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Abstract The aggregate subgradient method is developed for solving unconstrained nons-
mooth difference of convex (DC) optimization problems. The proposed method shares some
similarities with both the subgradient and the bundle methods. Aggregate subgradients are
defined as a convex combination of subgradients computed at null steps between two serious
steps. At each iteration search directions are found using only two subgradients: the aggre-
gate subgradient and a subgradient computed at the current null step. It is proved that the
proposed method converges to a critical point of the DC optimization problem and also that
the number of null steps between two serious steps is finite. The new method is tested using
some academic test problems and compared with several other nonsmooth DC optimization
solvers.

Keywords Nonsmooth optimization · Nonconvex optimization · DC optimization ·
Subgradient method

1 Introduction

Consider the unconstrained DC minimization problem{
minimize f (x)
subject to x ∈Rn,

(1)

where f (x) = f1(x)− f2(x), functions f1 and f2 are convex and in general, nonsmooth. Here
Rn is the n-dimensional Euclidean space.
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To date, several methods have been developed to locally solve Problem (1) [9, 15, 19,
21,24,25,33–35]. Some of these methods are extensions of the Difference of Convex Algo-
rithm (DCA) [24, 25, 33, 34] while others can be considered as the extension of the bundle
method for convex optimization [9, 15, 19, 21]. In this paper, a different approach is pro-
posed to develop an algorithm for solving Problem (1). The key element in this approach
is the concept of the aggregate subgradient. Aggregate subgradients have been used to de-
sign nonsmooth optimization algorithms [3, 16, 23]. Although there are different definitions
of these subgradients in all cases they are convex combinations of subgradients from the
current bundle.

The subgradient method is widely used in nonsmooth optimization due to its simple
structure. Its convergence has been proved only for convex problems [1,10,11,29–32]. This
method uses one subgradient and one function evaluation at each iteration and involves
no line search procedure. It is applicable to large-scale problems due to its small storage
requirements.

Bundle methods are efficient methods in nonsmooth optimization (see, [2, 4, 13, 14, 18,
23, 27, 28]). The problem of finding the search direction in these methods is reduced to
a certain quadratic programming subproblem whose size may increase significantly as the
number of variables increases. Various approaches, in particular based on the notion of the
aggregate subgradient, to reduce the size of this subproblem has been proposed in [16, 17,
26]. These approaches allow one to design bundle methods which are applicable to large-
scale problems.

The method introduced in this paper shares some similarities with both the subgradient
and the bundle methods. It is a descent method, uses more than one subgradient at each iter-
ation and involves the line search procedure (similar to bundle methods). On the other hand,
it does not involve any time consuming quadratic programming subproblem to find search
directions (similar to the subgradient methods). The proposed method has a simple struc-
ture, and it is easy to implement. We prove the convergence of this method and demonstrate
its performance using some nonsmooth unconstrained DC optimization test problems.

The paper is structured as follows. In Section 2, the new aggregate subgradient method
is introduced and its convergence is studied. Results of numerical experiments are reported
in Section 3. Section 4 concludes the paper.

Throughout this paper, we use following notations and definitions. The inner product in

Rn is 〈u,v〉=
n
∑

i=1
uivi, and ‖ · ‖ is the associated norm. S1 = {x ∈Rn : ‖x‖ = 1} is the unit

sphere, and B(x;ε) = {y∈Rn : ‖x−y‖< ε} is the open ball centered at x∈Rn. The convex
hull of a set is denoted by “conv”. For a convex function f :Rn→R, its subdifferential at
a point x ∈Rn is [5]

∂ f (x) = {ξ ∈Rn : f (y)− f (x)≥ 〈ξ ,y− x〉 ∀ y ∈Rn}

and its ε-subdifferential is

∂ε f (x) = {ξ ∈Rn : f (y)− f (x)≥ 〈ξ ,y− x〉− ε ∀ y ∈Rn} .

A point x∗ ∈Rn is called a critical point of Problem (1) if

∂ f1(x∗)∩∂ f2(x∗) 6= /0.
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2 The aggregate subgradient method

In this section, we introduce an aggregate subgradient (AggSub) method for solving Problem
(1). For a given number τ > 0 consider the set

Q1τ(x) = conv
⋃

d∈S1

∂ f1(x+ τd), x ∈Rn.

Proposition 1 Let x ∈Rn. The set Q1τ(x) is convex and compact for any finite τ > 0.

