B# Federation
B (niversity

Federation University ResearchOnline

https:/Iresearchonline.federation.edu.au
Copyright Notice

This is the peer-reviewed version of the following article:

Liu, Y., Jin, M., Pan, S., Zhou, C., Zheng, Y., Xia, F., & Yu, P. (2022). Graph Self-
Supervised Learning: A Survey. IEEE Transactions on Knowledge and Data
Engineering, 1-1.

Available online: https://doi.org/10.1109/TKDE.2022.3172903

Copyright © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing this material
for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

See this record in Federation ResearchOnline at:
http://researchonline.federation.edu.au/vital/access/HandleResolver/1959.17/189021

CRICOS 00103D RTO 4909 Page 1 of 1

https://researchonline.federation.edu.au/
https://doi.org/10.1109/TKDE.2022.3172903
http://researchonline.federation.edu.au/vital/access/HandleResolver/1959.17/167343

arXiv:2103.00111v5 [cs.LG] 4 May 2022

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

Graph Self-Supervised Learning: A Survey

Yixin Liu, Ming Jin, Shirui Pan, Chuan Zhou, Yu Zheng, Feng Xia, Philip S. Yu, Life Fellow, IEEE

Abstract—Deep learning on graphs has attracted significant interests recently. However, most of the works have focused on (semi-)
supervised learning, resulting in shortcomings including heavy label reliance, poor generalization, and weak robustness. To address
these issues, self-supervised learning (SSL), which extracts informative knowledge through well-designed pretext tasks without relying
on manual labels, has become a promising and trending learning paradigm for graph data. Different from SSL on other domains like
computer vision and natural language processing, SSL on graphs has an exclusive background, design ideas, and taxonomies. Under
the umbrella of graph self-supervised learning, we present a timely and comprehensive review of the existing approaches which
employ SSL techniques for graph data. We construct a unified framework that mathematically formalizes the paradigm of graph SSL.
According to the objectives of pretext tasks, we divide these approaches into four categories: generation-based, auxiliary
property-based, contrast-based, and hybrid approaches. We further describe the applications of graph SSL across various research
fields and summarize the commonly used datasets, evaluation benchmark, performance comparison and open-source codes of graph
SSL. Finally, we discuss the remaining challenges and potential future directions in this research field.

Index Terms—Self-supervised learning, graph analytics, deep learning, graph representation learning, graph neural networks.

1 INTRODUCTION

N recent years, deep learning on graphs [1], [2], [3], [4]

has become increasingly popular for the artificial intelli-
gence research community since graph-structured data is
ubiquitous in numerous domains, including e-commerce
[5], traffic [6], chemistry [7], and knowledge base [8]. Most
deep learning studies on graphs focus on (semi-) supervised
learning scenarios, where specific downstream tasks (e.g.,
node classification) are exploited to train models with well-
annotated manual labels. Despite the success of these stud-
ies, the heavy reliance on labels brings several shortcomings.
Firstly, the cost of the collection and annotation of manual
labels is prohibitive, especially for the research areas which
have large-scale datasets (e.g., citation and social networks
[9]) or demand on domain knowledge (e.g., chemistry and
medicine [10]). Secondly, a purely supervised learning sce-
nario usually suffers from poor generalization owing to
the over-fitting problem, particularly when training data is
scarce [11]. Thirdly, supervised graph deep learning models
are vulnerable to label-related adversarial attacks, causing
the weak robustness of graph supervised learning [12].

To address the shortcomings of (semi-) supervised learn-
ing, self-supervised learning (SSL) provides a promising

e Y. Liu, M. Jin, and S. Pan are with Department of Data Science &
Al Faculty of IT, Monash University, VIC 3800, Australia (E-mail:
yixin.liu@monash.edu; ming.jin@monash.edu; shirui.pan@monash.edu;).

o C. Zhou is with Academy of Mathematics and Systems Science, Chinese
Academy of Sciences, China (Email: zhouchuan@amss.ac.cn).

e Y. Zheng is with the Department of Computer Science and Informa-
tion Technology, La Trobe University, Melbourne, Australia (E-mail:
yu.zheng@latrobe.edu.au).

e F Xia is with School of Engineering, Information Technology
and Physical Sciences, Federation University, Australia (Email:
f-xia@federation.edu.au).

e P S. Yu is with Department of Computer Science, University of Illinois
at Chicago, Chicago, IL 60607-7053, USA (Email: psyu@uic.edu)

o Corresponding author: Shirui Pan.

Y. Liu and M. Jin contributed equally to this work. This work was supported
in part by an ARC Future Fellowship (FT210100097), NSF under grants
11I-1763325, 111-1909323, 11I-2106758, and SaTC-1930941.

learning paradigm that reduces the dependence on man-
ual labels. In SSL, models are learned by solving a series
of handcrafted auxiliary tasks (so-called pretext tasks), in
which the supervision signals are acquired from data it-
self automatically without the need for manual annotation.
With the help of well-designed pretext tasks, SSL enables
the model to learn more informative representations from
unlabeled data to achieve better performance [13], [14],
generalization [9], [15], [16] and robustness [17], [18] on
various downstream tasks.

Described as “the key to human-level intelligence” by
Turing Award winners Yoshua Bengio and Yann LeCun, SSL
has recently achieved great success in the domains of com-
puter vision (CV) and natural language processing (NLP).
Early SSL methods in CV domain design various semantics-
related pretext tasks for visual representation learning [19],
such as image inpainting [20], image colorizing [21], and
jigsaw puzzle [22], etc. Lately, self-supervised contrastive
learning frameworks (e.g., MoCo [23], SimCLR [24] and
BYOL [25]) leverage the invariance of semantics under
image transformation to learn visual features. In the NLP
domain, early word embedding methods [26], [27] share
the same idea with SSL which learns from data itself. Pre-
trained by linguistic pretext tasks, recent large-scale lan-
guage models (e.g., BERT [28] and XLNet [29]) achieve state-
of-the-art performance on multiple NLP tasks.

Following the immense success of SSL on CV and NLP,
very recently, there has been increasing interest in applying
SSL to graph-structured data. However, it is non-trivial to
transfer the pretext tasks designed for CV/NLP for graph
data analytics. The main challenge is that graphs are in ir-
regular non-Euclidean data space. Compared to the 2D /1D
regular-grid Euclidean spaces where image/language data
reside in, non-Euclidean spaces are more general but more
complex. Therefore, some pretext tasks for grid-structure
data cannot be mapped to graph data directly. Furthermore,
the data examples (nodes) in graph data are correlated with
the topological structure naturally, while the examples in

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

S

is impossible.

Nothing is impossible.

[== e

T
N\ /e

—
]

2

(a) SSL pretext tasks
in CV: image coloriz-
ing (upper) and im-

I'm going outside.

T'll be back soon.
I got up late.

(b) SSL pretext tasks
in NLP: masked
language modeling

/\/\ —>
\ /ol
N R

(c) SSL pretext tasks in
graph analytics: masked
graph generation (upper)

age contrastive learn- (upper) and next and node contrastive
ing (bottom). sentence prediction learning (bottom).
(bottom).

Fig. 1: Toy examples of different SSL pretext tasks in CV,
NLP and graph analytics. In generative tasks, graph SSL
should consider the topological structure in an irregular grid
as well as node features, while SSL in CV/NLP just needs to
recover the information in 2D /1D grid space. In contrastive
tasks, the dependency between nodes is non-negligible in
graph SSL, while the samples in CV/NLP are independent.

CV (image) and NLP (text) are often independent. Hence,
how to deal with such dependency in graph SSL becomes
a challenge for pretext task designs. Fig. 1 illustrates such
differences with some toy examples. Considering the signif-
icant difference between SSL in graph analytics and other
research areas, exclusive definitions and taxonomies are
required for graph SSL.

The history of graph SSL goes back to at least the
early studies on unsupervised graph embedding [30], [31]
!. These methods learn node representations by maximizing
the agreement between contextual nodes within truncated
random walks. A classical unsupervised learning model,
graph autoencoder (GAE) [32], can also be regarded as a
graph SSL method that learns to rebuild the graph structure.
Since 2019, the recent wave of graph SSL has brought about
various designs of pretext tasks, from contrastive learning
[13], [33] to graph property mining [10], [17]. Considering
the increasing trend of graph SSL research and the diversity
of related pretext tasks, there is an urgent need to construct a
unified framework and systematic taxonomy to summarize
the methodologies and applications of graph SSL.

To fill the gap, this paper conducts a comprehensive and
up-to-date overview of the rapidly growing area of graph
SSL, and also provides abundant resources and discussions
of related applications. The intended audiences for this
article are general machine learning researchers who would
like to know about self-supervised learning on graph data,
graph learning researchers who want to keep track of the
most recent advances on graph neural networks (GNNs),
and domain experts who would like to generalize graph
SSL approaches to new applications or other fields. The core
contributions of this survey are summarized as follows:

e Unified framework and systematic taxonomy. We
propose a unified framework that mathematically
formalizes graph SSL approaches. Based on our
framework, we systematically categorize the existing

1. A timeline of milestone works are summarized in Appendix A.

2

works into four groups: generation-based, auxiliary
property-based, contrast-based, and hybrid methods.
We also build the taxonomies of downstream tasks
and SSL learning schemes.

o Comprehensive and up-to-date review. We conduct
a comprehensive and timely review for classical and
latest graph SSL approaches. For each type of graph
SSL approach, we provide fine-grained classification,
mathematical description, detailed comparison, and
high-level summary.

e Abundant resources and applications. We col-
lect abundant resources on graph SSL, including
datasets, evaluation benchmark, performance com-
parison, and open-source codes. We also summarize
the practical applications of graph SSL in various
research fields.

e Outlook on future directions. We point out the
technical limitations of current research. We further
suggest six promising directions for future works
from different perspectives.

Comparison with related survey articles. Some existing sur-
veys mainly review from the perspectives of general SSL
[34], SSL for CV [19], or self-supervised contrastive learning
[35], while this paper purely focuses on SSL for graph-
structured data. Compared to the recent surveys on graph
self-supervised learning [36], [37], our survey has a more
comprehensive overview on this topic and provides the
following differences: (1) a unified encoder-decoder frame-
work to define graph SSL; (2) a systematical and more
fine-grained taxonomy from a mathematical perspective;
(8) more up-to-date review; (4) more detailed summary
of resources including performance comparison, datasets,
implementations, and practical applications; and (5) more
forward-looking discussion for challenges and future direc-
tions.

The remainder of this article is organized as follows.
Section 2 defines the related concepts and provides nota-
tions used in the remaining sections. Section 3 describes the
framework of graph SSL and provides categorization from
multiple perspectives. Section 4-7 review four categories of
graph SSL approaches respectively. Section 8 summarizes
the useful resources for empirical study of graph SSL,
including performance comparison, datasets, and open-
source implementations. Section 9 surveys the real-world
applications in various domains. Section 10 analyzes the
remaining challenges and possible future directions. Section
11 concludes this article in the end.

2 DEFINITION AND NOTATION

In this section, we outline the related term definitions of
graph SSL, list commonly used notations, and define graph-
related concepts.

2.1

In graph SSL, we provide the following definitions of related
essential concepts.

Manual Labels Versus Pseudo Labels. Manual labels, a.k.a.
human-annotated labels in some papers [19], indicate the
labels that human experts or workers manually annotate.
Pseudo labels, in contrast, denote the labels that can be

Term Definitions

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

acquired automatically from data by machines without any
human knowledge. In general, pseudo labels require lower
acquisition costs than manual labels so that they have ad-
vantages when manual labels are difficult to obtain or the
amount of data is vast. In self-supervised learning settings,
specific methods can be designed to generate pseudo labels,
enhancing the representation learning.

Downstream Tasks Versus Pretext Tasks. Downstream tasks
are the graph analytic tasks used to evaluate the quality
or performance of the feature representation learned by
different models. Typical applications include node classifi-
cation and graph classification. Pretext tasks refer to the pre-
designed tasks for models to solve (e.g., graph reconstruc-
tion), which helps models to learn more generalized rep-
resentations from unlabeled data, and thus benefits down-
stream tasks by providing a better initialization or more ef-
fective regularization. In general, solving downstream tasks
needs manual labels, while pretext tasks are usually learned
with pseudo labels.

Supervised Learning, Unsupervised Learning and Self-
Supervised Learning. Supervised learning refers to the learn-
ing paradigm that leverages well-defined manual labels
to train machine learning models. Conversely, unsupervised
learning refers to the learning paradigm without using any
manual labels. As a subset of unsupervised learning, self-
supervised learning indicates the learning paradigm where
supervision signals are generated from data itself. In self-
supervised learning methods, models are trained with pre-
text tasks to obtain better performance and generalization
on downstream tasks.

2.2 Notations

We provide important notations used in this paper (which

are summarized in Appendix B.1) and the definitions of

different types of graphs and GNNs in this subsection.

Definition 1 (Plain Graph). A plain graph’ is represented
as G = (V,&), where V = {v1,...,u,} (V| = n) is
the set of nodes and £ (|€| = m) is the set of edges,
and naturally we have £ C V x V. The neighborhood
of a node v; is denoted as N (v;) = {v; € Vle; ; € £}
The topology of the graph is represented as an adjacency
matrix A € R™*", where A; ; = 1 means ¢; ; € £, and
A;;=0meanse;; ¢ E.

Definition 2 (Attributed Graph). An attributed graph refers
to a graph where nodes and/or edges are associated with
their own features (a.k.a attributes). The feature matrices
of nodes and edges are represented as Xyode € R™*dnode
and Xegge € R™*dedge respectively. In a more common
scenario where only nodes have features, we use X €
R™*? to denote the node feature matrix for short, and
denote the attributed graph as G = (V, &€, X).

There are also some dynamic graphs and heterogeneous
graphs whose definitions are given in Appendix B.2.

Most of the reviewed methods leverage GNNs as back-
bone encoders to transform the input raw node features X
into compact node representations H by leveraging the rich
underlying node connectivity, i.e., adjacency matrix A, with

2. A plain graph is an unattributed, static, and homogeneous graph.

/ \
| Hybrid |
\

I Clustering-
B Auxiliary

ase:
TN\ / N\ - N CI:;so' ?ec::\:{ on
oo\ [/ Graph |/ Auxiliary \ Aicaty Pair Relation-
‘Ge'éirsf"f" [« Self-supervised F=>| Property- based
\ / \ Learning / . based Auxiliary
Structure N \. l/ S Property

Generation S 3
Regression

Feature
Generation

\\\
| Contrast- |

| based /

Cross-Scale
Contrast

—

Patch-
Global

Same-Scale
Confrast

—

Node-Level

Context-

Graph-Level Global

Fig. 2: Categorization of graph SSL methods.

learnable parameters. Furthermore, readout functions R(-)
are often employed to generate a graph-level representation
hg from node-level representations H. The formulation of
GNNs and readout functions are introduced in Appendix
B.3. Besides, in Appendix B.4, we formulate the commonly
used loss functions in this survey.

3 FRAMEWORK AND CATEGORIZATION

In this section, we provide a unified framework of graph
SSL, and further categorize it from different perspectives,
including pretext tasks, downstream tasks, and the combi-
nation of both (i.e., self-supervised training schemes).

3.1 Unified Framework and Mathematical Formulation
of Graph Self-Supervised Learning

We construct an encoder-decoder framework to formalize
graph SSL. The encoder fs (parameterized by) aims to
learn a low-dimensional representation (a.k.a. embedding)
h; € H for each node v; from graph G. In general, the
encoder fp can be GNNs [13], [33], [38] or other types
of neural networks for graph learning [30], [31], [39]. The
pretext decoder py (parameterized by ¢) takes H as its input
for the pretext tasks. The architecture of p, depends on
specific downstream tasks.

Under this framework, graph SSL can be formulated as:

9*a¢* = arggmin Essl (f@apdhp) ’ (1)
where D denotes the graph data distribution that satisfies
(V,€) ~ D in an unlabeled graph G, and L, is the SSL
loss function that regularizes the output of pretext decoder
according to specific crafted pretext tasks.

By leveraging the trained graph encoder fy-, the gen-
erated representations can then be used in various down-
stream tasks. Here we introduce a downstream decoder g
(parameterized by %), and formulate the downstream task
as a graph supervised learning task:

0**7 w* = ar‘ggfgin ‘csup (f@* s Qo g7 y)) (2)

where y denotes the downstream task labels, and L, is the
supervised loss that trains the model for downstream tasks.
In the following subsections, we specify four graph
SSL variants based on Equation (1) in Section 3.2, three
graph self-supervised training schemes in Section 3.3 by
combining Equations (1) and (2) differently, and three types
of downstream tasks based on Equation (2) in Section 3.4.

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

Input Graph Reconstructed Graph

oo

T\

—
oo
D:DI:ED

Reconstruction Loss

‘ Perturbation

oo
oo
S0 S\ Pretext
B — | Encoder - => | Decoder
\g . f o
oo /I:ED
— s
Perturbed Graph Representations

(a) Generation-based graph SSL methods. The model input
is generated by a (optional) graph perturbation. In the pre-
text task, a generative decoder tries to recover the original
graph from representation H, with a loss function aiming
to minimize the difference between the reconstructed and
original graphs.

Auxiliary Properties Predicted Properties

Prediction Loss

Pretext
9

Representations

Property
1 Extraction

Input Graph
(b) Auxiliary property-based graph SSL methods. The
auxiliary properties are extracted from graphs freely. A
classification- or regression- based decoder aims to predict
the extracted properties under the training of CE/MSE loss.

Augmented Graph Representations

EnCOder‘ --------------------------
fs
T — v
Augmentation
are Learned Target
— Agreements Agreements
E\:\:\/[\:\;/ \ Input Pretext ontrastivel
/_oo Graph Decoder| ™ Loss
_— Py —
- (Positive/
—_— Negative)
} Augmentation A
o0 oy :
—~—
=20
=\ Encoder
\ > Y
/ \\ oo fo
=D /E\:\:l
oo

Augmented Graph Representations

(c) Contrast-based graph SSL methods. Two different aug-
mented views are constructed from the original graph.
Then, the model is trained by maximizing the MI between
two views. The MI estimator with (optional) projection
often serves as the pretext decoder and SSL loss.

—_ p¢1 -»D«D
Encoder
fs
— o »D»B

Represenfc‘nons Pretext Tasks

Input Graph

(d) Hybrid graph SSL methods. Multiple pretext tasks
are designed to train the model together in a multi-task
learning manner.

Fig. 3: Four categories of graph SSL.

3.2 Taxonomy of Graph Self-supervised Learning

Graph SSL can be divided into four types conceptu-
ally, including generation-based, auxiliary property-based,
contrastive-based and hybrid methods, by leveraging dif-
ferent designs of pretext decoders and objective functions.
The categorizations of these methods are briefly discussed
below and shown in Fig. 2, and the concept map of each
type of methods is given in Fig. 3.

Generation-based Methods form the pretext task as the
graph data reconstruction from two perspectives: feature
and structure. Specifically, they focus on the node/edge
features or/and graph adjacency reconstructions. In such
a case, Equation (1) can be further derived as:

0, ¢" = argmin Lo (ps(f3(G)),6), ©
0,¢

where fp(-) and py(-) are graph encoder and pre-
text decoder. G denotes the graph data with perturbed
node/edge features or/and adjacency matrix. For most of
the generation-based approaches, the self-supervised ob-
jective function L, is typically defined to measure the
difference between the reconstructed and the original graph
data. One of the representative approaches is GAE [32]
which learns embeddings by rebuilding the graph adjacency
matrix.

