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Abstract

A long-term goal of reinforcement learning agents is to
be able to perform tasks in complex real-world scenar-
ios. The use of external information is one way of scal-
ing agents to more complex problems. However, there
is a general lack of collaboration or interoperability be-
tween different approaches using external information.
In this work, while reviewing externally-influenced
methods, we propose a conceptual framework and
taxonomy for assisted reinforcement learning, aimed
at fostering collaboration by classifying and comparing
various methods that use external information in the
learning process. The proposed taxonomy details the
relationship between the external information source
and the learner agent, highlighting the process of in-
formation decomposition, structure, retention, and
how it can be used to influence agent learning. As
well as reviewing state-of-the-art methods, we identify
current streams of reinforcement learning that use
external information in order to improve the agent’s
performance and its decision-making process. These
include heuristic reinforcement learning, interactive
reinforcement learning, learning from demonstration,

transfer learning, and learning from multiple sources,
among others. These streams of reinforcement learn-
ing operate with the shared objective of scaffolding the
learner agent. Lastly, we discuss further possibilities
for future work in the field of assisted reinforcement
learning systems.

Keywords:  Assisted reinforcement learning,
Externally-influenced agents, Assistance taxonomy.

1 Introduction

Reinforcement learning (RL) [I] is a learning approach
in which an agent uses sequential decisions to interact
with its environment trying to find a (near-) opti-
mal policy to perform an intended task. RL agents
have the ability to improve while operating, to learn
without supervision, and to adapt to changing cir-
cumstances [2]. By exploring, a standard agent learns
solely from the signals it receives from the environ-
ment. The RL approach has shown success in domains
such as robotics [3, 4} 5l [6], game-playing [7} [§], inven-
tory management [9], and cloud computing [10} 1T}, [12],
among others.
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Like many machine learning techniques, RL faces
the problem of high-dimensionality spaces. As envi-
ronments become larger, the agent’s learning time
increases and finding the optimal solution becomes
impractical [13]. Early research on this topic [2 [14]
argued that for RL to successfully scale into real-world
scenarios, then the use of information external to the
environment would be needed. Different RL strategies
using this approach have emerged in order to speed
up the learning process. They use external informa-
tion to assist either the process of generalising the
environment representation [I5], the agent’s decision-
making process [I6], or in providing more focused
exploration [17].

In this article, we refer to external information as
any kind of information provided to the agent orig-
inating from outside of the agent’s representation
of the environment. This may include demonstra-
tions [I8), 19] 20], advice and critiques [21] [16], ini-
tial bias based on previously gathered data [22], or
highly-detailed domain-specific shaping functions [23].
Additionally, in this work, we use independently the
concepts of RL approach, method, and technique to
refer to the underlying learning algorithm. These
concepts have been previously used mostly equally by
the RL research community.

In this regard, we define Assisted reinforcement
learning (ARL) as a range of techniques that use
external information, either before, during, or after
training, to improve the performance of the learner
agent, as well as to scale RL to larger and more com-
plex scenarios. While a relevant characteristic of RL
is its ability to endow agents with new skills from
the ground up, ARL also makes use of existing infor-
mation and/or previously learned behaviour. Some
methods for improving the agent’s performance using
external information include: directly altering weights
for actions and states (biasing) [24]; altering the state
or action space [25]; critiquing past or advising on
future decision-making [26]; dynamically altering re-
ward functions [21]; directly modifying the policy [16];
guiding exploration and action selection [I7]; and,
creating information repositories/models to supple-
ment the environmental information [I5]. Figure
captures all of these methods in a basic view of the
ARL conceptual framework used in this work. The
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Figure 1: Assisted reinforcement learning simplified
framework. In autonomous reinforcement learning, an
agent performs an action a; from a state s; and the
environment produces an answer leading the agent to
a new state s;y1 and receiving a reward ;1. Assisted
reinforcement learning adds an external information
source, referred to as a trainer, teacher, advisor or
assistant, that observes the environment and the agent
in order to generate advice. The trainer may advise
the learner agent or sometimes directly modify the
environment. Moreover, the agent may also actively
ask advice to the external information source.

classic RL approach is shown within the figure where
an agent performs an action on the environment reach-
ing a new state and obtaining a reward. In ARL, the
response of the environment is also shared with the
external information source from where advice is given
to the agent or changes sometimes made directly to
the environment [27].

To date, many methods using external information
have been proposed aiming to speed up the learn-
ing process for an autonomous agent [28], 29 [30, 3T].
Usually, they have been organized according to the
technique employed, e.g., heuristic, interactive, or
transfer learning, among others. Nevertheless, there



is an important lack of understanding of how these
techniques are related and what characteristics they
share. Therefore, in this review, we present a con-
ceptual framework and a taxonomy to be used to
describe the practice of using external information. A
standardised ARL taxonomy will foster collaboration
between different RL communities, improve compara-
bility, allow a precise description of new approaches,
and assist in identifying and addressing key questions
for further research.

2 A Conceptual Framework
for Assisted Reinforcement
Learning

In this section, we give more details about the ARL ap-
proach including some introductory examples of works
in which external information sources have been used.
Moreover, we define a conceptual framework identify-
ing the different parts that comprise the underlying
process used in ARL techniques. Based on this con-
ceptual framework, in the following section, we define
a more detailed taxonomy for ARL approaches.

2.1 Assisted Reinforcement Learning

The main strength of RL is its ability for endowing
an agent with new skills given no initial knowledge
about the environment. With an appropriate reward
function and enough interaction with its environment,
an RL agent can learn (near-) optimal behaviour [I].
The agent’s behaviour at every step is defined by
its policy. The reward function promotes desirable
behaviour and sometimes penalises undesirable be-
haviour. In the traditional view of RL, the reward
function, and the rewards it produces, are internal
to the environment [2]. Traditional RL, in which the
environment is the sole provider of information to
the agent, has been demonstrated to perform well in
many different domains, especially when facing small
and bounded problems [I]. However, RL has some
difficulties when scaling up to large, unbounded envi-
ronments, particularly regarding the time needed for
the agent to learn the optimal policy [32, B3]. In RL,

one approach to tackling this issue is to use external
information to supplement the information that the
environment provides [34] [35].

Information is considered external if it originates
from outside of the agent’s interactions with the en-
vironment. In this regard, internal information is de-
termined solely through interactions and observations
with the environment. For example, in the case of a
human the internal information would be anything
the person can observe from the environment using
their senses [36]. The external information would be
any information provided by peers, advisors, the in-
ternet, books, maps, and tutelage. In RL, anything
external to the agent is usually considered part of the
environment. In this regard, if an agent is learning in
an environment, a person can be considered as part
of it, therefore, the agent could model that person
or communicate with them [37]. Although it is pos-
sible that external sources of information could be
just treated as part of the environment, this is handi-
capping the agent in an unnecessary way. There are
external sources of information that might not neces-
sarily be treated as part of the environment because
they are socially advantaged. For instance, if an exter-
nal source is providing action advice using directions
as ‘left’ and ‘right’, the agent does not have to learn
the meaning of these words from the ground up, or
learn how to react to these instructions. Instead, we
assume the agent knows that advice is coming, what
it means, and how to use it. For example, if a person
eats some berries and later becomes sick, the person
may determine that those berries are poisonous. In
this case, this would be internal information obtained
by interaction with the environment. If instead, a peer
had previously advised the person that eating those
berries will make them sick, that would be external
information provided by an extrinsic source.

