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ABSTRACT Network representation learning (NRL) is an effective graph analytics technique and promotes
users to deeply understand the hidden characteristics of graph data. It has been successfully applied in many
real-world tasks related to network science, such as social network data processing, biological information
processing, and recommender systems. Deep Learning is a powerful tool to learn data features. However,
it is non-trivial to generalize deep learning to graph-structured data since it is different from the regular data
such as pictures having spatial information and sounds having temporal information. Recently, researchers
proposed many deep learning-based methods in the area of NRL. In this survey, we investigate classical NRL
from traditional feature learning method to the deep learning-based model, analyze relationships between
them, and summarize the latest progress. Finally, we discuss open issues considering NRL and point out the
future directions in this field.

INDEX TERMS Traditional feature learning, network representation learning, deep learning, graph analyt-
ics.

I. INTRODUCTION
Representation learning is a new paradigm in the machine
learning field aiming at representing information efficiently.
For example, in the linguistic domain, word vectors generated
fromWord2vec framework [1]–[3] embed semantic informa-
tion into low dimensional vectors so that machines can better
understand the words after word embeddings. In the setting
of network representation learning (NRL), a better represen-
tation method can make subsequent learning tasks easier.
In general, a better representation of a network can preserve
the graph topology and cluster similar nodes together in the
embedding space. Additionally, the representation learning is
beneficial for lots of downstream tasks, e.g., clustering [4],
node classification [5], and link-prediction [6]. They have
been widely applied in bioinformatics [7], linguistics [1],
transport network [8], [9] and social sciences [10]–[13], etc.
Many information processing tasks mentioned above depend
on how the data are represented. Meanwhile, with the devel-
opment of big data, which presents Volume, Variety, and
Velocity characteristics, a more effective data representation
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method is required to achieve low cost and tractable compu-
tation.

In the past few decades, many traditional feature learn-
ing (TFL) algorithms e.g., principal component analy-
sis (PCA) [14], isometric feature mapping (Isomap) [15],
and local linear embedding (LLE) [16], have been proposed
for reducing dimensions of data. Instead, NRL focuses on
learning the vector representation of a node or a graph. In gen-
eral, these two kinds of algorithms are then combined to take
advantage of both of them.

However, these traditional methods could not effectively
extract complex and nonlinear structured relationships of
data. It is widely recognized that deep learning [17] has
emerged as a powerful tool for extracting data features and
has been applied in many fields, such as image processing
and speech recognition. Network science researchers have
applied deep learning models, including convolutional neural
network [18], autoencoder neural network [19], recurrent
neural network [20], and generative adversarial network [21],
into graph-structured data and proposed the graph neural net-
work (GNN) models [22]–[26]. In recent, many researchers
try to introduce deep learning models, such as reinforcement
learning, adversarial methods to graph learning [27], [28].
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FIGURE 1. Categories of network representation learning algorithms.

In this survey, we provide a brief introduction to traditional
representation algorithms and then mainly review NRL algo-
rithms associated with deep learning models.

Representation learning models can be divided into ‘‘shal-
low’’ model and ‘‘deep’’ model. In this survey, we try
to go through the development of data representation in
graph-structured data from TFL to recent NRL based on
deep learning. We do not intend to thoroughly summarize
the various types of representation learning models in the
literature. We will instead review TFL and the state-of-the-art
representation learning methods mainly focusing on NRL
technologies and network embedding algorithms. For under-
standing related algorithms, we first introduce the Word2vec
framework as a basic model used by a large number of
NRL algorithms to help understand what NRL is and the
relationship between NRL and deep learning. Furthermore,
we classify NRL into two categories, including TFL models
and deep learning-based models. The overall organization of
the categories of network representation learning algorithms
are shown as Fig 1.

A. RELATED SURVEYS
There are already a few papers that summarized the algo-
rithms about NRL. Our survey is different from all of them.
We review several traditional feature learning algorithms and
classical deep learning-based NRL models. We present deep
learning-based NRL models based on the graph information
they are keeping. A short introduction to the other related
surveys is given as follows.

Hamilton et al. [29] focus on methods and applica-
tions of NRL. They discussed NRL in two main parts:
embedding nodes and embedding sub-graphs. They proposed

an encoder-decoder framework to organize various
NRL models. Goyal et al. [30] mainly reviewed applications
and performances of NRL, and gave detailed performance
comparisons of NRL. Zhang et al. [31] gave a comprehensive
categorization of NRL, including unsupervised methods,
semi-supervised methods, and methods preserving network
structure or vertex labels. The survey [32] did not review the
whole variety of NRL algorithms but focused on methods
for structure-preserving and property-preserving. In recent,
many researchers turn attentions to graph neural network
based models, and some surveys [33]–[36] specially investi-
gated these works in the aspects of graph learning models and
aggregation methods. These models are basically generated
from deep learning models to graph, such as graph atten-
tion networks, graph autoencoders, and graph reinforcement
learning. There are some surveys focusing on some special
cases of NRL. For example, Yang et al. [37] reviewed hetero-
geneous NRL with analysis over benchmark and evaluation;
Xie et al. [38] introduced dynamic network embedding from
aspects of models.

The rest of our survey is organized as follows. We first
present notations and graph related concepts in Section II.
Then, we review the models of TFL in Section III and NRL
based on deep learning models in Section IV. In the following
two sections, we discuss the application of representation
learning, and list several open issues. We provide our conclu-
sions, draw our prospects of network representation learning
in future research in Section VII.

II. NOTATIONS
This section presents TFL methods and NRL models based
on deep learning methods. In the following, we first give the
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TABLE 1. Terms and Notations.

definitions of a Graph, Network embedding, and Laplacian
matrix. Also, we list some terms and notations used in this
article in Table 1.
Definition 1 (Graph): A graph G = (V,E,Y) is a col-

lection consisting of nodes (vertices or points) V =

{v1, v2, . . . , vn}, edges E = {ei,j}ni,j=1 and labels or side
information associated to nodes Y . The edges between nodes
can be directed or undirected.
Definition 2 (Network Embedding): Network embedding

includes node embedding and edge embedding. Given a graph
G, the embedding function f : V 7→ U maps node vi ∈ V to
embedding vector ui ∈ U, where V represents vectors in the
original space andU represents vectors in the projected space.
Vector ui is the newly learned node representation which
often has low dimensions and preserves relevant network
properties.
Definition 3 (Laplacian Matrix): In the graph theory,

Laplacian matrix is a matrix representation of a graph.
The Laplacian matrix of a simple graph is represented as:
L = D− A, where D = diag(

∑
j:j6=iWij) is the degree

matrix, Wij is the weight between node i and j, and A is the
adjacency matrix of a graph.

Representation Learning relies on an essential assump-
tion in the manifold hypothesis [39], which refers to the
real-world high dimensional data, such as images with
two-dimensional manifolds embedding in the high dimen-
sional space. Graph-structured data often has high dimen-
sions and various types. Based on the manifold hypothesis,
NRL algorithm could reduce the dimensions of graph data
but keeps the internal relationship of nodes.

III. TRADITIONAL FEATURE LEARNING MODELS
Learning the intrinsic characteristics of data is always an
enormous requirement for data science. In the past decade,
a great deal of traditional feature learning or representa-
tion learning algorithms have been proposed in the machine
learning domain such as kernel PCA [40] and kernel
k-means [41]. They are a set of techniques allowing a system

to automatically learn the latent features from raw data. These
techniques are different from feature engineering which man-
ually sets feature parameters. In this section, we mainly focus
on TFL on graphs, and we separate them into three parts:
global feature learning models, spectral learning based mod-
els, and manifold learning models. Global feature learning
mainly focuses on preserving global information of data.
Manifold learning aims to preserve local features and infor-
mation, i.e., preserving property with the neighborhood of
each node in a network.

A. GLOBAL FEATURE LEARNING
As mentioned above, global feature learning methods pri-
marily focus on preserving global information of raw data in
the learning feature space. In the following, we will present
several algorithms belonging to this category.

1) PCA ALGORITHMS
PCA algorithm [40], is one of the earliest and most popular
methods used to reduce the dimensions of the data. PCA is
a linear, unsupervised, generative, and global feature learn-
ing method. There are lots of global feature learning algo-
rithms, e.g., the variants of PCA, including sparse PCA [42]
and robust PCA [43]. PCA can be used in NRL, such as
dimension-reduced, and low-rank recovery of data. It can
be applied for network data visualization and clustering in
network science as well.

The classical PCA algorithm has several weaknesses, e.g.,
it lacks the ability to scale well to the number of data samples
and is sensitive to outliers. In general, the reason that the clas-
sical PCA algorithm is susceptible to outliers data is caused
by the quadratic term. Robust PCA can well overcome these
shortcomings of classical PCA algorithm mentioned above
and it is robust to occlusions andmissing values by recovering
the low-rank representation [43]. With the graph smoothness
assumption, Shahid et al. [44] incorporated spectral graph
regularization into robust PCA algorithm to improve the
quality of clustering and dimension-reduced. The normalized
graph Laplacian is defined as:

L = D−1/2(D− A)D−1/2 = I− D−1/2AD−1/2, (1)

whereD = diag(di) is the degreematrix andA is an adjacency
matrix. In general, graph-Laplacian [45] is often combined
with PCA methods [46]–[48] for feature extraction in the
area of bioinformatics. The final experiments showed that
the model can achieve better performance than the state-of-
the-art models for the clustering and low-rank recovery tasks.

To accelerate the speed of robust PCA, Shahid et al. [49]
proposed fast robust PCA (FRPCA) algorithms, which has
the same advantages as the previous robust PCA. FRPCA
has lower computational complexity for processing large
scale datasets (O(nlog(n))) by using the FLANN library [50].
Motivated by the emerging field of signal processing on
graphs [51], FRPCA adopted the idea of graph similarity,
including feature similarity and data similarity, to enhance the
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clustering quality in the new representation space. One prob-
lem of PCA algorithms is its high computational complexity.
Here, FRPCA utilized Fast Iterative Soft Thresholding Algo-
rithm (FISTA) [52] to solve this problem.

There are still many variants of PCA, such as sparse
PCA (SPCA) [42] which extends classical PCA algorithm
by adding sparsity constraint on input variables and can be
well applied for multivariate datasets. Megasthenis et al. [53]
introduced a variant of SPCA which accommodates the
graph constraints to analyze financial data and the data in
neuroscience. Min et al. [54] proposed Edge-group Sparse
PCA (ESPCA) which combines the prior gene network with
the PCA method for dimension-reduced and feature extrac-
tion.

