The linkedness of cubical polytopes: Beyond the cube

Hoa T. Bui ${ }^{\mathrm{a}, \mathrm{b}}$, Guillermo Pineda-Villavicencio ${ }^{\mathrm{a}, \mathrm{c}, *}$, Julien Ugon ${ }^{\mathrm{c}}$
${ }^{\text {a }}$ Federation University, Australia
${ }^{\text {b }}$ Faculty of Science and Engineering, Curtin University, Australia
c School of Information Technology, Deakin University, Australia

ARTICLE INFO

Article history:

Received 29 September 2022
Received in revised form 12 October 2023
Accepted 7 November 2023
Available online 22 November 2023

Keywords:

k-linked
Cube
Cubical polytope
Connectivity
Separator
Linkedness

Abstract

A cubical polytope is a polytope with all its facets being combinatorially equivalent to cubes. The paper is concerned with the linkedness of the graphs of cubical polytopes. A graph with at least $2 k$ vertices is k-linked if, for every set of k disjoint pairs of vertices, there are k vertex-disjoint paths joining the vertices in the pairs. We say that a polytope is k-linked if its graph is k-linked. In a previous paper [3] we proved that every cubical d-polytope is $\lfloor d / 2\rfloor$-linked. Here we strengthen this result by establishing the $\lfloor(d+1) / 2\rfloor-$ linkedness of cubical d-polytopes, for every $d \neq 3$. A graph G is strongly k-linked if it has at least $2 k+1$ vertices and, for every vertex v of G, the subgraph $G-v$ is k-linked. We say that a polytope is (strongly) k-linked if its graph is (strongly) k-linked. In this paper, we also prove that every cubical d-polytope is strongly $\lfloor d / 2\rfloor$-linked, for every $d \neq 3$.

These results are best possible for this class of polytopes.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The graph $G(P)$ of a polytope P is the undirected graph formed by the vertices and edges of the polytope. This paper studies the linkedness of cubical d-polytopes, d-dimensional polytopes with all their facets being cubes. A d-dimensional cube is the convex hull in \mathbb{R}^{d} of the 2^{d} vectors $(\pm 1, \ldots, \pm 1)$. By a cube we mean any polytope whose face lattice is isomorphic to the face lattice of a cube.

Denote by $V(X)$ the vertex set of a graph or a polytope X. Given sets A, B of vertices in a graph, a path from A to B, called an $A-B$ path, is a (vertex-edge) path $L:=u_{0} \ldots u_{n}$ in the graph such that $V(L) \cap A=\left\{u_{0}\right\}$ and $V(L) \cap B=\left\{u_{n}\right\}$. We write $a-B$ path instead of $\{a\}-B$ path, and likewise, write $A-b$ path instead of $A-\{b\}$ path.

Let G be a graph and X a subset of $2 k$ distinct vertices of G. The elements of X are called terminals. Let $Y:=$ $\left\{\left\{s_{1}, t_{1}\right\}, \ldots,\left\{s_{k}, t_{k}\right\}\right\}$ be an arbitrary labelling and (unordered) pairing of all the vertices in X. We say that Y is linked in G if we can find disjoint $s_{i}-t_{i}$ paths for all $i \in[1, k]$, where $[1, k]$ denotes the interval $1, \ldots, k$. The set X is linked in G if every such pairing of its vertices is linked in G. Throughout this paper, by a set of disjoint paths, we mean a set of vertex-disjoint paths. If G has at least $2 k$ vertices and every set of exactly $2 k$ vertices is linked in G, we say that G is k-linked. If the graph of a polytope is k-linked, we say that the polytope is also k-linked.

[^0]Linkedness is a stronger property than connectivity: let G be a graph with at least $2 k$ vertices, and let $S:=\left\{s_{1}, \ldots, s_{k}\right\}$ and $T:=\left\{t_{1}, \ldots, t_{k}\right\}$ be two disjoint k-element sets of vertices in G. It follows from Menger's theorem that, if G is k connected then the sets S and T can be joined setwise by disjoint paths (namely, by k disjoint $S-T$ paths). By contrast, if G is k-linked then the sets can be joined pointwise by disjoint paths.

A closely related problem to linkedness is the classical disjoint paths problem [9]: given a graph G and a set $Y:=$ $\left\{\left\{s_{1}, t_{1}\right\}, \ldots,\left\{s_{k}, t_{k}\right\}\right\}$ of k pairs of terminals in G, decide whether or not Y is linked in G. A natural optimisation version of this problem is to find the largest subset of the pairs so that there exist disjoint paths connecting the selected pairs.

There is a linear function $f(k)$ such that every $f(k)$-connected graph is k-linked, which follows from works of Bollobás and Thomason [1]; Kawarabayashi, Kostochka, and Yu [6]; and Thomas and Wollan [11]. In the case of polytopes, Larman and Mani [7, Thm. 2] proved that every d-polytope is $\lfloor(d+1) / 3\rfloor$-linked, a result that was slightly improved to $\lfloor(d+2) / 3\rfloor$ in [12, Thm. 2.2]. Gallivan [5] proved that not every polytope is $\lfloor d / 2\rfloor$-linked. In view of this negative result, researchers have focused efforts on finding families of d-polytopes that are $\lfloor d / 2\rfloor$-linked. In his PhD thesis [13, Question 5.4.12], Wotzlaw asked whether every cubical d-polytope is $\lfloor d / 2\rfloor$-linked. In [3] we answer his question in the affirmative by establishing the following theorem.

Theorem 1. For every $d \geq 1$, a cubical d-polytope is $\lfloor d / 2\rfloor$-linked.

The paper [3] also established the linkedness of the d-cube.

Theorem 2 (Linkedness of the cube). For every $d \neq 3$, a d-cube is $\lfloor(d+1) / 2\rfloor$-linked.
In this paper, we extend these two results as follows:

Theorem 3 (Linkedness of cubical polytopes). For every $d \neq 3$, a cubical d-polytope is $\lfloor(d+1) / 2\rfloor$-linked.

Our methodology relies on results on the connectivity of strongly connected subcomplexes of cubical polytopes, whose proof ideas were first developed in [2], and a number of new insights into the structure of d-cube exposed in [3]. One obstacle that forces some tedious analysis is the fact that the 3-cube is not 2-linked.

Let X be a set of vertices in a graph G. Denote by $G[X]$ the subgraph of G induced by X, the subgraph of G that contains all the edges of G with vertices in X. Write $G-X$ for $G[V(G) \backslash X]$. If $X=\{v\}$, then we write $G-v$ instead of $G-\{v\}$.

In our paper [3], we introduce the notion of strong linkedness. We say that a graph G with at least $2 k+1$ vertices is strongly k-linked if for every vertex v of G, the subgraph $G-v$ is k-linked. A polytope is strongly k-linked if its graph is strongly k-linked. We proved the strong-linkedness of the cube as follows:

Theorem 4 (Strong linkedness of the cube [3, Thm. 25]). For every $d \geq 1$, a d-cube is strongly $\lfloor d / 2\rfloor$-linked.

In this paper, we extend this result to cubical polytopes:

Theorem 5 (Strong linkedness of cubical polytopes). For every $d \neq 3$, a cubical d-polytope is strongly $\lfloor d / 2\rfloor$-linked.
Unless otherwise stated, the graph theoretical notation and terminology follow from [4] and the polytope theoretical notation and terminology from [14]. Moreover, when referring to graph-theoretical properties of a polytope such as minimum degree, linkedness and connectivity, we mean properties of its graph.

2. Connectivity of cubical polytopes

The aim of this section is to present a couple of results related to the connectivity of strongly connected complexes in cubical polytopes. A pure polytopal complex \mathcal{C} is strongly connected if every pair of facets F and F^{\prime} is connected by a path $F_{1} \ldots F_{n}$ of facets in \mathcal{C} such that $F_{i} \cap F_{i+1}$ is a ridge of \mathcal{C} for each $i \in[1, n-1], F_{1}=F$ and $F_{n}=F^{\prime}$; we say that such a path is a ($d-1, d-2$)-path or a facet-ridge path if the dimensions of the faces can be deduced from the context. Two basic examples of strongly connected complexes are given by the complex of all faces of a polytope P, called the complex of P and denoted by $\mathcal{C}(P)$, and the complex of all proper faces of P, called the boundary complex of P and denoted by $\mathcal{B}(P)$. For the definitions of polytopal complexes and pure polytopal complexes, refer to [14, Section 5.1].

Given a polytopal complex \mathcal{C} with vertex set V and a subset X of V, the subcomplex of \mathcal{C} formed by all the faces of \mathcal{C} containing only vertices from X is said to be induced by X and is denoted by $\mathcal{C}[X]$. Removing from \mathcal{C} all the vertices in a subset $X \subset V(\mathcal{C})$ results in the subcomplex $\mathcal{C}[V(\mathcal{C}) \backslash X]$, which we write as $\mathcal{C}-X$. If $X=\{x\}$ we write $\mathcal{C}-x$ rather than $\mathcal{C}-\{x\}$. We say that a subcomplex \mathcal{C}^{\prime} of a complex \mathcal{C} is a spanning subcomplex of \mathcal{C} if $V\left(\mathcal{C}^{\prime}\right)=V(\mathcal{C})$. The graph of a complex is the undirected graph formed by the vertices and edges of the complex; as in the case of polytopes, we denote the graph of a complex \mathcal{C} by $G(\mathcal{C})$.

For a polytopal complex \mathcal{C}, the star of a face F of \mathcal{C}, denoted $\operatorname{star}(F, \mathcal{C})$, is the subcomplex of \mathcal{C} formed by all the faces containing F, and their faces; the antistar of a face F of \mathcal{C}, denoted $\operatorname{astar}(F, \mathcal{C})$, is the subcomplex of \mathcal{C} formed by all the faces disjoint from F; and the link of a face F, denoted $\operatorname{link}(F, \mathcal{C})$, is the subcomplex of \mathcal{C} formed by all the faces of $\operatorname{star}(F, \mathcal{C})$ that are disjoint from F. That is, $\operatorname{astar}(F, \mathcal{C})=\mathcal{C}-V(F)$ and $\operatorname{link}(F, \mathcal{C})=\operatorname{star}(F, \mathcal{C})-V(F)$. Unless otherwise stated, when defining stars, antistars and links in a polytope, we always assume that the underlying complex is the boundary complex of the polytope.

The first results are from [2].
Lemma 6 ([2, Lem. 8]). Let F be a proper face in the d-cube Q_{d}. Then the antistar of F is a strongly connected ($d-1$)-complex.
Proposition 7 ([2, Prop. 13]). Let F be a facet in the star \mathcal{S} of a vertex in a cubical d-polytope. Then the antistar of F in \mathcal{S} is a strongly connected ($d-2$)-subcomplex of \mathcal{S}.

Let v be a vertex in a d-cube Q_{d} and let v^{0} denote the vertex at distance d from v, called the vertex opposite to v in Q_{d}; by distance in a cube, we mean the graph-theoretical distance in the cube. In the d-cube Q_{d}, the facet disjoint from a facet F is denoted by F^{0}, and we say that F and F^{0} are a pair of opposite facets.

We proceed with a simple but useful remark.
Remark 8. Let P be a cubical d-polytope. Let v be a vertex of P and let F be a face of P containing v, which is a cube. In addition, let v^{0} be the vertex of F opposite to v in F. The smallest face in the polytope containing both v and v^{0} is precisely F.

The proof idea in Proposition 7 can be pushed a bit further to obtain a rather technical result that we prove next. Two vertex-edge paths are independent if they share no inner vertex.

Lemma 9. Let P be a cubical d-polytope with $d \geq 4$. Let s_{1} be any vertex in P and let \mathcal{S}_{1} be the star of s_{1} in the boundary complex of P. Let s_{2} be any vertex in \mathcal{S}_{1}, other than s_{1}. Define the following sets:

- F_{1} in \mathcal{S}_{1}, a facet containing s_{1} but not s_{2};
- F_{12} in \mathcal{S}_{1}, a facet containing s_{1} and s_{2};
- \mathcal{S}_{12}, the star of s_{2} in \mathcal{S}_{1} (that is, the subcomplex of \mathcal{S}_{1} formed by the facets of P in \mathcal{S}_{1} containing s_{2});
- \mathcal{A}_{1}, the antistar of F_{1} in \mathcal{S}_{1}; and
- \mathcal{A}_{12}, the subcomplex of \mathcal{S}_{12} induced by $V\left(\mathcal{S}_{12}\right) \backslash\left(V\left(F_{1}\right) \cup V\left(F_{12}\right)\right)$.

Then the following assertions hold.
(i) The complex \mathcal{S}_{12} is a strongly connected $(d-1)$-subcomplex of \mathcal{S}_{1}.
(ii) If there are more than two facets in \mathcal{S}_{12}, then, between any two facets of \mathcal{S}_{12} that are different from F_{12}, there exists $a(d-1, d-$ 2)-path in \mathcal{S}_{12} that does not contain the facet F_{12}.
(iii) If \mathcal{S}_{12} contains more than one facet, then the subcomplex \mathcal{A}_{12} of \mathcal{S}_{12} contains a spanning strongly connected ($d-3$)-subcomplex.

Proof. Let us prove (i). Let ψ define the natural anti-isomorphism from the face lattice of P to the face lattice of its dual P^{*}. The facets in \mathcal{S}_{1} correspond to the vertices in the facet $\psi\left(s_{1}\right)$ in P^{*} corresponding to s_{1}; likewise for the facets in $\operatorname{star}\left(s_{2}, \mathcal{B}(P)\right)$ and the vertices in $\psi\left(s_{2}\right)$. The facets in \mathcal{S}_{12} correspond to the vertices in the nonempty face $\psi\left(s_{1}\right) \cap \psi\left(s_{2}\right)$ of P^{*}. The existence of a facet-ridge path in \mathcal{S}_{12} between any two facets J_{1} and J_{2} of \mathcal{S}_{12} amounts to the existence of a vertex-edge path in $\psi\left(s_{1}\right) \cap \psi\left(s_{2}\right)$ between $\psi\left(J_{1}\right)$ and $\psi\left(J_{2}\right)$. That \mathcal{S}_{12} is a strongly connected ($d-1$)-complex now follows from the connectivity of the graph of $\psi\left(s_{1}\right) \cap \psi\left(s_{2}\right)$ (Balinski's theorem), as desired.

We proceed with the proof of (ii). Let J_{1} and J_{2} be two facets of \mathcal{S}_{12}, other than F_{12}. If there are more than two facets in \mathcal{S}_{12}, then the face $\psi\left(s_{1}\right) \cap \psi\left(s_{2}\right)$ is at least bidimensional. As a result, the graph of $\psi\left(s_{1}\right) \cap \psi\left(s_{2}\right)$ is at least 2-connected by Balinski's theorem. By Menger's theorem, there are at least two independent vertex-edge paths in $\psi\left(s_{1}\right) \cap \psi\left(s_{2}\right)$ between $\psi\left(J_{1}\right)$ and $\psi\left(J_{2}\right)$. Pick one such path L^{*} that avoids the vertex $\psi\left(F_{12}\right)$ of $\psi\left(s_{1}\right) \cap \psi\left(s_{2}\right)$. Dualising this path L^{*} gives a ($d-1, d-2$)-path between J_{1} and J_{2} in \mathcal{S}_{12} that does not contain the facet F_{12}.

We finally prove (iii). Assume that \mathcal{S}_{12} contains more than one facet. We need some additional notation.

- Let F be a facet in \mathcal{S}_{12} other than F_{12}; it exists by our assumption on \mathcal{S}_{12}.
- For a facet J in \mathcal{S}_{12}, let \mathcal{A}_{1}^{J} denote the subcomplex $J-V\left(F_{1}\right)$; that is, \mathcal{A}_{1}^{J} is the antistar of $J \cap F_{1}$ in J.
- For a facet J in \mathcal{S}_{12} other than F_{12}, let \mathcal{A}_{12}^{J} denote the subcomplex $J-\left(V\left(F_{1}\right) \cup V\left(F_{12}\right)\right)$, the subcomplex of J induced by $V(J) \backslash\left(V\left(F_{1}\right) \cup V\left(F_{12}\right)\right)$.

We require the following claim.

Claim 1. \mathcal{A}_{12}^{F} contains a spanning strongly connected $(d-3)$-subcomplex \mathcal{C}^{F}.
Proof. We first show that $\mathcal{A}_{12}^{F} \neq \emptyset$. Denoting by s_{1}^{o} the vertex in F opposite to s_{1}, we have that s_{1}^{0} is not in F_{1} or in F_{12} by Remark 8. So s_{1}^{0} is in \mathcal{A}_{12}^{F}.

