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Abstract 

This paper investigates a non-orthogonal multiple access (NOMA)-aided mobile edge 
computing (MEC) network with multiple sources and one computing access point 
(CAP), in which NOMA technology is applied to transmit multi-source data streams 
to CAP for computing. To measure the performance of the considered NOMA-aided 
MEC network, we first design the system cost as a linear weighting function of energy 
consumption and delay under the NOMA-aided MEC network. Moreover, we propose 
a deep Q network (DQN)-based offloading strategy to minimize the system cost by 
jointly optimizing the offloading ratio and transmission power allocation. Finally, we 
design experiments to demonstrate the effectiveness of the proposed strategy. Specifi-
cally, the designed strategy can decrease the system cost by about 15% compared 
with local computing when the number of sources is 5.

Keywords:  MEC, NOMA, Multi-source data stream, DQN

1  Introduction
In the current society, with the advancement of wireless communication technology 
[1–4], the quantity of mobile device sources has skyrocketed, which results in the expo-
nential growth of data to be handled [5–7]. However, the local computing capability 
of the device is often overwhelmed by the huge computing data stream, leading to the 
slow processing of data streams. To deal with this issue, the cloud server is used to assist 
devices in computing data stream [8–10], due to its advantages of much computing 
capacity compared to the local device. However, too many data streams are offloaded to 
the cloud, which may also bring a serious workload to the cloud server [11]. In addition, 
the wireless channel is vulnerable, which prolongs the communication delay and affects 
the system’s performance.

Based on the above local computing and cloud server problem, mobile edge computing 
(MEC) is designed to help to compute data stream [12–14]. In the MEC network, multi-
source data streams can be partially offloaded to the computing access point (CAP) to be 
computed [15]. Because the local device also has computing power, the local and cloud 
can perform data stream computing at the same time. Therefore, the offloading ratio of 
data streams becomes a key factor affecting the computing time. The authors in [16] pre-
sented an intelligent particle swarm optimization (PSO)-based policy for MEC network 
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unloading based on the cache mechanism, which employed the PSO algorithm to search 
for a suitable unloading ratio to achieve partial unloading. The PSO algorithm converged 
quickly and the algorithm was simple, but if the function had multiple local extrema, it 
was easily trapped in local extrema and cannot be got the optimal solution. The authors 
of [9, 17] studied a multi-user multi-CAP MEC network with task offloading, where the 
network environment was time-varying, and the system cost was mainly determined by 
energy consumption and delay. Besides, a dynamic unloading policy based on DQN was 
devised. Users could dynamically adjust the unloading ratio to optimize the system cost 
to ensure the system performance of the MEC network.

Despite the above foundation, the MEC network with dynamical offloading still 
faces inherent limitations. Limited communication resources are difficult to support 
the orthogonal multiple access (OMA) of massive users. To deal with this issue, non-
orthogonal multiple-access (NOMA), which emerges as a new access technology, can 
help support the massive users. NOMA is a promising technology for reducing delay 
and energy consumption in MEC networks. The technology uses non-orthogonal trans-
mission at the transmitter with the allocated source transmission power, introduces 
scrambling code information, and then removes the scrambling code information at the 
CAP through successive interference cancellation (SIC) to achieve correct demodula-
tion [18]. Multiple sources share the same bandwidth to send the data stream simultane-
ously, and the CAP receives the transmitted information and then decodes it. This has a 
clear advantage in terms of increasing the transmission rate of the data stream [19, 20]. 
According to this principle, multiple sources can use the same bandwidth to offload data 
streams to the CAP simultaneously to decrease system energy consumption and delay.

So far, there has been a large number of investigations on the resource allocation of 
the NOMA-MEC system. For example, the authors in [21] used reinforcement learning 
to optimize the computation and cache of the multi-server NOMA-MEC system. The 
author of [22] studied a computing unloading system with the help of NOMA and dual 
connection (DC) and employed the deep learning-based intelligent unloading method 
to reduce the total system consumption. The authors in [23] designed a secure com-
munication strategy for the NOMA-assisted UAV-MEC system for large-scale access 
users. The author of [24] considered a NOMA-MEC network, and jointly optimized the 
total system energy consumption through the convex theory and the iterative algorithm. 
Many current studies focus on optimizing the unloading ratio of the MEC network, but 
when NOMA technology is used to assist the unloading, the transmission power in the 
unloading stage also has a huge impact on the energy consumption and delay of the 
system.

