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ABSTRACT In recent years, the number of cases of spinal cord injuries, stroke and other nervous
impairments have led to an increase in the number of paralyzed patients worldwide. Rehabilitation that
can aid and enhance the lives of such patients is the need of the hour. Exoskeletons have been found as one
of the popular means of rehabilitation. The existing exoskeletons use techniques that impose limitations
on adaptability, instant response and continuous control. Also most of them are expensive, bulky, and
requires high level of training. To overcome all the above limitations, this paper introduces an Artificial
Intelligence (AI) powered Smart and light weight Exoskeleton System (AI-IoT-SES) which receives data
from various sensors, classifies them intelligently and generates the desired commands via Internet of
Things (IoT) for rendering rehabilitation and support with the help of caretakers for paralyzed patients in
smart and connected communities. In the proposed system, the signals collected from the exoskeleton sensors
are processed using Al-assisted navigation module, and helps the caretakers in guiding, communicating and
controlling the movements of the exoskeleton integrated to the patients. The navigation module uses Al
and IoT enabled Simultaneous Localization and Mapping (SLAM). The casualties of a paralyzed person are
reduced by commissioning the [oT platform to exchange data from the intelligent sensors with the remote
location of the caretaker to monitor the real time movement and navigation of the exoskeleton. The automated
exoskeleton detects and take decisions on navigation thereby improving the life conditions of such patients.
The experimental results simulated using MATLAB shows that the proposed system is the ideal method for
rendering rehabilitation and support for paralyzed patients in smart communities.

INDEX TERMS Assistive technology, artificial intelligence, deep learning, exoskeleton, Internet of Things,
smart connected community.

I. INTRODUCTION

According to a survey conducted by CD Revee foundation,
1 in every 50 is afflicted with paralysis mainly due to impaired
nervous system causing physical disability from accidents,
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stroke, polio, cerebral palsy, spinal tumours etc. The average
age of such disabilities has moved from 29 years to 43 years
with respect to the year 1970 and 2018, respectively [1].
Rehabilitation centres are widely on the run to enhance the
lives of people suffering from paralysis, or any type of phys-
ical disability. Even after recovering to normal life, many
of them are re-hospitalized following the injury. The patient
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is also seen to develop pulmonary, digestive, circulatory,
and other musculoskeletal ailments post rehabilitation. It is
observed that the probability of death of patients having
Spinal Cord Injury (SCI) is 2-5 times more than those who do
not suffer from any such injury. The survival rates are worst
for those in countries having low and middle-income [1].
Stroke survivors are most affected with impairment for either
side of the body [2], [3] and the quality of life is affected
by this impairment [3], [4]. It is also observed that there
are many cases in which the stroke survivors experiences
physical disability in 3 months. Further, it is reported that
about 35% of total survivors experiences paralysis of leg.
Moreover around 25% of the total number of survivors do
not feel comfort in walking without taking any assistance [5].
Apart from the physical trauma, these patients are unable to
make a livelihood, thus causing a financial crisis. They also
compromise on their education and employment due to their
physical illness, leading to depression.

Recently, the world has seen the rise of IoT and Al as two
major technologies used in improving the efficiency, cost and
usability of already existing systems and applications. With
numerous applications using the IoT technology, the number
of connected devices worldwide would be very huge. The
healthcare market has immensely capitalized on this technol-
ogy to improve the efficiency of various applications. This
market is estimated to grow by 94.5 billion dollars in the year
2020. Currently, numerous researches are being carried out in
this area and the increasing demand for efficient healthcare
solutions will lead to a wider product adoption in the coming
years currently [6], [7]. Also, securing the IoT network and
devices from unauthorized breaches and attacks is yet another
major challenge [8], [9].

In the field of healthcare, many systems for remote health
monitoring have been developed. One of the most promis-
ing areas where clinical IoT can be used is healthcare and
emergency treatment. Non-critical old age patients should be
monitored remotely at home instead of a hospital. Providing
the virtual and timely assistance has been on high demand
since outbreak of corona virus, especially in the medical
field. This calls for an advent technology of passive medical
examination by exploiting the availability and feasibility of
IoT, sensors and artificial intelligence. There are various
sensor based systems that are proposed for monitoring the
patients. These include ECG, Accelerometer, EEG, EMG,
Blood Pressure, etc. Furthermore, to make the conditions
of patients to the better level, various assistive technolo-
gies have been proposed. Exoskeletons has proven to be
among one of the most reliable technologies that supports
the rehabilitation and movement for the patients having
paralysis [10], [11].

