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ABSTRACT Pseudo-code refers to an informal means of representing algorithms that do not require the
exact syntax of a computer programming language. Pseudo-code helps developers and researchers represent
their algorithms using human-readable language. Generally, researchers can convert the pseudo-code into
computer source code using different conversion techniques. The efficiency of such conversion methods
is measured based on the converted algorithm’s correctness. Researchers have already explored diverse
technologies to devise conversion methods with higher accuracy. This paper proposes a novel pseudo-code
conversion learning method that includes natural language processing-based text preprocessing and a
sequence-to-sequence deep learning-based model trained with the SPoC dataset. We conducted an extensive
experiment on our designed algorithm using descriptive bilingual understudy scoring and compared our
results with state-of-the-art techniques. Result analysis shows that our approach ismore accurate and efficient
than other existing conversion methods in terms of several performances metrics. Furthermore, the proposed
method outperforms the existing approaches because our method utilizes two Long-Short-Term-Memory
networks that might increase the accuracy.

INDEX TERMS Sequence-to-sequence learning model, natural language processing, pseudo-code, machine
translation, source code.

I. INTRODUCTION
In modern times, researchers and academicians tend to rep-
resent problem-solving procedures in the form of algorithms,
more specifically pseudo-code [1]. Pseudo-code is a language
that enables programmers to design algorithms. Usually,
pseudo-code might be coded using natural language details,
which allows a beginner-level programmer to figure out the
algorithm appropriately. On the other hand, a novice pro-
grammermight find it hard tomanually translate pseudo-code
to source code [2]. Further, such translations can also save
time for a researcher by converting the provided pseudo-code
to source code to verify the correctness of an algorithm.
To facilitate this translation, researchers have already pro-
posed different methods with various levels of accuracy.
This paper aims to provide a framework for converting
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pseudo-code statements into appropriate source code [3], [4].
The proposed approach uses a deep learning method to trans-
late pseudo-code statements into source code [5]. The sug-
gested method is based on a sequence-to-sequence (Seq2Seq)
learning model [6] that can realize pseudo-code and interme-
diate code translation. However, most state-of-the-art works
transform pseudo-code statements to executable code using
natural language processing techniques that are unable to
learn new statements over time [7], [8]. Many research works
have used the SpoC dataset that contains 26% blank pseudo-
code. We address this problem by replacing blank space
with some specific string before feeding this dataset into
our model. The syntax and structure of pseudo-code used
to present algorithms in information technology varies. For
instance, the terms ‘‘output’’ and ‘‘display’’ may represent
the meanings of ‘‘write’’ and ‘‘view,’’ respectively.

The majority of recent pseudo-code is written in the style
of natural languages. Further, the ambiguity of pseudo-codes
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FIGURE 1. Two different pseudo-codes presentation for a specific
algorithm.

might exist in tokens, assertions, and expressions. The trans-
lation of pseudo-codes into source code is difficult due to the
lack of complete standards and rules [10]. Figure 1 shows
two different pseudo-codes presentations for a particular sta-
tistical algorithm. To address this ambiguity, there needs to
design an effective algorithm to translate pseudo-code to
source code, and we propose a neural translator based on the
sequence to sequence learning method.

To map the terms of pseudo-code with the syntax of a
particular programming language semantics is challenging
due to their unbounded properties [11]. A look-up table
for mapping tokens between pseudo-code and source code
might not help in the translation process because there exists
ambiguity in the tokens. To solve this problem, we adopt
Natural Language Processing (NLP) techniques with a deep
learning approach. Adopting natural language processing can
minimize the shortcomings in fundamental automated soft-
ware development for non-expert users [12]. There needs a
sophisticated translation tool to handle the diverse structure
of pseudo-code. Our study attempts to automate the compila-
tion of the pseudo-code programming language with higher
efficiency.

Our contributions are summarized as follows.

• Designing an algorithm for converting pseudo-code
into source code using natural language processing and
sequence to sequence deep learning module.

• Implementing the proposed translation algorithm and
comparing the performance of our approach with the
state-of-the-art works. Our findings show that a neural
translation-based deep learning approach can outper-
form other existing systems that leverage rule-based
methods and advanced programming knowledge.

• Solving the SPoC dataset’s 26% blank pseudo-code
problem by replacing blank space with some specific
string before feeding this dataset into our model.

The rest of the paper is organized as follows. In Section II,
we review state-of-the-art works in pseudo-code transla-
tion. The proposed framework for converting pseudo-code
to source code is presented in Section III. The performance
analysis of the proposed approach is done in Section IV
before concluding the paper in Section V.

