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A cubical polytope is a polytope with all its facets being combinatorially equivalent to 
cubes. The paper is concerned with the linkedness of the graphs of cubical polytopes.
A graph with at least 2k vertices is k-linked if, for every set of k disjoint pairs of vertices, 
there are k vertex-disjoint paths joining the vertices in the pairs. We say that a polytope 
is k-linked if its graph is k-linked. In a previous paper [3] we proved that every cubical 
d-polytope is �d/2�-linked. Here we strengthen this result by establishing the �(d + 1)/2�-
linkedness of cubical d-polytopes, for every d �= 3.
A graph G is strongly k-linked if it has at least 2k + 1 vertices and, for every vertex v of G , 
the subgraph G − v is k-linked. We say that a polytope is (strongly) k-linked if its graph 
is (strongly) k-linked. In this paper, we also prove that every cubical d-polytope is strongly 
�d/2�-linked, for every d �= 3.
These results are best possible for this class of polytopes.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons .org /licenses /by-nc -nd /4 .0/).

1. Introduction

The graph G(P ) of a polytope P is the undirected graph formed by the vertices and edges of the polytope. This paper 
studies the linkedness of cubical d-polytopes, d-dimensional polytopes with all their facets being cubes. A d-dimensional cube
is the convex hull in Rd of the 2d vectors (±1, . . . , ±1). By a cube we mean any polytope whose face lattice is isomorphic 
to the face lattice of a cube.

Denote by V (X) the vertex set of a graph or a polytope X . Given sets A, B of vertices in a graph, a path from A to B , 
called an A − B path, is a (vertex-edge) path L := u0 . . . un in the graph such that V (L) ∩ A = {u0} and V (L) ∩ B = {un}. We 
write a − B path instead of {a} − B path, and likewise, write A − b path instead of A − {b} path.

Let G be a graph and X a subset of 2k distinct vertices of G . The elements of X are called terminals. Let Y :=
{{s1, t1}, . . . , {sk, tk}} be an arbitrary labelling and (unordered) pairing of all the vertices in X . We say that Y is linked
in G if we can find disjoint si − ti paths for all i ∈ [1, k], where [1, k] denotes the interval 1, . . . , k. The set X is linked
in G if every such pairing of its vertices is linked in G . Throughout this paper, by a set of disjoint paths, we mean a set 
of vertex-disjoint paths. If G has at least 2k vertices and every set of exactly 2k vertices is linked in G , we say that G is 
k-linked. If the graph of a polytope is k-linked, we say that the polytope is also k-linked.
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Linkedness is a stronger property than connectivity: let G be a graph with at least 2k vertices, and let S := {s1, . . . , sk}
and T := {t1, . . . , tk} be two disjoint k-element sets of vertices in G . It follows from Menger’s theorem that, if G is k-
connected then the sets S and T can be joined setwise by disjoint paths (namely, by k disjoint S − T paths). By contrast, if 
G is k-linked then the sets can be joined pointwise by disjoint paths.

A closely related problem to linkedness is the classical disjoint paths problem [9]: given a graph G and a set Y :=
{{s1, t1}, . . . , {sk, tk}} of k pairs of terminals in G , decide whether or not Y is linked in G . A natural optimisation version of 
this problem is to find the largest subset of the pairs so that there exist disjoint paths connecting the selected pairs.

There is a linear function f (k) such that every f (k)-connected graph is k-linked, which follows from works of Bollobás 
and Thomason [1]; Kawarabayashi, Kostochka, and Yu [6]; and Thomas and Wollan [11]. In the case of polytopes, Larman 
and Mani [7, Thm. 2] proved that every d-polytope is �(d +1)/3�-linked, a result that was slightly improved to �(d +2)/3� in 
[12, Thm. 2.2]. Gallivan [5] proved that not every polytope is �d/2�-linked. In view of this negative result, researchers have 
focused efforts on finding families of d-polytopes that are �d/2�-linked. In his PhD thesis [13, Question 5.4.12], Wotzlaw 
asked whether every cubical d-polytope is �d/2�-linked. In [3] we answer his question in the affirmative by establishing the 
following theorem.

Theorem 1. For every d ≥ 1, a cubical d-polytope is �d/2�-linked.

The paper [3] also established the linkedness of the d-cube.

Theorem 2 (Linkedness of the cube). For every d �= 3, a d-cube is �(d + 1)/2�-linked.

In this paper, we extend these two results as follows:

Theorem 3 (Linkedness of cubical polytopes). For every d �= 3, a cubical d-polytope is �(d + 1)/2�-linked.

Our methodology relies on results on the connectivity of strongly connected subcomplexes of cubical polytopes, whose 
proof ideas were first developed in [2], and a number of new insights into the structure of d-cube exposed in [3]. One 
obstacle that forces some tedious analysis is the fact that the 3-cube is not 2-linked.

Let X be a set of vertices in a graph G . Denote by G[X] the subgraph of G induced by X , the subgraph of G that contains 
all the edges of G with vertices in X . Write G − X for G[V (G) \ X]. If X = {v}, then we write G − v instead of G − {v}.

In our paper [3], we introduce the notion of strong linkedness. We say that a graph G with at least 2k + 1 vertices is 
strongly k-linked if for every vertex v of G , the subgraph G − v is k-linked. A polytope is strongly k-linked if its graph is 
strongly k-linked. We proved the strong-linkedness of the cube as follows:

Theorem 4 (Strong linkedness of the cube [3, Thm. 25]). For every d ≥ 1, a d-cube is strongly �d/2�-linked.

In this paper, we extend this result to cubical polytopes:

Theorem 5 (Strong linkedness of cubical polytopes). For every d �= 3, a cubical d-polytope is strongly �d/2�-linked.

Unless otherwise stated, the graph theoretical notation and terminology follow from [4] and the polytope theoretical no-
tation and terminology from [14]. Moreover, when referring to graph-theoretical properties of a polytope such as minimum 
degree, linkedness and connectivity, we mean properties of its graph.

2. Connectivity of cubical polytopes

The aim of this section is to present a couple of results related to the connectivity of strongly connected complexes in 
cubical polytopes. A pure polytopal complex C is strongly connected if every pair of facets F and F ′ is connected by a path 
F1 . . . Fn of facets in C such that Fi ∩ Fi+1 is a ridge of C for each i ∈ [1, n − 1], F1 = F and Fn = F ′; we say that such a 
path is a (d − 1, d − 2)-path or a facet-ridge path if the dimensions of the faces can be deduced from the context. Two basic 
examples of strongly connected complexes are given by the complex of all faces of a polytope P , called the complex of P
and denoted by C(P ), and the complex of all proper faces of P , called the boundary complex of P and denoted by B(P ). For 
the definitions of polytopal complexes and pure polytopal complexes, refer to [14, Section 5.1].

Given a polytopal complex C with vertex set V and a subset X of V , the subcomplex of C formed by all the faces of C
containing only vertices from X is said to be induced by X and is denoted by C[X]. Removing from C all the vertices in a 
subset X ⊂ V (C) results in the subcomplex C[V (C) \ X], which we write as C − X . If X = {x} we write C − x rather than 
C−{x}. We say that a subcomplex C′ of a complex C is a spanning subcomplex of C if V (C′) = V (C). The graph of a complex 
is the undirected graph formed by the vertices and edges of the complex; as in the case of polytopes, we denote the graph 
of a complex C by G(C).
2



H.T. Bui, G. Pineda-Villavicencio and J. Ugon Discrete Mathematics 347 (2024) 113801
For a polytopal complex C , the star of a face F of C , denoted star(F , C), is the subcomplex of C formed by all the faces 
containing F , and their faces; the antistar of a face F of C , denoted astar(F , C), is the subcomplex of C formed by all the 
faces disjoint from F ; and the link of a face F , denoted link(F , C), is the subcomplex of C formed by all the faces of star(F , C)

that are disjoint from F . That is, astar(F , C) = C − V (F ) and link(F , C) = star(F , C) − V (F ). Unless otherwise stated, when 
defining stars, antistars and links in a polytope, we always assume that the underlying complex is the boundary complex of 
the polytope.

The first results are from [2].

Lemma 6 ([2, Lem. 8]). Let F be a proper face in the d-cube Q d. Then the antistar of F is a strongly connected (d − 1)-complex.

Proposition 7 ([2, Prop. 13]). Let F be a facet in the star S of a vertex in a cubical d-polytope. Then the antistar of F in S is a strongly 
connected (d − 2)-subcomplex of S .

Let v be a vertex in a d-cube Q d and let vo denote the vertex at distance d from v , called the vertex opposite to v in 
Q d; by distance in a cube, we mean the graph-theoretical distance in the cube. In the d-cube Q d , the facet disjoint from a 
facet F is denoted by F o , and we say that F and F o are a pair of opposite facets.

We proceed with a simple but useful remark.

Remark 8. Let P be a cubical d-polytope. Let v be a vertex of P and let F be a face of P containing v , which is a cube. 
In addition, let vo be the vertex of F opposite to v in F . The smallest face in the polytope containing both v and vo is 
precisely F .

The proof idea in Proposition 7 can be pushed a bit further to obtain a rather technical result that we prove next. Two 
vertex-edge paths are independent if they share no inner vertex.

Lemma 9. Let P be a cubical d-polytope with d ≥ 4. Let s1 be any vertex in P and let S1 be the star of s1 in the boundary complex of 
P . Let s2 be any vertex in S1 , other than s1. Define the following sets:

• F1 in S1 , a facet containing s1 but not s2;
• F12 in S1 , a facet containing s1 and s2;
• S12 , the star of s2 in S1 (that is, the subcomplex of S1 formed by the facets of P in S1 containing s2);
• A1 , the antistar of F1 in S1; and
• A12 , the subcomplex of S12 induced by V (S12) \ (V (F1) ∪ V (F12)).

Then the following assertions hold.

(i) The complex S12 is a strongly connected (d − 1)-subcomplex of S1 .
(ii) If there are more than two facets in S12, then, between any two facets of S12 that are different from F12, there exists a (d − 1, d −

2)-path in S12 that does not contain the facet F12.
(iii) If S12 contains more than one facet, then the subcomplex A12 of S12 contains a spanning strongly connected (d −3)-subcomplex.

Proof. Let us prove (i). Let ψ define the natural anti-isomorphism from the face lattice of P to the face lattice of its dual 
P∗ . The facets in S1 correspond to the vertices in the facet ψ(s1) in P∗ corresponding to s1; likewise for the facets in 
star(s2, B(P )) and the vertices in ψ(s2). The facets in S12 correspond to the vertices in the nonempty face ψ(s1) ∩ ψ(s2)

of P∗ . The existence of a facet-ridge path in S12 between any two facets J1 and J2 of S12 amounts to the existence of a 
vertex-edge path in ψ(s1) ∩ψ(s2) between ψ( J1) and ψ( J2). That S12 is a strongly connected (d − 1)-complex now follows 
from the connectivity of the graph of ψ(s1) ∩ ψ(s2) (Balinski’s theorem), as desired.