2) ICA ALGORITHMS
Independent component analysis (ICA) [55] is a classical and
powerful tool in signal processing, and also has been used
to analyze the structured graph data. It is widely used to
brain network analysis [56]–[58]. Park et al. [56] proposed a
variant ICA, Graph ICA, to explore the changes of cognitive
networks in the brain after completing a task. The concepts
of Graph-ICA can be shown as follows:

g = [g1, . . . , gM ]> = W [s1, . . . , sM ]> = Ws, (2)

where weight matrix W represents the relationship strength
between source (graph) s to compose g. The main ideas
of the algorithm are to decompose measured graphs into
common source graphs and then find these canonical net-
work components from limited sets of data in neuroimaging.
Diana et al. [57] directly utilized the ICA algorithm to extract
features of different brain networks on the fMRI data and
found the relationship among word learning with different
parts of brain networks.

Ziegler et al. [58] designed a method combined with
the ICA algorithm and then applied it for analyzing the
resting-state fMRI. In short, the authors first used ICA to
deal with neuronal components and then reconstructed them
as weigh graphs. The method of calculating edge weighting
in the graphs depends on the contribution to the specific
component.

B. SPECTRAL LEARNING ON GRAPHS
The spectral learning, which is one kind of machine learning
algorithm based on spectral methods, utilizes information
in the eigenvectors of the target matrix to extract hidden
structure. Most of the methods based on spectral learn-
ing just consider the structural information, so they could
not apply to networks with complex information. In the
following, we will discuss several common spectral learn-
ing frameworks, including spectral methods, singular value
decomposition, and tensor factorization.

1) SPECTRAL METHODS
Spectral methods are fundamental for solving problems
in engineering, applied mathematics, and statistics. More

specifically, network researchers have used spectral methods
to solve problems in network science, such as analyzing and
visualizing networks.

Community detection is a popular problem in social
networks. To address this problem, Newman et al. [59] pro-
posed a spectral method as they find that tradition com-
munity detection methods based on maximum modularity
and likelihood methods can be treated as spectral algo-
rithms. The main idea of the algorithm is to utilize the
matrix eigenvectors to represent the networks. The proposed
algorithm contains three parts: (1) modularity maximization,
(2) degree-corrected block model, and (3) normalized-cut
graph partitioning. Zhang et al. [60] also applied the spectral
method to detect communities while focused on overlapping
communities in social networks. They adopted theK-medians
algorithm to address the overlaps for graph clustering. In the
real world, data are collected in different forms with various
features and different structures. In order to deal with this
situation, Li et al. [61] designed a spectral clustering algo-
rithm based on the bipartite graph. The solution is the first
k smallest eigenvectors. Moreover, the authors used a fast
approximation algorithm to reduce the cost of computation of
multi-view spectral clustering, so as to face the requirements
of large-scale graph construction. Some researchers try to
combine spectral methods with deep learning [62] by adopt-
ing stochastic optimization, which is successfully used to find
meaningful subgoals in reinforcement learning environments.

2) TENSOR FACTORIZATION
The knowledge graph is a hot topic in network science, which
can express data or information in the form of a graph with
edges representing relations and nodes representing entities.
It can be applied for recommender systems, search engines,
etc. A group of researchers have applied tensor factorization
methods to study NRL. Trouillon et al. [63] designed a
method for link prediction called ComplEx, which is linear
in both space and time. Besides, the algorithm exploited
complex embeddings and utilized Hermitian dot product.
Therefore, it is much simpler than neural tensor networks
and holographic embeddings. Also, the algorithm is suitable
for large datasets. Trouillon et al. [64] extended previous
work [63] and utilized factorization models to study the
knowledge graph. Moreover, the authors gave several proofs
for the proposed model and more experiments, especially
related to the training time of the models. The main idea
of the algorithm is decomposing tensors into a product of
embedding matrices with much lower dimensions.

C. MANIFOLD LEARNING
Manifold learning methods focus on preserving local simi-
larity among data when the new representations are learned.
In recent years, this algorithm is often used to deal with net-
work analysis tasks. We will present several manifold learn-
ing algorithms, such as Isomap, Local Linear Embedding
(LLE), and Laplacian Eigenmaps (LE). They are all based
on the graph construction by exploiting manifold learning.
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1) ISOMAP
Similar to PCA, Isomap algorithm [15] is a classical-
dimension reduced approach, which is building on classical
Metric Multidimensional Scaling (MDS) [65]. It is more
powerful than other classical reduction methods as it could
keep the nonlinear relations of original source. The main
ideas of Isomap contain three steps: (1) constructing a neigh-
borhood graph by using connectivity algorithm (such as
KNN) from adjacencymatrix; (2) computing the shortest path
of entries as the geodesic distance; (3) finally, using MDS
algorithm to obtain coordinate vector. The objective function
is shown as follows:

min 6i6=j,...,N (di,j − ||ui − uj||)2, (3)

where d represents the shortest path obtained from step (2),
and u is the new representation vector that can be learned
when minimizing Eq. (3). From Eq. (3), we can see that the
optimized objective function is to make the distance between
nodes in the new learned space similar to the distance in the
original space. In other words, new low dimensional vectors
approximately preserve the geodesic distance of the original
data in the high dimensional space.

2) LOCAL LINEAR EMBEDDING
Local Linear Embedding (LLE) [16] is an another classical
nonlinear dimension-reduced approach. This algorithm relies
on the manifold hypothesis, and each node lies on its neigh-
bors. Node features can be obtained from the summation of
neighbor features, so that the algorithm has the ability to pre-
serve the locally linear structure of neighborhood. Although
LLE could preserve the structural information, it could only
be used to undirected graph. LLE includes three main steps:
(1) selecting neighbors for each node; (2) computing the
weight Wij which is the edge weight between the node and
its neighbors:

min 6i||xi −6jWijxj||2, (4)

(3) computing the new low dimensional representation from
weights obtained from step (2), which is expressed as:

min 6i||ui −6jWijuj||2. (5)

When minimizing (5), we can obtain the representation
matrix U . In summary, LLE encodes the local information
at each point into the reconstruction weights of its neighbors
and then uses these weights to compute the low dimensional
embeddings.

3) LAPLACIAN EIGENMAPS
Laplacian Eigenmaps (LE) [45] is a popular approach to
find the low dimensional representation. Similar to the first
step of LLE, LE first constructs a graph G by using the
k nearest neighbors, and then uses the graph G to derive
Laplacian matrix L = D−W, where the weight matrix W
is generated by heat kernel method. The authors defined an

objective function that makes connected points stay closer to
each other, which is expressed as:

6||ui − uj||2Wij = tr(U>LU). (6)

When we minimize the above equation, the new representa-
tion matrix U can be obtained. In addition, TFL methods,
such as Isomap, LLE, and LE, are all just applied for the
undirected graphwithout external node information and focus
on local features of the graph. However, they are not suitable
for large-scale networks because obtaining eigenvector from
large scale matrices has high computational complexity both
in time and space.

IV. DEEP LEARNING-BASED MODELS
We have witnessed the superior performance of deep learning
in many fields, and they have been widely applied for image
classification, speech recognition, and object detection, etc.
The deep architecture can extract latent information layer by
layer from data, which contributes to the performance of data
processing. More precisely, the original data is transformed
by a nonlinear model to a more higher-level feature represen-
tation so as to achieve more abstract representation of data.
There are several deep learning-based NRLmodels [66]–[70]
proposed in recent years. The timeline of some representative
methods of them are illustrated as Fig 2. Even though most
of them are based on advanced models of deep learning,
there have some methods having connections with traditional
feature learning. We will introduce these in the related parts.
In the following, we will focus on reviewing them from three
subsections, as outlined in Table 2.

A. A TAXONOMY OF DEEP LEARNING-BASED NRL
MODELS
The deep learning-based NRL models have different cate-
gories. We assign them into three categories: (1) Edge-based
Modeling Methods, (2) Multi-source Based Modeling Meth-
ods, (3) Subgraphs Based Modeling Methods. As deep
learning-basedNRLmodels are themajor concern in this arti-
cle, we discuss and give a brief summary of them in Table 2.
In the following subsections, We detail the characteristics of
each algorithm belonging to the listed categories and provide
a summary of them.

B. EDGE-BASED MODELING METHODS
Graph-structured data is a complex data type containing
edges and nodes. In real world, graph edge can represent the
link between users and products or links of friends. Lots of
NRL algorithms just consider the structure of the graph, such
as first-order proximity of nodes and second-order proximity
of nodes. We cluster these NRL models by focusing on the
graph structure as edge-based modeling methods. In addi-
tion, there are several NRL models based on Skip-Gram
model [1], which is a powerful model in natural language
processing. Moreover, the random walk approach [83] has
been applied to capture graph structure. To understand these
NRL algorithms deduced from Skip-Gram model, we start
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FIGURE 2. A timeline of some representative network representation learning methods.

TABLE 2. A Summary of NRL Algorithms According to the Information They are Preserving.

with a brief introduction of Word2vec model [1] in this
subsection.

1) Word2vec
Word2vec model [1], [3] is recognized as a powerful tool
in natural language processing. It can reconstruct one-hot
vector representations of words (word embedding). Actually,
the framework of the model is a variant of neural probabilistic
language model with three layers, and the word embedding
representations are the matrices between input layer and hid-
den layer. After that, several literatures [84]–[86] have been
proposed other variants to explain the principle of Word2vec.
Levy et al. [85] pointed out that the neural word embedding
is one kind of implicit matrix factorization. Given training
words set {w1, w2, wt , . . . , wn}, where t is the position in
a text and the aim of Word2vec is to learn an estimated
model:

F(2,wt ,wt−1, . . . ,wt−n+1) = P(wt |wt−1, . . . ,wt−n+1), (7)

where function P is the conditional probability, function F is
the function carried out by using a neural network and its free
parameters, and 2 denotes the feature vector matrix (neural
networkmatrix). The weight matrices can be learned by train-
ing the model when maximizing the empirical conditional
probability of model F:

max
∑
t

F(2,wt ,wt−1, . . . ,wt−n+1). (8)

There are some variants of the model based on the
way of normalization, e.g., softmax normalization and
hierarchical softmax. The word vector is attracting inter-
est due to the feature that semantic similarity words are
located close to each other in the word vector space (rep-
resentation space). In addition, the vectors can be com-
puted by linear mathematical operations, for example,
‘‘king’’−‘‘queen’’=‘‘man’’−‘‘women’’ as shown in Fig. 3.
These intriguing property of the word vector shows that it
contains semantic information existing in the real world.
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FIGURE 3. An example of word vectors embedding in two dimensional
space.