II. LITERATURE REVIEW
Many researchers have already devised diverse kinds of
techniques to convert pseudo code statements into source
code. Recently, Kulal et al. [13] proposed a standard LSTM
encoder and decoder to translate pseudocode to a computer
programming language. First, each pseudocode line is trans-
lated as a separate part of the program. Next, all the poten-
tial combinations of the candidates are examined until the
source code successfully passes all the error functions. The
attentive-based coping mechanism and the coverage vector
were also employed in this model. After the pseudocode
is translated, beam searches are applied to create a sorted
list of possible translations in which each string is a string
token sequence. However, this model has several limitations.
If there is an ambiguity in any pseudocode, the code gen-
eration will be ambiguous as well [14]. Moreover, there is
a significant problem in declaring the variable types. If the
method cannot detect the variable type correctly, the pseu-
docode will be completely wrong. To solve these issues,
Bi-directional Long-Short-Term-Memory (LSTM) encoder
and decoder can be used to generate the program. They also
suggested allocating credit based on signals from compilation
mistakes, which account for 88.7% of all code failures.

Zhong et al. [15] proposed a translation tool based on
semantic scaffolds by adding semantic constraints to trans-
late the pseudocode into a programming language or source
code. This method’s hierarchical beam search algorithm can
integrate with all the constraints by performing efficiently
and giving better search space coverage than the standard
approaches. By applying this search method to the SPoC
dataset, this method can generate the code from the pseu-
docode where only natural language pseudocodes are given,
achieving a state-of-the-art 55.1% accuracy. Though beam
search can produce the top solution, the time complex-
ity of this search algorithm increases exponentially with
the increase of pseudocode’s length. In the worst-case sce-
nario, the beam search algorithm is often skewed toward
variations at the finishing end of the program because of
its greedy nature. This skewness causes the wastage of
its resources on the wrong candidates. They obtained a
10% absolute improvement in top-100 accuracy over the
prior state-of-the-art by leveraging semantic scaffolds during
inference.

Imam and Alnsour [16] proposed an automated translation
system emphasizing Natural Language Processing (NLP) to
translate the programming language from the pseudocode.
This hybrid approach (Code-Composer) [17] can compose
the language automatically by transforming pseudocode into
the Cprogramming language. The CodeComposer uses var-
ious NLP techniques to examine the pseudocodes, includ-
ing verb categorization, semantic role-marking, and thematic
roles. Moreover, the coding composer is an intelligent com-
puter assistance software engineering tool that converts the
pseudocode into a C# declaration in the.Net environment
using a semantic rules-based mapper [18].
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By applying the binomial techniques, this system provides
a precision of 88% though it is only applicable to a distinct
language. Moreover, the system might produce mistrans-
lated (MsT) and non-translated (NoT) errors. CodeComposer
has a precision of 88%, a recall of 91%, and an F-measure
of 89%, according to a binomial approach evaluation of its
accuracy. Thus, the CodeComposer needs human revision
to complete the translation process. By using semantic role
labeling [19] with more semantic roles, the issues mentioned
above could be solved.

Teduh Dirgahayu et al. [20] presented a conceptual-
metamodeling approach that uses model-driven engineering
(MDE) [21] to develop an automatic translation tool for
translating pseudocode into source code. By introducing an
intermediate model, this translation tool can disjoin the pseu-
docode statements in XML. The utilization of previously
produced translation tools can assist us in constructing more
efficient translation tools. This method could only produce
the source code in C++ from the pseudocode written in
Bahasa Indonesia. However, applying this method cannot
translate the functions and procedure calls. Further, this
model cannot interpret the complex data structures, including
arrays and lists.

NUKoyluoglu et al. [22] proposed a technique that hassles
through using transformers for the mission of pseudocode-
to-C++-code translation and did a comparative study with
the earlier posted effects on the usage of LSTMs. They
hire a couple of architectures [23], tokenizers, and employ
pre-trained English language fashions to enhance training.
They additionally discover the effects of various kinds and
quantities of contexts on our fashions. Using useful cor-
rectness for overall performance assessment as hostile to
conventional methods, our effects shape the overall per-
formance of preceding paintings closely and factor in the
extra advantage of context in line-through-line translations.
Guang Yang et al. [24] endorse a singular deep pseudo-code
learning approach (Deep-Pseudo) through code function
extraction and Transformer. In particular, Deep Pseudo [25]
makes use of a Transformer encoder to carry out encoding
for supply code, after which it uses a code function extractor
to research the expertise of nearby features. Finally, it uses
a pseudo-code generator to carry out decoding, which could
generate the corresponding pseudo-code. It picks out cor-
pora (i.e., Django and SPoC) from real-international large-
scale tasks as our empirical subjects [26]. They first evalu-
ate Deep Pseudo with seven ultramodern baselines from the
pseudo-code era and neural device translation domain names
in terms of four overall performance measures. The results
display the competitiveness of Deep Pseudo. Moreover, they
additionally examine the rationality of the aspect settings in
Deep Pseudo.