Auxiliary Property-based Methods enrich the supervision
signals by capitalizing on a larger set of attributive and topo-
logical graph properties. In particular, for different crafted
auxiliary properties, we further categorize these methods
into two types: regression- and classification-based. For-
mally, they can be formulated as:

0, ¢" = argmin Lo (ps (fo(G)), ¢),)
0,9

where c denotes the specific crafted auxiliary properties. For
regression-based approaches, ¢ can be localized or global
graph properties, such as the node degree or distance
to clusters within G. For classification-based methods, on
the other hand, the auxiliary properties are typically con-
structed as pseudo labels, such as the graph partition or
cluster indices. Regarding to the objective function, Ly
can be mean squared error (MSE) for regression-based and
cross-entropy (CE) loss for classification-based methods.
As a pioneering work, M3S [40] uses node clustering to
construct pseudo labels that provide supervision signals.
Contrast-based Methods are usually developed based on
the concept of mutual information (MI) maximization,
where the estimated MI between augmented instances of the
same object (e.g., node, subgraph, and graph) is maximized.
For contrastive-based graph SSL, Equation (1) is reformu-
lated as:

0, ¢p* = arg mln Ll (Pcb (fe(1)) fe(g(2))) (5)

where GV and G are two differently augmented instances
of G. In these methods, the pretext decoder py indicates
the discriminator that estimates the agreement between two
instances (e.g., the bilinear function or the dot product),
and Ls, denotes the contrastive loss. By combining them
and optimizing L, the pretext tasks aim to estimate and

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021
. H -

(a) Pre-training and Fine-tuning (PF). First, the encoder is pre-
trained with pretext tasks in an unsupervised manner. Then, the
pre-trained parameters are leveraged as the initial parameters in
the fine-tuning phase where encoder is trained by downstream
tasks independently.

\ Downstream

Encoder
-
fo } D
Decoder

10110101 Ay

Label

Graph for Pre-training Stage 1: Pre-fruining

Encoder Pretext
- - Decoder
fo »
b

j,Par'am Transfer

‘ Encodzr {}

Stage 2: Fine-tuning

—

=\

Graph for Fine-tuning

T

10110101
Label

Downstream
Decoder

——
Tod00001)

(

Input Graph Pretext
-

= -

/ Decoder
- H -

(b) Joint Learning (JL). The model is trained with pretext and
downstream tasks in a multi-task learning manner.

/\/\ Ve
Ne |~

10000000)

STage 1: Unsupervised Learning

_ Input Graph Encoder Pretext
(N Decoder - | |
— 7
= / 9
\ /\\ lPuram Transfer

\;/\

(rovdod0®)

Label

Encoder Downstream
fo -> -> Decoder
(Freeze Param) ay
ANANNRRNRNAS

: Stage 2: Downstream Task Learning

»HQ

(c) Unsupervised Representation Learning (URL). It first trains
encoder with pretext tasks, and uses the fixed representations to
learn the downstream decoder in Stage 2.

10100000)

Fig. 4: Three types of learning schemes for SSL.

maximize the MI between positive pairs (e.g., augmented
instances of the same object) and minimize the MI between
negative samples (e.g., instances derived from different
objects), which is implicitly included in Lgg;. Representa-
tive works include cross-scale methods (e.g., DGI [13]) and
same-scale methods (e.g., GraphCL [38] and GCC [15]).
Hybrid Methods take advantage of previous categories and
consist of more than one pretext decoder and/or training
objective. We formulate this branch of methods as the
weighted or unweighted combination of two or more graph
SSL schemes based on formulas from Equation (3) to (5).
GMI [41], which jointly considers edge-level reconstruction
and node-level contrast, is a typical hybrid method.
Discussion. Different graph SSL methods have different
properties. Generation-based methods are simple to imple-
ment since the reconstruction task is easy to build, but some-
times recovering input data is memory-consuming for large-
scale graphs. Auxiliary property-based methods enjoy the
uncomplicated design of decoders and loss functions; how-
ever, the selection of helpful auxiliary properties often needs
domain knowledge. Compared to other categories, contrast-
based methods have more flexible designs and boarder
applications. Nevertheless, the designs of contrastive frame-
works, augmentation strategies, and loss functions usu-
ally rely on time-consuming empirical experiments. Hybrid

5

methods benefit from multiple pretext tasks, but a main
challenge is how to design a joint learning framework to
balance each component.

3.3 Taxonomy of Self-Supervised Training Schemes

According to the relationship among graph encoders, self-
supervised pretext tasks, and downstream tasks, we in-
vestigate three types of graph self-supervised training
schemes: Pre-training and Fine-tuning (PF), Joint Learn-
ing (JL), and Unsupervised Representation Learning (URL).
Brief pipelines of them are given in Fig. 4.

Pre-training and Fine-tuning (PF). In PF scheme, the en-
coder fy is first pre-trained with pretext tasks on pre-
training datasets, which can be viewed as an initialization
for the encoder’s parameters. After that, the pre-trained
encoder fy,, ,, is fine-tuned together on fine-tuning datasets
(with labels) with a downstream decoder g, under the
supervision of specific downstream tasks. Note that the
datasets for pre-training and fine-tuning could be the same
or different. The formulation of PF scheme is defined as
follows:

9*5 ¢* = argmin[’ssl (f@ap¢7D))

o «9,¢' (6)
0**, ¢ :arggrEmESW (pe*,qw7g7y)-

Joint Learning (JL). In JL scheme, the encoder is jointly
trained with the pretext and downstream tasks. The
loss function consists of both the self-supervised and
downstream task loss functions, where a trade-off hyper-
parameter « controls the contribution of self-supervision
term. This can be considered as a kind of multi-task learning
where the pretext task is served as a regularization of the
downstream task:

9*,¢*,¢* = argmin a‘cssl (f97p¢7D)+£sup (f@aqwagvy)}'

@)
Unsupervised Representation Learning (URL). The first
stage of the URL scheme is similar to that of PF. The
differences are: (1) In the second stage, the encoder’s pa-
rameters are frozen (i.e., 8%) when the model is trained
with the downstream task; (2) The training of two stages
is performed on the same dataset. The formulation of URL
is defined as:

9*3 ¢* = arg minﬁssl (f97p¢aD))

0.9 ®)
P* = argdfninﬁsup (for,q4,G,Y) -

Compared with other schemes, URL is more challenging
since there is no supervision during the encoder training.

3.4 Taxonomy of Downstream Tasks

According to the scale of prediction target, we divide
downstream tasks into node-, link-, and graph-level tasks.
Specifically, node-level tasks aim to predict the property of
nodes in graph(s) according to node representations. Link-
level tasks infer the property of edges or pairs of nodes,
where downstream decoders map the embeddings of two
nodes into link-level predictions. Besides, graph-level tasks
learn from a dataset with multiple graphs and forecast

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

Reconstructed Features
T mm

Input Graph

A e
\ \ — ‘ MSE Loss ‘ -

N = < — o ™ -
4 Feafure Masking I

e -— o N

R

\:m/ Feature
ED;/ \ . Encoder - —» Reconstruction
/\ mm fo Dez‘:;;dar

—
oo
\ mm OO)

Perturbed Graph Representations

(a) Graph Completion is a representative approach of feature
generation-based graph SSL. The features of certain nodes are
masked and then fed into the model, and the learning target is to
reconstruct the masked features. An MSE loss is used to recover
the features.

Input Graph Reconstruction Target Reconstructed Structure

(Em\mj) Neg. (S~
EED/D:\;/ \ | Samp. ke Las 7é 7\
\WAVANE:-! N—+ A 7\

m @ p
\ oo L

Structure
Encoder — Reconstruction
I Decoder

Representations

{ Edge Maskmg

Perturbed Graph

(b) The objective of Denoising Link Reconstruction is to rebuild
the masked edges. A binary cross-entropy (BCE) loss is employed
to train the model where existing edges are the positive samples
and the unrelated node pairs are the negative samples. A negative
sampling (Neg. Samp.) strategy is used to balance the classes.

Fig. 5: Examples of two categories of generation-based methods: Graph Completion and Denoising Link Reconstruction.

the property of each graph. Based on Equation (2), we
provide the specific definitions of downstream decoders gy,
downstream objectives Lg.,p, and downstream task labels y
of three types of tasks, which are detailed in Appendix C.

4 GENERATION-BASED METHODS

The generation-based methods aim to reconstruct the input
data and use the input data as their supervision signals.
The origin of this category of methods can be traced back to
Autoencoder [42] which learns to compress data vectors into
low-dimensional representations with the encoder network
and then try to rebuild the input vectors with the decoder
network. Different from generic input data represented in
vector formats, graph data are interconnected. As a result,
generation-based graph SSL approaches often take the full
graph or a subgraph as the model input, and reconstruct
one of the components, i.e. feature or structure, individually.
According to the objects of reconstruction, we divide these
works into two sub-categories: (1) feature generation that
learns to reconstruct the feature information of graphs,
and (2) structure generation that learns to reconstruct the
topological structure information of graphs. The pipelines
of two example methods are given in Fig. 5, and a summary
of the generation-based works is illustrated in Table 1.

4.1 Feature Generation

Feature generation approaches learn by recovering feature
information from the perturbed or original graphs. Based
on Equation (3), the feature generation approaches can be
further formalized as:

0%, ¢* = argeglin Lonse (p¢ <f9 (G)) ,X), 9)

where pg(-) is the decoder for feature regression (e.g., a
fully connected network that maps the representations to
reconstructed features), L. is the Mean Squared Error
(MSE) loss function, and Xisa general expression of various
kinds of feature matrices, e.g., node feature matrix, edge
feature matrix, or low-dimensional feature matrix.

To leverage the dependency between nodes, a repre-
sentative branch of feature generation approaches follows
the masked feature regression strategy, which is motivated
by image inpainting in CV domain [20]. Specifically, the
features of certain nodes/edges are masked with zero or

specific tokens in the pre-processing phase. Then, the model
tries to recover the masked features according to the un-
masked information. Graph Completion [17] is a representa-
tive method. It first masks certain nodes of the input graph
by removing their features. Then, the learning objective is
to predict the masked node features from the features of
neighboring nodes with a GCN [1] encoder. We can consider
Graph Completion as an implement of Equation (9) where
X = X and G = (A, X). Similarly, AttributeMask [43] aims
to reconstruct the dense feature matrix processed by Princi-
ple Component Analysis (PCA) [52] X = PCA(X)) instead
of the raw features due to the difficulty of rebuilding high-
dimensional and sparse features. AttrMasking [16] rebuilds
not only node attributes but also the edge one, which can be
written as X = X, Xedgel-

Another branch of methods aims to generate features
from noisy features. Inspired by denoising autoencoder [53],
MGAE [44] recovers raw features from noisy input features
with each GNN layer. Here we also denote G = (A,X)
but here X is corrupted with random noise. Proposed
in [45], Corrupted Features Reconstruction and Corrupted
Embeddings Reconstruction aim to reconstruct raw features
and hidden embeddings from corrupted features.

Besides, directly rebuilding features from the clean data
is also an available solution. GALA [46] trains a Laplacian
smoothing-sharpening graph autoencoder model with the
objective that rebuilds the raw feature matrix according to
the clean input graph. Similarly, autoencoding [45] recon-
structs the raw features from clean inputs. For these two
methods, we can formalize that G = (A, X) and X = X.

4.2 Structure Generation

Different from the feature generation approaches that re-
build the feature information, structure generation ap-
proaches learn by recovering the structural information. In
most cases, the objective is to reconstruct the adjacency
matrix, since the adjacency matrix can briefly represent the
topological structure of graphs. Based on Equation (3), the
structure generation methods can be formalized as follows:

0", 6" = argmin L (rs (10(9)).A), (o)
where py(-) is a decoder for structure reconstruction, and A
is the (full or partial) adjacency matrix.

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

7

TABLE 1: Main characteristics of generation-based graph SSL approaches. “FG” and “SG” mean “Feature Generation” and
“Structure Generation”, respectively. Missing values (“-”) in Input Data Perturbation indicate that the method takes the

original graph data as input.

A h Pretext Task Downstream Training Data Type Input Data Generation
pproac Category Task Level Scheme of Graph Perturbation Target

Graph Completion [17] FG Node PF/JL Attributed Feature Masking Node Feature
AttributeMask [43] FG Node PF/JL Attributed Feature Masking PCA Node Feature
AttrMasking [16] FG Node PF Attributed Feature Masking Node/Edge Feature
MGAE [44] FG Node JL Attributed Feature Noising Node Feature
Corrupted Features Reconstruction [45] FG Node JL Attributed Feature Noising Node Feature
Corrupted Embeddings Reconstruction [45] FG Node JL Attributed Embedding Noising Node Embedding
GALA [46] FG Node/Link JL Attributed - Node Feature
Autoencoding [45] FG Node JL Attributed Node Feature
GAE/VGAE [32] SG Link URL Attributed Adjacency Matrix
SIG-VAE [47] SG Node/Link URL Plain/Attributed Adjacency Matrix
ARGA/ARVGA [48] SG Node/Link URL Attributed Adjacency Matrix
SuperGAT [49] SG Node JL Attributed - Partial Edge
Denoising Link Reconstruction [50] SG Node/Link/Graph PF Attributed Edge Masking Masked Edge
EdgeMask [43] SG Node PF/JL Attributed Edge Masking Masked Edge
Zhu et al. [51] SG Node PF Attributed Feature Masking/Edge Masking Partial Edge

GAE [32] is the simplest instance of the structure gener-
ation method. In GAE, a GCN-based encoder first generates
node embeddings H from the original graph (G = G). Then,
an inner production function with sigmoid activation serves
as its decoder to recover the adjacency matrix from H. Since
adjacency matrix A is usually binary and sparse, a BCE loss
function is employed to maximize the similarity between the
recovered adjacency matrix and the original one, where pos-
itive and negative samples are the existing edges (A; ; = 1)
and unconnected node pairs (A;; = 0), respectively. To
avoid the imbalanced training sample problem caused by
extremely sparse adjacency, two strategies can be used to
prevent trivial solution: (1) re-weighting the terms with
A; ; = 1; or (2) sub-sampling terms with A; ; = 0.

As a classic learning paradigm, GAE has a series of
derivative works. VGAE [32] further integrates the idea
of variational autoencoder [54] into GAE. It employs
an inference model-based encoder that estimates the
mean and deviation with two parallel output layers
and uses Kullback-Leibler divergence between the prior
distribution and the estimated distribution. Following
VGAE, SIG-VAE [47] considers hierarchical variational
inference to learn more generative representations for graph
data. ARGA/ARVGA [48] regularizes the GAE/VGAE
model with generative adversarial networks (GANSs) [55].
Specifically, a discriminator is trained to distinguish the
fake and real data, which forces the distribution of latent
embeddings closer to the Gaussian prior. SuperGAT [49]
further extends this idea to every layers in the encoder.
Concretely, it rebuilds the adjacency matrix from the latent
representations of every layer in the encoder.

Instead of rebuilding the full graph, another solution
is to reconstruct the masked edges. Denoising Link Re-
construction [50] randomly drops existing edges to obtain
the perturbed graph G. Then, the model aims to recover
the discarded connections with a pairwise similarity-based
decoder trained by a BCE loss. EdgeMask [43] also has a
similar perturbation strategy, where a non-parametric MAE
function minimizes the difference between the embeddings
of two connected nodes. Zhu et al. [51] apply two perturbing
strategies, i.e. Randomly Removing Links and Randomly
Covering Features, to the input graph (G = (A, X)), while
its target is to recover the masked link by a decoder.
Discussion. Due to the different learning targets, two

branches of generation-based methods have distinct designs
of the decoder and loss functions. The learned represen-
tations by structure generation usually contain more node
pair-level information since structure generation focuses on
edge reconstruction; by contrary, feature generation meth-
ods often capture node-level knowledge.

5 AUXILIARY PROPERTY-BASED METHODS

The auxiliary property-based methods acquire supervision
signals from the node-, link- and graph- level properties
which can be obtained from the graph data freely. These
methods have a similar training paradigm with supervised
learning since both of them learn with “sample-label” pairs.
Their difference lies in how the label is obtained: In su-
pervised learning, the manual label is human-annotated
which often needs expensive costs; in auxiliary property-
based SSL, the pseudo label is self-generated automatically
without any cost.

Following the general taxonomy of supervised learning,
we divide auxiliary property-based methods into two sub-
categories: (1) auxiliary property classification which lever-
ages classification-based pretext tasks to train the encoder
and (2) auxiliary property regression which performs SSL via
regression-based pretext tasks. Fig. 6 provides the pipelines
of them, and Table 2 summarizes the auxiliary property-
based methods.

5.1

Borrowing the training paradigm from supervised classifi-
cation tasks, the methods of auxiliary property classification
create discrete pseudo labels automatically, build a classifier
as the pretext decoder, and use a cross entropy (CE) loss
Lee to train the model. Originated from Equation (4), we
provide the formalization of this branch of methods as:

Auxiliary Property Classification

0*,¢* = argmin L. (p¢ (fo(9)), c), (11)
0,9

where py is the neural network classifier-based decoder
which outputs a k-dimensional probability vector (kK is
the number of classes), and ¢ € C = {¢1,---,c} is the
corresponding pseudo label which belongs to a discrete and
finite label set C. According to the definition of pseudo
label set C, we further construct two sub-categories under
auxiliary property classification, i.e., clustering-based and
pair relation-based methods.

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

Pseudo Labels

Classification Results

Regression Targets Regression Results

Ay i o
B i - Ve 322 (349
C : —
8 H §4 /\ CE Loss 330 a3/ \ MSE Loss
-
g \ / AN / N\, 124
.. 2.23 /2 2
\ zzz 223
I 4 Continuous Properties
< oo
—~ —~
oo~ o
o/ Encoder RREE2FY) e\ Encoder ARy
-> -> =» | Classifier Regressor
/\ o= fo Ps \ /_mm fs
m O ¢ m 02
II. Pair Relation-based Input Graph Representations Input Graph Representations

(a) Auxiliary property classification methods extract discrete properties as pseudo
labels, and the pretext decoder is used to predict the classification results. A CE loss
function is used to train the models. Two types of properties (clustering-based and

pair relation-based) can be used to define the pseudo labels.

(b) Auxiliary property regression methods aim to pre-
dict the continuous auxiliary properties with the de-
coder, where models are trained by the MSE loss.

Fig. 6: Two categories of auxiliary property-based graph SSL.

TABLE 2: Main characteristics of auxiliary property-based graph SSL approaches. “CAPC”, “PAPC” and “APR” mean
clustering-based auxiliary property classification, pair relation-based auxiliary property classification and auxiliary prop-

erty regression, respectively.

Pretext Task Downstream Trainin, Data Type Propert . .

Approach Category Task Level Sc:herneg of Gra}};% Le{fel Y Mapping Function
Node Clustering [17] CAPC Node PE/JL Attributed Node Feature-based Clustering
M3S [40] CAPC Node JL Attributed Node Feature-based Clustering
Graph Partitioning [17] CAPC Node PF/JL Attributed Node Structure-based Clustering
Cluster Preserving [50] CAPC Node/Link/Graph PF Attributed Node Structure-based Clustering
CAGNN [56] CAPC Node URL Attributed Node Feature-based Clustering

with Structural Refinement

S2GRL [57] PAPC Node/Link URL Attributed Node Pair Shortest Distance Function
PairwiseDistance [43] PAPC Node PF/JL Attributed Node Pair Shortest Distance Function
Centrality Score Ranking [50] PAPC Node/Link/Graph PF Attributed Node Pair Centrality Scores Comparison
NodeProperty [43] APR Node PF/JL Attributed Node Degree Calculation
Distance2Cluster [43] APR Node PF/JL Attributed Node Pair Distance to Cluster Center
PairwiseAttrSim [43] APR Node PE/JL Attributed Node Pair Cosine Similarity of Feature
SimP-GCN [58] APR Node JL Attributed Node Pair Cosine Similarity of Feature

5.1.1 Clustering-based Methods

A promising way to construct pseudo label is to divide
nodes into different clusters according to their attributive
or structural characteristics. To achieve that, a mapping
function ©Q : V — C is introduced to acquire the pseudo
label for each node, which is built on specific unsupervised
clustering / partitioning algorithms [59], [60], [61], [62]. Then,
the learning objective is to classify each node into its cor-
responding cluster. Following Equation (11), the learning
objective is refined as:

0%, " —argmm v Z.Cce(p¢ [fo(G)]w,) (vl)), (12)

where [-],, is the picking function that extracts the represen-
tation of v;.