In this work, we refer to methods using externally-
influenced agent learning as as assisted reinforcement
learning. The ARL framework is defined to include
any type of RL that uses external information to
supplement agent learning and the decision-making
process. Some common practices include the direct
alteration of the agent’s understanding of the envi-
ronment [I5], focusing exploration efforts through
critique and advice [26], or assisting the agent in



the decision-making process [17]. For instance, exist-
ing ARL techniques include interactive reinforcement
learning [38}[39], learning from demonstration [40} 41],
and transfer learning [22, [42], among others.

The previously mentioned RL approaches are just
examples of ARL methods that use external infor-
mation to supplement the agent’s decision-making
process and learning. Additional details of these and
other approaches and how they use an external in-
formation source to assist the agent (in terms of our
ARL framework) are addressed in Section |4} The ex-
ternal information source is most commonly a human
or another artificial agent. Regardless of the source,
the use of external information has often been shown
to improve an agent’s ability and learning speed. In
the next section, we present a more detailed concep-
tual framework for ARL which is the base for the
taxonomy we propose subsequently.

2.2 Conceptual Framework

The proposed ARL framework is built to improve the
classification, the comparability, and the discussion
on different externally-influenced RL methods. To
achieve this aim, the framework has been designed
using insights and observations drawn from many dif-
ferent ARL approaches. The result is a framework
that can describe existing methods while also being
flexible enough to include future research. The frame-
work details are shown in Figure

The proposed ARL framework comprises four pro-
cessing components shown using red boxes in the
diagram, i.e., information source, advice interpreta-
tion, external model, and the assisted agent itself.
The external information source may not have perfect
observability and also may not know details about
the RL agent (algorithms, weights, hyperparameters,
etc.), or make assumptions, e.g., value-based learn-
ers [43]. The processing components are responsible
for providing, transforming, and storing information.
We do include the agent as part of the processing
components since it is part of the RL process as well.
However, an agent using ARL generally behaves as a
traditional RL agent, i.e., it interacts with the envi-
ronment by exploring/exploiting actions. Inside the
agent, there are three different stages: reward update,

internal processing, and action selection. Each of
those stages may be altered by the external model us-
ing reward/state modifications, internal modifications,
or action modifications respectively. Moreover, the
ARL framework also comprises three communication
links that connect the four processing components
and are labelled: temporality, advice structure, and
agent modification. These links are shown between
the processing components and represent the commu-
nication lines in Figure [2] that connect the processing
components together. The communication links con-
vey information or denote constraints on the data
such as where or when to provide information.

The ARL framework describes the transmission,
modification, and modality of sourced information.
In this regard, we consider the ARL framework as a
whole unit, comprising traditional autonomous RL
plus the components and links for assistance. Thus,
the taxonomy is a part of the framework and oriented
to describe the assisted learning section. Although the
framework has been developed on how ARL is usually
built, not all ARL approaches use all the proposed
components and links. Below, we briefly describe each
of the components and links of the framework. They
are subsequently used in the next section to describe
in detail the proposed taxonomy.

e Information source: is the origin of the assis-
tance being provided to the agent. The source
may be a human, a repository, or another agent.
There may be multiple information sources pro-
viding assistance to an agent.

e Temporality: determines both the time at
which information is provided to the agent, and
the frequency with which it is provided. Infor-
mation may be provided, before, during, or after
agent training, and occur multiple times through
the learning process. Therefore, it is also responsi-
ble for how the information source communicates
temporal issues to the advice interpreter.

e Advice interpretation: denotes the process of
transforming incoming information into a format
better suited for the agent. This may involve ex-
tracting key frames from video, converting audio
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Figure 2: Detailed view of the assisted reinforcement learning framework. The diagram includes four
processing components shown as dashed red boxes. Inside the assisted agent, one can observe three different
points where it can receive possible modifications from the external model. Additionally, three communication
links are shown with underlined text. This framework is subsequently used to further discuss the proposed
ARL taxonomy.

samples to rewards, or mapping information to this structure might instead be directly used to
states. modify the agent.

e Advice structure: represents the structure of e External model: is responsible for retaining
the advice after translation in a form suitable and relaying the information between the source
for the external model. Some approaches may and the agent. The model may retain the received
not have an explicit external model, therefore, information in the learning model, using it for
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Figure 3: Relation between the processing compo-
nents and the communication links as a UML sequence
diagram.

later decisions, or it may discard the received
information as soon as it has been used.

e Agent modification: denotes the approach
that the agent uses to benefit from the incom-
ing information. The most common modification
approaches may use information to alter the en-
vironmental reward signal or modify the agent’s
behaviour or the decision-making process directly.

o Assisted Agent: is the RL agent receiving the
external information or advice while learning a
new task. The agent needs to work out how to
incorporate the provided information with its
own learning. If a different action is suggested by
the trainer then the agent may decide if it should
follow to that advice or not.

Figure [3] shows in a UML sequence diagram the
interaction between the processing components and
communication links according to Figure [2]

3 Assisted Reinforcement
Learning Taxonomy
In this section, we describe the processing components

and communication links included in the proposed
framework within an ARL taxonomyﬂ and give more

11n this context, we refer the taxonomy as a classification of
the different elements of the ARL framework, i.e., processing
components and communication links, and not as a way to
classify each ARL method.

details of each of them. Figure[dshows all the elements
of the proposed ARL taxonomy including examples
for each processing component and communication
link. In the taxonomy, we include the agent as a com-
ponent being the one that receives the advice. Each
of the seven elements, i.e., processing components
and communication links, is described in detail in the
following subsections. In our work, the concept of
taxonomy is used to classify the different elements
within a class of problems, i.e., ARL problems. In
this regard, our proposal is represented by a general
ontology where the class is ARL, the properties are
the processing components and the communication
links, and the relations between the properties are as
shown in Figure [4

3.1 Information Source

The external information source is the main factor
that sets ARL apart from traditional RL approaches.
It is responsible for introducing new information about
the task to the agent, supplementing or replacing the
information the agent receives from the environment.
The source is external to the agent and the environ-
ment, providing information that either the agent
may not have had access to, or would have eventually
learned itself. The information source may be able
to observe the environment, the agent, or the agent’s
decision-making process. The objective of the infor-
mation source is to assist the agent in achieving its
goal faster.

There may be multiple information sources com-
municating with an agent. This may be humans,
agents, other digital sources, or any combination of
the three [44]. The use of multiple sources offers
a wider range of available information to the agent.
However, more complex modification methods may
be required to manage the information and handle
conflicting advice [45].

There are many examples of external information
sources in current ARL literature, the most common
of which are humans and additional reward func-
tions [46, 47, [35]. For instance, RLfD and IntRL
use human guidance to provide the agent with a gen-
eralised view of the solution [48], 49]. Moreover, the
use of additional reward functions is one of the earliest
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Figure 4: The assisted reinforcement learning taxon-
omy. This figure shows the four processing compo-
nents as dashed red boxes and the communication
links as green parallelograms using underlined text.
Examples for each component and method are in-
cluded at the right.

examples of ARL. In such cases, the designer of the
agent encodes some further information about the
environment or goal as an additional reward, supple-
menting the original reward given by the environment.