III. PROPOSED METHODOLOGY
This section describes every step of our proposed pseudo-
code conversion. The proposed framework to convert
pseudo-code to source code is presented in Figure 2.

FIGURE 2. Proposed pseudo-code to source code conversion system.

Our approach includes input preprocessing, reshaping the
data, splitting the dataset, and sequence-to-sequence learning.
The algorithm of our pseudo-code to source code translation
system is presented in Algorithm 1. In addition, the descrip-
tion of the algorithm is provided in Figure 2.

A. TEXT PREPROCESSING
Text preprocessing is a natural language processing (NLP)
technique that transforms unprocessed text into a recogniz-
able format. However, source or unprocessed data might have
inadequacy, irregularity, and many other flaws. This step has
addressed these problems. Our text preprocessing pipeline
includes tokenization, inserting<SOP> tag, and<EOP tags,
defining vocabulary size, and embedding words.

1) TOKENIZATION
Tokenization splits the string of pseudo-code statements into
tokens or unique words. We use the Sentence Boundary Dis-
ambiguation (SBD)method to extract a list of tokens from the
pseudo-code. In the deep learning approach, preprocessing
has been performed on a pre-trained stage using language-
specific algorithms such as the Text to Word Sequence Mod-
els from Keras that run on top of the Tensor Flow python
package.
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Algorithm 1:Algorithm of the Proposed Pseudo-Code to
Source Code Conversion
Input: P = Pseudo-code; t = Time-step
Output: s = Source code
Split P into lines
for i = 0 to line in P do

Split Line into Tokens
P[i] = ‘‘SOP’’ + Tokens + ‘‘EOP’’
Vs[i] = P[i].length
let f be a list of tuples(values, frequency)
for j = 0 to max-length(P) do

freq← 0
for k = 0 to line in P do

fo[k]← FrequencyOfOccurance(j, k)
freq[k]← freq[k] + fo[k]

end
f[j]← append(j, freq[j])

end
f[i]← sort f based on frequencies
w[i]←Word2Vec(f [i], Vs[i])
x[i]← InputShape(P[i], t,w[i])

end
for i = 0 to line in P do

e[i]← Encoder(x[i])
s[i]← Decoder(e[i])

end

2) INSERTION OF <SOP> TAG IN PSEUDO CODE
At the beginning of the pseudo-code statement, we add a
starting tag called < SOP >. This tag facilitates tokenizing
the pseudo-code, which is a substantial step for the decoder
of the Seq2Seq process. The Seq2Seq approach initiates its
embedding step after tokenizing.

3) INSERTION OF <EOP< TAG IN PSEUDO CODE
The encoder of Seq2Seq reads the pseudo-code and makes
a mathematical representation of the pseudo-code sequence.
A sequence is ended with an ‘‘EOP’’ tag. The EOP token is as
important as the SOP tag. The EOP token diffuses irrational-
length pseudo-code. Without the EOP tag, we cannot know
when the decoder step ends, and garbage output is produced
without the EOP tag.

4) DEFINING VOCABULARY SIZE
The vocabulary content of a dataset is commonly deter-
mined by the statistics of the unique word uni-grams.
Once the algorithm of the pseudo-code conversion is exe-
cuted, the text has been processed and relevant metadata
is required to collect and store. We considered the diam-
eter of the pseudo-code string and the sum of the unique
token for making vocabulary. The vocabulary words are
like a dictionary. It will ensure the top frequencies tokens
being saved in an array. By that, it reduces the time for
converting tokens into vectors. Its main importance is to
save vectors of different types of programming language’s
keywords.

5) WORD EMBEDDING
Word embedding is the mathematical representations of
words as vectors. They are created by analyzing a body of
text and representing each word, phrase, or entire document
as a vector in a high-dimensional space. Each token or word
in the skip-gram model is provided in two δ − dimension
vectors. These vectors are used to determine the possibility
of dependent tokens. We assume that each token is indexed
as i in the dictionary, where the token vector is indicated
as vi ∈ Rd , and ui ∈ Rd . wc and wo are the token of the
framework as mutual token c and o in the dictionary.
The conditional probability of generating the context word

for the given central target word can be obtained by perform-
ing a softmax operation on the vector inner product according
to equation 1.

