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Abstract Intrusion detection systems (IDSs) are devices or
software applications that monitor networks or systems for
malicious activities and signals alerts/alarms when such ac-
tivity is discovered. However, an IDS may generate many
false alerts which affect its accuracy. In this paper, we de-
velop a cyber-attack triage algorithm to detect these alerts
(so-called outliers). The proposed algorithm is designed us-
ing the clustering, optimization and distance-based approaches.
An optimization based incremental clustering algorithm is
proposed to find clusters of different types of cyber-attacks.
Using a special procedure a set of clusters is divided into two
subsets: normal and stable clusters. Then, outliers are found
among stable clusters using an average distance between
centroids of normal clusters. The proposed algorithm is eval-
uated using the well-known IDS data sets — Knowledge
Discovery and Data mining (KDD) Cup 1999 and UNSW-
NB15 — and compared with some other existing algorithms.
Results show that the proposed algorithm has a high detec-
tion accuracy and its false negative rate is very low.
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1 Introduction

Despite extensive research in intrusion detection [10,20,24],
there have been a significant rising trend of cyber-attacks
on government, companies, hospitals and universities [1,36,
40]. There are different types of devices and mechanisms
within the security environment to protect the networks from
malicious attacks. Two of the most popular and significant
security countermeasures are intrusion detection system (IDS)
and firewall (FW) [3,17]. The IDS detects possible intru-
sions and generates alerts once any suspected intrusion is
determined. The FW looks outwardly for intrusions in order
to stop them from happening. It screens network traffic and
limits access between networks to prevent intrusion.

An IDS is considered a tool to be used in conjunction
with the FW to increase the network systems security. One
of the major problems associated with the IDSs is that they
generate a large number of false alerts [9,10,12,22,37,38]
which reduces their efficiency and accuracy. Therefore, a
further research in the IDSs is still a topic worth considera-
tion and new approaches are imperative to effectively defend
networks against the attacks.

A false alert is either a false positive alarm or a false
negative alarm [22]. In the first state, a false alert is an erro-
neous signal triggered by an IDS on an activity which is a
normal network traffic. In the second state, the IDS identifies
an activity as legitimate request while the activity is actually
an attack. This case is the most serious and dangerous state.
Most of the false negative alerts are outliers and could be
harmful for victims. Therefore, outliers should be identified
accurately to safe guard against undetected attacks.

An outlier is an inconsistent object (malicious activity/
attack) characterized by its dissimilarity from other objects
(legitimate/normal activities) in a given data set. It is ex-
pected that outliers are far from the normal objects having
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high density of neighbors, and outliers’ behaviors are ex-
ceptional compared to the normal objects.

In this paper, we develop an algorithm for detection of
outliers using optimization based incremental clustering ap-
proach. The algorithm clusters alerts generated by the IDS
and determines outlier clusters (false alerts). The algorithm
starts from one cluster and gradually adds more clusters. Us-
ing this algorithm, we find the sequences of the so-called
“stable” clusters which are not changing or changing in-
significantly in two or more successive iterations. The use
of stable clusters of alerts reduces false alerts, resulting in
higher reliability of the IDS. The incremental nature of the
clustering algorithm and the use of optimization approach
allow us to accurately identify isolated clusters which in the
case of the IDS are mostly outliers. This fact makes the pro-
posed algorithm well suited for the IDS.

It is anticipated that outliers are among stable clusters
which are far away from most of normal objects. Moreover,
we expect that outliers are usually clusters with the small
number of objects. This gives us another filter to determine
the set of candidate clusters for being outliers. The rest of
clusters are considered as “normal”. Using the average dis-
tance between centers of normal clusters we define a thresh-
old and apply it to find a proximity of candidate clusters.
Such clusters are accepted as outliers if the distance between
their centers and the closest normal cluster’s center is more
than this threshold. We evaluate the performance of the pro-
posed algorithm using the well-known data sets for IDSs —
KDD Cup 1999 and UNSW-NB15 — and compare it with
some concurrent algorithms. The main contributions of this
paper are:

– Development of a cyber-attack triage algorithm based on
optimization, incremental clustering and distance-based
approaches;

– Evaluation and comparative analysis of the proposed al-
gorithm.

