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A Constraint-Based Evolutionary Learning Approach
to the Expectation Maximization for Optimal

Estimation of the Hidden Markov Model
for Speech Signal Modeling
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Abstract—This paper attempts to overcome the tendency of
the expectation-maximization (EM) algorithm to locate a local
rather than global maximum when applied to estimate the hidden
Markov model (HMM) parameters in speech signal modeling.
We propose a hybrid algorithm for estimation of the HMM in
automatic speech recognition (ASR) using a constraint-based evo-
lutionary algorithm (EA) and EM, the CEL-EM. The novelty
of our hybrid algorithm (CEL-EM) is that it is applicable for
estimation of the constraint-based models with many constraints
and large numbers of parameters (which use EM) like HMM. Two
constraint-based versions of the CEL-EM with different fusion
strategies have been proposed using a constraint-based EA and
the EM for better estimation of HMM in ASR. The first one uses
a traditional constraint-handling mechanism of EA. The other
version transforms a constrained optimization problem into an un-
constrained problem using Lagrange multipliers. Fusion strategies
for the CEL-EM use a staged-fusion approach where EM has been
plugged with the EA periodically after the execution of EA for a
specific period of time to maintain the global sampling capabilities
of EA in the hybrid algorithm. A variable initialization approach
(VIA) has been proposed using a variable segmentation to provide
a better initialization for EA in the CEL-EM. Experimental results
on the TIMIT speech corpus show that CEL-EM obtains higher
recognition accuracies than the traditional EM algorithm as well
as a top-standard EM (VIA-EM, constructed by applying the VIA
to EM).

Index Terms—Constraint-based evolutionary algorithm (EA),
expectation maximization (EM), fusion strategies, hidden Markov
model (HMM), hybrid algorithm, Lagrange multiplier (LM), sig-
nal modeling and classification, speech recognition.

I. INTRODUCTION

HE HIDDEN Markov model (HMM) is the most suc-
cessful and widely used statistical modeling technique for
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speech signal modeling in automatic speech recognition (ASR)
[1], [2] and also signal classification. This is because the HMM
has a powerful ability to model the temporal nature of speech
signals statistically as well as the ability to represent arbitrarily
complex probability density functions. In a Bayesian classifica-
tion scenario (for signal classification and recognition), a model
for a speech signal provides the mapping from the features of
the instances of a particular phoneme class (a basic theoretical
unit of speech sound) to the probabilistic parameterized model
(HMM). The HMM provides the posterior probability of the
speech signal given the phoneme classes/signal classes in signal
classification. Therefore, the success of the recognizer/classifier
for speech depends heavily on how precisely the estimated
HMM can represent the underlying phoneme or signal classes
in speech data. In a real recognition task, feature vectors from
different instances of the same phoneme vary largely due to
variations in speakers, variation in the emotion of the speaker,
and changes in the environment. Therefore, it is very difficult to
find an appropriate estimation for the parameters of the HMM
that can precisely represent all the phonemes in the training
speech data.

The standard method to estimate the parameters of HMM-
based acoustic models in ASR systems is the Baum—Welch
(expectation maximization, EM) [1]-[3] algorithm. The
Baum-Welch (EM) [1]-[3] estimation approach is attractive
because it can approximate the underlying distribution from
the set of observed data which has some missing or hidden
components. In particular, while modeling a speech signal using
HMM, features from the speech signal are observed, but the
state sequence of HMM which generated the signal remains
hidden. In this case, optimization of the likelihood function
is usually analytically intractable [3]. However, the EM algo-
rithm simplifies the likelihood function by considering some
additional variables for hidden components of the data and
initial values for those variables so that the likelihood function
can be optimized. The EM estimates the parameters of HMM
in an iterative manner that makes it more computationally
efficient and helps to converge fast because EM guarantees an
increment in the likelihood function at each iteration [1]-[4] of
its estimation procedure.

Unfortunately, the estimation of HMM parameters computed
by the Baum—Welch (EM) approach is not always the best [1],
[2], and thereby, the use of the model estimated by EM may
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lower the recognition accuracy of ASR systems. The reason is
that the EM algorithm is strongly dependent on the selection
of the initial values of model parameters and is guaranteed to
produce a local rather than a global maximum of the likelihood
function [1], [2], [4]. This gives a nonoptimized estimation of
the parameters of HMM and consequently lowers the recogni-
tion accuracy. Two important research questions are therefore
as follows: How do we choose initial estimates of the HMM
parameters and how can we escape from a local maximum point
if EM is found to be stuck there for better estimation for HMM
parameters and higher recognition accuracy of the ASR system.
In this paper, we focus on these drawbacks of the EM algorithm
for the estimation of HMM parameters in signal classification
or ASR systems.

A global search method such as an evolutionary algorithm
(EA) could be used to avoid the local maximum problem of
EM. The EA can explore the search space without using any
knowledge about the underlying problem structure and is less
likely to be trapped into the local maxima. However, it is well
known that EA is inefficient for high-dimensional optimization
problems. Application of a hybrid algorithm using EA and local
search will be investigated.

Recently, several investigators have applied a hybrid algo-
rithm using neighborhood search such as Tabu Search (TS) [5]
and [6] simulated annealing (SA) [7] in combination with EM
to overcome the problem of EM for continuous density HMM
(CDHMM). The TS requires huge amount of memory to main-
tain the list of already visited solutions due to the high number
of variables in CDHMM. The move attribute-based method
could be used to reduce the memory requirement, but this
makes TS too restrictive. Empirical studies show that in a high-
dimensional search space, a limited number of iterations with
restrictive TS make it dependent on initial point. An inappropri-
ate choice of initial point results in a failure to find an optimal
solution. Both SA and TS work on single-candidate models. In
this context, hybrid algorithm (that combines population-based
algorithm (EA) and local search EM) may be more effective.
In the hybrids of EA [8]-[13], the probability of choosing an
inappropriate initial point is minimized due to the use of a large
number of initial points of EA distributed over the whole search
space. Therefore, hybrids of EA [8]-[13] can explore the search
space more extensively than hybrids of single-candidate-model-
based approaches (with SA and TS).

In the literature, the authors in [8]-[10], and [14] have
used EA in combination with EM for optimal estimation of a
Gaussian mixture model (GMM) in a nonlinear classification
problem and unsupervised clustering. These hybrid algorithms
in [8]-[10], and [14] ignore the constraints of the GMM and
assume equal mixture weights which may fail in many practical
situations where the mixture weights of individual mixtures
of GMM are not the same. Therefore, these algorithms [8]-
[10], [14] cannot be applied on the constraint-based models.
When a hybrid of EA and EM is applied on a constraint-
based model like HMM, the problem context is changed. HMM
combines several GMMs into a single model that constitutes a
large number of parameters and mixture constraints aggregated
from the GMMs. The HMM also has transition and observation
probability constraints for each state. These constraints must be

satisfied while estimating the HMM parameters. When the EM
is applied separately, the constraints are automatically satisfied
[1]. However, EA is stochastic and can violate the constraints of
HMM when applied with the hybrid algorithm. Therefore, the
algorithms proposed in [8]-[10], and [14] cannot be applied on
the HMM.

Moreover, in the literature [8]-[10], hybrids of EA and EM
use a pipelining fusion strategy [15]-[17] with the Lamarckian
viewpoint [16]-[18] where EA provides the initial points
for EM at every generation of the EA. A pipelining strategy
is conceptually similar to segmental-K-means segmentation
[19] in the context of varying the EM initial point. However,
the optimization problem in EM for HMM is very high-
dimensional, and the surface of the optimization function in
ASR is very complex, which includes many local maxima
[1], [2]. Empirical studies [18], [20] show that a pipelining
mechanism is not suitable for high-dimensional functions,
since it reduces the global sampling capabilities of EA and
cannot maintain the diversity in the population [20] (diversity
in the EA population is essential for high-dimensional function
optimization [21]).