P(wo|wc) =
exp(uTo vc)∑
i∈v exp(u

T
i vc)

(1)

Here, vocabulary or tokens of pseudo-code index is set
as V = 0, 1, . . . , |V | − 1.
We assume that T is a length of pseudo-code sequence,

wherein t represents time required to make token which is
denoted as w(t). If all tokens in the framework are generated
following the central tokens and framework’s token size ism,
the skip-grammodel is described as a functionwith the shared
tendency of creating all framework tokens divided any central
token.

T∏
t=1

∏
−m≤j≤m,j6=0

P(w(t+j)
|w(t)) (2)

Here, all time-step that is between 1 to T can be disregard.
The skip-gram approach [27] have two parameters. One is
central goal token and another is for framework token for
each entity. In the pre-process stage, the parameters are taught
by expanding likelihood estimation or function. If the loss
function is minimized, the following equation 3 is obtained.

−

T∑
t=1

∑
−m≤j≤m,j6=0

log(P(w(t+j)
|w(t))) (3)

We require to take the shorter pseudo-code sequence using
random sampling at each time step if SDG is applied. This
process is performed to find the loss of the sub-sequence
of pseudo-code. First, we compute the gradient value in
the proposed algorithm. Next, word embedding model are
updated.We calculate the slope of the logarithmic provisional
possibility principal token vector and the fundamental token
vector which is the main function for calculating gradient.
The equation 4, 5, 6 and 7 show the gradient calculation.

log(P(wo|wc)) = uTo vc − log(
∑
i∈v

exp(uTi vc)) (4)

By differentiating the formula 4, the gradient vc is derived
as equation 5:

δlog(P(wo|wc))
δvc

= uo −
∑
j∈v

∑
j∈v exp(u

T
j vc)uj∑

i∈v exp(u
T
i vc)

(5)
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FIGURE 3. Structure of sequence-to-sequence learning.

δlog(P(wo|wc))
δvc

= uo −
∑
j∈v

(
exp(uTj vc)∑
i∈v exp(u

T
i vc)

)uj (6)

δlog(P(wo|wc))
δvc

= uo −
∑
j∈v

P(wj|wc)uj (7)

The proposed system finds the central goal token wc from
pseudo-code with the dictionary tokens or words. We use the
identical function to find the gradients. The identical function
finds gradients from other tokens vectors. If we assume a
token as i after training, we get two identical token vector
sets: one is vi and the other one is ui. In NLP, the central goal
token represents the mathematical representation of a token
or word. A token vector serves as a token or word. Here word
embedding converts the tokens into vectors.Word2Vecmodel
has two sub-model as the continuous bag of words (CBOW)
and skip-gram models.

The skip-gram model predicts the next token based on
the central goal token from the pseudo-code. On the other
hand, CBOW uses the next token to find the central goal
token. Concepts are easier to grasp using Word2vec. Using
word2vec [27] is simple and has a solid design. Compared
to other methods, this method can be rapidly trained because
of not requiring user’s manual input. This approach works
well for both a small number of datasets and a big number
of datasets. Word2vec captures semantic similarity very well.
This methodworks faster because of being uncontrolled with-
out users’ efforts.

B. SEQUENCE-TO-SEQUENCE LEARNING
Sequence-to-sequence learning (Seq2Seq) is a state-of-the-
art deep learning method that trains models [28] to convert
sequences from one domain (e.g., a pseudo-code statement)
to another domain (e.g., a source code of a programming
language). Today, Google Translate, speech devices and
chatbot-like internet apps have the potential for this approach.
The Seq2Seq approach can handle sequence-based problems,
especially when inputs and outputs differ. In the general case,
input pseudo-code and output source code have different
lengths. The entire input sequence is required to start predict-
ing the target. The structure of sequence-to-sequence learning
is presented in Figure 3.

Preceding Seq2Seq [29], phrase-based systems were
mostly used. Inputs and outputs in sequences of sentences
can be considered for a sentence-based translation system.
However, long-term dependence is still hard to represent.
Seq2Seq, particularly by using LSTM, has the benefit of
arbitrarily creating sequences after seeing the whole entry,
with the usage of contemporary translation systems. In order
to provide a practical translation, they can even automatically
focus on certain sections of the input.

An encoder that takes the input sequence of the model as
an input and codes it into a ‘‘context vector’’ of a defined size.
A decoder that utilizes the above context vector as a seed to
create an output sequence. This is why Seq2Seq models are
typically called encoder decoder models. These two networks
will be examined individually for the specifics.