An assistive gait technique is embedded in the exoskele-
ton design to aid the paralyzed using effective coordi-
nation between several systems. Energy-efficient gait is
developed on perfect coordination and synchronization
between the central nervous system, somatosensory system
and musculo-skeletal system [12], [13]. However, a spinal
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cord injury and related neurological disorder causes defective
muscular movement, inability in balancing the body thereby
imposing impairment in walking [14]. Neuroplasticity and
related research have reinforced the need for intensive and
repetitive function-oriented therapy as it claims to reorganize
brain’s areas that have been impaired. Studies show that the
walking constraints and improved postural stability and body
balancing are partially justified with the therapy [15]. Brain
Computer Interface (BCI) controlled assistive technology is
another paradigm that provides assistance and rehabilitation
for the paralyzed [16]. To control the exoskeleton movement,
Electromyography (EMG) sensors are employed that help in
returning the information related to the human muscle acitiv-
ity [17]. But EMG signals are restricted to muscles and also
have much limitations. The motor adaptability of the upper
limb is predicted using resting-state functional connectivity.
The system could identify effectiveness of robotic upper limb
rehabilitation in different patients [18]. The clinical trials
to investigate BCI training sessions’ effectiveness on stroke
patients with upper limb paralysis are being carried out. The
results of the trial indicate that the BCI based assistive devices
are effective for post-stroke rehabilitation [18]. Human inten-
tions measured through cortical potentials were used to con-
trol the upper-limb exoskeleton movements. The BMI system
eliminated the need for recalibration but resulted in large false
positive rates [19].

But BCI technology devices are error prone and also hard
to get continuous control because of the dynamic nature of
the brain signals [16]. Cable-driven exoskeletons were also
associated with rehabilitation which focused in eliminating
the rigid-linked skeleton, providing a lighter and transparent
design. But exoskeletons are limited by the constraints of
weight, flexibility, and adaptability. To resolve these issues,
an adaptive and flexible Brain Energized Full Body Exoskele-
ton (BFBE) for assisting the paralyzed was proposed in [10].
Assistive Mobile Manipulators (AMM) developed in ROS
platform served as surrogates for the paralyzed thereby help-
ing them to interact with real world by doing the basic tasks
and socialize with others [20].

The authors in [21] discusses the categorization and var-
ious challenges encountered while designing in the area of
Exoskeleton and Orthoses. The exoskeletons are classified
into lower, upper limb and palm, and each variation is dis-
cussed in detail. To serve the rehabilitation, the discussion
is made for different exoskeletons. Another milestone in
the field of assistive technology is the introduction of hoist
therapeutic device which aims at providing comprehensive
therapy for the muscles and hence, proceeded with supervised
and balance training. Therefore, it helps in augmenting the
control of this system manually [22]. On considering the
concerns raised on the availability of such assistive devices
that focus mainly on the physical movements, the most
effective solution to all the problems imposed by various
assistive technologies is the smart exoskeleton, designed to
help in rehabilitation and empower the paralyzed for a better
lifestyle [23].
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Recently Artificial Intelligence (Al) technology has given
us immense opportunity to improve the performance of vari-
ous healthcare applications in an efficient and well defined
manner [24]-[26]. Integrating Al with IoT has become a
promising solution to many issues in the healthcare domain,
particularly wearable device networks and Body Area Net-
works (BAN) [27]-[30]. In this paper we propose an assistive
model paving the evolution of smart cities using Al-IoT
enabled smart exoskeleton for rehabilitation in connected
communities. The model employs big data analytics from the
intelligent sensors and actuators whose real time parameters
are transferred via an IoT platform to a control parameter
desired for the system. In the design, the ubiquitous network
of intelligent sensor and actuators is attained by using IoT,
and the transfer from IoT to real-time control desired for
the proposed system is achieved using a Al enabled smart
navigation module. An intelligent camera is deployed to serve
the purpose by processing data from object detection and
correction. This novel design uses RGBp sensors to obtain the
area with maximum power level which further collects the big
data to be processed and sent to IoT. The predefined threshold
values of actuators and motors of the assistive device will be
sent as feedback data to the Big Database that also receives
LoRa sensor values. The LoRa sensors feed the analogue
values to the sensors to the exoskeleton, which is integrated
and passes through a LoRa gateway to the IoT cloud to the
caretaker through a mobile interface platform The big data
is then processed and send to the IoT server using MQTT
protocol via LoRa gateway. Data exchange between gateway
and IoT cloud is further guided by a duplex mobile platform.