2) DeepWalk
DeepWalk [71] is a NRL algorithm, and it can learn latent rep-
resentation of vertices in networks. The algorithm is the first
generalization of Word2vec to networks. The truncated ran-
dom walk approach is utilized to capture the graph structure,
and then generate a sequence of vertices. However, the ran-
dom walk approach is unbiased, which means it can not con-
duct breadth-first search or depth-first search on graph based
on preferences. That provides a chance to improve the embed-
ding performance by node2vec [5]. The frequency of the
vertex appears in the sequences following power-law distribu-
tions, which is similar to the distribution of words in natural
language. This is the main reason that Word2vec algorithm
can be used to generalize the network-structured data. Given
a randomwalk sequence v1, v2, . . . , vl , l is the length of word
sequence. The training objective of DeepWalk is the same to
the Word2vec algorithm. Given a previous vertex vi, the like-
lihood of observing vertices vi−w, . . . , vi−1, vi+1, . . . , vi+w is
expressed as

P(vi−w, . . . , vi−1, vi+1, . . . , vi+w|vi). (9)

Now, learning an effective vertex representation 8(vi)
(8(vi) = 2T

· vi) becomes an optimization problem:

max log P(vi−w, . . . , vi−1, vi+1, . . . , vi+w|8(vi)). (10)

Different from the form of the adjacency matrix, vertex
vector representation can avoid the data sparse problem,
which can achieve higher computational efficiency. Further-
more, the random walk approach is leveraged to generate
sequences of vertices based on local information. This char-
acteristic enables DeepWalk to run on the distributed systems
so as to meet the requirement of large-scale data processing.

3) Node2vec
Analogous to DeepWalk based on Word2vec, node2vec [5]
algorithm was proposed by extending the Skip-gram archi-
tecture [1] to networks. The algorithm introduced a flexible
neighborhood sampling strategy than DeepWalk, which cap-
tures network structure controlled by two hyperparameters
p and q. They are used to interpolate random walk with
breadth-first sampling or depth-first sampling. Given several

FIGURE 4. Node2vec random walk strategy.

nodes t, v, x1, x2, x3 as shown in Fig. 4, the unnormalized
transition probability between v and x is decided by αpq(t, x)·
wvx. The piecewise function αpq(t, x) is expressed as

αpq(t, x) =


1
p

if dtx = 0

1 if dtx = 1
1
q

if dtx = 2,

(11)

where wvx is the static edge weight and dtx denotes the short-
est path distance between nodes t and x. Actually, the unbi-
ased random walk strategy of DeepWalk is a special case
of node2vec with p = 1 and q = 1. When tuning these
parameters, themodel can trade off the preference of focusing
on the local structure or the global structure and therefore
learns high quality and more information embeddings com-
pared with DeepWalk.

4) LINE
Large-scale Information Network Embedding (LINE) algo-
rithm [6] is not a deep learning based model, but is often
compared with DeepWalk and node2vec [5]. Qiu et al. [87]
pointed out that LINE, Node2vec and LINE can be implicitly
categorized as matrix factorization frameworks. LINE is able
to preserve the first-order proximity and second-order prox-
imity. But it could not preserve the high-order proximity like
node2vec. The first-order proximity refers to the proximity of
two nodes connected with one-hop, and it can be measured by
the joint probability distribution:

p1(vi, vj) =
1

1+ exp(−Eui
>
· Euj)

, (12)

where Eui and Euj stand for the vector representation of the
nodes vi and vj, respectively. The second-order is similar to
the first-order, but considers two nodes with a range of two-
hop. Its proximity is the probability of the context node vj
generated by node vi, i.e.,

p2(vj|vi) =
exp( Euj

′>
· Eui)∑

k exp( Euk
′>
· Eui)

. (13)

205606 VOLUME 8, 2020



K. Sun et al.: Network Representation Learning: From Traditional Feature Learning to Deep Learning

FIGURE 5. The structure of deep network embedding.

The second-order proximity means that nodes with simi-
lar distribution are similar to each other. To preserve the
first-order proximity or the second-order proximity, the opti-
mization objective of the algorithm tries to minimize the loss
functions derived from KL-divergence between probability
distribution and empirical distribution.

5) SDNE
Most NRL algorithms cannot extract the high nonlin-
ear network-structured feature. Wang et al. [67] designed
a semi-supervised model named Structure Deep Network
Embedding (SDNE), which is a representative NRL model
based on deep autoencoder approach [88]. The framework
of SDNE is shown in Fig. 5. Similar to LINE which focuses
on the graph-structured proximity of nodes, SDNE also pre-
serves the first-order and second-order proximity of nodes.
To address these structure-preserving and sparsity problems,
the basic ideas of the algorithm are stated as two parts: (1) uti-
lizing unsupervised component combining with deep autoen-
coder to preserve second-order proximity, which means that
vertices with similar neighborhood stay close in the latent
representation space; (2) using first-order proximity as the
supervised information to make similar vertices more simi-
lar in the embedding space, where the objective function is
based on Laplacian eigenmaps [89]. The loss function for
second-order proximity is given by:

L2nd =

n∑
i=1

||(r̂i − ri)� bi||22, (14)

where r̂i denotes the reconstructed representation, and ri is the
input representation representing the neighborhood structure
of the vertex. Notation � represents the Hadamard product
and bi = {bi,j}nj=1 is used to impose more penalty to the
reconstruction error of non-zero elements than zero elements,
where

bi,j =

{
β > 1 si,j = 0,
1 otherwise.

(15)

SDNE can preserve the local structure of network. The
first-order proximity is adopted to represent the local network

structure and the loss function is expressed as

L1st =

n∑
i,j=1

sij||y
(K )
i − y

(K )
j ||

2
2, (16)

where sij is an instance from the the adjacency matrix S,
and yi is the latent representation of node. As mentioned
above, the objective of the above loss function is to make
similar vertices more similar in the embedding space by
utilizing the supervised information. The two loss functions
are all distance-based model similar to Isomap [15], LE [45],
and LLE [16]. To preserve the first-order and second-order
proximity, the mix loss function combined L1st with L2nd is
defined as

L = L2nd + αL1st + νLreg, (17)

whereLreg is a regularizer term to avoid overfitting. The final
latent representation of vertices can be achieved when the
above mix loss function is minimized.

6) DNGR
Analogous to SDNE depending on the deep neural network
model, Deep Neural Graph Learning (DNGR) [74] is another
NRL algorithm incorporating deep autoencoders with net-
work features. In contrast to algorithms using a truncated
random walk, such as DeepWalk and node2vec, the DNGR
algorithm utilizes random surfing model to overcome the
drawback that they cannot capture weighted graphs and cope
with evolved graphs. Two important contributions are stated
in [74]: (1) designing a random surfing model motivated by
PageRank mode, which can be directly applied for weighted
graphs and product the probabilistic co-occurrence (PCO)
matrix; (2) demonstrating a novel model for accurately learn-
ing vertex representation of weighted graphs. The main ideas
of DNGRmodel are to transform the PCOmatrix captured by
random surfing model to positive pointwise mutual informa-
tion (PPMI) matrix and then feed them into stacked denoising
autoencoder [90] so as to learn the vertex latent representa-
tion. The main processes are shown in Fig. 6.

7) AIDW
Most NRL algorithms ignore the robustness of representa-
tion. To overcome this weakness, The authors [72] proposed
an Adversarial Inductive DeepWalk (AIDW) model consist-
ing of structure preserving component and an adversarial
learning component. AIDW could well preserve structure
information while having robustness to representation. The
trick behind AIDW is introducing the adversarial learning
model including a discriminator and a generator (structure
preserving component) to enhance the representation from
the structure preserving component of AIDW. However,
the adversarial learning model always has high computation
time because it conducts game playing between discriminator
and generator. Here, the discriminator is trained to differ-
entiate between feature vectors and prior samples. The loss
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FIGURE 6. Deep neural graph learning components.

function of discriminator is expressed as:

OD(θ2) = Ez∼p(z)[logD(Z; θ2)]
+Ex[log(1− D(G(x; θ1); θ2))], (18)

where G(∗; ∗) is a generator. Here, the two models improve
their performance by using the minimax game mechanism.

The authors [25] adopted a similar policy with AIDW that
use GAN to enhance the performance of embedding, and pro-
posed a novel NRL algorithm with adversarially regularized
autoencoders (NetRA). Specifically, NetRA involves LSTM
to product positive samples to feed generative model. How-
ever, the regularization of NetRA is static. To further improve
the ability of adversarial training on graph, the authors [91]
developed a framework, which could dynamically regularize
with graph structure.

C. MULTI-SOURCE BASED MODELING METHODS
Besides graph-structured data, there are other types of infor-
mation, including vertex attributes and vertex labels, etc.
We call this information as multi-source of nodes. It is
no doubt that efficiently using these data can enormously
improve the performance of network representation. In recent
years, many studies have focused on the multi-source embed-
ding of graphs, such as considering labels information [92]
and heterogeneous network embedding [23]. In this section,
we will illustrate the NRL algorithms, which consider both
graph structure and the features of nodes.

1) HNE
Research in NRL focuses on homogeneous networks rather
than heterogeneous networks. Chang et al. [23] designed Het-
erogeneous Network Embedding (HNE) algorithm to lever-
age deep learning architectures. Besides, HNEhas several key
advantages than traditional linear embedding models, such as
being able to handle the dynamic networks, being suitable
for network-oriented data mining applications. To transform
different types of data into a uniform representation space,

a relatively linear transform matrix is introduced:

x̃ = U>x, and z̃ = V>z, (19)

where U and V denote the linear transformation matrices,
and x̃ and z̃ are the transformed samples. The way of linear
transformation is often used to transform embedding space
by traditional feature learning based on linear projection like
PCA [40], LLE [16]. Importantly, to represent the similarity
between two data points, the inner product is used in the
projected space. Based on that, to denote relationship of
heterogeneous linkages in networks, a decision function is
designed

d(xi, xj) = s(xi, xj)− tII , (20)

where s(∗, ∗) denotes the inner product of two samples of x
and z respectively., and tII is a bias-based value. Generally
speaking, most representation learning algorithms can be
seen as mathematical optimization problems, and the loss
function of HNE is defined as:

L(xi, xj) = log(1+ exp(−Ai,j · d(xi, xj))). (21)

Actually, the above equation can be regarded as a binary
logistic regression. Another fundamental characteristic of
HNE is a deep structure including a CNN structure with
fully connected layers to learn features of image and text,
and thus it can model complex networks with heterogeneous
components.

There are various deep learning-based methods for deal-
ing with heterogeneous networks. For example, metap-
ath2vec [93] utilizes random walks method to capture
graph structure information and then feeds them to Het-
erogeneousSkipGram to embed vectors. HAN [94] involves
attention mechanism to improve embedding performance.
Zhang et al. [95] proposed a GNN-based heterogeneous net-
works embedding algorithm, namely HetGNN. The authors
consider that GNN could capture the rich neighborhood infor-
mation. Existing approaches focus primarily on static net-
works, while a HIN in reality is usually changing with time.
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Zhang et al. [96] developed a dynamic heterogeneous net-
work embedding algorithm utilizing hierarchical attentions
mechanism. There are some traditional methods for hetero-
geneous network embedding, such as TransN [97] based on
dual-learning mechanism, RHINE [98] based on euclidean
distance and translation-based distance.