An example of the use of additional reward func-
tions can be found in Randlgv and Alstrgm’s bicycle
experiment [23], in which, they teach an agent to ride
a bicycle towards a goal point. Without additional
assistance, the RL agent would only receive a reward
upon reaching the termination state. Randlgv and

Alstrgm encoded some of their knowledge as a shaping
reward signal external to the environment, providing
the agent with additional rewards if it is cycling to-
wards the goal point. In this scenario, the system
designers acted as an external information source,
providing extra information to the RL agent. The
use of this external information results in the agent
learning the solution faster than using the traditional
RL approach.

Some other information sources include behaviours
from past experiences or other agents, repositories
of labelled data or examples, or distribution tables
for initialising/biasing agent behaviour [39]. Video,
audio, and text sources may be used as well [50]. How-
ever, these sources may require substantial amounts
of interpretation and preprocessing to be of use.

The accuracy, availability, or consistency of the in-
formation source can affect the maximum utility of
the information [51], 52]. Identifying in advance inac-
curate information given to the agent can significantly
improve performance [32, [53]. While the information
source may perform the validation and the verification
of the given advice, the primary duty remains simply
to act as a supplementary source of information. In
this regard, both validation and verification of infor-
mation are functions better suited for the external
model or the assisted agent.

3.2 Temporality

The temporal component, or temporality, refers to the
time at which information is communicated by the
information source. The information may be provided
in full to the agent at a set time (either before, during,
or after training). This is referred to as planned
assistance [54,B65]. Alternatively, the information may
be provided at any time during the agent’s operation,
referred to as interactive assistance [56 [57].
Planned assistance, on the one hand, is common
in ARL methods. Some examples are predefined ad-
ditional shaping functions, agent policy initialisation
based on either prior experience or a known distri-
bution, and the creation of subgoals that lead the
way to a final solution [54]. These methods let the
experiment designer endow the agent with initial in-
formation about the environment or the goal to be



achieved. By providing this initial knowledge, the
designer can reduce the agent’s need for exploration.

The bicycle experiment discussed in the previous
section is an example of planned assistance. As men-
tioned, the agent is learning to control a bicycle and
must learn to steer it towards a goal [23]. Before the
experiment, the designers give the agent additional
information in the form of a reward signal that corre-
lates to the direction of the goal state. This planned
assistance approach helps the agent to narrow the
search space by giving it extra information about the
environment. This small yet beneficial initial infor-
mation results in a significant improvement in the
agent’s learning speed.

Another example of planned assistance is found in
heuristic RL. Heuristic RL is a method of applying
advice to agent decision-making. One example is
an experiment which implements heuristic RL in the
RoboCup soccer domain [58], a domain known for
its large state space and continuous state range. In
this environment, one team attempts to score a goal,
while the other team tries to block the first team
from scoring, such as in half-field offence [59] [60]. In
this experiment using heuristic RL, the defending
team is given initial advice before training. This
advice consists of two rules: if the agent is not near
the ball then move closer, and if the agent is near
the ball then do something with it. The experiment
results show that a team that uses planned assistance
performs better than a team that is given no initial
knowledge [58].

Interactive assistance, on the other hand, refers
to information provided by the source repeatedly
throughout the agent’s learning. Information sources
that assist interactively often can observe the agent’s
current state, or the environment the agent is op-
erating in. In current literature, humans are more
commonly used as information sources for interactive
assistance [61} [62]. The human can observe how the
agent is performing and its current state in the en-
vironment, and provides guidance or critiques of the
agent’s behaviour [63].

For example, Sophie’s Kitchen [26] presents an In-
tRL based agent, called Sophie, which attempts to
bake a cake by interacting with the items and ingre-
dients found in a kitchen. In this experiment, the

agent will receive a reward if it successfully bakes
the cake. At any point during the agent’s training,
an observing human can provide the agent with an
additional reward to supplement the reward signal
given by the environment. If the agent performs an
undesirable action, such as forgetting to add eggs to
the cake, the human can punish the agent by provid-
ing an immediate negative reward. The human can
also reward the agent for performing desirable actions,
such as adding ingredients in the correct order. In
this experiment, the human advisor is acting as an
interactive information source.

Although the agent could learn the task without
any assistance, the addition of the human advisor
and interactive feedback allows the agent to learn the
desired behaviour faster in comparison to autonomous
RL [26]. The benefit of using interactive advice rather
than planned advice is that the information source can
react to the current state of the agent. Additionally,
an interactive information source does not need to
encode all possibly useful advice up front. Instead,
it can choose to provide relevant information only
when required. This approach does have a significant
cost; the information source needs to be constantly
observing the agent and determining what information
is relevant. For instance, an approach using inverse RL
through demonstrations may also consider providing
failed examples to show the agent what not to do [64].

3.3 Advice Interpretation

The advice interpretation stage of the taxonomy de-
notes what transformations need to occur on the in-
coming information. The source provides information
for the agent to use that may need to be translated
into a format that the agent can understand. The
information source may provide their assistance in
many different forms. Some examples include au-
dio [65], video [50], text [66], distributions and proba-
bilities [35], or prior learned behaviour from a differ-
ent task or agent [30]. This information needs to be
adapted for use by the agent for the current task. The
product of the advice interpretation stage depends
on the structure that the agent or external model
requires.

A field where the interpretation of incoming advice



is crucial is Transfer Learning (TL). The goal of TL
is to use behaviour learned in a prior task to improve
performance in a new, previously unseen task [67].
A critical step in TL is the mapping of states and
observations between the old and new domains. The
information source provides information to the agent
that does not fully align with its current task. There-
fore, it is crucial that the information provided can be
correctly interpreted, so as to be useful to the current
domain. More commonly, this interpretation stage in
TL is performed by hand. However, there has also
been effort attempting to automate this stage [68] [69].

Another example of the use of the advice interpre-
tation stage is with the sourcing of feedback for RL
agents. In the Sophie’s Kitchen experiment [26], dis-
cussed in the previous section, the agent can be given
positive or negative feedback by a human regarding
its choice of actions. In this experiment, the human
creates either a green (positive) or a red (negative) bar
to represent the desired feedback to be given to the
agent. This bar is used to interpret the reward signal
to give to the agent, with the colour of the bar desig-
nating whether the reward is positive or negative, and
the size of the bar designating the magnitude of the
reward. This type of feedback can also be extended to
audio, where recording phrases such as ‘Good’ or ‘Well
Done’ are interpreted as positive rewards and ‘Bad’ or
‘Try Again’ are interpreted as negative rewards [70].

These methods can also be combined into a multi-
model architecture to provide advice to an RL robotic
agent using audiovisual sensory inputs, such as work
by Cruz et al. [50]. In this experiment, a simulated
robot learns how to clean a table using a multi-modal
associative function to integrate auditory and visual
cues into a single piece of advice which is used by the
RL algorithm. In this scenario, the external informa-
tion source is a human trainer and the RL algorithm
represents the integrated advice as a state-action pair.

3.4 Advice Structure

The advice structure component refers to the form
that the agent or external model requires incoming
information to take. The information that the agent
uses can be represented in a number of ways. Some
examples of advice structures include: Boolean values

denoting positive or negative feedback; rules deter-
mining action selection; matrices for mapping prior
experiences to new states; case-based reasoning struc-
tures for the agent to consult with; or, hierarchical
decision trees to represent options for the agent to
take [62] [71].

The simplest form of structure is binary, in which
the information takes only one from two options, such
as ‘Good’ or ‘Bad’. An example of the use of a binary
structure is the TAMER-RL agent [72]. TAMER-RL
is an IntRL agent that uses binary feedback from
an observing human. At any time step, the human
can agree or disagree with the agent about its last
action. In this case, the feedback is a binary structure
indicating agree or disagree.