A. CONTRIBUTIONS OF THIS STUDY
The contributions of this research are,

1) We propose an Al and IoT assisted smart exoskeleton
with efficient navigation that overcomes the limitations
of the existing systems in flexibility, adaptability and
ease of use.

2) Our proposed system uses IoT enabled SLAM (Simul-
taneous Localization and Mapping) for efficient navi-
gation. Here the Artificial Neural Network approach of
Global Bayesian with detector in closure loop is used.
The system also reduces large requests on conventional
gateway by classifying the requests into delay tolerant
and delay sensitive requests.

3) Our proposed system scales up against high data col-
lusion detection and avoidance to improve the data
transmission to the cloud.

4) Our system achieves instant control of the exoskeleton
by integrating the decisions of Al powered navigation
sub-system with the IoT network

B. STRUCTURE OF THE PAPER

The rest of the paper is structured into four sections. Section II
deals with the system architecture of the proposed system.
Section III deals with mathematical analysis. Implementation
and simulation results are included in section IV. The final
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TABLE 1. List of abbreviations.

Abbreviation Description

DoF Degree of Freedom

EMG Electro Myographical

EEG Electroencephalogram

BFBE Brain Energized Full Body Exoskeleton
SDN Software-Defined Network

BAM Body-part Actuation Module

BCI Brain Computer Interface

CcU Control Unit

BDACC Big Data Analytic Connected Community
IoT Internet of Things

section presents the conclusion of our work. The list of abbre-
viations is listed in Table 1.
The list of abbreviations is given in the Table 1.

Il. PROPOSED FRAMEWORK

A. SYSTEM ARCHITECTURE

The proposed system is categorized into the following major
components/modules which are; 1) BCI; 2) CU, and lastly,
3) Body-Part Actuation Module, 4)Navigation Module The
collection of EEG signals is an important operation of BCI
module. It converts signals into a compatible form for CU.
The system design comprises of an exoskeleton aided with
sensors to receive the analog data from LoRa and process
it for movement of the limbs. The architecture consists of
sensory hardware, sensory feedback and a sensory data base
for detecting and processing the data to move the limbs. The
sensory hardware is employed for the upper limb, lower limb
and head neck units. Depending on the predefined threshold,
each unit’s sensory hardware compares it with the received
analog value and sends a sensory feedback to the database.
The data from various sensors is integrated into the sensory
database which makes use of big data analytics. The captured
sensory signal from LoRa and sensory feedback is processed
and given to the microcontroller, which interacts with the
IoT cloud via the LoRa Gateway. The IoT uses MQTT pro-
tocol to communicate between the LoRa gateway and IoT
server. The IoT server exchanges data with the caretaker via
an application program through mobile phones or desktops
thereby appropriately guiding the patient. This automated
exoskeleton enables the paralysed to exchange data from the
sensors to the IoT platform and navigate according to the
caretaker’s instructions; thereby promoting a smart commu-
nity. The security for the involved communication is assured
among the paralyzed patients as well as caregivers with the
help of NTSA algorithm which is encrypted twice. [31].

1) AI-POWERED REAL-TIME NAVIGATION WITH INTELLIGENT
DECISION MAKING

For efficient navigation the proposed system uses [oT enabled
SLAM (Simultaneous Localization and Mapping). Here the
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Artificial Neural Network approach of Global Bayesian with
detector in closure loop is used. The detector in closed loop
analyzes the series of words received to predict that the cap-
tured image that comes from the current or previous locations.
If detector in the closure loop is acceptable to the map of the
graph, a constraint is attached and the error is reduced in that
direction. For experimental purpose the system is equipped
with RGB-D camera for 6DoF (Degrees of Freedom)and
LiDAR mapping on exoskeleton. The navigation module is
deployed with odometry for differentiating different color.
The exoskeleton base is used to find the pose of the camera
on the exoskeleton. It helps to map the visual odometry to
exoskeleton frame. If the position of the camera is on the
exoskeleton head position, the movement of the head influ-
ences the movement of the camera. This variation does not
influence the visual odometry as there is an equal update in
the exoskeleton head and body.