2) PLANETOID
In the real world, most datasets are composed of unlabeled
data. How to leverage a large amount of unlabeled data
to improve data analysis performance is still a consider-
able challenge. To represent unlabeled data in the graph,
Yang et al. [75] designed a novel semi-supervised learn-
ing algorithm for graph embedding (Planetoid). The authors
specially developed two variants methods containing trans-
ductive graph embedding and inductive graph embedding.
The transductive graph embedding is applied for predicting
class label and graph context based on the input feature of
observed labeled data and embeddings extracted from graph
structure. The loss function of transductive graph embedding
is expressed as:

−
1
L
6L
i=1 log p(yi|xi, ei)− λE(i,c,γ )log σ (γw>c ei), (22)

where the first term is the probability of predicting labels,
and the second term is the loss function for predicting graph
context. To generalize unobserved instances, the inductive
learning relies on the input feature x and the embedding
works as a parameterized function of the feature of x. Similar
to the loss function of transductive learning, the loss function
here is defined as:

−
1
L
6L
i=1 log p(yi|xi)− λE(i,c,γ )log σ (γw>c h

l1 (xi)). (23)

Compared with Eq. (22), Eq. (23) replaces embedding
of instance ei with embedding hl1 (xi). In addition, Plane-
toid framework is based on feed-forward neural networks,
of which the stochastic gradient descent (SGD) is adopted to
train the model in mini-batch mode.

3) PATHCHY-SAN
From the view that arbitrary graph can be seen as an image,
Niepert et al. [66] proposed a deep learning-based algorithm:
PATHCHY-SAN, for learning arbitrary graph by integrating
CNN. The algorithm opens up a novel perspective that deep
learningmethods can be used to solve graph embedding prob-
lems. The main idea of the algorithm is transforming graph
data to a special form combined with existing convolutional
network components. PATCHY-SAN model contains four
steps: (1) node sequence selection; (2) neighborhood graph
construction; (3) normalizing the extracting neighborhood
graph; (4) combining with existing CNN components, which
is illustrated in Fig. 7. In step (3), in order to optimize graph
normalization, an optimal normalization problem is defined
to find the optimal labeling approach l̂, which can assign
similar structural nodes to the same relative position in the

FIGURE 7. CNN for graph architecture.

adjacency matrices for a given collection of graphs

l̂ = argmin
l

Eg[|dA(Al(G),Al(G′))− dG(G,G′)|], (24)

where g is a collection of unlabeled graphs, l denotes an injec-
tive graph labeling procedure, Al(G) is a unique adjacency
matrix of graph G determined by labeling procedure l, dG
denotes the distance between graphs based on nodes and dA
based on matrices. From the equation, the optimal labeling
produce l̂ can be obtained when the expected difference
between the above two types of distance is minimized.

4) GCNs
Different from the above frameworks based on Word2vec,
Kipf andWelling [22] proposed a semi-supervised graph con-
volutional networks (GCNs) considering graph structure and
node label information. The authors refined and optimized the
previous GCN model proposed by Bruna et al. [99] and suc-
cessfully draw attentions of researchers to graph neural net-
work. This previous GCNs model is based on spectral graph
regularization, which is often used by traditional feature
learning methods like robust PCA [44]. GCNs is a scalable
approach, which can be directly applied for graph-structured
data. The key innovation of the algorithm is introducing
an effective neural network layer-wise propagation rule for
graphs

H(l+1)
= σ (D̃−

1
2 ÃD̃−

1
2H(l)W(l)), (25)

where σ (·) denotes the nonlinear activation function, such as
function tanh,W(l) is the free weight matrix of a layer, and Ã
represents the adjacency matrix of an undirected graph with
added self-connections.H(l) is the matrix of activations in the
lth layer, for example, H0

= X (feature matrix) and Hl
= Z

(The final desired feature matrix). GCNs is a differentiable
generalization of the Weisfeiler-Lehman algorithm [100] as
its propagation rule can be interpreted as a variant of a
hash function of that. To achieve semi-supervised learning,
graph-based regularization [101] is adopted to learn graph
feature, and it includes two steps: (1) getting embedding of
nodes; (2) training classifier on the embeddings.

There are some GCNs-based variant methods for improv-
ing GCNs capability from different aspects. Li et al. [102]
proved that GCNs is actually a special form of Laplacian
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smoothing and then proposed the co-training and self-training
approaches to improve the learning efficiency of GCNs
framework. Chen et al. [103] developed control variate based
algorithms to overcome the receptive field size growing prob-
lem of GCNs so as to arrive comparable convergence speed.
Hamilton et al. [7] designed an improved GCNs model:
GraphSAGEwith learnable aggregation functions rather than
using graph Laplacian, which allows GCNs to apply to a
large graph. Chen et al. [104] further improves the sampling
algorithm based on GraphSAGE and obtain a better com-
putational efficiency to a large graph. There are many other
variant GCNs-based models future enhancing performances
like SGCN [105], mGCN [106], and Deep-GCNs [107].

Inspired by the success of GCNs, several researchers
involved this model to knowledge graph representation.
Schlichtkrull et al. [108] first utilized the GCN and proposed
the R-GCN. The authors designed a matrix transform method
to represent the relations between facts. This method could
address the embedding problem caused by too many types
of relationships. Cai et al. [109] combined the TransE [110]
with GCN and proposed TransGCN, which could be directly
used to link prediction of the heterogeneous relations knowl-
edge graph, while has less parameters than R-GCN [108].
Wang et al. [111] further improved the propagation model,
proposed the logical attention network (LAN). The model
considers the disorder and inequality nature of entities, so as
to well learn relations between the entities and the corre-
sponding neighbors.

5) TransNet
Realizing that there are rich semantic information on edges,
Tu et al. [76] proposed TransNet-based NRL model to
extract social relationships from networks, and the interac-
tions between nodes can be regarded as a translation oper-
ation. Instead of utilizing CNN, the algorithm designed an
auto-encoder framework to learn edge latent representation.
Autoencoder is utilized to reconstruct edge labels and vertex
vectors. These vertex vectors of edges stay in a continued
space and we have

u+ l ≈ v′, (26)

where u and v′ denote the representations of vertices, and l
is the edge representation derived from label set l. To min-
imize the distance d(∗, ∗) at the left and right side of (26),
a hinge-loss is defined as

Ltrans = max(γ + d(u+ l, v′)− d(û+ l̂, v̂′), 0), (27)

where L1 norm is adopted, γ > 0 is a margin hyper-
parameter, and (û, v̂, l̂) denotes a negative sample of orig-
inal variables from the negative sampling set. Similar to
SDNE framework, the deep model used by TransNet for
learning edge representation is deep autoencoder, and the
reconstructed loss function is a distance-based model similar
to LE [45], LLE [16]. The loss function is expressed as

Lrec = ||(s− ŝ)� x||, (28)

where s and ŝ denote input and output, respectively. Finally,
a joint optimization objective is defined by integrating the
loss functions mentioned above

L = Ltrans + α[Lae(l)+ Lae(l̂)]+ ηLreg, (29)

where λ and α are two hyper-parameters to regularize the
importance of different parts of the model.

6) ARGA
Previous works have proved that GCNs is a powerful tool
to represent graph-structured data. Pan et al. [77] proposed
a novel adversarial graph embedding framework, namely
ARGA leveraging GCNs as a graph encoder. Similar to
AIDW, ARGA utilized GAN to enhance robustness of
embedding while preserving structure and node label infor-
mation. To keep both structure and node label information,
the authors developed a variant encoder based on GCNs,
defined as follows:

Z1
= fRelu(X,A|W(0)),

Z2
= flinear(Z,A|W(1)), (30)

whereX represents the node content,A is the graph-structured
information, such as adjacency matrix.

There are some other GAN-based network embedding
algorithms. For example, HeGAN [112] utilize a generator
to produce negative samples so as to achieve better embed-
ding performance for heterogeneous information networks;
Graphite [113] is variational autoencoders based embedding
algorithm while involving iterative message passing proce-
dure to raise performance, etc.

D. SUBGRAPHS-BASED MODELING METHODS
The NRL algorithms mentioned above just seek to address
node embedding. In addition, there are some requirements for
learning the representation of subgraphs or the whole graph,
which refers to a set of nodes and edges, such as protein and
molecules. Subgraphs embedding can be applied for learn-
ing molecular fingerprints [114] and predicting multicellular
function [115], etc. In addition, the fixed-size subgraphs can
be treated as motifs [116], [117] or graph kernel [118]. How-
ever, we will not discuss them but primarily focus on the deep
learning-based NRL model.

1) GGS-NNs
To deal with graph-structured data, Li et al. [78] proposed a
novel graph-based neural network model called Gated Graph
Sequence Neural Networks (GGS-NNs) by extending the
previous related GNNs model [119]. Being different from the
feature learning algorithm GNNs, the modification specially
used gated recurrent units [120] and modern optimization
techniques. In addition, GGS-NN can produce sequence out-
puts, e.g., paths on a graph, rather than a single output.
The basic component of GGS-NNs is GG-NNs containing
three main parts: (1) node annotation process initializes node
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FIGURE 8. GGS-NNs architecture.

representation; (2) propagation model computes node repre-
sentation of each of them; (3) output model, i.e., the model
ov = g(h(T )v xv) maps node representations with their labels to
outputs, where the notations hv and xv denote a representation
of node and node label, respectively. In graph level outputs,
a graph level representation vector is defined as:

hg = tanh(
∑
v∈V

σ (i(h(T )v , xv))� tanh(j(h(T )v , xv))), (31)

where σ (∗, ∗) works as a soft attention mechanism by
deciding the relevant nodes to the current graph level task.
i(∗, ∗) and j(∗, ∗) are neural networks for computing inputs
hv, xv to real-valued vectors. The last two parts are the core
processes, which map the graph to the output. As men-
tioned above, GGS-NNs can produce sequence outputs,
e.g., o(1), o(2), . . . , o(K ), that is different from most graph
representation learning algorithms. The architecture shown
in Fig. 8 contains several GG-NNs operating in sequence to
produce sequence outputs.

There are some new GNN-based models with innovations
of involving new pooling strategies for graph-level represen-
tation. For example, Ying et al. [80] proposed a differentiable
pooling strategy, which can learn hierarchical representations
of graphs but it has the drawback of high computational com-
plexity; Zhang et al. [81] also designed a hierarchical graph
pooling method without parameter. The proposed method has
good performance of keeping key substructures of graph.
Lee et al. [82] designed a pooling method on graph with
involving self attention mechanism. This mechanism could
pilot model focusing on important features like a human.

2) CNN-GRAPHS-FLSF
Generalizing CNN to graph-structured data is always a great
challenge. To overcome this problem, a novel convolutional
neural network model was combined with fast localized spec-
tral filtering for graphs (CNNs-Graphs) in [79]. CNN is a
powerful tool in images, video tasks, and natural language
processing. There are several contributions to generalize the
classical CNN from low dimensional data to high dimen-
sional irregular domains, e.g., social networks and brain con-
nectomes. At first, a novel convolutional filter named fast
localized spectral filter on graphs was proposed by enhancing
the previous GCNs algorithm [99]. The fast localized spectral
filter is a spectral approach based on spectral graph the-
ory [121]. In general, the convolutional filter can be applied
to recognize identical features of data. Spectral approaches
are used here to offer a well-defined localization operator on
graphs in spectral domain [51]. Here, the graph Laplacian
matrix [121] is leveraged as an essential operator in spectral

graph analysis, and the formula definition has been given in
Section 2 Definition 3.

