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Abstract: The increasing reliance on cyber-physical systems (CPSs) in critical domains such as
healthcare, smart grids, and intelligent transportation systems necessitates robust security measures
to protect against cyber threats. Among these threats, blackhole and greyhole attacks pose significant
risks to the availability and integrity of CPSs. The current detection and mitigation approaches often
struggle to accurately differentiate between legitimate and malicious behavior, leading to ineffective
protection. This paper introduces Gini-index and blockchain-based Blackhole/Greyhole RPL (GBG-
RPL), a novel technique designed for efficient detection and mitigation of blackhole and greyhole
attacks in smart health monitoring CPSs. GBG-RPL leverages the analytical prowess of the Gini index
and the security advantages of blockchain technology to protect these systems against sophisticated
threats. This research not only focuses on identifying anomalous activities but also proposes a resilient
framework that ensures the integrity and reliability of the monitored data. GBG-RPL achieves notable
improvements as compared to another state-of-the-art technique referred to as BCPS-RPL, including
a 7.18% reduction in packet loss ratio, an 11.97% enhancement in residual energy utilization, and
a 19.27% decrease in energy consumption. Its security features are also very effective, boasting a
10.65% improvement in attack-detection rate and an 18.88% faster average attack-detection time.
GBG-RPL optimizes network management by exhibiting a 21.65% reduction in message overhead and
a 28.34% decrease in end-to-end delay, thus showing its potential for enhanced reliability, efficiency,
and security.

Keywords: smart healthcare system; cyber-physical systems; fog; blackhole attacks; greyhole attacks;
Gini index; blockchain; trust

1. Introduction

Cyber-physical systems (CPSs) are a combination of computer and physical technolo-
gies that are revolutionizing numerous industries. Modern computing, communication,
and control systems are combined with physical processes to facilitate intelligent real-time
interactions with the physical world. These systems employ networks of sensors, actuators,
and embedded computational devices in order to monitor, evaluate, and control physical
processes [1]. Smart healthcare, smart cities, self-driving automobiles, automation in indus-
tries, and smart environment monitoring are just a few of the numerous applications of
CPS [2]. CPSs enable real-time data collection, analysis, and decision making through the
seamless integration of real and virtual environments. CPSs are transforming industries
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and society by enhancing productivity, safety, and sustainability [3]. CPSs have a tremen-
dous amount of potential for influencing a future in which the physical and digital worlds
are closely connected.

Smart healthcare through CPS stands as a transformative force, revolutionizing the
landscape of medical care delivery. The importance of integrating CPSs in healthcare lies
in their ability to enhance patient outcomes, optimize resource utilization, and streamline
the entire healthcare ecosystem [4]. Through interconnected devices, real-time monitoring,
and data analytics, smart healthcare systems offer a comprehensive and personalized ap-
proach to patient care. Remote patient monitoring, predictive analytics, and smart medical
devices contribute to early disease detection, allowing for proactive interventions and
personalized treatment plans [5]. The advantages extend beyond individual patient care to
the optimization of healthcare operations. CPSs facilitate efficient resource management,
reducing costs, minimizing errors, and enhancing overall system resilience. Additionally,
the seamless exchange of information among healthcare stakeholders ensures coordinated
and timely interventions, improving the quality of care across the continuum [6]. In essence,
smart healthcare through CPS empowers healthcare professionals with valuable insights
and ensures a patient-centric, data-driven, and interconnected healthcare ecosystem.

An exemplary real-life manifestation of smart healthcare through CPS is evident in
the deployment of remote patient monitoring systems [7], such as the “Tele-ICU” pro-
grams implemented in various hospitals. These CPSs leverage a network of interconnected
medical devices and sensors to monitor patients in real time, even from remote locations.
In critical care settings, where timely interventions can be life-saving, Tele-ICU programs
utilize smart monitoring devices to continuously track vital signs and other relevant health
parameters [8]. The collected data are transmitted securely to a central hub, where health-
care professionals can analyze and respond to emerging trends or anomalies promptly.
This not only enables early detection of potential health complications but also facilitates
timely adjustments to treatment plans [9]. Importantly, these systems enhance the efficiency
of healthcare delivery by reducing the need for constant bedside presence, optimizing
resource allocation, and increasing the geographic range of critical care expertise. The suc-
cessful implementation of Tele-ICU programs shows how smart healthcare CPS can bridge
geographical gaps, improve patient outcomes, and redefine smart healthcare [10].

Smart healthcare CPS systems are revolutionizing patient care and healthcare delivery.
Wearable health trackers such as smart watches and fitness bands have enabled individuals
to monitor their activity levels, heart rate, and sleep patterns in real time [11]. Remote pa-
tient monitoring devices, including blood pressure monitors and glucose meters, empower
patients to manage chronic conditions from the comfort of their homes while providing
healthcare professionals with valuable data for proactive interventions [7]. Implantable
medical devices, like pacemakers and insulin pumps, have facilitated continuous monitor-
ing and adjustment of physiological functions [12]. Tele-health platforms facilitate virtual
consultations, connecting patients with healthcare providers regardless of geographical dis-
tances. Smart pill dispensers and inhalers contribute to medication adherence, enhancing
treatment efficacy. The pervasive use of IoT-enabled medical equipment and smart health
apps further underscores the interconnected nature of these systems [13]. These CPS de-
vices in smart healthcare systems are promoting personalized, efficient, and patient-centric
healthcare practices. A generic layout of the smart healthcare CPS is described in Figure 1.

CPSs are open to such attacks because the attackers try to take advantage of the
integrated environment. Unauthorized access to a CPS is a serious threat because it opens
the door for malicious actors to penetrate the network and impair system performance [14].
Similarly, the injection of fake data can deceive the system’s decision-making procedures
and jeopardize its integrity [15]. Additionally, malware, viruses, or ransomware disrupt
the regular operation of CPSs [16]. As a result, devastating outcomes, including physical
harm, financial losses, and sometimes even fatalities, can result from such attacks. Smart
healthcare CPSs are significantly at risk from attacks on CPSs, especially blackhole and
greyhole attacks [17]. Organizations can monitor user behavior and establish regular
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activities by using trust-based protection [18]. By swiftly isolating attackers and taking
action, decision makers in a smart healthcare CPS may lessen the impact of security breaches
and protect their systems and data [19]. Integrating timely security strategies is crucial to
ensuring integrity and confidentiality [20–22].

Figure 1. Smart healthcare cyber-physical systems.

To ensure the security and resilience of a CPS, robust detection and mitigation tech-
niques must be utilized to identify and respond to prospective attacks effectively. Diverse
strategies and technologies have been developed to detect and mitigate attacks against CPSs
in an effort to protect their essential functions and preserve system integrity [23–27]. CPS
security researchers are investigating cutting-edge detection and mitigation strategies, such
as deep learning (DL) and artificial intelligence (AI) [27,28], in addition to conventional
IDS methods [29]. However, it is crucial to remember that detection alone is insufficient;
to respond to identified attacks and lessen their effects on CPSs, appropriate mitigation
methods must be in place. AI-based solutions are resource-hungry, and they may drain the
limited resources of RPL-based networks [30].

To resolve the above issues, this paper presents an efficient detection method called
Gini-index and blockchain-based Blackhole/Greyhole RPL (GBG-RPL) for timely detection
and mitigation of blackhole and greyhole attacker nodes while focusing on the charac-
teristics of Low-power Lossy Networks (LLNs). The proposed framework utilizes the
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Gini index to analyze data distribution, enabling real-time detection of internal attacks.
Additionally, blockchain technology ensures data integrity through immutability, smart
contracts, and decentralized features, mitigating single points of failure (SPOF) and ensur-
ing scalability. The integration of the Gini index and blockchain strengthens the system’s
capacity to identify and isolate malicious nodes, contributing to improved network re-
silience against potential blackhole and greyhole attacks. The framework ensures the
integrity and reliability of healthcare data, building confidence among patients, healthcare
professionals, and stakeholders. The GBG-RPL technique provides accurate detection and
isolation of the attacker nodes by utilizing the Gini index to calculate the trust values of
each node. Furthermore, all trust calculations, along with blockchain implementation, have
been shifted to fog nodes at the fog layer, which further contributes to the efficiency of
the smart healthcare system. Thus, the application of the proposed framework in smart
healthcare systems would add to the security and efficacy of smart healthcare services. In
part Abbreviation we defines the abbreviations used in this paper. The salient contributions
of this research are as follows:

1. A layered trust framework is proposed to mitigate SPOF and improve the overheads
related to messages, energy, and computations in smart healthcare CPSs.

2. A decentralized and scalable framework is presented, enhancing security against
blackhole and greyhole attacks using the Gini index.

3. Integration of Gini index and blockchain within the smart healthcare monitoring
CPS architecture is proposed to enhance the system’s ability to identify and isolate
malicious nodes, improving the network integrity and performance.

The rest of the paper is structured as follows: Section 2 presents the literature review
and Section 3 explains the proposed solution. Section 4 describes a case scenario in a
smart healthcare CPS, whereas Section 5 presents mechanisms for trust management
in the proposed smart healthcare system. Section 6 illustrates the system architecture,
and Section 7 describes the CPS architecture in GBG-RPL. Section 8 presents methods for
designing, testing, and deploying GBG-RPL in a smart healthcare CPS. Section 9 covers
the experimental setup for simulation testing of the proposed framework, while Section 10
describes the results and discussion, followed by Section 11 concluding the paper and
presenting the future directions.

2. Literature Review

This section provides a detailed literature review and related work on blackhole and
greyhole attacks.

2.1. Related Work on Trust Mechanisms

A unique method for identifying and mitigating blackhole attacks in 6LoWPAN RPL-
based wireless sensor networks (WSNs) is presented by Sharma et al. [31], which is referred
to as Blackhole detection in RPL-based CPS (BCPS-RPL) in this paper. By preventing
malicious nodes from interfering with network communication, the proposed method
improves the security of CPS. A lightweight trust-enabled routing technique has been
proposed by Arshad et al. [32] to reduce the impact of Sybil attacks in RPL-based IoT
networks. The suggested method efficiently detects and prevents Sybil attacks, and hence,
enhances the security and dependability of IoT networks. A taxonomy of several network
attacks on CPSs, including denial of service (DoS), data manipulation, and injection attacks,
has been provided by Cao et al. [33]. Groves and Pu [34] suggest utilizing the Gini index to
identify and isolate Sybil attacks in IoT.

Methods for detecting and preventing greyhole attacks, such as trust-based proce-
dures and routing protocols, have been elaborated in Chinnaraju and Nithyanandam [35].
The study explains the problems that may arise from greyhole attacks and suggests ways
to fix them. An exhaustive taxonomy of attacks, including their characteristics, impacts,
and detection/prevention methods, is presented by Savoudsou et al. [36]. To detect and
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prevent attacks in RPL-based networks, Garcia et al. [37] describe a unique IDS architecture
that integrates different anomaly-detection approaches. The contribution is a workable
IDS solution modified to fit the specific features and needs of IoT networks based on RPL.
To improve the safety of IoT networks, Hashemi and Aliee [38] present a novel trust model
developed for the IoT. A new method for localization is presented by Kaliyar et al. [39] that
includes features for the early detection of Sybil and wormhole attacks in IoT networks.
Using RPL control messages, Bang et al. [40] provide a complete overview of various
routing attacks and countermeasures. Sybil attacks in WSNs with a cluster topology are
detected using a lightweight trust-based framework given by Sujatha et al. [41].

A behavioral intrusion-detection framework for WSNs is proposed by Smith et al. [42].
The prospective applications and benefits of various technologies have been highlighted
by Sharma and Verma [43]. Sharma et al. [44] carefully examine multiple attack vectors
across multiple layers of the IoT architecture, propose mitigation strategies, and highlight
research gaps. In order to identify and neutralize potential security risks in sensor net-
works, Gamec et al. [45] analyze the actions of nodes at the device layer. Sanders and
Yau [46] present a strategy that combines neighbor monitoring with trust-based routing to
identify and isolate blackhole attacks. Kale et al. [47] offer a novel strategy that examines
network traffic patterns and behavior to find probable blackhole nodes. In order to identify
and remove blackhole nodes from the network, Saputra et al. [48] develop an enhanced
approach that examines the behavior of nearby nodes. An innovative method presented by
Wagle et al. [49] optimizes the energy usage of security measures while assuring efficient
threat detection and mitigation.