Notice that $s_{1} \notin \mathcal{A}_{1}^{F}$. From Lemma 6 it follows that \mathcal{A}_{1}^{F} is a strongly connected ($d-2$)-subcomplex of F. Write

$$
\mathcal{A}_{1}^{F}=\mathcal{C}\left(R_{1}\right) \cup \cdots \cup \mathcal{C}\left(R_{m}\right)
$$

where R_{i} is a ($d-2$)-face of F for each $i \in[1, m]$. Every ($d-2$)-face in F contains either s_{1} or s_{1}^{0}, and since we have $s_{1} \notin R_{i}$ for every $R_{i} \in \mathcal{A}_{1}^{F}$, it follows that $s_{1}^{o} \in R_{i}$. Consequently no ridge R_{i} is contained in F_{12}.

Let

$$
\mathcal{C}_{i}:=\mathcal{B}\left(R_{i}\right)-V\left(F_{12}\right)
$$

As $R_{i} \not \subset F_{12}$, we have $\operatorname{dim} R_{i} \cap F_{12} \leq d-3$. Furthermore, since $s_{1}^{o} \in \mathcal{C}_{i}, \mathcal{C}_{i}$ is nonempty. If $R_{i} \cap F_{12} \neq \emptyset$, then \mathcal{C}_{i} is the antistar of $R_{i} \cap F_{12}$ in R_{i}, a spanning strongly connected ($d-3$)-subcomplex of R_{i} by Lemma 6. If $R_{i} \cap F_{12}=\emptyset$, then \mathcal{C}_{i} is the boundary complex of R_{i}, again a spanning strongly connected ($d-3$)-subcomplex of R_{i}.

Let

$$
\mathcal{C}^{F}:=\bigcup \mathcal{C}_{i}
$$

Then the complex \mathcal{C}^{F} is a spanning ($d-3$)-subcomplex of \mathcal{A}_{12}^{F}; we show it is strongly connected.
Take any two $(d-3)$-faces W and W^{\prime} in \mathcal{C}^{F}. We find a $(d-3, d-4)$-path L in \mathcal{C}^{F} between W and W^{\prime}. There exist ridges R and R^{\prime} in \mathcal{A}_{1}^{F} with $W \subset R$ and $W^{\prime} \subset R^{\prime}$. Since \mathcal{A}_{1}^{F} is a strongly connected ($d-2$)-complex, there is a ($d-2, d-3$)-path $R_{i_{1}} \ldots R_{i_{p}}$ in \mathcal{A}_{1}^{F} between $R_{i_{1}}=R$ and $R_{i_{p}}=R^{\prime}$, with $R_{i_{j}} \in \mathcal{A}_{1}^{F}$ for each $j \in[1, p]$. We will show by induction on the length p of the $(d-2, d-3)$-path $R_{i_{1}} \ldots R_{i_{p}}$ that there is a $(d-3, d-4)$-path in \mathcal{C}^{F} between W and W^{\prime}.

If $p=1$, then $R_{i_{1}}=R_{i_{p}}=R=R^{\prime}$. The existence of the path follows from the strong connectivity of $\mathcal{C}_{i_{1}}$
Suppose that the claim is true when the length of the path is $p-1$. We already established that $s_{1}^{o} \in R_{i_{j}}$ for every $j \in[1, p]$ and that $s_{1}^{o} \notin F_{12}$. Consequently, we get that $R_{i_{p-1}} \cap R_{i_{p}} \not \subset F_{12}$, and therefore, $R_{i_{p-1}} \cap R_{i_{p}} \cap F_{12}$ is a proper face of $R_{i_{p-1}} \cap R_{i_{p}}$. Hence the subcomplex $\mathcal{B}_{i_{p-1}}:=\mathcal{B}\left(R_{i_{p-1}} \cap R_{i_{p}}\right)-V\left(F_{12}\right)$ of $\mathcal{B}\left(R_{i_{p-1}} \cap R_{i_{p}}\right)$ is a nonempty, strongly connected ($d-4$)-complex by Lemma 6; in particular, it contains a $(d-4)$-face $U_{i_{p}}$. Furthermore, $\mathcal{B}_{i_{p-1}} \subset \mathcal{C}_{i_{p-1}} \cap \mathcal{C}_{i_{p}}$.

Let $W_{i_{p-1}}$ and $W_{i_{p}}$ be ($d-3$)-faces in $\mathcal{C}_{i_{p-1}}$ and $\mathcal{C}_{i_{p}}$ containing $U_{i_{p}}$ respectively. By the induction hypothesis, the existence of the $(d-2, d-3)$-path $R_{i_{1}} \ldots R_{i_{p-1}}$ implies the existence of a $(d-3, d-4)$-path L_{p-1} in \mathcal{C}^{F} from W to $W_{i_{p-1}}$. The strong connectivity of $\mathcal{C}_{i_{p}}$ gives the existence of a path L_{p} from $W_{i_{p}}$ to W^{\prime}. Finally, the desired ($d-3, d-4$)-path L is the concatenation of these two paths: $L=L_{p-1} W_{i_{p-1}} U_{i_{p}} W_{i_{p}} L_{p}$. The existence of the path L between W and W^{\prime} completes the proof of Claim 1.

We are now ready to complete the proof of (iii). The proof goes along the lines of the proof of Claim 1. We let

$$
\mathcal{S}_{12}=\bigcup_{i=1}^{m} \mathcal{C}\left(J_{i}\right)
$$

where the facets J_{1}, \ldots, J_{m} are all the facets in P containing s_{1} and s_{2}.
For every $i \in[1, m]$ we let $\mathcal{C}^{J_{i}}$ be the spanning strongly connected $(d-3)$-subcomplex in $\mathcal{A}_{12}^{J_{i}}$ given by Claim 1 . And we let

$$
\mathcal{C}:=\bigcup \mathcal{C}^{J_{i}}
$$

Then \mathcal{C} is a spanning ($d-3$)-subcomplex of \mathcal{A}_{12}; we show it is strongly connected.
If there are exactly two facets in \mathcal{S}_{12}, namely F_{12} and some other facet F, then the complex \mathcal{A}_{12} coincides with the complex \mathcal{A}_{12}^{F}. The strong $(d-3)$-connectivity of \mathcal{C} is then settled by Claim 1 . Hence assume that there are more than two facets in \mathcal{S}_{12}; this implies that the smallest face containing s_{1} and s_{2} in \mathcal{S}_{12} is at most ($d-3$)-dimensional.

Take any two ($d-3$)-faces W and W^{\prime} in \mathcal{C}. Let $J \neq F_{12}$ and $J^{\prime} \neq F_{12}$ be facets of \mathcal{S}_{12} such that $W \subset J$ and $W^{\prime} \subset J^{\prime}$. By (ii), we can find a ($d-1, d-2$)-path $J_{i_{1}} \ldots J_{i_{q}}$ in \mathcal{S}_{12} between $J_{i_{1}}=J$ and $J_{i_{q}}=J^{\prime}$ such that $J_{i_{j}} \neq F_{12}$ for any $j \in[1, q]$. We will show that a ($d-3, d-4$)-path L exists between W and W^{\prime} in \mathcal{C}, using an induction on the length q of the path $J_{i_{1}} \ldots J_{i_{q}}$.

If $q=1$, then W and W^{\prime} belong to the same facet F in \mathcal{S}_{12}, which is different from F_{12}. In this case, W and W^{\prime} are both in \mathcal{A}_{12}^{F}, and consequently, Claim 1 gives the desired $(d-3, d-4)$-path between W and W^{\prime} in $\mathcal{A}_{12}^{F} \subseteq \mathcal{C}$.

Suppose that the induction hypothesis holds when the length of the path is $q-1$. First, we show that there exists a (d-4)-face U_{q} in $C^{J_{q-1}} \cap C^{J_{i_{q}}}$. As $J_{i_{q-1}}, J_{i_{q}} \neq F_{12}$, we obtain that $\mathcal{B}\left(J_{i_{q-1}} \cap J_{i_{q}}\right)-V\left(F_{12}\right)$ is a nonempty, strongly connected ($d-3$)-subcomplex (Lemma 6); in particular, it contains a $(d-3)$-face K_{q}. The complex $\mathcal{B}\left(K_{q}\right)-V\left(F_{1}\right)$ is nonempty because

Fig. 1. Examples of Configuration $d F$. (a) A cubical 3-polytope where s_{1} is in Configuration 3F. (b) A facet of a cubical 5-polytope where s_{1} is in Configuration 5F.
$s_{1} \in F_{1}$ and $s_{1} \notin K_{q}$ (since K_{q} does not contain any vertex from F_{12}). Therefore $\mathcal{B}\left(K_{q}\right)-V\left(F_{1}\right)$ is a strongly connected $(d-4)$-subcomplex by Lemma 6 . In particular, $\mathcal{B}\left(K_{q}\right)-V\left(F_{1}\right)$ contains a $(d-4)$-face U_{q}.

Pick $\left(d-3\right.$)-faces $W_{q-1} \in \mathcal{C}^{J_{i q-1}}$ and $W_{q} \in \mathcal{C}^{J_{i q}}$ such that both contain the ($d-4$) face U_{q}. The induction hypothesis tells us that there exists a $(d-3, d-4)$-path L_{q-1} from W to W_{q-1} in \mathcal{C}. And the strong $(d-3)$-connectivity of $\mathcal{C}^{J_{i q}}$ ensures that there exists a $(d-3, d-4)$-path L_{q} from W_{q} to W^{\prime}. By concatenating these two paths, we can obtain the path $L=W L_{q-1} W_{q-1} U_{q} W_{q} L_{q} W^{\prime}$. This completes the proof of the lemma.

3. Linkedness of cubical polytopes

The aim of this section is to prove that, for every $d \neq 3$, a cubical d-polytope is $\lfloor(d+1) / 2\rfloor$-linked (Theorem 3). It suffices to prove Theorem 3 for odd $d \geq 5$; since $\lfloor d / 2\rfloor=\lfloor(d+1) / 2\rfloor$ for even d, Theorem 1 trivially establishes Theorem 3 in this case.

The proof of Theorem 3 heavily relies on Lemma 11. To state the lemma we require the following definition.
Definition 10 (Configuration $d F$). Let $d \geq 3$ be odd and let X be a set of at least $d+1$ terminals in a cubical d-polytope P. In addition, let Y be a labelling and pairing of the vertices in X. A terminal of X, say s_{1}, is in Configuration $d F$ if the following conditions are satisfied:
(i) at least $d+1$ vertices of X appear in a facet F of P;
(ii) the terminals in the pair $\left\{s_{1}, t_{1}\right\} \in Y$ are at distance $d-1$ in F (that is, $\operatorname{dist}_{F}\left(s_{1}, t_{1}\right)=d-1$); and
(iii) the neighbours of t_{1} in F are all vertices of X.

Fig. 1 illustrates examples of Configuration $d \mathrm{~F}$.

Lemma 11. Let $d \geq 5$ be odd and let $k:=(d+1) / 2$. Let s_{1} be a vertex in a cubical d-polytope and let \mathcal{S}_{1} be the star of s_{1} in the polytope. Moreover, let $Y:=\left\{\left\{s_{1}, t_{1}\right\}, \ldots,\left\{s_{k}, t_{k}\right\}\right\}$ be a labelling and pairing of $2 k$ distinct vertices of \mathcal{S}_{1}. Then the set Y is linked in \mathcal{S}_{1} if the vertex s_{1} is not in Configuration $d F$.

Remark 12. It is easy to see that when the vertex s_{1} is in Configuration $d \mathrm{~F}$, the set Y is not linked in \mathcal{S}_{1}. Indeed in this case, since $\operatorname{dist}_{F_{1}}\left(s_{1}, t_{1}\right)=d-1$ there is only one facet F_{1} in \mathcal{S}_{1} that contains t_{1}. Then all the neighbours of t_{1} in F_{1}, and thus, in \mathcal{S}_{1} are in X. As a consequence, every $s_{1}-t_{1}$ path in \mathcal{S}_{1} must touch X. Hence Y is not linked.

We defer the proof of Lemma 11 for $d \geq 7$ to Subsection 3.1, while the case $d=5$ is proved in Appendix A. We are now ready to prove our main result, assuming Lemma 11. For a set $Y:=\left\{\left\{s_{1}, t_{1}\right\}, \ldots,\left\{s_{k}, t_{k}\right\}\right\}$ of pairs of vertices in a graph, a Y-linkage $\left\{L_{1}, \ldots, L_{k}\right\}$ is a set of disjoint paths with the path L_{i} joining the pair $\left\{s_{i}, t_{i}\right\}$ for each $i \in[1, k]$. For a path $L:=u_{0} \ldots u_{n}$ we often write $u_{i} L u_{j}$ for $0 \leq i \leq j \leq n$ to denote the subpath $u_{i} \ldots u_{j}$. We will rely on the following definition.

Definition 13 (Projection π). For a pair of opposite facets $\left\{F, F^{o}\right\}$ of Q_{d}, define a projection $\pi_{F o}^{Q_{d}}$ from Q_{d} to F^{o} by sending a vertex $x \in F$ to the unique neighbour $x_{F o}^{p}$ of x in F^{o}, and a vertex $x \in F^{o}$ to itself (that is, $\pi_{F o}^{Q_{d}}(x)=x$); write $\pi_{F o}^{Q_{d}}(x)=x_{F o}^{p}$ to be precise, or write $\pi(x)$ or x^{p} if the cube Q_{d} and the facet F^{0} are understood from the context.

We extend this projection to sets of vertices: given a pair $\left\{F, F^{o}\right\}$ of opposite facets and a set $X \subseteq V(F)$, the projection $X_{F^{o}}^{p}$ or $\pi_{F^{o}}^{Q_{d}}(X)$ of X onto F^{o} is the set of the projections of the vertices in X onto F^{o}. For an i-face $J \subseteq F$, the projection $J_{F^{0}}^{p}$ or $\pi_{F^{o}}^{Q_{d}}(J)$ of J onto F^{o} is the i-face consisting of the projections of all the vertices of J onto F^{o}. For a pair $\left\{F, F^{o}\right\}$ of opposite facets in Q^{d}, the restrictions of the projection $\pi_{F^{o}}$ to F and the projection π_{F} to F^{o} are bijections.

Proof of Theorem 3 (Linkedness of cubical polytopes). Theorem 1 settled the case of even d, so we assume d is odd.
Let d be odd and $d \geq 5$ and let $k:=(d+1) / 2$. Let X be any set of $2 k$ vertices in the graph G of a cubical d-polytope P. Recall the vertices in X are called terminals. Also let $Y:=\left\{\left\{s_{1}, t_{1}\right\}, \ldots,\left\{s_{k}, t_{k}\right\}\right\}$ be a labelling and pairing of the vertices of X. We aim to find a Y-linkage $\left\{L_{1}, \ldots, L_{k}\right\}$ in G where L_{i} joins the pair $\left\{s_{i}, t_{i}\right\}$ for $i=1, \ldots, k$.

For a set of vertices X of a graph G, a path in G is called X-valid if no inner vertex of the path is in X. The distance between two vertices s and t in G, denoted $\operatorname{dist}_{G}(s, t)$, is the length of a shortest path between the vertices.

The first step of the proof is to reduce the analysis space from the whole polytope to a more manageable space, the star \mathcal{S}_{1} of a terminal vertex in the boundary complex of P, say that of s_{1}. We do so by considering $d=2 k-1$ disjoint paths $S_{i}:=s_{i}-\mathcal{S}_{1}$ (for each $i \in[2, k]$) and $T_{j}:=t_{j}-\mathcal{S}_{1}$ (for each $j \in[1, k]$) from the terminals into \mathcal{S}_{1}. Here we resort to the d-connectivity of G. In addition, let $S_{1}:=s_{1}$. We then denote by \bar{s}_{i} and \bar{t}_{j} the intersection of the paths S_{i} and T_{j} with \mathcal{S}_{1}. Using the vertices \bar{s}_{i} and \bar{t}_{i} for $i \in[1, k]$, define sets \bar{X} and \bar{Y} in \mathcal{S}_{1}, counterparts to the sets X and Y of G. In an abuse of terminology, we also say that the vertices \bar{s}_{i} and \bar{t}_{i} are terminals. In this way, the existence of a \bar{Y}-linkage $\left\{\bar{L}_{1}, \ldots, \bar{L}_{k}\right\}$ with $\bar{L}_{i}:=\bar{s}_{i}-\bar{t}_{i}$ in $G\left(\mathcal{S}_{1}\right)$ implies the existence of a Y-linkage $\left\{L_{1}, \ldots, L_{k}\right\}$ in $G(P)$, since each path $\bar{L}_{i}(i \in[1, k])$ can be extended with the paths S_{i} and T_{i} to obtain the corresponding path $L_{i}=s_{i} S_{i} \bar{s}_{i} \bar{L}_{i} \bar{t}_{i} T_{i} t_{i}$.