In order to improve the computational efficiency of the
CNN-Graphs model, the polynomial filter is first utilized
to reduce the learning complexity, which can achieve the
same complexity as classical CNN. In addition, to further
reduce the model complexity, Chebyshev expansion [122]
was utilized to overcome the high computational cost caused
by the multiplication with the Fourier basis. Second, Graph
coarsening is a necessary operation because pooling opera-
tion needs a valid group of data (they are neighborhoods for a
graph) and coarsening phase of Graclus multilevel clustering
algorithm [123] was employed to group similar vertices in
graphs. Last, an efficient and fast pooling strategy was pro-
posed by constructing a balanced binary tree and then applied
pooling operation on the rearranged vertices of the graph.

V. APPLICATIONS
There are many NRL algorithms proposed based on deep
learning models. In practice, NRL and network embedding
are commonly used in graph analytic tasks, such as node clas-
sification, link prediction, clustering, and graph visualization.
In this section, we will discuss the applications of these NRL
algorithms in the following.

A. NODE CLASSIFICATION
Classification refers to dividing items into different cate-
gories. In network science, the most common applications in
the graph analysis task include node classification [124] and
graph classification. In addition, node or graph classification
is often used as a benchmark to evaluate the performance
of node embedding. In the node classification application,
labels are able to indicate different information, such as
interest and affiliations. However, due to the limited amount
of labeled data in reality and only a few available labels,
semi-supervised learning is often considered to enhance the
performance of the node classification task [22], [125], or text
classification [75]. The learned latent representation is a
real-value vector, which is convenient to be combined with
traditional classification algorithm to address the problems,
such as multi-label classification [5], [71], [126]. Besides,
Wang et al. [67] proposed a semi-supervised deep embed-
ding algorithm, which can be used for link prediction and
multi-label classification in blog-catalog networks. In het-
erogeneous networks, e.g., social networks, various types of
network data take a great challenge for mining network data.
Most representation learning algorithms just consider net-
work structure. However, network vertices contain rich text
information, which can be incorporated with NRL through
matrix factorization so as to achieve high classification accu-
racy [92]. Another primary application of graph analysis task
is graph classification, which is assigning graphs to several
categories, such as classifying proteins based on biological
function [7], [66], [127].

In order to present the general process of node classi-
fication, and give comparisons of performance with some
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TABLE 3. Node Classification of Wiki Dataset by Different Network
Embedding Algorithms.

representative methods, we briefly conduct a node classifica-
tion on wiki dataset.1 The dataset is a webpage network con-
sisting of 2,405 nodes, 17,981 links, and 20 classes. We uti-
lize an open-source toolkit,2 which packs common methods
and provides flexible parameters to control algorithms. Here,
we evaluate performance with metrics of time consumption,
Micro-F1 score, and Macro-F1 score. The ratio of training
is 0.5. The results are shown in Table 3. As shown in the
table, network embedding can be used to node classification.
Different methods have different performance in terms of
computational efficiency and embedding accuracy.

B. LINK PREDICTION
Another popular application of node embedding is link pre-
diction by finding explicit or implicit links between nodes
in graphs, for example, mining the relationship links in
social networks [6], [76], [128], [129]. Link prediction is
widely used to predict unknown interactions between nodes
to observe links and properties. In addition, it can be used
to recommend items via establishing links between users,
such as predicting affinities between users and movies [130].
Moreover, node embedding transforms a node into real-value
vector, and similar node vectors tend to stay close in the
latent learning space. This intrinsic characteristic helps a lot
in the prediction of missing edges [5], [67] as close nodes are
likely to have connections in the future. Recently, knowledge
graph is becoming a hot topic in the network science domain,
in which predicting missing relations of entities attracts lots
of attention [131]. Predicting unknown interactions between
proteins in computational biology is a fundamental problem,
which can be treated as the link prediction problem in graphs.

C. CLUSTERING
Clustering is a traditional problem of machine learning.
Graph clustering refers to nodes or graphs having similar
affiliations or interests which are densely grouped together in
a cluster. There are numerous applications of node clustering
for community detection [4], text categorization [74], [79],
computational biology, and recommender systems [132], etc.
Because nodes after embedding process are real-valued vec-
tors, density-based clustering is able to leverage the vector
to perform node clustering tasks in graphs [133], [134].

1https://linqs.soe.ucsc.edu/data
2https://github.com/thunlp/OpenNE

Furthermore, graph clustering is a powerful tool for chemical
analysis. For example, it can be used to divide certain wines
based on its chemical analysis information from different
categories [135]. Similar to classification, clustering also can
be utilized to evaluate the performance of representation
learning. In NRL algorithms [6], the empirical experiment
showed that it has achieved high performance compared with
the methods by using the metric of matching authors to the
belonging communities.

D. GRAPH VISUALIZATION
Graph visualization is a great way to help human under-
stand and analyze sophisticated networks. The basic form of
graph visualization is to project high dimensional network
data into a 2D picture, where the same group nodes have
the same color, and different node categories can be easily
distinguished. For example, LINE [6] is able to visualize the
same group authors in the same field, and the data come
from co-authorship networks. There are several benefits of
graph visualization. When a graph is visualized as a 2D
image, it will be easy to reveal the real intrinsic structure
of graphs, such as discovering the hidden structure or find-
ing communities. In real applications, graph visualization
has many varieties of applications through social science
[136], [137] and biology visualization [66]. Furthermore,
similar nodes stay close to each other in the 2D visualiza-
tion figure as well as node clustering. Several researchers
utilized graph visualization to present document categories
in the visual form [67], [124]. Because node embedding
associates with real-value vector, it often connects with
dimension-reduced methods, such as PCA and t-SNE [138],
or other traditional methods.

We visualize 20Newsgroups dataset3 using different NRL
methods, i.e., LE [89], LLE [16], LINE [6], SDNE [67], and
HOPE [128]. Different colors of nodes in pictures represent
different classes. The results are shown in Fig 9. We can see
that nodes with the same colors are clustering together. That
means network embedding could keep the original structural
information of the graph.

E. OTHER APPLICATIONS
Besides the general applications mentioned above, there are
still a number of specific applications. Herein, we briefly give
some examples in the following.

GGS-NNs [78] is a feature learning technique for
graph-structured data. The novel characteristic of the algo-
rithm is that it can produce a sequence of outputs rather
than a single output. Different from the mentioned applica-
tions, this algorithm can be applied for BABI TASK, which
contains 20 testing basic forms of reasoning tasks, such as
deduction, induction, counting, and path-finding, etc. Duve-
naud et al. [114] extended the application of NRL to predict
the properties of new molecules. The algorithm is proposed
based on circular fingerprints and has a better predictive

3http://qwone.com/ jason/20Newsgroups/
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FIGURE 9. Graph visualization of 20Newsgroups dataset.

performance on a series of tasks. Predicting protein func-
tion is an interesting topic of bioinformatics, such as Ohm-
Net [115] leveraging multi-layers tissue networks to predict
multicellular function, which achieved remarkable prediction
accuracy. NRL is also an important way to detect commu-
nity. For example, Li et al. [139] proposed a novel embed-
ding based method for community detection leveraging both
attributes and structure information of graphs, Tu et al. [140]
proposed unified framework for community detection con-
sidering NRL and text modeling.

VI. OPEN ISSUES
Even though NRL is a powerful and general technique for
graph analysis. There still remain lots of concrete open
research problems.

A. LARGE-SCALE GRAPHS MODELING
According to our knowledge, few NRL algorithms can bet-
ter handle large-scale networks, and most of them are just
suitable for small-scale networks rather than that having
hundreds of millions of nodes and links. With large-scale
networks, researchers usually care about computational effi-
ciency and how to combine heterogeneous network structure
and multi-type node information. In addition, with the scale
of graph increasing, the reconstruction vectors of graphs
are becoming vague or inaccurate. That is a big problem
when dealingwith classification of large-scale graphs, andwe
believe that how to deal with large-scale network embedding
still needs further exploration within the domain of NRL in
the future.

B. MODEL DEPTH
Deep learning has achieved a great performance improvement
for image classification, handwriting recognition, etc., and
has been widely applied for network representation learning
in recent years, such as Graph Neural Networks, Graph Con-
volutional Networks, and Graph Autoencoders etc. Although
there are many deep learning-based methods proposed, most
of them are shallow models. Too many layers could cause an
over-smooth problem and could not fully extract features of
graphs.We still lack efficient network embedding approaches
to cope with these problems. There are some NRL works

adopting ideas from deep learning models, such as DenseNet,
graph convolution of different scales. Deep graph learning is
still an open issue for researchers to further study.

C. INTERPRETABILITY
We know that many deep learning models behave as black-
boxes, which causes the problem of interpretability. However,
lots of graph learning methods derived from deep learning
methods need interpretability. For example, graph learning
methods are for recommend system or decision-making sys-
tem. There are few researchers to address this problem with
graph learning. So, interpretability is crucial and even more
challenging as complex characteristics of graph data.

D. ROBUSTNESS TRAINING AND ADVERSARIAL ATTACKS
Most NRL algorithms rely on ideal graph-structured data.
However, in most cases, data are often truncated, miss-
ing, fuzzy, lopsided and we cannot get ideal information.
Few papers are discussing how to well handle robustness
with deep learning-based NRL methods. Even though some
works involve GAN mechanism to enhance the robustness of
embedding, these algorithms are inefficient and only suitable
for specific networks. In addition, deep learning model is
sensitive to adversarial attacks. So, these deep learning-based
NRL methods are inherently unable to overcome the attack
problem. In summary, the robust graph learning techniques
still need to be further explored.

VII. CONCLUSION
In this article, we review the NRL algorithms including TFL
models and deep learning-based models. These NRL algo-
rithms can learn to reconstruct the representation of graphs.
We first give a brief introduction about TFL and then sepa-
rately discuss the NRL algorithms by focusing on the graph
sources (edges and node attributes). There are too many
categories of NRL, and we mainly pay attention to these
deep learning-based models. We propose three taxonomies
of graphs embedding from the deep learning perspective as
shown in Table 2. The most important contributions are the
parts that introduce NRL algorithms. Also, we summarize the
application of graphs embedding in the aspects of classifica-
tion and semi-supervised learning, link prediction, clustering,
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etc. Finally, we emphasize that NRL has great promising
future research directions in the field of network science.
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‘‘Recurrent neural network based language model,’’ in Proc. 11th Annu.
Conf. Int. Speech Commun. Assoc., 2010, pp. 1045–1048.

[21] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, ‘‘Generative adversarial nets,’’ in
Proc. Adv. Neural Inf. Process. Syst., 2014, pp. 2672–2680.