The power of global sampling capabilities in EA is due
to its schema processing capabilities (which represents the
hyperplane partition) [22], [23]. In fact, far more hyperplanes
are sampled simultaneously than the actual number of chro-
mosomes contained in the population of EA using the implicit
parallelism technique of EA. This provides the global search
capabilities to the EA [22], [23]. However, the use of pipelining
strategy [8], [9], [14] changes the genetic information of the
chromosome at each generation of EA that results a loss of sta-
tistical information about the hyperplane partition information
implicitly contained in the population as well as the inherited
schema [15], [18], [24]. This, in turn, decreases the global
sampling capabilities of EA [18], [22]-[24]. The disadvantages
of pipelining hybrid EA have also been discussed in many
papers including those in [15]-[18], [20], and [24].

In this paper, we therefore propose a constraint-based evo-
lutionary learning approach to EM (CEL-EM) that hybridizes
a constraint-based EA and the EM for optimal estimation
of HMM for ASR systems. The novelty of our hybrid al-
gorithm (CEL-EM) is that it is applicable for estimation of
the constraint-based models with many constraints and large
numbers of parameters like HMM.

Our contribution also includes the following investigation
hitherto unreported in the literature.

1) Different constraint-based versions for CEL-EM have
been developed and formulated for HMM in the ASR
systems to avoid the local maxima problem of EM in the
HMM estimation process.

2) Combinations of constraint-based versions of and fusion
strategies for CEL-EM have also been developed and
experimentally verified to find a suitable constraint-based
method and fusion strategy for the estimation of HMM in
ASR systems.

3) In CEL-EM, a variable initialization approach (VIA) has
been proposed using a variable segmentation to provide a
better initialization for EA and also for EM. Experimental
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results of CEL-EM have been compared with a standard
EM as well as VIA-EM which has been constructed by
applying the VIA to EM.

Two different constraint-based versions of “CEL-EM” have
been developed. The first constraint-based version of “CEL-
EM” follows a penalization method [25] similar to the tra-
ditional constraint-handling technique used in the EA. The
second version of “CEL-EM” uses a Lagrange multiplier-
(LM)-based technique [26], [27] to handle the constraints. The
traditional constraint-handling method [25] of EA makes dif-
ferent levels in a particular constraint depending on the values
of the constraint. This requires a large number of optimal static
penalty coefficients for many HMM constraints which are hard
to find and increases the number of parameters to be optimized
[25]. Therefore, in the second constraint-handling approach, we
have used LMs. LM can be used to transform a constraint-based
optimization problem into an unconstraint-based problem [26],
[27]. LM also adds some additional parameters to be optimized,
but the total number of multipliers in LM is fixed for HMM.
The only concern here is to find optimal values for LM. We
have proposed an evolutionary approach to find the values for
LM. The LM approach has also been found to provide better
recognition than the traditional method.

In addition, we have proposed two fusion strategies for
“CEL-EM” where Lamarckian evolution [18] is executed pe-
riodically after the execution of Darwinian evolution [22], [23],
[28] for a specific period of time, making the two stages of
the hybrid algorithm a staged fusion [15], [18], [20]. In the
staged fusion of CEL-EM, EM is executed periodically after
the execution of EA for a specific period of time (a Darwinian
evolution [22], [23], [28]), thus utilizing the local knowledge
of EM as well as minimizing the loss of hyperplane partition
information in the EA and maintaining the global sampling
capabilities of EA. The first fusion strategy of CEL-EM uses
a simple staged-fusion approach, and the second strategy ap-
plies a biased-crossover technique [29], [30] with the staged
fusion. The staged-fusion strategy of CEL-EM requires care-
ful choice of evolutionary operators for EA that can produce
feasible solutions in the offspring population of EA which,
in turn, requires a feasible initial population that is created
by problem-specific heuristics [25] (not randomly generated).
Therefore, in the CEL-EM, we have proposed a variable seg-
mentation technique to create the initial population for the
evolutionary process of CEL-EM. However, the recognition
experiments have shown that the second fusion strategy with
the LM-based constrained version outperforms all other com-
bination of fusion strategies and constraint-based versions of
CEL-EM.

The remainder of this paper is organized as follows. In the
next section, a brief description of the HMM, its parameters,
and the constraints are discussed. Section III briefly describes
the EM algorithm and its problems to estimate the HMM pa-
rameters. The CEL-EM with fusion strategies for the estimation
of HMM parameters is described in Section IV. Section V dis-
cusses the experimental procedure and results. The significance
of the results is analyzed in Section VI. Conclusions of this
paper are given in the last section.

II. HMM FOR SPEECH SIGNAL MODELING,
ITS PARAMETERS, AND CONSTRAINTS

The HMM is a doubly stochastic process. One stochastic

process comprises the distribution of observations at
each state which is a multimodal Gaussian mixture
for a CDHMM. The other stochastic process involves
the transitions between the HMM states, which are
the transition probabilities A =a;;. HMM parameters
can be represented as {A = cjn, ljn, Xjn,aj}, Where
,j=1,2,... K (K = total number of states), and
n=1,2,...,M (M = total number of mixtures), with ¢;,, =

mixture weight, f;, = mean vector, and X;, = covariance
for jth state and nth mixture. The probability for the ¢th
observation at the jth state is considered as b;(O;) =
Sl cnbf(0y),  where  b7(0) = (1/+/(2m)P[5;])
exp(—1/2(0; — ,ujn)’E;;(Ot — ljn)) and D = dimension
of O;. The constraints of HMM are Z:il Cin =1,
Zjil a;;j =1, and Zthl b;(O¢) =1, where T = total
number of observations in an instance. In a Bayesian
classification scenario, the model for speech signals provides
the posterior probability of unknown signal data or phoneme
where each signal class is represented by a separate HMM.
Therefore, appropriate estimation of HMM parameter is a
primary concern in signal classification/phoneme recognition.
The maximum likelihood (ML) estimation is the standard
method to estimate the parameters of a probabilistic
model. The ML estimate of HMM parameters is /\1;1L =
arg maxy{log P(O|\)}, where log P(O|\) is the log-
likelihood of the observed data. P(O|)\) can be written as

P(O[X) = P(0,q|A)/P(qlO, A) ¢y
where ¢ = HMM state sequence. Taking the logarithm of (1)
log [P(O[A)] = log [P(O, ¢[A)] —log [P(g|O, M)]. (2)

If we knew the state sequence ¢, the ML estimate of the HMM
parameters At could be computed by taking the derivative of
(2) with respect to A and then equating the derivative to zero.
However, we do not know the state sequence ¢ which generated
the observed data O. Therefore, there is no closed form of
solution from the derivative, and a direct derivative method of
ML estimation will not work to estimate the HMM parameters.
This estimation problem for HMM can be solved by the EM
[1], [3] algorithm.

III. EM ALGORITHM TO ESTIMATE HMM PARAMETERS
AND PROBLEM OF EM

The EM algorithm [1], [3] is an iterative method to solve
the estimation problem of HMM parameters. EM simplifies
the log-likelihood L =log P(O|X) of observed data O in
terms of the expected value of the log-likelihood Q(\, \¥) =
> vacq P(alO; X¥) 1og[P(O, g|\)] of complete data (O, q) by
assuming a set of variables for hidden states ¢ (that generates
the observed data O) and initial values of model parameters \*.
Then, it maximizes Q(A, A\¥) for estimation of the parameters.
However, maximization of Q(\, \*) maximizes the likelihood
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L and gives ML estimation of HMM. The log-likelihood L is
simplified by taking the expectation of both sides of (2) with
respect to the distribution of hidden states P(q|O, \*) given the
parameter values \*. Thus, by (2)

Y P(al0,X*) log [P(O[N)]

VqeQ

= 3" P(q|0, X*)log [P(O, g|\)]

Yqe@

— > P(ql0,X)log [P(q|O, \)]. 3)

VqeQ

Since  v,co P(q|O, ¥) =1 and P(O|)) is independent
of \F

log [P(OIN)] = Y P(q|O, \*)log [P(O, q|\)]

Yqe@

— > P(qlO, A log[P(q|O, V)] (4)
Vqe@

Thus, using the log-likelihood L and Q(A, \¥)
L = log [P(OIY)] =
where H(\, \F) = > vaeq P40, %) 1og[P(q|O, \)]. For two

successive iterations of the EM algorithm, if the values for
HMM parameters are A\* and \**1, then, by (5), we get