A more complex advice structure is used in case-
based RL agents [73]. A case in this context represents
a generalised area of the state space and provides
information about which actions to take in that state.
The use of a case-based structure allows the agent to
gain more information from the information source
compared to a binary structure, at a cost of more
complex sourcing and interpretation approaches.

One of the more common advice structures is a
simple state-action pair. A state-action pair consists
of a single state and an associated piece of advice.
The associated advice may be an additional scalar re-
ward or a recommended action. Using a state-action
pair, sourced information is interpreted to provide
advice for a given state. In the cleaning-table robot
task [50], discussed in the previous section, the ex-
ternal trainer using multi-modal advice provides an
action to be performed in specific states. Once the
advice is processed using the multi-modal integration
function, the proposed action is given to the RL agent
to be executed as a state-action pair considering the
agent’s current state. This state-action structure has
also been used for other methods including TAMER-
RL [72], Sophie’s Kitchen [26], and policy-shaping
approaches [16].

A novel rule-based interactive advice structure is
introduced in [74]. Interactive RL methods rely on
constant human supervision and evaluation, requir-
ing a substantial commitment from the advice-giver.
This constraint restricts the user to providing advice
relevant to the current state and no other, even when



such advice may be applicable to multiple states. Al-
lowing users to provide information in the form of
rules, rather than per-state action recommendations,
increases the information per interaction, and does not
limit the information to the current state. Rules can
be interactively created during the agent’s operation
and be generalised over the state space while remain-
ing flexible enough to handle potentially inaccurate
or irrelevant information. The learner agent uses the
rules as persistent advice allowing the retention and
reuse of the information in the future. Rule-based
advice significantly reduces human guidance require-
ments while improving agent performance.

3.5 External Model

The external model is responsible for retaining and
relaying information between the information source
and the agent. The external model receives inter-
preted information from the information source and
may either retain the information for use by the agent
when required or pass it to the agent immediately.

A retained model is an external model that stores all
information provided by the information source [17].
A retained model may be used if the cost of acquiring
information is greater than the cost of storing it, if the
information provided is general or applies to multiple
states, or if the information is gathered incrementally.
In instances where information is gathered incremen-
tally, using a retained model allows the agent to build
up a knowledge base over time. The agent may con-
sult with the model at any time to determine if a
reward signal is to be altered, or if there is any extra
information that may assist with decision-making.

An immediate model passes the information directly
to the agent [75]. In this case, the information received
is only relevant to the current time step, or the cost
of reacquiring the information from the source is less
than that of retaining the information.

Approaches can also combine this by incorporat-
ing both a retained model as well as passing some
information through directly, such as [32]. In this
work, an RL agent uses a combination of interactive
feedback and contextual affordances [76] to speed up
the learning process of a robot performing a domestic
task. On the one hand, contextual affordances are

learned at the beginning of autonomous RL and are
readily available from there on to avoid the so-called
failed-states, which are states from where the robot is
not able to finish the task successfully anymore. On
the other hand, interactive feedback is provided by
an external advisor and used to suggest actions to
perform when the robot is learning the task. This
advice is given to the robot to be used in the current
state and it is discarded immediately after.

The external model may have different functions de-
pending on its implementation. For instance, heuristic
RL hosts a model that stores rules and advice that
generalise over sections of the state space [(7]. In TL,
the external model may hold information regarding
past experiences and policies from problems similar
to the current domain [22] 78], or in inverse RL, the
external model is a substitute for the reward func-
tion [79)].

3.6 Agent Modification

The modification stage of the framework denotes how
the information that the external model contains is
used to assist the agent in achieving its goal. It is
responsible for supplementing the agent’s reward, al-
tering the agent’s policy, or helping with the decision-
making process. A popular method for injecting ex-
ternal information into agent learning is shaping [80].
Shaping is a common method for altering agent per-
formance by modifying parameters in the learning
process. Erez and Smart [25] propose a list of tech-
niques in which shaping can be applied to RL agents.
These include altering the reward, the agent’s pol-
icy, agent learning parameters, and environmental
dynamics [27].

Altering the reward the agent receives is a straight-
forward method for influencing an agent’s learning [81].
It is known as reward-shaping, in which the external
information is used to bias the agent’s learning [46].
Special care must be taken to ensure that any mod-
ification of the reward signal remains zero-sum to
avoid the agent exploiting the shaped reward in ways
that do not align with the desired goal. This can
be achieved by ensuring that additional rewards are
potential-based, meaning that they are derived from
the difference in the values of a potential function at
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the current and successor states [82]. However, recent
work by [83] shows a flaw in the previous method when
transforming non-potential-based reward-shaping into
potential-based. Alternatively, the authors introduce
a policy invariant explicit shaping algorithm allow-
ing for arbitrary advice, confirming that it ensures
convergence to the optimal policy when the advice
is misleading and also accelerates learning when the
advice is useful [83]. Shaping techniques have also
been used to alter state-action pairs [84], for dynamic
situations [82], 85], and for multi-agent systems [86].

Policy-shaping is the modification of the agent’s
behaviour [16]. This modification can be done either
by influencing how the agent makes decisions or by di-
rectly altering the agent’s learned behaviour. A simple
method of policy-shaping involves forcing it to take
certain actions if advice from the information source
has recommended them [87] [88]. Human-in-the-loop
techniques may be beneficial to address complex RL
problems with the help of domain experts, e.g., in
health informatics [89]. This allows the external in-
formation source to guide the agent and take direct
control over exploration/exploitation. Alternatively,
the information source can choose to alter the agent’s
behaviour directly by changing Q-values or installing
rules that override the actions for chosen states [90].
This method of modification can improve agent per-
formance rapidly, as it can give the agent partial
solutions.

Internal modification is a method of altering the pa-
rameters of the agent that are essential to its learning.
Parameters such as the learning rate («), discount
factor (), and exploration percentage (¢), are all in-
ternal to the RL agent and may be altered to affect its
performance [91]. For example, if an advisor observes
that an agent is repeating actions and not exploring
enough then the exploration percentage or learning
rate may be temporarily increased. Internal modifi-
cation is a simple method to implement. However, it
can be difficult at times to know which parameters to
adjust, and to what degree they are to be adjusted.

Environmental modification is an indirect method
for influencing an RL agent. Altering the environ-
ment is not always achievable and may be a technique
better suited for digital or simulated environments.
Some examples of modifying the environment include

altering or reducing the state space and observable
information [92], 03], reducing the action space [94],
modifying the agent’s starting state [95], or altering
the dynamics of the environment to make the task
easier to solve [96] Below, we further describe these
environmental modifications.

Reducing the state space can speed up the agent’s
learning as there is less of the environment to search.
While the agent cannot fully solve the task with an
incomplete environment representation, it allows the
agent to learn the basic behaviour. The level of de-
tail in the state representation can then be increased,
allowing the agent to refine its policy towards the
correct behaviour [92 93]. Reducing the action space
is similar to the previous. The agent’s available ac-
tions are limited, and the agent attempts to learn the
best behaviour it can with the actions it has avail-
able. Once a suitable behaviour has been achieved,
new actions can be provided, and the agent can begin
to learn more complex solutions [94]. Modifying the
agent’s starting space alters where in the environment
the agent begins learning. Using this approach, the
agent can begin training close to the goal. As the
agent learns how to navigate to the goal, the start-
ing state is incrementally moved further away. This
allows the agent to build upon its past knowledge
of the environment [95]. Altering the dynamics of
the environment involves changing how the environ-
ment operates to make the task easier for the agent
to learn [27]. By altering attributes of the environ-
ment such as reducing gravity, lowering maximum
driving speed, or reducing noise, the agent may learn
the desired behaviour faster or more safely. After the
agent learns a satisfactory behaviour, the environment
dynamics can be changed to more typical levels [97].