The rest of the paper is organized as follows. Section 2
provides a brief overview of the literature on IDS, outliers
detection and incremental clustering algorithms. The pro-
posed outliers detection algorithm is introduced in Section
3. Numerical results are reported in Section 4 and Section
5 contains some concluding remarks and possible directions
for future research.

2 Background and overview

In this section, first we present a brief overview of some ex-
isting algorithms for intrusion and outliers detection. Then,
we provide a brief description of the incremental clustering
algorithm.

2.1 Intrusion detection systems

The IDS is categorized as the network-based (NIDS) or the
host-based (HIDS) [16,20,31]. In the first category, header
fields of different network protocols are used to detect intru-
sions. The NIDS evaluates information captured from a net-
work and analyzes the stream of packets which travel across
the network. The HIDS focuses mainly on monitoring and
analyzing the internals of a computing system as well as the
network packets on its network interfaces.

In general, there are two approaches for intrusion de-
tection [20,26,31]: signature-based and anomaly-based. The
signature-based intrusion detection (SID) is designed on the
basis of known attack patterns. In this case the new attack
is checked for the presence of these patterns. If a match is
discovered, then an alert indicating the existence of the cor-
responding attack is produced. The anomaly-based intrusion
detection (AID) analyzes the deviation from normal activi-
ties. If a significant deviation is detected, then an alert is pro-
duced along with information about the nature of the devia-
tion. Since the SID relies mainly on well-known intrusions
it is incapable of detecting new intrusions [15,33].

Machine learning based IDS (ML-IDS) is one of the
main techniques of the AID which aims to provide a learn-
ing based system to discover cyber-attacks (see [25] and ref-
erences there in). Some of advantages of the ML-IDS over
the conventional SID are [25]: it is easy to bypass the SID
by doing slight variations in an attack pattern whereas the
ML-IDS can detect the attack variants as it learns the behav-
ior of the traffic flow; the CPU time is low to moderate in
the ML-IDS as there is no need to analyze all signatures of
the database as done by the SID; the ML-IDS can capture
the complex properties of an attack behavior and improve
the detection accuracy than the conventional SID. Further-
more, the ML-IDS are much faster than the later methods.
Although the ML-IDS techniques are capable of detecting
new cyber-attacks they suffer from different drawbacks [18,
22,38,41].

2.2 Outlier detection algorithms

There are various methods introduced in the literature to de-
tect outliers including density-based, distance-based, clus-
tering and optimization-based. The density-based approach
works on the assumption that the density around a normal
data object is similar to the density around its neighbors
while the density around an outlier is considerably differ-
ent to the density around its neighbors. The density-based
method proposed in the paper [7] finds the outliers based on
the density of a local neighborhood. It assigns a local outlier
factor to a data object using k neighbors which measures the
degree of an object being an outlier. The authors in the paper
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[34] developed a generalization of the density-based outlier
detection method using the kernel density estimation.

The distance-based method assumes that the normal data
objects have a dense neighborhood and the outliers are far
apart from their neighbors. The local distance-based outlier
factor algorithm is proposed in the paper [43]. This algo-
rithm uses the relative location of an object to its neighbors
to determine the degree to which the object deviates from its
neighborhood. The authors in the paper [44] introduced the
self-adaptive neighborhood method to detect outliers. This
method finds multiple valued neighbors of each data object
by considering some characteristics of all objects.

The clustering-based methods find outliers as a side prod-
uct of clustering algorithms [14,42]. They consider too dis-
tant clusters of small sizes as outliers. However, the noise
is usually tolerated or ignored when these methods produce
the result [19]. Different hybrid methods are proposed based
on the combination of the clustering and other approaches
[13,30,32]. For instance, the method proposed in [30] uses a
combination of the clustering and distance-based approaches.
It applies the k-means clustering algorithm on the initial set.
Then, outliers are selected by applying the distance-based
method using a certain threshold set by the user.