The second step of the proof is to find a \bar{Y}-linkage $\left\{\bar{L}_{1}, \ldots, \bar{L}_{k}\right\}$ in $G\left(\mathcal{S}_{1}\right)$, whenever possible. According to Lemma 11 , there is a \bar{Y}-linkage in $G\left(\mathcal{S}_{1}\right)$ provided that the vertex s_{1} is not in Configuration $d \mathrm{~F}$. The existence of a \bar{Y}-linkage in turn gives the existence of a Y-linkage, and completes the proof of the theorem in this case.

The third and final step is to deal with Configuration $d \mathrm{~F}$ for s_{1}. Hence assume that the vertex s_{1} is in Configuration $d \mathrm{~F}$. This implies that
(i) there exists a unique facet F_{1} of \mathcal{S}_{1} containing \bar{t}_{1}; that
(ii) $\left|\bar{X} \cap V\left(F_{1}\right)\right|=d+1$; and that
(iii) $\operatorname{dist}_{F_{1}}\left(\bar{s}_{1}, \bar{t}_{1}\right)=d-1$ and all the $d-1$ neighbours of \bar{t}_{1} in F_{1}, and thus in \mathcal{S}_{1}, belong to \bar{X}.

Let R be a $(d-2)$-face of F_{1} containing the vertex s_{1}^{o} opposite to s_{1} in F_{1}, then $s_{1} \notin R$, and $\bar{t}_{1}=s_{1}^{o} \in R$. Denote by $R_{F_{1}}$ the $(d-2)$-face of F_{1} disjoint from R. Let J be the other facet of P containing R and let R_{J} denote the ($d-2$)-face of J disjoint from R. Then R_{J} is disjoint from F_{1}. Partition the vertex set $V\left(R_{J}\right)$ of R_{J} into the vertex sets of two induced subgraphs $G_{\text {bad }}$ and $G_{\text {good }}$ such that $G_{\text {bad }}$ contains the neighbours of the terminals in R, namely $V\left(G_{\text {bad }}\right)=\pi_{R_{J}}^{J}(\bar{X} \cap V(R))$ and $V\left(G_{\text {good }}\right)=V\left(R_{J}\right) \backslash V\left(G_{\text {bad }}\right)$. Then $\pi_{R}^{J}\left(V\left(G_{\text {bad }}\right)\right) \subseteq \bar{X}$ and $\pi_{R}^{J}\left(V\left(G_{\text {good }}\right)\right) \cap \bar{X}=\emptyset$. See Fig. 2(a).

Consider again the paths S_{i} and T_{j} that bring the vertices $s_{i}(i \in[2, k])$ and $t_{j}(j \in[1, k])$ into \mathcal{S}_{1}. Also recall that the paths S_{i} and T_{j} intersect \mathcal{S}_{1} at \bar{s}_{i} and \bar{t}_{j}, respectively. We distinguish two cases: either at least one path S_{i} or T_{j} touches R_{J} or no path S_{i} or T_{j} touches R_{J}. In the former case we redirect one aforementioned path S_{i} or T_{j} to break Configuration $d \mathrm{~F}$ for s_{1} and use Lemma 11 , while in the latter case we find the \bar{Y}-linkage using the antistar of s_{1}.

Case 1. Suppose at least one path S_{i} or T_{j} touches R_{J}.
If possible, pick one such path, say S_{ℓ}, for which it holds that $V\left(S_{\ell}\right) \cap V\left(G_{g o o d}\right) \neq \emptyset$. Otherwise, pick one such path, say S_{ℓ}, that does not contain $\pi_{R_{J}}^{J}\left(t_{1}\right)$, if it is possible. If none of these two selections are possible, then there is exactly one path S_{i} or T_{j} touching R_{J}, say S_{ℓ}, in which case $\pi_{R_{J}}^{J}\left(t_{1}\right) \in V\left(S_{\ell}\right)$.

We replace the path S_{ℓ} by a new path $s_{\ell}-\mathcal{S}_{1}$ that is disjoint from the other paths S_{i} and T_{j} and we replace the old terminal \bar{s}_{ℓ} by a new terminal that causes s_{1} not to be in Configuration $d \mathrm{~F}$. First suppose that there exists s_{ℓ}^{\prime} in $V\left(S_{\ell}\right) \cap$ $V\left(G_{\text {good }}\right)$. Then the old path S_{ℓ} is replaced by the path $s_{\ell} S_{\ell} s_{\ell}^{\prime} \pi_{R}^{J}\left(s_{\ell}^{\prime}\right)$, and the old terminal \bar{s}_{ℓ} is replaced by $\pi_{R}^{J}\left(s_{\ell}^{\prime}\right)$. Now suppose that $V\left(S_{\ell}\right) \cap V\left(G_{\text {good }}\right)=\emptyset$. Then every path S_{i} and T_{j} that touches R_{J} is disjoint from $G_{g o o d}$. Denote by s_{ℓ}^{\prime} the first intersection of s_{ℓ} with R_{J}. Let M_{ℓ} be a shortest path in R_{J} from $s_{\ell}^{\prime} \in V\left(G_{\text {bad }}\right)$ to a vertex $s_{\ell}^{\prime \prime} \in V\left(G_{\text {good }}\right)$. By our selection of S_{ℓ} this path M_{ℓ} always exists and is disjoint from any S_{i} for $i \neq \ell$. If $s_{\ell}^{\prime \prime} \in V\left(G_{g o o d}\right) \backslash V\left(\mathcal{S}_{1}\right)$ then the old path S_{ℓ} is replaced by the path $s_{\ell} S_{\ell} s_{\ell}^{\prime} M_{\ell} s_{\ell}^{\prime \prime} \pi_{R}^{J}\left(s_{\ell}^{\prime \prime}\right)$, and the old terminal \bar{s}_{ℓ} is replaced by $\pi_{R}^{J}\left(s_{\ell}^{\prime \prime}\right)$. If instead $s_{\ell}^{\prime \prime} \in V\left(G_{\text {good }}\right) \cap V\left(\mathcal{S}_{1}\right)$ then the old path S_{ℓ} is replaced by the path $s_{\ell} S_{\ell} s_{\ell}^{\prime} M_{\ell} s_{\ell}^{\prime \prime}$, and the old terminal \bar{s}_{ℓ} is replaced by $s_{\ell}^{\prime \prime}$. Refer to Fig. 2(b) for a depiction of this case.

In any case, the replacement of the old vertex \bar{s}_{ℓ} with the new \bar{s}_{ℓ} forces s_{1} out of Configuration $d \mathrm{~F}$, and we can apply Lemma 11 to find a \bar{Y}-linkage. The case of S_{ℓ} being equal to T_{1} requires a bit more explanation in order to make sure that the vertex s_{1} does not end up in a new configuration $d \mathrm{~F}$. Let \mathcal{A}_{1} be the antistar of F_{1} in \mathcal{S}_{1}. The new vertex \bar{t}_{1} is either in F_{1} or in \mathcal{A}_{1}. If the new \bar{t}_{1} is in F_{1} then it is plain that s_{1} is not in Configuration $d \mathrm{~F}$. If the new vertex \bar{t}_{1} is in \mathcal{A}_{1}, then a new facet F_{1} containing s_{1} and the new \bar{t}_{1} cannot contain all the $d-1$ neighbours of the old \bar{t}_{1} in the old F_{1}, since the intersection between the new and the old F_{1} is at most $(d-2)$-dimensional and no $(d-2)$-dimensional face of the old F_{1} contains all the $d-1$ neighbours of the old \bar{t}_{1}. This completes the proof of the case.

Case 2. For any $(d-2)$-face R in F_{1} that contains \bar{t}_{1}, the aforementioned ridge R_{J} in the facet J is disjoint from all the paths S_{i} and T_{j}.

Fig. 2. Auxiliary figure for Theorem 3, where the facet F_{1} is highlighted in bold. (a) A depiction of the subgraphs $G_{\text {good }}$ and $G_{\text {bad }}$ of R_{J}. (b) A configuration where a path S_{i} or T_{j} touches R_{J}. (c) A configuration where no path S_{i} or T_{j} touches R_{J}.

There is a unique neighbour of \bar{t}_{1} in $R_{F_{1}}$, say \bar{s}_{k}, while every other neighbour of \bar{t}_{1} in F_{1} is in R. Let $\bar{X}^{p}:=$ $\pi_{R_{J}}^{J}\left(\bar{X} \backslash\left\{s_{1}, \bar{s}_{k}, \bar{t}_{k}\right\}\right)$ and let $s_{1}^{p p}:=\pi_{R_{J}}^{J}\left(\pi_{R}^{F_{1}}\left(s_{1}\right)\right)$. See Fig. 2(c). The $d-1$ vertices in $\bar{X}^{p} \cup\left\{s_{1}^{p p}\right\}$ can be linked in R_{J} (Theorem 2) by a linkage $\left\{\bar{L}_{1}^{\prime}, \ldots, \bar{L}_{k-1}^{\prime}\right\}$. Observe that, for the special case of $d=5$ where R_{J} is a 3-cube, the sequence $s_{1}^{p p}, \pi_{R_{J}}^{J}\left(\bar{s}_{2}\right), \pi_{R_{J}}^{J}\left(\bar{t}_{1}\right), \pi_{R_{J}}^{J}\left(\bar{t}_{2}\right)$ cannot be in a 2-face in cyclic order, since $\operatorname{dist}_{R_{J}}\left(s_{1}^{p p}, \pi_{R_{J}}^{J}\left(\bar{t}_{1}\right)\right)=3$. The linkage $\left\{\bar{L}_{1}^{\prime}, \ldots, \bar{L}_{k-1}^{\prime}\right\}$ together with the two-path $\bar{L}_{k}:=\bar{s}_{k} \pi_{R_{F_{1}}}^{F_{1}}\left(\bar{t}_{k}\right) \bar{t}_{k}$ can be extended to a linkage $\left\{\bar{L}_{1}, \ldots, \bar{L}_{k}\right\}$ given by

$$
\bar{L}_{i}:= \begin{cases}s_{1} \pi_{R}^{F_{1}}\left(s_{1}\right) s_{1}^{p p} \bar{L}_{1}^{\prime} \pi_{R_{J}}^{J}\left(\bar{t}_{1}\right) \bar{t}_{1}, & \text { for } i=1 \\ \bar{s}_{i} \pi_{R_{J}}^{J}\left(\bar{s}_{i}\right) \bar{L}_{i}^{\prime} \pi_{R_{J}}^{J}\left(\bar{t}_{i}\right) \bar{t}_{i}, & \text { for } i \in[2, k-1] \\ \bar{s}_{k} \pi_{R_{F_{1}}}^{F_{1}}\left(\bar{t}_{k}\right) \bar{t}_{k}, & \text { for } i=k\end{cases}
$$

Concatenating the paths S_{i} (for all $i \in[2, k]$) and T_{j} (for all $j \in[1, k]$) with the linkage $\left\{\bar{L}_{1}, \ldots, \bar{L}_{k}\right\}$ gives the desired Y-linkage. This completes the proof of the case, and with it the proof of the theorem.

3.1. Proof of Lemma 11 for $d \geq 7$

Before starting the proof, we require several results.
Proposition 14 ([10, Sec. 2]). For every $d \geq 1$, the graph of a strongly connected d-complex is d-connected.
Proposition 15 ([3, Prop. 27]). For every $d \geq 2$ such that $d \neq 3$, the link of a vertex in a $(d+1)$-cube Q_{d+1} is $\lfloor(d+1) / 2\rfloor$-linked.
Let Z be a set of vertices in the graph of a d-cube Q_{d}. If, for some pair of opposite facets $\left\{F, F^{o}\right\}$, the set Z contains both a vertex $z \in V(F) \cap Z$ and its projection $z_{F^{o}}^{p} \in V\left(F^{o}\right) \cap Z$, we say that the pair $\left\{F, F^{o}\right\}$ is associated with the set Z in Q_{d} and that $\left\{z, z^{p}\right\}$ is an associating pair. Note that an associating pair can associate only one pair of opposite facets.

The next lemma lies at the core of our methodology.
Lemma 16 ([3, Lemma 8]). Let Z be a nonempty subset of $V\left(Q_{d}\right)$. Then the number of pairs $\left\{F, F^{0}\right\}$ of opposite facets associated with Z is at most $|Z|-1$.

The relevance of the lemma stems from the fact that a pair of opposite facets $\left\{F, F^{0}\right\}$ not associated with a given set of vertices Z allows each vertex z in Z to have "free projection"; that is, for every $z \in Z \cap V(F)$ the projection $\pi_{F^{o}}(z)$ is not in Z, and for $z \in Z \cap V\left(F^{0}\right)$ the projection $\pi_{F}(z)$ is not in Z.

Lemma 17 ([12, Sec. 3]). Let G be a $2 k$-connected graph and let G^{\prime} be a k-linked subgraph of G. Then G is k-linked.
Proposition 18. Let F be a facet in the star \mathcal{S} of a vertex in a cubical d-polytope. Then, for every $d \geq 2$, the antistar of F in \mathcal{S} is $\lfloor(d-2) / 2\rfloor$-linked.

Proof. Let \mathcal{S} be the star of a vertex s in a cubical d-polytope and let F be a facet in the star \mathcal{S}. Let \mathcal{A} denote the antistar of F in \mathcal{S}.

The case of $d=2,3$ imposes no demand on \mathcal{A}, while the case $d=4,5$ amounts to establishing that the graph of \mathcal{A} is connected. The graph of \mathcal{A} is in fact ($d-2$)-connected, since \mathcal{A} is a strongly connected ($d-2$)-complex (Proposition 7). So assume $d \geq 6$.

There is a ($d-2$)-face R in \mathcal{A}. Indeed, take a $(d-2)$-face R^{\prime} in F containing s and consider the other facet F^{\prime} in \mathcal{S} containing R^{\prime}; the $(d-2)$-face of F^{\prime} disjoint from R^{\prime} is the desired R. By Theorem 2 the ridge R is $\lfloor(d-1) / 2\rfloor$-linked but we only require it to be $\lfloor(d-2) / 2\rfloor$-linked. By Propositions 7 and 14 the graph of \mathcal{A} is $(d-2)$-connected. Combining the linkedness of R and the connectivity of the graph of \mathcal{A} settles the proposition by virtue of Lemma 17 .

For a pair of opposite facets $\left\{F, F^{0}\right\}$ in a cube, the restriction of the projection $\pi_{F^{o}}: Q_{d} \rightarrow F^{0}$ (Definition 13) to F is a bijection from $V(F)$ to $V\left(F^{o}\right)$. With the help of π, given the star \mathcal{S} of a vertex s in a cubical polytope and a facet F in \mathcal{S}, we can define an injection from the vertices in F, except the vertex opposite to s, to the antistar of F in \mathcal{S}. Defining this injection is the purpose of Lemma 19.

Lemma 19. Let F be a facet in the star \mathcal{S} of a vertex \sin a cubical d-polytope. Then there is an injective function, defined on the vertices of F except the vertex s^{0} opposite to s, that maps each such vertex in F to a neighbour in $V(\mathcal{S}) \backslash V(F)$.

Proof. We construct the aforementioned injection f between $V(F) \backslash\left\{s^{0}\right\}$ and $V(\mathcal{S}) \backslash V(F)$ as follows. Let R_{1}, \ldots, R_{d-1} be the ($d-2$)-faces of F containing s, and let J_{1}, \ldots, J_{d-1} be the other facets of \mathcal{S} containing R_{1}, \ldots, R_{d-1}, respectively. Every vertex in F other than s^{o} lies in $R_{1} \cup \cdots \cup R_{d-1}$. Let R_{i}^{o} be the ($d-2$)-face in J_{i} that is opposite to R_{i} for each $i \in[1, d-1]$. For every vertex v in $V\left(R_{j}\right) \backslash\left(V\left(R_{1}\right) \cup \cdots \cup V\left(R_{j-1}\right)\right)$ define $f(v)$ as the projection π in J_{j} of v onto $V\left(R_{j}^{o}\right)$, namely $f(v):=\pi_{R_{j}^{o}}(v)$; observe that $\pi_{R_{j}^{o}}(v) \in V\left(R_{j}^{o}\right) \backslash\left(V\left(R_{1}^{o}\right) \cup \cdots \cup V\left(R_{j-1}^{o}\right)\right)$. Here R_{-1} and R_{-1}^{o} are empty sets. The function f is well defined as R_{i} and R_{i}^{o} are opposite ($d-2$)-cubes in the $(d-1)$-cube J_{i}.