We proceed with the proof of (ii). Let J1 and J2 be two facets of S12, other than F12. If there are more than two facets 
in S12, then the face ψ(s1) ∩ ψ(s2) is at least bidimensional. As a result, the graph of ψ(s1) ∩ ψ(s2) is at least 2-connected 
by Balinski’s theorem. By Menger’s theorem, there are at least two independent vertex-edge paths in ψ(s1) ∩ψ(s2) between 
ψ( J1) and ψ( J2). Pick one such path L∗ that avoids the vertex ψ(F12) of ψ(s1) ∩ ψ(s2). Dualising this path L∗ gives a 
(d − 1, d − 2)-path between J1 and J2 in S12 that does not contain the facet F12.

We finally prove (iii). Assume that S12 contains more than one facet. We need some additional notation.

• Let F be a facet in S12 other than F12; it exists by our assumption on S12.
• For a facet J in S12, let A J

1 denote the subcomplex J − V (F1); that is, A J
1 is the antistar of J ∩ F1 in J .

• For a facet J in S12 other than F12, let A J
12 denote the subcomplex J − (V (F1) ∪ V (F12)), the subcomplex of J induced 

by V ( J ) \ (V (F1) ∪ V (F12)).

We require the following claim.
3
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Claim 1. AF
12 contains a spanning strongly connected (d − 3)-subcomplex C F .

Proof. We first show that AF
12 �= ∅. Denoting by so

1 the vertex in F opposite to s1, we have that so
1 is not in F1 or in F12 by 

Remark 8. So so
1 is in AF

12.
Notice that s1 /∈AF

1 . From Lemma 6 it follows that AF
1 is a strongly connected (d − 2)-subcomplex of F . Write

AF
1 = C(R1) ∪ · · · ∪ C(Rm),

where Ri is a (d − 2)-face of F for each i ∈ [1, m]. Every (d − 2)-face in F contains either s1 or so
1, and since we have s1 /∈ Ri

for every Ri ∈AF
1 , it follows that so

1 ∈ Ri . Consequently no ridge Ri is contained in F12.
Let

Ci := B(Ri) − V (F12).

As Ri �⊂ F12, we have dim Ri ∩ F12 ≤ d − 3. Furthermore, since so
1 ∈ Ci , Ci is nonempty. If Ri ∩ F12 �= ∅, then Ci is the antistar 

of Ri ∩ F12 in Ri , a spanning strongly connected (d − 3)-subcomplex of Ri by Lemma 6. If Ri ∩ F12 = ∅, then Ci is the 
boundary complex of Ri , again a spanning strongly connected (d − 3)-subcomplex of Ri .

Let

C F :=
⋃

Ci .

Then the complex C F is a spanning (d − 3)-subcomplex of AF
12; we show it is strongly connected.

Take any two (d −3)-faces W and W ′ in C F . We find a (d −3, d −4)-path L in C F between W and W ′ . There exist ridges 
R and R ′ in AF

1 with W ⊂ R and W ′ ⊂ R ′ . Since AF
1 is a strongly connected (d − 2)-complex, there is a (d − 2, d − 3)-path 

Ri1 . . . Rip in AF
1 between Ri1 = R and Rip = R ′ , with Ri j ∈AF

1 for each j ∈ [1, p]. We will show by induction on the length 
p of the (d − 2, d − 3)-path Ri1 . . . Rip that there is a (d − 3, d − 4)-path in C F between W and W ′ .

If p = 1, then Ri1 = Rip = R = R ′ . The existence of the path follows from the strong connectivity of Ci1 .
Suppose that the claim is true when the length of the path is p − 1. We already established that so

1 ∈ Ri j for every 
j ∈ [1, p] and that so

1 /∈ F12. Consequently, we get that Rip−1 ∩ Rip �⊂ F12, and therefore, Rip−1 ∩ Rip ∩ F12 is a proper face 
of Rip−1 ∩ Rip . Hence the subcomplex Bip−1 := B(Rip−1 ∩ Rip ) − V (F12) of B(Rip−1 ∩ Rip ) is a nonempty, strongly connected 
(d − 4)-complex by Lemma 6; in particular, it contains a (d − 4)-face Uip . Furthermore, Bip−1 ⊂ Cip−1 ∩ Cip .

Let W ip−1 and W ip be (d − 3)-faces in Cip−1 and Cip containing Uip respectively. By the induction hypothesis, the exis-
tence of the (d − 2, d − 3)-path Ri1 . . . Rip−1 implies the existence of a (d − 3, d − 4)-path Lp−1 in C F from W to W ip−1 . The 
strong connectivity of Cip gives the existence of a path Lp from W ip to W ′ . Finally, the desired (d − 3, d − 4)-path L is the 
concatenation of these two paths: L = Lp−1W ip−1 Uip W ip Lp . The existence of the path L between W and W ′ completes the 
proof of Claim 1. �

We are now ready to complete the proof of (iii). The proof goes along the lines of the proof of Claim 1. We let

S12 =
m⋃

i=1

C( J i),

where the facets J1, . . . , Jm are all the facets in P containing s1 and s2.
For every i ∈ [1, m] we let C J i be the spanning strongly connected (d − 3)-subcomplex in A J i

12 given by Claim 1. And we 
let

C :=
⋃

C J i .

Then C is a spanning (d − 3)-subcomplex of A12; we show it is strongly connected.
If there are exactly two facets in S12, namely F12 and some other facet F , then the complex A12 coincides with the 

complex AF
12. The strong (d − 3)-connectivity of C is then settled by Claim 1. Hence assume that there are more than two 

facets in S12; this implies that the smallest face containing s1 and s2 in S12 is at most (d − 3)-dimensional.
Take any two (d − 3)-faces W and W ′ in C . Let J �= F12 and J ′ �= F12 be facets of S12 such that W ⊂ J and W ′ ⊂ J ′ . By 

(ii), we can find a (d − 1, d − 2)-path J i1 . . . J iq in S12 between J i1 = J and J iq = J ′ such that J i j �= F12 for any j ∈ [1, q]. 
We will show that a (d − 3, d − 4)-path L exists between W and W ′ in C , using an induction on the length q of the path 
J i1 . . . J iq .

If q = 1, then W and W ′ belong to the same facet F in S12, which is different from F12. In this case, W and W ′ are 
both in AF

12, and consequently, Claim 1 gives the desired (d − 3, d − 4)-path between W and W ′ in AF
12 ⊆ C .

Suppose that the induction hypothesis holds when the length of the path is q − 1. First, we show that there exists a 
(d − 4)-face Uq in C Jiq−1 ∩ C Jiq . As J iq−1 , J iq �= F12, we obtain that B( J iq−1 ∩ J iq ) − V (F12) is a nonempty, strongly connected 
(d −3)-subcomplex (Lemma 6); in particular, it contains a (d −3)-face Kq . The complex B(Kq) − V (F1) is nonempty because 
4
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Fig. 1. Examples of Configuration dF . (a) A cubical 3-polytope where s1 is in Configuration 3F. (b) A facet of a cubical 5-polytope where s1 is in Configuration 
5F.

s1 ∈ F1 and s1 /∈ Kq (since Kq does not contain any vertex from F12). Therefore B(Kq) − V (F1) is a strongly connected 
(d − 4)-subcomplex by Lemma 6. In particular, B(Kq) − V (F1) contains a (d − 4)-face Uq .

Pick (d − 3)-faces Wq−1 ∈ C J iq−1 and Wq ∈ C J iq such that both contain the (d − 4) face Uq . The induction hypothesis 
tells us that there exists a (d − 3, d − 4)-path Lq−1 from W to Wq−1 in C . And the strong (d − 3)-connectivity of C J iq

ensures that there exists a (d − 3, d − 4)-path Lq from Wq to W ′ . By concatenating these two paths, we can obtain the path 
L = W Lq−1Wq−1Uq Wq Lq W ′ . This completes the proof of the lemma. �
3. Linkedness of cubical polytopes

The aim of this section is to prove that, for every d �= 3, a cubical d-polytope is �(d +1)/2�-linked (Theorem 3). It suffices 
to prove Theorem 3 for odd d ≥ 5; since �d/2� = �(d + 1)/2� for even d, Theorem 1 trivially establishes Theorem 3 in this 
case.

The proof of Theorem 3 heavily relies on Lemma 11. To state the lemma we require the following definition.

Definition 10 (Configuration dF). Let d ≥ 3 be odd and let X be a set of at least d + 1 terminals in a cubical d-polytope P . In 
addition, let Y be a labelling and pairing of the vertices in X . A terminal of X , say s1, is in Configuration dF if the following 
conditions are satisfied:

(i) at least d + 1 vertices of X appear in a facet F of P ;
(ii) the terminals in the pair {s1, t1} ∈ Y are at distance d − 1 in F (that is, distF (s1, t1) = d − 1); and

(iii) the neighbours of t1 in F are all vertices of X .

Fig. 1 illustrates examples of Configuration dF.

Lemma 11. Let d ≥ 5 be odd and let k := (d + 1)/2. Let s1 be a vertex in a cubical d-polytope and let S1 be the star of s1 in the 
polytope. Moreover, let Y := {{s1, t1}, . . . , {sk, tk}} be a labelling and pairing of 2k distinct vertices of S1. Then the set Y is linked in S1
if the vertex s1 is not in Configuration dF.

Remark 12. It is easy to see that when the vertex s1 is in Configuration dF, the set Y is not linked in S1. Indeed in this 
case, since distF1 (s1, t1) = d − 1 there is only one facet F1 in S1 that contains t1. Then all the neighbours of t1 in F1, and 
thus, in S1 are in X . As a consequence, every s1 − t1 path in S1 must touch X . Hence Y is not linked.

We defer the proof of Lemma 11 for d ≥ 7 to Subsection 3.1, while the case d = 5 is proved in Appendix A. We are 
now ready to prove our main result, assuming Lemma 11. For a set Y := {{s1, t1}, . . . , {sk, tk}} of pairs of vertices in a graph, 
a Y -linkage {L1, . . . , Lk} is a set of disjoint paths with the path Li joining the pair {si, ti} for each i ∈ [1, k]. For a path 
L := u0 . . . un we often write ui Lu j for 0 ≤ i ≤ j ≤ n to denote the subpath ui . . . u j . We will rely on the following definition.

Definition 13 (Projection π ). For a pair of opposite facets {F , F o} of Q d , define a projection π Q d
F o from Q d to F o by sending 

a vertex x ∈ F to the unique neighbour xp
F o of x in F o , and a vertex x ∈ F o to itself (that is, π Q d

F o (x) = x); write π Q d
F o (x) = xp

F o

to be precise, or write π(x) or xp if the cube Q d and the facet F o are understood from the context.