1) ENCODER
An encoder is known as the ‘‘stack thereof,’’ based on a
Recurrent Neural Network (RNN). Encoder takes pseudo
code statement as input and returns their intramural shape.
The RNN, redeeming the original state provides the factors
of the decoder in the next step. In our case, the input is a
pseudo-code statement sequence, and the corresponding out-
put is a programming language source code. Each unit acts as
an LSTM cell to decrease gradient calculation. Which makes
it perform better on long sequences. As described above,
every text or string is in the form of indices, where every
token in the pseudo-code line is depicted by a unique index
number given to it in the pre-processing phase. A sequence of
hidden recurrent neural networks is made by LSTM or GRU
cells. Each cell takes a single token from input pseudo-code
statement, collects necessary information from the input, and
propagates it to the forward step.

In this translation system, the input pseudo-code statement
is full of tokens. Here, each token is defined as Xi where i
is defined as the token sequence. The hidden LSTM or GRU
cells hi are calculated as equation 8:

ht =
∫
(W (hh)h(t−1) +W (hx)xt ) (8)

This equation represents the general RNN. In this equation,
with the previously utilized hidden cell, we only add suitable

26734 VOLUME 10, 2022



U. K. Acharjee et al.: Sequence-to-Sequence Learning-Based Conversion of Pseudo-Code to Source Code

FIGURE 4. Process of translating pseudo code into source code.

weights marked as h(t−1) and the vector input differentiated
as a xt .

2) INTERMEDIATE (Encoder) VECTOR
AttentionMechanism or Intermediate (Encoder) Vector is the
last step in the hidden LSTM cell. It uses the output of the
previous step. The previous output is calculated according to
equation 8. This step of the encoder gathers all the informa-
tion from the pseudo-code statement to aid the decoder step in
making accurate source code. It works as the first hidden cell
for the next part of the model. We use the global dot product
attention to compute the context vector Ci.

ht =
∫
(W (hh)h(t−1) +W (hx)xt ) (9)

3) DECODER
The decoder is also called the ‘‘stack thereof,’’ based on
another Recurrent Neural Network (RNN). The RNN is qual-
ified to forecast the source code’s next character based on
the source code’s previous characters. Specifically, this neural
network is qualified to convert pseudo code into source code
into a similar sequence step by step. This type of training
process is termed ‘‘teacher forcing.’’ Generally, the encoder
step uses state vectors that are gained from the pseudo-code in
the first state. However, the decoder gets all of the necessary
data about the source code. Decoder with more than one
recurring neural cell in each case predicts a yt output at t
at any moment. Each cell accepts the preceding cell’s secret
status and forecast its hidden cell output.

In converting a problem, the output source code collects
keywords, variables, and mathematical expressions. Each
token is noted as yi, where i is the token sequence. Any hidden
cell hi is calculated using the equation:

ht =
∫
(W (hh)ht−1) (10)

In this case, we just calculate the following one using the pre-
viously concealed cell. Whenever t is computed, the decoder
step output is ytat :

yt = softmax(W sht ) (11)

TABLE 1. Description of dataset.

IV. EXPERIMENTAL ANALYSIS
In addition to the SPoC dataset, our proposed model has
used two types of data: (1) Pseudocode statement based on
algorithms and (2) the appropriate source code based on
a programming language. This dataset is used to test the
translation abilities and calculate the learning ability from the
Seq2Seq method of our proposed model. The description of
the datasets is illustrated in Table 1.

Before tokenization of the phrases, we have to determine
the length of the phrases. We will record the length of the all
sentences in two lists for both pseudocode and source code.
The figure 6 illustrates a blue histogram which shows that the
source code length is 23 while the pseudo-code length is 26.

There are two primary distinctions between the single
integer and text embedding. A word can be represented with
a single integer or by a vector of any size. Thus, word
embedding can capture more word information than a single
integer. Moreover, a single integer can not capture the links
between distinct words. Conversely, word embedding retains
the connections between words.

For this reason, we will apply Word2Vec word embedding
for the translated source code in the output. The complete
sequence of steps of Seq2Seq to achieve source code is shown
in figure 4. The goal of the translation process is to sepa-
rate variables and keywords from the pseudocode statements.
A pseudo-code statement is a compact way of describing an
algorithm.

A. TEXT PRE-PROCESSING
Our proposed system starts with text pre-processing step.
Tokenization is the first step of text pre-processing. Given a
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FIGURE 5. One-hot encoding for our sample dataset.