[22] T. N. Kipf and M. Welling, ‘‘Semi-supervised classification with graph
convolutional networks,’’ in Proc. Int. Conf. Learn. Represent., 2016,
pp. 1–14.

[23] S. Chang, W. Han, J. Tang, G.-J. Qi, C. C. Aggarwal, and T. S. Huang,
‘‘Heterogeneous network embedding via deep architectures,’’ in Proc.
21th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2015,
pp. 119–128.

[24] D. Zügner, A. Akbarnejad, and S. Günnemann, ‘‘Adversarial attacks on
neural networks for graph data,’’ in Proc. 24th ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining, 2018, pp. 2847–2856.

[25] W. Yu, C. Zheng, W. Cheng, C. C. Aggarwal, D. Song, B. Zong, H. Chen,
andW. Wang, ‘‘Learning deep network representations with adversarially
regularized autoencoders,’’ inProc. 24th ACMSIGKDD Int. Conf. Knowl.
Discovery Data Mining, Jul. 2018, pp. 2663–2671.

[26] Y. Seo, M. Defferrard, P. Vandergheynst, and X. Bresson, ‘‘Structured
sequence modeling with graph convolutional recurrent networks,’’ in
Proc. Int. Conf. Neural Inf. Process. Cham, Switzerland: Springer, 2018,
pp. 362–373.

[27] A. Bojchevski and S. Günnemann, ‘‘Adversarial attacks on node embed-
dings via graph poisoning,’’ in Proc. Int. Conf. Mach. Learn., 2019,
pp. 695–704.

[28] M. R. F. MendonÇa, A. Ziviani, and A. M. S. Barreto, ‘‘Graph-based
skill acquisition for reinforcement learning,’’ACMComput. Surv., vol. 52,
no. 1, pp. 1–26, Feb. 2019.

[29] W. L. Hamilton, R. Ying, and J. Leskovec, ‘‘Representation learning on
graphs: Methods and applications,’’ IEEE Data Eng. Bulletin., vol. 40,
no. 3, pp. 52–74, 2017.

[30] P. Goyal and E. Ferrara, ‘‘Graph embedding techniques, applications,
and performance: A survey,’’ Knowl.-Based Syst., vol. 151, pp. 78–94,
Jul. 2018.

[31] D. Zhang, J. Yin, X. Zhu, and C. Zhang, ‘‘Network representation learn-
ing: A survey,’’ IEEE Trans. Big Data, vol. 6, no. 1, pp. 3–28, Mar. 2020.

[32] P. Cui, X. Wang, J. Pei, and W. Zhu, ‘‘A survey on network embedding,’’
IEEE Trans. Knowl. Data Eng., vol. 31, no. 5, pp. 833–852, May 2019.

[33] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, ‘‘A comprehen-
sive survey on graph neural networks,’’ IEEE Trans. Neural Netw. Learn.
Syst., early access, Mar. 24, 2020, doi: 10.1109/TNNLS.2020.2978386.

[34] Z. Zhang, P. Cui, and W. Zhu, ‘‘Deep learning on graphs: A sur-
vey,’’ IEEE Trans. Knowl. Data Eng., early access, Mar. 17, 2020,
doi: 10.1109/TKDE.2020.2981333.

[35] D. Bacciu, F. Errica, A. Micheli, and M. Podda, ‘‘A gentle introduc-
tion to deep learning for graphs,’’ Neural Netw., vol. 129, pp. 203–221,
Sep. 2020.

[36] W. Cao, Z. Yan, Z. He, and Z. He, ‘‘A comprehensive survey on geometric
deep learning,’’ IEEE Access, vol. 8, pp. 35929–35949, 2020.

[37] C. Yang, Y. Xiao, Y. Zhang, Y. Sun, and J. Han, ‘‘Heteroge-
neous network representation learning: Survey, benchmark, evalu-
ation, and beyond,’’ 2020, arXiv:2004.00216. [Online]. Available:
http://arxiv.org/abs/2004.00216

[38] Y. Xie, C. Li, B. Yu, C. Zhang, and Z. Tang, ‘‘A survey on dynamic
network embedding,’’ 2020, arXiv:2006.08093. [Online]. Available:
http://arxiv.org/abs/2006.08093

[39] Y. Bengio, A. Courville, and P. Vincent, ‘‘Representation learning:
A review and new perspectives,’’ IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 8, pp. 1798–1828, Aug. 2013.

[40] K. Pearson, ‘‘LIII. On lines and planes of closest fit to systems of points
in space,’’ London, Edinburgh, Dublin Phil. Mag. J. Sci., vol. 2, no. 11,
pp. 559–572, Nov. 1901.

[41] I. S. Dhillon, Y. Guan, and B. Kulis, ‘‘Kernel k-means: Spectral clustering
and normalized cuts,’’ in Proc. 10th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, 2004, pp. 551–556.

[42] H. Zou, T. Hastie, and R. Tibshirani, ‘‘Sparse principal component anal-
ysis,’’ J. Comput. Graph. Statist., vol. 15, no. 2, pp. 265–286, Jun. 2006.

[43] E. J. Candès, X. Li, Y. Ma, and J. Wright, ‘‘Robust principal component
analysis?’’ J. ACM, vol. 58, no. 3, p. 11, May 2011.

[44] N. Shahid, V. Kalofolias, X. Bresson, M. Bronstein, and
P. Vandergheynst, ‘‘Robust principal component analysis on graphs,’’ in
Proc. IEEE Int. Conf. Comput. Vis., Dec. 2015, pp. 2812–2820.

[45] M. Belkin and P. Niyogi, ‘‘Laplacian eigenmaps and spectral techniques
for embedding and clustering,’’ in Proc. Adv. Neural Inf. Process. Syst.,
2002, pp. 585–591.

[46] C.-M. Feng, Y.-L. Gao, J.-X. Liu, J. Wang, D.-Q. Wang, and C.-G. Wen,
‘‘Joint L1/2-norm constraint and graph-Laplacian PCAmethod for feature
extraction,’’ BioMed Res. Int., vol. 2017, pp. 1–14, 2017.

[47] C.-M. Feng, Y.-L. Gao, J.-X. Liu, C.-H. Zheng, and J. Yu, ‘‘PCA based on
graph Laplacian regularization and P-Norm for gene selection and clus-
tering,’’ IEEE Trans. Nanobiosci., vol. 16, no. 4, pp. 257–265, Jun. 2017.

205614 VOLUME 8, 2020

http://dx.doi.org/10.1109/TNNLS.2020.2978386
http://dx.doi.org/10.1109/TKDE.2020.2981333


K. Sun et al.: Network Representation Learning: From Traditional Feature Learning to Deep Learning

[48] D. Sun, H. Liang,M. Ge, Z. Ding,W. Cai, and B. Luo, ‘‘Protein functional
annotation refinement based on graph regularized `1-norm PCA,’’Pattern
Recognit. Lett., vol. 87, pp. 212–221, Feb. 2017.

[49] N. Shahid, N. Perraudin, V. Kalofolias, G. Puy, and P. Vandergheynst,
‘‘Fast robust PCA on graphs,’’ IEEE J. Sel. Topics Signal Process., vol. 10,
no. 4, pp. 740–756, Jun. 2016.

[50] M. Muja and D. G. Lowe, ‘‘Scalable nearest neighbor algorithms for
high dimensional data,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 36,
no. 11, pp. 2227–2240, Nov. 2014.

[51] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst,
‘‘The emerging field of signal processing on graphs: Extending high-
dimensional data analysis to networks and other irregular domains,’’ IEEE
Signal Process. Mag., vol. 30, no. 3, pp. 83–98, May 2013.

[52] A. Beck and M. Teboulle, ‘‘A fast iterative shrinkage-thresholding algo-
rithm for linear inverse problems,’’ SIAM J. Imag. Sci., vol. 2, no. 1,
pp. 183–202, Jan. 2009.

[53] M. Asteris, A. Kyrillidis, A. Dimakis, H.-G. Yi, and B. Chandrasekaran,
‘‘Stay on path: PCA along graph paths,’’ in Proc. Int. Conf. Mach. Learn.,
2015, pp. 1728–1736.

[54] W. Min, J. Liu, and S. Zhang, ‘‘Edge-group sparse PCA for network-
guided high dimensional data analysis,’’ Bioinformatics, vol. 34, no. 20,
pp. 3479–3487, Oct. 2018.

[55] T.-W. Lee, ‘‘Independent component analysis,’’ in Independent Compo-
nent Analysis. Cham, Switzerland: Springer, 1998, pp. 27–66.

[56] B. Park, D.-S. Kim, and H.-J. Park, ‘‘Graph independent component
analysis reveals repertoires of intrinsic network components in the human
brain,’’ PLoS ONE, vol. 9, no. 1, Jan. 2014, Art. no. e82873.

[57] D. López-Barroso, P. Ripollés, J. Marco-Pallarés, B. Mohammadi,
T. F. Münte, A.-C. Bachoud-Lévi, A. Rodriguez-Fornells, and
R. de Diego-Balaguer, ‘‘Multiple brain networks underpinning word
learning from fluent speech revealed by independent component
analysis,’’ NeuroImage, vol. 110, pp. 182–193, Apr. 2015.

[58] D. R. de Paula, E. Ziegler, P. M. Abeyasinghe, T. K. Das, C. Cavaliere,
M. Aiello, L. Heine, C. di Perri, A. Demertzi, Q. Noirhomme,
V. Charland-Verville, A. Vanhaudenhuyse, J. Stender, F. Gomez,
J.-F. L. Tshibanda, S. Laureys, A. M. Owen, and A. Soddu, ‘‘A method
for independent component graph analysis of resting-state FMRI,’’ Brain
Behav., vol. 7, no. 3, 2017, Art. no. e00626.

[59] M. E. J. Newman, ‘‘Spectral methods for community detection and graph
partitioning,’’ Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip.
Top., vol. 88, no. 4, Oct. 2013, Art. no. 042822.

[60] Y. Zhang, E. Levina, and J. Zhu, ‘‘Detecting overlapping communities
in networks using spectral methods,’’ 2014, arXiv:1412.3432. [Online].
Available: http://arxiv.org/abs/1412.3432

[61] Y. Li, F. Nie, H. Huang, and J. Huang, ‘‘Large-scale multi-view spectral
clustering via bipartite graph,’’ in Proc. 29th AAAI Conf. Artif. Intell.,
2015, pp. 2750–2756.

[62] D. Pfau, S. Petersen, A. Agarwal, D. G. T. Barrett, and
K. L. Stachenfeld, ‘‘Spectral inference networks: Unifying deep
and spectral learning,’’ 2018, arXiv:1806.02215. [Online]. Available:
http://arxiv.org/abs/1806.02215

[63] T. Trouillon, J.Welbl, S. Riedel, E. Gaussier, andG. Bouchard, ‘‘Complex
embeddings for simple link prediction,’’ in Proc. Int. Conf. Mach. Learn.,
2016, pp. 2071–2080.