To see that f is an injection, take distinct vertices $v_{1}, v_{2} \in V(F) \backslash\left\{s^{0}\right\}$, where $v_{1} \in V\left(R_{i}\right) \backslash\left(V\left(R_{1}\right) \cup \ldots \cup V\left(R_{i-1}\right)\right)$ and $v_{2} \in V\left(R_{j}\right) \backslash\left(V\left(R_{1}\right) \cup \cdots \cup V\left(R_{j-1}\right)\right)$ for $i \leq j$. If $i=j$ then $f\left(v_{1}\right)=\pi_{R_{i}^{o}}\left(v_{1}\right) \neq \pi_{R_{i}^{o}}\left(v_{2}\right)=f\left(v_{2}\right)$. If instead $i<j$ then $f\left(v_{1}\right) \in V\left(R_{i}^{o}\right) \subseteq V\left(R_{1}^{o}\right) \cup \cdots \cup V\left(R_{j-1}^{o}\right)$, while $f\left(v_{2}\right) \notin V\left(R_{1}^{o}\right) \cup \cdots \cup V\left(R_{j-1}^{o}\right)$.

Proof of Lemma 11 for $d \geq 7$. The proof of the case $d=5$ follows a similar pattern to this one, but includes additional technical considerations due to the fact that the 3 -cube is not 2 -linked. These technical considerations will be presented in a separate proof in Appendix A. In this proof, we identify the arguments that fail for $d=5$ with a dagger sign ${ }^{\dagger}$. This will make it easier for the reader to follow the proof for $d=5$ in the appendix.

Let $d \geq 7$ be odd and let $k:=(d+1) / 2$. Let s_{1} be a vertex in a cubical d-polytope P such that s_{1} is not in Configuration $d \mathrm{~F}$, and let \mathcal{S}_{1} denote the star of s_{1} in $\mathcal{B}(P)$. Let X be any set of $2 k$ vertices in the graph $G\left(\mathcal{S}_{1}\right)$ of \mathcal{S}_{1}. The vertices in X are our terminals. Also let $Y:=\left\{\left\{s_{1}, t_{1}\right\}, \ldots,\left\{s_{k}, t_{k}\right\}\right\}$ be a labelling and pairing of the vertices of X. We aim to find a Y-linkage $\left\{L_{1}, \ldots, L_{k}\right\}$ in G where L_{i} joins the pair $\left\{s_{i}, t_{i}\right\}$ for $i=1, \ldots, k$. Recall that a path is X-valid if it contains no inner vertex from X.

We consider a facet F_{1} of \mathcal{S}_{1} containing t_{1} and having the largest possible number of terminals. We decompose the proof into four cases based on the number of terminals in F_{1}, proceeding from the more manageable case to the more involved one.

Case 1. $\left|X \cap V\left(F_{1}\right)\right|=d$.
Case 2. $3 \leq\left|X \cap V\left(F_{1}\right)\right| \leq d-1$.
Case 3. $\left|X \cap V\left(F_{1}\right)\right|=2$.
Case 4. $\left|X \cap V\left(F_{1}\right)\right|=d+1$.
The proof of Lemma 11 is long, so we outline the main ideas. We let \mathcal{A}_{1} be the antistar of F_{1} in \mathcal{S}_{1} and let \mathcal{L}_{1} be the link of s_{1} in F_{1}. Using the $(k-1)$-linkedness of F_{1} (Theorem 2), we link as many pairs of terminals in F_{1} as possible through disjoint X-valid paths $L_{i}:=s_{i}-t_{i}$. For those terminals that cannot be linked in F_{1}, if possible we use the injection from $V\left(F_{1}\right)$ to $V\left(\mathcal{A}_{1}\right)$ granted by Lemma 19 to find a set $N_{\mathcal{A}_{1}}$ of pairwise distinct neighbours in $V\left(\mathcal{A}_{1}\right) \backslash X$ of those terminals. Then, using the ($k-2$)-linkedness of \mathcal{A}_{1} (Proposition 18), we link the corresponding pairs of terminals in \mathcal{A}_{1} and vertices in $N_{\mathcal{A}_{1}}$ accordingly ${ }^{\dagger}$. This general scheme does not always work, as the vertex s_{1}^{o} opposite to s_{1} in F_{1} does not have an image in \mathcal{A}_{1} under the aforementioned injection or the image of a vertex in F_{1} under the injection may be a terminal. In those scenarios we resort to ad hoc methods, including linking corresponding pairs in the link of s_{1} in F_{1}, which is ($k-1$)-linked by Proposition 15^{\dagger} and does not contain s_{1} or s_{1}^{o}, or linking corresponding pairs in $(d-2)$-faces disjoint from F_{1}, which are $(k-1)$-linked by Theorem 2^{\dagger}.

To aid the reader, each case is broken down into subcases highlighted in bold.
Recall that, given a pair $\left\{F, F^{o}\right\}$ of opposite facets in a cube Q, for every vertex $z \in V(F)$ we denote by $z_{F^{o}}^{p}$ or $\pi_{F^{o}}^{Q}(z)$ the unique neighbour of z in F^{o}.

Case 1. $\left|X \cap V\left(F_{1}\right)\right|=d$.

Without loss of generality, assume that $t_{2} \notin V\left(F_{1}\right)$.
Suppose first that $\operatorname{dist}_{F_{1}}\left(s_{2}, s_{1}\right)<d-1$. There exists a neighbour s_{2}^{\prime} of s_{2} in \mathcal{A}_{1}. With the use of the strong $(k-1)$ linkedness of F_{1} (Theorem 4), find disjoint paths $L_{1}:=s_{1}-t_{1}$ and $L_{i}:=s_{i}-t_{i}$ (for each $i \in[3, k]$) in F_{1}, each avoiding s_{2}. Find a path L_{2} in \mathcal{S}_{1} between s_{2} and t_{2} that consists of the edge $s_{2} s_{2}^{\prime}$ and a subpath in \mathcal{A}_{1} between s_{2}^{\prime} and t_{2}, using the connectivity of \mathcal{A}_{1} (see Proposition 7). The paths $L_{i}(i \in[1, k])$ give the desired Y-linkage.

Now assume $\operatorname{dist}_{F_{1}}\left(s_{2}, s_{1}\right)=d-1$. Since $2 k-1=d$ and there are $d-1$ pairs of opposite $(d-2)$-faces in F_{1}, by Lemma 16 there exists a pair $\left\{R, R^{o}\right\}$ of opposite $(d-2)$-faces in F_{1} that is not associated with the set $X_{s_{2}}:=\left(X \cap V\left(F_{1}\right)\right) \backslash\left\{s_{2}\right\}$, whose cardinality is $d-1$. Assume $s_{2} \in R$. Then $s_{1} \in R^{o}$.

Suppose all the neighbours of s_{2} in R are in X; that is, $N_{R}\left(s_{2}\right)=X \backslash\left\{s_{1}, s_{2}, t_{2}\right\}$. The projection $\pi_{R^{o}}^{F_{1}}\left(s_{2}\right)$ of s_{2} onto R^{0} is not in X since s_{1} is the only terminal in R^{0} and $\operatorname{dist}_{F_{1}}\left(s_{2}, s_{1}\right)=d-1 \geq 2$. Next find disjoint paths $L_{i}:=s_{i}-t_{i}$ for all $i \in[3, k]$ in R that do not touch s_{2} or t_{1}, using the ($k-1$)-linkedness of R (the argument also applies for $d=5$ due to the 3-connectivity of R in this case). With the help of Lemma 19 , find a neighbour s_{2}^{\prime} of $\pi_{R^{o}}^{F_{1}}\left(s_{2}\right)$ in \mathcal{A}_{1}, and with the connectivity of \mathcal{A}_{1}, a path L_{2} between s_{2} and t_{2} that consists of the length-two path $s_{2} \pi_{R^{o}}^{F_{1}}\left(s_{2}\right) s_{2}^{\prime}$ and a subpath in \mathcal{A}_{1} between s_{2}^{\prime} and t_{2}. Finally, find a path L_{1} in F_{1} between s_{1} and t_{1} that consists of the edge $t_{1} \pi_{R^{o}}^{F_{1}}\left(t_{1}\right)$ and a subpath in R^{o} disjoint from $\pi_{R^{o}}^{F_{1}}$ (s_{2}) (here use the 2-connectivity of R^{0}). The paths $L_{i}(i \in[1, k])$ give the desired Y-linkage.

Thus assume there exists a neighbour \bar{s}_{2} of s_{2} in $V(R) \backslash X$. Let $X_{R^{o}}:=\pi_{R^{o}}^{\dot{F}_{1}}\left(X \backslash\left\{s_{2}, t_{2}\right\}\right)$. Find a path L_{2}^{\prime} in \mathcal{A}_{1} between a neighbour s_{2}^{\prime} of \bar{s}_{2} in \mathcal{A}_{1} and t_{2} using the connectivity of \mathcal{A}_{1}. Then let $L_{2}:=s_{2} \bar{s}_{2} s_{2}^{\prime} L_{2}^{\prime} t_{2}$. Find disjoint paths $L_{i}:=\pi_{R^{o}}^{F_{1}}\left(s_{i}\right)-$ $\pi_{R^{o}}^{F_{1}}\left(t_{i}\right)(i \in[1, k]$ and $i \neq 2)$ in R^{o} linking the $d-1$ vertices in $X_{R^{o}}$ using the $(k-1)$-linkedness of $R^{o \dagger}$; add the edge $\pi_{R^{o}}^{F_{1}}\left(t_{i}\right) t_{i}$ to L_{i} if $t_{i} \in R$ or the edge $\pi_{R^{o}}^{F_{1}}\left(s_{i}\right) s_{i}$ to L_{i} if $s_{i} \in R$. The disjoint paths $L_{i}(i \in[1, k])$ give the desired Y-linkage.

Case 2. $3 \leq\left|X \cap V\left(F_{1}\right)\right| \leq d-1$.
The number of terminals in \mathcal{A}_{1} is at most $d+1-3=d-2$. Since $2 k-1=d$ and there are $d-1$ pairs of opposite ($d-2$)-faces in F_{1}, by Lemma 16 there exists a pair $\left\{R, R^{o}\right\}$ of opposite $(d-2)$-faces in F_{1} that is not associated with $X \cap V\left(F_{1}\right)$. Assume $s_{1} \in R$. We consider two subcases according to whether $t_{1} \in R$ or $t_{1} \in R^{o}$.

Suppose first that $t_{1} \in R$. The $(d-2)$-connectivity of R ensures the existence of an X-valid path $L_{1}:=s_{1}-t_{1}$ in R. Let

$$
X_{R^{o}}:=\pi_{R^{o}}^{F_{1}}\left(\left(X \backslash\left\{s_{1}, t_{1}\right\}\right) \cap V\left(F_{1}\right)\right)
$$

Then $1 \leq\left|X_{R^{o}}\right| \leq d-3$. Let s_{1}^{0} be the vertex opposite to s_{1} in F_{1}; the vertex s_{1}^{0} has no neighbour in \mathcal{A}_{1}.
Let \bar{Z} be a set of $\left|V\left(\mathcal{A}_{1}\right) \cap X\right|$ distinct vertices in $V\left(R^{o}\right) \backslash\left(X_{R^{o}} \cup\left\{s_{1}^{o}\right\}\right)$. To see that $|\bar{Z}| \leq\left|V\left(R^{o}\right) \backslash\left(X_{R^{o}} \cup\left\{s_{1}^{o}\right\}\right)\right|$, observe that, for $d \geq 5$ and $\left|X_{R^{0}}\right| \leq d-3$, we get

$$
\left|V\left(R^{o}\right) \backslash\left(X_{R^{o}} \cup\left\{s_{1}^{o}\right\}\right)\right| \geq 2^{d-2}-(d-3)-1 \geq d-2 \geq\left|V\left(\mathcal{A}_{1}\right) \cap X\right|=|\bar{Z}| .
$$

Use Lemma 19 to obtain a set Z in \mathcal{A}_{1} of $|\bar{Z}|$ distinct vertices adjacent to vertices in \bar{Z}. Then $|Z|=\left|V\left(\mathcal{A}_{1}\right) \cap X\right| \leq d-2$.
Using the $(d-2)$-connectivity of \mathcal{A}_{1} (Proposition 7) and Menger's theorem, find disjoint paths \bar{S}_{i} and \bar{T}_{j} (for all $i, j \neq 1$) in \mathcal{A}_{1} between $V\left(\mathcal{A}_{1}\right) \cap X$ and Z. Then produce disjoint paths S_{i} and T_{j} (for all $i, j \neq 1$) from terminals s_{i} and t_{j} in \mathcal{A}_{1}, respectively, to R^{0} by adding edges $z_{\ell} \bar{z}_{\ell}$ with $z_{\ell} \in Z$ and $\bar{z}_{\ell} \in \bar{Z}$ to the corresponding paths \bar{S}_{i} and \bar{T}_{j}. If s_{i} or t_{j} is already in R^{o}, let $S_{i}:=s_{i}$ or $T_{j}:=t_{j}$, accordingly. If instead s_{i} or t_{j} is in R, let S_{i} be the edge $s_{i} \pi_{R^{0}}^{F_{1}}\left(s_{i}\right)$ or let T_{j} be the edge $t_{j} \pi_{R^{0}}^{F_{1}}\left(t_{j}\right)$. It follows that the paths S_{i} and T_{i} for $i \in[2, k]$ are all pairwise disjoint. Let $X_{R^{o}}^{+}$be the intersections of R^{o} and the paths S_{i} and $T_{j}(i, j \neq 1)$. Then $\left|X_{R^{o}}^{+}\right|=d-1$. Suppose that $X_{R^{o}}^{+}=\left\{\bar{s}_{2}, \bar{t}_{2}, \ldots, \bar{s}_{k}, \bar{t}_{k}\right\}$. The corresponding pairing $Y_{R^{o}}^{+}$of the vertices in $X_{R^{o}}^{+}$can be linked through paths $\bar{L}_{i}:=\bar{s}_{i}-\bar{t}_{i}$ (for all $i \in[2, k]$) in R^{o} using the ($k-1$)-linkedness of R^{o} (Theorem 2). See Fig. 3(a) for a depiction of this configuration. In this case, the desired Y-linkage is given by the following paths.

$$
L_{i}:= \begin{cases}s_{1} L_{1} t_{1}, & \text { for } i=1 \\ s_{i} S_{i} \bar{s}_{i} \bar{L}_{i} \bar{t}_{i} T_{i} t_{i}, & \text { otherwise }\end{cases}
$$

Suppose now that $t_{1} \in R^{0}$. Let

$$
X_{R}:=\pi_{R}^{F_{1}}\left(\left(X \backslash\left\{t_{1}\right\}\right) \cap V\left(F_{1}\right)\right)
$$

There are at most $d-2$ terminal vertices in R^{0}. Therefore, the ($d-2$)-connectivity of R^{0} ensures the existence of an X-valid $\pi_{R^{o}}^{F_{1}}\left(s_{1}\right)-t_{1}$ path \bar{L}_{1} in R^{o}. Then let $L_{1}:=s_{1} \pi_{R^{o}}^{F_{1}}\left(s_{1}\right) \bar{L}_{1} t_{1}$. Let J be the other facet in \mathcal{S}_{1} containing R and let R_{J} be the ($d-2$)-face of J disjoint from R. Then $R_{J} \subset \mathcal{A}_{1}$. Since there are at most $d-2$ terminals in \mathcal{A}_{1} and since \mathcal{A}_{1} is $(d-2)$ connected (Proposition 7), we can find corresponding disjoint paths S_{i} and T_{j} from the terminals in \mathcal{A}_{1} to R_{J} by Menger's theorem [4, Theorem 3.3.1]. For terminals s_{i} and t_{j} in $X \cap V(R)$, let $S_{i}:=s_{i}$ and $T_{j}:=t_{j}$ for all $i, j \neq 1$, while for terminals s_{i} and t_{j} in $X \cap V\left(R^{0}\right)$, let $S_{i}:=s_{i} \pi_{R}^{F_{1}}\left(s_{i}\right)$ and $T_{j}:=t_{j} \pi_{R}^{F_{1}}\left(t_{j}\right)$ for all $i, j \neq 1$. Let X_{J} be the set of the intersections of the paths S_{i} and T_{j} with J plus the vertex s_{1}. Then $X_{J} \subset V(J)$ and $\left|X_{J}\right|=d$ (since $t_{1} \in R^{0}$). Suppose that $X_{J}=\left\{s_{1}, \bar{s}_{2}, \bar{t}_{2}, \ldots, \bar{s}_{k}, \bar{t}_{k}\right\}$ and let $Y_{J}=\left\{\left\{\bar{s}_{2}, \bar{t}_{2}\right\}, \ldots,\left\{\bar{s}_{k}, \bar{t}_{k}\right\}\right\}$ be a pairing of $X_{J} \backslash\left\{s_{1}\right\}$.