FIGURE 6. Maximum length of pseudo-code and source code.

pseudo-code statement, the task of tokenization is to break
the statements into tokens and remove key characters like
punctuations simultaneously. An example of tokenization is:

Input: n is 0
Output: [‘n’, ‘is’, ‘0’]
For seq2seq model (Pseudo-code to source code transla-

tion), we have the encoder input data, that is, pseudo-code
statement without<start> and<stop> tags. We have to add
a tag to easily detect the start and end of the line for the
seq2seq model. For this reason, we added start of pseudo-
code (SOP) tag and end of pseudo-code tag (EOP). Our data
is organized in such a manner:

Decoder input data: Contains pseudo-code statement
which have both <SOP> and <EOP> tags.
Decoder target data: Contains source code statement

which do not have any tag.
For example:
Input: ‘n’, ‘is’, ‘0’
Output: [‘SOP’, ‘n’, ‘is’, ‘0’, ‘EOP’]

1) WORD EMBEDDING
To convert the text into vectors using Word2Vec, most
NLP embedding techniques allow text processing using

FIGURE 7. An example of sliding window.

linear algebra operations. Vectorizing text data enables us
to construct prediction models using these vectors as inputs.
We already grasp 90 % of the word2vec model if we compre-
hend both forward and backpropagation for Neural Networks.

The notion of a central word with context words may be
likened to a sliding window that passes through the corpus of
text. An example of this is ‘‘print m and a new line,’’ using
a C = 5 window size (two before, and two after the center
word). When the context window glides over the sentence,
the matching words fill it. When the context window reaches
the borders of the sentences, the furthest window locations
are simply dropped. The following figure 7 shows how this
procedure looks. Please note the center word is now xk and
the context words are yc instead of w(t), w(t + 1), etc.

We can not apply single-hot encoding as the text data can
not be transmitted straight through a matrix. This indicates
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FIGURE 8. Skip-gram model architecture.

FIGURE 9. Selective model for Word2Vec representation.

that the vector v is the total number of single words in the
corpus text (or shorter). For every word in this vector, vn is
zero everywhere, and except than vn that is one. For every
word that is in this vector, vn is zero everywhere inside the v
vector, except than vn that is one. Every word is a one-size-
fits-all location. The single-hot encoding of example 1, 5, and
9 above is provided in Figure 5

For future reference, the column vectors yc=1, . . . , yc=C
are referred as panels. In the next step we have to load and
train this data into the network. Most descriptive literature
used the same graph to describe skip-gram, which shows
in Figure 8 the last layer of the model with three or more
matrices.

The classification portion (i.e. extraction of token probabil-
ities from a vector representation of a text) is similar to neural
classifiers and language models. Vector representation of text
has a dimension of d , however in the end, a vector of size |V |
is required (probabilities for |V | tokens/class). A linear layer
can be used to transform a d-sized vector into a |V |-sized one.
A selective model for Word2Vec representation is

described in Figure 9. We present the tokens of dataset with
the minimum count of 1000. These examples indicate that

TABLE 2. A sample of training dataset.

each center word’s output probabilities are divided pretty
evenly across the right context word.

B. RESHAPE THE DATA TO NEURAL NETWORK SHAPE
Data restructuring is a frequent and laborious effort to manip-
ulate and analyze real-life data. A dataset might come with
various group levels and we need to redirect some sorts of
analysis. Data sets may be large or lengthy in layout. Multiple
rows indicate the record of one topic in a lengthy design,
but in a broad layout one row is a record of one subject.
To satisfy the criteria of statistical analysis, we need to be able
to rearrange data smoothly and fluidly. Data reshaping is the
reorganization of the data form without altering the dataset
content.

There is an argument called ‘input shape’’ in the first hid-
den state of the LSTM layer. Thismust be a three-dimensional
layer. The first one is sampling. One pseudo-code line is
one sample. So, a pseudo-code contains many samples. The
second one is time steps in the LSTM layer. One step for
every attention it needs. The third one is characteristics.
So we can say that the matrix contains one characteristic of a
pseudo-code line at a single time step.

C. SPLIT DATA FOR TRAINING AND TESTING
The training phase is the first step for the Seq2Seq learning
approach. The Seq2Seq deep learningNetwork is trainedwith
the SPoC dataset. The Seq2Seq method uses the supervised
approach for translating pseudo-code into source code. The
SPoC training sub-dataset has all the characteristics needed
to translate pseudo-code into source code. LSTM networks is
used. The layers of LSTM are connected by a bi-directional
pattern with the nearest neurons as an outcome of the
training.

Our technique exploits the ‘‘train test split’’ function of the
scikit-learn library to divide the SPoC dataset into two sub-
datasets. The proposed system is prepared with the training
sub-dataset from the dataset. The training data set consists
of portion (80%) of the data set. The remainder(20%) are
regarded as test data. This data is imported as.txt file. Part
of the training data set is represented in Table 2.
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FIGURE 10. Seq2Seq network with encoder-decoder.

TABLE 3. An example of encoder and decoder’s operations during
training process.