On this basis, the author studied multi-source MEC networks where CAPs are 
deployed at the edge. In the networks, computational data can be offloaded to adja-
cent CAPs through favorable data stream division and offloading to reach low-energy 
consumption and low delay [5, 25, 26]. Meanwhile, an optimization strategy based on 
DQN is proposed for data stream offloading. A deep learning-based Q-learning algo-
rithm integrates neural network techniques and value function approximation [27]. The 
neural network is trained by using target networks and empirical replay methods. The 
system cost is designed for a linear weighting function of delay and energy consumption. 
The offloading decision on MEC networks is modeled as the Markov decision process 
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to employ reinforcement learning methods for resource allocation to improve network 
performance and reduce system cost [3, 7, 10]. Finally, the designed scheme is verified to 
be significantly superior through simulation experiments. The significant contributions 
of the paper are listed in the following:

•	 We consider a NOMA-aided MEC network with S sources and one CAP. Based on 
this, we propose a linear combination of energy consumption and delay in the system 
cost to measure the considered network performance. Meanwhile, the offload ratio 
and transmission power ratio are jointly optimized to lower the cost of the system.

•	 We come up with a DQN-based data stream unloading optimization policy. In prac-
tical applications, the network environment is dynamic, which increases the optimi-
zation difficulty. Therefore, we use this strategy to dynamically obtain the allocation 
of the unloading ratio and transmission power ratio of the system.

•	 We design experiments to compare different schemes, and the simulation experi-
ment results indicate that the designed DQN-based strategy has a lower total system 
cost than other methods.

We have organized the rest of the paper as shown below. Following the introduction, 
we discuss the offloading model of the considered NOMA-aided MEC network in Sect.  
and give the relevant calculation formula and model optimization formula of the system. 
After the discussion of the system model, the devised DQN-based method is shown in 
Sect. . Section  presents the results of the simulation experiments. Finally, in Sect. , we 
conclude the whole work.

2 � System model
As Fig. 1 shows, we explore the MEC network with S sources and one CAP, where the 
NOMA technology is applied to assist multi-source data streams for transmission. Data 
streams are partially processed at local sources with limited computing capability and 
the other part of data streams are unloaded to CAP to be computed. Considering the 

Fig. 1  A NOMA-aided MEC Network with multiple sources and a CAP
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performance of the MEC network, we use NOMA to help offload data streams to the 
CAP with sufficient computing capability through wireless links to accelerate computing. 
Concretely, the data stream sets of sources in the network are denoted by {Ds|1 ≤ s ≤ S} . 
Each source has different data streams Ds which has qs number of bits and offloads a 
part of the data stream to the server to be computed. After calculating the offloaded data 
stream, the CAP returns the results to the source via dedicated feedback links. The fol-
lowing sections present the data stream offloading model, the local computing model, 
and the CAP computing model, respectively, specified in the following.

2.1 � Data stream offloading model

In this part, we describe the data stream offloading model. When part of the data stream 
is offloaded to the CAP to be computed, multiple sources need to transmit the offloaded 
stream over the radio link using NOMA. The transmission rate of source Ds can be 
described as

where B is the bandwidth of wireless channel from Ds to CAP, Ps is the transmission 
power of source Ds , and |hs|2 is the channel gain of wireless channel from the source Ds 
to CAP. The symbol σ 2 stands for the noise of AWGN [28–31]. As previously stated, we 
assume P1|h1|2 ≤ P2|h2|

2 ≤ · · · ≤ Ps|hs|
2.