Q(AvAk) - H()")‘k) (5)

log [P(OINT)] = QAP N — HOAFTL AR (6)
log [P(OINF)] = QA" \F) — H(AF,\F). (7)
By subtracting (6) and (7)
log [P(O|N*1)] —log [P(O|\F)]
= QNMTLNFY — QAR N — HOFFL ) - H(AE AR

Part-A Part-B

®)

By using Jensen’s inequality and > .. P(q|O, Aty = 1in
Part-B of (8), we get

Z log

(4|0, \*)] log [P(q|O, N¥)] /P(q|O, A*F1)

Vqe@
= Y P(q|O,\*) [~ log [P(q|O, \*T1)] / P(q|0, \")]
Yqe@
—log Y P(q|O, \¥)P(q|O, \¥1) / P(q|O, A")
Yqe@
—log(1) = 0. )

By definition, the EM algorithm maximizes Q(\, \*), and the
maximized value of the model parameters is \**! such that
A+ = arg maxy Q(\, AF). Therefore

Q ( )\k:-‘rl’ )\k) o

Q\F,\F) > 0. (10)

By using (9) and (10) in (8), we get

log [P(O|N*1)] —log [P(O|AF)] > 0. (11
Equation (11) shows that EM maximizes the expected log-
likelihood Q(\, A\¥) of complete data, but it indirectly max-
imizes the log-likelihood L = log[P(O|\)] of the observed
data. The EM estimates the HMM parameters by maximiza-
tion of Q(A, A\¥) in two steps. In the E-step (Expectation),
EM computes Q(\, \¥) with respect to P(q|O, \¥) given the
initial value A*. In the M-step (Maximization), EM maximizes
Q(A, A¥) of E-step and obtains a new set of values for model
parameters \**1. The procedure is repeated until L does not
change. The estimated values for HMM parameters (Cjy, [jn,
ijn, and a;;) are as follows:

T
ijn = Z’Yt(j’ n)(Or — pjn)(O /"m Z’Yt Jin
t=1
(12)
T-1 T-1
@y =Y &5 [ Y i) (13)
t=1 t=1
T T
in = w(in > wlin (14)
t=1 t=1
T M
Z% jn / ZZ (15)
. ay(i )a” (O )ﬁt-&-l( )
&(i, ) = ; (16)
R Y a@)aihy (OB ()
K
= > &lig) (17)
j=1
Y (j,n) = T (18)
S T a)Bi) T ¢ Or tns Syl
Zau (Ot41)Be+1(7) (19)
wheret =T — 1,7 —2,...,1and (i) =
Oét+1 Zat azg Ot+1) (20)
where 1 <t<T—1 and a1(j) =mb;(O1). A detailed

derivation for the estimated values of HMM parameters can
be found in [1] and [2]. However, the estimation of HMM
parameters using EM is not optimal. This is because EM is
strongly dependent on the initial values of model parameters
following (5), (8), (10), and (11), and it increases the values
for the likelihood function L at successive iterations following
(11). Due to these two properties, EM may terminate at a local
maximum of the likelihood function L assuming it as a global
maximum, which may give a nonoptimized estimation for
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HMM resulting in a lower recognition accuracy. The problem
can be avoided using a hybrid approach combining a local
search (EM) and a stochastic global search (EA).

IV. CEL-EM WITH FUSION STRATEGIES

In general, standard EA [22], [23] can find globally com-
petitive solutions for optimization problems by exploring the
search space simultaneously using the numerous solutions in
the population (details of the EA can be found in the literature
[22], [23], [28]). However, the EA often represents an unsat-
isfactory compromise and suffers from the lack of accuracy
when a high-quality solution is required for high-dimensional
complex optimization problems [21]. In contrast, local search
algorithms (such as EM) find the local maximum quickly by
focusing solely on precision and time. The hybrids of EA
and local search algorithms combine the benefits from the
complementary properties of EA and EM [14], [15], [18], [20].
In the hybrid algorithm, EA converges on globally competitive
solutions irrespective of local optima, and then, local search
can potentially improve on the solutions discovered by the
EA by ascending the hill to the optima of their corresponding
attraction basins. However, when designing a hybrid algorithm,
several important issues need to be considered such as fusion
strategies of EA and EM, constraint-handing methods for EA,
and creation of the initial population. In the CEL-EM, we focus
on all of these issues.

The CEL-EM hybridizes a constraint-based EA and the EM
to avoid the local maximum problem of EM while estimat-
ing the HMM for ASR systems. The CEL-EM executes a
Lamarckian evolution [18], [24] periodically after the execution
of a Darwinian evolution [22], [28] for a specific period of
time using a staged-fusion strategy [15], [18], [20] (details
of the Lamarckian evolution and Darwinian evolution can
be found in [18], [22]-[24], and [28]). In the staged fusion,
EA is executed up to a certain extent following a constraint-
handling mechanism that forms one turn of the Darwinian
evolution [22], [28]. The EM is executed on every offspring
of the final EA population after each turn of Darwinian evo-
lution [22], [23], [28]. The resulting solutions from EM are
passed back to EA to reinitialize its initial population forming
a Lamarckian evolution [18], [24]. Periodic execution of
Lamarckian evolution [18], [24] after the execution of
Darwinian evolution [22], [23], [28] for a specific period
of time is performed over several iterations forming the two
stages of the hybrid algorithm. The trait (problem-specific local
knowledge) acquired by each individual during Lamarckian
evolution (EM learning) is transmitted to the next EA genera-
tion using the reproduction operators of EA. However, periodic
execution of EM in the staged fusion potentially improves
on the globally competitive solutions discovered by the EA
as well as maintains the global sampling capabilities of EA
by minimizing the loss of hyperplane partition information
[15], [22], [23].

During the execution of the EA stage, CEL-EM requires
a feasible initial population, specific genetic operators, and
constraint-handling methods for the satisfaction of HMM con-
straints. Conventional EA [25] handles the constraints in two

different ways. The first one is based on preserving feasibility
of solutions (PFS) [25]. In PFS, when a particular parameter
of a chromosome is mutated, EA determines the domain of the
parameters by a function of the linear constraints and the re-
maining parameters of the chromosome. Then, the new value is
taken from this domain with a probability distribution (uniform
or nonuniform). Speech signals are so diverse, and constraints
of HMM are so complex that to find a domain determination
function for the parameters is very hard in ASR. However, a
specialized genetic operator such as “Arithmetic Crossover”
[25] could be used to transform a feasible chromosome into a
feasible or a near-feasible chromosome [25] if we are provided
an initial population for EA which has been created by the
problem-specific heuristic method (not generated randomly).
The second method is based on a penalty function (PF) [25].
The PF approach considers different levels based on the values
of each constraint with a static penalty coefficient for each
level in a particular chromosome. Due to many levels in each
constraint, PF depends on the values of many static penalty co-
efficients. In HMM, there are many constraints. It is quite hard
to get an optimal set of static penalty coefficients. Therefore, in
the CEL-EM, two different constraint-based versions have been
introduced. Both of these constraint-based versions of CEL-
EM combine the properties from constraint-handling methods
(PES and PF) used in traditional EA. To take the merits of the
PFS, CEL-EM uses an arithmetic crossover operator. The first
constraint-based version of CEL-EM is a combination of the
PES and PF (PFS-PF). However, to avoid the demerits of the PF
method, CEL-EM proposes another constraint-based version
(PFS-LM) based on PFS and LMs [26], [27]. In PFS-LM,
LMs are used to transform the constraint-based optimization
problem into an unconstrained optimization problem [26], [27].
LMs also add some additional parameters, but the number of
multipliers in LMs is fixed and the same as the total number of
HMM constraints. The only concern here is to find the optimal
values for LMs. CEL-EM proposes an evolutionary approach
to find the values for LMs. In the following sections, these two
versions of CEL-EM (PFS-PF and PFS-LM) and their fusion
strategies are described in detail.

A. PFS-PF-Based CEL-EM

In the PFS-PF method, EA is executed up to certain extent,
and then, EM is applied on each of the chromosome of the final
EA population. The resulting EM population is passed back to
EA to reinitialize the initial population of EA. This process is
executed over several iterations. The EA process in PFS-PF
follows several steps (creation of an initial population, selec-
tion, crossover, mutation, constraint handling, and evaluation).
Finally, EM reestimation is executed. The flowchart for PFS-
PF-based CEL-EM is given in Fig. 2. A detailed description of
PFS-PF is given in the next sections.