D. SEQUENCE-TO-SEQUENCE LEARNING
The remaining part of the vector uses the softmax opera-
tion to transform the raw numbers into token probabilities.
In this proposed system, we have used two RNNs (LSTM)
for encoder and decoder. Encoder RNN reads the source
phrase. The end state is the decoder RNN’s starting state.
The goal is to translate all source information and to gen-
erate the target phrase using this vector. There are multiple
levels for the encoder and the decoder. A multi-layer model
like Sequence-to-Sequence-to-Network Learning is one of
the earliest efforts to tackle sequence-to-sequence tasks with
neural networks. The conditional language modelling is more
than a technique to deal with sequence-to-sequence problems.
Seq2Seq models are trained to predict the probability dis-
tribution of the next token given to the prior context, like
neural LSTM models in Figure10. We need to optimize the
probability of allocating the proper token at each stage of this
model.

During the training phase, the true inputs to the decoder
are all the output words of the sequence. An example of this
training phase is shown in table 3. We assumed a penalty
main function and the following phrase will be translated as
follows:

The model is trained on the decoder input and output. The
following word is anticipated by the preceding word as it was
predicted in the previous time phase. The complete output
sequence is unknown, while making actual prediction, thus,
we have to predict the sequence. During prediction, we use
<sop>, as all the output phrases start with <sop>. Table 4
is an illustration of how the prediction takes place. The line
‘‘main function’’ will be translated again:

Step 1 showed the hidden encoder status, cell status, and
the <sop> as the decoder input. The decoder predicts a
word y1 that can be true or not. According to our model, the

TABLE 4. An illustration of encoder and decoder’s operations during
testing.

TABLE 5. Examples of Seq2Seq based conversion process alongside the
ground truth translations.

likelihood is 0.9413. In step 2, the cell and cell state concealed
from step 1 together with y1 are used as the decoder input for
predicting y2. This step is continued until the token <eop>
is found. All predicted decoder outputs are then linked to the
final output.

We have selected a sequential to sequential learning
approach as seq2seq is particularly well equipped to con-
vert pseudo-code statements. In this section, we examine
the core concept underlying the conversion process. We use
the seq2seq learning method for the translation process.
In the translation process, we handle individual operations by
observing sample pseudo-code. Finally, we found a specific
algorithm for the pseudo-code statement.

E. OUTPUT
The output for the analyzed test data is presented in Table 5.
The test data contains the pseudo code as well as appropriate
source code. Tags are used in this dataset for testing and
converting each appropriate pseudo-code by the sequence to
sequence learning method. The output contains each con-
verted source code with original source code and inputted
pseudo-code, along with the percentage of converted source
code. However, some limitation still exists as the attention
mechanism is not used in this model.

To apply this reasoning, we modify our model. We observe
that the encoder’s functionality is same as before. The sen-
tence is processed through the encoder; and the hidden state in
the original language and the cell state is the encoder’s output.

We used some strings to remove the blank pseudo code
problem. Here we mainly saw that the blank pseudo code
problem arise in the last line of the code. It returns the
parameter of the function. Figure 11 shows the accuracy of
this conversion system with or without using the string. Here
the graph describes the accuracy with the length of tokens.
We can see that the system works perfectly for short length
pseudo code line and the accuracy falls for the long length
pseudo code.

F. MODEL ACCURACY
The accuracy of our model is evaluated by comparing the
prediction rate of our model with the actual percentage. With
a low precision and a high loss, the model would produce
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FIGURE 11. Comparison of accuracy with or without string.

FIGURE 12. Accuracy of the proposed translation model.

many errors on most of the data. However, if both loss and
precision are low, the model produces more minor errors.
Nonetheless, it produces more errors in some data if the
boss and precision both are high. Lastly, the ideal scenario
is when there is high precision and a low loss, a few errors
are produced.

G. MODEL LOSS
Loss is the total number of errors produced by our model.
Loss is a value to evaluate the performance of our model.
When the errors are high, the loss is high, and the model
does not perform well. The better our model performs, the
lower loss it is. However, whether the loss is high or low, if we
plot losses over time, we can evaluate the learning speed of
our model as the model uses the loss function for learning in
Seq2Seq. This approach is similar to gradient descent, which
can modify the model’s parameters using the information on
the loss outcome.

We have organized the inaccurate output into three groups:
(a) the source code is grammatically wrong, (b) sometimes,
the source code contained incomplete variables in the case of
logical expression, (c) a source code is incorrect. Figure 14
shows the classification of error analysis of this research.

Analysis of the transliteration results reveals the following:

1) Noticing all the output completely, we can see that
the proposed approach can work if the pseudo-code
statement’s length and source code’s length are differ-

FIGURE 13. Loss of the proposed translation model.

ent. Even if the output is not predicted correctly, the
total input and output words could be different.