Makkar et al. [50] present the FedLearnSP framework, which enables model train-
ing without disclosing personal information. An innovative fuzzy logic-based intrusion-
detection system is presented by Ghosh et al. [51] as their contribution. The categorization
and classification of different attacks according to how they affect the CPS’s sensors, actua-
tors, and communication channels are among the contributions made by Dixit et al. [52].
The taxonomy offers a methodical framework for comprehending and evaluating various
attack types in CPSs. In their study on network congestion in WSNs, Pandey and Kush-
waha [53] analyze the effects of various security threats, such as blackhole, wormhole,
and flooding attacks. Chennam et al. [54] address the particular security difficulties CPSs
face and offer feasible solutions to lessen the threats found.

Saeed et al. [55] describe a novel method that makes use of the ERT algorithm to
identify and treat WSN problems precisely. Alvarez et al. [56] present a unique method
for locating and neutralizing hostile nodes that interfere with network connectivity by
using heartbeat messages between the member nodes. Pasikhani et al. [57] conduct a
thorough literature review, identifying several IDS strategies, their methodologies, and
performance in the context of 6LoWPAN networks. A comprehensive comparison of the
papers reviewed during the research based on trust mechanisms is given in Table 1.

Table 1. Related work on trust-based attack detection.

Reference Technique Attack Centralized Network Life Scalability Computation OH Message OH Energy OH

[17] Trust Internal × Medium X Low High High

[32] Trust Sybil X Low × High High High

[35] Trust Greyhole X Low × High High High

[36] Trust Blackhole X Low × High High High

[37] Trust Multiple X Low × High High High

[43] Trust Multiple X Low × High High High
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Table 1. Cont.

Reference Technique Attack Centralized Network Life Scalability Computation OH Message OH Energy OH

[46] Trust Blackhole X Low × Low High High

[47] Trust Blackhole × Low × High High High

[49] Trust Multiple X Low × Low High High

[54] Trust Blackhole X Low × High High High

[57] Trust Multiple X Low × Low High High

[58] Trust Multiple X Low × High High High

[59] Trust Multiple X Low × High High High

[60] Trust Multiple X Low × High High High

[61] Trust Multiple × Low × High High High

2.2. Related Work on Blockchain Security

By using blockchain technology to store trust data securely and impenetrably, Tariq et al. [17]
reduce the drawbacks of current trust models. The suggested technique delivers better inter-
nal attack-detection accuracy and security. A strong and trustworthy model is provided by
Sivaganesan [60], which focuses on data-driven techniques to detect and mitigate attacks.
Guo et al. [62] have analyzed the uses, advantages, and difficulties of blockchain in different
fields. Blockchain in IoT environments has been analyzed along with problems of incorporat-
ing it into trust-management systems by Liu et al. [63]. For the purpose of determining the
advantages, difficulties, and future applications of combining blockchain with cloud computing,
Gong and Navimipour [64] thoroughly review and synthesize the existing research. In addition
to highlighting the security issues in fog computing, the study by Alzoubi et al. [61] presents
possible applications of blockchain technology to improve security and privacy. A detailed
overview of several blockchain-based security solutions for the IoT is provided in the paper
by Khan et al. [65]. A comprehensive comparison of the papers reviewed during the research
based upon blockchain security is given in Table 2.

Table 2. Related research on blockchain.

Reference Year Pros Cons Practicality Real-Time Applications

[17] 2020
Leverages blockchain for secure
and tamper-proof storage of
trust information.

Need for further validation and
evaluation in real-world IoT
scenarios.

X X

[60] 2021 Uses data-driven approaches to
detect and mitigate attacks.

Need for practical
implementation and evaluation
in real-world IoT deployments.

X X

[61] 2021
Explores security concerns in
fog computing and potential
solutions using blockchain.

Lack of in-depth analysis and
specific implementation details
for blockchain solutions in fog
computing.

X X

[62] 2022
Explores the applications,
benefits, and challenges of
blockchain.

Some security aspects discussed
may become outdated over
time.

× ×

[63] 2023

Analyzes the challenges and
opportunities of integrating
blockchain into
trust-management systems.

Fast-evolving nature of
blockchain and IoT
technologies may require
frequent updates.

X X
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Table 2. Cont.

Reference Year Pros Cons Practicality Real-Time Applications

[64] 2022

Identifies the benefits,
challenges, and potential
applications of integrating
blockchain with cloud
computing.

Findings may become outdated
due to the rapidly evolving
nature of blockchain
technology.

× ×

[65] 2022
Presents an overview of
blockchain-based security
solutions for IoT.

Lack of empirical evaluations
and case studies to demonstrate
the practical effectiveness of
reviewed approaches.

× ×

3. Proposed Solution

The main features of the proposed Gini index and blockchain based solution are listed
as follows:

1. Integration of the Gini index and blockchain for attack detection and mitigation: When
applied to CPS security, combining the Gini index and blockchain is an attractive way
to improve detection and mitigate attacks. The idea behind integrating these two
technologies is that they can enhance CPS security due to overlapping functionalities
and synergies [66,67]. The Gini index is used to detect weak spots in a CPS [68] by
keeping the focus on resource disproportions. Blockchain technology, on the other
hand, has the advantages of being immutable, transparent, and decentralized, all of
which strengthen CPS security [69]. Blockchain technology uses SHA-256 (Secure
Hash Algorithm 256-bit) as the hashing algorithm. The hash function SHA-256 is
well-known for its safety and collision resilience [70]. It generates an output with a
fixed length of 256 bits. It is essential to maintaining the immutability and security of
data in the blockchain since it creates a distinct hash for every block according to its
contents. Blockchain technology combined with the Gini index offers a more reliable
and efficient cybersecurity mechanism [67,71].

2. Enhancing CPS security and benefits/synergies of integration: There are multiple
methods in which the integration of blockchain with the Gini logic could enhance
CPS security. Initially, although blockchain technology safeguards the Gini data’s
integrity and immutability, it can also be employed to identify resource disparities and
possible attacks [68,69]. Secondly, the openness and decentralized nature of blockchain
allow all CPS network users to access and validate the Gini index data, encouraging
cooperation and group security initiatives [69]. Additionally, the integration makes
it possible for authorized users to safely share and disseminate the Gini index data,
enabling real-time monitoring and defense against potential threats [71].

3. Resource consumption at fog layer: All calculations and associated computational
load have been moved from the device layer to the fog layer. As a result, the computa-
tional load on resource-constrained device layer nodes is reduced, and it is instead
distributed to a high-performance fog server, resulting in a decrease in energy usage,
message overhead, and end-to-end delay.

3.1. Assumptions

The following assumptions are made for the proposed methodology:

1. Initially, all network nodes are trustworthy and contain no malicious nodes.
2. A root node, also known as the LLN Border Router (LBR), is a resourceful computa-

tional device and is assumed to be trustworthy during the CPS’s network life.
3. Each device registers with the root node using a special identification number.
4. Other than the root, devices may or may not be mobile; the root will stay static.
5. The communication channel is secure.
6. The attacker node is not intelligent.
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3.2. Gini Index-Based Trust Model

The Gini index describes the degree of income dispersion across the whole income
spectrum by integrating specific share data into a single statistic [72]. The Gini coefficient
ranges from 0 to 1, with 0 denoting perfect equality and 1 denoting perfect inequality. It
measures the difference between the observed cumulative income distribution, or Lorenz
curve, and the idealized case of completely equitable income distribution. Gini impurity,
another name for the Gini index, is used to measure the likelihood or severity of misclassifi-
cation when a variable is chosen at random. When all the elements fall into a single class,
a state of purity results, and the idea of “impurity” is introduced.

The core idea of the proposed Gini countermeasure is to exploit the statistical proper-
ties of entities for the detection and mitigation of blackhole and greyhole attacks. The Gini
countermeasure, in particular, evaluates the variation in received DAO messages using
the Gini index-based theory, allowing the identification of probable blackhole or greyhole
attacks, as depicted in Figure 2. The Gini countermeasure launches the appropriate mitiga-
tion steps to lessen the impact of such attacks as soon as they are discovered. The generic
mathematical notation of the Gini index for attack detection in a CPS is given below:

1. The Gini index’s degree ranges from 0 to 1.
2. “0” indicates that there is only one class (pure) or that all elements fall under that class.
3. The number “1” indicates that the elements are dispersed at random (impure) through-

out the classes.
4. An equal distribution of elements into some classes is indicated by a Gini index value

of 0.5.

Let I be the Gini index, which represents the inequality of flow distribution in the CPS
network, as shown in the Equation (1).

I = 1−
n

∑
i=1

(ai)
2 (1)

where ai denotes the proportion of flow i in a network.

Figure 2. Trust thresholds for Gini index in CPS.

The Gini index idea can be used to evaluate resource allocation and spot potential
weaknesses in the context of CPS security [73]. Computational power, bandwidth, and stor-
age are among the resources that are distributed among different system components and
entities in CPS. However, an uneven distribution of resources might provide attackers
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access to vulnerable points, jeopardizing the system’s overall security and functionality.
The Gini index becomes important in this situation. By computing the ratio between the
cumulative differences in resource allocation and the total allocation, the Gini index gives a
quantitative indicator of resource distribution. A higher Gini index value denotes a system
with more resource inequality or imbalance. Researchers and practitioners in CPS security
can learn more about resource distribution trends and spot potential weak spots by using
the Gini index.

The capacity of the Gini index to identify resource imbalances that potential attackers
can exploit makes it relevant to CPS security. Security teams can identify and investigate
resource allocation abnormalities that could be signs of attacks or unauthorized resource
use by tracking the Gini index over time. In order to discover weaknesses and improve
the overall security posture of CPS, the Gini index functions as a metric that supplements
conventional security measures. The Gini index can also be used to increase security
measures and give priority to resource allocation in vulnerable areas [74]. The Gini index
assists in reducing the danger of blackhole and greyhole attacks, in which resources are
fraudulently devoured or purposely diverted, by correcting resource imbalances and
ensuring a more equitable distribution. Given that it provides a quantitative evaluation of
resource allocation and risk inside the system, the Gini index notion is extremely pertinent
to CPS security. Security professionals can identify potential attack vectors, understand
resource imbalances, and prioritize security solutions by using the Gini index [75]. The use
of the Gini index improves CPS security’s overall resiliency and efficacy, protecting and
preserving the integrity of these intricate and linked systems.

Despite being a relatively recent concept, the application of the Gini index in CPS
security has shown promise in related disciplines. The Gini index, for instance, has been
used to examine how energy consumption is distributed among sensor nodes in WSNs.
The index assists in identifying nodes that consume excessive amounts of energy, high-
lighting potential weaknesses that attackers could exploit or places where energy-saving
techniques could be used [76]. The Gini index has been used in cloud computing systems
to evaluate the equity of resource distribution among virtual machines, improving load
balancing and system performance [77]. There are a number of possible advantages to
using the Gini index in CPS security. Firstly, it gives security professionals a quantifiable
measure of resource allocation so that they can identify and prioritize areas that need
attention and changes in resource allocation [78]. Secondly, it assists in the identification of
crucial parts or subsystems that would require stronger security precautions because of
resource concentration. Thirdly, the Gini index helps to spot potential attack vectors and
weak spots that bad actors may exploit. [79]. Security solutions can be adapted to safeguard
the most important and vulnerable parts of the CPS by evaluating resource allocation
patterns. However, there are restrictions to take into account when using the Gini index
for CPS attack detection. The Gini index does not offer information about particular attack
kinds or methodologies because it primarily concentrates on resource distribution [80].
Furthermore, the accuracy and dependability of resource allocation data have a direct
impact on the Gini index’s validity and effectiveness as an attack-detection tool [81].

3.3. Trust Calculation in Proposed Methodology

Trust calculation methodologies in CPSs are instrumental in evaluating the trustwor-
thiness of entities within the system. These methodologies employ trust models, algorithms,
and selected metrics to assess the behavior, reputation, and history of entities. By consid-
ering factors such as past performance, adherence to security protocols, successful task
execution, feedback, and reputation, trust values are computed for each entity. These values
enable informed decision making, resource allocation, and detection of malicious behavior.
Trust calculation methodologies in CPS are adaptive, ensuring accurate and up-to-date
trust assessments. A list of symbols used in mathematical notations is given in Table 3.
Algorithm 1 represents the detection of malicious nodes in a smart healthcare CPS.
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Algorithm 1: Malicious node detection.
Input: Trust Parameters
Output: Malicious Node Detected
// Initialize variables

1 for all nodes in the network do
2 Collect parameters;
3 Send parameters;

4 if sink=0 then
5 Forward parameters;
6 Discover all nodes;
7 for node id exists in fog do
8 if end then
9 return;

10 else
11 Register node id;

12 Analyze trust;

// Function to calculate trust score (PD, EC, EED, L)
13 for each node id do
14 Preprocess trust score to blockchain;
15 Preprocess trust score to Gini trust calculator;

16 for I ≤ nodes do
17 if Gini value ≤ threshold then
18 Display “Legitimate node”;
19 Propagate into network;

20 else if Gini value ≥ threshold then
21 Display “Malicious node”;
22 Propagate into network;
23 Eliminate “Malicious node”;

Table 3. List of symbols used in mathematical notations.