A multi-objective optimization algorithm to detect out-
liers is developed in [11]. This algorithm is based on the
Particle Swarm Optimization method. The authors in the pa-
per [28] introduced two algorithms for the outliers detection
which involve solving the min-max optimization problems.
The paper [35] presents the method of minimizing the sum
of infeasibilities as a non-iterative outlier removal algorithm.
An outliers detection algorithm based on the combination of
the k-means clustering and binary optimization approaches
is proposed in [13].

Most of the methods mentioned above are only able to
find local solutions which can be far away from global solu-
tions. Therefore, these methods are not continuously learn-
ing the behavior thereby leading to the possibility that a new
intrusion will not be detected and/or a false alarm may be
generated [8,31]. The proposed algorithm in this paper is
able to find global or near global solutions, and therefore, it
detects false alerts more accurately. The algorithm is a com-
bination of the clustering, optimization and distance-based
approaches. We apply the incremental clustering algorithm
whose usage helps to solve two main problems: (i) to find
accurate solutions to clustering problems; (ii) to identify the
sequences of stable clusters which leads to determining the
set of false alerts (outliers). Next, we present this algorithm
briefly and refer to references [5,6,29] for more details.

2.3 Incremental clustering algorithm

Let A be a set of finite objects (points, records) a1, . . . ,am,
where ai ∈ Rn for i = 1, . . . ,m. The hard clustering problem

is the distribution of these objects into a given number k
clusters A j 6= /0, j = 1, . . . ,k such that

A j
⋂

Al = /0, for j, l = 1, . . . ,k , j 6= l, and A =
k⋃

j=1

A j.

The cluster A j is identified by its center x j ∈Rn, j = 1, . . . ,k.
The problem of finding these centers is called the k-clustering
problem and is formulated as [4]

{
minimize fk(x1, . . . ,xk)

subject to x = (x1, . . . ,xk) ∈ Rnk,
(1)

where

fk(x1, . . . ,xk) =
1
m

m

∑
i=1

min
j=1,...,k

‖x j−ai‖2.

In the incremental clustering algorithm, a data set is static
and clusters are computed incrementally. The algorithm starts
with the calculation of the center for the whole data set and
gradually adds one cluster center at each iteration. This al-
gorithm involves the so-called auxiliary clustering problem
to generate a set of starting cluster centers. Assume that the
solution (x1, . . . ,xk−1) to Problem (1) for k− 1 clusters is
known. In order to solve the k-clustering problem we apply
the special procedure introduced in [29] to generate a set Sk

1
of starting points for the k-th cluster center.

The auxiliary clustering problem is solved starting from
each point of Sk

1. As a result we obtain a set Sk
2 of stationary

points of the auxiliary clustering problem. In the next step
of the incremental algorithm each point from the set Sk

2 is
added to the set of k−1 cluster centers from the previous it-
eration to obtain a starting point for solving the k-clustering
problem (1). To solve this problem, the modified global k-
means algorithm [4] is applied and a set of stationary points
Sk

3 is obtained. The best solution among these points is cho-
sen to be a solution to the k-clustering problem. This algo-
rithm terminates when the required number of clusters are
computed. The incremental algorithm in addition to the k-
clustering problem solves also all intermediate l-clustering
problems, l = 1, . . . ,k−1. Such an algorithm allows one to
find a good quality solution to clustering problems.

3 The proposed algorithm for detection of outliers

In this section, we design an algorithm for the detection of
outliers generated by IDSs. In order to do so we introduce
the notion of stable clusters and give some definitions.
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3.1 Notations and definitions

Let
A1

p−1, . . . ,A
p−1
p−1 and A1

p, . . . ,A
p
p

be the cluster distributions found by the clustering algorithm
at the iterations p− 1 and p, respectively. Take any cluster
At

p, t ∈ {1, . . . , p} and consider the sets:

Āl
t = Al

p−1

⋂
At

p, l = 1, . . . , p−1.

Define the numbers:

sl
t =

card(Āl
t)

card(Al
p−1)

, l = 1, . . . , p−1, t = 1, . . . , p,

and a threshold α1 ∈ (0,1]. Here card() is the number of
objects in a set. Let s̄t = max{s1

t , . . . ,s
p−1
t }, t = 1, . . . , p.