We extend this projection to sets of vertices: given a pair {F , F o} of opposite facets and a set X ⊆ V (F ), the projection 
X p

F o or π Q d
F o (X) of X onto F o is the set of the projections of the vertices in X onto F o . For an i-face J ⊆ F , the projection 

J p
F o or π Q d

F o ( J ) of J onto F o is the i-face consisting of the projections of all the vertices of J onto F o . For a pair {F , F o} of 
opposite facets in Q d , the restrictions of the projection πF o to F and the projection πF to F o are bijections.
5
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Proof of Theorem 3 (Linkedness of cubical polytopes). Theorem 1 settled the case of even d, so we assume d is odd.
Let d be odd and d ≥ 5 and let k := (d + 1)/2. Let X be any set of 2k vertices in the graph G of a cubical d-polytope P . 

Recall the vertices in X are called terminals. Also let Y := {{s1, t1}, . . . , {sk, tk}} be a labelling and pairing of the vertices of 
X . We aim to find a Y -linkage {L1, . . . , Lk} in G where Li joins the pair {si, ti} for i = 1, . . . , k.

For a set of vertices X of a graph G , a path in G is called X-valid if no inner vertex of the path is in X . The distance
between two vertices s and t in G , denoted distG(s, t), is the length of a shortest path between the vertices.

The first step of the proof is to reduce the analysis space from the whole polytope to a more manageable space, the star 
S1 of a terminal vertex in the boundary complex of P , say that of s1. We do so by considering d = 2k − 1 disjoint paths 
Si := si − S1 (for each i ∈ [2, k]) and T j := t j − S1 (for each j ∈ [1, k]) from the terminals into S1. Here we resort to the 
d-connectivity of G . In addition, let S1 := s1. We then denote by s̄i and t̄ j the intersection of the paths Si and T j with S1. 
Using the vertices s̄i and t̄i for i ∈ [1, k], define sets X̄ and Ȳ in S1, counterparts to the sets X and Y of G . In an abuse 
of terminology, we also say that the vertices s̄i and t̄i are terminals. In this way, the existence of a Ȳ -linkage {L̄1, . . . , ̄Lk}
with L̄i := s̄i − t̄i in G(S1) implies the existence of a Y -linkage {L1, . . . , Lk} in G(P ), since each path L̄i (i ∈ [1, k]) can be 
extended with the paths Si and Ti to obtain the corresponding path Li = si Si s̄i L̄i t̄i T iti .

The second step of the proof is to find a Ȳ -linkage {L̄1, . . . , ̄Lk} in G(S1), whenever possible. According to Lemma 11, 
there is a Ȳ -linkage in G(S1) provided that the vertex s1 is not in Configuration dF. The existence of a Ȳ -linkage in turn 
gives the existence of a Y -linkage, and completes the proof of the theorem in this case.

The third and final step is to deal with Configuration dF for s1. Hence assume that the vertex s1 is in Configuration dF. 
This implies that

(i) there exists a unique facet F1 of S1 containing t̄1; that
(ii) | X̄ ∩ V (F1)| = d + 1; and that

(iii) distF1 (s̄1, ̄t1) = d − 1 and all the d − 1 neighbours of t̄1 in F1, and thus in S1, belong to X̄ .

Let R be a (d − 2)-face of F1 containing the vertex so
1 opposite to s1 in F1, then s1 /∈ R , and t̄1 = so

1 ∈ R . Denote by R F1

the (d − 2)-face of F1 disjoint from R . Let J be the other facet of P containing R and let R J denote the (d − 2)-face of 
J disjoint from R . Then R J is disjoint from F1. Partition the vertex set V (R J ) of R J into the vertex sets of two induced 
subgraphs Gbad and Ggood such that Gbad contains the neighbours of the terminals in R , namely V (Gbad) = π

J
R J

( X̄ ∩ V (R))

and V (Ggood) = V (R J ) \ V (Gbad). Then π J
R (V (Gbad)) ⊆ X̄ and π J

R (V (Ggood)) ∩ X̄ = ∅. See Fig. 2(a).
Consider again the paths Si and T j that bring the vertices si (i ∈ [2, k]) and t j ( j ∈ [1, k]) into S1. Also recall that the 

paths Si and T j intersect S1 at s̄i and t̄ j , respectively. We distinguish two cases: either at least one path Si or T j touches 
R J or no path Si or T j touches R J . In the former case we redirect one aforementioned path Si or T j to break Configuration 
dF for s1 and use Lemma 11, while in the latter case we find the Ȳ -linkage using the antistar of s1.

Case 1. Suppose at least one path Si or T j touches R J .

If possible, pick one such path, say S� , for which it holds that V (S�) ∩ V (Ggood) �= ∅. Otherwise, pick one such path, say 
S� , that does not contain π J

R J
(t1), if it is possible. If none of these two selections are possible, then there is exactly one 

path Si or T j touching R J , say S� , in which case π J
R J

(t1) ∈ V (S�).
We replace the path S� by a new path s� − S1 that is disjoint from the other paths Si and T j and we replace the old 

terminal s̄� by a new terminal that causes s1 not to be in Configuration dF. First suppose that there exists s′
� in V (S�) ∩

V (Ggood). Then the old path S� is replaced by the path s� S�s′
�π

J
R (s′

�), and the old terminal s̄� is replaced by π J
R (s′

�). Now 
suppose that V (S�) ∩ V (Ggood) = ∅. Then every path Si and T j that touches R J is disjoint from Ggood. Denote by s′

� the first 
intersection of S� with R J . Let M� be a shortest path in R J from s′

� ∈ V (Gbad) to a vertex s′′
� ∈ V (Ggood). By our selection of 

S� this path M� always exists and is disjoint from any Si for i �= �. If s′′
� ∈ V (Ggood) \ V (S1) then the old path S� is replaced 

by the path s� S�s′
�M�s′′

�π
J

R (s′′
� ), and the old terminal s̄� is replaced by π J

R (s′′
� ). If instead s′′

� ∈ V (Ggood) ∩ V (S1) then the old 
path S� is replaced by the path s� S�s′

�M�s′′
� , and the old terminal s̄� is replaced by s′′

� . Refer to Fig. 2(b) for a depiction of 
this case.

In any case, the replacement of the old vertex s̄� with the new s̄� forces s1 out of Configuration dF, and we can apply 
Lemma 11 to find a Ȳ -linkage. The case of S� being equal to T1 requires a bit more explanation in order to make sure that 
the vertex s1 does not end up in a new configuration dF. Let A1 be the antistar of F1 in S1. The new vertex t̄1 is either in 
F1 or in A1. If the new t̄1 is in F1 then it is plain that s1 is not in Configuration dF. If the new vertex t̄1 is in A1, then a 
new facet F1 containing s1 and the new t̄1 cannot contain all the d − 1 neighbours of the old t̄1 in the old F1, since the 
intersection between the new and the old F1 is at most (d − 2)-dimensional and no (d − 2)-dimensional face of the old F1
contains all the d − 1 neighbours of the old t̄1. This completes the proof of the case.

Case 2. For any (d − 2)-face R in F1 that contains t̄1, the aforementioned ridge R J in the facet J is disjoint from all the 
paths Si and T j .
6



H.T. Bui, G. Pineda-Villavicencio and J. Ugon Discrete Mathematics 347 (2024) 113801
Fig. 2. Auxiliary figure for Theorem 3, where the facet F1 is highlighted in bold. (a) A depiction of the subgraphs Ggood and Gbad of R J . (b) A configuration 
where a path Si or T j touches R J . (c) A configuration where no path Si or T j touches R J .

There is a unique neighbour of t̄1 in R F1 , say s̄k , while every other neighbour of t̄1 in F1 is in R . Let X̄ p :=
π

J
R J

( X̄ \ {s1, ̄sk, ̄tk}) and let spp
1 := π

J
R J

(π F1
R (s1)). See Fig. 2(c). The d − 1 vertices in X̄ p ∪ {spp

1 } can be linked in R J

(Theorem 2) by a linkage {L̄′
1, . . . , ̄L

′
k−1}. Observe that, for the special case of d = 5 where R J is a 3-cube, the sequence 

spp
1 , π J

R J
(s̄2), π

J
R J

(t̄1), π
J

R J
(t̄2) cannot be in a 2-face in cyclic order, since distR J (spp

1 , π J
R J

(t̄1)) = 3. The linkage {L̄′
1, . . . , ̄L

′
k−1}

together with the two-path L̄k := s̄kπ
F1
R F1

(t̄k)t̄k can be extended to a linkage {L̄1, . . . , ̄Lk} given by

L̄i :=

⎧⎪⎪⎨
⎪⎪⎩

s1π
F1
R (s1)spp

1 L̄′
1π

J
R J

(t̄1)t̄1, for i = 1;

s̄iπ
J

R J
(s̄i)L̄′

iπ
J

R J
(t̄i)t̄i, for i ∈ [2,k − 1];

s̄kπ
F1
R F1

(t̄k)t̄k, for i = k.

Concatenating the paths Si (for all i ∈ [2, k]) and T j (for all j ∈ [1, k]) with the linkage {L̄1, . . . , ̄Lk} gives the desired 
Y -linkage. This completes the proof of the case, and with it the proof of the theorem. �

3.1. Proof of Lemma 11 for d ≥ 7

Before starting the proof, we require several results.

Proposition 14 ([10, Sec. 2]). For every d ≥ 1, the graph of a strongly connected d-complex is d-connected.

Proposition 15 ([3, Prop. 27]). For every d ≥ 2 such that d �= 3, the link of a vertex in a (d + 1)-cube Q d+1 is �(d + 1)/2�-linked.

Let Z be a set of vertices in the graph of a d-cube Q d . If, for some pair of opposite facets {F , F o}, the set Z contains 
both a vertex z ∈ V (F ) ∩ Z and its projection zp

F o ∈ V (F o) ∩ Z , we say that the pair {F , F o} is associated with the set Z in 
Q d and that {z, zp} is an associating pair. Note that an associating pair can associate only one pair of opposite facets.

The next lemma lies at the core of our methodology.

Lemma 16 ([3, Lemma 8]). Let Z be a nonempty subset of V (Q d). Then the number of pairs {F , F o} of opposite facets associated with 
Z is at most |Z | − 1.

The relevance of the lemma stems from the fact that a pair of opposite facets {F , F o} not associated with a given set of 
vertices Z allows each vertex z in Z to have “free projection”; that is, for every z ∈ Z ∩ V (F ) the projection πF o (z) is not in 
Z , and for z ∈ Z ∩ V (F o) the projection πF (z) is not in Z .

Lemma 17 ([12, Sec. 3]). Let G be a 2k-connected graph and let G ′ be a k-linked subgraph of G. Then G is k-linked.

Proposition 18. Let F be a facet in the star S of a vertex in a cubical d-polytope. Then, for every d ≥ 2, the antistar of F in S is 
�(d − 2)/2�-linked.