Symbol Meaning

I Gini index (inequality of flow distribution in CPS network)

ai Proportion of flow i in the network

DR Drop rate (the rate at which network packets are dropped or rejected)

L Latency (delay experienced by packets during transmission)

T Throughput (success rate of data transmission across the network)

Gm Gini index value of node m

Pm Packet loss rate of node m

Lm Latency of node m

Thm Throughput of node m

G Set of Gini index values for all nodes in the CPS network

Average(G) Average Gini index value of all nodes in the CPS network

N Set of entities in the system
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Table 3. Cont.

Symbol Meaning

Trust(N) Trust values assigned to each entity in N

D Set of dropped packets for each entity in N

E Set of energy consumption values for each entity in N

O Set of message overhead values for each entity in N

Gm(T) Gini index value of node m at time T

Pm(T) Packet loss rate of node m at time T

Lm(T) Latency of node m at time T

Thm(T) Throughput of node m at time T

θ Threshold value for node m

Ḡ Average value for the Gini index

1. Direct Trust Calculation
Monitoring nodes at the device layer of the CPS is referred to as direct trust calculation.
Monitoring nodes at the device layer is performed by resource-constrained devices
by continuously tracking and examining the actions and interactions of other nodes
within the CPS. The real-time data gathered by these nodes include trust parameters
such as the packet drop rate, energy usage, end-to-end delay, and message over-
head. Monitoring nodes use trust models and algorithms as part of the direct trust
calculation process to assess the reliability and behavior of CPS entities.
In a CPS, direct trust computation at the device layer offers a number of benefits.
First of all, it offers real-time trust evaluation, allowing for the quick detection of
malicious or untrustworthy system elements. Second, direct trust computation gives
a thorough evaluation of entity trustworthiness by taking into account trust factors
such as the packet loss rate, energy consumption, end-to-end delay, and message
overhead. Direct trust calculation at the device layer has its challenges. The precision
and scalability of trust computations may be impacted by the monitoring nodes’
constrained memory and computational capacity. In order to avoid unauthorized
access or manipulation of trust values, it is also essential to ensure the security and
privacy of trust data. To address this issue, the proposed methodology incorporates
the device layer nodes to gather only the trust parameters and send them to the
fog node through a sink node for data aggregation and trust calculation. Once the
overall trust calculations are computed at the fog layer, the same are stored in the
global trust list and forwarded to all member nodes for subsequent actions. A general
mathematical notation for calculating direct trust using the above trust parameters is
depicted in Table 4, where EC stands for the energy used, L for the latency, EED for
the end-to-end delay, and PDR for the number of dropped packets.

Table 4. Description of parameters for direct trust.

Parameter Description

PDR Packet Drop Rate
EC Energy Consumption

EED End-to-End Delay
L Latency

2. Indirect Trust Calculation for Blackhole
Several features can be taken into account when utilizing the Gini index to find a black-
hole node in a CPS. Here are several distinctive characteristics of a blackhole node:
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(a) Deviation in Gini index: The Gini index gauges how uneven or unequal the
CPS network’s flow characteristics are. The Gini index values significantly
differ when a blackhole node drops packets.

(b) Packet loss: Incoming packets are purposefully dropped by blackhole nodes,
which results in a high packet loss rate.

(c) Latency: Blackhole nodes have the potential to cause large packet transport
or response time delays. Blackhole node anomalous delays can be found by
keeping an eye on the communication latency between nodes.

(d) Energy consumption: Blackhole nodes have higher energy consumption than
regular nodes due to packets being dropped.

(e) Traffic distribution: Blackhole nodes can be found by examining the traffic
distribution patterns and locating nodes with unusual or inconsistent traf-
fic distribution.

In addition to the Gini score, blackhole nodes in CPS networks can be quickly iden-
tified by taking into account these properties. These metrics are tracked, analyzed,
and compared across the nodes to help find those that behave strangely or might be
blackhole nodes. The Gini index’s features for detecting a blackhole node in a CPS
can be expressed mathematically as follows:
Let Gm represent the Gini index value of node m, Pm denote the packet loss rate of
node m, Lm stand for the latency of node m, and ECm signify the energy consumption
of node m. Additionally, let G be the set of Gini index values for all nodes in the CPS
network, Ḡ denote the average Gini index value of all nodes in the CPS network, θP
represent the predefined threshold for packet loss rate, θL be the predefined threshold
for latency, and θEC signify the predefined threshold for energy consumption. These
notations play a pivotal role in analyzing the behavior and performance of the CPS
network. The characteristics to detect a blackhole node are as follows:

(a) Deviation in Gini index: The Gini index deviation for node m can be defined
as shown in Equation (2):

Gini_Deviationm = |Gm − Ḡ| (2)

(b) Packet loss: The condition to detect potential blackhole nodes based on packet
loss can be expressed as described in Equation (3):

Pm > θP (3)

(c) Latency: The condition to detect potential blackhole nodes based on latency
can be expressed as described in Equation (4):

Lm > θL (4)

(d) Throughput: The condition to detect potential blackhole nodes based on
throughput can be expressed as described in Equation (5):

ECm < θEC (5)

(e) Traffic distribution: By analyzing the traffic distribution patterns and identify-
ing nodes with abnormal or inconsistent traffic distribution, blackhole nodes
in a CPS network are detected and subsequently eliminated.

The pseudo-code for the detection of blackhole nodes using the Gini index is de-
scribed in Algorithm 2. The time complexity of the algorithm is O(n), while the space
complexity is also O(nlogn).

3. Indirect Trust Calculation for Greyhole
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To identify a greyhole node in a CPS, several factors that distinguish anomalous
behavior displayed by nodes and indicate the presence of a greyhole node can be
taken into account. The following is a list of greyhole node characteristics:

(a) Gini index deviation: Each node’s Gini index in the CPS network is determined
based on the flow characteristics of packet loss, delay, and throughput. Nodes
with disproportionately high Gini index values might be greyhole nodes.

(b) Selective packet dropping: By keeping an eye on a node’s packet-forwarding
activity, greyhole nodes can be identified.

(c) Latency: Greyhole behavior can be detected by tracking the node latency and
finding nodes with a higher latency than anticipated.

(d) Energy consumption: Greyhole nodes can be identified by tracking the energy
consumption and spotting those with noticeably low residual energy values.

(e) Throughput: In comparison to other nodes, greyhole nodes may manipulate
or restrict the flow of data, resulting in reduced throughput.

Greyhole nodes in the CPS can be found by taking into account the criteria mentioned
above and the Gini index analysis. The mathematical model below shows how the
Gini index can be used to find greyhole nodes in a CPS. Let the characteristics of node
m at time T describe several parameters. The Gini index value is denoted by Gm(T),
representing the data distribution. The packet loss rate is indicated by Pm(T), reflect-
ing the rate of lost packets. The latency is represented by Lm(T), capturing the data
transmission delay. The energy consumption is denoted by ECm(T), signifying the
power usage. The throughput is indicated by Thm(T), representing the data transfer
rate. θ represents the threshold value for a particular metric and Ḡ represents the
average value of the Gini index. These parameter values are essential for evaluating
and managing the performance of node m within the CPS network. The characteristics
to detect a greyhole node are:

Algorithm 2: Detection of blackhole nodes.
Input : Set of nodes N, G, Avg, TPP, TPL, TEC
Output : Potential blackhole nodes

1 for each node m in N do
2 Gini index value← Gini index value of node m;
3 packet loss rate← packet loss rate of node m;
4 latency← latency of node m;
5 energy consumption← energy consumption of node m;
6 for each node n in N do
7 if n has abnormal traffic distribution then
8 TrafficDistribution← true;

9 if Gini index value is significantly different from Avg then
10 PotentialBlackholeNodes← PotentialBlackholeNodes ∪ m;

11 if packet loss rate > TPP then
12 PotentialBlackholeNodes← PotentialBlackholeNodes ∪ m;

13 if latency > TPL then
14 PotentialBlackholeNodes← PotentialBlackholeNodes ∪ m;

15 if energy consumption > TEC then
16 PotentialBlackholeNodes← PotentialBlackholeNodes ∪ m;

17 if TrafficDistribution then
18 PotentialBlackholeNodes← PotentialBlackholeNodes ∪ m;

19 return PotentialBlackholeNodes;
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(a) Gini index deviation: The Gini index deviation for node m at time t can be
defined as described in Equation (6):

Gini_Deviationm(T) = |Gm(T)− ¯G(T)| (6)

(b) Packet loss: The condition to detect potential greyhole nodes based on packet
loss can be expressed as described in Equation (7):

Pm(T) > θP (7)

(c) Latency: The condition to detect potential greyhole nodes based on latency
can be expressed as described in Equation (8):

Lm(T) > θL (8)

(d) Energy consumption: The condition to detect potential greyhole nodes based
on energy consumption can be expressed as described in Equation (9):

ECm(T) > θEC (9)

(e) Throughput: The condition to detect potential greyhole nodes based on through-
put can be expressed as described in Equation (10):

Thm(T) < θTh (10)

The Gini index deviation captures the deviation of a node’s Gini index from the
average. At the same time, the packet loss, latency, and throughput characteristics
help identify nodes with abnormal behavior in terms of packet loss rate, latency,
and data transfer rates, respectively. The pseudo-code for the detection of greyhole
nodes using the Gini index is depicted in Algorithm 3. The time complexity of the
algorithm is O(n), while the space complexity is also O(nlogn).

4. Trust Update
A key component of assuring the network’s dependability and security in CPS net-
works is trust updating. Based on the behaviors and interactions within the network,
individual nodes’ given trust ratings are evaluated and updated. There are two ba-
sic ways trust updates may occur: routine/periodic updates and reactive updates
brought on by modifications in node behavior.

(a) Routine: Routine trust updating is carried out at predetermined intervals,
usually as part of a routine maintenance operation. This method ensures that
trust values are always up-to-date and represent the nodes’ current behavior.
Network managers may identify potential deviations or anomalies in node
activity by periodically analyzing their trustworthiness.

(b) Reactive: When a node’s behavior changes significantly or displays question-
able behavior, reactive trust updating takes place. These adjustments may take
the form of abrupt increases in data loss, unforeseen communication delays,
or departures from established behavioral norms. When these anomalies are
found, a reactive action is taken to adjust the node in question’s trust value.

For a CPS network to remain trustworthy, both routine and reactive trust-update
measures are essential. The routine updates offer a methodical and proactive way
to monitor the network, ensuring that trust values are consistently evaluated and
modified. Reactive updates, on the other hand, offer a quick way to respond to any
abrupt or unexpected changes in node behavior that might point to a security risk.
Combining the two strategies enables CPS networks to efficiently respond to dynamic
changes in node behavior.
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Algorithm 3: Detection of greyhole node.