1) Creation of Initial Population in CEL-EM: The initial
population for EA in CEL-EM can be created using a random
process. However, a random initial population is not feasible
for HMM in ASR [31]. We have proposed a variable segmen-
tation with incremental clustering approach to create the initial
population for CEL-EM.
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Fig. 1. Creation of initial population using variable segmentation with incre-
mental clustering.

2) Variable Segmentation With Incremental Clustering: In
segmentation, the observation vectors from the feature extrac-
tion process are divided into HMM states. Standard EM divides
the observation vectors between HMM states uniformly [1].
In variable segmentation, a time index is considered for each
vector of each state. Let the time index of the first vector of the
ith state be denoted by b;. Therefore, the ith state begins with a
feature vector at time b; and ends with a feature vector b; — 1.
The aim is to find some criterion for the K — 1 boundaries
of the K states (bo,bs,...,bx_1) where by =1 and bx =
total number of observation vectors. The boundaries are com-
puted by minimizing the total distortion: > | Z?;bll |10: —
wil|?, 1; = mean of state i. Minimization of the total distortion
is done by constrained clustering with a level-building dynamic
programming technique [32]. The time index b; is assigned an
upper and a lower limit. The lower limit of b; is unity, and
the upper limit of b; is the maximum number of frames per
HMM state. For each value of the maximum number of frames,
a separate segmentation is computed. We varied the upper
limit of b; and applied constrained clustering [32] that gives
several different segmentations. Then a Gaussian model of
the observation vectors is obtained by estimating the expected
vector “4”” and the covariance matrix “Y.” for each HMM state.
The expected vector represents the data centroid py in Fig. 1.
The higher distortion direction is determined by the eigenvector
“Ymax ~ associated with the maximum eigenvalue afnax. Two
new centroids p; and po are optimally calculated as the couple
of points at a distance A = \/2/702,,. from the centroid py
in the direction of maximal distortion. The two new centroids
w1 and po outline two clusters Cy, C5 (Fig. 1) obtained by the
nearest neighbor approach with Euclidean distance. A Gaussian
model is found for each of the two clusters by estimating
the mean and covariance matrix. The weight associated with
each mixture component is given by the fraction of vectors
belonging to each cluster. The cluster C; with the highest
distortion is divided again (Fig. 1). Cluster C is taken as a
Gaussian mixture of a particular HMM state. Thus, given a set
of n clusters for a particular step, a set of (n + 1) clusters is
found. This gives (n + 1) Gaussian mixtures for a particular
HMM state which is repeated for all states of HMM. This
gives one initial model for a particular phoneme. The process is
repeated for other values of maximum frame number, and other
initial models are obtained. The EM reestimation is applied

on each initial model, which gives initial population P;(t)
for “CEL-EM.”

3) Encoding of the Population in CEL-EM: Each chromo-
some in the initial population P; (t) of CEL-EM is encoded as
the real variable which consists of the parameters of each HMM
state (Cjn, f4jn, 2jn) and transition probabilities A = a;;. Each
chromosome of the population in CEL-EM is encoded as

I, = (c11, 11, 211), - -+ (Canas pane, i),

Gaussian Model for HMM state j=1

o (k1 R K1), - (CrMy M, 2K M), A (21)

Gaussian Model for HMM state j=K

4) Computation of Average Log-Likelihood and Evaluation
of Initial Population in CEL-EM: After encoding, the chromo-
somes of the initial population P (¢) are evaluated using the av-
erage value of likelihood P,yg(A) = (1/1) S log(P(O[N))
over the total number of instances I of a phoneme. Since, in the
encoded population, any chromosome is equivalent to model
parameter )\, the likelihood L of each chromosome is computed
using the forward—backward algorithm [1] with

K
P (O|N) = Z ar(i) (Instance ! has T features)  (22)
i=1

where aq (i) is computed using (20), which is a recursive
procedure that follows the forward—backward algorithm [1].
Then, the average value P, for one chromosome in P (t) is
taken over all instances. Chromosomes in P;(¢) are ordered
based on their P,, in descending. Since EM satisfies the
constraints of HMM [1]-[3], the initial population is evaluated
using P, only.

5) Selection Procedure in CEL-EM: A stochastic sampling
with replacement (SSR) [33] selection strategy is applied in
PFS-PF. Top order chromosome is assigned with a ranking
position equal to population size. Fitness of the chromosomes
is computed by

Fitness = 2 — SP + 2% (SP — 1) * (pos — 1) /(PS — 1) (23)

where SP = selection pressure € {1.0, 2.0}, pos = ranked po-
sition of the chromosome in the ordered population, and PS =
total number of chromosomes in the population. The chromo-
somes are mapped to contiguous segments of a line, such that
each chromosome’s segment is equal in size to its fitness.
This is done by computing the selection probability (where
selection probability = fitness/PS) which is mapped along a
line. The highest fitness chromosome is mapped first, and then,
the rest are following a descending order. A random number is
selected between zero and one. If the random number falls in
any boundary value along the line, the corresponding chromo-
some is selected for the parent pool. The process is repeated
until the desired number of chromosomes is obtained to build
the pool of parent P (t).

6) Crossover and Mutation Process in CEL-EM: During
crossover, a pair of parent chromosomes (P; and P5) is ran-
domly selected from the parent pool P5(t). Then, a crossover
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operator is applied on P; and P», which does some exchange
and reordering of information in parent chromosomes and pro-
duces two offspring (Offspring; and Offspring,). The CEL-EM
needs to ensure the offspring chromosomes in the population
do not violate the constraints. The use of the specific genetic
operator arithmetic crossover [25] is a promising way to do this.
Therefore, we have used arithmetic crossover [25]. Arithmetic
crossover requires a feasible initial population. The variable
segmentation approach for creation of the initial population
meets this requirement. The variables of offspring (Offspring;
and Offspring,) are determined by

Offspring, Var,, = P; Var,. + (P> Var,. — P; Var,.) (24)
Offspring, Var,, = Py Var, + (1 — ) (P, Var, — P, Var,.) (25)

where  Offspring, Var, = rth  variable of Offspring;,
Offspring, Var, = rth variable of Offspring,, P;Var, = rth
variable of P;, and P,Var, = rth variable of P5, with r =
1,2,...,Vp. Vp = total number of variables, and « € {0,1}.
After crossover, the mutation operator is applied on the
variables of offspring (Offspring; and Offspring,), which gives
chromosomes for population Ps(t). The process is repeated
for a desired number of chromosomes in P5(t). We have used
the same mutation operator as in the breeder genetic algorithm
[34]. Offspring variables are mutated by small perturbations
with low probability using

OffspringgVarffte’r mutation _ Offspring, Var, + S, * R, x A,
(26)

where ¢g={1,2}, S, €{-1,41} uniform at random,
R, = R+range,, R = mutationrange € {0.1,1075}, and
A, =27""P with u € {0,1}, mp = mutation precision =
4,5,6,...,20, and range, = range of value for the variable
“r.” The range is determined from the mean value of the initial
population and adding a multiple of standard deviation of the
population with the mean.

7) Evaluation of Offspring Population and Constraint-
Handling Methods in PFS-PF-Based CEL-EM: In PFS-PF, the
evaluation of the chromosomes in the offspring population
P5(t) is computed by taking the advantages of both the PFS and
PF method used in conventional EA [25]. The conventional EA
considers several levels for each constraint depending on the
values of constraint. Each level is assigned with a static penalty
coefficient. HMM has many constraints. Making levels for
constraints requires huge penalty coefficient. It is also difficult
to set the optimal values for many static penalty coefficients
for HMM constraints. The PFS-PF method makes a grouping
of the chromosomes of Ps(t) and penalizes the chromosomes
according to (27) by following the procedure described next.

1) If chromosomes (I,) are not violating any constraints,
then these are ranked with the top position.

2) If chromosomes violate the observation probability con-
straints but the mixture constraints and transition proba-
bility constraints are preserved, they are ranked with the
second position.