2) FEATURE EXTRACTION AND DETECTION

The Good Features to Track (GFTT) is used for feature
extraction and detection as it is easy to tune the parameter and
for different image property like size and intensity, it will give
us uniform feature detection. The Vis/Max features decides
on the average number of features to decide that scene. For
GFTT the mask is the depth of the image. This will filter out
the extracted features with wrong depth information.

The Feature Matching is having 3D feature extraction and
descriptor from previous captured image. The matching is
done by the searching the pixel in the neighborhood. The
GFTT is having the direct influence of the optical flow with-
out extracting the descriptor. This provides the unique feature
convergence for the frame to frame.

3) PREDICTION OF THE MOTION

The motion prediction is used to detect the key features and
the map feature should be there in the frame to frame. This
depends on the transformation of motion from one frame
to another. This enables the environment to have dynamic
variation of the frame and having repetitive pattern to provide
the perfect match with feature matching.

Figure 1 presents the block diagram of the Al assisted
real-time navigation module integrated to the proposed sys-
tem. The exoskeleton base determine the camera position on
the head with respect to the base of the skeleton. It is the
output for odometry transform with respect to the exoskeleton
base. The motion estimation is computing the transformation
using the extracted features in frame or map. The transfor-
mation is converged with adjustment to the local bundle. The
features used is for all key or last key frame. The camera pose
is adjusted with the transformation achieved and the visual
odometry output is updated. The covariance is calculated
using median deviation between extracted 3D features of the
frame. For the estimation of the motion if the inlier is less
than the threshold the frame and map is changed to the new
value. For the updating of frame to frame the key frame is
updated by the latest frame. For frame to map the key map is
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FIGURE 1. Real-time navigation with intelligent decision-making using
SLAM.
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adjusted by the non-matching features of the current frame.
The matched feature updated by local bundle is converged
to new match. If the inlier is greater than the set threshold
the unmatched features are removed and frame having no
mapping features in feature map, it is discarded. IF the con-
dition prevails that the camera pose and motion is having
large difference compared to the predicted one, to calculate
the transformation will be difficult. In this case the features
are extracted and mapped without using motion prediction.

4) THE EEG SIGNAL ANALYSIS

The EEG signal analysis due to non-linear behavior of the
device is undertaken. Different stages induces different level
of EEG noise. The EEG signal blocks at a small signal level
behave as non-linear due to the effect of noise. The same
blocks behave as non-linear at large signal level. This non
linearity occurs due to the compression of EEG gain factor
or unwanted or spurious frequency tones. In both the cases
mentioned above, a minimum and maximum real-time power
or dynamic range are required to ensure that the block in
EEG will process EEG as required. If the device is not at the
required dynamic range, it may lead to EEG signal distortion,
interference with other RF signal, generation of multi-tone
EEG frequency and multi-tone EEG frequency products.
Variation of amplitude causes phase shift and regrowth or
merging of a spectral component of EEG signal. The block
having an I/P amplitude Al and an O/P amplitude is given as
Ag. The EEG blocks can be treated as non- linear device and
is modeled using Taylor series in terms of I/P amplitude A;.

Ag=Axl+A xli+hbx A2+ xA+... (1)
and the Taylor coefficients are

lo = Ao(0)[DCComponent]

dAg
ly = —|Ao = O[LinearComponent]
dA;
d2
L = dA2 |A0 = 0 [SquaredComponent ] 2)
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A single sinusoidal EEG frequency is applied at the I/P of
first stage,

A = Ko cos wyt 3)
Substitute in above equation
Ao = lp + 11 x Kgcoswot + [r x Kg cos? wot
+ 13 x K030053w0t+...
1 3
= (o + E121<§) + (L Ky + ZI3K3)cos wot
L2 2 13 3
+ EIQKO cos” wot + Zngo cos” wot+ 4)
This results in EEG gain at frequency wy as
_ Aowg) Ko+ 3LK; L+ 35K3
A1(wo) Ko

Here /1 and /3 are having the same sign or phase, adding
to the strength of EEG signal. Consider two single sinusoidal
EEG frequencies, which are closely spaced at frequency w;
and w3

eq: 1 )