Proof. Let S be the star of a vertex s in a cubical d-polytope and let F be a facet in the star S . Let A denote the antistar 
of F in S .
7
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The case of d = 2, 3 imposes no demand on A, while the case d = 4, 5 amounts to establishing that the graph of A is 
connected. The graph of A is in fact (d − 2)-connected, since A is a strongly connected (d − 2)-complex (Proposition 7). So 
assume d ≥ 6.

There is a (d − 2)-face R in A. Indeed, take a (d − 2)-face R ′ in F containing s and consider the other facet F ′ in S
containing R ′; the (d − 2)-face of F ′ disjoint from R ′ is the desired R . By Theorem 2 the ridge R is �(d − 1)/2�-linked but 
we only require it to be �(d − 2)/2�-linked. By Propositions 7 and 14 the graph of A is (d − 2)-connected. Combining the 
linkedness of R and the connectivity of the graph of A settles the proposition by virtue of Lemma 17. �

For a pair of opposite facets {F , F o} in a cube, the restriction of the projection πF o : Q d → F o (Definition 13) to F is a 
bijection from V (F ) to V (F o). With the help of π , given the star S of a vertex s in a cubical polytope and a facet F in S , 
we can define an injection from the vertices in F , except the vertex opposite to s, to the antistar of F in S . Defining this 
injection is the purpose of Lemma 19.

Lemma 19. Let F be a facet in the star S of a vertex s in a cubical d-polytope. Then there is an injective function, defined on the vertices 
of F except the vertex so opposite to s, that maps each such vertex in F to a neighbour in V (S) \ V (F ).

Proof. We construct the aforementioned injection f between V (F ) \ {so} and V (S) \ V (F ) as follows. Let R1, . . . , Rd−1 be 
the (d − 2)-faces of F containing s, and let J1, . . . , Jd−1 be the other facets of S containing R1, . . . , Rd−1, respectively. Every 
vertex in F other than so lies in R1 ∪ · · · ∪ Rd−1. Let Ro

i be the (d − 2)-face in J i that is opposite to Ri for each i ∈ [1, d − 1]. 
For every vertex v in V (R j) \ (V (R1) ∪ · · · ∪ V (R j−1)) define f (v) as the projection π in J j of v onto V (Ro

j ), namely 
f (v) := πRo

j
(v); observe that πRo

j
(v) ∈ V (Ro

j) \ (V (Ro
1) ∪ · · · ∪ V (Ro

j−1)). Here R−1 and Ro−1 are empty sets. The function f

is well defined as Ri and Ro
i are opposite (d − 2)-cubes in the (d − 1)-cube J i .

To see that f is an injection, take distinct vertices v1, v2 ∈ V (F ) \ {so}, where v1 ∈ V (Ri) \ (V (R1) ∪ · · · ∪ V (Ri−1))

and v2 ∈ V (R j) \ (V (R1) ∪ · · · ∪ V (R j−1)) for i ≤ j. If i = j then f (v1) = πRo
i
(v1) �= πRo

i
(v2) = f (v2). If instead i < j then 

f (v1) ∈ V (Ro
i ) ⊆ V (Ro

1) ∪ · · · ∪ V (Ro
j−1), while f (v2) /∈ V (Ro

1) ∪ · · · ∪ V (Ro
j−1). �

Proof of Lemma 11 for d ≥ 7. The proof of the case d = 5 follows a similar pattern to this one, but includes additional 
technical considerations due to the fact that the 3-cube is not 2-linked. These technical considerations will be presented in 
a separate proof in Appendix A. In this proof, we identify the arguments that fail for d = 5 with a dagger sign †. This will 
make it easier for the reader to follow the proof for d = 5 in the appendix.

Let d ≥ 7 be odd and let k := (d + 1)/2. Let s1 be a vertex in a cubical d-polytope P such that s1 is not in Configuration 
dF, and let S1 denote the star of s1 in B(P ). Let X be any set of 2k vertices in the graph G(S1) of S1. The vertices in X are 
our terminals. Also let Y := {{s1, t1}, . . . , {sk, tk}} be a labelling and pairing of the vertices of X . We aim to find a Y -linkage 
{L1, . . . , Lk} in G where Li joins the pair {si, ti} for i = 1, . . . , k. Recall that a path is X-valid if it contains no inner vertex 
from X .

We consider a facet F1 of S1 containing t1 and having the largest possible number of terminals. We decompose the proof 
into four cases based on the number of terminals in F1, proceeding from the more manageable case to the more involved 
one.

Case 1. |X ∩ V (F1)| = d.
Case 2. 3 ≤ |X ∩ V (F1)| ≤ d − 1.
Case 3. |X ∩ V (F1)| = 2.
Case 4. |X ∩ V (F1)| = d + 1.

The proof of Lemma 11 is long, so we outline the main ideas. We let A1 be the antistar of F1 in S1 and let L1 be the 
link of s1 in F1. Using the (k −1)-linkedness of F1 (Theorem 2), we link as many pairs of terminals in F1 as possible through 
disjoint X-valid paths Li := si − ti . For those terminals that cannot be linked in F1, if possible we use the injection from 
V (F1) to V (A1) granted by Lemma 19 to find a set NA1 of pairwise distinct neighbours in V (A1) \ X of those terminals. 
Then, using the (k −2)-linkedness of A1 (Proposition 18), we link the corresponding pairs of terminals in A1 and vertices in 
NA1 accordingly†. This general scheme does not always work, as the vertex so

1 opposite to s1 in F1 does not have an image 
in A1 under the aforementioned injection or the image of a vertex in F1 under the injection may be a terminal. In those 
scenarios we resort to ad hoc methods, including linking corresponding pairs in the link of s1 in F1, which is (k − 1)-linked 
by Proposition 15†and does not contain s1 or so

1, or linking corresponding pairs in (d − 2)-faces disjoint from F1, which are 
(k − 1)-linked by Theorem 2†.

To aid the reader, each case is broken down into subcases highlighted in bold.
Recall that, given a pair {F , F o} of opposite facets in a cube Q , for every vertex z ∈ V (F ) we denote by zp

F o or π Q
F o (z)

the unique neighbour of z in F o .

Case 1. |X ∩ V (F1)| = d.
8
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Without loss of generality, assume that t2 /∈ V (F1).
Suppose first that distF1 (s2, s1) < d − 1. There exists a neighbour s′

2 of s2 in A1. With the use of the strong (k − 1)-
linkedness of F1 (Theorem 4), find disjoint paths L1 := s1 − t1 and Li := si − ti (for each i ∈ [3, k]) in F1, each avoiding s2. 
Find a path L2 in S1 between s2 and t2 that consists of the edge s2s′

2 and a subpath in A1 between s′
2 and t2, using the 

connectivity of A1 (see Proposition 7). The paths Li (i ∈ [1, k]) give the desired Y -linkage.
Now assume distF1(s2, s1) = d −1. Since 2k −1 = d and there are d −1 pairs of opposite (d −2)-faces in F1, by Lemma 16

there exists a pair {R, Ro} of opposite (d − 2)-faces in F1 that is not associated with the set Xs2 := (X ∩ V (F1)) \ {s2}, whose 
cardinality is d − 1. Assume s2 ∈ R . Then s1 ∈ Ro .

Suppose all the neighbours of s2 in R are in X ; that is, NR(s2) = X \ {s1, s2, t2}. The projection π F1
Ro (s2) of s2 onto Ro is 

not in X since s1 is the only terminal in Ro and distF1 (s2, s1) = d −1 ≥ 2. Next find disjoint paths Li := si − ti for all i ∈ [3, k]
in R that do not touch s2 or t1, using the (k − 1)-linkedness of R (the argument also applies for d = 5 due to the 3-connectivity 
of R in this case). With the help of Lemma 19, find a neighbour s′

2 of π F1
Ro (s2) in A1, and with the connectivity of A1, a path 

L2 between s2 and t2 that consists of the length-two path s2π
F1
Ro (s2)s′

2 and a subpath in A1 between s′
2 and t2. Finally, find 

a path L1 in F1 between s1 and t1 that consists of the edge t1π
F1
Ro (t1) and a subpath in Ro disjoint from π F1

Ro (s2) (here use 
the 2-connectivity of Ro). The paths Li (i ∈ [1, k]) give the desired Y -linkage.

Thus assume there exists a neighbour s̄2 of s2 in V (R) \ X . Let XRo := π F1
Ro (X \ {s2, t2}). Find a path L′

2 in A1 between a 
neighbour s′

2 of s̄2 in A1 and t2 using the connectivity of A1. Then let L2 := s2 s̄2s′
2L′

2t2. Find disjoint paths Li := π F1
Ro (si) −

π F1
Ro (ti) (i ∈ [1, k] and i �= 2) in Ro linking the d − 1 vertices in XRo using the (k − 1)-linkedness of Ro †; add the edge 

π F1
Ro (ti)ti to Li if ti ∈ R or the edge π F1

Ro (si)si to Li if si ∈ R . The disjoint paths Li (i ∈ [1, k]) give the desired Y -linkage.

Case 2. 3 ≤ |X ∩ V (F1)| ≤ d − 1.

The number of terminals in A1 is at most d + 1 − 3 = d − 2. Since 2k − 1 = d and there are d − 1 pairs of opposite 
(d − 2)-faces in F1, by Lemma 16 there exists a pair {R, Ro} of opposite (d − 2)-faces in F1 that is not associated with 
X ∩ V (F1). Assume s1 ∈ R . We consider two subcases according to whether t1 ∈ R or t1 ∈ Ro .

Suppose first that t1 ∈ R . The (d − 2)-connectivity of R ensures the existence of an X-valid path L1 := s1 − t1 in R . Let

XRo := π F1
Ro ((X \ {s1, t1}) ∩ V (F1)).

Then 1 ≤ |XRo | ≤ d − 3. Let so
1 be the vertex opposite to s1 in F1; the vertex so

1 has no neighbour in A1.
Let Z̄ be a set of |V (A1) ∩ X | distinct vertices in V (Ro) \ (XRo ∪ {so

1}). To see that | Z̄ | ≤ |V (Ro) \ (XRo ∪ {so
1})|, observe 

that, for d ≥ 5 and |XRo | ≤ d − 3, we get

|V (Ro) \ (XRo ∪ {so
1})| ≥ 2d−2 − (d − 3) − 1 ≥ d − 2 ≥ |V (A1) ∩ X | = | Z̄ |.

Use Lemma 19 to obtain a set Z in A1 of | Z̄ | distinct vertices adjacent to vertices in Z̄ . Then |Z | = |V (A1) ∩ X | ≤ d − 2.
Using the (d − 2)-connectivity of A1 (Proposition 7) and Menger’s theorem, find disjoint paths S̄ i and T̄ j (for all i, j �= 1) 

in A1 between V (A1) ∩ X and Z . Then produce disjoint paths Si and T j (for all i, j �= 1) from terminals si and t j in A1, 
respectively, to Ro by adding edges z� z̄� with z� ∈ Z and z̄� ∈ Z̄ to the corresponding paths S̄ i and T̄ j . If si or t j is already in 
Ro , let Si := si or T j := t j , accordingly. If instead si or t j is in R , let Si be the edge siπ

F1
Ro (si) or let T j be the edge t jπ

F1
Ro (t j). 