3) If observation probability constraints are preserved but
other constraints are violated, then the chromosomes get
the third position.

4) If all constraints are violated, then these chromosomes get
the lowest position.

f(I) No violation

)= { fu)+ R+ g+ )iy 0
where f(I,) = Pavg, F(I,) = penalized value of P,,, and
n1,ng,n3g = total number of constraints violation in each cat-
egory of constraints. N1, No, N3 are the total number of con-
straints in each category. After grouping, the chromosomes in
each group are evaluated using F'(I,) in (27). Each group of
chromosomes in population P;(t) is sorted based on F'(Iy)
in descending. Then, evaluated P;(t) is passed to the next
EA generation where a parent selection pool P»(t) is built
using selection procedure SSR [33]. EA is executed up to
a predetermined maximum number of EA generations. This
finishes one turn of Darwinian evolution.

8) Execution of EM Reestimation in PFS-PF: When EA
execution stops, the population Ps(t) is passed to the EM-
reestimation process. For each chromosome in Ps(t), the EM-
reestimation process is executed. Taking the chromosome’s
parameter value as the initial HMM parameter \*, P,yq(AF) is
computed by the forward-backward algorithm [1]. Then, new
values for parameters \**! are determined using the reesti-
mation formulas [see (12)—(15)]. Payg(A**1) is computed for
new values \**1. The procedure is iterated until Poyg (A1) —
Pavg()\k) < threshold value which is the termination criteria
(TC) for EM. The estimated parameter values by EM reestima-
tion for each chromosome of P;3(t) build the population Py(t).
P,(t) is sent back to reinitialize the initial EA population P; (t)
for the next turn of Darwinian evolution.

9) TC for PFS-PF-Based CEL-EM: One complete execu-
tion of EA and EM forms a complete iteration for PFS-PF-
based CEL-EM which is executed over several iterations. Then,
the best individual from the final EM execution is taken as the
final HMM model.

B. PFS-LM-Based CEL-EM

The complete flowchart for PFS-LM is shown in Fig. 3.
Creation of the initial population Pj(¢) in PFS-LM and the
evaluation of this population P;(t) follow the same procedure
as PFS-PF. The parent pool P;(t) is created using the SSR [33]
procedure used in PFS-PF. Crossover and mutation operators
are applied on P (t) to create the offspring population Ps(t).
The crossover and mutation procedure is the same as PFS-
PF. However, the evaluation of chromosome and constraint-
handling method in PFS-LM uses the LM-based approach.

1) LM for Constraint-Based Optimization Problem: The
LM-based approach is widely used in many constraint-
based optimization problems [26], [27]. Let the HMM con-
straints be considered as g(z) = 1, where g(z) = ¢™(x), m =
1,2,3,...,V (V = total number of HMM constraints) and x
are the HMM parameters. If there exists a maximum value
mg of the objective function P, then there exists a real
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valued vector “y” which is known as an LM such that my =
maxgeq(Pavg — (7, 9(x))), where (.) is the inner product. If
both P, and g(x) are differentiable, then (28) holds for each
of the mth constraints

VPyg(z0) =7"Vg™ (z0). (28)

Here, z¢ is the value of HMM parameters at maximum.
Therefore, if we can find the values for LM “v,” then it is
possible to transform the original constraint-based optimization
problem into an unconstraint-based problem by maximizing the
function E(Payg,7,g(x)) in the following equation using the
likelihood value P,yg:

E (Pavg,%g(x)) = Pavg - <’Ya (1 - g(.%‘))> .

The PF approach [25] requires different levels based on the
values of each HMM constraint with a static penalty coefficient
for each level. Due to many HMM constraints with required
levels for each, PF depends on the values of many static penalty
coefficients. The PFS-PF avoids the levels of many constraints
and considers only violation of constraints. Thus, all constraint
violations are considered as equal disregarding their numerical
values. The LM-based approach only needs a fixed number
of coefficients equal to the total number of HMM constraints
and considers the numerical values of each constraint of each
chromosome. Thus, each chromosome is properly penalized in
the PFS-LM-based approach.

2) Determination of the Values for LM and Constraint-
Handling in PFS-LM-Based CEL-EM: The LM-based
constraint-handling method has been used to evaluate the EA
offspring population P;(t) in the EA process of PFS-LM
in Fig. 3. The values for LM (v;) for Ps(t) are determined
using a separate EA process for LM (LM-EA). The P, of
each chromosome in P3(t) is computed. P;(t) is sorted based
on P,,,. For the first EA generation in LM-EA, a randomly
generated initial LM population M (t) is created. By using the
worst chromosome “I,,” with the lowest Payg(" Pavg) from
P5(t) and the constraint values of “I,,,” chromosomes in the
M, (t) are evaluated by the following equation where each
LM chromosome gets ' P,,, and mth constraint value (g.)")
of “I,,:”

E (" Pavg; 11, 9y (7)) =" Pavg
—{mx(l=gp(@) + 0 * (1 =gy (@)}

An SSR [33] selection technique is applied on M (¢) to cre-
ate the LM parent pool M5 (t) in LM-EA. Then, the crossover
and mutation operators are applied on the parent pool Ms(t),
which produces the LM offspring population M3(t) in LM-EA.
The LM chromosomes of offspring M3(t) are evaluated using
(30). SSR [33] is applied on offspring M3(t) to create the new
LM parent pool for the next (¢ + 1)th EA generation. Ms(t) is
replaced with the new LM parent pool which is used to create
the offspring for (¢ + 1)th EA generation in LM-EA. The EA
process in LM-EA is executed over a predetermined number
of iterations. The best LM chromosome <, is chosen from
M3 (t = final generation) in LM-EA with the highest value for
E(" Pavg, 71, 95y (). For every offspring population P3(t) in

(29)

(30)

[ En-estimation Je{ Initial Models la—{ Start |

v
[IrﬁtialPopulation —>[
P® )

Evaluation of ]
P®

[ Parent pool Po(t) l
v

Final Model |

Best chromosome
EM iteration

[ Crossover ]

i Offspring »
r--=* | Population P3(})

Evaluated [ PFS-PF based
| EM-Population Evaluation of P,(t)
T
(Py()=Apply EM- No
on Py() Yes
and Evaluation
____ of Py

Fig. 2. Flowchart for PFS-PF-based CEL-EM.

the EA process of PFS-LM, a separate EA process for LM
(LM-EA) is executed, and a new best LM is computed for the
evaluation of the chromosome in Ps(t). The LM offspring pop-
ulation M3(t) of the final EA generation in one LM-EA is taken
as the initial LM population M, (t) for the LM-EA execution
process in the next offspring population Ps(t) of PES-LM. Each
individual in P3(t) is evaluated using the evaluation functions
E(Pavg, Vb, 9(x)) in the following equation with corresponding
values for g(x) and 73:

E (Pavga’}/lzn7gm(x)) = Pan
1

—{u (=g @)+ 40+ (1-9"(@)}. G

The offspring individuals in P3(t) are sorted in descending
order based on E(Payg,7,9(x)) where the best individual
receives a position equal to the population size. The fitness
of each individual in P;(t) is computed by (23). The SSR
[33] is used to create the parent pool Py(t). The crossover
and mutation process (same as PFS-PF) is used to create the
offspring population P3(t). The EA process is executed over
several iterations. Then, the final population of EA Ps(t) is
passed to EM reestimation.

3) Execution of EM Reestimation in PFS-LM-Based CEL-
EM: EM reestimation is applied on each individual of pop-
ulation Ps(t) that produces population P, (t). The evaluation
of P4(t) is done using P,y following the procedure described
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Fig. 3. Flowchart for PFS-LM-based CEL-EM.
earlier. Population P, (t) is passed to reinitialize the EA popu-
lation for the next EA generation.

4) TC for PFS-LM: One complete EA process and one
complete EM execution form a complete iteration of PFS-LM.
Complete PFS-LM is executed over a predetermined number of
iterations. The final model is the chromosome with the highest
P,s chosen from EM population Py (t) of the last iteration of
PFS-LM.

