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Abstract 

The degree/diameter problem is to determine the largest possible number of vertices in a 
graph of given maximum degree and given diameter. 

It is well known that the general upper bound, called Moore bound, for the order of 
such graphs is attainable only for certain special values of degree and diameter. Finding 
better upper bounds for the maximum possible number of vertices, given the other two 
parameters remains an enormous fundamental open problem. Constructions producing 
large graphs of given degree and diameter provide lower bounds for the maximum possible 
number of vertices, given the other two parameters. Since, in general, the gaps between 
the upper and lower bounds on the maximum possible order are very big, there seems to 
be a good chance of finding new largest graphs, both by graph theoretical techniques and 
by using clever computer searches. 

In this paper we give an overview of the current state-of-the-art of the degree/diameter 
problem for undirected graphs and we present some of the open problems in this area. 
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1. Introduction 

The topology of a network (such as a telecommunication, multiprocessor, or local area net
work, or a social network, etc.) is usually modelled by a graph in which vertices represent 
'nodes' (stations or processors or people) while edges stand for 'links' or other types of con
nections. In the design of such networks, there are a number of features that must be taken 
into account. The most common ones, however, seem to be limitations on the vertex degrees 
and on the diameter of the network. The network interpretation of the two parameters is: 
The degree of a vertex is the number of connections attached to a node, while the diameter 
indicates the largest number of links that must be traversed in order to a vertex from any 
other. We wish to find a network that is in some sense optimal. Usually, this means finding 
the maximum possible number of nodes in a network, given maximum degree and given the 
diameter. In graph theoretical terms, we have 

• Degree/Diameter Problem: Given positive integers A and D, find the largest possible 
number of vertices 'nt::.,D in a graph of maximum degree A and diameter :s; D. 
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Research activities related to the degree/diameter problem fall into two main areas. On one 
hand, there are proofs of the non-existence of graphs of order close to the general upper 
bounds, known as the Moore bounds. On the other hand, there is a great deal of activity in 
the constructions of large graphs, which also gives better lower bounds on nt::..,D. 

In this paper we give an overview of the problem and we present a short list of some of the 
interesting open problems in the area. For a more complete reference, see the survey by Miller 
and Siniii [22]. 

2. Moore graphs and graphs close to Moore 

The Moore bound is a general upper bound on the largest possible order (i.e., the number of 
vertices) nt::..,D of a graph G of maximum degree ~ and diameter D. Clearly, if ~ = 1 then 
D = 1 and nl,1 = 2; so from now on we assume that ~ 2 2. 

Let v be a vertex of the graph G and let ni, for 0 ~ i ~ D, be the number of vertices at 
distance i from v. Since a vertex at distance i 2 1 from v can be adjacent to at most ~ - 1 
vertices at distance i + 1 from v, we have ni+1 ~ (~- l)ni' for all i such that 1 ~ i ~ D - 1. 
Since ni ~ ~, it follows that ni ~ ~(~ _1)i-l, for 1 ~ i ~ D. Therefore, 

D 

nt::..,D = :L ni < 1 + ~ + ~(~ - 1) + ... + ~(~ - I)D-l 
i=O 

= 1 + ~(1 + (~-1) + ... + (~_I)D-I) 
= {I + ~ (t::..b.12~-1 if ~ > 2 

2D + 1 if ~ = 2 
(1) 

The right-hand side of (1) is called the Moore bound and is denoted by Nft::..,D. A graph whose 
order is equal to the Moore bound Mt::..,D is called a Moore graph. It is easy to see that such 
a graph is necessarily regular of degree ~. 

The study of Moore graphs was initiated by Hoffman and Singleton [19], who considered 
Moore graphs of diameter 2 and 3, and proved that if D = 2 then Moore graphs exist for 
~ = 2,3,7 and possibly 57 but for no other degrees. For D = 3 they showed that the Moore 
graph is the heptagon (for ~ = 2). The proofs use the eigenvalues and eigenvectors of the 
adjacency matrix of graphs. 

The fact that Moore graphs do not exist for the parameters ~ 2 3 and D 2 3 was shown by 
Damerell [10] and, independently, also by Bannai and Ito [1]. 

To summarise, for diameter D = 1 and degree ~ 2 1 Moore graphs are the complete graphs 
Kt::..+1' For diameter D = 2, Moore graphs are the cycle C5 for degTee ~ = 2, the Petersen 
graph for degree ~ = 3, and the Hoffman-Singleton graph for degree ~ = 7. For diameter 
D 2 3 and degree ~ = 2, Moore graphs are the cycles on 2D + 1 vertices C2D+1' 

Since Moore graphs only exist for few values of degree and diameter, we are interested in 
studying the existence of large graphs which are somehow 'close' to Moore graphs. Since 
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we are dealing with the three parameters order, degree and diameter, to get close to Moore 
graphs, we may consider relaxing each of the parameters in turn. 