Node Clustering [17] is a representative approach that
utilizes attributive information to generate pseudo labels.
Specifically, it leverages a feature-based clustering algorithm
(which is an instance of () taking X as input to divide node
set into k clusters, and each cluster indicates a pseudo label
for classification. The intuition behind Node Clustering is
that nodes with similar features tend to have consistent
semantic properties. M3S [40] introduces a multi-stage self-
training mechanism for SSL using DeepCluster [61] algo-
rithm. In each stage, it first runs K-means clustering on node

embedding H. After that, an alignment is executed to map
each cluster to a class label. Finally, the unlabeled nodes
with high confidence are given the corresponding (pseudo)
labels and used to train the model. In M3S, C is borrowed
from the manual label set Y, and €2 is composed of the K-
means and alignment algorithms.

In addition to feature-based clustering, Graph Partition-
ing [17] divides the nodes according to the structural charac-
teristics of nodes. Concretely, it groups nodes into multiple
subsets by minimizing the connections across subsets [59],
defining 2 as the graph partitioning algorithm. Cluster
Preserving [50] first leverages graph clustering algorithm
[63] to acquire non-overlapping clusters, and then calculates
the representation of each cluster via an attention-based
aggregator. After that, a vector representing the similari-
ties between each node and the cluster representations is
assigned as the soft pseudo label for each node. Besides,
CAGNN [56] first runs feature-based clusters to generate
pseudo labels and then refines the clusters by minimizing
inter-cluster edges, which absorbs the advantages of both
attributive and structural clustering algorithms.

5.1.2 Pair Relation-based Methods

Apart from the clustering and graph properties, an alterna-
tive supervision signal is the relationship between each pair
of nodes within a graph. In these methods, the input of the

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

decoder is not a single node or graph but a pair of nodes. A
mapping function 2 : V x V — C is utilized to define the
pseudo label according to pair-wise contextual relationship.
We write the objective function as:

0%, 0" = argmln Z ‘Cce(pqﬁ [fo(G)]Uiavj)7Q(Ui’v.j))’
0,0 ‘,P| v;,0; EP
' (13)
where P C V x V is the node pair set defined by specific
pretext tasks, and [-],, ,, is the picking function that extracts
and concatenates the node representations of v; and v;.

Some approaches regard the distance between two nodes
as the auxiliary property. For instance, S°GRL [57] learns by
predicting the shortest path between two nodes. Specifically,
the label for a pair of nodes is defined as the shortest
distance between them. Formally, we can write the mapping
function as Q(v;,v;) = dist(v;,v;). The decoder is built
to measure the interaction between pairs of nodes, which
is defined as an element-wise distance between two em-
bedding vectors. The node pair set P collects all possible
node pairs including the combination of all nodes with
their 1 to K hops neighborhoods. PairwiseDistance [43] has
a very similar learning target and decoder with S2GRL,
but introduces an upper bound of distance, which can be
represented as Q(v;, v;) = max(dist(v;, v;),4).

Centrality Score Ranking [50] presents a pretext task that
predicts the relative order of centrality scores between a pair
of nodes. For each node pair (v;, v;), it first calculates four
types of centrality scores s;,s; (eigencentrality, between-
ness, closeness, and subgraph centrality), and then creates
its pseudo label by comparing the value of s; and s;. We
formalize the mapping function as: Q(v;,v;) = I(s; > s;),
where I(-) is the identity function.

5.2 Auxiliary Property Regression

Auxiliary property regression approaches construct the pre-
text tasks on predicting extensive numerical properties of
graphs. Compared to auxiliary property classification, the
most significant difference is that the auxiliary properties are
continuous values within a certain range instead of discrete
pseudo labels in a limited set. We refine Equation (4) into a
regression version:

0%, ¢ = argmin Linse (py(fo(9)),),

)

(14)

where L. is the MSE loss function for regression, and
¢ € Ris a continuous property value.

NodeProperty [43] is a node-level pretext task that pre-
dicts the property for each node. The available choices of
node properties include their degree, local node importance,
and local clustering coefficient. Taking node degree as an
example, the objective function is illustrated as follows:

> Lonse (0o ([f6(9))]o 2v))

v; €V
(15)
where Q(v;) = 3°7_, Aj; is the mapping function that
calculates the degree of node v;. Distance2Cluster [43] aims
to regress the distances from each node to predefined graph

0%, 0" = arg mln

IVI

9

clusters. Specifically, it first partitions the graph into several
clusters with the METIS algorithm [64] and defines the node
with the highest degree within each cluster as its cluster
center. Then, the target is to predict the distances between
each node and all cluster centers.

Another type of methods take the pair-wise property
as their regression targets. For instance, the target of Pair-
wiseAttrSim [43] is to predict the feature similarity of two
nodes according to their embeddings. We formalize its ob-
jective function as follows:

0, o* —argmln— Z Lonse (p¢,([f9()}viwj%Q(”i’Uj))’

‘ | v;,v; EP

(16)
where mapping function Q(v;,v;) = cosine(x;,x;) is the
cosine similarity of raw features. In PairwiseAttrSim, the
node pairs with the highest similarity and dissimilarity are
selected to form the node pair set P. Similar to PairwiseAt-
trSim, SimP-GCN [58] also considers predicting the cosine
similarity of raw features as a self-supervised regularization
for downstream tasks.
Discussion. As we can observe, the auxiliary property
classification methods are more diverse than the regression
methods, since the discrete pseudo labels can be acquired by
various algorithms. In future works, more continuous prop-
erties are expected to be leveraged for regression methods.

6 CONTRAST-BASED METHODS

The contrast-based methods are built on the idea of mutual
information (MI) maximization [65], which learns by pre-
dicting the agreement between two augmented instances.
Specifically, the MI between graph instances with the similar
semantic information (i.e., positive samples) is maximized,
while the MI between those with unrelated information
(i.e., negative samples) is minimized. Similar to the visual
domain [24], [66], there exist various graph augmentations
and contrastive pretext tasks on multiple granularities to
enrich the supervision signals.

Following the taxonomy of contrast-based graph SSL
defined in Section 3.2.3, we survey this branch of methods
from three perspectives: (1) Graph augmentations that gen-
erate various graph instances; (2) Graph contrastive learning
which forms various contrastive pretext tasks on the non-
Euclidean space; (3) Mutual information estimation that mea-
sures the MI between instances and forms the contrastive
learning objective together with specific pretext tasks.

6.1

Recent success of contrastive learning on the visual domain
relies heavily on well-crafted image augmentations, which
reveals that data augmentations benefit the model to explore
richer underlying semantic information by making pretext
tasks more challenging to solve [67]. However, due to the
nature of graph-structured data, it is difficult to apply the
augmentations from the Euclidean to the non-Euclidean
space directly. Motivated by image augmentations (e.g.,
image cutout and cropping [24]), existing graph augmenta-
tions can be categorized into three types: attributive-based,
topological-based, and the combination of both (i.e., hybrid

Graph Augmentations

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

Original 6raph

=53] oo oo

e, cm\/ \ | NFM | T E?/ \ | Em | T a;/
\/ T\ = AWANANIC- \ 7 |
/EED o /EED EED\D:D/EED
D:D\E\:D oo < oo
\ = = \
o > 25
oo - oo o \ oo o

Fig. 7: Brief examples of five types of common graph
augmentations, including Node Feature Masking (NFM),
Node Feature Shuffle (NFS), Edge Modification (EM), Graph
Diffusion (GD), and Subgraph Sampling (SS).

augmentations). The examples of five representative augmen-
tation strategies are demonstrated in Fig. 7. Formally, given
a graph G, we define the i-th augmented graph instance as
G =t;(G), where t; ~ T is a selected graph augmentation
and 7 is a set of available augmentations.

6.1.1 Attributive augmentations

This category of augmentations is typically placed on node
attributes. Given § = (A,X), the augmented graph is
represented as:

G = (A, XY) = (A, (X)), (17)
where ¢;(-) is placed on the node feature matrix only, and
X denotes the augmented node features. Specifically, at-
tributive augmentations have two variants. The first type
is Node feature masking (NFM) [16], [33], [38], [43], [68],
which randomly masks the features of a portion of nodes
within the given graph. In particular, we can completely
(i.e., row-wisely) mask selected feature vectors with zeros
[16], [43], or partially (i.e., column-wisely) mask a number of
selected feature channels with zeros [33], [68]. We formulate
the node feature masking operation as:

t:(X) = Mo X, (18)

where M is the masking matrix with the same shape of
X, and o denotes the Hadamard product. For a given
masking matrix, its elements have been initialized to one
and masking entries are assigned to zero. In addition to
randomly sampling a masking matrix M, we can also cal-
culate it adaptively [69], [70]. For example, GCA [69] keeps
important node features unmasked while assigning a higher
masking probability for those unimportant nodes, where the
importance is measured by node centrality.

On the other hand, instead of masking a part of the
feature matrix, node feature shuffle (NFS) [13], [71], [72]
partially and row-wisely perturbs the node feature matrix.
In other words, several nodes in the augmented graph are
placed to other positions when compared with the input
graph, as formulated below:

ti(X) = Xl

W (19)

where [],, is a picking function that indexes the feature
vector of v; from the node feature matrix, and V denotes
the partially shuffled node set.

10

6.1.2 Topological augmentations

Graph augmentations from the structural perspectives
mainly work on the graph adjacency matrix, which is for-
mulated as follows:

G = (AW, X) = (t;(A),X), (20)

where t;(-) is typically placed on the graph adjacency ma-
trix. For this branch of methods, edge modification (EM)
[9], [38], [51], [68], [73], [74] is one of the most common
approaches, which partially perturbs the given graph ad-
jacency by randomly dropping and inserting a portion of
edges. We define this process as follows:

where M; and M, are edge dropping and insertion ma-
trices. Specifically, M; and My are generated by randomly
masking a portion of elements with the value equal to one in
A and (1—A). Similar to node feature masking, M; and M,
can also be calculated adaptively [69]. Furthermore, edge
modification matrices can be generated based on adversarial
learning [18], [75], which increases the robustness of learned
representations.

Different from the edge modification, graph diffusion
(GD) [76] is another type of structural augmentations [14],
[68], which injects the global topological information to
the given graph adjacency by connecting nodes with their
indirectly connected neighbors with calculated weights:

ti(A)=>_ ©,T (22)
k=0

where © and T are weighting coefficient and transition ma-

trix, respectively. Specifically, the above diffusion formula

has two instantiations [14]. Let ©;, = e_,;tk and T = AD !,

we have the heat kernel-based graph diffusion:

ti(A) = exp LAD! —),

(23)

where ¢ denotes the diffusion time. Similarly, the Personal-
ized PageRank-based graph diffusion is defined below by
letting O, = B(1 — f)* and T = D~ 2 AD " =:

ti(A)=B(I—(1— /D AD z), (24)

where 3 denotes the tunable teleport probability.

6.1.3 Hybrid augmentations
It is worth noting that a given graph augmentation may
involve not only the attributive but also the topological
augmentations simultaneously, where we define it as the
hybrid augmentation and formulate as:
G» = (AW X)) = (t:(A, X)). (25)

In such a case, the augmentation ¢;(-) is placed on both
the node feature and graph adjacency matrices. Subgraph
sampling (SS) [14], [16], [74], [77] is a typical hybrid graph
augmentation which is similar to image cropping. Specif-
ically, it samples a portion of nodes and their underlying
linkages as augmented graph instances:

ti(A, X) = [(A, X)]vev, (26)

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

where V'’ denotes a subset of V, and [-]y~ is a picking func-
tion that indexes the node feature and adjacency matrices of
the subgraph with node set V'. Regarding the generation of
V', several approaches have been proposed, such as uniform
sampling [74], random walk-based sampling [15], and top-k
importance-based sampling [77].

Apart from the subgraph sampling, most of graph con-
trastive methods heavily rely on hybrid augmentations
by combining the aforementioned strategies. For example,
GRACE [33] applies the edge dropping and node feature
masking, while MVGRL [14] adopts the graph diffusion and
subgraph sampling to generate different contrastive views.

6.2 Graph Contrastive Learning

As contrastive learning aims to maximize the MI between
instances with similar semantic information, various pretext
tasks can be constructed to enrich the supervision signals
from such information. Regarding the formulation of pretext
decoder pg(-) in Equation (5), we classify existing works
into two mainstreams: same-scale and cross-scale contrastive
learning. The former branch of methods discriminates graph
instances in an equal scale (e.g., node versus node), while
the second type of methods places the contrasting across
multiple granularities (e.g., node versus graph). Fig. 8 and
Table 3 provide the pipelines and summaries of contrast-
based methods, respectively.

6.2.1 Same-Scale Contrast

According to the scale for contrast, we further divide the
same-scale contrastive learning approaches into two sub-
types: node-level and graph-level.

6.2.1.1 Node-Level Same-Scale Contrast: Early meth-
ods [30], [31], [78], [79] under this category are mainly to
learn node-level representations and built on the idea that
nodes with similar contextual information should share the
similar representations. In other word, these methods are
trying to pull the representation of a node closer to its
contextual neighborhood without relying on complex graph
augmentations. We formulate them as below:

0" = argemin ﬁ Z »Ccon<p<[f9(AvX)]vﬂ [fG(A7X)]Uc))7
v, EV
@7)

where v, denotes the contextual node of v;, for example,
a neighboring node in a random walk starting from v;. In
those methods, the pretext discriminator (i.e., decoder) is
typically the dot product and thus we omit its parameter in
equation. Specifically, DeepWalk [30] introduces a random
walk (RW)-based approach to extract the contextual
information around a selected node in an unattributed
graph. It maximizes the co-occurrence (i.e., MI measured
by the binary classifier) of nodes within the same walk
as in the Skip-Gram model [26], [27]. Similarly, node2vec
[31] adopts biased RWs to explore richer node contextual
information and yields a better performance. GraphSAGE
[78], on the other hand, extends aforementioned two
methods to attributed graphs, and proposes a novel GNN
to calculate node embedding in an inductive manner, which
applies RW as its internal sampling strategy as well. On
heterogeneous graphs, SELAR [80] samples meta-paths to

11

capture the contextual information. It consists of a primary
link prediction task and several meta-paths prediction
auxiliary tasks to enforce nodes within the same meta-path
to share closer semantic information.

Different from the aforementioned approaches, modern
node-level same-scale contrastive methods are exploring
richer underlying semantic information via various graph
augmentations, instead of limiting on subgraph sampling:

9*7 Qb* = argg {fln Econ (Paﬁ (f@ (A(1)7 X(l))v f6’ (A(2)7 X(Q)))) 5

(28)
where A and A are two augmented graph adjacency
matrices. Similarly, X® and X® are two node feature
matrices under different augmentations. The discriminator
ps(-) in above equation can be parametric with @ (e.g.,
bilinear transformation) or not (e.g., cosine similarity where
® = ()). In those methods, most of them deal with at-
tributed graphs: GRACE [33] adopts two graph augmen-
tation strategies, namely node feature masking and edge
dropping, to generate two contrastive views, which then
pulls the representations of the same nodes closer between
two graph views while pushing the rest of nodes away (i.e.,
intra- and inter-view negatives). Based on this framework,
GCA [69] further introduces an adaptive augmentation for
graph-structured data based on underlying graph proper-
ties, which results in a more competitive performance. Dif-
ferently, GROC [18] proposes an adversarial augmentation
on graph linkages to increase the robustness of learned node
representations. Because of the success of SimCLR [24] in the
visual domain, GraphCL(N) [81] ° further extends this idea
to graph-structured data, which relies on the node feature
masking and edge modification to generate two contrastive
views, and then the MI between two target nodes within
different views is maximized. CGPN [82] introduces Poisson
learning to node-level contrastive learning, which benefits
node classification task under extremely limited labeled
data. On plain graphs, GCC [15] utilizes RW as augmenta-
tions to extract the contextual information of a node, which
then contrasts the representation of it with its counterparts
by leveraging the contrastive framework of MoCo [23]. On
the other hand, HeCo [83] is contrasting on heterogeneous
graphs, where two contrastive views are generated from
two perspectives, i.e., network schema and meta-path, while
the encoder is trained by maximizing the MI between the
embeddings of the same node in two views.

Apart from those methods relying on carefully-crafted
negative samples, approaches like BGRL [84] propose to
contrast on graph instances themselves and thus alleviate
the reliance on deliberately designed negative sampling
strategies. BGRL takes the advantage of knowledge distil-
lation in BYOL [25], where a momentum-driven Siamese ar-
chitecture has been introduced to guide the extraction of su-
pervision signals. Specifically, it uses node feature masking
and edge modification as augmentations, and the objective
of BGRL is the same as in BYOL where the MI between
node representations from online and target networks is
maximized. SelfGNN [85] adopts the same technique while

3. The approaches proposed in [81] and [38] have the same name
“GraphCL”. For distinction, we denote the node-level approach [81] as
GraphCL(N) and the graph-level approach [38] as GraphCL(G).

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

Augmented Graph Node Representations
Ve o0 o) Ve A
N

o, 3 (
\\:\:\;/ ‘0 | - | Encoder -
\ / . oo fo
fass) -

f Augmentation
= ~

Graph
Representation

a2

—

\\W ® | >| Readout

\

\EED

T Input

\./ /N == | Graph
oo —

oo

Node-Level
Same-Scale
Contrast

Graph-Level

Same-Scale

Contrast

I\ -

} Augmentation
= "

o=
- =\ - Encoder -
\ /\ ™ fo

—

N—
\ ™= m =O \

Augmented Graph

Readout - \/77
Graph
Representation

\ /N -

Node Representations
(a) In same-scale contrast, different views are generated with

various graph augmentations based on the input graph at first.
Then, the contrast can be placed on node or graph scales.

12

Augmented Graph
Ve 00 o)

[erep iy) (
\DI/ p - Encoder
\ A fo

— \

f Augmentation
T oo g

Node Representations

Graph
Representation
Readout -

\ED
oo~
o Input
\ /\ oo | 6raph
—
\Dam T
§ Augmentation

p—
- Enct_)der —-
fo

el L

Context-Global
Cross-Scale
Contrast

m
T\
\/ /\ ==
\\ Lo EED/
Augmented Graph

Readout g FID
Context
Representation

Node Representations
(b) In cross-scale contrast, the augmented graph views are gen-

erated firstly. Then, the cross-scale contrast aims to discriminate
patch- or context- level embeddings with global representations.