It follows that the paths Si and Ti for i ∈ [2, k] are all pairwise disjoint. Let X+
Ro be the intersections of Ro and the paths Si

and T j (i, j �= 1). Then |X+
Ro | = d − 1. Suppose that X+

Ro = {
s̄2, t̄2, . . . , s̄k, t̄k

}
. The corresponding pairing Y +

Ro of the vertices in 
X+

Ro can be linked through paths L̄i := s̄i − t̄i (for all i ∈ [2, k]) in Ro using the (k − 1)-linkedness of Ro (Theorem 2)†. See 
Fig. 3(a) for a depiction of this configuration. In this case, the desired Y -linkage is given by the following paths.

Li :=
{

s1L1t1, for i = 1;

si Si s̄i L̄i t̄i T iti, otherwise.

Suppose now that t1 ∈ Ro . Let

XR := π F1
R ((X \ {t1}) ∩ V (F1)).

There are at most d − 2 terminal vertices in Ro . Therefore, the (d − 2)-connectivity of Ro ensures the existence of an X-valid 
π F1

Ro (s1) − t1 path L̄1 in Ro . Then let L1 := s1π
F1
Ro (s1)L̄1t1. Let J be the other facet in S1 containing R and let R J be the 

(d − 2)-face of J disjoint from R . Then R J ⊂ A1. Since there are at most d − 2 terminals in A1 and since A1 is (d − 2)-
connected (Proposition 7), we can find corresponding disjoint paths Si and T j from the terminals in A1 to R J by Menger’s 
theorem [4, Theorem 3.3.1]. For terminals si and t j in X ∩ V (R), let Si := si and T j := t j for all i, j �= 1, while for terminals si

and t j in X ∩ V (Ro), let Si := siπ
F1
R (si) and T j := t jπ

F1
R (t j) for all i, j �= 1. Let X J be the set of the intersections of the paths 

Si and T j with J plus the vertex s1. Then X J ⊂ V ( J ) and |X J | = d (since t1 ∈ Ro). Suppose that X J = {
s1, s̄2, t̄2, . . . , s̄k, t̄k

}
and let Y J = {{

s̄2, t̄2
}
, . . . ,

{
s̄k, t̄k

}}
be a pairing of X J \ {s1}.
9
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Fig. 3. Auxiliary figure for Case 2 of Lemma 11. (a) A configuration where t1 ∈ R and the subset X+
Ro of Ro is highlighted in bold. (b) A configuration where 

t1 ∈ Ro and the facet J is highlighted in bold.

Resorting to the strong (k − 1)-linkedness of the facet J (Theorem 4), we obtain k − 1 disjoint paths L̄i := s̄i − t̄i for all 
i �= 1 that correspondingly link Y J in J , with all the paths avoiding s1. See Fig. 3(b) for a depiction of this configuration. In 
this case, the desired Y -linkage is given by the following paths.

Li :=
{

s1L1t1, for i = 1;

si Si L̄i T iti, otherwise.

Case 3. |X ∩ V (F1)| = 2.

In this case, we have that V (F1) ∩ X = {s1, t1} and |V (A1) ∩ X | = d − 1. The proof of this case requires the definition of 
several sets. For quick reference, we place most of these definitions in itemised lists. We begin with the following sets:

• S12, the star of s2 in S1 (that is, the complex formed by the facets of P containing s1 and s2);
• G(S12), the graph of S12; and
• �12, the subgraph of G(S12) and G(A1) that is induced by V (S12) \ V (F1).

It follows that every neighbour in G(A1) of s2 is in �12:

N�12(s2) = NG(A1)(s2). (1)

Note that when d ≥ 5, |V (�12)| ≥ 2d−2 ≥ d − 2, since S12 contains at least one facet (other than F1), and that facet contains 
at least one (d − 2)-face disjoint from F1. The vertices of that (d − 2)-face are in �12.

The first step for this case is to bring the terminals in A1 into �12. The (d − 2)-connectivity of the graph G(A1) (Propo-
sition 7) ensures the existence of pairwise disjoint paths from (V (A1) ∩ X) \ {s2} to �12. Among these paths, denote by Si
the path from the terminal si ∈ A1 to �12 and let V (Si) ∩ V (�12) =

{
ŝi

}
. Similarly, define T j and t̂ j . By (1) each path Si

or T j touches �12 at a vertex other than s2; this is so because each such path will need to reach the neighbourhood of s2

in �12 before reaching s2. We also let ŝ2 denote s2. The set of vertices x̂ is accordingly denoted by X̂ . Then | X̂| = d − 1. 
Abusing terminology, since there is no potential for confusion, we call the vertices in X̂ terminals as well. Fig. 4(a) depicts 
this configuration.

Pick a facet F12 in S12 that contains t̂2. An important point is that t1 is not in F12; otherwise F12 would contain s1, s2
and t1, and it should have been chosen instead of F1.

The second step is to find a path L1 in F1 between s1 and t1 such that V (L1) ∩ V (F12) = {s1}.

Remark 20. For any two faces F , J of a polytope, with F not contained in J , there is a facet containing J but not F . In 
particular, for any two distinct vertices of a polytope, there is a facet containing one but not the other.

To see the existence of such a path, note that the intersection of F12 and F1 is a face that does not contain t1 and 
therefore is contained in a (d − 2)-face R of F1 containing s1 but not t1 (Remark 20). Find a path L′

1 in Ro , the (d − 2)-face 
in F1 disjoint from R (Ro contains t1), between π F1

Ro (s1) and t1 and let L1 := s1π
F1
Ro (s1)L′

1t1.
The third step is to bring the d − 1 terminal vertices x̂ ∈ �12 into the facet F12 so that they can be linked there, avoiding 

s1. We consider two cases depending on the number of facets in S12.
Suppose S12 only consists of F12. Then

X̂ = {ŝ2, . . . , ŝk, t̂2, . . . , t̂k} ⊂ V (�12) ⊂ V (F12).
10
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Fig. 4. Auxiliary figure for Case 3 of Lemma 11. A representation of S1. (a) A configuration where the subgraph �12 is tiled in falling pattern and the 
complex A1 is coloured in grey. (b) A depiction of S12 with more than one facet; the facet F12 is highlighted in bold, the complex A1 is coloured in grey 
and the complex A12 is highlighted in falling pattern. (c) The construction of the path L1 := s1π

F 1

Ro (s1)L′
1t1 from s1 to t1 in F1 such that L1 ∩ V (�12) = {s1}. 

(d) A depiction of S12 with more than one facet; the facets F12 and J12 are highlighted in bold and their intersection U is highlighted in falling pattern; 
the set W in J12 is coloured in dark grey. (e) A depiction of a portion of S12, zooming in on the facets F12 and J12; each facet is represented as the 
convex hull of two disjoint (d − 2)-faces, and their intersection U is highlighted in falling pattern. The sets W and π J12

U (W ) in J12 are coloured in dark 
grey.

With the help of the strong (k − 1)-linkedness of F12 (Theorem 4), we can link the pair {ŝi, ̂ti} for each i ∈ [2, k] in F12

through disjoint paths L̂i , all avoiding s1. For each i ∈ [2, k], we concatenate the path L̂i with the paths Si and Ti in this 
order, resulting in the path Li . These new k − 1 paths give a (Y \ {s1, t1})-linkage {L2, . . . , Lk}. Hence the desired Y -linkage 
is as follows.

Li :=
⎧⎨
⎩

s1π
F1
Ro (s1)L′

1t1, for i = 1;

si Si ŝi L̂i t̂i T iti, otherwise.

Assume S12 has more than one facet. We have that

X̂ = {ŝ2, . . . , ŝk, t̂2, . . . , t̂k} ⊂ V (�12).

Define

• A12 as the complex of S12 induced by V (S12) \ (V (F1) ∪ V (F12)).

Then the graph G(A12) of A12 coincides with the subgraph of �12 induced by V (�12) \ V (F12). Fig. 4(b) depicts this 
configuration.

Our strategy is first to bring the d − 3 terminal vertices x̂ in �12 other than ŝ2 and t̂2 into F12 \ F1 through disjoint paths 
Ŝ i and T̂ j , without touching ŝ2 and t̂2. Second, denoting by s̃i and t̃ j the intersection of Ŝ i and T̂ j with V (F12) \ V (F1), 
respectively, we link the pairs {s̃i, ̃ti} for all i ∈ [2, k] in F12 through disjoint paths L̃i , without touching s1; here we resort 
to the strong (k − 1)-linkedness of F12. We develop these ideas below.

From Lemma 9(iii), it follows that A12 is nonempty and contains a spanning strongly connected (d − 3)-subcomplex, 
thereby implying, by Proposition 14, that

G(A12) is (d − 3)-connected.

Since S12 contains more than one facet, the following sets exist:

• U , a (d − 2)-face in F12 that contains s1 and ŝ2 (= s2) (since several facets in S12 contain both s1 and s2);
11
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• J12, the other facet in S12 containing U ;
• U J , the (d − 2)-face in J12 disjoint from U , and as a consequence, disjoint from F12;
• CU , the subcomplex of B(U ) induced by V (U ) \ V (F1), namely the antistar of U ∩ F1 in U ; and
• CU J , the subcomplex of B(U J ) induced by V (U J ) \ V (F1).

The subcomplex CU is nonempty, since ŝ2 ∈ V (U ) \ V (F1), and so, thanks to Lemma 6, it is a strongly connected (d − 3)-
complex. Then, from CU containing a (d − 3)-face it follows that

|V (CU )| = |V (U ) \ V (F1))| ≥ 2d−3 ≥ d − 1 for d ≥ 5. (2)

The subcomplex CU J is nonempty: the vertex in J12 opposite to s1 is not in U , since s1 ∈ U , nor is it in F1 (Remark 8), 
and so it must be in CU J . If U J ∩ F1 = ∅ then CU J = B(U J ); otherwise CU J is the antistar of U J ∩ F1 in U J , and since 
U ∩ F1 �= ∅ (s1 is in both), it follows that U J � F1. Therefore, according to Lemma 6, CU J is or contains a strongly connected 
(d − 3)-complex. Hence, in both instances,

|V (CU J )| = |V (U J ) \ V (F1))| ≥ 2d−3 ≥ d − 1 for d ≥ 5. (3)

Recall that we want to bring every vertex in the set X̂ , which is contained in �12, into F12 \ F1. We construct | X̂ ∩ V (A12)|
pairwise disjoint paths Ŝ i and T̂ j from ŝi ∈A12 and t̂ j ∈A12, respectively, to V (F12) \ V (F1) as follows. Pick a set

W ⊂ V (CU J ) \ π
J12

U J

(
( X̂ ∪ {s1}) ∩ U

)
of | X̂ ∩ V (A12)| vertices in CU J . Then π J 12

U (W ) is disjoint from ( X̂ ∪ {s1}) ∩ U . In other words, the vertices in W are in 
CU J and are not projections of the vertices in ( X̂ ∪ {s1}) ∩ U onto U J . We show that the set W exists, which amounts to 
showing that CU J has enough vertices to accommodate W .