Fig. 3. Auxiliary figure for Case 2 of Lemma 11. (a) A configuration where $t_{1} \in R$ and the subset $X_{R^{o}}^{+}$of R^{o} is highlighted in bold. (b) A configuration where $t_{1} \in R^{0}$ and the facet J is highlighted in bold.

Resorting to the strong $(k-1)$-linkedness of the facet J (Theorem 4), we obtain $k-1$ disjoint paths $\bar{L}_{i}:=\bar{s}_{i}-\bar{t}_{i}$ for all $i \neq 1$ that correspondingly link Y_{J} in J, with all the paths avoiding s_{1}. See Fig. 3(b) for a depiction of this configuration. In this case, the desired Y-linkage is given by the following paths.

$$
L_{i}:= \begin{cases}s_{1} L_{1} t_{1}, & \text { for } i=1 \\ s_{i} S_{i} \bar{L}_{i} T_{i} t_{i}, & \text { otherwise }\end{cases}
$$

Case 3. $\left|X \cap V\left(F_{1}\right)\right|=2$.
In this case, we have that $V\left(F_{1}\right) \cap X=\left\{s_{1}, t_{1}\right\}$ and $\left|V\left(\mathcal{A}_{1}\right) \cap X\right|=d-1$. The proof of this case requires the definition of several sets. For quick reference, we place most of these definitions in itemised lists. We begin with the following sets:

- \mathcal{S}_{12}, the star of s_{2} in \mathcal{S}_{1} (that is, the complex formed by the facets of P containing s_{1} and s_{2});
- $G\left(\mathcal{S}_{12}\right)$, the graph of \mathcal{S}_{12}; and
- Γ_{12}, the subgraph of $G\left(\mathcal{S}_{12}\right)$ and $G\left(\mathcal{A}_{1}\right)$ that is induced by $V\left(\mathcal{S}_{12}\right) \backslash V\left(F_{1}\right)$.

It follows that every neighbour in $G\left(\mathcal{A}_{1}\right)$ of s_{2} is in Γ_{12} :

$$
\begin{equation*}
N_{\Gamma_{12}}\left(s_{2}\right)=N_{G\left(\mathcal{A}_{1}\right)}\left(s_{2}\right) \tag{1}
\end{equation*}
$$

Note that when $d \geq 5,\left|V\left(\Gamma_{12}\right)\right| \geq 2^{d-2} \geq d-2$, since \mathcal{S}_{12} contains at least one facet (other than F_{1}), and that facet contains at least one $(d-2)$-face disjoint from F_{1}. The vertices of that $(d-2)$-face are in Γ_{12}.

The first step for this case is to bring the terminals in \mathcal{A}_{1} into Γ_{12}. The ($d-2$)-connectivity of the graph $G\left(\mathcal{A}_{1}\right)$ (Proposition 7) ensures the existence of pairwise disjoint paths from $\left(V\left(\mathcal{A}_{1}\right) \cap X\right) \backslash\left\{s_{2}\right\}$ to Γ_{12}. Among these paths, denote by S_{i} the path from the terminal $s_{i} \in \mathcal{A}_{1}$ to Γ_{12} and let $V\left(S_{i}\right) \cap V\left(\Gamma_{12}\right)=\left\{\hat{s}_{i}\right\}$. Similarly, define T_{j} and \hat{t}_{j}. By (1) each path S_{i} or T_{j} touches Γ_{12} at a vertex other than s_{2}; this is so because each such path will need to reach the neighbourhood of s_{2} in Γ_{12} before reaching s_{2}. We also let \hat{s}_{2} denote s_{2}. The set of vertices \hat{x} is accordingly denoted by \hat{X}. Then $|\hat{X}|=d-1$. Abusing terminology, since there is no potential for confusion, we call the vertices in \hat{X} terminals as well. Fig. 4(a) depicts this configuration.

Pick a facet F_{12} in \mathcal{S}_{12} that contains \hat{t}_{2}. An important point is that t_{1} is not in F_{12}; otherwise F_{12} would contain s_{1}, s_{2} and t_{1}, and it should have been chosen instead of F_{1}.

The second step is to find a path L_{1} in F_{1} between s_{1} and t_{1} such that $V\left(L_{1}\right) \cap V\left(F_{12}\right)=\left\{s_{1}\right\}$.
Remark 20. For any two faces F, J of a polytope, with F not contained in J, there is a facet containing J but not F. In particular, for any two distinct vertices of a polytope, there is a facet containing one but not the other.

To see the existence of such a path, note that the intersection of F_{12} and F_{1} is a face that does not contain t_{1} and therefore is contained in a ($d-2$)-face R of F_{1} containing s_{1} but not t_{1} (Remark 20). Find a path L_{1}^{\prime} in R^{o}, the ($d-2$)-face in F_{1} disjoint from $R\left(R^{o}\right.$ contains $\left.t_{1}\right)$, between $\pi_{R^{o}}^{F_{1}}\left(s_{1}\right)$ and t_{1} and let $L_{1}:=s_{1} \pi_{R^{o}}^{F_{1}}\left(s_{1}\right) L_{1}^{\prime} t_{1}$.

The third step is to bring the $d-1$ terminal vertices $\hat{x} \in \Gamma_{12}$ into the facet F_{12} so that they can be linked there, avoiding s_{1}. We consider two cases depending on the number of facets in \mathcal{S}_{12}.

Suppose \mathcal{S}_{12} only consists of F_{12}. Then

$$
\hat{X}=\left\{\hat{s}_{2}, \ldots, \hat{s}_{k}, \hat{t}_{2}, \ldots, \hat{t}_{k}\right\} \subset V\left(\Gamma_{12}\right) \subset V\left(F_{12}\right)
$$

Fig. 4. Auxiliary figure for Case 3 of Lemma 11. A representation of \mathcal{S}_{1}. (a) A configuration where the subgraph Γ_{12} is tiled in falling pattern and the complex \mathcal{A}_{1} is coloured in grey. (b) A depiction of \mathcal{S}_{12} with more than one facet; the facet F_{12} is highlighted in bold, the complex \mathcal{A}_{1} is coloured in grey and the complex \mathcal{A}_{12} is highlighted in falling pattern. (c) The construction of the path $L_{1}:=s_{1} \pi_{R^{o}}^{F^{1}}\left(s_{1}\right) L_{1}^{\prime} t_{1}$ from s_{1} to t_{1} in F_{1} such that $L_{1} \cap V\left(\Gamma_{12}\right)=\left\{s_{1}\right\}$. (d) A depiction of \mathcal{S}_{12} with more than one facet; the facets F_{12} and J_{12} are highlighted in bold and their intersection U is highlighted in falling pattern; the set W in J_{12} is coloured in dark grey. (e) A depiction of a portion of \mathcal{S}_{12}, zooming in on the facets F_{12} and J_{12}; each facet is represented as the convex hull of two disjoint $(d-2)$-faces, and their intersection U is highlighted in falling pattern. The sets W and $\pi_{U}^{J_{12}}(W)$ in J_{12} are coloured in dark grey.

With the help of the strong $(k-1)$-linkedness of F_{12} (Theorem 4), we can link the pair $\left\{\hat{S}_{i}, \hat{t}_{i}\right\}$ for each $i \in[2, k]$ in F_{12} through disjoint paths \hat{L}_{i}, all avoiding s_{1}. For each $i \in[2, k]$, we concatenate the path \hat{L}_{i} with the paths S_{i} and T_{i} in this order, resulting in the path L_{i}. These new $k-1$ paths give a ($Y \backslash\left\{s_{1}, t_{1}\right\}$)-linkage $\left\{L_{2}, \ldots, L_{k}\right\}$. Hence the desired Y-linkage is as follows.

$$
L_{i}:= \begin{cases}s_{1} \pi_{R^{o}}^{F_{1}}\left(s_{1}\right) L_{1}^{\prime} t_{1}, & \text { for } i=1 \\ s_{i} S_{i} \hat{s}_{i} \hat{L}_{i} \hat{t}_{i} T_{i} t_{i}, & \text { otherwise }\end{cases}
$$

Assume \mathcal{S}_{12} has more than one facet. We have that

$$
\hat{X}=\left\{\hat{s}_{2}, \ldots, \hat{s}_{k}, \hat{t}_{2}, \ldots, \hat{t}_{k}\right\} \subset V\left(\Gamma_{12}\right)
$$

Define

- \mathcal{A}_{12} as the complex of \mathcal{S}_{12} induced by $V\left(\mathcal{S}_{12}\right) \backslash\left(V\left(F_{1}\right) \cup V\left(F_{12}\right)\right)$.

Then the graph $G\left(\mathcal{A}_{12}\right)$ of \mathcal{A}_{12} coincides with the subgraph of Γ_{12} induced by $V\left(\Gamma_{12}\right) \backslash V\left(F_{12}\right)$. Fig. 4(b) depicts this configuration.

Our strategy is first to bring the $d-3$ terminal vertices \hat{x} in Γ_{12} other than \hat{s}_{2} and \hat{t}_{2} into $F_{12} \backslash F_{1}$ through disjoint paths \hat{S}_{i} and \hat{T}_{j}, without touching \hat{s}_{2} and \hat{t}_{2}. Second, denoting by \tilde{s}_{i} and \tilde{t}_{j} the intersection of \hat{S}_{i} and \hat{T}_{j} with $V\left(F_{12}\right) \backslash V\left(F_{1}\right)$, respectively, we link the pairs $\left\{\tilde{s}_{i}, \tilde{t}_{i}\right\}$ for all $i \in[2, k]$ in F_{12} through disjoint paths \tilde{L}_{i}, without touching s_{1}; here we resort to the strong $(k-1)$-linkedness of F_{12}. We develop these ideas below.

From Lemma 9(iii), it follows that \mathcal{A}_{12} is nonempty and contains a spanning strongly connected ($d-3$)-subcomplex, thereby implying, by Proposition 14, that

$$
G\left(\mathcal{A}_{12}\right) \text { is }(d-3) \text {-connected. }
$$

Since \mathcal{S}_{12} contains more than one facet, the following sets exist:

- U, a $(d-2)$-face in F_{12} that contains s_{1} and $\hat{s}_{2}\left(=s_{2}\right)$ (since several facets in \mathcal{S}_{12} contain both s_{1} and s_{2});
- J_{12}, the other facet in \mathcal{S}_{12} containing U;
- U_{J}, the $(d-2)$-face in J_{12} disjoint from U, and as a consequence, disjoint from F_{12};
- \mathcal{C}_{U}, the subcomplex of $\mathcal{B}(U)$ induced by $V(U) \backslash V\left(F_{1}\right)$, namely the antistar of $U \cap F_{1}$ in U; and
- $\mathcal{C}_{U_{J}}$, the subcomplex of $\mathcal{B}\left(U_{J}\right)$ induced by $V\left(U_{J}\right) \backslash V\left(F_{1}\right)$.

The subcomplex \mathcal{C}_{U} is nonempty, since $\hat{s}_{2} \in V(U) \backslash V\left(F_{1}\right)$, and so, thanks to Lemma 6, it is a strongly connected (d-3)complex. Then, from C_{U} containing a ($d-3$)-face it follows that

$$
\begin{equation*}
\left.\left|V\left(\mathcal{C}_{U}\right)\right|=\mid V(U) \backslash V\left(F_{1}\right)\right) \mid \geq 2^{d-3} \geq d-1 \text { for } d \geq 5 \tag{2}
\end{equation*}
$$

The subcomplex $\mathcal{C}_{U_{J}}$ is nonempty: the vertex in J_{12} opposite to s_{1} is not in U, since $s_{1} \in U$, nor is it in F_{1} (Remark 8), and so it must be in $\mathcal{C}_{U_{J}}$. If $U_{J} \cap F_{1}=\emptyset$ then $\mathcal{C}_{U_{J}}=\mathcal{B}\left(U_{J}\right)$; otherwise $\mathcal{C}_{U_{J}}$ is the antistar of $U_{J} \cap F_{1}$ in U_{J}, and since $U \cap F_{1} \neq \emptyset$ (s_{1} is in both), it follows that $U_{J} \nsubseteq F_{1}$. Therefore, according to Lemma $6, \mathcal{C}_{U_{J}}$ is or contains a strongly connected ($d-3$)-complex. Hence, in both instances,

$$
\begin{equation*}
\left.\left|V\left(\mathcal{C}_{U_{J}}\right)\right|=\mid V\left(U_{J}\right) \backslash V\left(F_{1}\right)\right) \mid \geq 2^{d-3} \geq d-1 \text { for } d \geq 5 . \tag{3}
\end{equation*}
$$

Recall that we want to bring every vertex in the set \hat{X}, which is contained in Γ_{12}, into $F_{12} \backslash F_{1}$. We construct $\left|\hat{X} \cap V\left(\mathcal{A}_{12}\right)\right|$ pairwise disjoint paths \hat{S}_{i} and \hat{T}_{j} from $\hat{s}_{i} \in \mathcal{A}_{12}$ and $\hat{t}_{j} \in \mathcal{A}_{12}$, respectively, to $V\left(F_{12}\right) \backslash V\left(F_{1}\right)$ as follows. Pick a set

$$
W \subset V\left(\mathcal{C}_{U_{J}}\right) \backslash \pi_{U_{J}}^{J_{12}}\left(\left(\hat{X} \cup\left\{s_{1}\right\}\right) \cap U\right)
$$

of $\left|\hat{X} \cap V\left(\mathcal{A}_{12}\right)\right|$ vertices in $\mathcal{C}_{U_{J}}$. Then $\pi_{U}^{J^{12}}(W)$ is disjoint from $\left(\hat{X} \cup\left\{s_{1}\right\}\right) \cap U$. In other words, the vertices in W are in $\mathcal{C}_{U_{J}}$ and are not projections of the vertices in $\left(\hat{X} \cup\left\{s_{1}\right\}\right) \cap U$ onto U_{J}. We show that the set W exists, which amounts to showing that $\mathcal{C}_{U_{J}}$ has enough vertices to accommodate W.

First note that

$$
\begin{gather*}
\left|\hat{X} \cap V\left(\mathcal{A}_{12}\right)\right|+\left|\left(\hat{X} \cup\left\{s_{1}\right\}\right) \cap V\left(F_{12}\right)\right|=\left|\hat{X} \cup\left\{s_{1}\right\}\right|=d, \\
\left(\hat{X} \cup\left\{s_{1}\right\}\right) \cap V(U) \subseteq\left(\hat{X} \cup\left\{s_{1}\right\}\right) \cap V\left(F_{12}\right) . \tag{4}
\end{gather*}
$$

If $U_{J} \cap F_{1}=\emptyset$ then $\mathcal{C}_{U_{J}}=\mathcal{B}\left(U_{J}\right)$. And (4) together with $\left|V\left(U_{J}\right)\right|=2^{d-2} \geq d$ for $d \geq 7$ (indeed, for $d \geq 5$) gives the following chain of inequalities

$$
\begin{aligned}
& \left|V\left(C_{U_{J}}\right) \backslash \pi_{U_{J}}^{J_{12}}\left(\left(\hat{X} \cup\left\{s_{1}\right\}\right) \cap V(U)\right)\right| \geq\left|V\left(U_{J}\right)\right|-\left|\left(\hat{X} \cup\left\{s_{1}\right\}\right) \cap V(U)\right| \\
& \quad \geq d-\left|\left(\hat{X} \cup\left\{s_{1}\right\}\right) \cap V(U)\right| \geq\left|\hat{X} \cup\left\{s_{1}\right\}\right|-\left|\left(\hat{X} \cup\left\{s_{1}\right\}\right) \cap V\left(F_{12}\right)\right| \\
& \quad=\left|\hat{X} \cap V\left(\mathcal{A}_{12}\right)\right|=|W|,
\end{aligned}
$$

as desired.
Suppose now $U_{J} \cap F_{1} \neq \emptyset$. Since $s_{1} \in U \cap F_{1}$ and $J_{12}=\operatorname{conv}\left\{U \cup U_{J}\right\}$, the cube $J_{12} \cap F_{1}$ has opposite facets $U_{J} \cap F_{1}$ and $U \cap F_{1}$. From $s_{1} \in U \cap F_{1}$ it follows that $\pi_{U_{J}}^{J_{12}}\left(s_{1}\right) \in U_{J} \cap F_{1}$, and thus, that $\pi_{U_{J}}^{J_{12}}\left(s_{1}\right) \notin \mathcal{C}_{U_{J}}$; here we use the following remark.

Remark 21. Let $\left(K, K^{0}\right)$ be opposite facets in a cube Q and let B be a proper face of Q such that $B \cap K \neq \emptyset$ and $B \cap K^{0} \neq \emptyset$. Then $\pi_{K^{0}}^{Q}(B \cap K)=B \cap K^{0}$.