A; = Ko(coswit 4 cos wot) (6)
From the above equation, it is

Ag = lp + 11 x Ko(coswit + coswot)
+1b x Kg(cos wit + cos wzt)2
+ 13 x Kg’(cos wit + cos wzt)3 +...
=lo+ 11 x Kgcoswit + 1 x Kocoswyt)
+ bl x Kg(l + cos2wt) + Il x Ké(l ~+ cos 2wnt)
+ 1 x Kg(cos(wl — wo)t
+ 1 x Kg(cos(wl + wo)t

3
+ 13 x KS(Z cos(wit
1 3.3
+ 7 cos3(wit)t + I3 x Ky (4_1 cos(wat

1
+ 1 cos3(wat)t + ... )]

In the expansion identity of trigonometric used, the O/P
EEG spectrum consists of multi-tone in the form xw; + yw;
where ‘X’ and ‘Y’ = 0, £1, £2, 43, ... In the above expres-
sion, the square terms give different EEG component like 2w
(Second tones of EEG1 x = 2, y = 0 2w, (Second tones
of EEG2 x = 0, y = 2 w; — wy (Difference frequency of
EEGI and EEG2 x = 0,y = —1 wy + wy (Sum frequency of
EEGI1 and EEG2 x = 1,y = 1 The EEG frequency terms w;
and w» are close to each other and it can be easily filtered or
rejected or paused by the filter. From the above expression
the amplitude ratio of w; — w» or w; + woto the amplitude
of 2wy or 2wy is 2. This indicates a decrease in o d 8 power
for second order EEG signal compared to sum and difference
signal. The cubed EEG signal has six EEG terms as 3wy, 3w»,
2wy + wa, 2wo + wq, 2wy — wi. The first four EEG terms
will be far from w; or wy i.e., it will be outside the pass band
set and the last two terms will be close to w; and wy and so
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depending on the requirement we can filter the EEG signals.
For the multiple EEG signals having different amplitude and
different frequencies and phases will cause interference at the
O/P. The ratio of 2w; — wp, or 2wy — wi. Amplitude to the
3w; or 3w, will give 3.0 So the 9.54db EEG power will be
less for third order EEG component compared to 2w; — wp
or 2wy — wq terms. The object tracking and recognition in the
proposed system is done by RGB-D(Tx) emitter and a RGBD
receiver (Sensor). The range and tracking of RGB-D sensors
are depicted in figure 3.

IIl. MATHEMATICAL ANALYSIS OF THE PROPOSED
SYSTEM

The designed exoskeleton will exchange data from the sen-
sors to the control station/caretaker through the IoT cloud
using MQTT protocol. The RGB-D sensors form a path to the
target’s precise location, which is assumed to be an elliptical
path on a 2D plane with the transmitter, target and sensor
on the same plane. Further numerical analysis is carried out
in the sensors generated data set by corrective mechanism
resulting in the most optimized data set to track and monitor
the target for energy and bandwidth efficiency. The ellipse is
represented by

Tr + Ry = 2E 3

The RGB-D receiver sensor is receiving the signal due to
the formation of the path at the upper part of the triangle along
the target. The relative range of the proposed exoskeleton is
given as

Rar—jor—ses = TR +Rs — 1 9)

The Tk is the range between TX to target, RS is the range
between the target to RGB-D sensor. L is the base line direct
path between Tx and sensor. The Tx to target to RGB-D
sensor is obtained by the proposed system ellipse equal to
the sum

Tk + Ry = 2E (10

This defines the constant range ellipsoid. This is the con-
dition of ellipsoid when the transmitter, target and sensor lie
on the same plane. It forms a 2D-ellipse. The target can lie
on the surface of the ellipsoid and its foci at the TX and
sensor position. The possibility of the target lying somewhere
on the ellipsoid, a single proposed system ellipse will not be
sufficient to provide the exact state of the target. In order to
localize the target accurately, the target position is triangu-
lated and multiple measurement from multiple sensors are
done. The localization problem is non-linear in nature result-
ing in a couple of possible target locations. These possible
target locations are due to the intersection of 3 sensory ranges.
The decision on the couple of possible target locations can be
taken by developing more than 3 sensory ranges.