Fig. 8: Two categories of contrast-based graph SSL.

the difference is that SelfGNN uses other graph augmenta-
tions, such as graph diffusion [76], node feature split, stan-
dardization, and pasting. Apart from BYOL, Barlow Twins
[86] is another similar yet powerful method without using
negative samples to prevent the model from collapsing.
G-BT [87] extends the redundancy-reduction principle for
graph data analytics, where the optimization objective is to
minimize the dissimilarity between the identity and cross-
correlation metrics generated via node embeddings of two
augmented graph views. MERIT [68], on the other hand,
proposes to combine the advantages of Siamese knowledge
distillation and conventional graph contrastive learning.
It leverages a self-distillation framework in SimSiam [88]
while introducing extra node-level negatives to further ex-
ploit the underlying semantic information and enrich the
supervision signals.
6.2.1.2 Graph-Level Same-Scale Contrast: For graph-
level representation learning under same-scale contrasting,
the discrimination is typically placed on graph representa-
tions:
0", 0" = argmin Loon (ps (,82)), 29)
0,9
where g = R(fo(A"),X®)) denotes the representation
of augmented graph G(*), and R(-) is a readout function to
generate the graph-level embedding based on node repre-
sentations. Methods under Equation (29) may share similar
augmentations and backbone contrastive frameworks with
the aforementioned node-level approaches. For example,
GraphCL(G) [38] adopts SIimCLR [24] to form its contrastive
pipeline which pulls the graph-level representations of two
views closer. Similarly, DACL [89] is also built on SimCLR
but it designs a general yet effective augmentation strat-
egy, namely mixup-based data interpolation. AD-GCL [75]
proposes an adversarial edge dropping mechanism as aug-
mentations to reduce the amount of redundant information
taken by encoders. JOAO [70] proposes the concept of joint
augmentation optimization, where a bi-level optimization
problem is formulated by jointly optimizing the augmen-
tation selection together with the contrastive objectives.
Similar to GCC [15], CSSL [74] is built on MoCo [23] but
it contrasts graph-level embeddings. A similar design can

also be found in LCGNN [90]. On the other hand, regarding
to the knowledge-distillation, IGSD [73] is leveraging the
concept of BYOL [25] and similar to MERIT [68].

6.2.2 Cross-Scale Contrast

Different from contrasting graph instances in an equiv-
alent scale, this branch of methods places the discrimi-
nation across various graph topologies (e.g., node versus
graph). We further build two sub-classes under this cate-
gory, namely patch-global and context-global contrast.

6.2.2.1 Patch-Global Cross-Scale Contrast: For node-
level representation learning, we define this contrast as
below:

0*7¢* —

arg min ITI/I pap (p¢ (175 (A X)), R (fo(A. X)))),

0,9

(30)
where R(:) denotes the readout function as we mentioned
in previous subsection. Under this category, DGI [13] is the
first method that proposes to contrast node-level embed-
dings with the graph-level representation, which aims to
maximize the MI between such two representations from
different scales to assist the graph encoder to learn both
localized and global semantic information. Based on this
idea, GIC [91] first clusters nodes within a graph based
on their embeddings, and then pulls nodes closer to their
corresponding cluster summaries, which is optimized with a
DGI objective simultaneously. Apart from attributed graphs,
some works on heterogeneous graphs are based on the
similar schema: HDGI [92] can be regarded as a version
of DGI on heterogeneous graphs, where the difference is
that the final node embeddings of a graph are calculated
by aggregating node representations under different meta-
paths. Similarly, ConCH [93] shares the same objective with
DGI and aggregates meta-path-based node representations
to calculate node embeddings of a heterogeneous graph.
Differently, DMGI [94] considers a multiplex graph as the
combination of several attributed graphs. For each of them,
given a selected target node and its associated relation type,
the relation-specific node embedding is firstly calculated.

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

13

TABLE 3: Main characteristics of contrast-based graph SSL approaches. “NSC”, “GSC”, “PGCC” and “CGCC” mean node-
level same-scale, graph-level same-scale, patch-global cross-scale, and context-global cross-scale contrast, respectively.

A h Pretext Task ~ Downstream Training Data Type Graph Objective
pproac Category Task Level Scheme of Graph Augmentation Function

DeepWalk [30] NSC Node URL Plain SS SkipGram
node2vec [31] NSC Node URL Plain SS SkipGram
GraphSAGE [78] NSC Node URL Attributed SS JSD
SELAR [80] NSC Node JL Heterogeneous Meta-path sampling JSD
LINE [79] NSC Node URL Plain SS JSD
GRACE [33] NSC Node URL Attributed NFM+EM InfoNCE
GROC [18] NSC Node URL Attributed NFM+Adversarial EM InfoNCE
GCA [69] NSC Node URL Attributed Adaptive NFM+Adaptive EM InfoNCE
GraphCL(N) [81] NSC Node URL Attributed SS+NFS+EM InfoNCE
CGPN [82] NSC Node JL Attributed None InfoNCE
GCC [15] NSC Node/Graph PF/URL Plain SS InfoNCE
HeCo [83] NSC Node URL Heterogeneous NFM InfoNCE
BGRL [84] NSC Node URL Attributed NFEM+EM BYOL
SelfGNN [85] NSC Node URL Attributed GD+Node attributive transformation BYOL
G-BT [87] NSC Node URL Attributed NFM+EM Barlow Twins
MERIT [68] NSC Node URL Attributed SS+GD+NFM+EM BYOL+InfoNCE
GraphCL(G) [38] GSC Graph PF/URL Attributed SS+NFM+EM InfoNCE
DACL [89] GSC Graph URL Attributed Noise Mixing InfoNCE
AD-GCL [75] GSC Graph PF/URL Attributed Adversarail EM InfoNCE
JOAO [70] GSC Graph PF/URL Attributed Automated InfoNCE
CSSL [74] GSC Graph PF/JL/URL Attributed SS+Node insertion/deletion+EM InfoNCE
LCGNN [90] GSC Graph JL Attributed Arbitrary InfoNCE
IGSD [73] GSC Graph JL/URL Attributed GD+EM BYOL+InfoNCE
DGI [13] PGCC Node URL Attributed None JSD
GIC [91] PGCC Node URL Attributed Arbitrary JSD
HDGI [92] PGCC Node URL Heterogeneous None JSD
ConCH [93] PGCC Node JL Attributed None JSD
DMGI [94] PGCC Node JL/URL Heterogeneous None JSD
EGI [95] PGCC Node PF/JL Attributed SS JSD
STDGI [71] PGCC Node URL Spatial-temporal Node feature shuffling JSD
MVGRL [14] PGCC Node/Graph URL Attributed GD+SS JSD
SUBG-CON [77] PGCC Node URL Attributed SS+Node representation shuffling Triplet
SLiCE [96] PGCC Edge JL Heterogeneous None JSD
InfoGraph [97] PGCC Graph JL/URL Attributed None JSD
Robinson et al. [98] PGCC Graph URL Attributed Arbitrary JSD
BiGI [99] CGCC Graph URL Heterogeneous SS JSD
HTC [100] CGCC Graph JL Attributed NFS JSD
MICRO-Graph [101] CGCC Graph URL Attributed SS InfoNCE
SUGAR [102] CGCC Graph JL Attributed SS JSD

The MI between the graph-level representation and such an
node embedding is maximized as in DGI. EGI [95] extracts
high-level transferable graph knowledge by enforcing node
features to be structure-respecting and then maximizing the
MI between the embedding of a node and its surrounding
ego-graphs. On spatial-temporal graphs, STDGI [71] max-
imizes the agreement between the node representations at
timestep ¢ with the raw node features at ¢t + 1 to guide
the graph encoder to capture rich semantic information to
predict future node features.

Note that aforementioned methods are not explicitly us-
ing any graph augmentations. For patch-global contrastive
approaches based on augmentations, we reformulate Equa-
tion (30) as follows:

0%, ¢* = argmm |V| Z Leon (p¢(h() (2))) 31)

where flgl) = [fo(AM X M)], is the representation of node
v; in augmented view 1, and g = R(fo(A? ,X?))
denotes the representation of differently augmented view
2. Under the umbrella of this definition, MVGRL [14] first
generates two graph views via graph diffusion [76] and sub-
graph sampling. Then, it enriches the localized and global
supervision signals by maximizing the MI between the node

embeddings in a view and the graph-level representation of
another view. SUBG-CON [77], on the other hand, inherits
the objective of MVGRL while it adopts different graph
augmentations. Specifically, it first extracts the top-k most
informative neighbors of a central node from a large-scale
input graph. Then, the encoded node representations are
further shuffled to increase the difficulty of pretext task. On
heterogeneous graphs, SLiCE [96] pulls nodes closer to their
closest contextual graphs, instead of explicitly contrasting
nodes with the entire graph. In addition, SLiCE enriches the
localized information of node embeddings via a contextual
translation mechanism.

For graph-level representation learning based on patch-
global contrast, we can formulate it by using Equation (30).
InfoGraph [97] shares a similar schema with DGI [13]. It con-
trasts the graph representation directly with node embed-
dings to discriminate whether a node belongs to the given
graph. To further boost contrastive methods like InfoGraph,
Robinson et al. [98] propose a general yet effective hard
negative sampling strategy to make the underlying pretext
task more challenging to solved.

6.2.2.2 Context-Global Cross-Scale Contrast: Another
popular design under the category of cross-scale graph con-
trastive learning is context-global contrast, which is defined
below:

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

0* ¢ = arg mln ‘S| Z Econ (pd> (h87 g))v (32)
€s

where S denotes a set of contextual subgraphs in an aug-
mented input graph G, where augmentations are typically
based on graph sampling under this category. In above
formula, h, is the representation of augmented contex-
tual subgraph s, and g represents the graph-level rep-
resentation over all subgraphs in S. Specifically, we let
h, = R([fo(A,X)]y,es), and § = R(fo(A,X)). However,
for some methods, such as [99] and [100], the graph-level
representation is calculated on the original input graph,
where g = R(fo(A,X)). Among them, BiGI [99] is a node-
level representation learning approach on bipartite graphs,
inheriting the contrasting schema of DGI [13]. Specifically, it
first calculates graph-level representation of the input graph
by aggregating two types of node embeddings. Then, it
samples the original graph, and then calculates the local
contextual representation of a target edge between two
nodes. The optimization objective of BiGI is to maximize
the MI between such a local contextual and global repre-
sentations, where the trained graph encoder can then be
used in various edge-level downstream tasks. Aiming to
learn graph-level embedding, HTC [100] maximizes the
MI between full-graph representation and the contextual
embedding which is the aggregation of sampled subgraphs.
Similar to but different from HTC, MICRO-Graph [101] pro-
poses a different yet novel motif learning-based sampling as
the implicit augmentation to generate several semantically-
informative subgraphs, where the embedding of each sub-
graph is pulled closer to the representation of entire graph.
Considering a scenario that the graph-level representation
is based on the augmented input graph, as the default
setting shown in Equation (32), SUGAR [102] first samples
n subgraphs from the given graph, and then proposes a
reinforcement learning-based top-k sampling strategy to
select the n’ informative subgraphs among the candidate
set with size n. Finally, the contrast of SUGAR is established
between the subgraph embedding and the representation
of sketched graph, i.e., the generated graph by combining
these n’ subgraphs.

6.3 Mutual Information Estimation

Most of contrast-based methods rely on the MI estimation
between two or more instances. Specifically, the representa-
tions of a pair of instances sampled from the positive pool
are being pulled closer while the counterparts from negative
sets are pushed away. Given a pair of instances (x;,;),
we let (h;, h;) to denote their representations. Thus, the MI
between (3, j) is given by [103]:

MZ(h;, h;) = KL(P(h;, hy)||P(h;)P(h;))
(huh) }7

=Epn; h,)|1l0og 57~5"~
ronin [9% 5700,

where K L(-) denotes the Kullback-Leibler divergence, and
the end goal is to train the encoder to be discriminative
between a pair of instances from the joint density P(h;, h;)
and negatives from marginal densities P(h;) and P(h;).
In this subsection, we define two common forms of lower

(33)

14

bound and three specific forms of non-bound MI estimators
derived from Equation (33).

6.3.1 Jensen-Shannon Estimator

Although Donsker-Varadhan representation provides a
tight lower bound of KL divergence [36], Jensen-Shannon
divergence (JSD) is more common on graph contrastive
learning, which provides a lower bound and more efficient
estimation on MI. We define the contrastive loss based on it
as follows:

Leon (qu (hza hj)) = 7MIJSD(hZ'a h])

=Er. 5 [log (1 — pg(hy, h'j))} —Ep [log (g (hy, hj))} :

(34)
In above equation, h; and hJ are sampled from the
same distribution P, and h’; is sampled from a differ-
ent distribution P. For the discriminator pe(+), it can be
taken from various forms, where a bilinear transforma-
tion [104] is typically adopted, i.e., pys(h;,h;) = h! ®h;,
such as in [13], [14], [102]. Specifically, by letting
pg(hi, hj) = sigmoid (p), (h;, h;)), Equation (34) can be pre-
sented in another form as in InfoGraph [97].

6.3.2 Noise-Contrastive Estimator

Similar to JSD, noise-contrastive estimator (a.k.a. InfoNCE)
provides a lower bound MI estimation that naturally con-
sists of a positive and N negative pairs [36]. An InfoNCE-
based contrasitve loss is defined as follows:

Leon (s (Bishy)) = ~MZncp(hi,by)
ePe(hih;)

pe(hihy) 4 >nen ePs(hi,hl) } ’

where the discriminator py () can be the dot product with a

temperature parameter 7, i.e., p(h;,h;) = h!h;/7, such as
in GRACE [33] and GCC [15].

(35)

—Ep pn [log .

6.3.3 Triplet Loss

Apart from aforementioned two lower bound MI estimators,
a triplet margin loss can also be adopted to estimate the MI
between data instances. However, minimizing this loss can
not guarantee that the MI is being maximized because it
cannot represent the lower bound of MI. Formally, Jiao et al.
[77] define this loss function as follows:

Econ< (h“h)) Epo 5 [max [p(b(hz,h) p¢(hi’h’j)—|—6,0H,
(36)
discriminator

where ¢ is a margin value, and the

p(h;, hy) = 1/1 4 ¢RIy,

6.3.4 BYOL Loss

For the methods inspired by BYOL [25] and not relying on

negative samples, such as BGRL [25], their objective func-

tions can also be interpreted as a non-bound MI estimator.
Given h;, h; ~ P, we define this loss as in below:

[ps(h)] "y]

£con hi7h' =K 2-2 ’
(p(3)) PXP[[[py (i) || [[]|

(37)

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

where p,, denotes an online predictor parameterized by v in
Siamese networks, which prevents the model from collaps-
ing with other mechanisms such as momentum encoders,
stop gradient, etc. In particular, the pretext decoder in this
case denotes the mean square error between two instances,
which has been expanded in the above equation.

6.3.5 Barlow Twins Loss

Similar to BYOL, this objective alleviates the reliance on
negative samples but much simpler in implementation,
which is motivated by the redundancy-reduction principle.
Specifically, given the representations of two views H(®)
and H® for a batch of data instances sampled from a
distribution P, we define this loss function as below [86]:

M@

Y (ZieB H{ H)2}

i [HL

(38)
where a and b index the dimension of a representation
vector, and ¢ indexes the samples within a batch B.
Discussion. In general, same-scale methods usually fol-
low the two-stream contrastive learning frameworks (e.g.,
SimCLR [24] and BYOL [25]), where InfoNCE and BYOL
losses are widely used; In contrast, cross-scale methods
often derive from DGI [13], hence they prefer the JSD loss.

7 HyYBRID METHODS

Compared to the aforementioned methods that only utilize
a single pretext task to train models, hybrid methods adopt
multiple pretext tasks to better leverage the advantages of
various types of supervision signals. The hybrid methods in-
tegrate various pretext tasks together in a multi-task learning
fashion, where the objective function is the weighted sum of
two or more self-supervised objectives. The formulation of
hybrid graph SSL methods is:

N
0%, ¢* = arg minzaiﬁssli (fe,p¢,“'Di),

@b =1

(39)

where N is the number of pretext tasks, aj, Lsq1,, Py, and
D; are the trade-off weight, loss function, pretext decoder
and data distribution of the i-th pretext task, respectively.
A common idea of hybrid graph SSL is to combine
different generation-based tasks together. GPT-GNN [9] in-
tegrates feature and structure generation into a pre-training
framework for GNNSs. Specifically, for each sampled input
graph, it first randomly masks a certain amount of edges
and nodes. Then, two generation tasks are used to train the
encoder simultaneously: Attribute Generation that rebuilds
the masked features with MSE loss, and Edge Generation
that predicts the masked edges with a contrastive loss.
Graph-Bert [39] combines attributive and structural pretext
tasks to pre-train a graph transformer model. Concretely,
Node Raw Attribute Reconstruction reconstructs the raw
features from the node’s embedding, while Graph Structure
Recovery aims to recover the graph diffusion value between
two nodes with a cosine similarity decoder. PT-DGNN [105]

15

TABLE 4: Main characteristics of hybrid graph SSL ap-
proaches. “M. et al.” and “Hetero.” are the abbreviations
for “Manessi et al.” and “Heterogeneous”, respectively. The
abbreviations for pretext tasks categories please refer to
Table 1, 2 and 3.

Approach Pretext Task Downstream Training Data Type
pproac Categories Task Level Scheme of Graph
GPT-GNN [9] FG/SG Node/Link PF Hetero.
Graph-Bert [39] FG/SG Node PF Attributed
PT-DGNN [105] FG/SG Link PF Dynamic
M. et al. [45] FG/FG/FG Node JL Attributed
GMI [41] SG/NSC Node/Link URL Attributed
CG? [106] SG/NSC Node JL Attributed
MVMI-FT [107] SG/PGCC Node URL Attributed
GraphLoG [108] NSCCéggC/ Graph PF Attributed
HDMI [109] NSC/PGCC Node URL Multiplex
G-Zoom [110] NSCG/SI\éSC/ Node URL Attributed
LnL-GNN [111] NSC/NSC Node JL Attributed
SG/APC/ Node/Link/ .
Hu et al. [50] APC Graph PF Attributed
GROVER[10] ~ APC/APC ~ NOde/LIK/pp Agpributed
raph
Kou et al. [112] FGA/PSCG / Node JL Attributed

extends the idea of combining attributive and structural
generation to pre-train GNNs for dynamic graphs. Besides,
Manessi et al. [45] propose to train GNNs with three types
of feature generation tasks.

Another idea is to integrate generative and contrastive
pretext tasks together. GMI [41] adopts a joint learning
objective for graph representation learning. In GMI, the
contrastive learning target (i.e., feature MI) is to maximize
the agreement between node embeddings and neighbors’
features with a JSD estimator, and the generative target
(i.e., edge MI) is to minimize the reconstruction error of
the adjacency matrix with a BCE loss. CG? [106] considers
contrastive and generative SSL jointly for semi-supervised
node classification problem. In CG3, two parallel encoders
(GCN and HGCN) are established to provide local and
global views for graphs. In contrastive learning, an Info-
NCE contrastive loss is used to maximize the MI between
the node embeddings from two views. In generative learn-
ing, a generative decoder is used to rebuild the topological
structure from the concatenation of two views” embeddings.
MVMI-FT [107] presents a cross-scale contrastive learning
framework that learns node representation from different
views, and also uses a graph reconstruction module to learn
the cross-view sharing information.

Since different types of contrasts can provide supervision
signals from different views, some approaches integrate
multiple contrast-based tasks together. GraphLoG [108] con-
sists of three contrastive objectives: the subgraph versus
subgraph, graph versus graph, and graph versus contextual.
The InfoNCE loss serves as the MI estimator for three types
of contrasts. HDMI [109] mixes both same-scale and cross-
scale contrastive learning, which dissects a given multiplex
network into multiple attributed graphs. For each of them,
HDMI proposes three different objectives to maximize the
MI between raw node features, node embeddings, and
graph-level representations. G-Zoom [110] uses same-scale
contrasts in three scales to learns representations, which ex-
tracts valuable clues from multiple perspectives. LnL-GNN

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

[111] leverages a bi-level MI maximization to learn from
local and non-local neighborhoods obtained by community
detection and feature-based clustering respectively.
Different auxiliary property-based tasks can also be inte-
grated into a hybrid method. Hu et al. [50] present to pre-
train GNNs with multiple tasks simultaneously to capture
transferable generic graph structures, including Denoising
Link Reconstruction, Centrality Score Ranking, and Cluster
Preserving. In GROVER [10], the authors pre-train the GNN
Transformer model with auxiliary property classification
tasks in node level (Contextual Property Prediction) and
graph level (Motif Prediction) simultaneously. Kou et al.
[112] mix structure generation, feature generation, and aux-
iliary property classification tasks into a clustering model.