At each time slot, sources Ds have qs bits of the data stream that need to be processed 
and offload a part of the data stream to CAP through the wireless link. The transmission 
delay of the offloaded data stream of sources Ds is [17, 32]

where βs = [β1,β2, . . . ,βs] represents the percentage of source Ds to be unloaded to 
server which satisfies βs ∈ [0, 1] . Since multi-source data streams are unloaded in paral-
lel, the total delay in the unloading phase is

In addition, the system energy consumption in the unloading phase can be obtained by

2.2 � Local computing model

As mentioned above, some multi-source data streams can be calculated locally. The local 
calculation delay of source Ds can express as

(1)rs = B log2(1+
Ps|hs|

2

s−1
n=1 Pn|hn|

2+σ 2
),

(2)ts =
βsqs

rs
,

(3)T1 = max {t1, t2, . . . , tS}.

(4)E1 =

S
∑

s=1

tsPs.

(5)tslocal =
(1− βs)cs

fs
,
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where fs refers to local computing capability on source Ds and cs represents the CPU 
cycle required for processing multi-source data stream on source Ds . The total local cal-
culated time is

The total local calculated energy consumption is

2.3 � CAP computing model

After part of the data stream on source Ds is successfully unloaded to the CAP through 
wireless links, the offloaded data stream will be computed at CAP. The computation delay 
at the CAP of source Ds is

where Fs denotes the computational power allocated to each source of the CAP. Differ-
ent offloaded data streams are calculated in parallel at the CAP, so the total calculation 
delay at the CAP is

Meanwhile, the energy consumption produced at the CAP is

Since local operation and unloading can be performed at the same time, the total calcu-
lation delay of multi-source data streams is

Moreover, the total energy consumption equation is

The total system energy consumption is the sum of energy consumption produced at 
each stage which is related to the delay at this stage. However, it is hard to measure the 
system behavior only by the total system energy consumption, because the total delay 
is the maximum of the local delay and the sum of delays produced at other stages. To 
comprehensively measure system performance, we devise the total system cost as a lin-
ear weighted function of total delay and total energy consumption [33], which can be 
described as

(6)T2 = max
{

t1local, t
2
local, . . . , t

S
local

}

.

(7)E2 =

S
∑

s=1

tslocalP
s
local.

(8)tsMEC =
βscs

Fs
,

(9)T3 = max
{

t1MEC, t
2
MEC, . . . , t

s
MEC

}

.

(10)E3 =

S
∑

s=1

tsMECP
s
MEC.

(11)Ttotal = max {T2,T1 + T3}.

(12)Etotal = E1 + E2 + E3.

(13)�s = µTtotal + (1− µ)Etotal,



Page 6 of 15Ling et al. EURASIP Journal on Advances in Signal Processing         (2023) 2023:44 

where µ ∈ [0,1] is a weight factor. Notice that, when µ = 0, the system cost consists 
directly of the system energy consumption, and we focus on the impact of system energy 
consumption on the considered system. When µ = 1, the system cost consists only of 
the system delay, and we pay attention to the impact of delay on the considered MEC 
network. In the considered system, we can change the value of µ to meet the require-
ments of different scenarios on energy consumption and time.

2.4 � Problem formulation

As mentioned before, the system cost can be used to measure the system’s performance. 
To improve the system performance, the data stream needed to be processed with the 
minimum system cost. Therefore, we formulate this problem as minimizing the system 
cost by optimizing the unloading data stream and transmission power allocation, which 
can be expressed as

where C1 is a constraint on the unloading ratio, representing the limitation of the portion 
of the data stream unloaded to the CAP. Constraint C2 proposes the constraint of trans-
mission power allocation, where Ps

max represents the maximum transmission power. 
The αs is the transmission power allocation ratio between the sth source and the CAP. 
Due to the complexity of this problem, we employ DQN to solve this problem which is 
introduced in the next section. We summarize the notations mentioned in this section 
in Table 1.

3 � DQN‑based offloading policy
The unloading policy determines the part of the data stream unloaded to the CAP and 
the transmission power allocation on the CAP, which significantly affects the perfor-
mance of the system. In this section, we first formulate the optimization problem as a 
Markov decision process(MDP). Then we investigate a DQN-based optimization scheme 
to obtain the offload ratio and transmission power ratio to minimize the system cost.