C. Fusion Strategies for Hybridization of EA and EM in
the CEL-EM

Two different staged-fusion strategies have been proposed
for the CEL-EM. The first strategy (Fusion-1) follows a pe-
riodic Lamarckian evolution [18] with Darwinian evolution
[28]. Both Figs. 2 and 3 for PFS-PF and PFS-LM describe
the use of first fusion strategy (Fusion-1). The other fusion
strategy (Fusion-2) uses a biased crossover operator with the
staged-fusion technique that is conceptually similar to the hy-
bridization techniques used in immune recruitment mechanism
[29] and Simplex-Crossover [30] where the local exploitation
properties of EA are enhanced by biasing the traditional re-
production operators (crossover and mutation). In the second
fusion strategy (Fusion-2) of CEL-EM, the crossover operator
is biased by the local knowledge of the EM algorithm. However,

the evaluation of the chromosomes in the EA population is
performed after mutation and follows any of the constraint-
handling mechanisms of CEL-EM (PFS-PF and PFS-LM).
A complete algorithm for fusion strategy-2 (Fusion-2) based
on PFS-LM is given in Algorithm 1. In fusion strategy-2
(Fusion-2), creation of the initial population P;(t), evalua-
tion of Pj(t) remains the same as in (Fusion-1). Creation of
parent pools P (t) and Py(t) follows the SSR [33] selection
process described earlier in strategy-1 (Fusion-1). However, the
crossover operator is biased by the local knowledge of EM.
The biasing is done by the execution of EM reestimation with
one iteration only on each offspring chromosome in Ps(t).
P5(t) is obtained by applying the crossover operator on Py (t).
Then, the mutation operator is applied on the results of EM
reestimation (on Ps(t)), which gives the offspring population
Ps(t). Ps(t) is evaluated using the PFS-LM-based method as
in Fig. 3. Constraint handling could also be used using PFS-PF
as described in Fig. 2. For the PFS-LM, the LMs ~; and ~, are
determined using the same procedure as described earlier by
(30) and by the following equation:

E (wpavg7727gz)(z)) =" Pavg

—{mr(1—gh@)+-+w*x(1-gy@)}. 62

Algorithm 1 Algorithm for fusion strategy (Fusion-2) of
CEL-EM (based on PFS-LM) for estimating HMM parameters
in speech signal modeling

Constants M aximum_FEA_Iteration,
Maximum_Iteration CEL_EM
Variables Iteration_FE A,
Iteration_CEL_EM : Integer
Highest_Payg, Highest_Paw,_EM : Real
begin
ITteration_ EA <+ 0
Iteration CEL_EM «+ 0
Training_Data «— D
Features — Extract_Features(D)
Models P(t) < Variable_Segmentation(Features)
Initial_PopulationP; (t) <— Apply EM on P(t)
Compute P,y for P (t)
Evaluation of P; (t) by Payg
P2 (t) < SSR on P1 (t)
Ps5(t) «— crossover, mutation on P (t)
Compute P, for individuals in P3(t)
~1 < Find LM using EA and worst individual in P3(t)
Evaluation of P5(¢) using PFS-LM method with ~;
repeat
repeat
P,(t) < SSR selection on P5(t)
P5(t) < Crossover on Py(t)
Ps(t) < Apply One-iteration of EM on Ps(t),
then mutation on the results from EM
Compute P, for individuals in Ps(t)
o «— Find LM using EA and worst individual in
Ps(t)
Evaluation of Ps(t) using PFS-LM method with o
P3(t) « Pg(t)
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Iteration_E A «— Iteration_EA+1

until (Iteration_EA < Maximum_EA _Iteration)

ITteration EA <+ 0

P;(t) < EM estimation on Pg(t)

Compute P, and evaluation of P;(t) by Payg

Iteration_ CEL_EM « Iteration CEL_EM + 1
until (Iteration_CEL_ EM<Maximum_Iteration_CEL_EM)
Highest_Ppyy_EM «— Find highest Py, in P;(t)
Best_Model < chromosome in P;(t) with
Highest_P,ye_EM
RETURN Best_M odel
end

2 is determined using the worst individual (lowest “ Py¢)
of population Ps(t) by (32). The best model is determined from
the final EM population P (t) with the highest P,y,. The TC for
Fusion-2 remain the same as the first fusion strategy (Fusion-1).

V. EXPERIMENTAL RESULTS

The TIMIT acoustic phonetic speech corpus has been used
for evaluating the performance of all versions of CEL-EM. The
TIMIT [35] corpus has been designed to provide speech data
for the development and evaluation of the ASR systems. The
TIMIT [35] contains three main categories of utterances: dialect
utterances (the SA sentences), phonetically compact utterances
(the SX sentences), and phonetically diverse utterances (the SI
sentences). In the TIMIT, a total of 4620 utterances are used
for training set. There are two test sets (test set-A and test set-
B) in the TIMIT. Test set-A has 1680 utterances (SA, SX, and
SI). Test set-B has 1344 utterances (SX and SI). SA sentences
expose the dialectal variants of the speakers. However, SX and
SI sentences are phonetically compact/diverse sentences. The
test set-B does not have any SA sentence. Therefore, it is more
appropriate [35] for performance tests of ASR systems [35].
The detailed description of TIMIT data set can be found in the
TIMIT manual [35].

Mel frequency cepstral coefficients (MFCC) [36] feature
extraction process has been used in both training and testing
of CEL-EM. In the MFCC [36] feature extraction process,
39-dimensional feature vectors have been produced. Each
39-dimensional feature vector includes 12 MFCC components,
one log energy component, 13 first-order differences (delta
coefficients), and 13 second-order differences (delta—delta
coefficients). The sampling rate for computing feature vectors
was 16 kHz. The window size was 32 ms (512 samples). The
window overlap was 352 samples, while the frame rate was
100 frames/s.

The TIMIT training set has been used to train all versions of
the CEL-EM (PFS-LM and PFS-PF with two fusion strategies).
During training, a simple left-to-right CDHMM with no node
skipping has been considered for the model of each phoneme
class in the training data. Training has been done considering
the different numbers of Gaussian mixtures (Mixtures 3, 5, 8,
10) for HMM. The following parameters have been set during
training: the EM convergence threshold: 0.50, maximum num-
ber of generations for EA: 10, maximum number of iterations
for CEL-EM: 20, and maximum number of iterations for EA
process for determination of the values for LM in PFS-LM: 20.

Experiments have been done for three different types of
algorithm (standard EM, VIA to EM, and CEL-EM) to test
and compare the performance of CEL-EM. The EM algorithm
(standard EM) has been executed with initial point created by
uniform segmentation. Since the performance of standard EM is
strongly dependent on the initial point, EM has been repeatedly
executed on the different initial points created by a VIA using
variable segmentation technique to obtain the best performance
from standard EM. We refer to this approach as a VIA to EM
(VIA-EM), and it is used to compare the performance of CEL-
EM. The best model of VIA-EM is chosen based on the highest
value of the objective function among all models obtained by
applying EM repeatedly on the different initial points. To test
the performance of all versions of CEL-EM and compare the re-
sults to EM and VIA-EM, we tested the recognition accuracies
of the HMM models for speech computed by CEL-EM, EM,
and VIA-EM on TIMIT test sets. Tests have been carried out
for Gaussian mixtures (3, 5, 8, 10) for the different versions of
CEL-EM, EM, and VIA-EM. Two test sets of the TIMIT data
set, namely, test set-A and test set-B, have been used to test
the performance of the CEL-EM. A phonetic bigram grammar
language model has been used in testing.

A. Results

The experimental results are described in Figs. 4-7,
Tables I-IV. In Fig. 4, the values for the objective function
(Payg) of PFS-LM- and PFS-PF-based CEL-EM (Fusion-1)
and VIA-EM have been plotted for Gaussian mixtures (3, 5, 10)
for different phonemes. Recognition accuracies of the different
HMM models for Gaussian mixtures (3, 5, 8, 10) obtained by
CEL-EM (PFS-LM and PFS-PF for Fusion-1) for test set-A and
test set-B have been depicted in Tables I and II. The accuracies
have also been compared to the standard EM as well as VIA-
EM. It is found in Tables I and II and Fig. 4 that both PFS-
LM and PFS-PF (Fusion-1) have obtained higher values for
objective function and recognition accuracies than the standard
EM as well as VIA-EM. However, PFS-LM achieves higher
values for recognition accuracies as well as values for P, than
PFS-PF for both test sets.