Definition 1 Stable cluster(s). If s̄t ≥ α1, then the cluster
At

p is called 1-step stable at the iteration p with respect to
the iteration p− 1. By extending this notion we define also
a q-step stable cluster at the p-th iteration (p > q) which are
1-step stable clusters over the last q iterations.

It is expected that all outliers are among the stable clus-
ters with small cardinalities. Next, we give the definition of
a candidate outlier cluster. Let α2 ∈ (0,1) be a given suffi-
ciently small number and A1, . . . ,Ak be a k-partition of the
set A.

Definition 2 Candidate outlier cluster. The cluster A j is called
a candidate outlier if

card(A j)≤ α2m.

All clusters which are not candidate outliers are called “nor-
mal” clusters.

Let k̄ be a number of normal clusters, k̄ ≤ k. Further-
more, let A j and A ĵ be two normal clusters with the centers
x j and x ĵ, respectively. The Euclidean distance between cen-
ters of these two clusters is defined as

d(x j,x ĵ) =
n

∑
i=1

(
(x j

i − x ĵ
i )

2)1/2
.

Definition 3 Average distance. The average distance dave
for the collection of k̄ normal clusters is

dave =
2

k̄(k̄−1)

k̄

∑
j=1

k̄

∑
ĵ> j

d(x j,x ĵ).

Definition 4 Outlier cluster. The candidate outlier cluster is
called an outlier if the distance between its center and the
center of the closest normal cluster is greater than the aver-
age distance dave.

Now, we are ready to introduce the incremental cluster-
ing algorithm for outliers detection (ICAOD).

3.2 The proposed algorithm ICAOD

In the ICAOD, we first determine the distributions of data
objects into a given number of clusters applying the algo-
rithm described in Subsection 2.3. Then we find stable clus-
ters using Definition 1 and select candidate outliers among
them by applying Definition 2. The rest of clusters which
are not candidate outliers are considered as normal clusters.
Using centers of normal clusters, we calculate the average
distance. After that, we compute the distance between the
centers of each candidate outlier and the closest normal clus-
ter. If this distance is greater than the average distance found,
then the candidate outlier is identified as an outlier. We con-
tinue this process until the sets of outliers in two consec-
utive iterations of the incremental algorithm coincide. The
proposed algorithm is given in its step-form in Algorithm 1,
and its flowchart is presented in Figure 1.

Algorithm 1 Incremental clustering algorithm for outliers
detection (ICAOD).
Input: Data set A, maximum number of clusters k≥ 2, α1 ∈ (0,1] and
α2 ∈ (0,1).

Output: Collection of outlier clusters.

Step 1. (Initialization). Compute the center x1 ∈ Rn of whole data ob-
ject A. Set l := 2.

Step 2. (Computation of a set of solutions of the auxiliary clustering
problem). Apply the procedure from [29] to find the set Sl

1 ⊂ Rn of
starting points for solving the l-th auxiliary clustering problem. Then
find the set Sl

2 ⊂Rn of solutions to the auxiliary problem using starting
points y ∈ Sl

1.

Step 3. (Computation of a set of cluster centers). For each y∈ Sl
2 select

(x1, . . . ,xl−1,y) as a new starting point, apply the modified global k-
means algorithm to solve the l-th clustering problem (1) for k = l. Let
Sl

3 ⊂ Rnl be a set of solutions to this problem.

Step 4. (Computation of the best solution). Compute values of the ob-
jective clustering function fk for k = l at each point from the set Sl

3.
Find the best solution (x1, . . . ,xl)∈Rnl providing the least value of this
function and the corresponding cluster distribution Dl

1 = {C1, . . . ,Cl}.
Step 5. (Determination of stable clusters). Determine stable clusters
from the set Dl

1 according to Definition 1 for a given α1. Let Dl
2 be the

set of stable clusters.

Step 6. (Determination of candidate outliers and normal clusters). For
a given α2, apply Definition 2 to determine the set Dl

3 of candidate
outlier clusters. Define the set Dl

4 of normal clusters as Dl
4 = Dl

1 \Dl
3.