8 EMPIRICAL STUDY

In this section, we summarize essential resources for em-
pirical study of graph SSL. Specifically, we conduct an
experimental comparison of the representative methods on
two commonly used downstream tasks on graph learning,
i.e.,, node classification and graph classification. We also
collect useful resources for empirical research, including
benchmark datasets and open-source implementations.
Performance Comparison of Node Classification. We con-
sider two learning settings for node classification, i.e., semi-
supervised transductive learning and supervised inductive
learning. For transductive learning, we consider three cita-
tion network datasets, including Cora, Citeseer and Pubmed
[113], for performance evaluation. The standard split of
train/valid /test often follows [1], where 20 nodes per class
are used for training, 500/1000 nodes are used for valida-
tion/testing. For inductive learning, we use PPI dataset [78]
to evaluate the performance. Following [78], 20 graphs are
employed to train the model, while 2 graphs are used to
validate and 2 graphs are used to test. In both setting, the
performance is measured by classification accuracy.

We compare the performance of two groups of graph
SSL methods. In URL group, the encoder is purely trained
by SSL pretext tasks, and the learned representations are
directly fed into classification decoders. In PF/JL group,
the training labels are accessible for encoders’ learning. We
consider two conventional (semi-) supervised classification
methods (i.e., GCN [1] and GAT [2]) as baselines.

The results of performance comparison are illustrated
in Table 5. According to the results, we have the fol-
lowing observations and analysis: (1) Early random walk-
based contrastive methods (e.g., DeepWalk and Graph-
SAGE) and autoencoder-based generative methods (e.g.,
GAE and SIG-VAE) perform worse than the majority of
graph SSL methods. The possible reason is that they train
encoders with simple unsupervised learning targets instead
of well-designed self-supervised pretext tasks, hence failing
to fully leverage the original data to acquire supervision
signals. For example, DeepWalk only maximizes the MI
among nodes within a random walk, ignoring the global
structural information of graphs. (2) The methods employ-
ing advanced contrastive objectives from visual contrastive
learning (e.g., BGRL which uses BYOL loss [25] and G-
BT which uses Barlow Twins loss [86]) do not show a
superior performance like their prototypes performing on
visual data. Such an observation indicates that directly

16

TABLE 5: A summary of experimental results for node
classification in four benchmark datasets.

Group Approach Category Cora Citeseer Pubmed PPI
Base- GCN [1] - 81.5 70.3 79.0 -
lines GAT [2] - 83.0 72.5 79.0 97.3
GAE [32] SG 80.9 66.7 77.1 -
SIG-VAE [47] SG 79.7 70.4 79.3 -
SZGRL [57] PAPC 83.7 72.1 82.4 66.0
DeepWalk [30] NSC 67.2 432 65.3 -
GraphSAGE [78] NSC 787 69.4 78.1 50.2
GRACE [33] NSC 80.0 71.7 79.5 -
GCAT69] NSC 81.2 71.8 82.8 -
GraphCL(N) [8I] NSC 83.6 72.5 79.8 65.9
URL BGRL [84] NSC 80.5 71.0 79.5 -
G-BT [87] NSC 81.0 70.8 79.0 -
MERIT [68] NSC 83.1 74.0 80.1 -
DGI [13] PGCC 82.3 71.8 76.8 63.8
MVGRL [14] PGCC 82.9 72.6 79.4 -
SubG-Con [77] PGCC 83.5 73.2 81.0 66.9
GMI [41] Hybrid 82.7 73.0 80.T 65.0
MVMI-FT [107] Hybrid 83.1 72.7 81.0 -
G-Zoom [110] Hybrid 84.7 74.2 81.2 -
G. Comp. [17] FG 81.3 71.7 79.2
SuperGAT [49] SG 84.3 72.6 81.7 744
N. Clu. [17] CAPC 81.8 71.7 79.2 -
M3S [40] CAPC 81.6 71.9 79.3 -
PF/JL | G.Part. [17] CAPC 81.8 71.3 80.0 -
SimP-GCN [58] APR 82.8 72.6 81.1 -
Graph-Bert [39] Hybrid 84.3 712 79.3 -
M. et al. [45] Hybrid 82.2 71.1 79.3 -
CG?3 [106] Hybrid 83.4 73.6 80.2 -

borrowing self-supervised objectives from other domains
does not always bring enhancement. (3) Some representative
contrast-based methods (e.g.,, MVGRL, MERIT, and SubG-
Con) perform better than the generalization-based and aux-
iliary property-based methods, which reflects the effective-
ness of contrastive pretext tasks and the potential room
for improvement of other methods. (4) The hybrid meth-
ods have competitive performance and some of them even
outperform the supervised baselines. The outperformance
suggests that integrating multiple pretext tasks can provide
supervision signals from diverse perspectives, which brings
significant performance gain. For instance, G-Zoom [110]
achieves excellent results by combining contrastive pretext
tasks in three different levels. (5) The performance of meth-
ods in PF/JL groups is generally better than that in URL
groups, which demonstrates that the accessibility of label
information leads to further improvement for graph SSL.
More resources. For the evaluation and performance com-
parison of graph classification, we please readers refer to
Appendix D. We also collect widely applied benchmark
datasets and divide them into four groups. The description
and statistics of the selected benchmark datasets are detailed
in Appendix E. Besides, we provide a collection of the open-
source implementations of the surveyed works in Appendix
F, which can facilitate the reproduction, improvement, and
baseline experiments in further research.

9 PRACTICAL APPLICATIONS

Graph SSL has also been applied to a wide range of disci-
plines. We summarize the applications of graph SSL in three
research fields. More can be found in Appendix G.

Recommender Systems. Graph-based recommender system
has drawn great research attention since it can model items
and users with networks and leverage their underlying
linkages to produce high-quality recommendations [4]. Re-
cently, researchers introduce graph SSL in recommender
systems to deal with several issues, including the cold-
start problem, pre-training for recommendation model, se-

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

lection bias, etc. For instance, Hao et al. [114] present a
reconstruction-based pretext task to pre-train GNNs on the
cold-start users and items. S>-MHCN [115] and DHCN
[116] employ contrastive tasks for hypergraph representa-
tion learning for social- and session- based recommenda-
tion, respectively. Liu et al. [117] overcome the message
dropout problem and reduce the selection bias in GNN-
based recommender system by introducing a graph con-
trastive learning module with a debiased loss. PMGT [118]
utilizes two generation-based tasks to capture multimodal
side information for recommendation.

Anomaly Detection. Graph anomaly detection is often
performed under an unsupervised scenario due to the
lack of annotated anomalies, which is naturally consistent
with the setting of SSL [119]. Hence, various works apply
SSL to graph anomaly detection problem. To be concrete,
DOMINANT [120], SpecAE [121] and AEGIS [122] employ
hybrid SSL frameworks that combine structure and feature
generation to capture the patterns of anomalies. CoLA [119]
and ANEMONE [123] utilize contrastive learning to detect
anomalies on graphs. SL-GAD [124] applies hybrid graph
SSL to anomaly detection. HCM [125] introduces an auxil-
iary property classification task that predicts the hop-count
of each node pair for graph anomaly detection.

Chemistry. In the domain of chemistry, researchers usually
model molecules or compounds as graphs where atoms and
chemical bonds are denoted as nodes and edges respec-
tively. Note that GROVER [10] and Hu et al. [16] also focus
on graph SSL for molecule data, which have been reviewed
before. Additionally, MolCLR [126] and CKGNN [127] learn
molecular representations with graph-level contrast-based
pretext tasks. Besides, GraphMS [128] and MIRACLE [129]
employ contrastive learning to solve the drug-target and
drug-drug interaction prediction problems.

10 FUTURE DIRECTIONS

In this section, we analyze existing challenges in graph SSL
and pinpoint a few future research directions aiming to
address the shortcomings.

Theoretical Foundation. Despite its great success in various
tasks and datasets, graph SSL still lacks a theoretical foun-
dation to prove its usefulness. Most existing methods are
mainly designed with intuition and evaluated by empirical
experiments. Although MI estimation theory [65] supports
some of the works on contrastive learning, the choice of the
MI estimator still relies on empirical studies [14]. Setting
up a solid theoretical foundation for graph SSL is urgently
needed. It is desirable to bridge the gap between empirical
SSL and fundamental graph theories, including the graph
signal processing and spectral graph theory.
Interpretability and Robustness. Graph SSL applications
may be risk-sensitive and privacy-related (e.g., fraud detec-
tion), an explainable and robust SSL framework is of great
significance to adapt to such learning scenarios. However,
most existing graph SSL methods only aim to reach a higher
performance on downstream tasks with black-box models,
ignoring the explainability of learned representations and
predicted results. Moreover, except for a few pioneering
works [17], [18] that consider the robustness problem, most
graph SSL methods assume input data is perfect, despite
the fact that real-world data is often noisy and GNNs

17

are vulnerable to adversarial attacks [18]. It would be an
interesting and practical direction to explore explainable
and robust graph SSL methods in future.

Pretext Tasks for Complex Types of Graphs. Most cur-
rent works concentrate on SSL for attributed graphs, and
only a few focus on complex graph types, e.g., heteroge-
neous or spatial-temporal graphs. For complex graphs, the
main challenge is how to design pretext tasks to capture
unique data characteristics of these complex graphs. Some
existing methods use MI maximization [13] for complex
graph learning, which is limited in its ability to leverage
rich information from data, e.g., the temporal dynamics in
spatial-temporal/dynamic graphs. A future opportunity is
to produce various SSL tasks for complex graph data, where
specific data characteristics are the main focus. Furthermore,
extending SSL to more ubiquitous graph types (e.g., hyper-
graphs) would be a feasible direction for further exploration.
Augmentation for Graph Contrastive Learning. In con-
trastive learning for CV [24], a large amount of augmen-
tation strategies (including rotation, color distort, crop, etc.)
provide diverse views of image data, maintaining the repre-
sentation invariance during contrastive learning. However,
due to the nature of graph-structured data (e.g., complex
and non-Euclidean structure), data augmentation schemes
on graphs are not well explored and thus compromise
the effectiveness of graph augmentation-based approaches
as discussed in Section 6.1. Most of the existing graph
augmentations consider uniformly masking/shuffling node
features, modifying edges, or other alternative ways like
subgraph sampling and graph diffusion [76], which pro-
vides limited diversity and uncertain invariance when gen-
erating multiple graph views. To bridge the gaps, adap-
tively performing graph augmentations [69], automatically
selecting augmentations [70] or jointly considering stronger
augmented samples [67] by mining the rich underlying
structural and attributive information would be interesting
directions for further investigation.

Learning with Multiple Pretext Tasks. Most existing graph
SSL approaches learn representations by solving one pretext
task, while only a few hybrid methods explore the combi-
nation of multiple pretext tasks. As shown in previous NLP
pre-training models [28] and the reviewed hybrid methods,
the integration of diverse pretext tasks can provide different
supervision signals from various perspectives, which facili-
tates graph SSL methods to produce more informative rep-
resentations. Therefore, more advanced hybrid approaches
that consider a diverse and adaptive combination of multi-
ple pretext tasks deserve further studies.

Broader Scope of Applications. Graphs are ubiquitous data
structures in numerous domains; nevertheless, acquiring
manual labels is often costly in most application fields.
In that case, graph SSL has a promising prospect on a
wide range of applications, especially those that highly
depend on domain knowledge to annotate data. However,
most current practical applications merely concentrate on a
few areas (e.g., recommender systems, anomaly detection,
and chemistry), indicating that graph SSL holds untapped
potential for most application fields. It is promising to
extend graph SSL to more expansive fields of applications,
for instance, financial networks, cybersecurity, community
detection [130], and federated learning.

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

11 CONCLUSION

This paper conducts a comprehensive overview of self-
supervised learning on graphs. We present a unified frame-
work and further provide a systematic taxonomy that
groups graph SSL into four categories: generation-based,
auxiliary property-based, contrast-based, and hybrid ap-
proaches. For each category, we provide mathematical sum-
mary, up-to-date review, and comparison between methods.
More importantly, we collect abundant resources including
datasets, evaluation methods, performance comparison and
open-source codes for graph SSL approaches. A wide range
of practical applications of graph SSL are also introduced in
our paper. Finally, we suggest open challenges and promis-
ing research directions of graph SSL in the future.

APPENDIX A
TIMELINE OF GRAPH SELF-SUPERVISED LEARNING

Fig. 9 provides a timeline of some of the most representative
graph SSL methods since 2014. A group of early works is the
random walk-based node embedding methods including
DeepWalk [30], LINE [79], and node2vec [31]. Another line
of early works is the graph autoencoder-based generation
methods, i.e. GAE/VGAE [32], MGAE [44], ARGA [48],
and SIG-VAE [47]. In 2019, a representation contrast-based
work, DGI [13], was proposed, bringing the flourishing
development of graph contrastive learning. In 2020, more
types graph SSL methods were introduced, containing the
first auxiliary property-based method (M3S [40]) and hybrid
method (GMI [41]). In 2021, more advanced techniques are
integrated with graph SSL, such as adaptive augmentation
(GCA [69]), automatic machine learning (JOAO [70]), and
adversarial augmentation (AD-GCL [75]).

APPENDIX B
NOTATIONS AND DEFINITIONS

B.1

Throughout this paper, we use bold uppercase letters (e.g.
X)), bold lowercase letters (e.g. x), and calligraphic fonts
(e.g. V) to denote matrices, vectors and sets, respectively.
Unless specified otherwise, the notations used in this paper
are summarized in Table 6.

Notations

B.2 Dynamic and Heterogeneous Graphs

Definition 3 (Dynamic Graph). A dynamic graph indicates
a graph where nodes and edges change with respect to
time, ie., G = (V1 £1), which denotes a dynamic
graph at time ¢ € R* that consists of a node set V() and
an edge set £(!) indexed by time. In practice, a dynamic
graph is also known as temporal dependency interaction
graph, where an interaction at time ¢ is represented as
eiji € E®, where node v; € V¥ and v; € V.
For an attributed dynamic graph with node and edge

features, we can also let G(*) = (A(t),Xff())de,nge),

where the adjacency matrix A*) € R"*", node feature

matrix X", € RnXdnoe and edge feature matrix

node
ngge € R*dnode are evolving with respect to time.

18

TABLE 6: Commonly used notations with explanations.

Notation | Explanation

|- The length of a set.

o Hadamard product.

g A graph.

Vv The set of nodes in a graph.

& The set of edges in a graph.

v; A node in the node set V.

€5 An edge in the edge set £.

n The number of nodes in a graph.

m The number of edges in a graph.

A e RM*™ The adjacency matrix of a graph.

d, dpode The dimension of node features.
edge The dimension of edge features.

X: Xnode S RnXd
Xedge € Rdeedge
xi = [X]o;

The node feature matrix of a graph.
The edge feature matrix of a graph.
The node feature of v;.

The dimension of node representation.

T
H e Rnxdr The node representation matrix of a graph.
h; = [H],, The node representation vector of v;.
hg The graph representation vector of a graph.
Y% Manual label set of downstream task.
C Pseudo label set of pretext task.
Y Manual label of downstream task.
c Pseudo label of pretext task.
G Augmented /Perturbed graph.
fo() Encoder parameterized by 6.
Py (+) Pretext decoder parameterized by ¢.
qy () Downstream decoder parameterized by .
L() Loss function.
R(+) Readout function.
Q) Auxiliary property mapping function.
MI(,-) Mutual information function.

Special type: Spatial-temporal graph can be regarded as an
special type of attributed dynamic graph with fixed graph
adjacency and dynamic features at different time steps.
Concretely, at each time step ¢, the dynamic feature matrix
is denoted as X () € R"*.

Definition 4 (Heterogeneous Graph). A heterogeneous graph
denotes a graph consisting of different types of nodes
and/ or edges. For a heterogeneous graph G = (V,€),
each node v; € V and each edge ¢;; € & are as-
sociated with a corresponding mapping function, i.e.,
Ou(vs) + V — S, and ¢ele; ;) + € = Se. Sy and S
are the node types and link types, respectively, and they
satisfy |S,| + |Se| > 2.

Special types: Bipartite graph and multiplex graph can be
viewed as two special types of heterogeneous graphs.
Specifically, a bipartite graph is a heterogeneous graph with
two types of nodes (|S,| = 2) and a single type of edge
(|Se| = 1); a multiplex graph has one type of node (|S, | = 1)
and multiple types of edges (|S.| > 1).

B.3 Graph Neural Networks and Readout Layers

A general definition of Graph Neural Networks (GNNs) is
represented as:

Definition 5 (Graph Neural Networks). Given an attributed
graph G with its feature matrix X where x; = X[i,:]7
is a d-dimensional feature vector of the node v;, a GNN
learns a node representation h; for each node v; € V
with two core functions: the aggregation function and

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 19
C] Generation-based Contrast- based { GROVER H HOMI }
: GPT-GNN Jin et al.
Auxiliary property-based Hybrid : .
C] YRR e C]y s [6MI_ | SimP-GCN |
[M3S][SuperGAT]
6CC BGRL
Infobraph || SUGAR
GraphcL | JOAO
 GAE/VGAE | MGAE | STDGI MVGRL AD-GCL
DeepWalk LINE node2vec GraphSAGE ARGA DGI GRACE GCA
2014 2015 2016 2017 2018 2019 2020 2021 ;

Fig. 9: A timeline of graph self-supervised learning (SSL) development.

combination function. Considering a K-layer GNN, the
k-th layer performs:

af*) = agaregate® ({1 0; € Mvi)})

(40)
hi(k) = combine® (hi(k_l),ai(k)) ,

where hi(k) is the latent vector of node v; at the k-th itera-
tion/layer with hi(o) = x; and hi(K) = h;, aggregate(F)(-)
and combine*)(-) are the aggregation and combination
function of the k — th layer, respectively. The design of
the core functions is crucial to different GNNs, and we
refer the reader to the recent survey [4] for a thorough
review.

To learn the property of each node, the node representa-
tion h; is used for downstream tasks directly. Nevertheless,
when learning the representation of the entire graph, an

extra readout layer is needed, which is defined as:
Definition 6 (Readout layer). Given a graph G = (V, £) with
its node representation héK), e) a readout layer

generates the graph representation hg by:

hg =R ({hi(K) | v; € V})

where R(-) is the readout function that fuses the node-
level representations into a graph-level representation.
It can be a simple permutation invariant function like
summation or complex pooling algorithms like DiffPool
[131] and HaarPool [132].

(41)

B.4 Commonly Used Loss Functions
We formulate two commonly used loss functions, i.e., mean
squared error (MSE) loss and cross-entropy (CE) loss.
Definition 7 (Mean squared error (MSE) loss).
Given a predicted vector y € R% and a target vectory €
R% , the formulation of MSE loss is defined as follows:

Lose(§3) = 7> i

Y =1

(42)

where ¢; and y; are the i-th element of § and y, respec-
tively. Note that £,,s. can also be applied to matrices
and scalars.

Definition 8 (Cross-entropy (CE) loss).
Given a predicted vector § € R% after Softmax activa-
tion and a one-hot target vector y € R%, the formulation
of CE loss is defined as follows:

Z yilog Ji.