First note that

| X̂ ∩ V (A12)| + |( X̂ ∪ {s1}) ∩ V (F12)| = | X̂ ∪ {s1}| = d,

( X̂ ∪ {s1}) ∩ V (U ) ⊆ ( X̂ ∪ {s1}) ∩ V (F12).
(4)

If U J ∩ F1 = ∅ then CU J = B(U J ). And (4) together with |V (U J )| = 2d−2 ≥ d for d ≥ 7 (indeed, for d ≥ 5) gives the 
following chain of inequalities∣∣∣V (CU J ) \ π

J12
U J

(
( X̂ ∪ {s1}) ∩ V (U )

)∣∣∣ ≥ ∣∣V (U J )
∣∣ −

∣∣∣( X̂ ∪ {s1}) ∩ V (U )

∣∣∣
≥ d −

∣∣∣( X̂ ∪ {s1}) ∩ V (U )

∣∣∣ ≥
∣∣∣ X̂ ∪ {s1}

∣∣∣ −
∣∣∣( X̂ ∪ {s1}) ∩ V (F12)

∣∣∣
=

∣∣∣ X̂ ∩ V (A12)

∣∣∣ = |W | ,
as desired.

Suppose now U J ∩ F1 �= ∅. Since s1 ∈ U ∩ F1 and J12 = conv{U ∪ U J }, the cube J12 ∩ F1 has opposite facets U J ∩ F1

and U ∩ F1. From s1 ∈ U ∩ F1 it follows that π J12
U J

(s1) ∈ U J ∩ F1, and thus, that π J12
U J

(s1) /∈ CU J ; here we use the following 
remark.

Remark 21. Let (K , K o) be opposite facets in a cube Q and let B be a proper face of Q such that B ∩ K �= ∅ and B ∩ K o �= ∅. 
Then π Q

K o (B ∩ K ) = B ∩ K o .

Since π J12
U J

(s1) /∈ CU J , using (3) and (4) we get

∣∣∣V (CU J ) \ π
J12

U J

(
( X̂ ∪ {s1}) ∩ V (U )

)∣∣∣ =
∣∣∣V (CU J ) \ π

J12
U J

(
X̂ ∩ V (U )

)∣∣∣
≥ ∣∣V (CU J )

∣∣ −
∣∣∣ X̂ ∩ V (U )

∣∣∣ ≥ d − 1 −
∣∣∣ X̂ ∩ V (U )

∣∣∣
≥

∣∣∣ X̂
∣∣∣ −

∣∣∣ X̂ ∩ V (F12)

∣∣∣ =
∣∣∣ X̂ ∩ V (A12)

∣∣∣ = |W | .
In this way, we have shown that CU J can accommodate the set W . We now finalise the case.

There are at most d − 3 vertices x̂ in X̂ ∩ V (A12) because ŝ2 and t̂2 are already in V (F12) \ V (F1). Since G(A12) is 
(d − 3)-connected, we can find |W | = | X̂ ∩ V (A12)| pairwise disjoint paths Ŝ ′

i and T̂ ′
j in A12 from the terminals ŝi and 

t̂ j in X̂ ∩ V (A12) to W . The X̂-valid path Ŝ i from ŝi ∈ A12 to V (F12) \ V (F1) then consists of the subpath Ŝ ′ := ŝi − wi
i

12
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with wi ∈ W plus the edge wiπ
J12

U (wi); from the choice of W it follows that π J12
U (wi) /∈ X̂ ∪ {s1}. The paths T̂ ′

j and T̂ j are 
defined analogously. Fig. 4(d)-(e) depicts this configuration.

Denote by s̃i the intersection of Ŝ i and V (F12) \ V (F1); similarly, define t̃ j . Every terminal vertex x̂ already in F12 is also 
denoted by x̃, and in this case we let Ŝ i or T̂ j be the vertex x̃.

Now F12 contains the pairs 
{

s̃i, t̃i
}

for all i ∈ [2, k] and the terminal s1, as desired. Link these pairs in F12 through disjoint 
paths L̃i , each avoiding s1, with the use of the strong (k − 1)-linkedness of F12 (Theorem 4). The paths L̃i concatenated with 
the paths Si , Ŝ i , Ti and T̂ i for i ∈ [2, k] give a (Y \ {s1, t1})-linkage {L2, . . . , Lk}. Hence the desired Y -linkage is as follows.

Li :=
{

s1π
F1
Ro (s1)L′

1t1, for i = 1;

si Si ŝi Ŝ i s̃i L̃i t̃i T̂ i t̂i T iti, otherwise.

Case 4. |X ∩ V (F1)| = d + 1.

Remember that by assumption s1 is not in configuration dF. Here we have that V (A1) ∩ X = ∅. This case is decomposed 
into three main subcases A, B and C, based on the nature of the vertex so

1 opposite to s1 in F1, which is the only vertex in 
F1 that does not have an image under the injection from F1 to A1 defined in Lemma 19.

SUBCASE A. The vertex so
1 opposite to s1 in F1 does not belong to X

Let X ′ := X \ {t1} and let Y ′ := Y \ {{s1, t1}}. Since |X ′| = d, the strong (k − 1)-linkedness of F1 (Theorem 4) gives a Y ′-
linkage {L2, . . . , Lk} in the facet F1 with each path Li := si − ti (i ∈ [2, k]) avoiding s1. We find pairwise distinct neighbours 
s′

1 and t′
1 in A1 of s1 and t1, respectively. If none of the paths Li touches t1, we find a path L1 := s1 − t1 in S1 that contains 

a subpath in A1 between s′
1 and t′

1 (here use the connectivity of A1, Proposition 7), and we are home. Otherwise, assume 
that the path L j contains t1. With the help of Lemma 19, find pairwise distinct neighbours s′

j and t′
j in A1 of s j and t j , 

respectively, such that the vertices s′
1, t′

1, s′
j and t′

j are pairwise distinct. According to Proposition 18, the complex A1 is 
2-linked for d ≥ 7†. Hence, we can find disjoint paths L′

1 := s′
1 − t′

1 and L′
j := s′

j − t′
j in A1, respectively; these paths naturally 

give rise to paths L1 := s1s′
1L′

1t′
1t1 in S1 and L j := s j s′

j L′
jt

′
jt j in S1. The paths {L1, . . . , Lk} give the desired Y -linkage.

SUBCASE B. The vertex so
1 opposite to s1 in F1 belongs to X but is different from t1, say so

1 = s2

Since F1 is a cube, the link L1 of s1 in F1 contains all the vertices in F1 except s1 and s2. First find a neighbour 
s′

1 of s1 and a neighbour t′
1 of t1 in A1. There is a neighbour sF1

2 of s2 in F1 that is either t2 or a vertex not in X : 
{s1, s2} ∩ N F1 (s2) = ∅ and |N F1 (s2)| = d − 1.

Suppose sF1
2 = t2, and let L2 := s2t2. Using the (k − 1)-linkedness of L1 (Proposition 15), we find disjoint paths t1 − t2

and Li := si − ti for each i ∈ [3, k] in L1
†. Then define a path L1 := s1 − t1 in S1 that contains a subpath in A1 between s′

1
and t′

1; here we use the connectivity of A1 (Proposition 7). The paths {L1, . . . , Lk} give the desired Y -linkage.

Assume sF1
2 is not in X . Observe that |(X \ {s1, s2}) ∪ {sF1

2 }| = d. Using the (k − 1)-linkedness of L1 for d ≥ 7 (Proposi-

tion 15), find in L1 disjoint paths L′
2 := sF1

2 − t2 and L′
i := si − ti for i ∈ [3, k]†. Since t1 is also in L1 it may happen that 

it lies in one of the paths L′
i . If t1 does not belong to any of the paths L′

i for i ∈ [2, k], then find a path L1 := s1s′
1L′

1t′
1t1

in S1 where L′
1 is a subpath in A1 between s′

1 and t′
1, using the connectivity of A1 (Proposition 7). In this scenario, let 

L2 := s2sF1
2 L′

2t2 and Li := L′
i for each i ∈ [3, k]; the desired Y -linkage is given by the paths {L1, . . . , Lk}.

If t1 belongs to one of the paths L′
i with i ∈ [2, k], say L′

j , then consider in A1 a neighbour t′
j of t j and, either a neighbour 

s′
j of s j if j �= 2 or a neighbour s′

2 of sF1
2 . From Lemma 19 it follows that the vertices s′

1, t′
1, s′

j and t′
j can be taken pairwise 

distinct. Since A1 is 2-linked for d ≥ 7 (see Proposition 18), find in A1 a path L′
1 between s′

1 and t′
1 and a path L′′

j between 
s′

j and t′
j
†. As a consequence, we obtain in S1 a path L1 := s1s′

1L′
1t′

1t1 and, either a path L j := s j s′
j L′′

j t′
jt j if j �= 2 or a path 

L2 := s2sF1
2 s′

2L′′
2t′

2t2. In addition, let Li := L′
i for each i ∈ [3, k] and i �= j. The paths {L1, . . . , Lk} give the desired Y -linkage.

SUBCASE C. The vertex opposite to s1 in F1 coincides with t1

Then t1 has no neighbour in A1. In fact, F1 is the only facet in S1 containing t1.
Because the vertex s1 is not in Configuration dF, t1 has a neighbour t F1

1 in F1 that is not in X . Here we reason as in the 
scenario in which s2 = so

1 and s2 has a neighbour not in X .
First, using the (k − 1)-linkedness of L1 (Proposition 15) find disjoint paths Li := si − ti in L1 for all i ∈ [2, k]†. It 

may happen that t F1
1 is in one of the paths Li for i ∈ [2, k]. Second, consider neighbours s′

1 and t′
1 in A1 of s1 and t F1

1 , 
respectively.
13
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If t F1
1 doesn’t belong to any path Li , then find a path L1 := s1 − t1 that contains the edge t1t F1

1 and a subpath L′
1 in A1

between s′
1 and t′

1; that is, L1 = s1s′
1L′

1t′
1t F1

1 t1. The desired Y -linkage is given by {L1, . . . , Lk}.

If t F1
1 belongs to one of the paths Li with i ∈ [2, k], say L j , then disregard this path L j and consider in A1 a neighbour s′

j

of s j and a neighbour t′
j of t j . From Lemma 19, it follows that the vertices s′

1, t′
1, s′

j and t′
j can be taken pairwise distinct. 