Step 7. (Computation of the average distance). Compute the average
distance dave using Definition 3 and the set Dl

4.

Step 8. (Determination of outlier clusters). Determine the set Dl
5 of

outlier clusters from the set Dl
3 according to Definition 4.

Step 9. (Stopping criterion 1). If the set Dl
5 coincides with the set Dl−1

5 ,
then stop.

Step 10. (Stopping criterion 2). Set l := l +1. If l ≤ k, then go to Step
2. Otherwise, stop.
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Initialization.

Compute the center x1 ∈ Rn of
whole data set A. Set l := 2.

Computation of a set of
solutions of auxiliary
clustering problem.

Find the set Sl
1 ⊂ Rn of

starting points for solving l-th
auxiliary clustering problem.
Then find the set Sl

2 ⊂ Rn of
solutions to auxiliary problem
using starting points y ∈ Sl

1.

Computation of a set
of cluster centers.
For each y ∈ Sl

2 select
(x1, . . . , xl−1, y) as a new 

starting point, apply modified 
global k-means algorithm to 

solve l-th clustering problem (1)
for k = l. Let Sl

3 ⊂ Rnl be a set of 
solutions to this problem.

Computation of
the best solution.

Compute values of objective
clustering function fk for k = l

at each point from the set
Sl
3. Find the best solution

(x1, . . . , xl) ∈ Rnl providing
the least value of this function

and corresponding cluster
distribution Dl

1 = {C1, . . . , Cl}.

Determination of
stable clusters.

Determine stable clusters among
clusters in set Dl

1 according to
Definition 1 for a given α1. Let
Dl

2 be the set of stable clusters.

Determination of candidate
outliers and normal clusters.

Given α2, apply Definition 2 to
determine the set Dl

3 of candidate
outliers. Define the set Dl

4 of
normal cluster as Dl

4 = Dl
1 \Dl

3.

Computation of
average distance.

Compute the average dis-
tance dlave applying Defini-
tion 3 and using the set Dl

4.

Determination of
outlier clusters.

Determine the set Dl
5 of out-

lier clusters from the set Dl
3

according to Definition 4.

Stopping
condition1:

Set Dl
5

coincides with
set Dl−1

5 ?

Set l = l + 1.

Stopping
condition2:

l ≤ k?
STOP

Yes

No

Yes

No

Fig. 1 Incremental clustering algorithm for outliers detection

3.3 Computational complexity of the proposed algorithm

To analyze the complexity of Algorithm 1, we estimate only
the total number of distance calculations used by this algo-
rithm. This is due to the fact that the algorithm involves dis-
tance calculations and additionally only simple operations to
compute cluster centers. In order to select all starting points
from the set Sl

1 at Step 2 one needs O(m2) distance calcula-
tions. Let s1 be a cardinality of the set Sl

1. Then the number
of distance calculations to find the set Sl

2 is O(mts1) where t
is the maximum number of iterations used by the algorithm
for solving the auxiliary problem. To compute the set Sl

3 in
Step 3 one needs O(lmTs2) distance calculations. Here, T
is the maximum number of iterations used by the modified
global k-means algorithm among all starting points from the
set Sl

2, and s2 is the cardinality of the set Sl
2. Note that t� T .

We do not calculate any distance in Step 4. Moreover, Defi-
nitions 1 and 2 do not require any distance calculations and
therefore, in Steps 5 and 6 we do not calculate distances.
The number of distance calculations in Steps 7 and 8 is esti-
mated as O(l2). Since l ≤ k and s1,s2 ≤ m we conclude the
total number of distance calculations in Algorithm 1 can be
estimated as O(km2T ).

4 Numerical experiments

Using two well-known labeled data sets widely applied for
the evaluation of IDSs in the literature, “KDD Cup 1999”
and “UNSW-NB15”, we present the performance of the pro-
posed algorithm ICAOD and compare it with the following
algorithms:

• Outlier detection methods mentioned in Section 2:

– Density-based methods: Local Outlier Factor (LOF), Ker-
nel Density Estimation Outlier Score (KDEOS);

– Distance-based methods: Local Distance-based Outlier
Factor (LDOF), Natural Neighbor (NAN);

– Hybrid methods: Combination of Clustering and Distance-
based (CCD), Optimization based Clustering (OC).