Consider the case of a paralyzed person wearing the sens-
ing device that transfers medical and motor data to the
personal area wireless device. The personal area wireless
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FIGURE 2. Block Diagram of the Al and loT powered smart exoskeleton system with

LoRa Communication.
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D 1 D
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P, P3...Ps. This group of sensors transfer information to
the edge device ‘L’. This edge device has permanent ID
as L01,L02,L:03,...,LO0n and IoT device has perma-
nent ID as Pjpi, Pipa, ... Pips and LED. The sensors in
the sets at P;, generates the sensing data R1, forms the
optimized data set 7j. This optimized data set constitutes
the paralyzed patient data set TTL, having patient sen-
sory and medical data information. The collection of each
sensor data will generate a data set of complete profile
of paralyzed patient represented as P; -> R; -> T; where
1 <= [ <= s The AI-IoT-SES system level mapping is

given by P_1,P 2,P 3,...P.S >R 1,R2,R3,...R S

FIGURE 3. Geometry of RGBD enabled Al-1oT-SES.

> T_1T_2,T_3...T_s = Tr; The proposed system
is having memory for load processing, power requirement

energy and band width. This throws the challenge monitor-

device combines and integrates the sensory actuation data
and transfers it to the IoT cloud. The data sensed, processed
and transferred consumes a lot of resources and delays. The
interpretation of the resources is the parameters received to
complete the task for the paralyzed.

The P; (1 <= | <= s) are the different sensor nodes
Io and L be the various personal edge device in the net-
work. The paralyzed patient T1 has a group of sensor Pj,
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ing and managing the resource allocation. The optimized
data set resource allocation. The optimised data set for
resources (G_1,G_2,G_3,...G_s) are generated for opti-
mized resources for bandwidth (Byi, By2, ...Bys) mem-
ory (M1, M2, ... Mys) processing (Py1, Pn2, ... Pys) and
energy (En1, En2, . . . Eys) for the sensor data Py, Py, P3, Pg,
respectively. The paralyzed patient, sensory data has an opti-
mised data set about resources. This resource shares of the
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processing, bandwidth, memory and energy status. They are
represented as: For sensor P;

G; = (En, Pni, My, Byi(1 <=1 <=5)) (11)

The total energy for the paralyzed patient Ti is given by
N
Ent; = ZENI (12)
d=1

The net processing power l(lj)\m.) for sensoring device for
paralyzed patent is given as

N
Pyt = ZPNI (13)
=1

The net bandwidth Byr,) for sensing data the paralyzed
patient IDS is given as

N
Bnr, = ZBNI (14)
=1

The net memory My, for sensing data for the paralyzed
patient is given as

N
Mnr, = ZMNI (15)
=1

The total resources at the paralyzed patient is

G = {ENTl,Per,Ber,MNﬂ} (16)

The phases are running parallel as energy allocation and
processing power allocation. The initial assumption is to pro-
vide optimized resource allocation to the max value consider
an example for sensor Pl. The optimized resources are

Ens = U — Uj;
Pns = Vi (17)
Mys = Uy — Uy
Bns = Xj; (13)

The value of 1lies in 1 <= [ <= s where Uy, V;, Wj; and
X; are the optimized values for the different resources. Now
assuming the exoskeleton to activate the moving forward
task, the resource allocation completes this task of allocating
resources for a set of predefined condition. Once the specific
task for allocating the resource is accomplished, the opti-
mized resources for the sensor P, will become

Ens = U — U
Pns =V =V (19)
Mns = Wi — W
Bns = X1 —Xji forl <=1 <=3 (20)

The U;, Vi, Wj; and X; represent the resources consumed to
achieve a specific task. This helps in resource monitoring and
keeps the track of resource allocated, non-utilized resources
and the availability of resources. This will ensure the resource
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FIGURE 4. Convergence to the proposed system target.

FIGURE 5. Convergence for RGB-D camera sensor.

allocation algorithm reclaims the non-utilized resources and
returns them to the existing available resources data set.
The monitoring of the resources ensures that the number of
resources to be estimated for the completion of the task. At the
sensor, node level maximize Ey;s, Pys, My and By, subject to
the constraints as:

Ens = U
Pns =V (21)
Mys = W,
By, = X; (22)

At the sensor network level, it can be modeled as Maximize
S Ent Y Pnr Yj—; Mn; > _)_ Bnr subject to con-
1=1ENI 2 1=1 NI 2.j=1 MNI 2_.|=1DNI ]
. K s K} s
strainas ) ;_  Eny <= D 3, UL Y1 Pnt <= Y, Vi
and for others the same.