[64] T. Trouillon, C. R. Dance, E. Gaussier, J. Welbl, S. Riedel, and
G. Bouchard, ‘‘Knowledge graph completion via complex tensor factor-
ization,’’ J. Mach. Learn. Res., vol. 18, no. 1, pp. 4735–4772, 2017.

[65] I. Borg and P. Groenen, ‘‘Modern multidimensional scaling: Theory and
applications,’’ J. Educ. Meas., vol. 40, no. 3, pp. 277–280, Sep. 2003.

[66] M. Niepert, M. Ahmed, and K. Kutzkov, ‘‘Learning convolutional neu-
ral networks for graphs,’’ in Proc. Int. Conf. Mach. Learn., 2016,
pp. 2014–2023.

[67] D. Wang, P. Cui, and W. Zhu, ‘‘Structural deep network embedding,’’
in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
Aug. 2016, pp. 1225–1234.

[68] H. Wang, J. Wang, J. Wang, M. Zhao, W. Zhang, F. Zhang, X. Xie,
and M. Guo, ‘‘GraphGAN: Graph representation learning with gener-
ative adversarial nets,’’ in Proc. 32nd AAAI Conf. Artif. Intell., 2018,
pp. 1–8.

[69] S. Kumar, X. Zhang, and J. Leskovec, ‘‘Predicting dynamic embed-
ding trajectory in temporal interaction networks,’’ in Proc. 25th
ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, Jul. 2019,
pp. 1269–1278.

[70] J. Liu, F. Xia, L. Wang, B. Xu, X. Kong, H. Tong, and I. King,
‘‘Shifu2: A network representation learning based model for advisor-
advisee relationship mining,’’ IEEE Trans. Knowl. Data Eng., early
access, Oct. 11, 2019, doi: 10.1109/TKDE.2019.2946825.

[71] B. Perozzi, R. Al-Rfou, and S. Skiena, ‘‘DeepWalk: Online learning of
social representations,’’ in Proc. 20th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, 2014, pp. 701–710.

[72] Q. Dai, Q. Li, J. Tang, and D. Wang, ‘‘Adversarial network embedding,’’
in Proc. 32nd AAAI Conf. Artif. Intell., 2018, pp. 1–8.

[73] H. Hong, X. Li, andM.Wang, ‘‘GANE: A generative adversarial network
embedding,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 7,
pp. 2325–2335, Jul. 2020.

[74] S. Cao, W. Lu, and Q. Xu, ‘‘Deep neural networks for learning
graph representations,’’ in Proc. 13th AAAI Conf. Artif. Intell., 2016,
pp. 1145–1152.

[75] Z. Yang, W. W. Cohen, and R. Salakhutdinov, ‘‘Revisiting semi-
supervised learning with graph embeddings,’’ in Proc. 33rd Int. Conf. Int.
Conf. Mach. Learn., vol. 48, 2016, pp. 40–48.

[76] C. Tu, Z. Zhang, Z. Liu, and M. Sun, ‘‘TransNET: Translation-based
network representation learning for social relation extraction,’’ in Proc.
Int. Joint Conf. Artif. Intell. (IJCAI), Melbourne, VIC, Australia, 2017,
pp. 2864–2870.

[77] S. Pan, R. Hu, G. Long, J. Jiang, L. Yao, and C. Zhang, ‘‘Adversarially
regularized graph autoencoder for graph embedding,’’ in Proc. 27th Int.
Joint Conf. Artif. Intell., Jul. 2018, pp. 2609–2615.

[78] Y. Li, D. Tarlow,M. Brockschmidt, and R. Zemel, ‘‘Gated graph sequence
neural networks,’’ in Proc. Int. Conf. Learn. Represent. (ICLR), 2016,
pp. 1–20.

[79] M. Defferrard, X. Bresson, and P. Vandergheynst, ‘‘Convolutional neural
networks on graphs with fast localized spectral filtering,’’ in Proc. Adv.
Neural Inf. Process. Syst., 2016, pp. 3844–3852.

[80] Z. Ying, J. You, C. Morris, X. Ren, W. Hamilton, and J. Leskovec,
‘‘Hierarchical graph representation learning with differentiable pooling,’’
in Proc. Adv. Neural Inf. Process. Syst., 2018, pp. 4800–4810.

[81] Z. Zhang, J. Bu, M. Ester, J. Zhang, C. Yao, Z. Yu, and C. Wang, ‘‘Hierar-
chical graph pooling with structure learning,’’ 2019, arXiv:1911.05954.
[Online]. Available: http://arxiv.org/abs/1911.05954

[82] J. Lee, I. Lee, and J. Kang, ‘‘Self-attention graph pooling,’’ 2019,
arXiv:1904.08082. [Online]. Available: http://arxiv.org/abs/1904.08082

[83] F. Xia, J. Liu, H. Nie, Y. Fu, L. Wan, and X. Kong, ‘‘Random walks:
A review of algorithms and applications,’’ IEEE Trans. Emerg. Topics
Comput. Intell., vol. 4, no. 2, pp. 95–107, Apr. 2020.

[84] Y. Goldberg andO. Levy, ‘‘Word2vec explained: DerivingMikolov et al.’s
negative-sampling word-embedding method,’’ 2014, arXiv:1402.3722.
[Online]. Available: http://arxiv.org/abs/1402.3722

[85] O. Levy and Y. Goldberg, ‘‘Neural word embedding as implicit
matrix factorization,’’ in Proc. Adv. Neural Inf. Process. Syst., 2014,
pp. 2177–2185.

[86] X. Rong, ‘‘Word2vec parameter learning explained,’’ 2014,
arXiv:1411.2738. [Online]. Available: http://arxiv.org/abs/1411.2738

[87] J. Qiu, Y. Dong, H. Ma, J. Li, K. Wang, and J. Tang, ‘‘Network
embedding as matrix factorization: Unifying DeepWalk, LINE, PTE, and
node2vec,’’ in Proc. 11th ACM Int. Conf. Web Search Data Mining, 2018,
pp. 459–467.

[88] R. Salakhutdinov and G. Hinton, ‘‘Semantic hashing,’’ Int. J. Approx.
Reasoning, vol. 50, no. 7, pp. 969–978, Jul. 2009.

[89] M. Belkin and P. Niyogi, ‘‘Laplacian eigenmaps for dimensionality
reduction and data representation,’’ Neural Comput., vol. 15, no. 6,
pp. 1373–1396, Jun. 2003.

[90] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol,
‘‘Stacked denoising autoencoders: Learning useful representations in a
deep network with a local denoising criterion,’’ J. Mach. Learn. Res.,
vol. 11, no. 12, pp. 3371–3408, Dec. 2010.

[91] F. Feng, X. He, J. Tang, and T.-S. Chua, ‘‘Graph adversarial
training: Dynamically regularizing based on graph structure,’’
IEEE Trans. Knowl. Data Eng., early access, Dec. 5, 2019,
doi: 10.1109/TKDE.2019.2957786.

[92] C. Yang, Z. Liu, D. Zhao, M. Sun, and E. Y. Chang, ‘‘Network represen-
tation learning with rich text information,’’ in Proc. Int. Joint Conf. Artif.
Intell. (IJCAI), 2015, pp. 2111–2117.

[93] Y. Dong, N. V. Chawla, and A. Swami, ‘‘Metapath2vec: Scalable
representation learning for heterogeneous networks,’’ in Proc. 23rd
ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, Aug. 2017,
pp. 135–144.

VOLUME 8, 2020 205615

http://dx.doi.org/10.1109/TKDE.2019.2946825
http://dx.doi.org/10.1109/TKDE.2019.2957786


K. Sun et al.: Network Representation Learning: From Traditional Feature Learning to Deep Learning

[94] X.Wang, H. Ji, C. Shi, B.Wang, P. Cui, P. Yu, and Y. Ye, ‘‘Heterogeneous
graph attention network,’’ 2019, arXiv:1903.07293. [Online]. Available:
http://arxiv.org/abs/1903.07293

[95] C. Zhang, D. Song, C. Huang, A. Swami, and N. V. Chawla, ‘‘Hetero-
geneous graph neural network,’’ in Proc. 25th ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining, Jul. 2019, pp. 793–803.

[96] X. Wang, Y. Lu, C. Shi, R. Wang, P. Cui, and S. Mou, ‘‘Dynamic
heterogeneous information network embedding with meta-path based
proximity,’’ IEEE Trans. Knowl. Data Eng., early access, May 11, 2020,
doi: 10.1109/TKDE.2020.2993870.

[97] Z. Li, W. Zheng, X. Lin, Z. Zhao, Z. Wang, Y. Wang, X. Jian, L. Chen,
Q. Yan, and T. Mao, ‘‘TransN: Heterogeneous network representation
learning by translating node embeddings,’’ in Proc. IEEE 36th Int. Conf.
Data Eng. (ICDE), Apr. 2020, pp. 589–600.

[98] C. Shi, Y. Lu, L. Hu, Z. Liu, and H. Ma, ‘‘RHINE: Relation
structure-aware heterogeneous information network embedding,’’
IEEE Trans. Knowl. Data Eng., early access, Mar. 30, 2020,
doi: 10.1109/TKDE.2020.2982898.

[99] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, ‘‘Spectral networks and
locally connected networks on graphs,’’ in Int. Conf. Learn. Represent.
(ICLR), 2014, pp. 1–14.

[100] B. L. Douglas, ‘‘The Weisfeiler-Lehman method and graph
isomorphism testing,’’ 2011, arXiv:1101.5211. [Online]. Available:
http://arxiv.org/abs/1101.5211

[101] X. Zhu, Z. Ghahramani, and J. D. Lafferty, ‘‘Semi-supervised learning
using Gaussian fields and harmonic functions,’’ in Proc. 20th Int. Conf.
Mach. Learn. (ICML), 2003, pp. 912–919.

[102] Q. Li, Z. Han, and X.-M. Wu, ‘‘Deeper insights into graph convolutional
networks for semi-supervised learning,’’ in Proc. 32nd AAAI Conf. Artif.
Intell., 2018, pp. 1–9.

[103] J. Chen, J. Zhu, and L. Song, ‘‘Stochastic training of graph convolutional
networks with variance reduction,’’ 2017, arXiv:1710.10568. [Online].
Available: http://arxiv.org/abs/1710.10568

[104] J. Chen, T. Ma, and C. Xiao, ‘‘FastGCN: Fast learning with graph con-
volutional networks via importance sampling,’’ 2018, arXiv:1801.10247.
[Online]. Available: http://arxiv.org/abs/1801.10247

[105] T. Derr, Y. Ma, and J. Tang, ‘‘Signed graph convolutional networks,’’ in
Proc. IEEE Int. Conf. Data Mining (ICDM), Nov. 2018, pp. 929–934.

[106] Y.Ma, S.Wang, C. C. Aggarwal, D. Yin, and J. Tang, ‘‘Multi-dimensional
graph convolutional networks,’’ in Proc. SIAM Int. Conf. Data Mining.
Philadelphia, PA, USA: SIAM, 2019, pp. 657–665.