Proof The convexity of the set Q1τ(x) follows from its definition. Since the subdifferential
is bounded over any bounded set the set Q1τ(x) is bounded. So is the set

Q̄1τ(x) =
⋃

d∈S1

∂ f1(x+ τd).

Now we prove that the set Q̄1τ(x) is closed. Take any sequence {uk}⊂ Q̄1τ(x) such that uk→
ū as k→∞. This means that there exists the sequence {dk}⊂ S1 such that uk ∈ ∂ f1(x+τdk).
Since the set S1 is compact all limit points of the sequence {dk} belong to this set. Without
loss of generality, assume that dk → d̄ ∈ S1 as k→ ∞. Then the upper semicontinuity of
the subdifferential mapping implies that ū ∈ ∂ f1(x+ τ d̄) and therefore, ū ∈ Q̄1τ(x), which
means that the set Q̄1τ(x) is closed. Thus, the set Q̄1τ(x) is compact. Since a convex hull of
a compact set is also compact it follows that the set Q1τ(x) is compact. ut

Remark 1 Note that the set Q1τ(x) was introduced in [6], where it is called the spherical
subdifferential.

The proof of the following theorem can be found in [5] (see Theorem 2.33).

Theorem 1 Let f :Rn→R be convex with a Lipschitz constant L > 0 at x ∈Rn. Then for
all ε ≥ 0 we have

∂ f (y)⊆ ∂ε f (x) ∀ y ∈ B
(

x;
ε

2L

)
. (2)

Proposition 2 For the set Q1τ(x), x ∈Rn, τ > 0 the following holds:

Q1τ(x)⊆ ∂ε f1(x)

for all ε > 2Lτ .

Proof It is clear that x+ τd ∈ B
(
x; ε

2L

)
for any ε > 2Lτ and d ∈ S1. Then the proof follows

from Theorem 1 and the convexity of ∂ε f1(x). ut

Now take any subgradient v ∈ ∂ f2(x) and construct the set

Qτ,v(x) = {ξ ∈Rn : ξ = u− v, u ∈ Q1τ(x)} .

The convexity of functions f1 and f2 and the subgradient inequality imply that

f (x+ τd)− f (x)≤ τ〈u− v,d〉 ∀ u ∈ ∂ f1(x+ τd) (3)

and therefore,
f (x+ τd)− f (x)≤ τ max

ξ∈Qτ,v(x)
〈ξ ,d〉.
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It follows from Proposition 1 that the set Qτ,v(x) is convex and compact for any finite τ >
0. If 0n /∈ Qτ,v(x) at x ∈Rn, then one can use the set Qτ,v(x) to compute descent directions
of the function f [8]. However, it is not always easy to compute the whole set Qτ,v(x).

Next, we describe the proposed AggSub method. At each iteration of this method, we use
only two elements of the set Qτ,v(x) to compute search directions. The method consists of
inner and outer iterations. The inner iteration contains null steps whereas the outer iteration
involves serious steps. Aggregate subgradients are calculated in the inner iterations.

Algorithm: AggSub method.
Data: σ1 ∈ (0,1) - decrease parameter for τ , σ2 ∈ (0,1] - decrease parameter for the inner iteration

tolerance δ , c1 ∈ (0,1) - search control parameter, c2 ∈ (0,c1] - line search parameter, ε > 0 -
optimality tolerance.

Result: An approximate critical point of Problem (1).
Step 0. (Initialization). Choose a starting point x0 ∈Rn and numbers τ0 > 0, δ0 > 0. Set k = 0.

Outer iteration
Inner iteration

Step 1. (Initialization). Select any d0
k ∈ S1. Compute u0

k ∈ ∂ f1(xk + τkd0
k ) and vk ∈ ∂ f2(xk).

Set ξ 0
k = u0

k − vk, ξ̄ 0
k = ξ 0

k and l = 0.
Step 2. Solve the problem{

minimize ϕ l
k(λ ) = ‖λξ l

k +(1−λ )ξ̄ l
k‖

2

subject to λ ∈ [0,1].
(4)

Let λ̄ l
k be a solution to this problem.

Step 3. Calculate ξ̄
l+1
k = λ̄ l

kξ l
k +(1− λ̄ l

k)ξ̄
l
k . If

‖ξ̄ l+1
k ‖ ≤ δk, (5)

then EXIT inner iterations and go to Step 6.
Step 4. (Search direction). Compute dl+1

k =−‖ξ̄ l+1
k ‖−1ξ̄

l+1
k .