Input: Gm(T): Gini index value of node m at time T
Pm(T): Packet loss rate of node m at time T
Lm(T): Latency of node m at time T
ECm(T): Energy consumption of node m at time T
Tm(T): Throughput of node m at time T
θP: Predefined threshold for packet loss
θL: Predefined threshold for latency
θEC: Predefined threshold for energy consumption
θT : Predefined threshold for throughput
Output: Potential greyhole nodes

1 Characteristic 1: Gini Index Deviation;
2 for each node m do
3 Gini_Deviation← |Gm(T)− ¯G(T)|;
4 if Gini_Deviation is significantly different from 0 then
5 Add node m to PotentialGreyholeNodes;

6 Characteristic 2: Packet Loss;
7 for each node m do
8 if Pm(T) > θP then
9 Add node m to PotentialGreyholeNodes;

10 Characteristic 3: Latency;
11 for each node m do
12 if Lm(T) > θL then
13 Add node m to PotentialGreyholeNodes;

14 Characteristic 4: Energy Consumption;
15 for each node m do
16 if ECm(T) > θEC then
17 Add node m to PotentialGreyholeNodes;

18 Characteristic 5: Throughput;
19 for each node m do
20 if Tm(T) < θT then
21 Add node m to PotentialGreyholeNodes;

22 return PotentialGreyholeNodes;

3.4. Smart Contracts for Node Registration

In the node-registration process, enhancing security and trust management is made
possible by the use of blockchain technology at fog nodes in the fog layer of a CPS. However,
implementing blockchain technology and maintaining a global trust list requires resourceful
nodes that can be installed at the fog layer. Fog servers can create a safe and automated
procedure for adding additional nodes to the CPS network by using smart contracts.
In such a scenario, the registration procedure is governed by the smart contract, which
serves as a predetermined set of guidelines and requirements. The smart contract receives
information from the new node when it tries to join the network, including the node’s
identification and any associated metadata. The smart contract then verifies the supplied
data using predefined criteria. When the validation is successful, the smart contract creates
a blockchain transaction that includes the new node’s identification and any pertinent
information. Algorithm 4 represents the functional description of the smart contract
module to execute a new transaction and update the blockchain-based revised global trust
list (BRGTL). The time complexity of the algorithm is O(1), while the space complexity
is O(n).
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Algorithm 4: Smart contract algorithm.
Input : Trust parameters T, device registration database D, trust score S, Gini

index value G, access permissions
Output : Revised global trust list L

1 R← φ;
2 if Access Permissions are not valid then
3 return Error;

4 R← {T, D, S, G};
5 L← φ;
6 for each node n in D do
7 Calculate the trust score of node n using T, D, and S;
8 Add node n to L with its trust score;

9 return L;

There are a number of security advantages to node registration utilizing smart con-
tracts. First, because the procedure is automated, there is less chance of human error.
By confirming the legality of the joining nodes, the smart contract’s validation procedure
adds an extra degree of protection. Second, the blockchain’s transparency enables other fog
nodes of the same CPS network to audit and validate the registration process. In order to
confirm that the registration procedure complies with the established norms and circum-
stances, they can independently review the transactions that have been recorded on the
blockchain. Below is a step-by-step explanation of how smart contracts are implemented at
the fog layer, and Figure 3 shows the same.

1. Smart contract deployment: The fog server compiles the smart contract code and then
deploys it to the blockchain.

2. Node registration request: A registration request is sent to the fog server by a new
node when it wants to join the network. The request contains the data needed for the
registration procedure, such as the node’s identification and associated metadata.

3. Smart contract interaction: By calling functions or methods specified in the deployed
smart contract’s code, the fog server communicates with it.

4. Validation and verification: After receiving the registration request, the smart contract
runs validation and verification tests. The node’s identification is validated by the
smart contract, which then confirms its veracity.

5. Updating the registration list: The smart contract updates the node registration
list if the registration request is validated successfully. The updated registration
information is included in a new transaction that the smart contract makes on the
blockchain network.

6. Confirmation and event logging: When the smart contract successfully changes
the registration list, it notifies the fog server by sending a confirmation response.
The confirmation or event is recorded by the fog server.

3.5. Blockchain-Based Gini Index Framework in Smart Healthcare CPS

The proposed framework analyzes the distribution of data using the Gini index. It
establishes a baseline of normal data distribution, detecting internal attacks in real time.
The adjustment of thresholds based on the Gini index analysis ensures adaptability to
evolving system behavior, enhancing the framework’s ability to identify and respond to po-
tential threats. In addition, blockchain technology is integrated to ensure data integrity [17].
The immutability of records on the blockchain creates a tamper-resistant ledger for all trans-
actions. Smart contracts enforce access controls and record transactions, contributing to
enhanced data integrity and security [82]. The decentralized nature of blockchain mitigates
the risk of SPOF and ensures scalability. The framework is designed to scale effectively,
maintaining its security features even in larger and more complex network environments.
Therefore, the integration of the Gini index and blockchain enhances the system’s ability to
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identify and isolate malicious nodes, which is crucial for maintaining network integrity.
The combined features of the Gini index and blockchain contribute to improved network
resilience, ensuring that the system can withstand and recover from potential blackhole
and greyhole attacks effectively.

Figure 3. Stepwise flow of smart contract Working at fog layer.

3.6. Deployment Models for Proposed Framework

Various deployment models can be used for the implementation of the proposed
framework (GBG-RPL) in the smart healthcare CPS. Each deployment model has its own
set of advantages and disadvantages, as tabulated in Table 5.

Table 5. Deployment models for proposed framework in smart healthcare CPS.

Model Type Advantages Disadvantages

Centralized [83]

Simplicity: Straightforward and easy
to implement, especially for
smaller-scale smart healthcare CPS.
Control: Allows for easier
management and coordination of
security measures.

Single point of failure (SPOF): The
centralized entity becomes an SPOF.
Scalability issues: Challenges in
scaling up for larger and more
complex healthcare systems.

Hybrid [84]

Combines centralization and
decentralization: Offers a balance
between control and resilience.
Scalability: More scalable than a
purely centralized approach.

Complexity: Introduces complexity
due to integration between
centralized and decentralized
components.
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Table 5. Cont.

Model Type Advantages Disadvantages

Fully Decentralized [85]

Resilience: More resilient against
SPOF. Security: Improved
security due to the absence of a
central authority.

Complexity: Complex to
implement and manage.
Scalability challenges:
Challenges, especially in
large-scale smart healthcare CPS.

Fog Computing [86]

Reduced latency: Reduces
latency and improves real-time
decision making. Enhanced
privacy: Reduces the need to
transmit sensitive information
across the network.

Consistency challenges: Ensuring
consistent trust assessments
across edge devices may require
additional coordination
mechanisms.

Cloud-Based [87]

Scalability: Allows for scalability
by leveraging cloud resources.
Resource management: Can
better manage computational
resources.

Dependency on cloud service
providers (CSP): Reliance on
external CSPs introduces a
dependency. Security concerns:
Security concerns due to the
centralization of data.

Mesh Network [88]

Redundancy: Provides
redundancy and resilience.
Adaptability: Well-suited for
dynamic healthcare
environments.

Complex routing: Challenges in
ensuring timely and efficient
communication for trust
parameter exchange. Resource
consumption: Consumes more
energy and resources compared
to other models.

4. A Case Scenario in Smart Healthcare CPS

A hypothetical scenario is described below to illustrate how the proposed framework
prevents malicious actors from exploiting vulnerabilities in a smart healthcare CPS.

Preventing Unauthorized Access to Patient Records

1. Trust parameter vollection: Child nodes within the device layer, such as wearable
health trackers and medical sensors, continuously collect trust parameters. These
parameters include the packet loss ratio, energy consumption, end-to-end delay,
and packet forwarding behavior.

2. Forwarding to fog layer: The collected trust parameters are forwarded to the fog layer
through a designated sink or root node. The root nodes forward all received trust
parameters to the fog servers for processing and analysis at the fog layer.

3. Device registration: The fog servers register the device if it is not already included in
the device-acquirer function and allow the requesting device to become part of the
smart healthcare CPS.

4. Gini index calculation: Utilizing the Gini index, the fog layer assesses the distribution
of trust parameters across the smart healthcare CPS. Anomalies, such as unexpected
spikes in device activity, trigger alerts.

5. Trust updating and blockchain integration: Based on the Gini index analysis, the trust
values of nodes are updated in the BRGTL. The updated trust values, along with the
trust parameters, are stored in the BRGTL smart contract in the blockchain.

6. Maintaining BRGTL on blockchain: The BRGTL smart contract securely maintains
an immutable record of the updated trust values and is accessible to all fog servers.
It provides a historical reference for trust assessments and ensures tamper-resistant
record keeping.

7. Communication with device layer: The fog layer communicates with the device layer,
specifically sharing the updated trust values stored in the BRGTL smart contract. This
communication enables devices to be informed of changes in trust assessments.
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8. Preventing unauthorized access: Suppose a malicious actor attempts to gain unautho-
rized access to patient records by exploiting vulnerabilities in a compromised device.
The real-time trust assessment, Gini index analysis, and BRGTL record keeping collec-
tively identify this anomalous behavior and isolate the malicious attacker node.

9. Blockchain Security and Immutability: The blockchain’s decentralized and tamper-
resistant nature prevents the malicious actor from tampering with THE trust val-
ues stored in the BRGTL. Any attempt to manipulate the system is recorded in the
Blockchain, maintaining the integrity of the trust assessment.

In the above scenario, the GBG-RPL framework, with its blockchain-enabled Gini
index components, successfully prevents malicious actors from exploiting vulnerabilities
in a smart healthcare CPS. It establishes a secure, real-time, and centralized system for trust
management, ensuring the integrity and confidentiality of patient records.

5. Techniques in the Proposed Smart Healthcare CPS for Trust Management

Trust management is essential to guarantee the security and integrity of the proposed
smart healthcare CPS. The global trust list (BRGTL), which is based on blockchain, and
the Gini index are included in the composition of trust-management mechanisms. Below is
a description of these methods’ specifics and how they work together to thwart blackhole
and greyhole attacks:

1. Utilization of Gini Index for Trust Assessment
The distribution of trust parameters gathered from the device layer is subjected to
the Gini index in the context of the smart healthcare CPS [34]. Based on the gathered
trust parameters, the Gini index is computed, offering insights into how the actions
and behaviors of nodes are distributed throughout the network. Unanticipated trends
or deviations in the behavior of the devices within the smart healthcare CPS are
indicated by irregularities in the Gini index. Alerts are set off by abrupt spikes or
notable deviations, which indicate possible security risks [73]. Trust is evaluated in
real time by the GBG-RPL. The GBG-RPL adapts, according to the trust parameter
changes, making sure the system can react quickly to new security threats.

2. Blockchain for Secure Storage
A blockchain smart contract forms the basis of the revised blockchain-based global
trust list (BRGTL) of the proposed framework. The device parameters, trust values,
and trust parameters are all safely stored and kept up-to-date. The smart contract
provides an unchangeable and impenetrable record of trust-related data. The BRGTL
smart contract makes use of the distributed ledger to guarantee the distribution of trust
information among nodes [82]. It minimizes the likelihood of an SPOF and increases the
trust-management system’s overall resilience. The BRGTL serves as a historical reference
for evaluations of trust. It keeps an updated record of trust values, which enables the
system to monitor changes over time and spot patterns in device behavior.

3. Trust Updating at Fog Layer
In the proposed framework, trust updating is carried out by the fog layer. Real-time
updates to the trust values of nodes at the device layer are continually revising the
trustworthiness of devices within the smart healthcare CPS. Every time a new device
connects to the network or after a predetermined amount of time, the trust values
are routinely updated by the GBG-RPL [89]. However, the device or subsequent trust
calculation is assigned a minimum score of acceptable trust upon its initial request
to join the network. The fog layer communicates with the device layer to share the
updated trust values [61]. This communication ensures that devices at the device
layer are informed of changes in trust assessments and can initiate action accordingly.

4. Trust Management to Prevent Blackhole and Greyhole Attacks
The GBG-RPL ensures that the system can adapt to changes in the network’s behavior.
If a node starts behaving maliciously, the GBG-RPL will reflect this anomaly, triggering
alerts and enabling the system to take preventive actions. The BRGTL smart contract
on the blockchain stores a secure and tamper-resistant record of trust values. Even if a
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greyhole or blackhole attack attempts to manipulate local trust values, the immutable
nature of the blockchain prevents the compromise of the overall trust assessment [82].
The BRGTL smart contract acts as a decentralized source of trust. Nodes in the device
layer can verify trust values against the historical records stored in the blockchain,
ensuring that trust information is consistent and not manipulated by attackers.