3.7 Assisted Agent

The final component of the proposed ARL taxonomy
is the RL agent. A key aspect of the taxonomy is
that the agent, in the absence of any external informa-
tion, should operate the same as any RL agent would.
Given no external information, the agent should con-
tinue to explore and interact autonomously with its
environment and attempt to achieve its goal.

In the next section, we present an in-depth look at
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some ARL techniques and describe them in terms of
the taxonomy that has been presented in this section.

4 Illustrative Approaches with
Components and Links from
the Taxonomy

This section presents an in-depth analysis of some
popular and well-known ARL approaches. Each il-
lustrative approach is described as an instance of the
proposed taxonomy shown in Section [3] in some cases
using a specific approach and in other cases a set of
them. Therefore, for each presented ARL approach,
we show how each processing component and each
communication link particularly adapts to the ARL
taxonomy using current literature in the respective
field for concrete examples.

4.1 Heuristic Reinforcement Learning

Heuristic RL uses pieces of information that generalise
over an area of the state space. The information is
used to assist the agent in decision-making and reduce
the searchable state space [98] [99]. An example of a
heuristic is a rule. A rule can cover multiple states,
making its use efficient at delivering advice to an
agent. In Section we have introduced a heuristic
RL experiment applied to the RoboCup soccer do-
main [58]. In the RoboCup soccer domain, one team
actively tries to score a goal, while the other team
tries to block it. As mentioned, the defending team is
given initial advice before training, consisting of two
predefined rules. The following is an analysis of this
heuristic RL example applied as the ARL taxonomy.

e Information source: The information source
for the RoboCup experiment is a person. In this
case, the person has previously experimented
with the robot soccer domain and can advise the
agent with some rules that will speed up learning.

e Temporality: The advice for the agent is given
before training begins. Once training has begun
the person does not interact with the agent again.
This is an example of planned assistance, where
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information is given to the agent at a fixed time,
and the information is known by the information
source in advance.

e Advice interpretation: The information needs
to be understandable by the agent. In the robot
soccer domain, the person gives two rules; (i) if
not near the ball then move towards the ball, and
(ii) if near the ball do something with the ball.
These rules are understandable by the human but
need to be translated into machine code so that
agent can use them. This is usually a task easily
performed by a knowledgeable human operator.



The result is conditional-like rules as: (i) IF
NOT close_to_ball() THEN target_and_move(),
and (ii) IF close_to_ball() THEN kick_ball().

e Advice structure: The structure of the advice
after being interpreted is a new rule. The rule
needs to be compatible with the agent, including
the ability to substitute variables and evaluate
expressions.

e External model: The external model used by
the heuristic RL agent is a rule set. The external
model retains all rules given to it. The model
may also retain statistics about the rule relating
to confidence, number of uses, and state space
covered.

e Agent modification: Heuristic RL uses the
rule set to assist the agent in its decision-making.
If a rule applies to the current state, then the
action that the rule recommends is taken by the
agent. This is a form of policy-shaping as the
agent’s decision-making is directly manipulated
by the external information.

e Assisted Agent: The RL agent operates as
usual. When it is time to decide on an action to
take it consults the external model. The external
model tests all the rules it has and checks to
see if any applies to the current state, otherwise,
the agent’s default decision-making mechanism
is used.

Figure |5[ shows how the heuristic RL approach fits
into the proposed ARL taxonomy taking into consid-
eration the previous definitions of processing compo-
nents and communication links from the RoboCup
soccer domain.

4.2 Interactive Reinforcement Learn-
ing

IntRL is another application of ARL. Most commonly,
the information source is an observing human or a
substitute for a human, such as an oracle, a simulated
user, or another agent [I00]. The human provides
assessment and advice to the agent, reinforcing the

agent’s past actions and guiding future decisions. The
human can assess past actions in two ways, by stating
that the agent’s chosen action is somehow correct or
incorrect, or by telling the agent what the correct
action to take is in that instance. Alternatively, the
human can advise the agent on what actions to take in
the future [I0T]. The human can recommend actions
to take or to avoid, or provide more information about
the current state to assist the agent in its decision-
making [33].

IntRL applications include having a human to pro-
vide additional reward information [102] 103], and hav-
ing a human or agent provide action advice [104] [105].
All of these methods work in real-time and similarly,
differing mainly in the agent modification stage. The
following is an analysis of these IntRL approaches
applied as the ARL taxonomy.

e Information source: The information source
is a human or simulated user. A simulated user
is a program, analogous to a human, that acts
how a human would in a given situation. The
human can observe the agent’s current and past
states, past actions taken, and what action the
agent recommends it takes [106].

e Temporality: IntRL agents operate interac-
tively. The advisor can provide information to
the agent before, during, or after learning, and
repeatedly throughout the learning process. This
allows the advisor to react to current information
and supply the agent with relevant advice.

e Advice interpretation: The advisor provides
either an assessment of past actions taken, rec-
ommendations about actions to take, or a reward
signal. Computer simulated agents can receive
this information as key presses. However, physi-
cal agents may receive this information through
audio or video inputs [50]. In the case of audio
inputs, these may be simple commands such as
"Correct’ or ’Go Right’, which can be translated
to a form the agent can understand [65]. Sup-
porting input modalities such as natural language
makes systems based on IntRL more accessible to
users who are not themselves familiar with RL.
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e Advice structure: A common structure of ad-

vice the agent requires is simply a state-action
pair. Using this structure the human can assign
advice to a state for the agent to use, such as: In
this state, do this [107].

External model: Either retained or immediate
models are commonly used [I7, [I0§]. A retained
model tracks what advice/feedback has been re-
ceived for each state [I7]. The agent can use
this model to determine the human’s accuracy,
consistency, and discount for each piece of advice
received. The model acts as a lookup table for
the agent, if advice exists for the current state,
then the agent can use it. Alternative methods
may not retain information given by the human
and only use it for the current state [I0g].

Agent modification: The most common meth-
ods of using the advice to modify the agents learn-
ing process are reward- and policy-shaping [101].
Reward-shaping uses assessment/critique gath-
ered from the advisor to alter the reward given
to the agent. If the advisor disagrees with a
past action, then the reward received for that
state-action pair is decreased. If the advisor rec-
ommends an action to take in the future, then
policy-shaping can be used to override the agent’s
usual action selection mechanism. One method
of implementing policy-shaping for interactive
advice is probabilistic policy reuse [17].

Assisted Agent: Most of the time, the RL agent
operates as any other RL agent would, i.e., it per-
forms actions in the environment by exploiting/
exploring. The agent should continue to do so
even if no advice from the trainer is given. Al-
though a trainer could proactively provide advice
to the learner, sometimes the student could de-
cide to request such advice, and the trainer may
or may not respond to that request. For instance,
heuristics have been used to decide if the trainer
should provide advice and/or if the learner should
ask for it [T05]. In contrast, recent work estimates
the learner’s uncertainty in its current state, ask-
ing for advice in case the level of uncertainty is
above a predefined threshold [109].
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Figure 6: Interactive RL as the proposed ARL tax-
onomy. In this approach, interactive advice is given
by the user and more commonly used as policy and
reward shaping.