How to relax the order is simple: the task is to look for graphs of given diameter and maximum 
degree whose order is 'close' to the Moore bound, that is, graphs of order ]\i[t::..,D - 6, for 6 
small. The parameter 6 is called the defect. If 6 ~ ~ then the defect is referred to as 'small' 
and the graph is sometimes called an almost Moore graph. 

Relaxing the degree: This could be dealt with in several ways so that a graph could be 
considered to be close to a Moore graph if it has Mt::..,D vertices, diameter D and if 

1. there is the smallest possible number 6 of vertices with degree ~ + 1, while the rest of 
the vertices all have degree at most ~; or 

2. there is one vertex of degree ~ + 6, 6 as small as possible, while the rest of the vertices 
all have degree at most ~; or 

3. the average degree of a vertex is ~ + 6, 6 as small as possible. 

Finally, let us consider relaxing the diameter requirement. Diameter is essentially a coarse 
measure of the distances between the vertices in a graph. For a finer measure, we could 
use 'eccentricity'. The eccentricity of a vertex v, denoted e(v), is defined as the maximum 
length of the shortest path between v and any other vertex. Note that the diameter of the 
graph is equal to the maximum eccentricity over all vertices of the graph. So, relaxing the 
diameter could mean, for example, that a graph is close to Moore graph if it has Mt::.. ,D 
vertices, maximum degree ~ and if 

1. there is the smallest possible number 6 of vertices with eccentricity equal to D + 1, while 
the rest of the vertices all have eccentricity D; or 

2. there is one vertex of eccentricity D + 6, 6 as small as possible, while the rest of the 
vertices all have eccentricity at most D; or 

3. the average eccentricity of a vertex is D + 6, 6 as small as possible. 

In this paper we will concentrate only on the first meaning of 'closeness' of a graph to a Moore 
graph. From now on, for convenience, by a (~, D)-graph we will understand any graph of 
maximum degree ~ and of diameter at most D; if such a graph has order Mt::..,D - 8 then it 
will be referred to as a (~, D)-graph of defect 6. 

Erdos, Fajtlowitcz and Hoffman [13] proved that, apart from the cycle C4, there are no graphs 
of degree ~, diameter 2 and defect 1, that is, of order one less than the Moore bound. This 
was later generalized by Bannai and Ito [2], and also independently by Kurosawa and Tsujii 
[21], ~o all diameters. Hence, for all ~ 2 3, there are no (.6., D)-graphs of defect 1, and 
for ~ = 2 the only such graphs are the cycles C2D . It follows that, for ~ 2 3, we have 
nt::..,D ~ Mt::..,D - 2. 
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Next, we will discuss the case of defect & = 2. When ~ = 2, the (~, D)-graphs of defect 2 are 
the cycles C2D-I. For ~ 2: 3, there are only five (~, D)-graphs of defect 2 known at present: 
two (3, 2)-graphs of order 8, one (4, 2)-graph of order 15, one (5, 2)-graph of order 24 and one 
(3, 3)-graph of order 20. The last three graphs were found by Elspas [12]; and are depicted in 
Fig.!. Thus we have n4,2 = 15, n5,2 = 24, and n3,3 = 20. 

(i) (4,2)-graph of order 15 (ii) (3,3)-graph of order 20 

(iii) (5,2)-graph of order 24 

Figure 1: Examples of graphs of order Md,k - 2. 

In [24, 25], Nguyen and Miller proved that graphs of diameter 2 and defect two do not exist 
if ~ 2: 8 and even and ~ == 2 (mod3); and that graphs of diameter 2 and defect 2 also do not 
exist for odd ~ 2: 7 such that (~2 - 1)[1/2(~ - 3)(~2 + ~ + 4) + ~ + 2] is not a multiple of 
5. They conjecture 

Conjecture (Miller and Nguyen, 2005). For ~ 2: 6 there are no graphs of maximum degree 
~, diameter 2 and defect 2. 
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Little is known about graphs with defects larger than 2. Jorgensen [20] proved that a graph 
with maximum degree 3 and dianleter D 2: 4 cannot have defect 2, which shows that n3,D ::; 

M3,D - 3 if D 2: 4. Miller and Simanjuntak [23] proved that a graph with maximum degree 
4 and diameter D 2: 3 cannot have defect 2 which shows that n4,D ::; lvJ4,D - 3 if D 2: 3. 
Nguyen and Miller [25] consider graphs with diameter 2 and defect 3. They prove that such 
graphs must contain a certain induced subgraph, which in turn leads to the proof that, for 
degree 6 and diameter 2, the largest order of a vertex-transitive graph is 32. 

3. Constructions of large graphs 
In an effort to improve the lower bound on the maximum possible order of graphs for given 
D and ~, we try to construct graphs with order close to the Moore bound. 