6. System Architecture

The proposed system architecture is depicted in Figure 4, which provides a detailed
representation of all the components. The proposed methodology has been named the Gini
index and blockchain-based framework for detecting blackhole and greyhole attacks and is
referred to as GBG-RPL in this study. To execute the simulations for this study, three types
of nodes were considered—the fog node, sink node, and child node. The Cooja simulator
was used under predetermined parameters. The child nodes at the device layer keep an
eye on their neighbors’ packet-forwarding behavior along with the energy use, message
overhead, and end-to-end delay. These parameters are sent to the fog server at predetermined
intervals via the sink/root node. The fog node calculates the trust value using the Gini
index, which is subsequently saved in the BRGTL. The global trust list is kept up-to-date as a
decentralized ledger that is distributed to child nodes for attack detection and decision making
as to whether to accept a node’s request to join them as a child. As a mitigating mechanism,
a node would likely be isolated and blacklisted from the network if the Gini index value were
>0.5. The proposed system architecture is divided into different modules, as described below:

1. Observer and Acquirer/Direct Trust Collector: The sink/root node and the resource-
constrained nodes are the two types of nodes present in the device layer. The com-
puting, storage, and energy capacities of these nodes are constrained. According to
the RPL architecture, these nodes are either parent or child nodes. The parent nodes
carry out the functions of the observer and acquire trust parameters. In the proposed
architecture, these nodes are performing two functions named observer and acquirer.
The parent nodes observe the parameters of their neighbor nodes and child nodes,
such as the packet loss, energy usage, end-to-end delay, and message overhead during
normal RPL operations of the CPS, and pass these parameters to the sink/root node.
The acquirer function collects the parameters, while the observer function monitors
the behavior of the nodes. In the event that a child node is flagged as malicious in
the global trust list, the parent nodes remove that child node from the CPS network.
The RPL becomes unstable, and its rebuilding process is initiated whenever a node
enters or exits the network. Following that, the CPS network resumes its regular
RPL activities.

2. Dispatcher–Eliminator: As per the proposed framework, the sink/root node has more
processing power, storage, and enhanced energy backup in comparison to other nodes
at the device layer. The root node has two primary functions, including dispatcher
and eliminator. To connect the device layer and the fog layer, the sink/root node
acts as a link. As all traffic between the fog layer and device layer is routed through
the sink node, the root node also serves as the cluster head. The dispatcher function
gathers all trust parameters received from the parent nodes at the device layer of the
CPS network and forwards the same to the fog server at the fog layer. Furthermore,
the eliminator function receives the revised BRGTL from the fog layer and forwards
or broadcasts downwards to all member nodes at the device layer. The root itself is
not making any decisions, and it is only receiving and forwarding the traffic between
the device and the fog layer.

3. Device Discoverer: The device discoverer module is a vital component of the proposed
framework, operating at the fog layer to keep track of all nodes entering and leaving
the CPS network. Its main function is to maintain a comprehensive record of node ac-
tivity, which is essential for network management and security. This module forwards
its processed device list to the trust parameter accumulator module and blockchain
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ledger updater (smart contract) module. A comprehensive working overview of the
device discoverer module is described below.

(a) Registering devices: The device discoverer is responsible for registering a newly
discovered node that wants to become part of the CPS network. It gathers
pertinent data about the new node, such as its exact location, identification
information (such as MAC address and node ID), and additional characteristics.

(b) Authenticating devices: The device discoverer verifies the legitimacy of each
node’s request through authentication procedures before having registered it.
This is an essential step in preventing malicious or unauthorized devices from
pairing with the network.

(c) Updating BRGTL: Following a successful device registration and authentica-
tion, the device discoverer modifies the global trust list that the blockchain-
based trust-management system keeps up-to-date. To monitor its actions and
contributions to the network, the details of the new node are added to the list,
along with any available trust metrics.

(d) Tracking node activity: The device discoverer continuously monitors the CPS
network for any node activity, including nodes entering and leaving the network.

(e) Monitoring node status: The device discoverer regularly checks the status of
registered nodes to ensure their proper functioning and responsiveness.

(f) Handling departure of nodes: The device discoverer deletes a node from the
list of active nodes and modifies its status in the BRGTL when it departs the
CPS network.

(g) Detecting malicious nodes: An important function of the device discoverer is
to identify potentially malicious nodes in the network by constantly tracking
node behavior and activity. The trust analyzer receives reports of any odd or
unusual behavior for additional analysis and suitable action.

(h) Logging: Every node activity, such as fresh node registrations, exits, and any
unusual behaviors found, is recorded by the device discoverer.

(i) Integration with other modules: The device discoverer exchanges data regarding
node actions and trust status with the other elements of the framework, including
the trust analyzer and calculator and the eliminator. It offers vital information for
processes related to threat prevention and trust-based decision making.

By functioning as a comprehensive node activity tracker and coordinator, the device
discoverer module enhances the overall security and management of the CPS network.
Its ability to identify and respond to new node entries and departures contributes
to the dynamic and adaptive nature of the framework in detecting and mitigating
blackhole and greyhole attacks.

4. Trust Parameter Accumulator: The trust parameter accumulator operates in the fog
layer to collect and aggregate trust parameters received from the device layer. Its
primary function is to gather all relevant trust-related data from the device layer (root
node) and combine them for further processing by the trust analyzer and calculator
module. The processed trust parameters are also forwarded to the blockchain ledger
updater module. The trust parameter accumulator module acts as a vital intermediary
between the device layer and the trust analysis components at the fog layer. By ef-
ficiently collecting, aggregating, and pre-processing the trust parameters, it enables
accurate and timely evaluation of node behavior.

5. Trust Analyzer and Calculator: At the fog layer, fog servers with strong computational
capability are set up. On the basis of the received parameters, the trust calculator
executes Gini index-based logic and calculates the Gini value, which determines
whether the node’s behavior is malicious or normal. If the Gini value is >0.5, then
the behavior is attributed to an attack, and if the Gini value is <0.5, then the node
is treated as a normal node. However, it is noteworthy that for critical/sensitive
requirements, only nodes with lower Gini values, preferably closer to zero, would be
allowed to form the DODAG.
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It is possible to tell the difference between nodes with a regular distribution pattern
and those with malicious intent by looking at their distribution patterns. The value
1 can be achieved through either a uniform or an uneven distribution. As shown
in Table 6, a node-rating threshold is determined using Gini logic. The main aim of
these thresholds is to isolate harmful nodes from the rest of the network. Only nodes
that have passed this test are allowed to take part in routing decisions. To provide
more elaborate details, the different steps and processes involved in this module are
described below.

(a) Trust parameter collection: The trust analyzer and calculator module receives
trust parameters from the trust parameter accumulator module and parent
nodes at the fog layer.

(b) Trust parameter normalization: Before calculating the Gini index, the trust
parameters are normalized to bring them to a consistent scale.

(c) Trust score calculation: A trust score is a numerical indicator of a node’s relia-
bility or trustworthiness in a network. Trust scores are essential for evaluating
node behavior in the context of a CPS, especially when it comes to identifying
and reducing the possibility of malicious nodes. The suggested method uses
trust scores to assess nodes’ credibility according to trust parameters. In a
CPS network, the overall “trustworthiness inequality” between nodes can be
evaluated using the Gini index. It offers a tool for locating potentially dan-
gerous nodes or ones that drastically depart from the norm when paired with
trust scores. Algorithm 1 explains how the suggested method calculates the
trust score.

(d) Gini index calculation: The Gini value for every node under observation is
determined by the trust analyzer and calculator using logic based on Gini
indexes. To calculate the Gini index, add up all of the trust parameter pairs’ ab-
solute differences, then divide the total by the number of pairs. The suggested
method of Gini index computation is described in Algorithm 1.

(e) Threshold setting for malicious behavior: After calculating the Gini value
for each node, the trust analyzer and calculator sets a threshold value to
distinguish between normal and malicious behavior. The threshold value is
set at 0.5, but this can be adjusted based on the specific requirements and
characteristics of the CPS network.

(f) Node classification: Nodes with Gini values above the threshold (>0.5) are
classified as exhibiting potentially malicious behavior, indicating a higher
degree of parameter inequality. Nodes with Gini values below the threshold
(<0.5) are considered normal nodes, exhibiting a more uniform distribution of
trust parameters.

(g) Formation of DODAG based on trust: To ensure the security and efficiency
of the CPS network, the trust analyzer and calculator may influence the for-
mation of the destination-oriented directed acyclic graph (DODAG) based
on trust values. Nodes with lower Gini values, preferably closer to zero, are
given priority in forming the DODAG, especially for critical/sensitive tasks or
routing decisions.

(h) Trust updates and periodic review: The trust analyzer and calculator periodi-
cally reviews the trust values based on the updated trust parameters received
from the device discoverer and parent nodes.

6. Blockchain Ledger Updater for BRGTL: The blockchain ledger updater module, func-
tioning as a smart contract in the fog layer, plays a critical role in the proposed method-
ology by leveraging blockchain technology to update and maintain the BRGTL. This
module integrates inputs from various components, including the device discoverer
module, trust parameter accumulator module, and trust analyzer and calculator mod-
ule, to ensure the trustworthiness and reliability of the CPS network. The fog server
implements blockchain technology to update and keep track of the BRGTL. When



Sensors 2023, 23, 9372 23 of 45

a new node requests to join the network, a new entry is added here. Through the
use of the sink node, the parameters of the parent node are transmitted to the fog
server. A new entry is added to the blockchain if the node’s information is not already
included there; otherwise, the list is not updated. Similarly, the list is updated during
regular operations if there are any deviations in metrics like packet loss, end-to-end
delay, message overhead, or energy consumption. Below is an elaborate description
of the functionality of the blockchain ledger updater module as a smart contract.

(a) Smart contract deployment: The fog server deploys the smart contract in the
selected blockchain network. The smart contract’s code contains the logic
for managing the global trust list and processing trust-related data. The de-
ployment process involves uploading the compiled smart contract code to the
blockchain platform through relevant APIs or tools.

(b) Receiving trust parameters: The blockchain ledger updater module receives
trust parameters from multiple sources, including the device discoverer mod-
ule, which keeps a record of all nodes entering and leaving the CPS network.
Trust parameters from various nodes, such as packet loss, end-to-end delay,
message overhead, and energy consumption, are gathered and sent to the
blockchain ledger updater for further processing.

(c) Global trust list update: Based on the trust evaluation results, the blockchain
ledger updater module updates the global trust list (BRGTL) in the blockchain.
The list contains entries for each node, reflecting their trust values and other
relevant information. New nodes requesting to join the network have their
entries added to the BRGTL.

(d) Immutability and consensus: The smart contract ensures that the global trust
list on the blockchain is immutable and tamper-resistant. Once trust data
are recorded, they cannot be altered or deleted, ensuring the integrity and
reliability of the trust registry.

(e) Decentralization and transparency: As a smart contract in the fog layer, the
blockchain ledger updater operates in a decentralized manner, thus removing
the need for a central authority figure.

(f) Logging and event handling: The module logs and handles events related to
trust parameter updates and BRGTL modifications.

By efficiently updating the BRGTL in the blockchain, this module ensures a secure
and decentralized trust-management system for the CPS network.

7. Trust Disseminator: The trust disseminator is responsible for distributing the BRGTL
from the fog layer to the device layer of the CPS network. The revised list is sent to
the disseminator module after the trust has been determined and the blockchain has
been updated. The disseminator module transmits the updated list to the device layer
through the sink node, which is the third function of the fog server. This module is just
in charge of trust distribution to the device layer and does not perform any calculations.
A thorough explanation of the trust disseminator module’s working is outlined below:

(a) Receiving BRGTL: After trust calculations are completed and the blockchain
is updated with the latest trust values for each node, the blockchain ledger
updater forwards the BRGTL to the trust disseminator module.

(b) Sending BRGTL to device layer: When the data have been prepared, the sink
node allows the trust disseminator to send the BRGTL to the device layer.
Because it acts as an intermediary between the fog and device layers, the sink
node is the most appropriate option for sharing trust data.

(c) BRGTL distribution: The primary function of the trust disseminator is to use
the root node to transmit the trust data to each node in the device layer. It
guarantees that each node in the network is aware of the reliability of its nearby
peers and other nodes.
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(d) Synchronizing trust update: To guarantee that each node has access to the most
recent trust values, the trust disseminator module regulates the trust changes
in all nodes in the device layer through the root node.

(e) Trust-based decision making: Nodes can decide how to interact with other
nodes based on trust when trust information is quickly disseminated. Dur-
ing the RPL process, nodes are able to employ this information to assess the
reliability of prospective parents or children.

The trust disseminator module serves as a critical link between the fog layer, where
trust evaluations occur and the BRGTL is updated, and the device layer, where trust
information is required for network operations and decision making. By efficiently
distributing the updated trust values, this module enhances the trust-management
system’s effectiveness. It contributes to the successful detection and mitigation of
blackhole and greyhole attacks in the GBG-RPL framework.