Figure [6] shows how the IntRL approach is adapted
to the proposed ARL taxonomy taking into account
the previous definitions of processing components and
communication links.

4.3 Reinforcement Learning from

Demonstration

RLD is a term coined by Schaal [T10]. It refers to the
setting where both a reward signal and demonstra-
tions are available to learn from, combining the best
of the fields of RL and Learning from Demonstration
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(LfD). Since RL presents an objective evaluation of
behaviour, optimal behaviour can be achieved. Such
an objective evaluation of behaviour is not present
in LfD [IT1], where only expert demonstrations are
available to be mimicked and generalised. The stu-
dent can thus not surpass its master. Nevertheless,
LD is typically much more sample efficient than RL.
Therefore, the aim is to combine the fast LfD method
with objective behaviour evaluation and theoretical
guarantees from RL.

Two different approaches have been proposed to
use demonstrations in an RL setting. The first is the
generation of an initial value-function for temporal-
difference learning by using the demonstrations as
passive learning experiences for the RL agent [112].
The second approach derives an initial policy from
the demonstrations and uses that to kickstart the RL
agent [113] [114]. In this regard, Taylor et al. propose
the Human-Agent Transfer (HAT) algorithm [115],
which consists of three steps: (i) demonstration: the
agent performs the task teleoperated and records all
state-action transitions, (ii) policy summarising: in
order to bootstrap autonomous learning, policy rules
are derived from the recorded state-action transitions,
and (iii) independent learning: autonomous reinforce-
ment learning using the policy summary to bias the
learning. Below we use the HAT algorithm to describe
how RLfD fits into the ARL taxonomy.

e Information source: An expert of the task
(human or otherwise) can provide sample be-
haviour by demonstrating its execution of the
task. Preferably these demonstrations are effi-
cient and successful executions of the task.

e Temporality: It wuses planned assistance.
Demonstrations are recorded and given to the
learning agent before it starts training.

e Advice interpretation: The received demon-
strations must be first transformed into the
agent’s perspective by encoding them as se-
quences of state-action pairs. These are then
processed using a classifier, which serves as the
LfD component, creating an approximation of
the demonstrator’s policy using rules.
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HAT algorithm [I15], which combines RL and L{D.

e Advice structure: The information is encoded
as a classifier that maps states to the actions
which the demonstrator is hypothesised to exe-
cute in those states.

e External model: The generated rules are
stored in the external model and not modified
anymore. The external model can be queried
with a state and responds with the hypothesised
demonstrator action in that state.

e Agent modification: The action proposed by
the demonstrator can be integrated into the agent



through three action biasing methods: (i) at-
tributing a value bonus to the Q-value for that
state-action pair, (ii) extending the agent’s action
set with an action that executes the hypothesised
demonstrator action, and (iii) probabilistically
choosing to execute the action suggested by the
model.

e Assisted agent: During its decision-making
(when and how depends on the implemented mod-
ification method) the agent has the option to
consult the external model to obtain the action
that the demonstrator is assumed to take. This
kind of agent is sometimes referred to as curiosity-
driven agent [I16]. Otherwise, the agent acts as
a usual RL agent.

Figure [7] shows how the RLfD approach is adapted
to the proposed ARL taxonomy taking into account
the previous definitions of processing components and
communication links for the HAT algorithm.

4.4 Transfer Learning

The idea of transferring information between tasks
(or between agents), rather than learning every task
from the ground up seems to be obvious in retrospect.
While transfer between different tasks has long been
studied in humans, it has only gained popularity in
RL settings in the last decade [22]. We consider three
distinct settings where TL can be useful.

First, an agent may have learned how to perform
a task and a new agent must learn to perform that
same task or a variation on the task under different
circumstances. Let us consider two agents with differ-
ent state features, i.e., different sensors, or different
action spaces (or different actuators). In this case, an
inter-task mapping [I17, [T18] can be hand specified or
learned from data [119, [120] to relate the new target
agent to the existing source agent. One of the simplest
ways to reuse such knowledge is to embed it into the
target task agent, e.g., directly reuse the Q-values
that the source agent had learned [118].

Second, let us now consider that the world may
be non-stationary. In TL settings, it is common to
assume that the agent is notified when the world (or
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task in that world) changes. However, a TL agent
sometimes does not need to detect changes [121] or
worry about the slow world changes over time [122].
As in the previous setting, the agent may want to
modify the information, e.g., by using an inter-task
mapping, to relate the two tasks. In addition, the
agent may decide not to use its prior knowledge at
all, e.g., to avoid negative transfer because the tasks
are too dissimilar [118].

Third, TL could be a critical step within a cur-
riculum learning approach [123| [124]. For example,
previous work has shown that learning a sequence



of tasks that gradually increase in difficulty can be
faster than directly training on the final (difficult)
task [I19, 125]. In addition to curricula that are
created by machine learning experts, curricula con-
structed by naive human participants have also been
considered [126]. Others have considered as a com-
plementary problem a learning agent autonomously
creating a curriculum [127, 128]. In all cases, the
difficulty is scaffolding correctly so that the agent can
learn quickly on a sequence of tasks. These approaches
are distinct from multi-task learning [I7], where the
agent wants to learn over a distribution of tasks, and
lifelong learning [129] [130], where learning a new task
should also improve performance on previous tasks.
The following is an analysis of TL methods in terms
of the ARL taxonomy.

e Information source: The information comes
from an agent with different capabilities or the
same agent that has trained on a different task.

e Temporality: Transfer typically occurs when a
task changes or when an agent first faces a novel
task. In both cases, it is planned assistance, i.e.,
the source agent transfers knowledge to the target
agent before the target agent begins learning. If
the inter-task mapping is initially unknown, some
time may be spent trying to learn an inter-task
mapping or estimate task similarity to previous
tasks. However, the more time spent before the
transfer, the less impact transfer can have.

e Advice interpretation: There are many types
of information that can be transferred, including
Q-values, rules, a model, etc. [T18]. TL methods
assume the target agent has access to the source
agent’s ‘brain’, an assumption that may not al-
ways be true, e.g., if the designer of the source
agent has not provided an API or if the source
agent is a human.

e Advice structure: The structure of the trans-
ferred knowledge is as varied as the types of
information that can be provided. This variety of
information includes Q-values, rules, or a model,
among others.

e External model: The source model is normally
retained. Because the source task knowledge is
not necessarily sufficient for optimal performance
in the target task, it is important for the tar-
get agent to be able to learn to outperform the
transferred information.

e Agent modification: The target task agent
uses the transferred information to bias its learn-
ing. The transferred knowledge is not typically
modified. Instead, the target task agent builds
on top of the knowledge, learning when to ignore
it and instead follow the knowledge it has learned
from the environment.

o Assisted Agent: The agent is a typical RL
agent that can take advantage of one or more
types of prior knowledge.

Figure [§ shows how the TL approach can be rep-
resented within the proposed ARL taxonomy taking
into account the previous definitions of processing
components and communication links.