Since $\pi_{U_{J}}^{J_{12}}\left(s_{1}\right) \notin \mathcal{C}_{U_{J}}$, using (3) and (4) we get

$$
\begin{aligned}
&\left|V\left(C_{U_{J}}\right) \backslash \pi_{U_{J}}^{J_{12}}\left(\left(\hat{X} \cup\left\{s_{1}\right\}\right) \cap V(U)\right)\right|=\left|V\left(C_{U_{J}}\right) \backslash \pi_{U_{J}}^{J_{12}}(\hat{X} \cap V(U))\right| \\
& \geq\left|V\left(C_{U_{J}}\right)\right|-|\hat{X} \cap V(U)| \geq d-1-|\hat{X} \cap V(U)| \\
& \geq|\hat{X}|-\left|\hat{X} \cap V\left(F_{12}\right)\right|=\left|\hat{X} \cap V\left(\mathcal{A}_{12}\right)\right|=|W|
\end{aligned}
$$

In this way, we have shown that $\mathcal{C}_{U_{J}}$ can accommodate the set W. We now finalise the case.
There are at most $d-3$ vertices \hat{x} in $\hat{X} \cap V\left(\mathcal{A}_{12}\right)$ because \hat{s}_{2} and \hat{t}_{2} are already in $V\left(F_{12}\right) \backslash V\left(F_{1}\right)$. Since $G\left(\mathcal{A}_{12}\right)$ is $(d-3)$-connected, we can find $|W|=\left|\hat{X} \cap V\left(\mathcal{A}_{12}\right)\right|$ pairwise disjoint paths \hat{S}_{i}^{\prime} and \hat{T}_{j}^{\prime} in \mathcal{A}_{12} from the terminals \hat{s}_{i} and \hat{t}_{j} in $\hat{X} \cap V\left(\mathcal{A}_{12}\right)$ to W. The \hat{X}-valid path \hat{S}_{i} from $\hat{s}_{i} \in \mathcal{A}_{12}$ to $V\left(F_{12}\right) \backslash V\left(F_{1}\right)$ then consists of the subpath $\hat{S}_{i}^{\prime}:=\hat{s}_{i}-w_{i}$
with $w_{i} \in W$ plus the edge $w_{i} \pi_{U}^{J_{12}}\left(w_{i}\right)$; from the choice of W it follows that $\pi_{U}^{J_{12}}\left(w_{i}\right) \notin \hat{X} \cup\left\{s_{1}\right\}$. The paths \hat{T}_{j}^{\prime} and \hat{T}_{j} are defined analogously. Fig. 4(d)-(e) depicts this configuration.

Denote by \tilde{s}_{i} the intersection of \hat{S}_{i} and $V\left(F_{12}\right) \backslash V\left(F_{1}\right)$; similarly, define \tilde{t}_{j}. Every terminal vertex \hat{x} already in F_{12} is also denoted by \tilde{x}, and in this case we let \hat{S}_{i} or \hat{T}_{j} be the vertex \tilde{x}.

Now F_{12} contains the pairs $\left\{\tilde{s}_{i}, \tilde{t}_{i}\right\}$ for all $i \in[2, k]$ and the terminal s_{1}, as desired. Link these pairs in F_{12} through disjoint paths \tilde{L}_{i}, each avoiding s_{1}, with the use of the strong $(k-1)$-linkedness of F_{12} (Theorem 4). The paths \tilde{L}_{i} concatenated with the paths $S_{i}, \hat{S}_{i}, T_{i}$ and \hat{T}_{i} for $i \in[2, k]$ give a $\left(Y \backslash\left\{s_{1}, t_{1}\right\}\right)$-linkage $\left\{L_{2}, \ldots, L_{k}\right\}$. Hence the desired Y-linkage is as follows.

$$
L_{i}:= \begin{cases}s_{1} \pi_{R^{o}}^{F_{1}}\left(s_{1}\right) L_{1}^{\prime} t_{1}, & \text { for } i=1 \\ s_{i} S_{i} \hat{s}_{i} \hat{S}_{i} \tilde{s}_{i} \tilde{L}_{i} \tilde{t}_{i} \hat{T}_{i} \hat{t}_{i} T_{i} t_{i}, & \text { otherwise }\end{cases}
$$

Case 4. $\left|X \cap V\left(F_{1}\right)\right|=d+1$.

Remember that by assumption s_{1} is not in configuration $d \mathrm{~F}$. Here we have that $V\left(\mathcal{A}_{1}\right) \cap X=\emptyset$. This case is decomposed into three main subcases A, B and C, based on the nature of the vertex s_{1}^{o} opposite to s_{1} in F_{1}, which is the only vertex in F_{1} that does not have an image under the injection from F_{1} to \mathcal{A}_{1} defined in Lemma 19.

SUBCASE A. The vertex s_{1}^{0} opposite to s_{1} in F_{1} does not belong to X

Let $X^{\prime}:=X \backslash\left\{t_{1}\right\}$ and let $Y^{\prime}:=Y \backslash\left\{\left\{s_{1}, t_{1}\right\}\right\}$. Since $\left|X^{\prime}\right|=d$, the strong $(k-1)$-linkedness of F_{1} (Theorem 4) gives a Y^{\prime} linkage $\left\{L_{2}, \ldots, L_{k}\right\}$ in the facet F_{1} with each path $L_{i}:=s_{i}-t_{i}(i \in[2, k])$ avoiding s_{1}. We find pairwise distinct neighbours s_{1}^{\prime} and t_{1}^{\prime} in \mathcal{A}_{1} of s_{1} and t_{1}, respectively. If none of the paths L_{i} touches t_{1}, we find a path $L_{1}:=s_{1}-t_{1}$ in \mathcal{S}_{1} that contains a subpath in \mathcal{A}_{1} between s_{1}^{\prime} and t_{1}^{\prime} (here use the connectivity of \mathcal{A}_{1}, Proposition 7), and we are home. Otherwise, assume that the path L_{j} contains t_{1}. With the help of Lemma 19, find pairwise distinct neighbours s_{j}^{\prime} and t_{j}^{\prime} in \mathcal{A}_{1} of s_{j} and t_{j}, respectively, such that the vertices $s_{1}^{\prime}, t_{1}^{\prime}, s_{j}^{\prime}$ and t_{j}^{\prime} are pairwise distinct. According to Proposition 18, the complex \mathcal{A}_{1} is 2 -linked for $d \geq 7^{\dagger}$. Hence, we can find disjoint paths $L_{1}^{\prime}:=s_{1}^{\prime}-t_{1}^{\prime}$ and $L_{j}^{\prime}:=s_{j}^{\prime}-t_{j}^{\prime}$ in \mathcal{A}_{1}, respectively; these paths naturally give rise to paths $L_{1}:=s_{1} s_{1}^{\prime} L_{1}^{\prime} t_{1}^{\prime} t_{1}$ in \mathcal{S}_{1} and $L_{j}:=s_{j} s_{j}^{\prime} L_{j}^{\prime} t_{j}^{\prime} t_{j}$ in \mathcal{S}_{1}. The paths $\left\{L_{1}, \ldots, L_{k}\right\}$ give the desired Y-linkage.

SUBCASE B. The vertex s_{1}^{0} opposite to s_{1} in F_{1} belongs to X but is different from t_{1}, say $s_{1}^{o}=s_{2}$

Since F_{1} is a cube, the link \mathcal{L}_{1} of s_{1} in F_{1} contains all the vertices in F_{1} except s_{1} and s_{2}. First find a neighbour s_{1}^{\prime} of s_{1} and a neighbour t_{1}^{\prime} of t_{1} in \mathcal{A}_{1}. There is a neighbour $s_{2}^{F_{1}}$ of s_{2} in F_{1} that is either t_{2} or a vertex not in X : $\left\{s_{1}, s_{2}\right\} \cap N_{F_{1}}\left(s_{2}\right)=\emptyset$ and $\left|N_{F_{1}}\left(s_{2}\right)\right|=d-1$.

Suppose $s_{2}^{F_{1}}=t_{2}$, and let $L_{2}:=s_{2} t_{2}$. Using the $(k-1)$-linkedness of \mathcal{L}_{1} (Proposition 15), we find disjoint paths $t_{1}-t_{2}$ and $L_{i}:=s_{i}-t_{i}$ for each $i \in[3, k]$ in $\mathcal{L}_{1}{ }^{\dagger}$. Then define a path $L_{1}:=s_{1}-t_{1}$ in \mathcal{S}_{1} that contains a subpath in \mathcal{A}_{1} between s_{1}^{\prime} and t_{1}^{\prime}; here we use the connectivity of \mathcal{A}_{1} (Proposition 7). The paths $\left\{L_{1}, \ldots, L_{k}\right\}$ give the desired Y-linkage.

Assume $s_{2}^{F_{1}}$ is not in X. Observe that $\left|\left(X \backslash\left\{s_{1}, s_{2}\right\}\right) \cup\left\{s_{2}^{F_{1}}\right\}\right|=d$. Using the $(k-1)$-linkedness of \mathcal{L}_{1} for $d \geq 7$ (Proposition 15), find in \mathcal{L}_{1} disjoint paths $L_{2}^{\prime}:=s_{2}^{F_{1}}-t_{2}$ and $L_{i}^{\prime}:=s_{i}-t_{i}$ for $i \in[3, k]^{\dagger}$. Since t_{1} is also in \mathcal{L}_{1} it may happen that it lies in one of the paths L_{i}^{\prime}. If t_{1} does not belong to any of the paths L_{i}^{\prime} for $i \in[2, k]$, then find a path $L_{1}:=s_{1} s_{1}^{\prime} L_{1}^{\prime} t_{1}^{\prime} t_{1}$ in \mathcal{S}_{1} where L_{1}^{\prime} is a subpath in \mathcal{A}_{1} between s_{1}^{\prime} and t_{1}^{\prime}, using the connectivity of \mathcal{A}_{1} (Proposition 7). In this scenario, let $L_{2}:=s_{2} s_{2}^{F_{1}} L_{2}^{\prime} t_{2}$ and $L_{i}:=L_{i}^{\prime}$ for each $i \in[3, k]$; the desired Y-linkage is given by the paths $\left\{L_{1}, \ldots, L_{k}\right\}$.

If t_{1} belongs to one of the paths L_{i}^{\prime} with $i \in[2, k]$, say L_{j}^{\prime}, then consider in \mathcal{A}_{1} a neighbour t_{j}^{\prime} of t_{j} and, either a neighbour s_{j}^{\prime} of s_{j} if $j \neq 2$ or a neighbour s_{2}^{\prime} of $s_{2}^{F_{1}}$. From Lemma 19 it follows that the vertices $s_{1}^{\prime}, t_{1}^{\prime}, s_{j}^{\prime}$ and t_{j}^{\prime} can be taken pairwise distinct. Since \mathcal{A}_{1} is 2 -linked for $d \geq 7$ (see Proposition 18), find in \mathcal{A}_{1} a path L_{1}^{\prime} between s_{1}^{\prime} and t_{1}^{\prime} and a path $L_{j}^{\prime \prime}$ between s_{j}^{\prime} and $t_{j}^{\prime}{ }^{\dagger}$. As a consequence, we obtain in \mathcal{S}_{1} a path $L_{1}:=s_{1} s_{1}^{\prime} L_{1}^{\prime} t_{1}^{\prime} t_{1}$ and, either a path $L_{j}:=s_{j} s_{j}^{\prime} L_{j}^{\prime \prime} t_{j}^{\prime} t_{j}$ if $j \neq 2$ or a path $L_{2}:=s_{2} s_{2}^{F_{1}} s_{2}^{\prime} L_{2}^{\prime \prime} t_{2}^{\prime} t_{2}$. In addition, let $L_{i}:=L_{i}^{\prime}$ for each $i \in[3, k]$ and $i \neq j$. The paths $\left\{L_{1}, \ldots, L_{k}\right\}$ give the desired Y-linkage.

SUBCASE C. The vertex opposite to s_{1} in F_{1} coincides with t_{1}

Then t_{1} has no neighbour in \mathcal{A}_{1}. In fact, F_{1} is the only facet in \mathcal{S}_{1} containing t_{1}.
Because the vertex s_{1} is not in Configuration $d \mathrm{~F}, t_{1}$ has a neighbour $t_{1}^{F_{1}}$ in F_{1} that is not in X. Here we reason as in the scenario in which $s_{2}=s_{1}^{o}$ and s_{2} has a neighbour not in X.

First, using the $(k-1)$-linkedness of \mathcal{L}_{1} (Proposition 15) find disjoint paths $L_{i}:=s_{i}-t_{i}$ in \mathcal{L}_{1} for all $i \in[2, k]^{\dagger}$. It may happen that $t_{1}^{F_{1}}$ is in one of the paths L_{i} for $i \in[2, k]$. Second, consider neighbours s_{1}^{\prime} and t_{1}^{\prime} in \mathcal{A}_{1} of s_{1} and $t_{1}^{F_{1}}$, respectively.

If $t_{1}^{F_{1}}$ doesn't belong to any path L_{i}, then find a path $L_{1}:=s_{1}-t_{1}$ that contains the edge $t_{1} t_{1}^{F_{1}}$ and a subpath L_{1}^{\prime} in \mathcal{A}_{1} between s_{1}^{\prime} and t_{1}^{\prime}; that is, $L_{1}=s_{1} s_{1}^{\prime} L_{1}^{\prime} t_{1}^{\prime} t_{1}^{F_{1}} t_{1}$. The desired Y-linkage is given by $\left\{L_{1}, \ldots, L_{k}\right\}$.

If $t_{1}^{F_{1}}$ belongs to one of the paths L_{i} with $i \in[2, k]$, say L_{j}, then disregard this path L_{j} and consider in \mathcal{A}_{1} a neighbour s_{j}^{\prime} of s_{j} and a neighbour t_{j}^{\prime} of t_{j}. From Lemma 19, it follows that the vertices $s_{1}^{\prime}, t_{1}^{\prime}, s_{j}^{\prime}$ and t_{j}^{\prime} can be taken pairwise distinct. Using the 2 -linkedness of \mathcal{A}_{1} for $d \geq 7$, find a path L_{1}^{\prime} in \mathcal{A}_{1} between s_{1}^{\prime} and t_{1}^{\prime} and a path L_{j}^{\prime} in \mathcal{A}_{1} between s_{j}^{\prime} and $t_{j}^{\prime \dagger}$. Let $L_{1}:=s_{1} s_{1}^{\prime} L_{1}^{\prime} t_{1}^{\prime} t_{1}^{F_{1}} t_{1}$ and let $L_{j}:=s_{j} s_{j}^{\prime} L_{j}^{\prime} t_{j}^{\prime} t_{j}$ be the new $s_{j}-t_{j}$ path. The paths $\left\{L_{1}, \ldots, L_{k}\right\}$ form the desired Y-linkage.

And finally, the proof of Lemma 11 is complete.

4. Strong linkedness of cubical polytopes

Proof of Theorem 5 (Strong linkedness of cubical polytopes). Let P be a cubical d-polytope. For odd d Theorem 5 is a consequence of Theorem 3. The result for $d=4$ is given by [3, Theorem 16]. So assume $d=2 k \geq 6$. Let X be a set of $d+1$ vertices in P. Arbitrarily pair $2 k$ vertices in X to obtain $Y:=\left\{\left\{s_{1}, t_{1}\right\}, \ldots,\left\{s_{k}, t_{k}\right\}\right\}$. Let x be the vertex of X not paired in Y. We find a Y-linkage $\left\{L_{1}, \ldots, L_{k}\right\}$ where each path L_{i} joins the pair $\left\{s_{i}, t_{i}\right\}$ and avoids the vertex x.

Using the d-connectivity of $G(P)$ and Menger's theorem, bring the $d=2 k$ terminals in $X \backslash\{x\}$ to the link of x in the boundary complex of P through $2 k$ disjoint paths $L_{s_{i}}$ and $L_{t_{i}}$ for $i \in[1, k]$. Let $s_{i}^{\prime}:=V\left(L_{s_{i}}\right) \cap \operatorname{link}(x)$ and $t_{i}^{\prime}:=V\left(L_{t_{i}}\right) \cap \operatorname{link}(x)$ for $i \in[1, k]$. Thanks to Theorem 3, when $d \geq 6$, the link of x is k-linked. Using the k-linkedness of $\operatorname{link}(x)$, find disjoint paths $L_{i}^{\prime}:=s_{i}^{\prime}-t_{i}^{\prime}$ in $\operatorname{link}(x)$. Observe that all these k paths $\left\{L_{1}^{\prime}, \ldots, L_{k}^{\prime}\right\}$ avoid x. Extend each path L_{i}^{\prime} with $L_{s_{i}}$ and $L_{t_{i}}$ to form a path $L_{i}:=s_{i}-t_{i}$ for each $i \in[1, k]$. The paths $\left\{L_{1}, \ldots, L_{k}\right\}$ form the desired Y-linkage.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Appendix A. Proof of Lemma 11 for the case $d=5$

The proof of the lemma for the case $d=5$ follows a similar structure as the case $d \geq 7$, but requires some technical adjustments. We rely on the following lemmas:

Lemma 22 ([3, Lemma 14]). Let P be a cubical d-polytope with $d \geq 4$. Let X be a set of $d+1$ vertices in P, all contained in a facet F. Let $k:=\lfloor(d+1) / 2\rfloor$. Arbitrarily label and pair $2 k$ vertices in X to obtain $Y:=\left\{\left\{s_{1}, t_{1}\right\}, \ldots,\left\{s_{k}, t_{k}\right\}\right\}$. Then, for at least $k-1$ of these pairs $\left\{s_{i}, t_{i}\right\}$, there is an X-valid $s_{i}-t_{i}$ path in F.