2) The seq2seq learning method successfully learns
the semantic and syntactic relationships between the
pseudo-code statement and source code. For this, the
maximum output of the decoder is correct. The maxi-
mum outputs are logically correct. It is a good thing that
the result is inspiring since converting the pseudo-code
statement to source code is a complex task. The SPoC
data set covered different types of pseudo-code state-
ment. The suggested approach predicts such output
since the seq2seq method is a state of the art deep
learning model that can catch grammatical and logical
rules diversity.

3) The seq2seq model can separate frequent and rare
words in the pseudo-code statement. The frequent
words are detected as code keyword, and rare words
are detected as variables.

4) If the input pseudo-code statement is shorter, the
seq2seq model predicts better output than the shorter
ones which is shown in Table 5. However, the proposed
model can also predict a longer pseudo code statement
accurately.

5) For incorrect source code prediction, the approach pre-
dicts the word from the previous statement. If a rare
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FIGURE 14. Classification of error analysis.

word is predicted, then the model detected that as a
variable and declared it.

H. RESULT
The Bilingual Evaluation Understudy (BLEU) is a score that
is calculated by comparing a candidate translation (source
code) against one or more reference translations (pseu-
docode). In 2002, Papineni et al. [30] proposed this score
to predict the accuracy using automatic machine translation
systems. BLEU is not entirely effective though it has several
interesting benefits. BLEU is faster and easier to calculate,
highly interactive, language-independent and widely used.
We used the BLEU score to determine the output source
code. BLEU is computed using a couple of ngram modified
precisions. Specifically,

BLEU = BP . exp (
N∑
n=1

wn log pn) (12)

where, pn is the modified precision for ngram, the base of log
is the natural base e, wn is weight between 0 and 1 for log pn
and

∑N
n=1 wn = 1, and BP is the brevity penalty to penalize

short machine translations.

BP =

{
1 if c > r

exp
(
1−

r
c

)
if c ≤ r

(13)

where, the number of unigrams (longitudinal) is c in
the whole candidate sentences, and in the corpus, the
best matching length is r . The closest reference penalty
length to the candidate sentences is the best match
length.

In general, BLEU is assessed on a corpus where numerous
candidate phrases are translated and each of these phrases
contains multiple reference phrases. c is the number of
uni-grams in every sentence of the candidate, and r is the sum
of the best matched lengths for each phrase on the corpus of
the candidates. BLEU is always a value between 0 and 1 as
BP, wn,and pn are always between 0 and 1, and

exp(
N∑
n=1

wn log pn) =
N∏
n=1

exp (wn log pn) (14)

TABLE 6. Comparision of accuracy and error-rate between different types
of model.

FIGURE 15. Comparison of accuracy of our models with existing models.

=

N∏
n=1

[exp (log pn)]wn (15)

=

N∏
n=1

pwnn (16)

∈ [0, 1] (17)

Usually, BLEU uses N = 4 and wn = 1
N .

The accuracy is calculated using the equation 18.

Accuracy = P× 100% (18)

With the help of BLEU, the Error-rate is as equation 19.

Error Rate = (1− P)× 100% (19)

Other than Seq2Seq approach, different type of methods
is considered for the conversion of pseudocode into source
code. A comparison Table 6 shows the efficiency of source
code and error rate for the proposed Semantic Scaffolds
approach, NLP approach, and the Seq2Seq learning method
considered.
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Table 6 represents BLEU portion of efficiency for predict-
ing the correct source code. The Seq2Seq learning method
demonstrates an efficiency ratio of 88.7%. The proposed
model is compared with other approaches on the SPoC
dataset. The efficiency and error-rate estimate for the three
models are represented in Figure 15.

V. CONCLUSION
The primary objective of this research work is to translate
pseudo-code statements into appropriate source code. The
main contribution of this research is that, we use neural
machine translation for this task. We also solve the 26%
blank pseudo-code problem of SPoC dataset. For text pre-
processing, we use different types of NLTK library functions.
The proposedmodel is heavily dependent on the sequence-to-
sequence learning model.In order to tackle common natural
language uncertainties, we have utilized text pre-processing.
Natural language processing’s primary work is to find out
the clarification of pseudo-code instructions. We mapped
out pseudo-code instruction into vectors of real numbers by
word-to-vector model. Word embedding model predicted on
the base of Skip-Gram architecture. The technique created
is a conversion tool based on Seq2seq, since it uses NLP
in this research in an AI way. We use the attention mecha-
nism without mention that owns a significant influence on
the results obtained at the end. Therefore, variant types of
datasets will increase the accuracy of the proposed method.
We can improve the projected architecture by using different
types of LSTM networks or attention mechanism.
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