Step 5. If
f (xk + τkdl+1

k )− f (xk)>−c1τk‖ξ̄ l+1
k ‖,

then compute the subgradient ul+1
k ∈ ∂ f1(xk + τkdl+1

k ), set ξ
l+1
k = ul+1

k − vk, l = l + 1
and go to Step 2. Otherwise EXIT inner iterations and go to Step 7.

Step 6. (Stopping criterion). If τk ≤ ε , then STOP since an approximate critical point has been
found. Otherwise, set τk+1 = σ1τk, δk+1 = σ2δk, xk+1 = xk, k = k+1 and go to Step 1.

Step 7. (Line search). Calculate the step-length αk ≥ τk as follows:

αk = argmax
{

α ≥ 0 : f (xk +αdl+1
k )− f (xk)≤−c2α‖ξ̄ l+1

k ‖
}
.

Step 8. Set xk+1 = xk +αkdl+1
k , τk+1 = τk , δk+1 = δk, k = k+1 and go to Step 1.

Remark 2 Note that Problem (4) in Step 2 is solved explicitly. If ξ̄ l
k = ξ l

k , then λ̄ l
k can be

any number from [0,1]. Otherwise, we compute:

λ̂ =
‖ξ̄ l

k‖2−〈ξ l
k , ξ̄

l
k〉

‖ξ̄ l
k‖2 +‖ξ l

k‖2−2〈ξ l
k , ξ̄

l
k〉
.
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Since ξ̄ l
k 6= ξ l

k the denominator never equals to zero and the number λ̂ is well defined. Then

λ̄
l
k =


0, λ̂ < 0,
λ̂ , λ̂ ∈ [0,1],
1, λ̂ > 1.

In the next proposition, we prove that for each outer iteration k ≥ 0 the number of inner
iterations, null steps, in the AggSub method is finite.

Proposition 3 Let
Ck = max

{
‖ξ‖ : ξ ∈ Qτk ,vk(xk)

}
<+∞. (6)

Assume that δk < Ck. Then the inner loop at the k-th iteration of the AggSub method stops
after mk > 0 iterations, where

mk ≤
⌈

2log2(δk/Ck)

log2 C1k

⌉
, C1k = 1− (1− c1)

2(4C2
k )
−1

δ
2
k .

Proof The inner loop in the AggSub method terminates when either the condition (5) or the
condition of the sufficient descent

f (xk + τkdl+1
k )− f (xk)≤−c1τk‖ξ̄ l+1

k ‖ (7)

is met. Let Sl
k = {ξ ∈Rn : ξ = λξ l

k +(1−λ )ξ̄ l
k , λ ∈ [0,1]}. In order to prove this propo-

sition it is sufficient to estimate the upper bound of the number of iterations mk when the
condition (5) occurs. If none of the conditions (5) and (7) are satisfied at the l-th inner iter-
ation, then the new subgradient ξ

l+1
k = ul+1

k − vk computed in Step 5 does not belong to the
set Sl

k. Indeed, according to the definition of ξ̄
l+1
k and the necessary and sufficient condition

for a minimum (see Lemma 5.2.6 in [27]) we have

〈ξ , ξ̄ l+1
k 〉 ≥ ‖ξ̄ l+1

k ‖2 ∀ ξ ∈ Sl
k. (8)

On the other hand, since the condition (7) does not hold we get

f (xk + τkdl+1
k )− f (xk)>−c1τk‖ξ̄ l+1

k ‖.

In addition, it follows from (3) that

f (xk + τkdl+1
k )− f (xk)≤ τk〈ξ l+1

k ,dl+1
k 〉,

therefore, we have
−c1τk‖ξ̄ l+1

k ‖< τk〈ξ l+1
k ,dl+1

k 〉,

which means that
〈ξ l+1

k , ξ̄ l+1
k 〉< c1‖ξ̄ l+1

k ‖2. (9)

Then (8) and the condition c1 ∈ (0,1] imply that ξ
l+1
k 6∈ Sl

k. Therefore, it is proved that
the newly calculated subgradient ξ

l+1
k is not on the segment between ξ̄ l

k and ξ l
k , and by

updating subgradients in this manner, we change the set Sl
k at each inner iteration of the