Specially, the binary version of CE loss is denoted as
binary cross-entropy (BCE) loss, which is expressed by:

Lee(¥,y) (43)

Lice(9,y) = —ylogyg — (1 —y)log (1 —7), (44)

where § € [0,1] and y € {0,1} are the predicted and
target scalars, respectively.

APPENDIX C
DOWNSTREAM TASKS
C.A

Node-level tasks includes node regression and node classifi-
cation. As an representative task, node classification aims to
predict the label y; €) for each node v; € V, where YV is a
finite and discrete label set. A typical downstream decoder
gy for node classification is an MLP layer with Softmax
activation that takes node representation as its input. The
cross-entropy (CE) loss L. is typically adopted for model
training. The formulation of node classification is defined as
follows based on Equation (2):

Node-level tasks

> Lee(au([fo@N) vi), (45)

v; €V

fo+, gy = argmin ——
fox,ay

|VL|

where Vy, is the training node set (where each node v; € Vy,
has a known label y; for training), and [-],, is a picking
function that index the embedding of v; from the whole
embedding matrix.

C.2 Link-level tasks

Link-level tasks includes edge classification and link predic-
tion. Taking edge classification as an example, given an edge
(vs,v;), the goal is to predict its label y; ; € Y from a given
label set. A downstream decoder g, could be a classifier
with the embeddings of two nodes as input, while CE

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

L. serves as the loss function. We formalize the objective
function as follows:

fo+, qyp= = arg min L > Lee (%([fe(g)]m,uj), ym‘),
foxsqu l L| v; W; EEL
(46)
where £, is the training edge set, and [, ., is a picking
function that index the embedding of v; and v; from the
whole embedding matrix.

C.3 Graph-level Tasks

Graph-level tasks, including graph classification and graph
regression, often rely on graph-level representations. For
instance, in graph classification task, each graph G; has its
target value y; €), and the objective is to train a model to
predict the labels of input graphs. In general, an encoder fy
first learns node embeddings and then aggregates them into
a graph embedding via a readout function. After that, the
graph embedding is fed into the decoder g;, composed by a
classifier with Softmax function. The model is trained by CE
loss L., which can be formalized as:

1
for = argmin —
fo,pe ‘UL|

Z Lee (p¢> (fo(G2)), yi);

gieUr,

(47)
where Uy, is the training graph set.

APPENDIX D
PERFORMANCE COMPARISON OF GRAPH CLASSI-
FICATION

The task of graph classification often adapts an inductive
supervised learning setting. We collect the experimental
results on nine benchmark datasets, including IMDB-B,
IMDB-M, RDT-B, RDT-M, COLLAB, MUTAG, PROTEINS,
PTC, and NCI-1 [133]. We consider the dataset split which
is utilized in [3]. Classification accuracy is leveraged to
evaluate the performance. Similar to node classification, we
divide the approaches into two groups: URL and PF/JL. A
powerful GNN for graph classification, GIN [3], is employed
as our baseline.

The evaluation results are demonstrated in Table 7.
Based on the results, we have the following observations:
(1) The overall performance of the methods in URL group
is lower than that of the supervised baseline (i.e., GIN).
The reason is that current SSL methods cannot learn opti-
mal representations as supervised methods do. Considering
the URL methods for node classification usually achieve
higher results than baselines, future SSL methods for graph-
level representation learning are expected to reach higher
performance. (2) The cross-scale contrast-based methods,
in general, have better performance than the same-scale
contrast-based methods. A possible reason is that cross-scale
contrastive learning can improve the quality of global-wise
(i.e., graph-level) representations, which benefits graph-
level learning tasks. (3) Taking GCC as an example, the
involvement of graph labels (i.e., PF/JL schemes) does not
necessarily lead to better encoders on all datasets com-
pared to pure unsupervised learning (URL) scheme. We

20

conclude that pre-trained encoders with SSL sometimes
have a negative effect on downstream tasks. In this case,
how to circumvent such a negative transfer phenomenon
in graph-level SSL deserves further investigation. (4) Most
of these methods are measured on different sets of graph-
level datasets due to the lack of general benchmarks for
evaluation. Therefore, unified benchmarks for graph-level
SSL evaluation are significantly needed in future works.

APPENDIX E
DATASETS

In this section, we conduct an introduction and a summary
of commonly used datasets in four categories, including
citation networks, co-purchase networks, social networks,
and bio-chemical graphs. A statistic of these datasets is
given in Table 8.

E.1

In citation networks, nodes often represent the published
papers and/or authors, while edges denote the relation-
ship between nodes, such as citation, authorship, and co-
authorship. The features of each node usually contain the
context of the papers or authors, and the labels denote
the fields of study for each paper or author. Specifically,
in Cora, Citeseer and Pubmed [113], the nodes are papers,
the edges are citation relationships, and the features are the
bag-of-word representation for papers. In Coauthor CS and
Coauthor Physics [134], the nodes are authors, the edges
are co-authorship between authors, and the features are the
keywords for each author’s papers. In Wiki-CS [135], nodes
represent papers about computer science, edges represent
the hyperlinks between papers, and node features are the
mean vectors of GloVe word embeddings of articles. The
definition in ogbn-arxiv [136] is similar to Wiki-CS.

Citation Networks

E.2 Co-purchase Networks

In the two co-purchase graphs from Amazon (Amazon
Computers and Amazon Photo [134]), the nodes indicate
goods, and the edges indicate that two goods are frequently
bought together. The features of each node are the bag-of-
words encoded product reviews, while the class labels are
obtained by the category of goods.

E.3 Social Networks

The social network datasets are often formed by users
and their interactions on online services or communities.
For instance, in Reddit [78], the data is collected from a
large online discussion forum named Reddit. The nodes are
the users post of the forum, the edges are the comments
between users, and the class labels is the communities. The
features are composed by: (1) the average embedding of
the post title, (2) the average embedding of all the post’s
comments (3) the post’s score, and (4) the number of com-
ments made on the post. IMDB-B and IMDB-M [133] are two
movie-collaboration datasets. Each graph includes the ac-
tors/actresses and genre information of a movie. In a graph,
nodes indicate actors/actresses, while edges indicate if them
if they play the same movie. In REDDIT-BINARY (RDT-B)

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

21

TABLE 7: A summary of experimental results for graph classification in nine benchmark datasets.

Group Approach Category IMDB-B IMDB-M RDT-B RDT-M COLLAB MUTAG PROTEINS PTC NCI-1
Baselines | GIN [3] . 751 52.3 924 575 802 894 76.2 646 827
GCC [15] NSC 72.0 194 398 53.7 789 - - - -
GraphCL(G) [38] GSC 711 - 895 - 714 36.8 VZw! = 779
AD-GCL [75] GSC 723 199 855 54.9 733 89.7 738 - -
URL JOAO [70] GSC 708 - 864 56.0 9.5 877 716 - 733
IGSD [73] GSC 747 515 - B 704 90.2 - 614 754
MVGRL [T4] PGCC 742 51.2 845 - - 89.7 - - -
TnfoGraph [97] PGCC 73.0 19.7 825 535 . 89.0 = -
HTC [100] CGCC 733 50.6 913 55.2 - 913 - - -
GCC [15] NSC 738 50.3 876 53.0 811 - - - -
PF/JL CSSL [74] GSC B - - B B = 858 = 80.1
LCGNN [90] GSC 76.1 524 - n 775 905 852 659 829

TABLE 8: A summary of selected benchmark datasets. The markers

multi-label classification dataset.

"

in the “# Classes” column indicate that it is a

Category Dataset #Graphs # Nodes(Avg.) #Edges (Avg.) #Features # Classes Citation
(171, 1321, 1407, (431, 1357, 1501, 1561
[13], [14], [33], [49], [57], [77], [91]
Cora [113] 1 2,708 5,429 1433 7 [39], [41], [44], [46], [47], [48], [106]
B
Nemrorks [17], 1321, [40T, 1437, 1457, T56], T57]
[13], [14], [33], [41], [49], [77], [91]
Citeseer [113] 1 3,327 4732 3,703 6 [39], [44], [46], [47], [48], [51], [106]
(18], [58], [68], [81], [85], [107], [112]
[82], [110], [111]
(171, [32], [401, [43], [45T, 1507, 1561
[13], [33], [41], [49], [57], [77], [91]
Pubmed [113] 1 19,717 44,338 500 3 (181, [39], [46], [47], [48], [51], [106]
Ezls]l,][eg], [81], [82], [85], [107], [112]
CoAuthor 497, 1687, [69T, [34], [85], [91], [106]
coria] 1 18,333 81,804 6,805 15 {571
CoAuthor
Physics [134] 1 34,493 247,962 8415 5 [49], [69], [84], [85], [87], [91]
WikiCS[135] 1 11,701 216,123 300 10 (18], 1497, [69T, [34], [87]
ogbn-arxiv [136] 1 169,343 1,166,243 28 P 497, (341, [87]
Amazon [18], [49], [69], [82], [84], [91], [106]
gzgchase Phoe 1134] 1 7,650 119,081 745 8 Lol [aa] loo], Lo
Networks éf)“ri;‘l’ft‘ers 34 ! 13,752 245,861 767 10 {;}3} (697, T841, [85], [911, T10€T, [107]
Reddit [78] 1 232,965 11,606,919 602 4 {le’][l[g]l’]m]’ [431, 1571, 177, [78]
Social IMDB-B [133] 1,000 19.77 193.06 - 2 E‘é} gg} 583)’] (731, 1891, T901, 1971
Networks ’ ,
IMDB-M [133] 1,500 13.00 65.93 - 3 E‘g gg} Egg)'] 731, 1891, T90T, [971
RDT-B [133] 2,000 429.63 197.75 - 2 E‘é} [15], 138], 1891, 1971, 98], [100]
RDT-M [133] 1999 59487 50852 - 5 [15], 1757, T89T, 1977, [100]
COLLAB[133] 5,000 7449 245778 - 3 (151 1381 73] 1751 T90]
PPI [137] 2% 56,944 818,716 50 121* E{H {gﬂ %‘;} (491, 1571, [77], [78]
MUTAG [138] 188 17.93 19.79 7 2 %} {% {gg}' [90], 1971, T100], [102]
PROTEINS [139] 1,113 39.06 7281 1 2 [38], 1701, [74], 1751, 1901, [98], [102]
D&D [140] 1178 28431 715.65 82 2 [701, 1741, 1751, 1901, [98], [102]
PTC [141] 319 14.10 1450 19 2 [73], 1907, [98], [102]
Bio- PTCMR [1[42] 34 1429 12.69 18 2 [14], [89], 1971, [100]
chemical [NCI-T [143] 4110 2987 32.30 37 2 (381, 1701, 1731, 1741, [75], 1901, [102]
Graphs [NCI109[143] 4127 29.68 3213 38 2 [74], [102]
BBBP [144] 2,039 24.06 7595 - 2 (10, [16], [701, [75], [T0J, [108]
Tox2T [145] 7,831 18.51 2594 - V5 10, [16], 1701, 1751, {101, [108]
ToxCast [146] 8,575 1878 1926 - 167 (101, [16], 1701, [75], (10T, [108]
SIDER [147] 1427 33.64 35.36 - 37 10, [16], 1701, [75], [T01], [108]
ClinTox [148] 1478 26.13 27.86 - 2 10, [16], 1701, [75], (10T, [108]
MUV [149] 93,087 2423 26.28 - 7 [T6], 1701, 1751, [108]
HIV [150] M7 255 27.48 - 3 [T6], 1707, [75], [10T], [108]
BACE [151] 1513 3410 36.89 - 2 10, [16], 1701, [75], [10T], [108]

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

22

TABLE 9: A summary of open-source implementations.

Model Framework Github Link

You et al. (2020) [17] torch https:/ /github.com/Shen-Lab /SS-GCNs

Jin et al. (2021) [43] torch https:/ /github.com/ChandlerBang/SelfTask-GNN

Hu et al. (2020) [16] torch https:/ /github.com/snap-stanford /pretrain-gnns

MGAE (2017) [44] matlab https:/ /github.com/GRAND-Lab/MGAE

GAE/VGAE (2016) [32] tensorflow https:/ /github.com/tkipf/gae

SIG-VAE (2019) [47] tensorflow https://github.com/sigvae/SIGraphVAE

ARGA/ARVGA (2018) [48] tensorflow https:/ /github.com/GRAND-Lab/ARGA

SuperGAT (2021) [49] torch https:/ /github.com/dongkwan-kim /SuperGAT

M3S (2020) [40] tensorflow https://github.com/datake/M3S

SimP-GCN (2021) [58] torch https:/ /github.com/ChandlerBang /SimP-GCN

DeepWalk (2014) [30] gensim https:/ /github.com/phanein/deepwalk

node2vec (2016) [31] gensim https:/ /github.com/aditya-grover/node2vec

GraphSAGE (2017) [78] tensorflow https://github.com/williamleif/GraphSAGE

SELAR (2020) [80] torch https://github.com/mlvlab/SELAR

LINE (2015) [79] c++ https:/ /github.com/tangjianpku/LINE

GRACE (2020) [33] torch https:/ /github.com/CRIPAC-DIG/GRACE

GCA (2021) [69] torch https:/ /github.com/CRIPAC-DIG/GCA

GCC (2020) [15] torch https:/ /github.com/THUDM/GCC

HeCo (2021) [83] torch https:/ /github.com/liun-online/HeCo

BGRL (2021) [84] torch https:/ /github.com/Namkyeong /BGRL_Pytorch

SelfGNN (2021) [85] torch https:/ /github.com/zekarias-tilahun/SelfGNN

G-BT (2021) [87] torch https:/ /github.com/pbielak/graph-barlow-twins

MERIT (2021) [68] torch https:/ /github.com/GRAND-Lab/MERIT

GraphCL(G) (2020) [38] torch https:/ /github.com/Shen-Lab/GraphCL

AD-GCL (2021) [75] torch https:/ /github.com/susheels/adgcl

JOAO (2021) [70] torch https:/ /github.com/Shen-Lab/GraphCL_Automated
https:/ /github.com/YuxiangRen/Label-Contrastive-Coding-

LCGNN (2021) [90] torch bat:-sped-Gi;aph-Neural-Netwogrk-for-Graph-Classiﬁcation— i

DGI (2019) [13] torch https:/ /github.com/PetarV-/DGI

GIC (2021) [91] torch https:/ /github.com/cmavro/Graph-InfoClust-GIC

HDGI (2020) [92] torch https:/ /github.com/YuxiangRen /Heterogeneous-Deep-Graph-Infomax

ConCH (2020) [93] torch https://github.com/dingdanhao110/Conch

DMGI (2020) [94] torch https://github.com/pcy1302/DMGI

MVGRL (2020) [14] torch https:/ /github.com/kavehhassani/mvgrl

SUBG-CON (2020) [77] torch https:/ /github.com/yzjiao/Subg-Con

InfoGraph (2020) [97] torch https:/ /github.com/fanyun-sun/InfoGraph

SLiCE (2021) [96] torch https:/ /github.com/pnnl/SLiCE

Robinson et al. (2020) [98] torch https:/ /github.com /joshr17/HCL

EGI (2020) [95] torch https:/ /openreview.net/attachment?id=]_pvIl6apSMné&name=supplementary_material

BiGI (2021) [99] torch https:/ /github.com/caojiangxia/BiGI

HTC (2021) [100] torch https:/ /github.com/Wastedzz/LGR

MICRO-Graph (2020) [101] torch https:/ /openreview.net/attachment?id=qcKh_Msv1GP&name=supplementary_material

SUGAR (2021) [102] tensorflow https://github.com/RingBDStack/SUGAR

GPT-GNN (2020) [9] torch https:/ /github.com/acbull/ GPT-GNN

Graph-Bert (2020) [39] torch https://github.com/jwzhanggy /Graph-Bert

PT-DGNN (2021) [105] torch https:/ /github.com /Mobzhang/PT-DGNN

GMI (2020) [41] torch https:/ /github.com/zpeng?27 /GMI

MVMI-FT (2021) [107] torch https:/ /github.com/xiaolongo/MaxMIAcrossFT

GraphLoG (2021) [108] torch https:/ /openreview.net/attachment?id=DAaaaqPv9-q&name=supplementary_material

HDMI (2021) [109] torch https:/ /github.com /baoyujing/HDMI

LnL-GNN (2021) [111] torch https:/ /github.com /forkkr/LnL-GNN

GROVER (2020) [10] torch https:/ /github.com/tencent-ailab/grover

and REDDIT-MULTI-5K (RDT-M) [133], each graph denotes
an online discussion thread. In each graph, the nodes are
the users, and the edges are the comments between users.
COLLAB [133] is a scientific-collaboration dataset, where
each graph is a ego-network of an researcher, and the label
is the field of this researcher.

E.4 Bio-chemical Graphs

Biochemical graphs are related to biology and chemistry
domains. The Protein-Protein Interaction (PPI) [137] dataset
contains 24 biological graphs where nodes are proteins and
edges are the interactions between proteins. In MUTAG
[138], each graph indicates a nitro compounds, and its label
denotes whether they are aromatic or heteroaromatic. PRO-
TEINS [139] and D&D [140] are also protein datasets, where

graphs indicate proteins, and labels represent whether they
are enzymes or non-enzymes. The PTC [141] and PTC-
MR [142] datasets contain a series of chemical compounds,
while the labels indicate whether they are carcinogenic for
male and female rats. NCI-1 and NCI-109 [143] also consist
of chemical compounds, labeled as to whether they are
active to hinder the growth of human cancer cell lines. The
Open Graph Benchmark (OGB) molecule property predic-
tion benchmark [136] contains 8 molecule graph datasets
from different sources, including BBBP, Tox21, ToxCast,
SIDER, ClinTox, MUV, HIB, and BACE. In these datasets, the
graphs indicate different types of molecules, while the labels
express their specific properties. For detailed information of
the domains please refer to [136].

https://github.com/Shen-Lab/SS-GCNs
https://github.com/ChandlerBang/SelfTask-GNN
https://github.com/snap-stanford/pretrain-gnns
https://github.com/GRAND-Lab/MGAE
https://github.com/tkipf/gae
https://github.com/sigvae/SIGraphVAE
https://github.com/GRAND-Lab/ARGA
https://github.com/dongkwan-kim/SuperGAT
https://github.com/datake/M3S
https://github.com/ChandlerBang/SimP-GCN
https://github.com/phanein/deepwalk
https://github.com/aditya-grover/node2vec
https://github.com/williamleif/GraphSAGE
https://github.com/mlvlab/SELAR
https://github.com/tangjianpku/LINE
https://github.com/CRIPAC-DIG/GRACE
https://github.com/CRIPAC-DIG/GCA
https://github.com/THUDM/GCC
https://github.com/liun-online/HeCo
https://github.com/Namkyeong/BGRL_Pytorch
https://github.com/zekarias-tilahun/SelfGNN
https://github.com/pbielak/graph-barlow-twins
https://github.com/GRAND-Lab/MERIT
https://github.com/Shen-Lab/GraphCL
https://github.com/susheels/adgcl
https://github.com/Shen-Lab/GraphCL_Automated
https://github.com/YuxiangRen/Label-Contrastive-Coding-
based-Graph-Neural-Network-for-Graph-Classification-
https://github.com/PetarV-/DGI
https://github.com/cmavro/Graph-InfoClust-GIC
https://github.com/YuxiangRen/Heterogeneous-Deep-Graph-Infomax
https://github.com/dingdanhao110/Conch
https://github.com/pcy1302/DMGI
https://github.com/kavehhassani/mvgrl
https://github.com/yzjiao/Subg-Con
https://github.com/fanyun-sun/InfoGraph
https://github.com/pnnl/SLiCE
https://github.com/joshr17/HCL
https://openreview.net/attachment?id=J_pvI6ap5Mn&name=supplementary_material
https://github.com/caojiangxia/BiGI
https://github.com/Wastedzz/LGR
https://openreview.net/attachment?id=qcKh_Msv1GP&name=supplementary_material
https://github.com/RingBDStack/SUGAR
https://github.com/acbull/GPT-GNN
https://github.com/jwzhanggy/Graph-Bert
https://github.com/Mobzhang/PT-DGNN
https://github.com/zpeng27/GMI
https://github.com/xiaolongo/MaxMIAcrossFT
https://openreview.net/attachment?id=DAaaaqPv9-q&name=supplementary_material
https://github.com/baoyujing/HDMI
https://github.com/forkkr/LnL-GNN
https://github.com/tencent-ailab/grover

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

APPENDIX F
OPEN-SOURCE IMPLEMENTATIONS

We collect the implementations of graph SSL approaches
reviewed in this survey if there exists an open-source code
for this method. The hyperlinks of the source codes are
provided in Table 9.