Using the 2-linkedness of A1 for d ≥ 7, find a path L′
1 in A1 between s′

1 and t′
1 and a path L′

j in A1 between s′
j and t′

j
†. 

Let L1 := s1s′
1L′

1t′
1t F1

1 t1 and let L j := s j s′
j L′

jt
′
jt j be the new s j − t j path. The paths {L1, . . . , Lk} form the desired Y -linkage.

And finally, the proof of Lemma 11 is complete. �
4. Strong linkedness of cubical polytopes

Proof of Theorem 5 (Strong linkedness of cubical polytopes). Let P be a cubical d-polytope. For odd d Theorem 5 is a con-
sequence of Theorem 3. The result for d = 4 is given by [3, Theorem 16]. So assume d = 2k ≥ 6. Let X be a set of d + 1
vertices in P . Arbitrarily pair 2k vertices in X to obtain Y := {{s1, t1}, . . . , {sk, tk}}. Let x be the vertex of X not paired in Y . 
We find a Y -linkage {L1, . . . , Lk} where each path Li joins the pair {si, ti} and avoids the vertex x.

Using the d-connectivity of G(P ) and Menger’s theorem, bring the d = 2k terminals in X \ {x} to the link of x in the 
boundary complex of P through 2k disjoint paths Lsi and Lti for i ∈ [1, k]. Let s′

i := V (Lsi ) ∩ link(x) and t′
i := V (Lti ) ∩ link(x)

for i ∈ [1, k]. Thanks to Theorem 3, when d ≥ 6, the link of x is k-linked. Using the k-linkedness of link(x), find disjoint 
paths L′

i := s′
i − t′

i in link(x). Observe that all these k paths {L′
1, . . . , L

′
k} avoid x. Extend each path L′

i with Lsi and Lti to form 
a path Li := si − ti for each i ∈ [1, k]. The paths {L1, . . . , Lk} form the desired Y -linkage. �
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Appendix A. Proof of Lemma 11 for the case d = 5

The proof of the lemma for the case d = 5 follows a similar structure as the case d ≥ 7, but requires some technical 
adjustments. We rely on the following lemmas:

Lemma 22 ([3, Lemma 14]). Let P be a cubical d-polytope with d ≥ 4. Let X be a set of d + 1 vertices in P , all contained in a facet F . 
Let k := �(d + 1)/2�. Arbitrarily label and pair 2k vertices in X to obtain Y := {{s1, t1}, . . . , {sk, tk}}. Then, for at least k − 1 of these 
pairs {si, ti}, there is an X-valid si − ti path in F .

Proposition 23 ([3, Prop. 4 and Cor. 5]). Let G be the graph of a 3-polytope and let X be a set of four vertices of G. The set X is linked 
in G if and only if there is no facet of the polytope containing all the vertices of X. In particular, no nonsimplicial 3-polytope is 2-linked.

Given sets A, B, X of vertices in a graph G , the set X separates A from B if every A − B path in the graph contains a 
vertex from X . A set X separates two vertices a, b not in X if it separates {a} from {b}. We call the set X a separator of the 
graph. A set of vertices in a graph is independent if no two of its elements are adjacent.

Corollary 24 ([3, Corollary 10]). A separator of cardinality d in a d-cube is an independent set.

Proof of Lemma 11 for d = 5. We proceed as in the proof for d ≥ 7, and consider the same four cases. We let k := 3 and 
let s1 be a vertex in a cubical 5-polytope P such that s1 is not in Configuration 5F. Recall that S1 denotes the star of 
s1 in B(P ). Let X be any set of 6 vertices in the graph G(S1) of S1. The vertices in X are our terminals. Also let Y :=
{{s1, t1}, {s2, t2}, {s3, t3}} be a labelling and pairing of the vertices of X . We aim to find a Y -linkage {L1, L2, L3} in G where 
Li joins the pair {si, ti} for i ∈ {1, 2, 3}. Recall that a path is X-valid if it contains no inner vertex from X .

We consider a facet F1 of S1 containing t1 and having the largest possible number of terminals. The four cases we 
consider in the Proof for the case d ≥ 7 are:

Case 1. |X ∩ V (F1)| = 5.
Case 2. 3 ≤ |X ∩ V (F1)| ≤ 4.
Case 3. |X ∩ V (F1)| = 2.
14
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Case 4. |X ∩ V (F1)| = 6.

Case 3 does not require any modification: all the arguments apply for d ≥ 5. Let us consider the other three cases.

Case 1. |X ∩ V (F1)| = 5.

Without loss of generality, assume that t2 /∈ V (F1).
In this case we proceed as for the case d ≥ 7 until the final part of the proof where we find disjoint paths Li :=

π F1
Ro (si) − π F1

Ro (ti) (i ∈ [1, k] and i �= 2) in Ro linking the d − 1 vertices in XRo . When d = 5 we can only do that when the 
terminals in Ro are not in cyclic order (in which case we proceed as in the proof for d ≥ 7). Thus assume that the terminals 
are in cyclic order. This in turn implies that π F1

R (s3) /∈ {s2, s′
2} and π F1

R (t3) /∈ {s2, s′
2}, since distF1 (s1, s2) = 4.

Find a path L′
3 in R between π F1

R (s3) and π F1
R (t3) such that L′

3 is disjoint from both s2 and s′
2 and disjoint from t1 if 

t1 ∈ R; here use Corollary 24, which ensures that the vertices s2, s′
2 and t1, if they are all in R , cannot separate π F1

R (s3)

from π F1
R (t3) in R , since a separator of size three in R must be an independent set. Extend the path L′

3 in R to a path 
L3 := s3π

F1
R (s3)L′

3π
F1
R (t3)t3 in F1, if necessary. Find a path L′

1 := s1 −π F1
Ro (t1) in Ro disjoint from π F1

Ro (s3) and π F1
Ro (t3), using 

the 3-connectivity of Ro . Extend L′
1 to a path L1 := s1L′

1π
F1
Ro (t1)t1 in F1, if necessary. The linkage {L1, L2, L3} is a Y -linkage. 

This completes the proof of Case 1.

Case 2. 3 ≤ |X ∩ V (F1)| ≤ 4.

In this case we proceed as in the proof for d ≥ 7, but some comments for d = 5 are in order. By virtue of Proposition 23, 
we need to make sure that the sequence s̄2, ̄s3, ̄t2, ̄t3 in X+

Ro is not in a 2-face of Ro in cyclic order. To ensure this, we 
need to be a bit more careful when selecting the vertices in Z̄ . Indeed, if there are already two vertices in XRo at distance 
three in Ro , no care is needed when selecting Z̄ , so proceed as in the case of d ≥ 7. Otherwise, pick a vertex z̄ ∈ Z̄ ⊆
V (Ro) \ (XRo ∪ {so

1}) such that z̄ is the unique vertex in Ro with distRo (z̄, x) = 3 for some vertex x ∈ XRo ; this vertex x
exists because |X ∩ V (F1)| ≥ 3. Selecting such a z̄ �= so

1 is always possible because so
1 is not at distance three in Ro from any

vertex in XRo : the unique vertex in Ro at distance three from so
1 is π F1

Ro (s1), and π F1
Ro (s1) /∈ X because the pair {R, Ro} is not 

associated with X ∩ V (F1). Once z̄ is selected, the set Z will contain a neighbour z of z̄. In this way, some path Si or T j
bringing terminals si or t j in A1 into Ro through Z would use the vertex z, thereby ensuring that x and z̄ would be both 
in X+

Ro . This will cause the sequence s̄2, ̄s3, ̄t2, ̄t3 not to be in a 2-face, and thus, not in cyclic order.

Case 4. |X ∩ V (F1)| = 6.

The difficulty with d = 5 stems from the 3-faces of the polytope not being 2-linked (Proposition 23). Recall that in this 
case, all the terminals are in the facet F1. The proof is divided into subcases depending on the nature of the vertex opposite 
to s1 in F1. Either it is not in X (subcase A), or it is a terminal but not t1 (subcase B), or it is t1 (subcase C).

SUBCASES A AND B. The vertex so
1 opposite to s1 in F1 either does not belong to X or belongs to X but is different from t1

Let X := {s1, s2, s3, t1, t2, t3} be any set of six vertices in the graph G of a cubical 5-polytope P . Also let Y :=
{{s1, t1}, {s2, t2}, {s3, t3}}. We aim to find a Y -linkage {L1, L2, L3} in G where Li joins the pair {si, ti} for i = 1, 2, 3.

In both subcases there is a 3-face R of F1 containing both s1 and t1. Let J1 be the other facet in S1 containing R . Denote 
by R J and R F the 3-faces in J1 and F1, respectively, that are disjoint from R . Then so

1 ∈ R F . We need the following claim.

Claim 1. If a 3-cube contains three pairs of terminals, there must exist two pairs of terminals in the 3-cube, say {s1, t1} and 
{s2, t2}, that are not arranged in the cyclic order s1, s2, t1, t2 in a 2-face of the cube.

Remark 25. If x and y are vertices of a cube, then they share at most two neighbours. In other words, the complete bipartite 
graph K2,3 is not a subgraph of the cube; in fact, it is not an induced subgraph of any simple polytope [8, Cor. 1.12(iii)].

Proof. If no terminal in the cube is in Configuration 3F, we are done. So suppose that one is, say s1, and that the sequence 
s1, x1, t1, x2 of vertices of X is present in cyclic order in a 2-face. Without loss of generality, assume that s2 /∈ {x1, x2}. Then 
s2 cannot be adjacent to both s1 and t1, since the bipartite graph K2,3 is not a subgraph of G(Q 3) (Remark 25). Thus the 
sequence s1, s2, t1, t2 cannot be in a 2-face in cyclic order. �

Suppose all the six terminals are in the 3-face R . By virtue of Claim 1, we may assume that the pairs {s1, t1}
and {s2, t2} are not arranged in the cyclic order s1, s2, t1, t2 in a 2-face of R . Proposition 23 ensures that the pairs 
{π J1

R J
(s1), π

J1
R J

(t1)} and {π J1
R J

(s2), π
J1

R J
(t2)} in R J can be linked in R J through disjoint paths L′

1 and L′
2, since the sequence 

π
J1 (s1), π

J1 (s2), π
J1 (t1), π

J1 (t2) cannot be in a 2-face of R J in cyclic order. Moreover, by the connectivity of R F , there 
R J R J R J R J
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is a path L′
3 in R F linking the pair {π F1

R F
(s3), π F1

R F
(t3)}. The linkage {L′

1, L
′
2, L

′
3} can naturally be extended to a Y -linkage 

{L1, L2, L3} as follows.

Li :=
{

siπ
J1

R J
(si)L′

iπ
J1

R J
(ti)ti, for i = 1,2;

s3π
F1
R F

(s3)L′
3π

F1
R F

(t3)t3, otherwise.