AggSub method. This means that ξ̄
l+2
k 6= ξ̄

l+1
k . Indeed, if ξ̄

l+2
k = ξ̄

l+1
k , then the optimality

condition (8) would hold also for all ξ ∈ Sl+1
k and since ξ

l+1
k ∈ Sl+1

k we get

〈ξ l+1
k , ξ̄ l+1

k 〉 ≥ ‖ξ̄ l+1
k ‖2
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contradicting (9).
Next, we prove that if none of the stopping criteria is satisfied, then the new aggregated

subgradient ξ̄
l+2
k computed at Step 3 is better than ξ̄

l+1
k in the sense that ϕ

l+1
k (λ̄ l+1

k ) <

ϕ l
k(λ̄

l
k). Since the function ϕ

l+1
k is strictly convex λ̄

l+1
k is its only minimizer. Furthermore,

it follows from
ξ̄

l+2
k = λ̄

l+1
k ξ

l+1
k +(1− λ̄

l+1
k )ξ̄ l+1

k

and ξ̄
l+2
k 6= ξ̄

l+1
k that λ̄

l+1
k > 0. Then we have

ϕ
l+1
k (λ̄ l+1

k ) = ‖ξ̄ l+2
k ‖2 < ϕ

l+1
k (0) = ‖ξ̄ l+1

k ‖2 = ϕ
l
k(λ̄

l
k).

In addition, it is clear that

‖ξ̄ l+2
k ‖2 ≤ ‖tξ l+1

k +(1− t)ξ̄ l+1
k ‖2 ∀t ∈ [0,1].

This means that for all t ∈ [0,1]

‖ξ̄ l+2
k ‖2 ≤ t2‖ξ l+1

k − ξ̄
l+1
k ‖2 +2t〈ξ l+1

k − ξ̄
l+1
k , ξ̄ l+1

k 〉+‖ξ̄ l+1
k ‖2.

It follows from (6) that
‖ξ l+1

k − ξ̄
l+1
k ‖ ≤ 2Ck.

This together with the inequality (9) implies that

ϕ
l+1
k (λ̄ l+1

k ) = ‖ξ̄ l+2
k ‖2 ≤ 4t2C2

k +(1−2t(1− c1))‖ξ̄ l+1
k ‖2

for all t ∈ [0,1]. Let t0 = (1− c1)‖ξ̄ l+1
k ‖2(4C2

k )
−1. It is clear that t0 ∈ (0,1). Therefore, for

t = t0 we get

‖ξ̄ l+2
k ‖2 ≤

(
1− (1− c1)

2(4C2
k )
−1‖ξ̄ l+1

k ‖2
)
‖ξ̄ l+1

k ‖2.

At any l-th iteration, l > 0, where the stopping condition (5) is not met, we have ‖ξ̄ l+1
k ‖> δk.

Then it follows that

‖ξ̄ l+2
k ‖2 <

(
1− (1− c1)

2(4C2
k )
−1

δ
2
k
)
‖ξ̄ l+1

k ‖2.

Let C1k = 1− (1− c1)
2(4C2

k )
−1δ 2

k . It is obvious that C1k ∈ (0,1). Then we have

ϕ
l+1
k (λ̄ l+1

k )<C1kϕ
l
k(λ̄

l
k).

Since ϕ0
k (λ̄

0
k ) = ‖ξ 0

k ‖2 ≤C2
k we get

ϕ
l
k(λ̄

l
k)<Cl

1kC
2
k .

Thus, the inequality (5) is satisfied if

Cmk
1k C2

k ≤ δ
2
k ,

which must happen after at most mk iterations, where

mk ≤
⌈

2log2(δk/Ck)

log2 C1k

⌉
.

This completes the proof. ut
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Next, we prove that the AggSub method generates a sequence which converges to a
critical point of Problem (1). For a given x0 ∈Rn consider the level set

L (x0) = {x ∈Rn : f (x)≤ f (x0)}.

Theorem 2 Assume that the set L (x0) is bounded for any starting point x0 ∈Rn, and ε = 0
in the AggSub method. Then any limit point of the sequence {xk} generated by this algorithm
is a critical point of Problem (1).

Proof The AggSub method consists of inner and outer iterations. In all inner iterations, the
values of τk and δk remain unchanged. Furthermore, these parameters remain unchanged in
Steps 7 and 8 of outer iterations. Their values are updated in Step 6 when the condition (5) is
satisfied. According to Proposition 3 the number of steps in inner iterations is finite for the
given τk and δk. As an outcome of the inner loop either Step 6 or Steps 7 and 8 are executed.