8. Eliminator: The eliminator module is a crucial component in the GBG-RPL methodology
for taking action based on the BRGTL received from the trust disseminator module. This
module ensures the containment of malicious nodes and maintains the integrity of the
CPS network. Upon receipt of the BRGTL from the disseminator, the sink node forwards
the same to the parent nodes. The parent node initiates action to isolate or deny access
to the network to the malicious node. After attacker containment, the RPL is rebuilt,
and subsequently, routine CPS network operations are started. Similarly, if a new node
is joining the network, the RPL is rebuilt, followed by routine CPS network operations.
The eliminator module’s functionality is critical in maintaining a secure and reliable CPS
network. By promptly isolating malicious nodes and incorporating new nodes through
RPL rebuilding, this module ensures that the network remains resilient to blackhole and
greyhole attacks.

Figure 4. System architecture.

Table 6. Trust rating for CPS nodes.

Trust Value Trust Status

0.7–1 Poor Trust
0.5–0.6 Less Fair Trust
0.2–0.4 Fair Trust
0.0–0.2 Good Trust
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7. CPS Architecture in GBG-RPL

The CPS architecture in the proposed methodology comprises several interconnected
layers that facilitate communication and coordination between physical and cyber compo-
nents, as shown in Figure 5. A high-level representation of the architecture is given below:

1. Sensing Layer: The sensing layer serves as the core of the CPS architecture. It is
made up of a number of sensors and actuators that are placed throughout the physi-
cal environment (e.g., smartwatches and fitness bands) to gather information from
the patients [90]. The sensors record critical data from the patients related to loca-
tion/motion, blood pressure, heartbeat, and sugar levels for central monitoring. The
actuators interact with the physical world by carrying out operations according to
commands from the cyber system (e.g., implantable devices like pacemakers and
insulin pumps function as adjusted by the practitioners).

2. Communication Layer: Data transmission between the sensing layer (devices on the
patients) and the cyber layer (servers and central control/monitoring at hospitals)
is carried out by the communication layer [91]. It consists of networks, gateways,
and communication protocols that make it easier for data to be sent from sensors and
actuators to cyber components for analysis and decision making.

3. Cyber Layer: The cyber layer applies control algorithms, data analytics, and decision-
making procedures to the data it receives from the sensing layer. This layer consists
of computer hardware such as edge servers, cloud servers, and control systems that
process the incoming data to produce useful insights and coordinate the operations of
the physical layer [92].

4. Data Analytics and Control Layer: Data analysis and thoughtful decision making are
the main functions of this layer [93]. This layer processes the raw data gathered from
the sensing layer to discover useful patterns and make informed decisions.

5. User Interface and Interaction Layer: Users can interact with the CPS system through
the user interface layer [94]. Applications, dashboards, and visualizations are included
that let users control parameters, monitor system performance, and input data to
adjust the function of the CPS device.

6. Security and Privacy Layer: The safety and privacy of the CPS must be guaranteed at
all costs. This layer protects the CPS against online threats and unauthorized access
through a variety of security methods, encryption protocols, access-control systems,
and authentication procedures [24].

7. Integration and Interoperability Layer: CPSs frequently require the integration of
several parts and systems from diverse vendors. Smooth coordination inside the CPS
system is made possible by the integration and interoperability layer, which enables
seamless communication and cooperation between these many components [95].
In the proposed methodology, the device ID along with the trust parameters are
stored in the device acquirer and blockchain-based revised global trust list (BRGTL).

8. Feedback and Adaptation Layer: This layer contains feedback loops and adaptive
control systems that let the CPS devices react quickly to commands given by the
central control/monitoring systems [96].

Workflow of Proposed Model (GBG-RPL)

The step-by-step workflow of the proposed methodology is depicted in Figure 6. The fig-
ure depicts a fog server deployed at the fog layer, a root node at the device layer, and par-
ent/child nodes at the device layer. A detailed description of each step is given below:

1. When a member node departs the CPS network or a new node enters the network,
the RPL DODAG reconstruction begins.

2. Parent nodes keep an eye on the trust parameters of their child nodes and neighbors.
Dropped packets, energy consumption, latency from start to finish, and message size
are all the parameters to keep an eye on. It is performed at the device layer and is
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sometimes referred to as “direct trust calculation”. Except for the sink node, all other
nodes at the device layer have limited resources.

3. Each child node reports its trust parameters to its parent, which then shares them
with the sink. Except for transmitting the parameters to the fog server, the sink node
does nothing else. This means that the sink node is connecting the device layer and
the fog layer. The update of trust parameters is sent from the device layer to the fog
layer every 10 milliseconds (ms). At the same time, the trickle timer for considering a
packet to be dropped/lost is set at 5 ms.

4. The fog server is deployed at the fog layer. It has high computational and storage
capabilities and, therefore, is assigned many tasks or functionalities for execution. The first
function is to maintain a global trust list, which is updated on the basis of direct and
indirect trust calculations. Information regarding all member nodes resides in the global
trust list.

5. The second functionality is to calculate the trust value for a node by applying the Gini
logic. The resulting value of the Gini logic falls between 0 and 1, where 0 denotes a
fully trusted node while 1 denotes a fully compromised node. Thus, the behavior of a
node is declared either malicious or normal as per the trust value calculated.

6. Once the trust value has been calculated, the blockchain smart contract is implemented
to update the ledger/database, which maintains the global trust list. The ledger is
updated only when there is the addition of a new node or the trust status of the
node changes.

7. After the update of the database, the BRGTL is disseminated from the fog layer to the
device layer.

8. The sink node receives the updated BRGTL, which is then sent to the parent nodes
so that the malicious node can be removed or a new node can be allowed to join
the network.

9. The RPL DODAG is rebuilt in the event that a malicious node is removed from the
CPS network, a new node joins the network, or a member node leaves the network.

10. After the reconstruction of the RPL DODAG, routine RPL network operations are resumed.

Figure 5. A layered CPS architecture.
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Figure 6. The proposed methodology.

8. Methods for Designing, Testing, and Deploying the GBG-RPL Framework in Smart
Healthcare CPS

The methods for designing, testing, and deploying the GBG-RPL framework can be
categorized into several types, as described below:

1. Designing the GBG-RPL Framework
The design of the GBG-RPL framework incorporates various methods to ensure a
robust and adaptable system. Mathematical design plays a key role, involving the
formulation of the Gini index-based algorithm along with trust metrics [97]. By lever-
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aging mathematical principles, this method defines the trust assessment and adapta-
tion mechanisms within the framework. Additionally, interdisciplinary collaboration
is a cornerstone of the design process, fostering cooperation between cybersecurity
and healthcare experts [98]. This collaborative approach ensures a holistic design that
aligns with both mathematical rigor and the real-world requirements of healthcare
systems. Furthermore, allowing tailoring of the GBG-RPL to specific characteristics of
smart healthcare systems enables the customization of the parameters and algorithm
based on the unique deployment requirements.
To mitigate the security risks associated with the implementation of the proposed
framework in a smart healthcare system, a comprehensive set of measures is un-
dertaken. First and foremost, a decentralized architecture is adopted to distribute
trust-management functions across multiple nodes, reducing the vulnerability to cen-
tralized attacks [85]. In the proposed framework, the trust calculations, the ledger in
the form of BRGTL, device registration, and smart contracts have been implemented
in the fog servers, which are deployed in the fog layer. The implementation of the
fog layer mitigates the direct exposure of the trust calculation and database from the
device layer where the resource-constrained devices are exposed to the attackers [17].
Regular updates and security audits would be conducted for the blockchain network
and smart contracts to address vulnerabilities and ensure the robustness of the system.
Scalability challenges are managed using a layered architecture, where multiple fog
servers are implemented to accommodate large numbers of nodes, large data volumes,
and geographic expansion. To navigate regulatory complexities, close collaboration
with legal experts would ensure that the proposed framework aligns with relevant
healthcare data protection regulations [99]. Thorough testing and validation during
integration, the involvement of cybersecurity experts, and seamless communication
between the proposed framework and existing components would address concerns
related to integration complexity. These multifaceted measures collectively contribute
to a resilient security infrastructure for the smart healthcare system.

2. Testing the GBG-RPL Framework
The evaluation of the GBG-RPL framework involves two distinct testing method-
ologies to ensure its effectiveness and reliability. Simulation testing is conducted
using the Cooja simulator, wherein trust parameters and attack configurations are
systematically varied. This process helps identify potential issues and assesses the
framework’s scalability and adaptability under different conditions [100]. The second
part complements the simulation testing with real-world testing, which takes place
in actual smart healthcare environments. The evaluation process offers an in-depth
understanding of the framework’s effectiveness across diverse scenarios by utilizing
the simulations and real-world testing, which add to the framework’s robustness and
applicability in real-world healthcare settings.

(a) Deployment Methods for the GBG-RPL Framework
The implementation of the GBG-RPL framework necessitates the smooth
integration of GBG-RPL into the existing infrastructure of intelligent health-
care systems [9]. This integration guarantees compatibility and cooperation
with other components. Another crucial component of the deployment strat-
egy is user awareness and training, which involves teaching administrators
and users about GBG-RPL’s features and security precautions. These meth-
ods enable modifications in response to real-time input and evolving needs,
guaranteeing the framework’s flexibility and long-term efficacy in smart
healthcare scenarios.

(b) Additional Considerations
The implementation of the GBG-RPL framework employs a thorough and repet-
itive methodology to guarantee ongoing improvement and peak efficiency.
Using an iterative development cycle facilitates continuous improvement by
incorporating knowledge gained from the deployment and testing phases
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into later iterations [101]. In order to guarantee alignment with user needs,
interactive development methods involve stakeholders such as administrators,
cybersecurity specialists, and healthcare professionals. Security audit and
compliance measures are implemented to conduct thorough security audits,
ensuring adherence to industry standards and regulations [102]. User feedback
is actively sought to inform design improvements, adopting a user-centric
design approach that ensures the uninterrupted availability of healthcare ser-
vices. Additionally, the deployment emphasizes the adoption of best practices
in cybersecurity and healthcare data management, drawing insights from
successful implementations in related domains [103].

9. Experimentation

The purpose of the experiments is to assess the performance and efficacy of the GBG-
RPL approach, which includes the Gini index and blockchain technology, in identifying and
mitigating blackhole and greyhole attacks in a CPS network. Utilizing a Linux-based plat-
form, the Cooja network simulator was used to implement the trust mechanism. The Cooja
simulator offers an appropriate setting for simulating and assessing CPS networks. Table 7
includes all simulation parameters.

Table 7. Experimental setup.

Simulation Parameters Value

OS/Platform Linux
Simulation Software Cooja 3.0
Nodes Used 30–90
Simulated Attacks Blackhole and Greyhole
Attacker to Normal Node Ratio 1:10
Receive Ratio 30–100%
Transmit Ratio 100%
Transmission Range 50 m
Range of Interference 50 m
Protocol Used for Routing RPL
Routine Trust Calculation 10 msec
Trickle Timer 5 msec
Initial Node Energy 100 J
Tx Energy 0.0010875 mJ/bit
Rx Energy 0.0009 mJ/bit
Standby Energy 0.708 mJ/s
Used Networking protocol Internet Protocol-based
Time for Simulation 60 min
Reference Technique BCPS-RPL [31]
Proposed Technique GBG-RPL

9.1. Hardware Requirements

To ensure optimal performance and efficient execution of the experimental setup,
the following hardware specifications were used during experiments. A PC with a multi-
core processor with a clock speed of 2.4 GHz, 8 GB RAM, and 128 GB SSD with an additional
512 GB HDD was used to handle the computational workload effectively. The experimental
setup is designed to run on a Linux-based platform; therefore, a Linux distribution such
as Ubuntu, Fedora, or Debian is ideal for compatibility and optimal performance. These
hardware parameters ensured the efficient execution of the simulations. In this experiment,
the Cooja simulator, running on a Linux-based platform, provided the necessary tools and
resources for simulating and evaluating the GBG-RPL methodology in a CPS network.
Furthermore, three types of nodes used during the simulation are described in Table 8.
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Table 8. Node types and roles.