4.5 Multiple Information Sources

While the majority of work in ARL is based on a
single source of advice, several researchers have con-
sidered scenarios where multiple sources of advice
may exist [I31) 132] 133, 134]. Although the use of
multiple information sources is not an ARL approach
by itself and could comprise sources utilising any of
the previously mentioned approaches, we include it
here to highlight how this multiple sources can be
framed within the proposed taxonomy. The introduc-
tion of multiple advisors may have benefits for ARL
agents, particularly in scenarios where each individ-
ual advisor has knowledge which is limited in some
way [135], e.g., individual advisors may have expertise
covering different sub-areas of the problem domain.
However, it also introduces additional problems for
the agent, such as handling inconsistencies or direct
conflicts between the guidance provided by different
advisors, or learning to judge the reliability of each
advisor, possibly in a state-sensitive manner [104].
In the extreme case, an agent may even need to be
able to identify and ignore the advice provided by
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deliberately malicious advisors [I36]. The following is
an analysis of approaches using multiple information
sources with respect to the proposed ARL taxonomy.

e Information source: Prior research has identi-

fied several scenarios in which an agent may have
access to multiple sources of external informa-
tion. Argall et al. [I37] argue that when robots
are applied to tasks within society in general,
it is very likely that multiple users will interact
with and guide the behaviour of a robot. In
the context of TL, multiple sources of informa-
tion may be derived either from experience on
varying MDPs [I38], or on alternative mappings
from a single prior MDP to the current environ-
ment [139]. In multi-agent systems, each agent
may serve as a potential source of information
for every other agent [140, [T41].

Temporality: Assistance may be planned or in-
teractive. For instance, Argall et al. [I37] have
considered two different sources of information,
in the form of teacher demonstrations and teacher
feedback on trajectories generated by the learner.
The former may be provided in advance of learn-
ing consisting of complete state-action trajecto-
ries, i.e., planned assistance, while the latter oc-
curs on an interactive basis during learning, and
structurally consists of a subset of the learner’s
actions being flagged as correct by the teacher,
i.e., interactive assistance.

Advice interpretation: The majority of work
so far on ARL from multiple information sources
has assumed that these sources are homogeneous
in terms of the timing and nature of the infor-
mation provided. However, this need not be the
case, and for heterogeneous information sources,
some aspects of the advice may differ in terms of
interpretation and structure. In this regard, the
advice needs to be integrated considering either
all possible sources (equally or non-equally con-
tributing), some sources (with the information
provided partially or fully considered), or only
from one source at a time [135].

Advice structure: Each information source
may use a different structure of advice. Therefore,
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Figure 9: Multiple information sources as the pro-
posed ARL taxonomy. In this case, there could be
multiple humans or multiple agents. One important
aspect is to integrate the different pieces of advice.
The agent may also learn multiple policies as in multi-
objective RL.

individually all the aforementioned structures in
previous sections are possible to be used, e.g., ma-
chine rule, state-action pair, rule system, value,
or model. The final structure into a single piece
of advice may be done by integrating the mul-
tiple information sources, for instance using a
multi-modal integration function [50] or using
graph structures (e.g., graph neural networks) us-
ing causal links between features for multi-modal
causability [142].



¢ External model: An ARL agent must choose
whether (i) to maintain a separate model for each
information source, (ii) to combine the informa-
tion from all sources into a single model, or (iii)
a combination of both. An example of the lat-
ter approach is the inverse RL system presented
in [T43], which learns a model of each information
source in the form of a feature-weighting function
and then forms a combined feature-weighting via
averaging. As noted by Karlsson [143], single-
model approaches may encounter difficulties if
dealing with information sources which are fun-
damentally incompatible with each other. An
additional benefit of maintaining independent
models is that these can also be augmented by
additional data on characteristics of each informa-
tion source, such as the reliability or consistency
of its advice [137, [139].

Agent modification: Any of the modification
approaches discussed in the earlier sections of
this paper may also be applied in the context of
multiple information sources. For example, agent
modification methods from LfD [137], TL [139}
138], reward-shaping [144] 145] as well as inverse
RL [I43|[146]. The main additional consideration
is how these methods may be affected by the
presence of multiple external models. The main
methods examined so far use a combination of the
models, either weighted or unweighted [137] [143]
or select a single best model to use [139].

Assisted Agent: In most circumstances, the
operation of the agent itself is largely unaffected
by the presence of more than one information
source. However, Tanwani and Billard [146] con-
sider the task of performing inverse RL from
multiple demonstrations provided by multiple ex-
perts, operating according to different strategies
or preferences. To address the potential incom-
patibilities between these strategies, the agent
attempts to learn a set of multiple policies, so
as to be able to satisfy any policy expert strat-
egy, including those not provided to the agent.
This approach is closely related to multi-policy
algorithms developed for multiobjective RL [147].
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Figure [0] shows how an approach using multiple
information sources is adapted to the proposed ARL
taxonomy taking into account the previous definitions
of processing components and communication links.
Moreover, Table [T] summarises how each of the ARL
approaches and examples reviewed in this section is
adapted to the proposed taxonomy.

5 Future Directions and Open
Challenges

In this section, we discuss open issues and propose
further possibilities for future work in the field of ARL.
These open questions have been identified from the
current literature in the field. Many of these issues
are shared with autonomous RL but it still remains
open how they could be addressed within the ARL
framework.

5.1 Incorrect Assistance

A common assumption that ARL methods make is
that all external information that the agent receives
is accurate [I48]. Accurate information is correct
advice that assists the agent in completing its goal.
However, the assumption that information will always
be of use to the agent is wrong, especially when the
information source is an observing human, as in RL
from imperfect demonstrations [149] [I50]. Humans
may deliver advice late, and therefore the agent may
relate it to a wrong state. The advice may be of short-
term use to the agent but prevent it from achieving
optimal performance. Moreover, the human trainer
may even be malicious and actively attempting to
sabotage the agent’s performance.

Incorrect information can be introduced by other
sources as well. Some examples for non-human incor-
rect advice include behaviour transferred from another
domain that does not align correctly, rules that gener-
alise over multiple states which may cover exception
states, and noisy or missing information from audio-
visual sources [50].

Information given to agents may be correct initially,
but over time no longer be the optimal solution [122].
Other advice may be mostly accurate or correct for



Table 1: Summary of the reviewed assisted reinforcement learning approaches adapted to the proposed

taxonomy.
Approach Information | Tempora- . Advice Advice External Age'nt Assisted
source lity interpre- structure model modifi- agent
tation cation
. Convert
Heurist H - . . .
CUnstie tna rule to Machine Retained Policy Normal
reinforcement | domain Planned . .
. machine rule rule-set shaping agent
learning expert
language
Interactive Human / Convert State- Policy / Curiosity-
. . Interac- . . .
reinforcement | simulated tive modal cue | action Immediate | reward driven
learning user to signal pair shaping agent
Convert
inforce- d - . .
Reinforce . . emon Retained . Curiosity-
ment learning | Domain stration to | Rule Action .
Planned ) rule .. driven
from demon- expert agent’s system biasing
. system agent
stration perspec-
tive
Agent with -val 1 tained .
Transfer sont wi Q-values, Value, Retaine Action Normal
loarnin different Planned rules, or rule, or source biasin agent
& capabilities models model model & &
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. Multi- Multi- .
Multiple ulti-users Planned ult Separated or Multi-
. . or . source Integrated | or . .
information . or interac- | . . . unweighted | policy
multi-agent . integra- advice combined .
sources tive . combina- agent
system tion model tion

most states, however, there can exist states of excep-
tion to the advice. These exception states can be the
critical difference between an ordinary solution and
the optimal solution. There is a need for research on
how to identify and mitigate incorrect information
in these scenarios, especially considering that even a
very small amount of incorrect advice may be really
detrimental for the learning process [53].