First, we show that for each unchanged values of τk and δk the number of executions of
Steps 7 and 8 is finite. Indeed, in this case the line search is carried out in Step 7 and we
have

f (xk+1)− f (xk)≤−c2τk‖ξ̄ l+1
k ‖, ‖ξ̄ l+1

k ‖> δk.

Therefore, we get
f (xk+1)− f (xk)≤−c2τkδk. (10)

Since the set L (x0) is compact and the function f is continuous it follows that

f∗ := inf { f (x) : x ∈Rn}>−∞. (11)

If the values of τk and δk are unchanged infinitely many times then (10) implies that f (xk)→
−∞ as k→ ∞. This contradicts the condition (11). Thus, τk and δk are updated in Step 6
after a finite number of outer iterations, and we denote the number of these iterations by kp,
p = 1,2 . . .. During the iteration kp, the condition (5) is satisfied meaning that

‖ξ̄kp‖ ≤ δkp ∀ p = 1,2, . . . ,

where ξ̄kp = ξ̄ l
kp

for some l > 0. It is obvious that ξ̄kp ∈Qτkp ,vkp
(xkp) which, in turn, implies

that
min

ξ∈Qτkp ,vkp
(xkp )
‖ξ‖ ≤ δkp ,

or
min

u∈Q1τkp
(xkp )
‖u− vkp‖ ≤ δkp . (12)

In addition, it follows from Proposition 2 that

Q1τkp
(xkp)⊆ ∂ε̄ f1(xkp) (13)

for all ε̄ > 2Lτkp , where L> 0 is the Lipschitz constant of the function f1 over the set L (x0).
Take any c0 > 1 and consider ε̄kp = 2c0Lτkp . Then the inequality (12) and the inclusion (13)
imply that

min
u∈∂ε̄kp

f1(xkp )
‖u− vkp‖ ≤ δkp ,

which means that
∂ε̄kp

f1(xkp)∩B(vkp ;δkp) 6= /0,
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or
∂ε̄kp

f1(xkp)∩B(∂ f2(xkp);δkp) 6= /0. (14)

Here
B(∂ f2(xkp);δkp) = ∂ f2(xkp)+B(0n;δkp).

Since the set L (x0) is compact and xkp ∈L (x0) for any p > 0 the sequence {xkp} has at
least one limit point. For the sake of simplicity, assume that xkp → x̄ as p→ ∞. The upper
semicontinuity of the subdifferential mapping and the fact that τkp ,δkp ↓ 0 as p→ ∞ imply
that for γ > 0 there exists pγ > 0 such that

∂ε̄kp
f1(xkp)⊂ ∂ f1(x̄)+B(0n;γ), ∂ f2(xkp)⊂ ∂ f2(x̄)+B(0n;γ) and δkp < γ

for all p > pγ . Then for all p > pγ we have

B(∂ f2(xkp);δkp)⊆ B(∂ f2(xkp);γ)⊆ ∂ f2(x̄)+B(0n;2γ).

Taking into account (14) we get(
∂ f1(x̄)+B(0n;γ)

)⋂(
∂ f2(x̄)+B(0n;2γ)

)
6= /0.

Since γ > 0 is arbitrary we have

∂ f1(x̄)∩∂ f2(x̄) 6= /0.

This completes the proof. ut

3 Numerical results

In this section, we compare the proposed AggSub method with three other nonsmooth op-
timization methods. The collection of test problems used in our experiments consists of
34 nonsmooth unconstrained DC optimization problems. The problems are formulated by
modifying various convex problems introduced in [16, 19, 20] and using different number
of variables. We use 100 (extra small), 200 (small), 500 (medium) and 1000 (large)1 More
details of these problems can be found in [7]. The number of starting points in these prob-
lems varies from 3 to 5 and they are also given in [7]. We present only the results of those
problems where all the solvers converge to the same critical point. Overall, this leaves us
150 test examples. variables in our tests.

Solvers and Parameters. We use the following solvers in our experiments:

– DCA is an implementation of the well-known difference of convex algorithm (DCA) [25].
The DCA, in general, finds critical solutions to the DC optimization problems. In the
implementation of the DCA, we apply the proximal bundle method MPBNGC [27] to
solve the convex subproblem.

– PBDC [19] is a proximal bundle method for DC optimization. Similar to the DCA, the
PBDC is guaranteed to find critical solutions to the DC optimization problems.