Node Type Assigned Role

Full Node

1. Fog servers
2. Has multiple functions
3. Registers and maintains records of devices
4. Calculates trust values
5. Reviews, generates, and distributes global trust list
6. Stores and maintains trust values in the blockchain

Root Node

1. Acts as a link between the device layer and fog layer
2. Receives trust parameters from lower nodes
3. Distributes updated trust list to lower nodes for the

elimination of malicious nodes

Resource-Constrained Node 1. Resource-constrained device
2. Performs only assigned tasks

9.2. Libraries and Frameworks

The Contiki operating system (OS) and Contiki programming language, which were
created especially for CPS devices with limited resources, were used in the experimental
setup. The features and protocols required to simulate CPS devices inside the Cooja
environment were given by Contiki. The Cooja simulator used a variety of frameworks
and libraries, including:

1. RPL Classic: The uIP stack has capabilities including packet processing, routing,
and communication protocols and supports IPv6. It ensured that the CPS network
was routed effectively and consistently, which assisted in the evaluation and realistic
behavior of the trust mechanisms.

2. Managing Trust: A trust-managing library (TinyDTLS) was employed in the GBG-RPL
technique to facilitate the detection of blackhole and greyhole attacks. With the help
of these libraries, trust values could be managed and calculated while accounting for
a number of variables, such as message overhead, energy consumption, packet loss,
and end-to-end delay.

3. Blockchain Library (web3.js): The web3.js package was used to include blockchain
technology.

9.3. Simulation Environment

In the course of the research, a CPS network comprising thirty nodes in the device
layer, one sink/root node, and one edge server in the fog layer was used. This network
architecture, which reflected a typical configuration for CPS networks, made it possible
to evaluate the GBG-RPL technique in a practical setting. Various communication factors
were taken into consideration to assess the blackhole and greyhole attack detection and
mitigation. For the purpose of calculating and analyzing trust, these parameters, including
energy consumption, packet drop, end-to-end delay, and message overhead, were gathered
from the device layer and sent through the root node to the fog layer. The GBG-RPL
methodology used the web3.js framework to combine blockchain technology and the Gini
index calculation in the fog layer.

In contrast, the Gini index functions as a gauge of trustworthiness based on com-
munication metrics. Energy consumption, packet drop rate, end-to-end delay, message
overhead, and attack-detection rate were among the performance parameters that were
measured and studied during the trials. These measurements revealed how well the
GBG-RPL methodology worked to identify and stop blackhole and greyhole assaults.

The elaborate experimental setup incorporated the use of the Cooja simulator to apply
and assess the GBG-RPL approach within a CPS network and the results were compared to
a reference technique named BCPS-RPL. A number of simulation settings were taken into
account throughout the setup, including the attacker-to-malicious-node ratio, receive-to-
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transmit ratios, interference-to-transmission distances, and use of the RPL routing protocol.
The 60-minute simulation time frame allowed for a full evaluation of the trust mechanisms’
effectiveness over a lengthy period. The effectiveness of the GBG-RPL methodology in
identifying and mitigating blackhole and greyhole attacks was assessed by collecting and
examining performance indicators. The incorporation of the Gini index and blockchain
technology improved the system’s reliability and security. In order to increase the overall
dependability and trustworthiness of the healthcare CPS, the experimental setting aimed
to contribute to the development of secure and reliable trust-based procedures.

10. Results and Discussion

The evaluation measures are discussed in this section, along with the related graphs.
The descriptions of the graphs are included in each of the subsections.

10.1. Packet Loss Ratio

The packet loss ratio (PLR) is a network performance metric that measures the pro-
portion of packets that are lost or discarded during data transmission across a network.
The packet loss ratio over time for the GBG-RPL and BCPS-RPL mechanisms is shown in
Figure 7.

Figure 7. Packet loss ratio.

For both the GBG-RPL and BCPS-RPL processes, Figure 7 shows a declining trajectory
of the packet loss ratio with time. The GBG-RPL mechanism consistently maintains a
marginally lower packet loss ratio than the BCPS-RPL mechanism at each time interval,
demonstrating a higher individual packet transmission efficiency. The packet loss ratio
of the GBG-RPL is better than that of BCPS-RPL due to its better detection capability to
identify and isolate the blackhole and greyhole nodes in the CPS network. Initially, there
is less difference in the PLR of both techniques; however, the GBG-RPL exhibits further
improvement in PLR. The high PLR of BCPS-RPL is due to two major factors. Firstly, it
is due to the large volume of packet transmission in the device layer, which results in
network congestion. Secondly, it is due to delayed detection of the malicious nodes, which
causes packet drop. In the case of the GBG-RPL, the improvement is attributed firstly to
the shifting of all trust calculations from the device layer (sensor nodes) to the fog layer
(fog server), secondly to the careful selection of the significant trust parameters, and thirdly
to the trickle timer.

10.2. Energy Consumption

Energy consumption refers to the amount of energy used or consumed by a device
over a specific time. Figure 8 shows the energy consumption of the GBG-RPL mechanism
and the BCPS-RPL mechanism over time.
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Figure 8. Energy consumption.

Figure 8 illustrates a trend for both the GBG-RPL and BCPS-RPL mechanisms to
consume less energy with time. The GBG-RPL displays less energy consumption over the
simulation time, which results in enhanced network life. This means more availability
of the CPS network. In both techniques, initially, the nodes consume more energy as the
system is initialized and trust in the system is established. However, in GBG-RPL, the nodes
are only observing and forwarding the trust parameters to the root, whereas, in BCPS-RPL,
the nodes are observing the neighbor nodes for their behavior and also calculating the trust
score, which increases energy consumption. This trend of high energy consumption in
BCPS-RPL and low energy consumption in GBG-RPL is evident throughout the simulation
time. Furthermore, once the attack is injected into the CPS network, the GBG-RPL takes
less time to identify the attacker as compared to the BCPS-RPL, which further contributes
to the energy savings of the sensor nodes.

10.3. Average Residual Energy

Average residual energy is the average amount of energy remaining in a group of
wireless nodes or devices after a certain time or a series of operations. The average
residual energy with respect to time for the GBG-RPL and BCPS-RPL mechanisms is shown
in Figure 9.

Figure 9. Average residual energy.

For both the GBG-RPL and BCPS-RPL processes, Figure 9 shows the average residual
energy’s declining trend over time. It illustrates that as time goes on, both mechanisms’



Sensors 2023, 23, 9372 33 of 45

energy levels drop, showing that the CPS is using up its energy reserves. The GBG-RPL
displays a high average residual energy throughout the simulation time, resulting in
an enhanced network life. This means more availability of the CPS network. In both
approaches, the nodes initially consume more energy during system initialization as trust
in the system is established. However, in GBG-RPL, nodes solely observe and forward trust
parameters to the root. In contrast, BCPS-RPL nodes not only observe neighbor behavior
but also calculate trust scores, leading to increased energy consumption. This pattern of
low average residual energy in BCPS-RPL and high average residual energy in GBG-RPL
persists throughout the simulation. Additionally, when attacks are introduced into the
CPS network, GBG-RPL detects the attacker faster than BCPS-RPL, contributing to energy
savings for sensor nodes and improving network longevity.

10.4. End-to-End Delay

The time it takes for data packets to move from source to destination within the
network is revealed by analyzing the end-to-end delay results for the GBG-RPL and BCPS-
RPL methodologies. The relationship between the number of nodes and the end-to-end
delay for both the BCPS-RPL and GBG-RPL methods is depicted in Figure 10.

Figure 10. End-to-end delay.

The relation between the number of nodes and the end-to-end latency for both the
BCPS-RPL and GBG-RPL mechanisms in the CPS is shown in Figure 10. It proves that
for both systems, the end-to-end delay grows with the number of nodes. The outcomes
show that the GBG-RPL mechanism outperformed the BCPS-RPL mechanism in terms of
end-to-end delay. Initially, the BCPS-RPL has a smaller end-to-end delay, which is due to
the fact that the initial trust is being calculated in the device layer, and this trend continues
until 15 min into the simulation. Similarly, the GBG-RPL displays a high end-to-end delay
at the initialization until 15 min of simulation as the packets are traveling from the device
layer to the fog layer. However, once the trust has been established and attacks are induced,
the trends for both techniques change and the GBG-RPL starts performing better. The main
reason is that in BCPS-RPL, the nodes are continuously performing trust calculations at the
device layer, and repetitive trust calculations have induced congestion at the nodes in the
form of longer packet queuing, processing delays, propagation delays, and transmission
delays. The end-to-end delay is further increased once the attacks are induced, and packets
are retransmitted frequently. In contrast, in the case of the GBG-RPL, once the trust has been
established in the network, only trust parameters are being forwarded from the device layer
to the fog layer, which reduces the network congestion at the device layer. Furthermore,
once the attacks are induced in the network, the attackers are detected in a timely manner,
and only information related to the malicious node is propagated from the fog layer to
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the device layer. Therefore, the GBG-RPL, in the longer run, reduces its end-to-end delay,
which improves the network efficiency.

10.5. Attack-Detection Rate

The attack-detection rate measures the proportion of actual attacks or malicious events
that are correctly detected and flagged by the security mechanism as positive. The attack-
detection rates for the BCPS-RPL and GBG-RPL mechanisms within a CPS are shown
in Figure 11.

Figure 11. Attack-detection rate.

The bar graph shows an increasing trend in attack-detection rates over time for both the
BCPS-RPL and GBG-RPL techniques. The findings show that, in terms of attack=detection
rate, the GBG-RPL mechanism beat the BCPS-RPL mechanism. The attack-detection rate
is directly dependent upon the identification of the malicious nodes. Once the attacker
is removed from the CPS network, the procedure is finished. Throughout the simulation
period, the GBG-RPL detects attacks more frequently than the BCPS-RPL. This is because
the trickle timer’s configuration and trust parameters were chosen with care. As a result,
the GBG-RPL has a higher overall attack-detection rate, which improves network life
and reliability.

10.6. Attack-Detection Time

In order to enable security experts to promptly take suitable measures in reaction to
potential threats, it is desirable to have a low attack-detection time. Figure 12 shows how
the number of nodes changed over time for the GBG-RPL and BCPS-RPL methods.

Figure 12. Attack-detection time.
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The potential of an approach to detect the existence of a node exhibiting abnormal
behavior within the CPS network determines how long it takes to detect an attack. The GBG-
RPL has a lower attack-detection time throughout the simulation time compared to BCPS-
RPL, which can be attributed to three factors. Firstly, it is due to the careful selection of the
trust parameters and configuration of the trickle timer. Secondly, the GBG-RPL performs
all trust-related calculations in the fog server, which is a powerful computing device and
reduces the processing time of trust calculations. Thirdly, the utilization of the Gini index
improved the accuracy of the detection technique, as it provides granular-level details of
defining a threshold to categorize behavior as normal or malicious. In contrast, in the case
of the BCPS-RPL, numerous tasks, including trust-related processing, are being performed
by the resource-constrained nodes, which take more time to identify a node behaving as
abnormal. Furthermore, using packet drop as the only metric reduces the accuracy of
the technique to detect abnormal behavior. Therefore, the overall attack-detection time
of the GBG-RPL is better, which makes the attack-detection rate higher and enhances the
reliability and efficiency of the CPS network.

10.7. Message Overhead

Message overhead refers to the additional data or information that is transmitted along
with the actual payload or user data during communication between nodes or systems in a
network. Figure 13 shows the evolution of the message overhead for the BCPS-RPL and
GBG-RPL processes.

Figure 13. Message overhead.

Figure 13 illustrates the rising trend in the message overhead over time for both the
BCPS-RPL mechanism and the GBG-RPL mechanism. The GBG-RPL mechanism consis-
tently has a lower messaging overhead than the BCPS-RPL mechanism at each time interval,
indicating a lighter communication load and less network congestion overall. Initially, both
techniques show a similar message overhead as the network is being initialized and the
trust calculations are being undertaken. However, after 20 min, the GBG-RPL technique
considerably reduces the message overhead due to the fact that only trust parameters are
being forwarded by the device layer and trust calculations are being carried out at the fog
layer. Furthermore, the improved attack-detection time/rate contributed to the reduction
in message overhead due to less frequent retransmissions of data/control packets.

10.8. Discussion

The successful implementation of the GBG-RPL framework hinges upon the collabora-
tive efforts of diverse stakeholders. From healthcare data providers ensuring data quality
to healthcare practitioners, each role is integral [104]. Data scientists optimize algorithms,
auditors ensure security, and regulators monitor compliance [103]. Frontline healthcare
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providers utilize insights for enhanced care, and patient feedback contributes to ongoing
refinement. This coordinated effort underscores the significance of each stakeholder in
realizing the potential of the GBG-RPL framework in revolutionizing smart healthcare
systems. An overview of the roles and responsibilities of the various stakeholders in a
smart healthcare CPS is tabulated in Table 9.

Table 9. Roles and responsibilities in smart healthcare CPS.