Proposition 23 ([3, Prop. 4 and Cor. 5]). Let G be the graph of a 3-polytope and let X be a set of four vertices of G. The set X is linked in G if and only if there is no facet of the polytope containing all the vertices of X. In particular, no nonsimplicial 3-polytope is 2-linked.

Given sets A, B, X of vertices in a graph G, the set X separates A from B if every $A-B$ path in the graph contains a vertex from X. A set X separates two vertices a, b not in X if it separates $\{a\}$ from $\{b\}$. We call the set X a separator of the graph. A set of vertices in a graph is independent if no two of its elements are adjacent.

Corollary 24 ([3, Corollary 10]). A separator of cardinality d in a d-cube is an independent set.
Proof of Lemma 11 for $d=5$. We proceed as in the proof for $d \geq 7$, and consider the same four cases. We let $k:=3$ and let s_{1} be a vertex in a cubical 5-polytope P such that s_{1} is not in Configuration 5 F . Recall that \mathcal{S}_{1} denotes the star of s_{1} in $\mathcal{B}(P)$. Let X be any set of 6 vertices in the graph $G\left(\mathcal{S}_{1}\right)$ of \mathcal{S}_{1}. The vertices in X are our terminals. Also let $Y:=$ $\left\{\left\{s_{1}, t_{1}\right\},\left\{s_{2}, t_{2}\right\},\left\{s_{3}, t_{3}\right\}\right\}$ be a labelling and pairing of the vertices of X. We aim to find a Y-linkage $\left\{L_{1}, L_{2}, L_{3}\right\}$ in G where L_{i} joins the pair $\left\{s_{i}, t_{i}\right\}$ for $i \in\{1,2,3\}$. Recall that a path is X-valid if it contains no inner vertex from X.

We consider a facet F_{1} of \mathcal{S}_{1} containing t_{1} and having the largest possible number of terminals. The four cases we consider in the Proof for the case $d \geq 7$ are:

Case 1. $\left|X \cap V\left(F_{1}\right)\right|=5$.
Case 2. $3 \leq\left|X \cap V\left(F_{1}\right)\right| \leq 4$.
Case 3. $\left|X \cap V\left(F_{1}\right)\right|=2$.

Case 4. $\left|X \cap V\left(F_{1}\right)\right|=6$.
Case 3 does not require any modification: all the arguments apply for $d \geq 5$. Let us consider the other three cases.
Case 1. $\left|X \cap V\left(F_{1}\right)\right|=5$.
Without loss of generality, assume that $t_{2} \notin V\left(F_{1}\right)$.
In this case we proceed as for the case $d \geq 7$ until the final part of the proof where we find disjoint paths $L_{i}:=$ $\pi_{R^{o}}^{F_{1}}\left(s_{i}\right)-\pi_{R^{o}}^{F_{1}}\left(t_{i}\right)(i \in[1, k]$ and $i \neq 2)$ in R^{o} linking the $d-1$ vertices in $X_{R^{o}}$. When $d=5$ we can only do that when the terminals in R^{0} are not in cyclic order (in which case we proceed as in the proof for $d \geq 7$). Thus assume that the terminals are in cyclic order. This in turn implies that $\pi_{R}^{F_{1}}\left(s_{3}\right) \notin\left\{s_{2}, s_{2}^{\prime}\right\}$ and $\pi_{R}^{F_{1}}\left(t_{3}\right) \notin\left\{s_{2}, s_{2}^{\prime}\right\}$, since $\operatorname{dist}_{F_{1}}\left(s_{1}, s_{2}\right)=4$.

Find a path L_{3}^{\prime} in R between $\pi_{R}^{F_{1}}\left(s_{3}\right)$ and $\pi_{R}^{F_{1}}\left(t_{3}\right)$ such that L_{3}^{\prime} is disjoint from both s_{2} and s_{2}^{\prime} and disjoint from t_{1} if $t_{1} \in R$; here use Corollary 24, which ensures that the vertices s_{2}, s_{2}^{\prime} and t_{1}, if they are all in R, cannot separate $\pi_{R}^{F_{1}}\left(s_{3}\right)$ from $\pi_{R}^{F_{1}}\left(t_{3}\right)$ in R, since a separator of size three in R must be an independent set. Extend the path L_{3}^{\prime} in R to a path $L_{3}:=s_{3} \pi_{R}^{F_{1}}\left(s_{3}\right) L_{3}^{\prime} \pi_{R}^{F_{1}}\left(t_{3}\right) t_{3}$ in F_{1}, if necessary. Find a path $L_{1}^{\prime}:=s_{1}-\pi_{R^{o}}^{F_{1}}\left(t_{1}\right)$ in R^{o} disjoint from $\pi_{R^{o}}^{F_{1}}\left(s_{3}\right)$ and $\pi_{R^{o}}^{F_{1}}\left(t_{3}\right)$, using the 3-connectivity of R^{o}. Extend L_{1}^{\prime} to a path $L_{1}:=s_{1} L_{1}^{\prime} \pi_{R^{o}}^{F_{1}}\left(t_{1}\right) t_{1}$ in F_{1}, if necessary. The linkage $\left\{L_{1}, L_{2}, L_{3}\right\}$ is a Y-linkage. This completes the proof of Case 1 .

Case 2. $3 \leq\left|X \cap V\left(F_{1}\right)\right| \leq 4$.
In this case we proceed as in the proof for $d \geq 7$, but some comments for $d=5$ are in order. By virtue of Proposition 23, we need to make sure that the sequence $\bar{s}_{2}, \bar{s}_{3}, \bar{t}_{2}, \bar{t}_{3}$ in $X_{R^{o}}^{+}$is not in a 2-face of R^{o} in cyclic order. To ensure this, we need to be a bit more careful when selecting the vertices in \bar{Z}. Indeed, if there are already two vertices in $X_{R^{\circ}}$ at distance three in R^{0}, no care is needed when selecting \bar{Z}, so proceed as in the case of $d \geq 7$. Otherwise, pick a vertex $\bar{z} \in \bar{Z} \subseteq$ $V\left(R^{o}\right) \backslash\left(X_{R^{o}} \cup\left\{s_{1}^{0}\right\}\right)$ such that \bar{z} is the unique vertex in R^{o} with $\operatorname{dist}_{R^{o}}(\bar{z}, x)=3$ for some vertex $x \in X_{R^{o}}$; this vertex x exists because $\left|X \cap V\left(F_{1}\right)\right| \geq 3$. Selecting such a $\bar{z} \neq s_{1}^{0}$ is always possible because s_{1}^{0} is not at distance three in R^{0} from any vertex in $X_{R^{o}}$: the unique vertex in R^{o} at distance three from s_{1}^{o} is $\pi_{R^{o}}^{F_{1}}\left(s_{1}\right)$, and $\pi_{R^{o}}^{F_{1}}\left(s_{1}\right) \notin X$ because the pair $\left\{R, R^{o}\right\}$ is not associated with $X \cap V\left(F_{1}\right)$. Once \bar{z} is selected, the set Z will contain a neighbour z of \bar{z}. In this way, some path S_{i} or T_{j} bringing terminals s_{i} or t_{j} in \mathcal{A}_{1} into R^{o} through Z would use the vertex z, thereby ensuring that x and \bar{z} would be both in $X_{R^{0}}^{+}$. This will cause the sequence $\bar{s}_{2}, \bar{s}_{3}, \bar{t}_{2}, \bar{t}_{3}$ not to be in a 2 -face, and thus, not in cyclic order.
Case 4. $\left|X \cap V\left(F_{1}\right)\right|=6$.
The difficulty with $d=5$ stems from the 3-faces of the polytope not being 2-linked (Proposition 23). Recall that in this case, all the terminals are in the facet F_{1}. The proof is divided into subcases depending on the nature of the vertex opposite to s_{1} in F_{1}. Either it is not in X (subcase A), or it is a terminal but not t_{1} (subcase B), or it is t_{1} (subcase C).

SUBCASES A AND B. The vertex s_{1}^{0} opposite to s_{1} in F_{1} either does not belong to X or belongs to X but is different from t_{1}
Let $X:=\left\{s_{1}, s_{2}, s_{3}, t_{1}, t_{2}, t_{3}\right\}$ be any set of six vertices in the graph G of a cubical 5-polytope P. Also let $Y:=$ $\left\{\left\{s_{1}, t_{1}\right\},\left\{s_{2}, t_{2}\right\},\left\{s_{3}, t_{3}\right\}\right\}$. We aim to find a Y-linkage $\left\{L_{1}, L_{2}, L_{3}\right\}$ in G where L_{i} joins the pair $\left\{s_{i}, t_{i}\right\}$ for $i=1,2,3$.

In both subcases there is a 3-face R of F_{1} containing both s_{1} and t_{1}. Let J_{1} be the other facet in \mathcal{S}_{1} containing R. Denote by R_{J} and R_{F} the 3-faces in J_{1} and F_{1}, respectively, that are disjoint from R. Then $s_{1}^{o} \in R_{F}$. We need the following claim.

Claim 1. If a 3-cube contains three pairs of terminals, there must exist two pairs of terminals in the 3-cube, say $\left\{s_{1}, t_{1}\right\}$ and $\left\{s_{2}, t_{2}\right\}$, that are not arranged in the cyclic order $s_{1}, s_{2}, t_{1}, t_{2}$ in a 2 -face of the cube.

Remark 25. If x and y are vertices of a cube, then they share at most two neighbours. In other words, the complete bipartite graph $K_{2,3}$ is not a subgraph of the cube; in fact, it is not an induced subgraph of any simple polytope [8, Cor. 1.12(iii)].

Proof. If no terminal in the cube is in Configuration $3 F$, we are done. So suppose that one is, say s_{1}, and that the sequence $s_{1}, x_{1}, t_{1}, x_{2}$ of vertices of X is present in cyclic order in a 2 -face. Without loss of generality, assume that $s_{2} \notin\left\{x_{1}, x_{2}\right\}$. Then s_{2} cannot be adjacent to both s_{1} and t_{1}, since the bipartite graph $K_{2,3}$ is not a subgraph of $G\left(Q_{3}\right)$ (Remark 25). Thus the sequence $s_{1}, s_{2}, t_{1}, t_{2}$ cannot be in a 2 -face in cyclic order.

Suppose all the six terminals are in the 3 -face R. By virtue of Claim 1 , we may assume that the pairs $\left\{s_{1}, t_{1}\right\}$ and $\left\{s_{2}, t_{2}\right\}$ are not arranged in the cyclic order $s_{1}, s_{2}, t_{1}, t_{2}$ in a 2 -face of R. Proposition 23 ensures that the pairs $\left\{\pi_{R_{J}}^{J_{1}}\left(s_{1}\right), \pi_{R_{J}}^{J_{1}}\left(t_{1}\right)\right\}$ and $\left\{\pi_{R_{J}}^{J_{1}}\left(s_{2}\right), \pi_{R_{J}}^{J_{1}}\left(t_{2}\right)\right\}$ in R_{J} can be linked in R_{J} through disjoint paths L_{1}^{\prime} and L_{2}^{\prime}, since the sequence $\pi_{R_{J}}^{J_{1}}\left(s_{1}\right), \pi_{R_{J}}^{J_{1}}\left(s_{2}\right), \pi_{R_{J}}^{J_{1}}\left(t_{1}\right), \pi_{R_{J}}^{J_{1}}\left(t_{2}\right)$ cannot be in a 2-face of R_{J} in cyclic order. Moreover, by the connectivity of R_{F}, there
is a path L_{3}^{\prime} in R_{F} linking the pair $\left\{\pi_{R_{F}}^{F_{1}}\left(s_{3}\right), \pi_{R_{F}}^{F_{1}}\left(t_{3}\right)\right\}$. The linkage $\left\{L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}\right\}$ can naturally be extended to a Y-linkage $\left\{L_{1}, L_{2}, L_{3}\right\}$ as follows.

$$
L_{i}:= \begin{cases}s_{i} \pi_{R_{J}}^{J_{1}}\left(s_{i}\right) L_{i}^{\prime} \pi_{R_{J}}^{J_{1}}\left(t_{i}\right) t_{i}, & \text { for } i=1,2 \\ s_{3} \pi_{R_{F}}^{F_{1}}\left(s_{3}\right) L_{3}^{\prime} \pi_{R_{F}}^{F_{1}}\left(t_{3}\right) t_{3}, & \text { otherwise }\end{cases}
$$

Suppose that R contains a pair $\left\{s_{i}, t_{i}\right\}$ for $i=2,3$, say $\left\{s_{2}, t_{2}\right\}$. There are at most five terminals in R, and consequently, applying Lemma 22 to the polytope F_{1} and its facet R, we obtain an X-valid path $L_{1}:=s_{1}-t_{1}$ in R or an X-valid path $L_{2}:=s_{2}-t_{2}$ in R. For the sake of concreteness, say an X-valid path L_{2} exists in R. From the connectivity of R_{F} and R_{J} follows the existence of a path L_{3}^{\prime} in R_{F} between $\pi_{R_{F}}^{F_{1}}\left(s_{3}\right)$ and $\pi_{R_{F}}^{F_{1}}\left(t_{3}\right)$, and of a path L_{1}^{\prime} in R_{J} between $\pi_{R_{J}}^{J_{1}}\left(s_{1}\right)$ and $\pi_{R_{J}}^{J_{1}}\left(t_{1}\right)$ (recall that $t_{1} \in R \subset J_{1}$). The linkage $\left\{L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}\right\}$ can be extended to a linkage $\left\{s_{1}-t_{1}, s_{2}-t_{2}, s_{3}-t_{3}\right\}$ in \mathcal{S}_{1}.

Suppose that the ridge R contains no other pair from Y and that the ridge R_{F} contains a pair $\left(s_{i}, t_{i}\right)(i=2,3)$. Without loss of generality, assume s_{2} and t_{2} are in R_{F}.

First suppose that $s_{3} \in R$, which implies that $t_{3} \in R_{F}$. Further suppose that there is a path T_{3} of length at most two from t_{3} to R that is disjoint from $X \backslash\left\{s_{3}, t_{3}\right\}$. Let $\left\{t_{3}^{\prime}\right\}:=V\left(T_{3}\right) \cap V(R)$. Use the 2-linkedness of the 4-polytope J_{1} [3, Prop. 6] to find disjoint paths $L_{1}:=s_{1}-t_{1}$ and $L_{3}^{\prime}:=s_{3}-t_{3}^{\prime}$ in J_{1}. Let $L_{3}:=s_{3} L_{3}^{\prime} t_{3}^{\prime} T_{3} t_{3}$. Use the 3-connectivity of R_{F} to find an X-valid path $L_{2}:=s_{2}-t_{2}$ in R_{F} that is disjoint from $V\left(T_{3}\right)$; note that $\left|V\left(T_{3}\right) \cap V\left(R_{F}\right)\right| \leq 2$. The paths $\left\{L_{1}, L_{2}, L_{3}\right\}$ give the desired Y-linkage. Now suppose there is no such path T_{3} from t_{3} to R. Then, the projection $\pi_{R}^{F_{1}}\left(t_{3}\right)$ is in $\left\{s_{1}, t_{1}\right\}$, say $\pi_{R}^{F_{1}}\left(t_{3}\right)=t_{1}$; the projection $\pi_{R_{F}}^{F_{1}}\left(s_{1}\right)$ is a neighbour of t_{3} in R_{F}; and both s_{2} and t_{2} are neighbours of t_{3} in R_{F}. This configuration implies that s_{1} and t_{1} are adjacent in R. Let $L_{1}:=s_{1} t_{1}$. Find a path $L_{2}:=s_{2}-t_{2}$ in R_{F} that is disjoint from t_{3}, using the 3-connectivity of R_{F}. Then using Lemma 19 find a neighbour s_{3}^{\prime} in \mathcal{A}_{1} of s_{3} and a neighbour t_{3}^{\prime} in \mathcal{A}_{1} of t_{3}; note that, since $\operatorname{dist}_{F_{1}}\left(s_{1}, t_{3}\right) \leq 2$, we have that $t_{3} \neq s_{1}^{0}$, and since $\left\{s_{1}, s_{3}\right\} \in V(R), s_{3} \neq s_{1}^{0}$. Find a path L_{3} in \mathcal{S}_{1} between s_{3} and t_{3} that contains a subpath L_{3}^{\prime} in \mathcal{A}_{1} between s_{3}^{\prime} and t_{3}^{\prime}; here use the connectivity of \mathcal{A}_{1} (Proposition 7): $L_{3}:=s_{3} s_{3}^{\prime} L_{3}^{\prime} t_{3}^{\prime} t_{3}$. The linkage $\left\{L_{1}, L_{2}, L_{3}\right\}$ is the desired Y-linkage.