Suppose that R contains a pair {si, ti} for i = 2, 3, say {s2, t2}. There are at most five terminals in R , and consequently, 
applying Lemma 22 to the polytope F1 and its facet R , we obtain an X-valid path L1 := s1 − t1 in R or an X-valid path 
L2 := s2 − t2 in R . For the sake of concreteness, say an X-valid path L2 exists in R . From the connectivity of R F and R J

follows the existence of a path L′
3 in R F between π F1

R F
(s3) and π F1

R F
(t3), and of a path L′

1 in R J between π J1
R J

(s1) and π J1
R J

(t1)

(recall that t1 ∈ R ⊂ J1). The linkage {L′
1, L

′
2, L

′
3} can be extended to a linkage {s1 − t1, s2 − t2, s3 − t3} in S1.

Suppose that the ridge R contains no other pair from Y and that the ridge R F contains a pair (si, ti) (i = 2, 3). Without 
loss of generality, assume s2 and t2 are in R F .

First suppose that s3 ∈ R , which implies that t3 ∈ R F . Further suppose that there is a path T3 of length at most two 
from t3 to R that is disjoint from X \ {s3, t3}. Let {t′

3} := V (T3) ∩ V (R). Use the 2-linkedness of the 4-polytope J1 [3, Prop. 
6] to find disjoint paths L1 := s1 − t1 and L′

3 := s3 − t′
3 in J1. Let L3 := s3L′

3t′
3T3t3. Use the 3-connectivity of R F to find 

an X-valid path L2 := s2 − t2 in R F that is disjoint from V (T3); note that |V (T3) ∩ V (R F )| ≤ 2. The paths {L1, L2, L3} give 
the desired Y -linkage. Now suppose there is no such path T3 from t3 to R . Then, the projection π F1

R (t3) is in {s1, t1}, 
say π F1

R (t3) = t1; the projection π F1
R F

(s1) is a neighbour of t3 in R F ; and both s2 and t2 are neighbours of t3 in R F . This 
configuration implies that s1 and t1 are adjacent in R . Let L1 := s1t1. Find a path L2 := s2 − t2 in R F that is disjoint from t3, 
using the 3-connectivity of R F . Then using Lemma 19 find a neighbour s′

3 in A1 of s3 and a neighbour t′
3 in A1 of t3; note 

that, since distF1 (s1, t3) ≤ 2, we have that t3 �= so
1, and since {s1, s3} ∈ V (R), s3 �= so

1. Find a path L3 in S1 between s3 and t3
that contains a subpath L′

3 in A1 between s′
3 and t′

3; here use the connectivity of A1 (Proposition 7): L3 := s3s′
3L′

3t′
3t3. The 

linkage {L1, L2, L3} is the desired Y -linkage.
Assume that s3 ∈ R F ; by symmetry we can further assume that t3 ∈ R F . The connectivity of R ensures the existence of a 

path L1 := s1 − t1 therein. In the case of so
1 ∈ X , without loss of generality, assume so

1 = s2. The 3-connectivity of R F ensures 
the existence of an X-valid path L2 := s2 − t2 therein. Use Lemma 19 to find pairwise distinct neighbours s′

3 of s3 and t′
3 of 

t3 in A1; these exist since s3 �= so
1 and t3 �= so

1. Using the connectivity of A1 (Proposition 7), find a path L3 := s3 − t3 in S1
that contains a subpath s′

3 − t′
3 in A1. The linkage {L1, L2, L3} is the desired Y -linkage.

Assume neither R nor R F contains a pair {si, ti} (i = 2, 3). Without loss of generality, assume that s2, s3 ∈ R , that t2, t3 ∈
R F and that t2 �= so

1.
First suppose that there exists a path S3 in F1 from s3 to R F that is of length at most two and is disjoint from X \{s3, t3}. 

Let {ŝ3} := V (S3) ∩ V (R F ). Find pairwise distinct neighbours s′
2 and t′

2 of s2 and t2, respectively, in A1. And find a path 
L2 := s2 − t2 in S1 that contains a subpath s′

2 − t′
2 in A1 (using the connectivity of A1). Using the 3-connectivity of R F link 

the pair {ŝ3, t3} in R F through a path L′
3 that is disjoint from t2. Let L3 := s3 S3 ŝ3L′

3t3. Since Corollary 24 ensures that any 
separator of size three in a 3-cube must be independent, we can find a path L1 := s1 − t1 in R that is disjoint from s2 and 
V (S3) ∩ V (R); the set V (S3) ∩ V (R) has either cardinality one or contains an edge. The paths {L1, L2, L3} form the desired 
Y -linkage.

Assume that there is no such path S3. In this case, the neighbours of s3 in F1 are s1, t1, s2 from R and t2 from R F . Use 
Lemma 19 to find a neighbour s′

3 of s3 in A1. Again use Lemma 19 either to find a neighbour t′
3 of t3 if t3 �= so

1 or to find a 
neighbour t′

3 of a neighbour u of t3 in R F (with u �= t2) if t3 = so
1. Let T3 be the path of length at most two from t3 to A1

defined as T3 = t3t′
3 if t3 �= so

1 and T3 = t3ut′
3 if t3 = so

1. Find a path L3 in S1 between s3 and t3 that contains a subpath in 
A1 between s′

3 and t′
3; here use the connectivity of A1 (Proposition 7). We next find a path S2 in F1 from s2 to R F that 

is of length at most two and is disjoint from V (T3) ∪ {s1, t1, s3}. There are exactly four disjoint s2 − R F paths of length at 
most two, one through each of the neighbours of s2 in F1. One such path is s2s3t2. Among the remaining three s2 − R F
paths, since none of them contains s1 or t1 and since |V (T3) ∩ V (R F )| ≤ 2, we find the path S2. Let ŝ2 := V (S2) ∩ V (R F ). 
Find a path L′

2 := ŝ2 − t2 in R F that is disjoint from V (T3), using the 3-connectivity of R F . Let L2 := s2 S2 ŝ2L′
2t2. Since the 

vertices in (V (S2) ∩ V (R)) ∪ {s3} cannot separate s1 from t1 in R (Corollary 24), find a path L1 := s1 − t1 in R disjoint 
from V (S2) ∩ V (R) ∪ {s3}; the set V (S2) has cardinality one or contains one edge. The paths {L1, L2, L3} form the desired 
Y -linkage.

SUBCASE C. The vertex opposite to s1 in F1 coincides with t1

Since s1 is not in configuration d3 we may suppose that t1 has a neighbour t′
1 not in X . We reason as in Subcases A and 

B. We give the details for the sake of completeness.
Let R denote the 3-face in F1 containing both s1 and t′

1; distR(s1, t′
1) = 3. Let R F be the 3-face of F1 disjoint from R . Let 

J1 be the other facet in S1 containing R and let R J be the 3-face of J1 disjoint from R .
Suppose R contains a pair {si, ti} (i = 2, 3), say (s2, t2). There are at most five terminals in R (as t1 is in R F ). Since the 

smallest face in R containing s1 and t′
1 is 3-dimensional, the sequence π J1

R J
(s1), π

J1
R J

(s2), π
J1

R J
(t′

1), π
J1

R J
(t2) cannot appear in 

a 2-face of R J in cyclic order. As a consequence, the pairs {π J1 (s1), π
J1 (t′ )} and {π J1 (s2), π

J1 (t2)} can be linked in R J
R J R J 1 R J R J
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through disjoint paths L′
1 and L′

2, thanks to Proposition 23. Let L1 := s1π
J1

R J
(s1)L′

1π
J1

R J
(t′

1)t
′
1t1 and L2 := s2π

J1
R J

(s2)L′
2π

J1
R J

(t2)t2. 

From the 3-connectivity of R F follows the existence of a path L′
3 in R F between π F1

R F
(s3) and π F1

R F
(t3) that avoids t1. Let 

L3 := s3π
F1
R F

(s3)L′
3π

F1
R F

(t3)t3. The paths {L1, L2, L3} form the desired Y -linkage.
Suppose that the ridge R contains no pair {si, ti} (i = 2, 3) and that the ridge R F contains a pair {si, ti} (i = 2, 3), say 

{s2, t2}. Then, there are at most five terminals in R F . If there are at most four terminals in R F , the 3-connectivity of R F

ensures the existence of an X-valid path L2 := s2 − t2 in R F ; if there are exactly five terminals in R F , applying Lemma 22
to the polytope F1 and its facet R F gives either an X-valid path L2 := s2 − t2 or an X-valid path L3 := s3 − t3 in R F . As 
a result, regardless of the number of terminals in R F , we can assume there is an X-valid path L2 := s2 − t2 in R F . Find 
pairwise distinct neighbours s′

3 and t′
3 in A1 of s3 and t3, respectively, and a path L3 in S1 between s3 and t3 that contains 

a subpath in A1 between s′
3 and t′

3; here use the connectivity of A1 (Proposition 7). In addition, let L′
1 be a path in R

between s1 and t′
1; here use the 3-connectivity of R to avoid any terminal in R . Let L1 := s1L′

1t′
1t1. The Y -linkage is given 

by the paths {L1, L2, L3}.
Assume neither R nor R F1 contains a pair {si, ti} (i = 2, 3). Without loss of generality, we can assume s2, s3 ∈ R and 

t2, t3 ∈ R F .
There exists a path S3 from s3 to R F that is of length at most two and is disjoint from {s1, t1, t′

1, s2, t2}. If πR F (s3) �= t2, 
then S3 = s3πR F (s3). Otherwise, there are exactly three disjoint paths of length 2 from s3 to R F . At most two of them 
contain a vertex in NR(s3) ∩ (X ∪ {t′

1}) (since dist(s1, t1) = 3, they cannot be both neighbours of s3). Thus we can take S3 as 
the path s3uπR F (u) through a neighbour u of s3 in R such that u /∈ X ∪ {t′

1} and πR F (u) /∈ {t1, t2} = {πR F (s3), πR F (t′
1)}.

Let {ŝ3} := V (S3) ∩ V (R F ). Find an X-valid path L′
3 := ŝ3 − t3 in R F using its 3-connectivity. Let L3 := s3 S3 ŝ3L′

3t3. Then 
find neighbours s′

2 and t′
2 of s2 and t2, respectively, in A1, and a path L2 := s2 − t2 in S1 that contains a subpath s′

2 − t′
2

in A1 (using the connectivity of A1). Since Corollary 24 ensures that any separator of size three in a 3-cube must be 
independent, we can find an L′

1 := s1 − t′
1 in R that is disjoint from s2 and V (S3) ∩ V (R); the set V (S3) ∩ V (R) has either 

cardinality one or contains an edge. Let L1 := s1L′
1t′

1t1. The paths {L1, L2, L3} form the desired Y -linkage.
This concludes the proof of Lemma 11 for d = 5. �
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