In MDP, at time slot τ , the state of the environment is sτ . The agents first obtain the 
action aτ from the policy πτ according to sτ . Then the agents perform action aτ at the 
environment, resulting in the environment shift from sτ to sτ+1 and obtaining the reward 
rτ from the environment. Concretely, the state space is

where β = {β1,β2,β3, . . . ,βs} is the unloading ratio of the multi-source data stream, 
α = {α1,α2,α3, . . . ,αs} is the transmission power allocation ratio at CAP. Besides, the 
action space is A =

{

δ1, δ
∗
1 , δ2, δ

∗
2 , δ3, δ

∗
3 , . . . , δs, δ

∗
s , ̺1, ̺

∗
1, ̺2, ̺

∗
2, ̺3, ̺

∗
3, . . . , ̺s, ̺

∗
s

}

 , where 
δs = −θ and δ∗s = +θ are the acts of adjusting the unloading ratio under the constraints 
C1 , and ̺ s = −θ and ̺ ∗

s = +θ are the actions to adapt the transmit power allocation ratio 
with the constraint C2 . For minimizing the system cost of the considered NOMA-aided 
MEC system, the reward is designed as

(14)

min
{βs ,αs}

�s

s.t. C1 : βs ∈ [0, 1], ∀s ∈ [1, S],

C2 : αs ∈ (0, 1],Ps = αsP
s
max,

(15)s = {β ,α},



Page 7 of 15Ling et al. EURASIP Journal on Advances in Signal Processing         (2023) 2023:44 	

where γ1 > γ2 > 0 . Notice that, if the execution of aτ results in the reduction of system 
cost of the environment in time slot τ + 1 , the agents obtain a positive reward. On the 
contrary, the reward is negative. Moreover, the Q function which measures the perfor-
mance of the action in the current environment is used in obtaining the best policy. It 
can be expressed as

As mentioned above, the optimization problem of the considered NOMA-aided MEC 
network can be modeled as MDP. Therefore, we employ a deep learning method, DQN, 
to solve this problem.

As shown in Fig. 2, the DQN consists of two networks and one replay memory. The 
replay memory is used to store transition samples ( sτ , aτ , rτ , sτ+1 ). The evaluation 

(16)rτ =







−γ1 If �(τ) > �(τ + 1),
−γ2 If �(τ) = �(τ + 1),
γ1 If �(τ) < �(τ + 1),

(17)π∗ = arg max
π

Qπ (s, a).

Table 1  Symbol notations

Notation Definition

S Number of sources

Ds  The sth sources

qs The bits of the sth source data stream

cs The CPU cycles of the sth source data stream

βs The percentage of source Ds data stream to be unloaded to the CAP

|hs|
2 Channel gain of wireless channel from the source Ds offloaded to the CAP

Ps Transmit power of source Ds

B Bandwidth of wireless channel from Ds to CAP

ts Calculation delay of the sth source data stream unloading to the CAP

T1 The delay in the unloading phase

E1 System energy consumption in the unloading phase

fs local computing capability on source Ds

ts
local

Local calculation delay of the sth source

T2 Total local calculated time

Ps
local

Local calculated power of the sth source

E2 Total total local calculated energy consumption

Fs The computational power allocated to each source of the CAP

ts
MEC

Computation delay at the CAP of source Ds

T3 Total calculation delay at the CAP

Ps
MEC

The calculated power of the CAP

E3 System energy consumption produced at the CAP

Ttotal Total calculation delay of multi-source data streams

Etotal Total energy consumption

Psmax Maximum transmit power of the source

µ A weight factor of system cost

αs Transmit power ratio of source Ds

�s System cost
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network outputs the action aτ ∈ A with the input state sτ ∈ s . When the replay memory 
has enough data, the evaluation network begins training and updates weights ϑ every 
step. The target network, which helps train the evaluation network, is initialed as an 
evaluation network at the beginning and updated as the evaluation network at every cer-
tain step.