Assume that $s_{3} \in R_{F}$; by symmetry we can further assume that $t_{3} \in R_{F}$. The connectivity of R ensures the existence of a path $L_{1}:=s_{1}-t_{1}$ therein. In the case of $s_{1}^{0} \in X$, without loss of generality, assume $s_{1}^{0}=s_{2}$. The 3-connectivity of R_{F} ensures the existence of an X-valid path $L_{2}:=s_{2}-t_{2}$ therein. Use Lemma 19 to find pairwise distinct neighbours s_{3}^{\prime} of s_{3} and t_{3}^{\prime} of t_{3} in \mathcal{A}_{1}; these exist since $s_{3} \neq s_{1}^{o}$ and $t_{3} \neq s_{1}^{o}$. Using the connectivity of \mathcal{A}_{1} (Proposition 7), find a path $L_{3}:=s_{3}-t_{3}$ in \mathcal{S}_{1} that contains a subpath $s_{3}^{\prime}-t_{3}^{\prime}$ in \mathcal{A}_{1}. The linkage $\left\{L_{1}, L_{2}, L_{3}\right\}$ is the desired Y-linkage.

Assume neither R nor R_{F} contains a pair $\left\{s_{i}, t_{i}\right\}(i=2,3)$. Without loss of generality, assume that $s_{2}, s_{3} \in R$, that $t_{2}, t_{3} \in$ R_{F} and that $t_{2} \neq s_{1}^{0}$.

First suppose that there exists a path S_{3} in F_{1} from s_{3} to R_{F} that is of length at most two and is disjoint from $X \backslash\left\{s_{3}, t_{3}\right\}$. Let $\left\{\hat{S}_{3}\right\}:=V\left(S_{3}\right) \cap V\left(R_{F}\right)$. Find pairwise distinct neighbours s_{2}^{\prime} and t_{2}^{\prime} of s_{2} and t_{2}, respectively, in \mathcal{A}_{1}. And find a path $L_{2}:=s_{2}-t_{2}$ in \mathcal{S}_{1} that contains a subpath $s_{2}^{\prime}-t_{2}^{\prime}$ in \mathcal{A}_{1} (using the connectivity of \mathcal{A}_{1}). Using the 3-connectivity of R_{F} link the pair $\left\{\hat{s}_{3}, t_{3}\right\}$ in R_{F} through a path L_{3}^{\prime} that is disjoint from t_{2}. Let $L_{3}:=s_{3} S_{3} \hat{s}_{3} L_{3}^{\prime} t_{3}$. Since Corollary 24 ensures that any separator of size three in a 3-cube must be independent, we can find a path $L_{1}:=s_{1}-t_{1}$ in R that is disjoint from s_{2} and $V\left(S_{3}\right) \cap V(R)$; the set $V\left(S_{3}\right) \cap V(R)$ has either cardinality one or contains an edge. The paths $\left\{L_{1}, L_{2}, L_{3}\right\}$ form the desired Y-linkage.

Assume that there is no such path S_{3}. In this case, the neighbours of s_{3} in F_{1} are s_{1}, t_{1}, s_{2} from R and t_{2} from R_{F}. Use Lemma 19 to find a neighbour s_{3}^{\prime} of s_{3} in \mathcal{A}_{1}. Again use Lemma 19 either to find a neighbour t_{3}^{\prime} of t_{3} if $t_{3} \neq s_{1}^{0}$ or to find a neighbour t_{3}^{\prime} of a neighbour u of t_{3} in R_{F} (with $u \neq t_{2}$) if $t_{3}=s_{1}^{0}$. Let T_{3} be the path of length at most two from t_{3} to \mathcal{A}_{1} defined as $T_{3}=t_{3} t_{3}^{\prime}$ if $t_{3} \neq s_{1}^{0}$ and $T_{3}=t_{3} u t_{3}^{\prime}$ if $t_{3}=s_{1}^{o}$. Find a path L_{3} in \mathcal{S}_{1} between s_{3} and t_{3} that contains a subpath in \mathcal{A}_{1} between s_{3}^{\prime} and t_{3}^{\prime}; here use the connectivity of \mathcal{A}_{1} (Proposition 7). We next find a path S_{2} in F_{1} from s_{2} to R_{F} that is of length at most two and is disjoint from $V\left(T_{3}\right) \cup\left\{s_{1}, t_{1}, s_{3}\right\}$. There are exactly four disjoint $s_{2}-R_{F}$ paths of length at most two, one through each of the neighbours of s_{2} in F_{1}. One such path is $s_{2} s_{3} t_{2}$. Among the remaining three $s_{2}-R_{F}$ paths, since none of them contains s_{1} or t_{1} and since $\left|V\left(T_{3}\right) \cap V\left(R_{F}\right)\right| \leq 2$, we find the path S_{2}. Let $\hat{s}_{2}:=V\left(S_{2}\right) \cap V\left(R_{F}\right)$. Find a path $L_{2}^{\prime}:=\hat{s}_{2}-t_{2}$ in R_{F} that is disjoint from $V\left(T_{3}\right)$, using the 3-connectivity of R_{F}. Let $L_{2}:=s_{2} S_{2} \hat{s}_{2} L_{2}^{\prime} t_{2}$. Since the vertices in $\left(V\left(S_{2}\right) \cap V(R)\right) \cup\left\{s_{3}\right\}$ cannot separate s_{1} from t_{1} in R (Corollary 24), find a path $L_{1}:=s_{1}-t_{1}$ in R disjoint from $V\left(S_{2}\right) \cap V(R) \cup\left\{s_{3}\right\}$; the set $V\left(S_{2}\right)$ has cardinality one or contains one edge. The paths $\left\{L_{1}, L_{2}, L_{3}\right\}$ form the desired Y-linkage.

SUBCASE C. The vertex opposite to s_{1} in F_{1} coincides with t_{1}

Since s_{1} is not in configuration $d 3$ we may suppose that t_{1} has a neighbour t_{1}^{\prime} not in X. We reason as in Subcases A and B. We give the details for the sake of completeness.

Let R denote the 3-face in F_{1} containing both s_{1} and t_{1}^{\prime}; $\operatorname{dist}_{R}\left(s_{1}, t_{1}^{\prime}\right)=3$. Let R_{F} be the 3-face of F_{1} disjoint from R. Let J_{1} be the other facet in \mathcal{S}_{1} containing R and let R_{J} be the 3 -face of J_{1} disjoint from R.

Suppose R contains a pair $\left\{s_{i}, t_{i}\right\}(i=2,3)$, say $\left(s_{2}, t_{2}\right)$. There are at most five terminals in R (as t_{1} is in R_{F}). Since the smallest face in R containing s_{1} and t_{1}^{\prime} is 3-dimensional, the sequence $\pi_{R_{J}}^{J_{1}}\left(s_{1}\right), \pi_{R_{J}}^{J_{1}}\left(s_{2}\right), \pi_{R_{J}}^{J_{1}}\left(t_{1}^{\prime}\right), \pi_{R_{J}}^{J_{1}}\left(t_{2}\right)$ cannot appear in a 2 -face of R_{J} in cyclic order. As a consequence, the pairs $\left\{\pi_{R_{J}}^{J_{1}}\left(s_{1}\right), \pi_{R_{J}}^{J_{1}}\left(t_{1}^{\prime}\right)\right\}$ and $\left\{\pi_{R_{J}}^{J_{1}}\left(s_{2}\right), \pi_{R_{J}}^{J_{1}}\left(t_{2}\right)\right\}$ can be linked in R_{J}
through disjoint paths L_{1}^{\prime} and L_{2}^{\prime}, thanks to Proposition 23. Let $L_{1}:=s_{1} \pi_{R_{J}}^{J_{1}}\left(s_{1}\right) L_{1}^{\prime} \pi_{R_{J}}^{J_{1}}\left(t_{1}^{\prime}\right) t_{1}^{\prime} t_{1}$ and $L_{2}:=s_{2} \pi_{R_{J}}^{J_{1}}\left(s_{2}\right) L_{2}^{\prime} \pi_{R_{J}}^{J_{1}}\left(t_{2}\right) t_{2}$. From the 3-connectivity of R_{F} follows the existence of a path L_{3}^{\prime} in R_{F} between $\pi_{R_{F}}^{F_{1}}\left(s_{3}\right)$ and $\pi_{R_{F}}^{F_{1}}\left(t_{3}\right)$ that avoids t_{1}. Let $L_{3}:=s_{3} \pi_{R_{F}}^{F_{1}}\left(s_{3}\right) L_{3}^{\prime} \pi_{R_{F}}^{F_{1}}\left(t_{3}\right) t_{3}$. The paths $\left\{L_{1}, L_{2}, L_{3}\right\}$ form the desired Y-linkage.

Suppose that the ridge R contains no pair $\left\{s_{i}, t_{i}\right\}(i=2,3)$ and that the ridge R_{F} contains a pair $\left\{s_{i}, t_{i}\right\}(i=2,3)$, say $\left\{s_{2}, t_{2}\right\}$. Then, there are at most five terminals in R_{F}. If there are at most four terminals in R_{F}, the 3-connectivity of R_{F} ensures the existence of an X-valid path $L_{2}:=s_{2}-t_{2}$ in R_{F}; if there are exactly five terminals in R_{F}, applying Lemma 22 to the polytope F_{1} and its facet R_{F} gives either an X-valid path $L_{2}:=s_{2}-t_{2}$ or an X-valid path $L_{3}:=s_{3}-t_{3}$ in R_{F}. As a result, regardless of the number of terminals in R_{F}, we can assume there is an X-valid path $L_{2}:=s_{2}-t_{2}$ in R_{F}. Find pairwise distinct neighbours s_{3}^{\prime} and t_{3}^{\prime} in \mathcal{A}_{1} of s_{3} and t_{3}, respectively, and a path L_{3} in \mathcal{S}_{1} between s_{3} and t_{3} that contains a subpath in \mathcal{A}_{1} between s_{3}^{\prime} and t_{3}^{\prime}; here use the connectivity of \mathcal{A}_{1} (Proposition 7). In addition, let L_{1}^{\prime} be a path in R between s_{1} and t_{1}^{\prime}; here use the 3-connectivity of R to avoid any terminal in R. Let $L_{1}:=s_{1} L_{1}^{\prime} t_{1}^{\prime} t_{1}$. The Y-linkage is given by the paths $\left\{L_{1}, L_{2}, L_{3}\right\}$.

Assume neither R nor $R_{F_{1}}$ contains a pair $\left\{s_{i}, t_{i}\right\}(i=2,3)$. Without loss of generality, we can assume $s_{2}, s_{3} \in R$ and $t_{2}, t_{3} \in R_{F}$.

There exists a path S_{3} from s_{3} to R_{F} that is of length at most two and is disjoint from $\left\{s_{1}, t_{1}, t_{1}^{\prime}, s_{2}, t_{2}\right\}$. If $\pi_{R_{F}}\left(s_{3}\right) \neq t_{2}$, then $S_{3}=s_{3} \pi_{R_{F}}\left(s_{3}\right)$. Otherwise, there are exactly three disjoint paths of length 2 from s_{3} to R_{F}. At most two of them contain a vertex in $N_{R}\left(s_{3}\right) \cap\left(X \cup\left\{t_{1}^{\prime}\right\}\right)$ (since $\operatorname{dist}\left(s_{1}, t_{1}\right)=3$, they cannot be both neighbours of $\left.s_{3}\right)$. Thus we can take S_{3} as the path $s_{3} u \pi_{R_{F}}(u)$ through a neighbour u of s_{3} in R such that $u \notin X \cup\left\{t_{1}^{\prime}\right\}$ and $\pi_{R_{F}}(u) \notin\left\{t_{1}, t_{2}\right\}=\left\{\pi_{R_{F}}\left(s_{3}\right), \pi_{R_{F}}\left(t_{1}^{\prime}\right)\right\}$.

Let $\left\{\hat{s}_{3}\right\}:=V\left(S_{3}\right) \cap V\left(R_{F}\right)$. Find an X-valid path $L_{3}^{\prime}:=\hat{s}_{3}-t_{3}$ in R_{F} using its 3-connectivity. Let $L_{3}:=s_{3} S_{3} \hat{s}_{3} L_{3}^{\prime} t_{3}$. Then find neighbours s_{2}^{\prime} and t_{2}^{\prime} of s_{2} and t_{2}, respectively, in \mathcal{A}_{1}, and a path $L_{2}:=s_{2}-t_{2}$ in \mathcal{S}_{1} that contains a subpath $s_{2}^{\prime}-t_{2}^{\prime}$ in \mathcal{A}_{1} (using the connectivity of \mathcal{A}_{1}). Since Corollary 24 ensures that any separator of size three in a 3-cube must be independent, we can find an $L_{1}^{\prime}:=s_{1}-t_{1}^{\prime}$ in R that is disjoint from s_{2} and $V\left(S_{3}\right) \cap V(R)$; the set $V\left(S_{3}\right) \cap V(R)$ has either cardinality one or contains an edge. Let $L_{1}:=s_{1} L_{1}^{\prime} t_{1}^{\prime} t_{1}$. The paths $\left\{L_{1}, L_{2}, L_{3}\right\}$ form the desired Y-linkage.

This concludes the proof of Lemma 11 for $d=5$.

References

[1] B. Bollobás, A. Thomason, Highly linked graphs, Combinatorica 16 (3) (1996) 313-320.
[2] H.T. Bui, G. Pineda-Villavicencio, J. Ugon, Connectivity of cubical polytopes, J. Comb. Theory, Ser. A 169 (2020) 105-126.
[3] H.T. Bui, G. Pineda-Villavicencio, J. Ugon, The linkedness of cubical polytopes: the cube, Electron. J. Comb. 28 (2021) P3.45.
[4] R. Diestel, Graph Theory, 5th ed., Graduate Texts in Mathematics, vol. 173, Springer-Verlag, Berlin, 2017.
[5] S. Gallivan, Disjoint edge paths between given vertices of a convex polytope, J. Comb. Theory, Ser. A 39 (1) (1985) 112-115, MR787721.
[6] K. Kawarabayashi, A. Kostochka, G. Yu, On sufficient degree conditions for a graph to be k-linked, Comb. Probab. Comput. 15 (5) (2006) 685-694.
[7] D.G. Larman, P. Mani, On the existence of certain configurations within graphs and the 1 -skeletons of polytopes, Proc. Lond. Math. Soc. (3) 20 (1970) 144-160.
[8] J. Pfeifle, V. Pilaud, F. Santos, Polytopality and Cartesian products of graphs, Isr. J. Math. 192 (1) (2012) 121-141.
[9] N. Robertson, P.D. Seymour, Graph minors. XIII. The disjoint paths problem, J. Combin. Theory, Ser. B 63 (1995) 65-110.
[10] G.T. Sallee, Incidence graphs of convex polytopes, J. Comb. Theory 2 (1967) 466-506.
[11] R. Thomas, P. Wollan, An improved linear edge bound for graph linkages, Eur. J. Comb. 26 (3-4) (2005) 309-324.
[12] A. Werner, R.F. Wotzlaw, On linkages in polytope graphs, Adv. Geom. 11 (3) (2011) 411-427.
[13] R.F. Wotzlaw, Incidence graphs and unneighborly polytopes, Ph.D. thesis, Technical University of Berlin, Berlin, 2009.
[14] G.M. Ziegler, Lectures on Polytopes, Graduate Texts in Mathematics, vol. 152, Springer-Verlag, New York, 1995.

[^0]: \# Hoa T. Bui is supported by an Australian Government Research Training Program (RTP) Stipend and RTP Fee-Offset Scholarship through Federation University Australia. Julien Ugon's research was partially supported by ARC discovery project DP180100602.

 * Corresponding author.

 E-mail addresses: hoa.bui@curtin.edu.au (H.T. Bui), work@guillermo.com.au (G. Pineda-Villavicencio), julien.ugon@deakin.edu.au (J. Ugon).
 https://doi.org/10.1016/j.disc.2023.113801
 0012-365X/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/).

