successfully 
categorize a sample of rootkits that use inline function 
hooking. It is important to reiterate that the sample was NOT 
pre-classified; we only used the labels that were assigned by 
the five antivirus scanners to validate our results. 

Our hope is that system administrators might benefit 
from this system. If a system administrator detects some 
inline function hooks on a particular machine, he or she 
could then use our classification system to determine the 
family of that rootkit. Armed with that knowledge, the 
system administrator could then proceed and take further 
action.  

VI. RELATED WORK 
Kolter et al. [14] extracted n-grams from malicious 

executable files and, like our work, used the WEKA data 
mining software package to classify the malware samples 
into families. Their approach involved a static analysis of the 
executable files. Our goal, on the other hand, used a dynamic 
analysis approach and attempted to address a situation that a 
system administrator might be faced with. System 
administrators often find one of their machines behaving 
abnormally because of a rootkit infection and his or her 
immediate concern would be to try to determine what he or 
she was dealing with. Our system tries to deal with this 
concern.  

Bayer et al. [15] had a more similar system design to ours 
in that they started with a dynamic analysis of each sample in 
a controlled environment and ended up with clusters of 
families. The goal of their system was to cluster malware 
samples based on their behavior. Our research was more 
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focused, however, as we used the rootkit hooks to 
differentiate between the various families. 

VII. FUTURE WORK 
This research focused on a sample of rootkits that used 

inline function hooking techniques. As mentioned earlier, we 
plan to expand our system by adding other types of rootkits 
and test on a larger sample set; in particular, we plan to 
analyze rootkits that hook the IAT, EAT and SSDT.  

In addition to detecting the hooks that had been created on 
a system, an investigator might find other clues from a 
rootkit-infected machine. It might be the case, for example, 
that a rootkit disables the antivirus software or turns off the 
firewall on a system. We intend to add these and other 
functionalities to our dataset in the future. 

When conducting our experiment, we tested just one 
rootkit sample at a time on a clean system, and then restored 
the system back to the clean state before testing the next 
sample. In reality, though, it is often the case that a machine 
is found with more than one infection. In future experiments, 
we would like to determine if our system can handle the 
situation in which more than one rootkit is running on a 
system. 

Finally, having a large and sparse dataset, we plan to look 
into the possibility of using techniques from principal 
components analysis (PCA) for our study. 

VIII. CONCLUSION 
The first contribution of our paper was to address the 

limitations of the existing theoretical frameworks for 
classifying rootkits and to then develop a revised framework. 
The second contribution was to propose a new system for 
categorizing rootkits that was based on this framework. Our 
system managed to categorize 78 rootkit samples into five 
groups using unsupervised clustering. We then used the 
labels from five different antivirus scanners to verify the 
effectiveness of our clustering algorithm. 

There still remains one unanswered question, though. Just 
a quick look through table 1 would be enough to conclude 
that there is quite a large discrepancy in the way that 
antivirus companies label their malware samples. The 
question is, why is there such a lack of consistency between 
antivirus labels? Bailey et al. [11] attempted to address this 
issue. They conjectured that some antivirus companies had 
the “ability to more effectively differentiate small variations 
in a family of malware”. An antivirus company with this 
ability would obviously assign a greater number of unique 
labels to their malware samples.  

 From a network or system administrator’s point of view, 
having several different labels for the same infection would 
certainly cause confusion. These administrators would be 
especially concerned during outbreaks since they could not 
be certain if the protection that they had in place would be 
adequate. Having a common label that is shared among all 
antivirus companies would help to alleviate this confusion 
and there are projects underway, such as the Common 
Malware Enumeration (CME) [16], to accomplish just this. 
Our hope is that our research would also benefit projects 
such as the CME.   
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