5.2 Multiple Information Sources

As reviewed in the previous section, the use of multi-
ple information sources may naturally arise on some
application scenarios, and can increase the agent’s
knowledge of the environment, and increase confi-
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dence in decision-making if the different sources agree
on an action. However, the use of multiple sources
raises additional questions:

e What if the different sources disagree on the best
action to take?

e How can the agent identify the best information
source to listen to?

e How can the agent manage conflicting informa-
tion?

e How can the agent measure trust in the different
information sources?



Additionally, the use of multiple sources may be ex-
tended to crowdsourcing [45]. In this context, crowd-
sourcing refers to the enlistment and use of a large
number of people, either paid or unpaid and can range
in size from tens to tens of thousands. Typically,
crowdsourcing is performed via the internet. This can
raise challenges of malicious users, anonymity, and
large uncertainty in the value and reliability of the
information.

5.3 Explainability

Explainability refers to translating the agent’s infor-
mation into a form the human can understand [I51],
152]. The reasons why an agent develops certain be-
haviours can sometimes be difficult to understand for
non-expert end-users. Systems to measure the quality
of explanations generated by Al-based systems have
been previously introduced in order to build effec-
tive and efficient human-AT interaction [I53]. When
combining the RL method with policy modification
methods such as rules, expert assistance, external
models, and policy-shaping, understanding why an
agent chooses to take an action becomes even more
difficult. Developing methods for understanding agent
learning and its decision-making is important as it
allows the human to remain informed of the agent’s
motivations and decisions, and keep track of the ac-
countability of the actions taken [I54]. This can be
beneficial for artificial intelligence ethics, and human-
computer teaching, among other fields.

5.4 Two-Way Communication

Two-way communication refers to the ability for the
information source and the agent to converse with
each other, perhaps multiple times before making a
decision [I55]. Two-way communication can allow the
information source, presumably human, and the agent
to ask questions to each other, request more informa-
tion, and to clarify decision-making and its reasoning.
Although the proposed framework includes two-way
communication, as shown in Figure [T} most current
ARL methods do not have two-way communication
to the extent that non-expert human advisors can
interact with the agent freely. For two-way communi-

cation to apply to non-expert human advisors issues
of explainability (as shown in the previous section),
timing, and agent initiation need to be addressed.

Timing refers to the time it takes to communicate
back and forth. Agents sometimes have a fixed time
limit, during which they need to learn, communicate,
and decide on the next action. Methods for reducing
the time it takes to interact with the human and reduc-
ing the number of interactions needed with the human
are two areas open for research. Agent initiation refers
to the ability for the agent to initiate communication
with the human source itself. The agent may choose
to do this so to request clarification on information,
or request assistance for decision-making. A challenge
for agent initiation is to determine when and how of-
ten the agent should request assistance. The requests
for assistance should be frequent enough to make use
of the information source while not becoming a nui-
sance to the human, or detracting from learning time,
and should consider the cost of the request, e.g., in
paid crowdsourcing.

5.5 Other Challenges

There are also other challenges to be considered for
future possibilities of ARL systems. Although many
of the issues described in this section are also shared
with autonomous RL [156], we focus the discussion on
how particularly externally-influenced agents may be
affected in the context of the ARL framework. While
we describe the essential implications on ARL systems
for each of the following areas, we note that further
and deeper discussion may be addressed for each of
them.

e Real-time policy inference: Many RL sys-
tems need to be deployed in real-world scenarios
and, therefore, policy inference must happen in
real-time [I57]. Using ARL frameworks may lead
to additional issues since the external informa-
tion source should observe and react to the RL
agent’s state as fast as possible, otherwise the
assistance may become unnecessary or incorrect
for the new reached state.

e Assistance delay: There are RL systems where
determining the state or receiving the reward sig-
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nal may take even weeks, such as a recommender
system where the reward is based on user in-
teraction [I58]. In these contexts, the external
information source may also lead to unknown
delays in the system actuators, sensors, or re-
wards, making the assistance atemporal, either
delayed or ahead, or even in some cases being con-
flicting or redundant considering the RL agent’s
autonomous operation.

Continuous states and actions: When an RL
agent works in high-dimensional continuous state
and action spaces [35) [107] there could be is-
sues for learning even in traditional RL [I59].
In an ARL framework, additional problems may
be present as the agent uses external informa-
tion which may be not accurate enough given
the high dimensionality. In the presence of high-
dimensional states and actions, even small differ-
ences in the received assistance may substantially
slow the learning process since these differences
may represent in essence a very different state or
action.

Safety constraints: In RL environments, there
are safety constraints that should never or at
least rarely be violated [I60]. Special care is
needed when receiving information from an ex-
ternal source since there could be situations that
the advisor may repeatedly direct the agent to
unsafe states and, in turn, lead to an increase in
the time needed for learning.

Partially observable environments: In prac-
tice, many RL problems are partially observ-
able [I61]. For instance, partial observabilities
may occur in non-stationary environments [35]
or in presence of stochastic transitions [162]. If
the external information source does not have
observations to clearly infer the current state in
the environment may lead to giving incorrect
assistance to the learner agent.

Multi-objective reward: In many cases, RL
agents need to balance multiple and conflict-
ing subgoals, therefore, they may use multi-
dimensional reward functions [163]. In this re-
gard, an external information source may give
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priority to a particular subgoal over the others,
unbalancing the global reward function. There
could be also issues when multiple information
sources are used covering or favouring different
subgoals. Moreover, when using a multi-objective
reward in TL, there could only be some subgoals
from the source task which are relevant in the
target task, therefore, the RL agent should also
coordinate and filter relevant information.

e Multi-agent systems: There could be multiple
agents learning a task and multiple external in-
formation sources. In this case, if an information
source provides advice it could be generalised to
all of them or it could be pointed specifically to
an agent. Moreover, advice useful for one agent
may be detrimental to another, depending on the
state, the agent’s current knowledge, or its partic-
ular reward function. Using multiple information
sources, if an agent consults an external source,
it may be necessary to discriminate which one
is the best for the particular state. Additionally,
the teacher-student approach usually integrated
into ARL requires the teacher to be an expert
in the learning domain. In this regard, multiple
learning agents may also advise each other while
learning in a common environment [140)].

6 Conclusions

In this article, we have reviewed ARL methods and
presented an ARL framework, comprising all RL tech-
niques that use external information. ARL methods
use external information to supplement the informa-
tion the agent receives from the environment to im-
prove performance and decision-making.

To describe the different ARL methods, we propose
a taxonomy to classify the different functions of an
externally-influenced RL agent. Through the analysis
of the current literature, we have found seven key
features that make up an ARL technique. They are
divided into four processing components and three
communication links. A definition and examples of
each of these seven features have been presented.

The contribution of this paper is twofold: the review



of state-of-the-art ARL methods and the ARL taxon-
omy as an additional level of abstraction. However,
future work framed into our proposed ARL taxonomy
can also make use of the different concepts here de-
fined, either processing components or communication
links. In this regard, it is essential to understand that
not each ARL method must necessarily use all the
proposed concepts. In some cases, simplified models
may also be a representation of the ARL framework.

Additionally, we demonstrated the applicability of
the framework on different ARL fields. These areas
include heuristic RL, IntRL, RLfD, TL, and multiple
information sources. Each of these fields has been
analysed and described as applied to the presented
taxonomy. Finally, we also present some ideas about
areas for future research in order to extend the ARL
field.
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