The undirected de Bruijn graph of type (t, k) has vertex set V formed by all sequences of 
length k, the entries of which are taken from a fixed 'alphabet' consisting of t distinct letters. 
In the graph, two vertices a and b -say a = (aI, a2, ... , ak) and b = (bl' b2, ... , bk)- are joined 
by an edge if either ai = bi+l for 1 ::; i ::; k - 1, or if aHI = bi , for 1 ::; i ::; k - 1. Obviously, 
the undirected de Bruijn graph of type (t, k) has order t k and degree 2t. These graphs give, 
for any ~ and D, the lower bound 

Some improvements on this bound have been obtained. For example, ignoring directions in 
the digraph construction of Baskoro and Miller [3] produces graphs of even maximum degree 
~ and diameter at most D whose order is equal to 

A substantial improvement was achieved by Canale and Gomez [9] by exhibiting, for an 
infinite set of values of ~, families of graphs which show that 

for D congruent with -1, 0, or 1 (mod 6). 

For small values of D we can obtain much better results th~n in the general case. The best 
result is given by Brown [8] for diameter 2, using finite projective geometries: for each ~ such 
that ~ - 1 is a prime power, 

nb.2>~2-~+1. , -
Erdos, Fajtlowicz and Hoffman [13], and Delorme [11], improved this bound to 

nb.,2 2: ~ 2 
- ~ + 2 

if ~ - 1 is a power of 2. 

(2) 

(3) 

Several techniques have been introduced for the construction of large graphs of given degree 
and diameter. The most important earlier techniques seem to be the star product of Bermond, 

243 



Delorme and Farhi [4, 5] and compounding of graphs introduced by Bermond, Delorme and 
Quisquater [6]. 

More recent results include a technique by Gomez, Pelayo and Balbuena [18] who produce 
large graphs of diameter six by replacing some vertices of a Moore bipartite graph (see [16]) 
of diameter six with complete graphs which are joined to each other and to the rest of the 
graph using a special graph of diameter two. The degree of the constructed graph remains 
the same as the degree of the original graph. In an extension to this work, Gomez and Miller 
[17] presented two new generalizations of two large compound graphs. 

Other methods have been designed in an effort to construct large (~, D)-graphs for relatively 
small values of ~ and D. Possibly the most promising is the voltage assignment technique, 
introduced by Brankovic et al. [7] (see also [15]). 

Additionally, in many cases the largest currently known (~ , D)-graphs have been found with 
the assistance of computers. See, for example, the recent paper by Exoo [14]. 

Table of the current largest known graphs for degree ~ ::; 16 and diameter D ::; 10 can be 
found on the website "http:j jmaite71.upc.esjgrup_de_grafsjgrafsjtaula_delta_d.html" 
which is updated regularly by Francese Comellas. 

To highlight the size of the problem, we tabulate below, in Tables 1,2 and 3, the outstanding 
potential values of orders larger than those obtained so far, for diameter up to 10, and for 
maximum degree ~ = 3,4 and 5, in turn. The 'Largest Known' column gives the order of the 
current largest known graph of the given maximum degree ~ and diameter D. Graphs with 
larger number of vertices may possibly exist; the possible larger orders are tabulated under 
the heading 'Possible Larger Values'. Note that every value listed in this column represents 
an open problem. Furthermore, similar tables could of course be made also for degrees ~ > 5. 

D Largest Known Possible Larger Values 
2 10 -

3 20 -

4 38 39 - 44 
5 70 71 - 92 
6 132 133 - 188 
7 190 191 - 380 
8 330 331 - 764 
9 570 571 - 1,532 
10 950 951 - 3,068 

Table 1: Possible values of largest orders for degree ~ = 3. 

Since the gaps between the best current lower and upper bounds for the maximum order of 
graphs with given degree and diameter are huge, we believe that there is a great scope for 
improving the lower bound by finding better construction techniques as well as by using clever 
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D Largest Known Possible Larger Values 
2 15 -

3 41 42 - 51 
4 96 97 - 159 
5 364 365 - 483 
6 740 741 - 1,435 
7 1,155 1,156 - 4,371 
8 3,080 3,081 - 13,119 
9 7,550 7,551 - 39,363 
10 17,604 17,605 - 118,095 

Table 2: Possible values of largest orders for degree ~ = 4. 

D Largest Known Possible Larger Values 
2 24 -

3 72 73 - 104 
4 210 211 - 424 
5 558 559 - 1,704 
6 2,760 2,761 - 6,824 
7 5,500 5,501 - 27,304 
8 16,956 16,957 - 109,224 
9 53,020 53,021 - 436,904 
10 164,700 164,701 - 1,747,626 

Table 3: Possible values of largest orders for degree ~ = 5. 
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search algorithms. 
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