Role Responsibility

Healthcare Data Providers (Hospitals,
Clinics, Laboratories) Ensure data quality, integrity, and compliance with health regulations.

Smart Contract Developers Design, develop, and maintain the GBG-RPL framework’s smart contracts and
ensure the security and scalability of the blockchain infrastructure.

Data Scientists and Analysts Optimize algorithms for the GBG-RPL framework and generate reports and
visualizations for healthcare stakeholders.

Smart Contract Auditors Review and audit the smart contracts of the GBG-RPL framework to identify and
rectify security vulnerabilities.

Healthcare Regulators Monitor the implementation of the GBG-RPL framework to ensure compliance with
healthcare regulations and data protection laws.

Healthcare Providers (Doctors, Nurses,
and Caregivers) Use the insights from the GBG-RPL framework to improve patient care.

Patients and Healthcare Consumers Provide feedback on the usability and relevance of the index.

In a smart healthcare system utilizing a Gini index-based trust framework, scalability
requirements are crucial to ensure that the system can handle an increasing number of
nodes, devices, and data transactions. The brief description of the scalability requirements
is described below:

1. Node Growth: As the smart healthcare system expands, more medical devices, wear-
ables, and IoT-enabled devices are added, increasing the number of nodes in the
network [105]. The proposed framework will accommodate the growing number
of nodes without significant degradation in performance due to its distributed na-
ture [106].

2. Data Volume: With the proliferation of healthcare data generated by various devices,
the system experiences an increase in the volume of data transactions [107]. The pro-
posed framework efficiently handles the increased data volume, ensuring timely trust
assessments without introducing delays due to the blockchain [108].

3. Real-Time Monitoring: The smart healthcare system requires real-time monitoring
of patient data, vital signs, and device interactions for prompt decision making [109].
The proposed framework is capable of performing real-time trust assessments, adapt-
ing to dynamic changes in the network, and providing timely feedback as the fog
layer is closer to the end-user devices.

4. Geographic Expansion: The smart healthcare system extends its services to new
geographic locations, leading to a geographically distributed network [100]. The pro-
posed framework is designed to support geographic expansion, considering potential
latency issues and ensuring consistent trust management across distributed nodes.

Moreover, it is also important to define resource-management strategies. By imple-
menting these strategies, the GBG-RPL framework ensures efficient and reliable trust
management in the evolving landscape of smart healthcare systems. A brief description of
the resource management strategies for implementing the GBG-RPL framework in smart
healthcare CPSs is described below:

1. The proposed framework implements a distributed architecture for the Gini index
where trust calculations and data processing are distributed across multiple fog
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nodes [110]. The proposed framework distributes the computational load, improving
the overall system performance while enhancing the fault tolerance and resilience.

2. The proposed framework uses a layered architecture with a fog layer and a device
layer [111]. The proposed framework prevents resource bottlenecks since all the trust
calculation, analysis, and data storage are shifted to the fog layer, and the network
underneath works efficiently.

In addition, securing the communications within the smart healthcare CPS is a
paramount concern, necessitating the deployment of a robust set of security protocols [112].
In this complex ecosystem where the seamless exchange of sensitive healthcare data is
pivotal, various protocols come into play to ensure the integrity, confidentiality, and au-
thenticity of information during transit. The various security protocols for smart healthcare
CPSs are described in Table 10.

Table 10. Communication security protocols for smart healthcare CPS.

Type Description Security Aspect

Access Controls and Identity
Management [69]

Ensure communication access to authorized
entities within the CPS.

Prevent unauthorized access and establish
trusted communication channels.

TLS and SSL [113] Provide encryption and authentication for
end-to-end security of data in transit.

Protect against eavesdropping and
MITM attacks.

MAC and Digital Signatures [114] Verify the authenticity and integrity of
transmitted messages.

Ensure that data remain unchanged and
originate from a legitimate source.

VPNs [115] Create encrypted tunnels between nodes. Enhance privacy and security.

PKC [116] Ensures that data remain confidential from the
point of origin to the destination.

Minimize the risk of interception and
unauthorized access.

SSH [117] Encrypts communication sessions for remote
access and command execution.

Adds an extra layer of protection against
unauthorized access and data tampering.

Network Segmentation [118] Divides the network into segments with
restricted access.

Limits the impact of unauthorized access
and reduces the attack surface.

The integration of the GBG-RPL framework into existing smart healthcare CPSs re-
quires a systematic approach to ensure compatibility, functionality, and minimal disrup-
tion [119]. This integration involves careful planning, customization, and validation to
ensure a seamless and effective deployment [4]. A step-by-step approach would help to
navigate the complexities of integration, providing a solid foundation for enhanced trust
management in healthcare data within the CPS [120]. A logical sequence of step-by-step
approaches to the integration of GBG-RPL into smart healthcare CPSs is given in Table 11.

This research focused on the prevention of blackhole and greyhole attacks in smart
healthcare CPSs using the Gini index and blockchain. The proposed mechanism con-
sisted of two layers: the device layer and the fog layer. The Gini index and blockchain
were implemented in the fog layer, where all trust-related calculations were performed.
The model was implemented on the Cooja simulator. Several performance and efficiency
parameters were evaluated in order to assess the proposed mechanism. Included in these
parameters were the attack-detection rate, average residual energy, packet loss ratio, energy
consumption, number of nodes, and end-to-end delay. Both the GBG-RPL and BCPS-RPL
mechanisms demonstrated a consistent increase in attack-detection rate over time. Nev-
ertheless, the GBG-RPL mechanism consistently displayed a greater attack-detection rate,
indicating its effectiveness in detecting and mitigating blackhole and greyhole attacks.

Mean residual energy quantified the CPS energy levels over time. Both mechanisms’
energy consumption decreased over time, with the GBG-RPL mechanism consistently
consuming less energy than the BCPS-RPL mechanism. This demonstrates the energy effec-
tiveness of the GBG-RPL mechanism to maintain the CPS’s energy resources. The packet
loss ratio parameter indicated the proportion of failed transmissions within the CPS net-
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work. The ratio of lost packets decreased over time for both mechanisms. However,
the GBG-RPL mechanism consistently demonstrated a lower packet loss ratio than the
BCPS-RPL mechanism, demonstrating its effectiveness in ensuring reliable data transmis-
sion within the system. Energy consumption was measured to evaluate the efficiency with
which the mechanisms utilized energy resources. Both mechanisms’ energy consumption
decreased over time, indicating improved energy efficiency in the CPS. The GBG-RPL
mechanism consistently consumed less energy than the BCPS-RPL mechanism at each time
interval, demonstrating its effectiveness in optimizing energy consumption.

Table 11. Integration of GBG-RPL framework into smart healthcare CPS.

Sequence of Integration Purpose Actions

Assess Existing Infrastructure
Understanding of the current architecture,
components, and communication protocols of
the smart healthcare CPS.

Conduct a thorough assessment of the
existing infrastructure.

Identify Integration Points
Determine specific points within the smart
healthcare CPS where the GBG-RPL
framework would be integrated.

Identify areas such as trust-management
modules and communication interfaces
where the GBG-RPL can be integrated.

Define Data Exchange Protocols

Establish standardized protocols for the
exchange of data between the GBG-RPL
framework and existing components of the
smart healthcare CPS.

Define communication standards, data
formats, and protocols to
ensure interoperability.

Adapt GBG-RPL to the
Healthcare Domain

Tailor the GBG-RPL algorithms and
parameters to suit the specific requirements
and characteristics of healthcare.

Customize the GBG-RPL to handle
healthcare-related trust metrics.

Ensure Security Measures
Address security considerations to protect
healthcare data and maintain the integrity of
trust assessments.

Implement hashing and layered
architecture to safeguard data exchanged
between the Gini index and
other components.

Testing and Validation
Verify the integration’s functionality,
performance, and security through
comprehensive testing.

Conduct integration testing to validate
compatibility with existing
CPS components.

User Training and Adoption

Prepare healthcare professionals,
administrators, and other users for the
introduction of the proposed framework,
ensuring they understand its role and benefits.

Provide training sessions, workshops,
and documentation.

Test Deployment Conduct a test deployment in a
controlled environment.

Deploy the proposed framework on a
limited scale, monitor its operation,
and collect feedback.

Optimization and Full Deployment Implement necessary optimizations based
on feedback. Make refinements to the integration.

The parameter representing the number of nodes quantified the network’s evolution
over time. For both mechanisms, the number of nodes increased, with the GBG-RPL
mechanism consistently having more nodes than the BCPS-RPL mechanism. This indicates
that the GBG-RPL mechanism is scalable and capable of supporting a greater number of
CPS network nodes. The end-to-end delay parameter measured the latency in message
transmission within the CPS network based on the number of nodes. Both mechanisms’ end-
to-end latencies increased as the number of nodes increased. The BCPS-RPL mechanism
displayed marginally longer end-to-end delays than the GBG-RPL mechanism, indicating
possible differences in their respective delay-management performance. The effectiveness
of the GBG-RPL mechanism in preventing blackhole and greyhole attacks, optimizing
energy consumption, minimizing packet loss, and ensuring reliable communication in
the CPS network was demonstrated by the evaluation of the proposed mechanism using
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various parameters. The BCPS-RPL mechanism demonstrated scalability when coping
with a larger number of nodes. This research provides essential insights for securing and
optimizing CPS networks against malicious attacks and ensuring their effective operation.

Several performance metrics, including reliability, energy efficiency, security, scalabil-
ity, and responsiveness, demonstrate that the GBG-RPL method outperforms the BCPS-RPL
method, as shown in Table 12. In the table, the percentage of improvement was determined
by averaging all values. However, in addition to the efficient attack detection, the proposed
framework has some limitations. The initial assumption of network nodes’ trustworthiness
may not align with the dynamic nature of evolving cybersecurity threats, and the static
trust assumption could pose challenges in dynamically changing healthcare environments.
Additionally, the assumption of a secure communication channel may not fully account
for emerging cybersecurity threats. Moreover, the assumption that the attacker node is
not intelligent may not hold against sophisticated adversaries, potentially compromising
the framework’s effectiveness. Recognizing these limitations, real-world implementations
must consider continuous evaluation, adaptation, and robust countermeasures to address
potential vulnerabilities and ensure the framework’s resilience in dynamic healthcare
cybersecurity landscapes.

Table 12. Performance comparison of GBG-RPL and BCPS-RPL.

Metric GBG-RPL BCPS-RPL % Improvement

Packet Loss Ratio 0.375 0.404 7.18%
Residual Energy 0.635 0.559 11.97%
Energy Consumption 0.04768 0.0591 19.27%
Attack-Detection Rate 0.77 0.688 10.65%
Avg. Attack-Detection Time (30 nodes) 14.33 17.67 18.88%
Message Overhead 9435 12050 21.65%
End-to-End Delay (30 nodes) 0.907 1.267 28.34%

11. Conclusions

This research undertook an in-depth study of the related work to identify the research
gaps in the existing trust-based techniques to detect and mitigate blackhole and greyhole
attacks in a CPS. The study considered the utilization of the Gini index and blockchain tech-
nology as an opportunity to enhance the security of CPS networks further. The Gini index
can improve the accuracy of attack detection in trust-based schemes, whereas blockchain
enhances the immutability of the trust database. The proposed framework calculates trust
scores based on carefully selected significant trust parameters, including the packet drop
ratio, energy consumption, end-to-end delay, and latency. The blockchain technology has
been implemented as a database in the form of a smart contract to make the global trust list
immutable. The trust calculation and implementation of smart contracts in the fog layer
have improved the detection and mitigation of attacks, as observed during the simulations.

This research work proposes a thorough strategy for preventing blackhole and grey-
hole attacks in smart healthcare CPSs using the Gini index and blockchain. The suggested
approach shows its usefulness in a range of CPS security and performance characteristics
when implemented in the device layer and fog layer. When comparing the GBG-RPL
mechanism to the BCPS-RPL mechanism, evaluations of several characteristics, including
the attack-detection rate, average residual energy, packet loss ratio, energy consump-
tion, number of nodes, and end-to-end delay, provide insightful information. In terms of
attack-detection rate/time, energy efficiency, packet loss ratio, and transmission efficiency,
the GBG-RPL method produces favorable outcomes. To validate and improve the suggested
technique for real-world CPS deployments, nevertheless, more analysis and application
in the field are needed. These research findings support ongoing efforts to increase the
security and resistance of CPSs to complex attacks.
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