To avoid the network falling into local optimization, ε-greedy strategy is used to help 
the agents to explore. It can be expressed as

where ϑ is the weight of the evaluation network. We employ the temporal difference 
(TD) approach to support training DQN by defining the TD-target obtained by the tar-
get network [33].

where ϕ is weight factor.
Moreover, we give the loss function [2, 34] based on TD-target as

Based on the above, we summarize the DQN-based unloading policy in Algorithm 1

(18)aτ =

{

arg maxa∈AQ(sτ , a;ϑ), with probability 1− ǫ,
randomly choose , otherwise ,

(19)Q(sτ , aτ ;ϑ) = rτ + ϕmax
a∈A

(Q(sτ+1, a;ϑ)),

(20)Lτ =

((

rτ + ϕmax
a∈A

(

Q
(

sτ+1, a; ϑ̂
))

)

− Q(sτ , aτ ;ϑ)

)2

.

Fig. 2  DQN-based offload policy framework
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4 � Results and discussion
This section demonstrates the advantage of the designed DQN-based unloading strategy 
in the considered NOMA-aided MEC network through simulations. In the considered 
MEC network, with all channels experiencing Rayleigh flat fading [35–37]. We set the 
number of sources to 5 in our experiment. The size of multi-source data streams is set to 
14 Mb, 3 Mb, 16 Mb, 8 Mb, and 18 Mb, and the computing power of each source is set 
to 5× (107) cycle/s. Besides, the maximum transmission power and calculating power 
of each source are 1 W and 1.5 W. The computing power allocated to each source at the 
CAP is 8× (107) cycle/s, and the calculating power is 1.5 W. In addition, the total band-
width is set to 6 MHz. The detailed network parameter settings are shown in Table 2.

Table 2  Parameter setting

Notation Definition

The number of source S 5

The variance of the AWGN 0.01

Wireless bandwidth B 6 MHz

Local computing capability fs 5× (107) cycle/s

Maximum transmit power Psmax 1W

Local calculated power of the sth source Ps
local

1.5W

The calculated power of the CAP Ps
MEC

1.5W

The computing power allocated to each source of the CAP Fs 8× (107) cycle/s

The weight factor of system cost µ 0.5

The loss function of neural network in DQN 10
−4

Learning rates of neural network in DQN 10
−2

The capability of experience replay 2× (104)

The batch size of neural network in DQN 64
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Figure 3 shows the reward of each episode during the training of the proposed DQN-
based offloading policy, where µ = 0.5 and the DQN has trained 300 episodes at all. 
From this figure, we can see that the reward grows rapidly in the previous 20 episodes. 
After about 50 episodes, the reward fluctuates slightly around 1950. It shows that our 
training converges, and helps to verify the efficacy of the designed DQN-based policy.

Figure 4 plots system cost versus the number of training episodes under the three sce-
narios, where the number of sources is set to 5 and we train 150 episodes at all. For com-
parison, we also plot the cost of the other two scenarios. One is the local computation 
scenario, where each source data stream is computed locally; the other is the full offload-
ing scenario, where data streams on each source are all offloaded to CAP for computing 
and the computing capability allocation on CAP is obtained by DQN. From this plot, we 
could notice that the system cost of the designed strategy declines sharply during the 
previous 100 episodes and converges at about 28.30 after 100 episodes. The system cost 

Fig. 3  The total reward of each episode during training of designed policy

Fig. 4  The convergence of the designed strategy versus episode



Page 11 of 15Ling et al. EURASIP Journal on Advances in Signal Processing         (2023) 2023:44 	

of the full offloading scenario decreases gradually during the previous 20 episodes and 
converges at about 31.6 after 20 episodes. On the contrary, the system cost of the local 
computation scenarios remains at 33.30 during the whole training. This result illustrates 
that the designed strategy has the best performance in reducing the system cost among 
the three proposed solutions. And the designed strategy can give a good unloading and 
resource allocation strategy for the considered NOMA-aided MEC network.