IV. RESULTS AND DISCUSSION

For ease of use we define the proposed system as Al-IoT
Smart Exoskeleton System (AI-IoT-SES) Figure 4 shows the
convergence to AI-IoT-SES Target. The AI-IoT-SES Target
and Track is used as the feedback for the convergence. The
figure shows the placement of different sensors and cameras.
The sensor detection fused the output of different sensors and
cameras generating the feedback for the AI-IoT-SES target.
The results show the continuous tracking and correcting until
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FIGURE 6. Convergence for Gyroscope/Accelerometer sensor.
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FIGURE 7. Sensor fusion detection for various tracks and paths.

the final data converges. This has been tested for individual
sensor and cameras, then fusing it together. The target is
tracked after corrective methods with the precision technique
using AI-IoT-SES tracking history.

Figure 5 shows the convergence for the RGB-D camera
sensor. The gray straight line is the AI-IoT-SES target path.
The red line is the AI-IoT-SES track path. The yellow is the
AI-TIoT-SES target spot. The figure shows its convergence
at the final destination where the user is visually targeting
the object using RGB-D sensor. The RGB-D sensor variation
scale is shown in y-axis.

In figure 6, the gray straight line is the AI-IoT-SES target
path. The red line is the AI-IoT-SES track path. The yellow is
the AI-IoT-SES target spot. The figure shows its convergence
at the final destination where the user is targeting the gate
using Gyroscope/Accelerometer sensor.

The figure 7 how the sensor fusion detection is corrected
for different random paths with different track and target his-
tories. This shows the precision with which the AI-IoT-SES
converges.

Figure 8 shows exoskeleton’s gate position for different X,
Y, Z direction and its estimated orientation. It is seen that after
a stipulated amount of time, the tracking is initiated and each
axis has a level of accuracy at each instant.

Figure 9 shows how well the exoskeleton converges with
the actual path. The actual path shown in blue line is corrected
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FIGURE 8. Estimated orientation and Position errors of exoskeleton for
X,Y,Z direction.
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FIGURE 10. Proposed system track spectrum and track assignment.

with the reported line shown in red. The difference is adap-
tively corrected for obtaining the correct path with minimum
error.
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In figure 10, the tracks TO1 with path P02 is shown a spec-
tral coverage in red. Similarly track TO9 with path PO1 is hav-
ing a spectral coverage shown in blue. The track assignment
figure gives the path followed for different tracks. The field of
time is the time elapsed before identifying the track. Different
tracks are observed to have different field of time.

V. CONCLUSION AND FUTURE WORK

To overcome the problems with the existing technologies, this
paper presented a new assistive model paving the evolution
of smart cities using AI-IoT enabled big data analytic
connected communities with Smart Exoskelton System (Al-
IoT-SES). The paper describes the design of an exoskele-
ton for the physically impaired, for commutation in smart
cities with automatic limb control using an IoT platform
with Al-powered navigation module. Here, a precise control
of an exoskeleton is achieved by integrating multiple sen-
sory hardwares to sense various parameters such as distance,
obstacle avoidance, orientation, tilt, speed, and acceleration
with high level of accuracy. Our proposed system used IoT
enabled SLAM (Simultaneous Localization and Mapping)
for efficient navigation. Here the Artificial Neural Network
approach of Global Bayesian with detector in closure loop is
used. The system also reduces large requests on conventional
gateway by classifying the requests into delay tolerant and
delay sensitive requests. Sensory feedback from the cloud
is also included in the system for exoskeleton’s corrective
movement to avoid falls and other casualties. The results
and graphs from the simulations showed desirable precision
with minimal errors in tracking the target with appropriate
convergence between feedback data and comparator data.
The results were calculated for the accuracy of sensors to
the feedback data to compute the precise motion and limb
movement to obtain the target. The various paths and tracks
allotted for attaining targets were plotted to compute errors
in X, y, z directions and to obtain the exact orientation.
Different fields of the time were obtained for various paths
to target. The spectral coverage of the tracks correspond-
ing to various paths was also studied. In future we plan to
work on a Al and IoT enabled exoskeleton free system that
can use a combination of EEG and EMG signals and help
in rehabilitation of the paralyzed even without the help of
caretakers.
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