– SolvOpt [22] is an implementation of Shor’s r-algorithm [32]. Unlike the other methods
considered in this paper, the SolvOpt is not utilizing the DC structure of the problem.

1 We include 148 large test problems since none of four methods succeeded in solving two other problems.



Aggregate subgradient method 9

– AggSub is an implementation of the proposed algorithm. The following parameters were
used in our experiments:

{
σ1 = 0.2, σ2 = 1.0, δ0 = 10−7,

ε = 10−5, c1 = 0.2, c2 = 0.05,
and τ0 =

{
10.0, n < 200,
50.0, n≥ 200.

The Fortran 95 source code of AggSub is available at http://napsu.karmitsa.fi/aggsub/.
All experiments are performed on an Intelr Core™ i5-2400 CPU (3.10GHz, 3.10GHz) run-
ning under Windows 7. To compile the codes, we use gfortran, the GNU Fortran compiler.
All the solvers are used with the default settings of the codes.

We say that a solver finds a solution with respect to a tolerance ε > 0 if

fbest− fopt
1+ | fopt|

≤ ε,

where fbest is the best value of the objective function obtained by the solver and fopt is the
best known (or optimal) solution. Otherwise, the solver fails. We set ε = 10−3. In addition
to the usual stopping criteria of the solvers, we terminate the experiment if the elapsed CPU
time exceeds half an hour per problem.

Results. The results are analyzed using the performance profiles (Figures 1 – 2) introduced
in [12]. We compare the performance of the solvers both in terms of the computational
time (CPU time) and the number of the subgradient evaluations (evaluations for short) —
we use the sum of the number of the subgradient evaluations of the DC components in the
AggSub, the PBDC and the DCA, while for the SolvOpt we use the number of the subgradient
evaluations of the objective function since this solver does not utilize the DC structure of the
problem. The number of function evaluations follows the similar trends with the number of
the subgradient evaluations with all the solvers, and thus, we omit these results.

In the performance profiles, the value of ρs(τ) at τ = 0 shows the ratio of the test prob-
lems for which the solver s is the best — that is, the solver s uses the least computational
time or evaluations — while the value of ρs(τ) at the rightmost abscissa gives the ratio of the
test problems that the solver s can solve — that is, the robustness of the solver s. In addition,
the higher is a particular curve, the better is the corresponding solver.

It is clear from Figure 1 that the AggSub method is the most efficient and accurate with
all sizes of the test problems — it is superior to other three methods in the large problems
with n ≥ 200. Furthermore, the AggSub method becomes more robust in comparison with
other methods as the number of variables increases. With the number of evaluations, as
usual for any subgradient method, the AggSub method has rather high numbers as can be
seen in Figure 2 (a) and (b). This means that the AggSub method might not be efficient when
function and subgradient evaluations are expensive. However, this observation is faded out
with the larger problems (see Figure 2 (c) and (d)). The reason for most of the failures with
the SolvOpt is its inaccuracy while the PBDC usually stops far away from the solution due to
the time limit. From these results, we conclude that, overall, the AggSub method is efficient
and robust.
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(c) n = 500
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Fig. 1 CPU time.
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(c) n = 500

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s(
)

AggSub
DCA
PBDC
SolvOpt

(d) n = 1000

Fig. 2 Number of subgradient evaluations.

4 Concluding remarks

In this paper, an aggregated subgradient method is developed to solve unconstrained nons-
mooth difference of convex (DC) optimization problems. The method combines the strengths
of the well-known subgradient and bundle methods. It is a descent method, easy to imple-
ment and does not involve solving of any time-consuming quadratic programming subprob-
lem, since only two subgradients are utilized to calculate search directions. In addition, the
proposed method is globally convergent to a critical point.

The aggregated subgradient method was tested using large-scale nonsmooth uncon-
strained DC programming problems and compared with several other nonsmooth DC pro-
gramming solvers. Results demonstrate that the method is efficient and robust for solving
nonsmooth DC optimization problems, although in some cases it may require a large number
of function and subgradient evaluations. The proposed method outperforms other methods
when the evaluation of the objective function and its subgradient is not expensive.
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4. Bagirov, A.M., Karasözen, B., Sezer, M.: Discrete gradient method: Derivative-free method for nons-
mooth optimization. Journal of Optimization Theory and Applications 137(2), 317–334 (2008)
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