[107] G. Li, M. Müller, A. Thabet, and B. Ghanem, ‘‘DeepGCNs: Can GCNs
go as deep as CNNs?’’ 2019, arXiv:1904.03751. [Online]. Available:
http://arxiv.org/abs/1904.03751

[108] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. Van Den Berg, I. Titov, and
M. Welling, ‘‘Modeling relational data with graph convolutional net-
works,’’ in Proc. Eur. Semantic Web Conf. Cham, Switzerland: Springer,
2018, pp. 593–607.

[109] L. Cai, B. Yan, G. Mai, K. Janowicz, and R. Zhu, ‘‘TransGCN: Cou-
pling transformation assumptions with graph convolutional networks for
link prediction,’’ in Proc. 10th Int. Conf. Knowl. Capture, Sep. 2019,
pp. 131–138.

[110] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko,
‘‘Translating embeddings for modeling multi-relational data,’’ in Proc.
Adv. Neural Inf. Process. Syst., 2013, pp. 2787–2795.

[111] P. Wang, J. Han, C. Li, and R. Pan, ‘‘Logic attention based neighborhood
aggregation for inductive knowledge graph embedding,’’ in Proc. AAAI,
vol. 33, 2019, pp. 7152–7159.

[112] B. Hu, Y. Fang, and C. Shi, ‘‘Adversarial learning on heterogeneous
information networks,’’ in Proc. 25th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, Jul. 2019, pp. 120–129.

[113] A. Grover, A. Zweig, and S. Ermon, ‘‘Graphite: Iterative generative mod-
eling of graphs,’’ in Proc. Int. Conf. Mach. Learn., 2019, pp. 2434–2444.

[114] D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel,
A. Aspuru-Guzik, and R. P. Adams, ‘‘Convolutional networks on graphs
for learning molecular fingerprints,’’ in Proc. Adv. Neural Inf. Process.
Syst., 2015, pp. 2224–2232.

[115] M. Zitnik and J. Leskovec, ‘‘Predicting multicellular function
through multi-layer tissue networks,’’ Bioinformatics, vol. 33, no. 14,
pp. i190–i198, Jul. 2017.

[116] R.Milo, ‘‘Networkmotifs: Simple building blocks of complex networks,’’
Science, vol. 298, no. 5594, pp. 824–827, Oct. 2002.

[117] L. Wang, J. Ren, B. Xu, J. Li, W. Luo, and F. Xia, ‘‘Model: Motif based
network embedding for link prediction,’’ IEEE Trans. Computat. Social
Syst., vol. 7, no. 2, pp. 503–516, 2020.

[118] S. V. N. Vishwanathan, N. N. Schraudolph, I. R. Kondor, and
K. M. Borgwardt, ‘‘Graph kernels,’’ J. Mach. Learn. Res., vol. 11,
pp. 1201–1242, Apr. 2010.

[119] F. Scarselli, M. Gori, A. Chung Tsoi, M. Hagenbuchner, and
G. Monfardini, ‘‘The graph neural network model,’’ IEEE Trans. Neural
Netw., vol. 20, no. 1, pp. 61–80, Jan. 2009.

[120] K. Cho, B. Van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, ‘‘Learning phrase representations using
RNN encoder-decoder for statistical machine translation,’’ in Proc. Com-
put. Sci., 2014, pp. 1–15.

[121] F. R. Chung and F. C. Graham, Spectral Graph Theory, no. 92. Provi-
dence, RI, USA: AMS, 1997.

[122] D. K. Hammond, P. Vandergheynst, and R. Gribonval, ‘‘Wavelets on
graphs via spectral graph theory,’’ Appl. Comput. Harmon. Anal., vol. 30,
no. 2, pp. 129–150, Mar. 2011.

[123] I. S. Dhillon, Y. Guan, and B. Kulis, ‘‘Weighted graph cuts without
eigenvectors a multilevel approach,’’ IEEE Trans. Pattern Anal. Mach.
Intell., vol. 29, no. 11, pp. 1944–1957, Nov. 2007.

[124] S. Pan, J. Wu, X. Zhu, C. Zhang, and Y. Wang, ‘‘Tri-party deep
network representation,’’ in Proc. Int. Joint Conf. Artif. Intell., 2016,
pp. 1895–1901.

[125] X. Huang, J. Li, and X. Hu, ‘‘Label informed attributed network embed-
ding,’’ in Proc. 10th ACM Int. Conf. Web Search Data Mining, 2017,
pp. 731–739.

[126] T. D. Bui, S. Ravi, and V. Ramavajjala, ‘‘Neural graph machines: Learn-
ing neural networks using graphs,’’ 2017, arXiv:1703.04818. [Online].
Available: http://arxiv.org/abs/1703.04818

[127] P. Yanardag and S. V. N. Vishwanathan, ‘‘Deep graph kernels,’’ in Proc.
21th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2015,
pp. 1365–1374.

[128] M. Ou, P. Cui, J. Pei, Z. Zhang, and W. Zhu, ‘‘Asymmetric
transitivity preserving graph embedding,’’ in Proc. 22nd ACM
SIGKDD Int. Conf. Knowl. Discovery Data Mining, Aug. 2016,
pp. 1105–1114.

[129] W. Wang, J. Liu, F. Xia, I. King, and H. Tong, ‘‘Shifu: Deep learning
based advisor-advisee relationship mining in scholarly big data,’’ in
Proc. 26th Int. Conf. World Wide Web Companion. Geneva, Switzerland:
International World Wide Web Conferences Steering Committee, 2017,
pp. 303–310.

[130] R. van den Berg, T. N. Kipf, and M. Welling, ‘‘Graph convolu-
tional matrix completion,’’ 2017, arXiv:1706.02263. [Online]. Available:
http://arxiv.org/abs/1706.02263

[131] M. Nickel, K. Murphy, V. Tresp, and E. Gabrilovich, ‘‘A review of
relational machine learning for knowledge graphs,’’ Proc. IEEE, vol. 104,
no. 1, pp. 11–33, Jan. 2016.

[132] C. Shi, B. Hu, W. X. Zhao, and P. S. Yu, ‘‘Heterogeneous information
network embedding for recommendation,’’ IEEE Trans. Knowl. Data
Eng., vol. 31, no. 2, pp. 357–370, Feb. 2019.

[133] S. Cao, W. Lu, and Q. Xu, ‘‘GraRep: Learning graph representations with
global structural information,’’ in Proc. 24th ACM Int. Conf. Inf. Knowl.
Manage., 2015, pp. 891–900.

[134] S. Wang, J. Tang, F. Morstatter, and H. Liu, ‘‘Paired restricted Boltzmann
machine for linked data,’’ in Proc. 25th ACM Int. Conf. Inf. Knowl.
Manage., Oct. 2016, pp. 1753–1762.

[135] F. Tian, B. Gao, Q. Cui, E. Chen, and T.-Y. Liu, ‘‘Learning deep repre-
sentations for graph clustering,’’ in Proc. 28th AAAI Conf. Artif. Intell.,
2014, pp. 1293–1299.

[136] B. Paul Chamberlain, J. Clough, and M. Peter Deisenroth, ‘‘Neural
embeddings of graphs in hyperbolic space,’’ 2017, arXiv:1705.10359.
[Online]. Available: http://arxiv.org/abs/1705.10359

[137] L. Freeman, ‘‘Visualizing social networks,’’ Social Netw. Data Analytics,
vol. 6, no. 4, pp. 411–429, 2000.

[138] L. van der Maaten and G. Hinton, ‘‘Visualizing data using t-SNE,’’
J. Mach. Learn. Res., vol. 9, no. 2605, pp. 2579–2605, 2008.

[139] Y. Li, C. Sha, X. Huang, and Y. Zhang, ‘‘Community detection in
attributed graphs: An embedding approach,’’ in Proc. 32nd AAAI Conf.
Artif. Intell., 2018, pp. 338–345.

[140] C. Tu, X. Zeng, H. Wang, Z. Zhang, Z. Liu, M. Sun, B. Zhang, and
L. Lin, ‘‘A unified framework for community detection and network
representation learning,’’ IEEE Trans. Knowl. Data Eng., vol. 31, no. 6,
pp. 1051–1065, Jun. 2019.

205616 VOLUME 8, 2020

http://dx.doi.org/10.1109/TKDE.2020.2993870
http://dx.doi.org/10.1109/TKDE.2020.2982898


K. Sun et al.: Network Representation Learning: From Traditional Feature Learning to Deep Learning

KE SUN received the B.Sc. and M.Sc. degrees
from Shandong Normal University, Jinan, China.
He is currently pursuing the Ph.D. degree in soft-
ware engineering with the Dalian University of
Technology, Dalian, China. His research inter-
ests include deep learning, network representation
learning, and knowledge graph.

LEI WANG received the B.Sc. degree in soft-
ware engineering from the Dalian University of
Technology, China, in 2018, where he is currently
pursuing the master’s degree with the School
of Software. His research interests include data
mining, the analysis of complex networks, and
machine learning.

BO XU (Member, IEEE) received the B.Sc. and
Ph.D. degrees from the Dalian University of Tech-
nology, China, in 2007 and 2014, respectively. She
is currently an Associate Professor with the School
of Software, Dalian University of Technology. Her
current research interests include data science, net-
work analysis, and natural language processing.

WENHONG ZHAO (Member, IEEE) received
the Ph.D. degree from Zhejiang University,
Hangzhou, China, in 2002. Since 1991, he has
been with the Zhejiang University of Technology,
Hangzhou, where he is currently a Full Profes-
sor with the Ultraprecison Machining Center. His
research interests include big data, embedded sys-
tems, intelligent systems, and precision machin-
ing.

SHYH WEI TENG (Member, IEEE) received the
Ph.D. degree from Monash University, in 2004.
He held positions at Monash University. He is cur-
rently an Associate Professor and the Deputy Dean
of the School of Engineering, IT and Physical
Sciences, Federation University Australia. He is
also the Residential Aged Care Lead of his Univer-
sity’s partnership in the Australia’s Digital Health
Cooperative Research Centre and also a Selected
Member of the City of Casey Smart City Advisory

Committee. He has published more than 80 refereed research articles. His
research interests include image/video processing, machine learning, and
multimedia analytics.

FENG XIA (Senior Member, IEEE) received the
B.Sc. and Ph.D. degrees from Zhejiang Univer-
sity, Hangzhou, China. He is currently an Asso-
ciate Professor and a Discipline Leader with the
School of Engineering, IT and Physical Sciences,
Federation University Australia. He has published
two books and more than 300 scientific arti-
cles in international journals and conferences. His
research interests include data science, social com-
puting, and systems engineering. He is a Senior
Member of ACM.

VOLUME 8, 2020 205617


	NetworkRepresentationCopyright
	Federation University ResearchOnline
	https://researchonline.federation.edu.au


	NetworkRepresentationLearning