This demonstrates the effectiveness of the LM-based ap-
proach (PFS-LM) constraint-handling technique in CEL-EM.
The values of P,,, obtained by both fusion strategies (Fusion-1
and Fusion-2) of the PFS-LM-based CEL-EM and VIA-EM for
Gaussian mixture-8 are shown in Fig. 5. Fig. 5 indicates that
for a particular constraint-handling mechanism of CEL-EM,
if we change the fusion strategy from Fusion-1 to Fusion-2,
values for P, are improved. Recognition accuracies on test
sets (A and B) of PFS-LM- and PFS-PF-based CEL-EM
(Fusion-2) have been depicted in Tables I and II for Gaussian
mixtures (3, 5, 8, 10). It is found that both PFS-LM and PFS-
PF in Fusion-2 achieve higher recognition accuracies than the
standard EM as well as VIA-EM in both test sets. A comparison
of recognition accuracies in Figs. 6 and 7 indicates that, in
both constraint-handling mechanisms (PFS-LM and PFS-PF),
Fusion-2 has performed better than Fusion-1 for both test sets.
This demonstrates the importance of enhancing local exploita-
tion in the EA in Fusion-2 of CEL-EM.



192 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 39, NO. 1, FEBRUARY 2009

-40 4

Avg. Log. Prob

-60

iy th eh ae ah uw uh aa ey ay oy aw ow 1

r y we mnnchijhdib d g pt

k z v f s sh hh dx

Nate of Phonemes

-o-x-- PES-LMMix-10 —e— PF3-PFMix-10
—+— VIA-EM: Mix-5

oo VIA-EMMix-10 —x
--0-- PFS-LM: Mix-3 —o— PFS-PF: Mix-3

PFS-LMMix-5 —=—PFS-PFMix-5
VIA-EM: Mix-3

Fig. 4. Values for objective function (average log probability) for different Gaussian mixtures (3, 5, 10) for different phonemes obtained by PFS-LM- and PFS-
PF-based CEL-EM for fusion strategy-1 and EM. Y -axis denotes the average log probability. X -axis denotes the name of the phonemes. PFS-LM:Mix-10 =
PFS-LM for Gaussian mixture 10, PFS-LM:Mix-5 = PFS-LM for Gaussian mixture 5, and similar meaning should be taken for other legends.

Avg. Log Prob

B e e e L B e e e e M

iy th eh a sh uw uh aa ey ay oyaw ow 1 1

y we mnngchjhdi b d g pt

T T T T T T T T T T T T T T T T T

k z v f s sh hh

Natne of Phonemes

—— PFS-LM(Fusion-2) —— PF3-LM(Fusion-1)

——DPF3-PF(Fusion-2) —— PFS-PF(Fusion-1)

—+ VIA-EM

Fig. 5. Values for objective function (average log probability) for different Gaussian mixtures-8 for different phonemes obtained by PFS-LM- and PFS-PF-based
CEL-EM for fusion strategy-2 and EM. Y -axis denotes the average log probability. X -axis denotes the name of the phonemes. PFS-LM (Fusion-2) = PFS-LM
for Fusion strategy-2 for Gaussian mixture-8, and similar meaning should be taken for other legends.

VI. DISCUSSION AND SIGNIFICANCE OF THE RESULTS

Experimental results demonstrate that all versions of CEL-
EM (PFS-PF and PFS-LM with two fusion strategies) obtain
higher values for the objective function and recognition ac-
curacies compared to standard EM and VIA-EM. Therefore,
CEL-EM computes better estimation for HMM parameters than

standard EM and VIA-EM. From Figs. 4 and 5, it is found that
PFS-LM obtains higher values for objective function than PFS-
PF for all different mixtures. While comparing the recognition
accuracies, Tables I and II show that PFS-LM obtains higher
accuracies than PFS-PF for all different mixtures. Therefore,
PFS-LM computes better HMM models than PFS-PF. This
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Fig. 6. Comparison of recognition accuracies between different versions of
CEL-EM (PFS-PF and PFS-LM for both fusion strategies) and EM for test
set-A.

is due to the improved constraint-handling technique (LM-
based) used in the PFS-LM-based method. This also proves
the advantages of the use of LM-based technique in CEL-
EM. The advantages of the use of LM-based techniques have
been verified in [26] and [27] where LM-based techniques
have been applied on some other problems (not related to
speech recognition) and improved results have been found.
Compared to fusion strategy- 1, fusion strategy-2 obtains higher
recognition accuracies. Therefore, PFS-LM with Fusion-2 is
more suitable to estimate HMM parameters than any other
version of CEL-EM. Accuracies of CEL-EM have also been
compared with other systems. Yung and Oh [37] achieve a
baseline accuracy of 56% for the EM algorithm in HMM
systems and 60.6% recognition accuracy for SFHMM system
[37] for test set-B. For test set-B, the PFS-PF-based CEL-EM
(Fusion-2) obtains an accuracy of 61.16%, and the PFS-LM-
based CEL-EM (Fusion-2) obtains an accuracy of 61.59% for
Gaussian mixture-10, which is higher than the SFHMM system
[37]. The significance of the improvement in performance of
CEL-EM over VIA-EM and EM has been verified using the
standard “Matched-Pair test” [38].

In the “Matched-pair” test [38], let z be the difference of
phoneme recognition error per utterance between CEL-EM
and EM. The mean and variance of z are considered as p.
and ¥, which are computed from the recognition results of
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Fig. 7. Comparison of recognition accuracies in different versions of CEL-
EM (PFS-PF and PFS-LM for both fusion strategies) and EM for different
mixtures for test set-B.

CEL-EM, VIA-EM, and EM. If the total number of utterances
“u;” be sufficiently large (u; > 50), then W = pu. /(0. \/uy)
tends to a normal distribution N(0,1). Considering z = w",
P =2P(z > |w"|) =2 [ ¢(t)dt is computed from N(0,1)
table where w" is the realized value of W and ¢(t) is the corre-
sponding density to normal distribution N (0, 1). For a standard
significance level [38], if P < 0.05, the results are deemed to
be significantly different; otherwise, they are not. Tables III-VI
give the matched pair test results for PFS-PF and PFS-LM
for two fusion strategies on the two test sets. The results of
the matched pair tests show that when compared to the VIA-
EM only, the PFS-LM demonstrates an improvement in the
recognition for both fusion strategies, which is significant; how-
ever, when compared to the standard EM, the improvements in
recognition for both PFS-PF and PFS-LM are significant for
both fusion strategies in all Gaussian mixtures.

Computational performance of CEL-EM is given in Fig. 8 for
different mixtures. The experimental platform was 1.80-GHz
Pentium-4 CPU with 512 MB of RAM. There are two main
computational phases in any speech recognition system. One
is training phase, and the other is the decoding phase (testing
phase). In Fig. 8, only the training time of CEL-EM has been
compared with EM. CEL-EM takes the same decoding time as
EM, because the decoding algorithm is the same for both EM
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TABLE 1
TEST SET-A: RECOGNITION ACCURACY (PFS-LM:F-2, PFS-LM: F-1, PFS-PF:F-2, PFS-PF:F-1, VIA-EM, AND EM).
F-2 = FUSION STRATEGY-2. F-1 = FUSION STRATEGY-1