Figure 5 shows the relationship between the weighting factor µ and the system cost 
� , where µ varies from 0.1 to 0.9 and the number of sources is set to 5. We can see from 
Fig. 5 that the system cost obtained by the designed strategy is lower than that of the 
local computation and full offloading schemes with different values of µ . This indicates 
that the proposed scheme can significantly and efficiently improve the performance 
of the considered NOMA-aided MEC network by reasonably allocating resources and 
unloading rate. Moreover, the total system cost of these three schemes decreases when 
µ varies from 0.1 to 0.9. The main reason for the reduction of system cost is that the 
system cost is a linearly weighted function of time and energy consumption, where the 
impact of energy consumption is greater than the delay. The increase in µ magnifies the 
impact of energy consumption, thus making the total system cost significantly lower.

Figure 6 presents the influence of wireless bandwidth B on system cost, where S = 5 
and the value of bandwidth varies from 5 to 9 MHz. As shown in Fig. 6, the system cost 
of the designed strategy is lower than that of other schemes under the different values of 
bandwidth. This result indicates that our designed strategy outperforms other schemes 
under different communication environments. Moreover, the system cost of the 
designed scheme and the full offloading decrease, and the system cost of the local com-
putation solutions stays at the same value as bandwidths increase. The reason is that the 
bigger bandwidth reduces the unloading cost of the designed policy and the full offload-
ing scheme, while the data stream is calculated locally in the local computation scheme 
resulting in non-unloading cost.

Figure  7 presents the impact on the system cost � of the variation of the comput-
ing power allocated to each source of the CAP in three scenarios, where the number 

Fig. 5  Impact of the weight factor µ on the system cost
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of sources is 5 and the computing power allocated to each source at the CAP changes 
from 6× 107 cycle/s to 10× 107 cycle/s. As shown in this figure, the system cost of the 
designed strategy and full offloading gradually decreases when the computing power 
allocated to each source at the CAP increases from 6× 107 cycle/s to 10× 107 cycle/s. 
The reason is that the CAP with more computational power can compute data streams 
faster, resulting in reduced system energy consumption and delay. Moreover, the system 
cost of the full offloading tends to decrease faster than that of the designed strategy. This 
is because the designed strategy is more robust in the various MEC environment and 
the full offloading solution is more impacted by the computational power at the CAP. 
This implies that the designed strategy obviously superior to the full offloading and local 
computation schemes.

Figure  8 plots the system cost of the designed strategy versus the scale of the MEC 
network, where S changes from 2 to 6 and the local computing capability is set to 5× 107 

Fig. 6  System cost comparison of three schemes under the different values of bandwidth

Fig. 7  The influence of the computing power allocated to each source of the CAP on system cost
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cycle/s. From this plot, we can notice that the system cost of the designed strategy is 
always lower than that of local computing schemes and full offloading schemes as the 
value of S rises. It indicates that the designed strategy can improve the performance of 
considered NOMA-aided MEC networks with different scales. Moreover, the system 
cost of the three schemes rises as the value of S varies from 2 to 6. This is due to the 
increasing number of sources leading to the computing data streams increasing for local 
and CAP. It leads to system delay grows.

5 � Conclusion
This paper has investigated a NOMA-aided MEC network with multi-source and one 
CAP, in which multi-source data streams were partially offloaded to CAP to accelerate 
computing. In the considered NOMA-aided MEC network, we designed the system 
cost as the linear weighting function of energy consumption and delay produced in the 
unloading process. For reducing the cost of the considered network, we proposed the 
DQN-based offloading strategy for minimizing the system cost by optimizing the trans-
mission power ratio and the offloading ratio during the unloading process. We compared 
the proposed DQN-based offloading strategy and other methods through experiments. 
The experimental results showed that the proposed method was more effective than 
other methods under different communication environments with various bandwidths. 
Moreover, in different NOMA-aided MEC networks with different scales, different 
transmission capabilities, different bandwidth, or different computing capabilities, the 
proposed DQN-based offloading strategy is more robust than other methods with mini-
mum system cost. Specifically, the designed strategy has been able to decrease the sys-
tem cost by about 15% compared with local computing when the number of sources is 5.
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