APPENDIX G
OTHER GRAPH SSL APPLICATIONS

For zero-shot expert linking problem in the field of expert
finding, COAD [152] leverages a same-scale contrastive
learning framework to pre-train the expert encoder model.
SLAPS [153] integrates a denoising node feature generation
task into a classification model for graph structure learning.
SCRL [154] applies a prototype-based pretext tasks for few-
label graph learning. SDGE [155] is a community detection
approach where the model is trained by a same-scale con-
trastive learning objective. Aiming to repair program from
diagnostic feedback, DrRepair [156] pre-trains the model by
a repaired line prediction task which is learned with the
automatically corrupted programs from online dataset. C-
SWM [157] introduces a same-scale node-level contrastive
learning strategy to train structured world models that
simulate multi-object systems. Sehanobish et al. [158] use
a clustering-based auxiliary property classification task to
train a GAT [2] model and regard the learned edge weights
as the edge feature for downstream tasks learned on bio-
logical datasets including SARS-CoV-2 and COVID-19. To
learn representations for medical images, Sun et al. [159] ap-
ply a context-based hybrid contrastive learning model that
maximizes patch- and graph- level agreement on anatomy-
aware graphs extracted from medical images. For federated
learning [160], [161], FedGL [162] introduces an auxiliary
property classification task to provide a global view for
the local training in clients. Specifically, the pseudo labels
for each node is acquired by a weighted average fusion of
clients’ prediction results in a server.

REFERENCES

[1] T N. Kipf and M. Welling, “Semi-supervised classification with
graph convolutional networks,” in ICLR, 2017, pp. 1-14.

[2] P Velickovi¢, G. Cucurull, A. Casanova, A. Romero, P. Lid, and
Y. Bengio, “Graph attention networks,” in ICLR, 2018, pp. 1-12.

[3] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are
graph neural networks?” in ICLR, 2019, pp. 1-17.

[4] Z. Wu, S. Pan, E Chen, G. Long, C. Zhang, and S. Y. Philip, “A
comprehensive survey on graph neural networks,” IEEE TNNLS,
vol. 32, no. 1, pp. 4-24, 2020.

[5] Z.Li, X. Shen, Y. Jiao, X. Pan, P. Zou, X. Meng, C. Yao, and J. Bu,
“Hierarchical bipartite graph neural networks: Towards large-
scale e-commerce applications,” in ICDE. IEEE, 2020.

[6] Z.Wuy,S. Pan, G. Long, J. Jiang, and C. Zhang, “Graph wavenet
for deep spatial-temporal graph modeling,” in IJCAI, 2019.

[71 Q. Liu, M. Allamanis, M. Brockschmidt, and A. L. Gaunt, “Con-
strained graph variational autoencoders for molecule design,” in
NeurIPS, vol. 31, 2018, pp. 7806-7815.

[8] S.Ji, S. Pan, E. Cambria, P. Marttinen, and P. S. Yu, “A survey
on knowledge graphs: Representation, acquisition, and applica-
tions,” IEEE TNNLS, 2021.

[9] Z.Hu Y. Dong, K. Wang, K.-W. Chang, and Y. Sun, “GPT-GNN:
Generative pre-training of graph neural networks,” in SIGKDD,
2020, pp. 1857-1867.

[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

(18]
[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]
[31]
[32]
(33]

[34]

(35]

(36]

[37]

23

Y. Rong, Y. Bian, T. Xu, W. Xie, Y. WEI, W. Huang, and J. Huang,
“Self-supervised graph transformer on large-scale molecular
data,” in NeurIPS, vol. 33, 2020, pp. 12 559-12 571.

Y. Rong, W. Huang, T. Xu, and]J. Huang, “DropEdge: Towards
deep graph convolutional networks on node classification,” in
ICLR, 2020, pp. 1-17.

M. Zhang, L. Hu, C. Shi, and X. Wang, “Adversarial label-flipping
attack and defense for graph neural networks,” in ICDM. IEEE,
2020, pp. 791-800.

P. Velickovi¢, W. Fedus, W. L. Hamilton, P. Lio, Y. Bengio, and
R. D. Hjelm, “Deep graph infomax,” in ICLR, 2019, pp. 1-17.

K. Hassani and A. H. Khasahmadi, “Contrastive multi-view
representation learning on graphs,” in ICML. PMLR, 2020.

J. Qiu, Q. Chen, Y. Dong, J. Zhang, H. Yang, M. Ding, K. Wang,
and J. Tang, “GCC: Graph contrastive coding for graph neural
network pre-training,” in SIGKDD, 2020, pp. 1150-1160.

W. Hu, B. Liu, J. Gomes, M. Zitnik, P. Liang, V. Pande, and
J. Leskovec, “Strategies for pre-training graph neural networks,”
in ICLR, 2020, pp. 1-22.

Y. You, T. Chen, Z. Wang, and Y. Shen, “When does self-
supervision help graph convolutional networks?” in ICML.
PMLR, 2020, pp. 10 871-10880.

N. Jovanovi¢, Z. Meng, L. Faber, and R. Wattenhofer, “Towards
robust graph contrastive learning,” in WWW Workshop, 2021.

L. Jing and Y. Tian, “Self-supervised visual feature learning with
deep neural networks: A survey,” IEEE TPAMI, 2020.

D. Pathak, P. Krahenbubhl, J. Donahue, T. Darrell, and A. A. Efros,
“Context encoders: Feature learning by inpainting,” in CVPR,
2016, pp. 2536-2544.

R. Zhang, P. Isola, and A. A. Efros, “Colorful image colorization,”
in ECCV. Springer, 2016, pp. 649-666.

M. Noroozi and P. Favaro, “Unsupervised learning of visual
representations by solving jigsaw puzzles,” in ECCV. Springer,
2016, pp. 69-84.

K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum con-
trast for unsupervised visual representation learning,” in CVPR,
2020, pp. 9729-9738.

T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple
framework for contrastive learning of visual representations,” in
ICML. PMLR, 2020, pp. 1597-1607.

J-B. Grill, E Strub, E Altché, C. Tallec, P. Richemond,
E. Buchatskaya, C. Doersch, B. Avila Pires, Z. Guo, M. Ghesh-
laghi Azar, B. Piot, k. kavukcuoglu, R. Munos, and M. Valko,
“Bootstrap your own latent - a new approach to self-supervised
learning,” in NeurIPS, vol. 33, 2020, pp. 21271-21284.

T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estima-
tion of word representations in vector space,” in ICLR, 2013.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their
compositionality,” in NeurIPS, vol. 26, 2013, pp. 3111-3119.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-
training of deep bidirectional transformers for language under-
standing,” in NAACL, 2019, pp. 4171-4186.

Z. Yang, Z. Dai, Y. Yang,]. Carbonell, R. R. Salakhutdinov, and
Q. V. Le, “XLNet: Generalized autoregressive pretraining for
language understanding,” in NeurIPS, vol. 32, 2019.

B. Perozzi, R. Al-Rfou, and S. Skiena, “DeepWalk: Online learning
of social representations,” in SIGKDD, 2014, pp. 701-710.

A. Grover and]. Leskovec, “node2vec: Scalable feature learning
for networks,” in SIGKDD, 2016, pp. 855-864.

T. N. Kipf and M. Welling, “Variational graph auto-encoders,” in
NeurIPS Workshop, 2016, pp. 1-3.

Y. Zhu, Y. Xu, E Yu, Q. Liu, S. Wu, and L. Wang, “Deep Graph
Contrastive Representation Learning,” in ICML Workshop, 2020.
X. Liu, E Zhang, Z. Hou, L. Mian, Z. Wang, J. Zhang, and
J. Tang, “Self-supervised learning: Generative or contrastive,”
IEEE TKDE, 2021.

A.Jaiswal, A. R. Babu, M. Z. Zadeh, D. Banerjee, and F. Makedon,
“A survey on contrastive self-supervised learning,” Technologies,
vol. 9, no. 1, p. 2, 2021.

Y. Xie, Z. Xu, J. Zhang, Z. Wang, and S. Ji, “Self-supervised
learning of graph neural networks: A unified review,”
arXiv:2102.10757, 2021.

L. Wu, H. Lin, Z. Gao, C. Tan, S. Li et al., “Self-supervised on
graphs: Contrastive, generative, or predictive,” arXiv:2105.07342,
2021.

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

[38]

[39]

[40]

[41]

(42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]
[52]

(53]

[54]

[55]

[56]

(57]

[58]

[59]
[60]

[61]

[62]

[63]

[64]

[65]

Y. You, T. Chen, Y. Sui, T. Chen, Z. Wang, and Y. Shen, “Graph
contrastive learning with augmentations,” in NeurIPS, 2020.

J. Zhang, H. Zhang, C. Xia, and L. Sun, “Graph-Bert:
Only attention is needed for learning graph representations,”
arXiv:2001.05140, 2020.

K. Sun, Z. Lin, and Z. Zhu, “Multi-stage self-supervised learning
for graph convolutional networks on graphs with few labeled
nodes,” in AAAI vol. 34, no. 04, 2020, pp. 5892-5899.

Z. Peng, W. Huang, M. Luo, Q. Zheng, Y. Rong, T. Xu, and
J. Huang, “Graph representation learning via graphical mutual
information maximization,” in WWW, 2020, pp. 259-270.

G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimension-
ality of data with neural networks,” science, vol. 313, no. 5786, pp.
504-507, 2006.

W. Jin, T. Derr, H. Liu, Y. Wang, S. Wang, Z. Liu, and J. Tang,
“Self-supervised learning on graphs: Deep insights and new
direction,” in WWW Workshop, 2021.

C. Wang, S. Pan, G. Long, X. Zhu, and J. Jiang, “"MGAE: Marginal-
ized graph autoencoder for graph clustering,” in CIKM, 2017.

F. Manessi and A. Rozza, “Graph-based neural network models
with multiple self-supervised auxiliary tasks,” Pattern Recognition
Letters, vol. 148, pp. 15-21, 2021.

J. Park, M. Lee, H. J. Chang, K. Lee, and]. Y. Choi, “Symmetric
graph convolutional autoencoder for unsupervised graph repre-
sentation learning,” in ICCV, 2019, pp. 6519-6528.

E. Hajiramezanali, A. Hasanzadeh, N. Duffield, K. Narayanan,
M. Zhou, and X. Qian, “Semi-implicit graph variational auto-
encoders,” in NeurIPS, vol. 32, 2019, pp. 10712-10723.

S. Pan, R. Hu, G. Long,]. Jiang, L. Yao, and C. Zhang, “Adver-
sarially regularized graph autoencoder for graph embedding,” in
IJCAI 2018, pp. 2609-2615.

D. Kim and A. Oh, “How to find your friendly neighborhood:
Graph attention design with self-supervision,” in ICLR, 2021.

Z. Hu, C. Fan, T. Chen, K.-W. Chang, and Y. Sun, “Pre-training
graph neural networks for generic structural feature extraction,”
arXiv:1905.13728, 2019.

Q. Zhu, B. Du, and P. Yan, “Self-supervised training of graph
convolutional networks,” arXiv:2006.02380, 2020.

S. Wold, K. Esbensen, and P. Geladi, “Principal component anal-
ysis,” Chemometrics and intelligent laboratory systems, 1987.

P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, P.-A. Manzagol, and
L. Bottou, “Stacked denoising autoencoders: Learning useful rep-
resentations in a deep network with a local denoising criterion.”
Journal of machine learning research, vol. 11, no. 12, 2010.

D. P. Kingma and M. Welling, “Auto-encoding variational bayes,”
in ICLR, 2014, pp. 1-14.

L. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-
Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adver-
sarial nets,” in NeurIPS, vol. 2. MIT Press, 2014, p. 2672-2680.
Y. Zhu, Y. Xu, F. Yu, S. Wy, and L. Wang, “CAGNN: Cluster-aware
graph neural networks for unsupervised graph representation
learning,” arXiv:2009.01674, 2020.

Z. Peng, Y. Dong, M. Luo, X.-M. Wu, and Q. Zheng, “Self-
supervised graph representation learning via global context pre-
diction,” arXiv:2003.01604, 2020.

W. Jin, T. Derr, Y. Wang, Y. Ma, Z. Liu, and J. Tang, “Node
similarity preserving graph convolutional networks,” in WSDM,
2021, pp. 148-156.

G. Karypis and V. Kumar, “Multilevel graph partitioning
schemes,” in ICPP, 1995, pp. 113-122.

Z. Lin, Z. Kang, L. Zhang, and L. Tian, “Multi-view attributed
graph clustering,” IEEE TKDE, 2021.

M. Caron, P. Bojanowski, A. Joulin, and M. Douze, “Deep cluster-
ing for unsupervised learning of visual features,” in ECCV, 2018,
pp- 132-149.

Z. Kang, Z. Lin, X. Zhu, and W. Xu, “Structured graph learning
for scalable subspace clustering: From single view to multiview,”
IEEE TCYB, 2021.

S. E. Schaeffer, “Graph clustering,” Computer science review, vol. 1,
no. 1, pp. 27-64, 2007.

G. Karypis and V. Kumar, “A fast and high quality multilevel
scheme for partitioning irregular graphs,” SIAM Journal on scien-
tific Computing, vol. 20, no. 1, pp. 359-392, 1998.

R. D. Hjelm, A. Fedorov, S. Lavoie-Marchildon, K. Grewal,
P. Bachman, A. Trischler, and Y. Bengio, “Learning deep repre-
sentations by mutual information estimation and maximization,”
in ICLR, 2019.

[66]
[67]

[68]

[69]
[70]

[71]

[72]

[73]
[74]

[75]

[76]

[77]

(78]
[79]

[80]

(81]

[82]

(83]

[84]

(85]

[86]

(871

(88]

(89]

[90]

[91]

[92]

[93]

[94]

24

Y. Tian, D. Krishnan, and P. Isola, “Contrastive multiview cod-
ing,” in ECCV. Springer, 2020, pp. 776-794.

X. Wang and G.-]. Qi, “Contrastive learning with stronger aug-
mentations,” arXiv:2104.07713, 2021.

M. Jin, Y. Zheng, Y.-F. Li, C. Gong, C. Zhou, and S. Pan, “Multi-
scale contrastive siamese networks for self-supervised graph
representation learning,” in IJCAI, 2021.

Y. Zhu, Y. Xu, E Yu, Q. Liu, S. Wu, and L. Wang, “Graph con-
trastive learning with adaptive augmentation,” in WWW, 2021.
Y. You, T. Chen, Y. Shen, and Z. Wang, “Graph contrastive
learning automated,” in ICML. PMLR, 2021.

F. L. Opolka, A. Solomon, C. Cangea, P. Velickovi¢, P. Lio, and
R. D. Hjelm, “Spatio-temporal deep graph infomax,” in ICLR
Workshop, 2019, pp. 1-6.

Y. Ren, B. Liu, C. Huang, P. Dai, L. Bo, and]J. Zhang, “HDGI: An
unsupervised graph neural network for representation learning
in heterogeneous graph,” in AAAI Workshop, 2020.

H. Zhang, S. Lin, W. Liu, P. Zhou,]J. Tang, X. Liang, and E. P.
Xing, “Iterative graph self-distillation,” in WWW Workshop, 2021.
J. Zeng and P. Xie, “Contrastive self-supervised learning for
graph classification,” in AAAI, vol. 35, no. 12, 2021.

S. Suresh, P. Li, C. Hao, and J. Neville, “Adversarial graph aug-
mentation to improve graph contrastive learning,” in NeurIPS,
2021.

J. Klicpera, S. Weilenberger, and S. Gilinnemann, “Diffusion
improves graph learning,” in NeurIPS, vol. 32, 2019.

Y. Jiao, Y. Xiong, J. Zhang, Y. Zhang, T. Zhang, and Y. Zhu, “Sub-
graph contrast for scalable self-supervised graph representation
learning,” in ICDM. 1EEE, 2020, pp. 222-231.

W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representa-
tion learning on large graphs,” in NeurIPS, 2017, p. 1025-1035.

J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “LINE:
Large-scale information network embedding,” in WWW, 2015.
D. Hwang,]J. Park, S. Kwon, K. Kim, J.-W. Ha, and H. J. Kim,
“Self-supervised auxiliary learning with meta-paths for hetero-
geneous graphs,” in NeurIPS, vol. 33, 2020, pp. 10294-10 305.

H. Hafidi, M. Ghogho, P. Ciblat, and A. Swami, “GraphCL:
Contrastive self-supervised learning of graph representations,”
arXiv:2007.08025, 2020.

S. Wan, Y. Zhan, L. Liu, B. Yu, S. Pan, and C. Gong, “Con-
trastive graph poisson networks: Semi-supervised learning with
extremely limited labels,” in NeurIPS, 2021.

X. Wang, N. Liu, H. Han, and C. Shi, “Self-supervised hetero-
geneous graph neural network with co-contrastive learning,” in
SIGKDD, 2021, pp. 1726-1736.

S. Thakoor, C. Tallec, M. G. Azar, R. Munos, P. Veli¢kovié¢, and
M. Valko, “Bootstrapped representation learning on graphs,” in
ICLR Workshop, 2021.

Z. T. Kefato and S. Girdzijauskas, “Self-supervised graph neural
networks without explicit negative sampling,” in WWW Work-
shop, 2021.

J. Zbontar, L. Jing, I. Misra, Y. LeCun, and S. Deny, “Barlow twins:
Self-supervised learning via redundancy reduction,” in ICML,
2021.

P. Bielak, T. Kajdanowicz, and N. V. Chawla, “Graph Barlow
Twins: A self-supervised representation learning framework for
graphs,” arXiv:2106.02466, 2021.

X. Chen and K. He, “Exploring simple siamese representation
learning,” in CVPR, 2021, pp. 15750-15758.

V. Verma, T. Luong, K. Kawaguchi, H. Pham, and Q. Le, “To-
wards domain-agnostic contrastive learning,” in ICML. PMLR,
2021, pp. 1053010 541.

Y. Ren, J. Bai, and J. Zhang, “Label contrastive coding based
graph neural network for graph classification,” in Database Sys-
tems for Advanced Applications, 2021, pp. 123-140.

C. Mavromatis and G. Karypis, “Graph infoclust: Maximiz-
ing coarse-grain mutual information in graphs,” in PAKDD.
Springer, 2021, pp. 541-553.

Y. Ren and B. Liu, “Heterogeneous deep graph infomax,” in AAAI
Workshop, 2020, pp. 1-6.

X. Li, D. Ding, B. Kao, Y. Sun, and N. Mamoulis, “Leveraging
meta-path contexts for classification in heterogeneous informa-
tion networks,” in ICDE. IEEE, 2021, pp. 912-923.