Percent correct % Accuracy %

Mix- | PFS-LM | PFS-LM | PFS-PF | PFS-PF | VIA- EM | PFS-LM | PFS-LM | PFS-PF | PES-PF | VIA- EM
ture (F-2) (F-1) (F-2) (F-1) EM (F-2) (F-1) (F-2) (F-1) EM
3 63.06 63.01 62.68 62.7 62.44 | 62.32 60.47 60.43 60.06 60.01 59.81 | 59.67
5 65.04 64.95 64.92 64.83 64.53 | 64.11 62.49 62.45 62.42 62.35 61.93 | 6141
8 66.61 66.44 66.29 65.95 65.74 | 65.67 63.96 63.86 63.61 63.35 63.16 | 63.05
10 67.11 67.11 66.53 66.52 66.43 | 66.31 64.62 64.59 64.07 64.05 63.97 | 63.89
TABLE II
TEST SET-B: RECOGNITION ACCURACY (PFS-LM: E-2, PES-LM: F-1, PFS-PF: F-2, PFS-PF: F-1, VIA-EM, AND EM).
F-2 = FUSION STRATEGY-2. F-1 = FUSION STRATEGY-1
‘ ‘ Percent correct % Accuracy %
Mix- | PFS-LM | PFS-LM | PES-PF | PES-PF | VIA- EM | PFS-LM | PFS-LM | PFS-PF | PFS-PF | VIA- EM
ture (F-2) (F-1) (F-2) (F-1) EM (F-2) (F-1) (F-2) (F-1) EM
3 60.49 60.42 60.38 60.40 60.26 | 60.01 57.82 57.76 57.73 57.71 5742 | 57.19
5 62.46 62.34 62.31 62.26 62.1 | 61.82 59.75 59.67 59.63 59.61 59.46 | 59.08
8 63.72 63.60 63.07 63.06 62.86 | 62.71 60.88 60.83 60.31 60.30 60.12 | 59.94
10 64.22 64.22 63.78 63.74 63.67 | 634 61.59 61.55 61.16 61.12 61.06 | 60.83
TABLE III

RESULTS OF MATCHED-PAIR TEST OF PFS-PF AND PFS-LM (FUSION-1) ON RECOGNITION RESULTS FOR TIMIT TEST SETS-A: ut = 1680

‘ ‘ PFS-PF / EM PFS-PF / VIA-EM PFS-LM / EM PFS-LM /VIA-EM
Mixture W P w P W P w P
3 379181 | 0.0001447 | 2.172153 | 0.03572 3.055 0.0027 | 3.59397033 | 0.0003182
5 80085 | 1.44E7Y | 292189 | 0.003732 | 7.619924 | 6.382E* | 3.89777794 | 0.0000962
8 2.03959 | 0.04556 2.0157 0.0455 5546 | 3.798E~% | 522585060 | 5.734E7
10 1.99190 | 0.0466 | 1.194251 | 0.234 4399 | 0.0000108 | 430429055 | 0.00001708
TABLE IV

RESULTS OF MATCHED-PAIR TEST OF PFS-PF AND PFS-LM (FUSION-2) ON RECOGNITION RESULTS FOR TIMIT TEST SETS-A: uts = 1680

‘ ‘ PFS-PF / EM PFS-PF / VIA-EM PFS-LM / EM PFS-LM /VIA-EM
Mixture W P w P w P W P
3 22045404 |  0.0278 2195325 | 0.03572 | 335353 | 0.0009668 | 3.88809026 | 0.0000962
5 87231128 | 1.896E~17 | 3.951553 | 0.0000962 7.88 6.382E71* | 401428313 | 0.00006334
8 3.622862 | 0.0003182 | 3.1677157 | 0.0019352 | 5900403 | 3.798E% | 57704312 | 3.798E7%
10 20102883 |  0.0444 12486044 | 0215 | 47735975 | 0.0000026 | 4.68981754 | 0.000003212

and CEL-EM. Feature extraction time is the same for both EM
and CEL-EM. From Fig. 8, it is found that CEL-EM takes more
training time than standard EM. This is due to the hybridization
of EM with EA in the CEL-EM. It is well known that the EA
takes more computational time, thereby hybrids of EA and local
search will also demand more time [8]-[10], [39], [40]. In [10],
it is seen that the hybrid algorithm (EA 4+ EM for a single
GMM for image processing) takes 30 times longer training time
than EM; another version of the algorithm takes 90 times longer
training time than standard EM. CEL-EM takes approximately
30-50 times longer computational time than standard EM for
different mixtures.

In practical speech recognition, real-time performance is
measured in the decoding (actual recognition or testing), not in
the training of the HMM models themselves. Indeed, commer-
cial speech recognizers provide already pretrained models, and
these are usually trained offline to produce the most accurate
models. Due to the offline training arrangement of HMM in
the ASR systems (where accuracy is more important than
computational time), additional training time in CEL-EM is
negligible.

The training time of CEL-EM can be reduced by using
a parallel implementation of CEL-EM with a master—slave
model [41]-[43] where the master process maintains the global
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TABLE V

195

RESULTS OF MATCHED-PAIR TEST OF PFS-PF AND PFS-LM (FUSION-1) ON RECOGNITION RESULTS FOR TIMIT TEST SETS-B: u; = 1344

‘ ‘ PFS-PF / EM PFS-PF / VIA-EM PFS-LM / EM PFS-LM /VIA-EM
Mixture W P W P W P W P
3 3.0982 0.0026 | 1.5620 0.19 3.792 0.0001447 2.2460 0.025
5 4.1093 | 0.00004 | 1.5934 0.118 4.2461 0.0000267 1.9697 0.04
8 2.8840 | 0.00511 | 1.7420 | 0.0818 5.758 3.798E 8 4.5849 | 0.000004224
10 2.18010 0.034 0.883 0.234 4.599 | 0.000004224 | 3.07887 0.0022
TABLE VI

RESULTS OF MATCHED-PAIR TEST OF PFS-PF AND PFS-LM (FUSION-2) ON RECOGNITION RESULTS FOR TIMIT TEST SETS-B: u; = 1344

PFS-PF / EM

PES-PF / VIA-EM

PFS-LM / EM PFS-LM /VIA-EM

Mixture

W

P

W

P

W p W P

3

3.6226

0.00031

2.07040

0.0384

4.160192

0.00004132

2.638647

0.023

5

4.2170

0.00002

1.79663

0.0734

4.447

0.000010826

2.096863

0.036

8

2.9743

0.0037

1.77767

0.0768

5.9017341

3.798E 8

4.907487

9.5E~"

10

2.42380

0.0164

1.3051

0.19356

4.83948475

3.353678

0.000966

1.58E 6
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Fig. 8. Computational performance for different versions of CEL-EM (PFS-
PF-based CEL-EM and PFS-LM-based CEL-EM) and EM for different num-
bers of Gaussian mixtures.

population and executes selection and the slave processes exe-
cute crossover, mutation, evaluation, and EM reestimation. We
will implement a parallel version of CEL-EM in future work.

VII. CONCLUSION

This paper proposes a hybrid training algorithm (CEL-EM)
using constraint-based EA and EM for better estimation of
HMM parameters for speech signal modeling. In CEL-EM,
EA explores the search space more thoroughly than EM and
finds globally competitive solutions irrespective of local optima
which are potentially improved on by the EM by ascending the
hill to the optima of their corresponding attraction basins. This
hybrid approach enables CEL-EM to avoid many local maxima
which arise in standard EM-based training. While estimating
the HMM parameters by taking the benefit of hybridization, a
staged-fusion approach has been proposed in the CEL-EM to
minimize the interference between the two algorithms, main-

tain the global sampling capabilities of EA, and meet the
EA population-diversity requirement for optimization of high-
dimensional objective function.

A constraint-based EA has been introduced in CEL-EM to
satisfy the HMM constraints. Two constraint-based versions
of CEL-EM with two different fusion strategies have been
proposed. An LM-based constrained approach (PFS-LM) has
been developed to avoid the problems (due to many HMM
constraints) of traditional constraint-handling method (PFS-
PF). A simple staged-fusion strategy and a staged fusion with a
biased-crossover-operator strategy have been used in the CEL-
EM. A VIA has been developed using a variable segmentation
technique to provide better initialization to CEL-EM. Experi-
mental results show that CEL-EM obtains a better estimation
for HMM than EM because all versions of CEL-EM obtain
higher recognition accuracies than a standard EM as well as a
top standard EM developed by applying the VIA to EM (VIA-
EM). However, PFS-LM performs better than PFS-PF, whereas
staged fusion with biased crossover outperforms simple staged
fusion. Therefore, staged fusion (biased crossover) with PFS-
LM-based CEL-EM is more suitable than all other versions
of CEL-EM for HMM training for speech signal modeling.
In the future, we will implement a parallel version of CEL-
EM to reduce the training time and apply CEL-EM to other
HMM-based signal modeling techniques used in signal classi-
fication/phoneme recognition.
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