C. Park, D. Kim, J. Han, and H. Yu, “Unsupervised attributed
multiplex network embedding,” in AAAI vol. 34, no. 04, 2020.

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]
[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

Q. Zhu, Y. Xu, H. Wang, C. Zhang, J. Han, and C. Yang, “Transfer
learning of graph neural networks with ego-graph information
maximization,” in WWW Workshop, 2021.

P. Wang, K. Agarwal, C. Ham, S. Choudhury, and C. K. Reddy,
“Self-supervised learning of contextual embeddings for link pre-
diction in heterogeneous networks,” in WWW, 2021.

E-Y. Sun,]J. Hoffman, V. Verma, and]. Tang, “InfoGraph: Unsu-
pervised and semi-supervised graph-level representation learn-
ing via mutual information maximization,” in ICLR, 2020.

J. D. Robinson, C.-Y. Chuang, S. Sra, and S. Jegelka, “Contrastive
learning with hard negative samples,” in ICLR, 2021, pp. 1-29.

J. Cao, X. Lin, S. Guo, L. Liu, T. Liu, and B. Wang, “Bipartite graph
embedding via mutual information maximization,” in WSDM,
2021, pp. 635-643.

C. Wang and Z. Liu, “Learning graph representation by ag-
gregating subgraphs via mutual information maximization,”
arXiv:2103.13125, 2021.

A. Subramonian, “Motif-driven contrastive learning of graph
representations,” in AAAI, vol. 35, no. 18, 2021, pp. 15980-15981.
Q. Sun, J. Li, H. Peng,]. Wu, Y. Ning, P. S. Yu, and L. He, “SUGAR:
Subgraph neural network with reinforcement pooling and self-
supervised mutual information mechanism,” in WWW, 2021.

M. Tschannen, J. Djolonga, P. K. Rubenstein, S. Gelly, and M. Lu-
cic, “On mutual information maximization for representation
learning,” in ICLR, 2020, pp. 1-16.

A.v.d.Oord, Y. Li, and O. Vinyals, “Representation learning with
contrastive predictive coding,” arXiv:1807.03748, 2018.

J. Zhang, K. Chen, and Y. Wang, “Pre-training on dynamic graph
neural networks,” arXiv:2102.12380, 2021.

S. Wan, S. Pan,]. Yang, and C. Gong, “Contrastive and generative
graph convolutional networks for graph-based semi-supervised
learning,” in AAAI, vol. 35, no. 11, 2021, pp. 10 049-10 057.

X. Fan, M. Gong, Y. Wu, and H. Li, “Maximizing mutual in-
formation across feature and topology views for learning graph
representations,” arXiv:2105.06715, 2021.

M. Xu, H. Wang, B. Ni, H. Guo, and]. Tang, “Self-supervised
graph-level representation learning with local and global struc-
ture,” in ICML. PMLR, 2021.

B. Jing, C. Park, and H. Tong, “HDMI: High-order deep multiplex
infomax,” in WWW, 2021, pp. 2414-2424.

Y. Zheng, M. Jin, S. Pan, Y.-F. Li, H. Peng, M. Li, and Z. Li, “To-
wards graph self-supervised learning with contrastive adjusted
zooming,” arXiv:2111.10698, 2021.

K. K. Roy, A. Roy, A. Rahman, M. A. Amin, and A. A. Ali, “Node
embedding using mutual information and self-supervision based
bi-level aggregation,” in IJCNN, 2021.

S. Kou, W. Xia, X. Zhang, Q. Gao, and X. Gao, “Self-supervised
graph convolutional clustering by preserving latent distribu-
tion,” Neurocomputing, vol. 437, pp. 218-226, 2021.

P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-
Rad, “Collective classification in network data,” Al magazine,
vol. 29, no. 3, pp. 93-93, 2008.

B. Hao,]J. Zhang, H. Yin, C. Li, and H. Chen, “Pre-training graph
neural networks for cold-start users and items representation,”
in WSDM, 2021, pp. 265-273.

J. Yu, H. Yin, J. Li, Q. Wang, N. Q. V. Hung, and X. Zhang, “Self-
supervised multi-channel hypergraph convolutional network for
social recommendation,” in WWW, 2021, pp. 413-424.

X. Xia, H. Yin, J. Yu, Q. Wang, L. Cui, and X. Zhang, “Self-
supervised hypergraph convolutional networks for session-
based recommendation,” in AAAI, vol. 35, no. 5, 2021.

Z.Liu, Y. Ma, Y. Ouyang, and Z. Xiong, “Contrastive learning for
recommender system,” arXiv:2101.01317, 2021.

Y. Liu, S. Yang, C. Lei, G. Wang, H. Tang, J. Zhang, A. Sun, and
C. Miao, “Pre-training graph transformer with multimodal side
information for recommendation,” in ACM Multimedia, 2021.

Y. Liu, Z. Li, S. Pan, C. Gong, C. Zhou, and G. Karypis, “Anomaly
detection on attributed networks via contrastive self-supervised
learning,” IEEE TNNLS, 2021.

K. Ding, J. Li, R. Bhanushali, and H. Liu, “Deep anomaly detec-
tion on attributed networks,” in SDM. SIAM, 2019, pp. 594-602.
Y. Li, X. Huang, J. Li, M. Du, and N. Zou, “SpecAE: Spectral
autoencoder for anomaly detection in attributed networks,” in
CIKM, 2019, pp. 2233-2236.

K. Ding, J. Li, N. Agarwal, and H. Liu, “Inductive anomaly
detection on attributed networks,” in IJCAI, 2020, pp. 1288-1294.

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]
[133]
[134]
[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

25

M. Jin, Y. Liu, Y. Zheng, L. Chi, Y.-F. Li, and S. Pan, “Anemone:
Graph anomaly detection with multi-scale contrastive learning,”
in CIKM, 2021, pp. 3122-3126.

Y. Zheng, M. Jin, Y. Liu, L. Chi, K. T. Phan, and Y.-P. P. Chen,
“Generative and contrastive self-supervised learning for graph
anomaly detection,” IEEE TKDE, 2021.

T. Huang, Y. Pei, V. Menkovski, and M. Pechenizkiy, “Hop-
count based self-supervised anomaly detection on attributed
networks,” arXiv:2104.07917, 2021.

Y. Wang, J. Wang, Z. Cao, and A. B. Farimani, “MolCLR: Molec-
ular contrastive learning of representations via graph neural
networks,” arXiv:2102.10056, 2021.

Y. Fang, H. Yang, X. Zhuang, X. Shao, X. Fan, and H. Chen,
“Knowledge-aware contrastive molecular graph learning,”
arXiv:2103.13047, 2021.

S. Cheng, L. Zhang, B. Jin, Q. Zhang, X. Lu, M. You, and X. Tian,
“GraphMS: Drug target prediction using graph representation
learning with substructures,” Applied Sciences, 2021.

Y. Wang, Y. Min, X. Chen, and J. Wu, “Multi-view graph con-
trastive representation learning for drug-drug interaction predic-
tion,” in WWW, 2021, pp. 2921-2933.

D. Jin, Z. Yu, P. Jiao, S. Pan, P. S. Yu, and W. Zhang, “A survey
of community detection approaches: From statistical modeling to
deep learning,” IEEE TKDE, 2021.

R. Ying, J. You, C. Morris, X. Ren, W. L. Hamilton, and
J. Leskovec, “Hierarchical graph representation learning with
differentiable pooling,” in NeurIPS, 2018, p. 4805-4815.

Y. G. Wang, M. Li, Z. Ma, G. Montufar, X. Zhuang, and Y. Fan,
“Haar graph pooling,” in ICML. PMLR, 2020, pp. 9952-9962.

P. Yanardag and S. Vishwanathan, “Deep graph kernels,” in
SIGKDD, 2015, pp. 1365-1374.

O. Shchur, M. Mumme, A. Bojchevski, and S. Giinnemann, “Pit-
falls of graph neural network evaluation,” in NeurIPS, 2018.

P. Mernyei and C. Cangea, “Wiki-CS: A wikipedia-based bench-
mark for graph neural networks,” in ICML Workshop, 2020.

W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta,
and J. Leskovec, “Open Graph Benchmark: Datasets for machine
learning on graphs,” in NeurIPS, vol. 33, 2020, pp. 22118-22133.
M. Zitnik and J. Leskovec, “Predicting multicellular function
through multi-layer tissue networks,” Bioinformatics, vol. 33,
no. 14, pp. i190-i198, 2017.

A. K. Debnath, R. L. Lopez de Compadre, G. Debnath, A. J.
Shusterman, and C. Hansch, “Structure-activity relationship of
mutagenic aromatic and heteroaromatic nitro compounds. cor-
relation with molecular orbital energies and hydrophobicity,”
Journal of medicinal chemistry, vol. 34, no. 2, pp. 786797, 1991.

K. M. Borgwardt, C. S. Ong, S. Schonauer, S. Vishwanathan, A. J.
Smola, and H.-P. Kriegel, “Protein function prediction via graph
kernels,” Bioinformatics, vol. 21, no. suppl_1, pp. i47-i56, 2005.

P. D. Dobson and A. J. Doig, “Distinguishing enzyme structures
from non-enzymes without alignments,” Journal of molecular biol-
ogy, vol. 330, no. 4, pp. 771-783, 2003.

H. Toivonen, A. Srinivasan, R. D. King, S. Kramer, and C. Helma,
“Statistical evaluation of the predictive toxicology challenge
2000-2001,” Bioinformatics, vol. 19, no. 10, pp. 1183-1193, 2003.
C. Helma, R. D. King, S. Kramer, and A. Srinivasan, “The predic-
tive toxicology challenge 2000-2001,” Bioinformatics, 2001.

N. Wale, I. A. Watson, and G. Karypis, “Comparison of descrip-
tor spaces for chemical compound retrieval and classification,”
Knowledge and Information Systems, vol. 14, no. 3, 2008.

I. F. Martins, A. L. Teixeira, L. Pinheiro, and A. Falcao, “A
Bayesian approach to in silico blood-brain barrier penetration
modeling,” JCIM, vol. 52, no. 6, pp. 1686-1697, 2012.

Tox21, “Tox21 data challenge 2014,” 2014. [Online]. Available:
https:/ /tripod.nih.gov /tox21/challenge/

A. M. Richard, R. S. Judson, K. A. Houck, C. M. Grulke,
P. Volarath, I. Thillainadarajah, C. Yang,]. Rathman, M. T. Martin,
J. F. Wambaugh et al., “ToxCast chemical landscape: paving the
road to 21st century toxicology,” Chemical research in toxicology,
vol. 29, no. 8, pp. 1225-1251, 2016.

M. Kuhn, I. Letunic, L. J. Jensen, and P. Bork, “The SIDER
database of drugs and side effects,” Nucleic acids research, vol. 44,
no. D1, pp. D1075-D1079, 2016.

P. A. Novick, O. E. Ortiz,]J. Poelman, A. Y. Abdulhay, and V. S.
Pande, “SWEETLEAD: an in silico database of approved drugs,
regulated chemicals, and herbal isolates for computer-aided drug
discovery,” PloS one, vol. 8, no. 11, p. €79568, 2013.

https://tripod.nih.gov/tox21/ challenge/

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]
[157]

[158]

[159]

[160]

[161]

[162]

E. J. Gardiner, J. D. Holliday, C. O'Dowd, and P. Willett, “Effec-
tiveness of 2D fingerprints for scaffold hopping,” Future medicinal
chemistry, vol. 3, no. 4, pp. 405-414, 2011.

“AIDS antiviral screen data,” 2017. [Online]. Available:
http:/ /wikincinih.gov/display /NCIDTPdata/AIDS

G. Subramanian, B. Ramsundar, V. Pande, and R. A. Denny,
“Computational modeling of S-secretase 1 (BACE-1) inhibitors
using ligand based approaches,” JCIM, vol. 56, no. 10, pp. 1936-
1949, 2016.

B. Chen,]J. Zhang, X. Zhang, X. Tang, L. Cai, H. Chen,
C. Li, P. Zhang, and J. Tang, “COAD: Contrastive pre-training
with adversarial fine-tuning for zero-shot expert linking,”
arXiv:2012.11336, 2020.

B. Fatemi, L. E. Asri, and S. M. Kazemi, “SLAPS: Self-supervision
improves structure learning for graph neural networks,” in
NeurIPS, 2021.

C. Liu, L. Wen, Z. Kang, G. Luo, and L. Tian, “Self-supervised
consensus representation learning for attributed graph,” in ACM
Multimedia, 2021, pp. 2654-2662.

S. Xu, S. Liu, and L. Feng, “Self-supervised deep graph embed-
ding with high-order information fusion for community discov-
ery,” arXiv:2102.03302, 2021.

M. Yasunaga and P. Liang, “Graph-based, self-supervised pro-
gram repair from diagnostic feedback,” in ICML. PMLR, 2020.
T. Kipf, E. van der Pol, and M. Welling, “Contrastive learning of
structured world models,” in ICLR, 2020, pp. 1-21.

A. Sehanobish, N. G. Ravindra, and D. van Dijk, “Self-supervised
edge features for improved graph neural network training,”
arXiv:2007.04777, 2020.

L. Sun, K. Yu, and K. Batmanghelich, “Context matters: Graph-
based self-supervised representation learning for medical im-
ages,” in AAAI, vol. 35, no. 6, May 2021, pp. 4874-4882.

Y. Tan, G. Long, L. Liu, T. Zhou, Q. Lu, J. Jiang, and C. Zhang,
“Fedproto: Federated prototype learning over heterogeneous de-
vices,” in AAAI, 2022.

B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A.
y Arcas, “Communication-efficient learning of deep networks
from decentralized data,” in AISTATS, 2017, pp. 1273-1282.

C. Chen, W. Hu, Z. Xu, and Z. Zheng, “FedGL: Feder-
ated graph learning framework with global self-supervision,”
arXiv:2105.03170, 2021.

Yixin Liu received the B.S. degree and M.S.
degree from Beihang University, Beijing, China,
in 2017 and 2020, respectively. He is currently
pursuing his Ph.D. degree in computer science
at Monash University, Australia. His research
concentrates on data mining, machine learning,
and deep learning on graphs.

Ming Jin received the B.Eng. degree from the
Hebei University of Technology, Tianjin, China, in
2017, and M.Inf.Tech. degree from the University
of Melbourne, Melbourne, Australia, in 2019. He
is currently pursuing his Ph.D. degree in com-
puter science at Monash University, Melbourne,
Australia. His research focuses on graph neural
networks (GNNs), time series analyse, data min-
ing, and machine learning.

Shirui Pan received a Ph.D. in computer sci-
ence from the University of Technology Sydney
(UTS), Ultimo, NSW, Australia. He is currently an
ARC Future Fellow and Senior Lecturer with the
Faculty of Information Technology, Monash Uni-
versity, Australia. His research interests include
data mining and machine learning. To date, Dr.
Pan has published over 150 research papers
in top-tier journals and conferences, including
the TPAMI, TKDE, TNNLS, NeurlPS, ICML, and
KDD. He is recognised as one of the Al 2000

AAAI/IJCAI Most Influential Scholars in Australia (2021).

26

Chuan Zhou obtained Ph.D. degree from Chi-
nese Academy of Sciences in 2013. He won
the outstanding doctoral dissertation of Chinese
Academy of Sciences in 2014, the best paper
award of ICCS-14, and the best student paper
award of IJCNN-17. Currently, he is an Asso-
ciate Professor at the Academy of Mathemat-
ics and Systems Science, Chinese Academy of
Sciences. His research interests include social
network analysis and graph mining. To date, he
has published more than 70 papers, including

IEEE TKDE, ICDM, AAAI, CIKM, IJCAl and WWW.

Yu Zheng received the B.S. and M.S. degrees
in computer science from Northwest A&F Uni-
versity, China, in 2008 and 2011, respectively.
She is currently pursuing her Ph.D. degree in
computer science at La Trobe University, Mel-
bourne, Australia. Her research interests include
image classification, data mining, and machine
learning.

Feng Xia (M’07-SM’12) received the BSc
and PhD degrees from Zhejiang University,
Hangzhou, China. He was Full Professor and
Associate Dean (Research) in School of Soft-
ware, Dalian University of Technology, China.
He is Associate Professor and former Discipline
Leader (IT) in School of Engineering, IT and
Physical Sciences, Federation University Aus-
tralia. Dr. Xia has published 2 books and over
300 scientific papers in international journals
and conferences. His research interests include

data science, artificial intelligence, graph learning, and systems engi-
neering. He is a Senior Member of IEEE and ACM.

Philip S. Yu received the Ph.D. degree in elec-
trical engineering from Stanford University, Stan-
ford, CA, USA. He is currently a Distinguished
Professor of computer science with the Univer-
sity of lllinois at Chicago, Chicago, IL, USA,
where he is also the Wexler Chair in Information
Technology. He has published more than 830
articles in refereed journals and conferences. He
holds or has applied for more than 300 U.S.
patents. His research interests include big data,
data mining, data streams, databases, and pri-

vacy. Dr. Yu is a fellow of the ACM and |IEEE.

http://wiki.nci.nih.gov/display/NCIDTPdata/AIDS

	GraphSelfCopyright
	Federation University ResearchOnline
	https://researchonline.federation.edu.au

	GraphSelfAccepted
	1 Introduction
	2 Definition and Notation
	2.1 Term Definitions
	2.2 Notations

	3 Framework and Categorization
	3.1 Unified Framework and Mathematical Formulation of Graph Self-Supervised Learning
	3.2 Taxonomy of Graph Self-supervised Learning
	3.3 Taxonomy of Self-Supervised Training Schemes
	3.4 Taxonomy of Downstream Tasks

	4 Generation-based Methods
	4.1 Feature Generation
	4.2 Structure Generation

	5 Auxiliary Property-based Methods
	5.1 Auxiliary Property Classification
	5.1.1 Clustering-based Methods
	5.1.2 Pair Relation-based Methods

	5.2 Auxiliary Property Regression

	6 Contrast-based Methods
	6.1 Graph Augmentations
	6.1.1 Attributive augmentations
	6.1.2 Topological augmentations
	6.1.3 Hybrid augmentations

	6.2 Graph Contrastive Learning
	6.2.1 Same-Scale Contrast
	6.2.2 Cross-Scale Contrast

	6.3 Mutual Information Estimation
	6.3.1 Jensen-Shannon Estimator
	6.3.2 Noise-Contrastive Estimator
	6.3.3 Triplet Loss
	6.3.4 BYOL Loss
	6.3.5 Barlow Twins Loss

	7 Hybrid Methods
	8 Empirical Study
	9 Practical Applications
	10 Future Directions
	11 Conclusion
	Appendix A: Timeline of Graph Self-Supervised Learning
	Appendix B: Notations and Definitions
	B.1 Notations
	B.2 Dynamic and Heterogeneous Graphs
	B.3 Graph Neural Networks and Readout Layers
	B.4 Commonly Used Loss Functions

	Appendix C: Downstream Tasks
	C.1 Node-level tasks
	C.2 Link-level tasks
	C.3 Graph-level Tasks

	Appendix D: Performance Comparison of Graph Classification
	Appendix E: Datasets
	E.1 Citation Networks
	E.2 Co-purchase Networks
	E.3 Social Networks
	E.4 Bio-chemical Graphs

	Appendix F: Open-source Implementations
	Appendix G: Other Graph SSL Applications
	References
	Biographies
	Yixin Liu
	Ming Jin
	Shirui Pan
	Chuan Zhou
	Yu Zheng
	Feng Xia (M’07-SM’12)
	Philip S. Yu