•ML-IDS algorithms mentioned in [25]:

– Artificial Neural Network (ANN);
– Random Forest (RF);
– Support Vector Machines (SVM).

We use the following common performance measures in
our experiments:

T PR =
T P

T P+FN
, FNR = 1−T PR,

FPR =
FP

FP+T N
, T NR = 1−FPR, (2)

where

– True Positives (T P): malicious activity successfully clas-
sified as malicious;

– True Negatives (T N): normal activity successfully clas-
sified as normal;

– False Positives (FP): normal activity being classified as
malicious;

– False Negatives (FN): malicious activity incorrectly clas-
sified as normal activity.

Note that an algorithm has a high ability of detecting the
cyber attacks if it has a high true positive rate (T PR) and
low false positive/negative rates (FPR/FNR).

In addition, we use the performance measure “balanced
accuracy (BCR)” in the experiments. The reason for choos-
ing the BCR rather than the regular accuracy is due to the
better performance of the former measure in data sets where
the number of different types of attacks is significantly dis-
proportional. The BCR, the proportion of true results, is de-
fined as

BCR =
1
2
(T PR+T NR). (3)
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4.1 Implementation of algorithms

The ICAOD is implemented in Fortran 95 and compiled
using free compiler gfortan. We use R implementations of
other algorithms, the outlier detection algorithms are avail-
able in [23], and the ML-IDS techniques are available in
“GitHub” [2]. The computational experiments are carried
out on a machine with 2.50 GHz Intel(R) Core(TM) i5-3470S
and 8 GB of RAM and are based on the off-line evaluations.

In the ICAOD, where we apply the clustering algorithm
to determine a distribution of data objects into a given num-
ber k of clusters, we utilize the parameters that were used
in [29]. We set the maximum number of clusters k = 120 to
allow the algorithm to reach the maximum possible purity.
The other parameters in the ICAOD are α1 and α2. The first
parameter is used to determine stable clusters. Note that this
parameter should be chosen closer to 1 since it is required
that a big portion of a cluster does not change over two suc-
cessive iterations of the incremental algorithm. The exper-
iments show that the optimal value is α1 = 0.9: the values
greater than this do not change the list of stable clusters; the
values smaller than 0.9 increase the number of stable clus-
ters and, consequently, the number of outliers which lead to
an increase in the rate of false positives.

Our experiments show that the value of the parameter
α2 cannot be greater than 0.03 as this allows the algorithm
to choose clusters with a big portion of objects as candidate
outliers which are not. In order to find the optimal value of
this parameter, we select different values of α2 ≤ 0.03 and
find the candidate outliers corresponding to each of these
values (see Figure 2). It can be observed from this figure
that α2 = 0.005 is the optimal value: the values greater than
this add more clusters to the list of candidate outliers which
are not outliers and, therefore, increase the number of false
positives; the values smaller than 0.005 remove some im-
portant outliers from the list of candidate outliers and, thus,
increase the number of false negatives. The optimal values
of these parameters, α1 = 0.9 and α2 = 0.005, are the same
in both training and testing phases.

98 1 outlier outlier outlier outlier
99 11 outlier outlier outlier outlier

100 3 outlier outlier outlier outlier

FP 0 0 0
FN 19 6 4
TP 71 84 86
TN 10 10 10

TPR 0.788889 0.933333 0.955556
FNR 0.211111 0.066667 0.044444
FPR 0 0 0
TNR 1 1 1

alpha2 0.0005 0.0015 0.0015 0.005 0.01 0.015 0.02
FNR 0.211111 0.066667 0.044444 0 0 0 0
FPR 0 0 0 0 0.3 0.4 0.5

FNR FPR
0.0005 0.211111 0
0.0015 0.066667 0
0.0015 0.044444 0

0.005 0 0
0.01 0 0.3

0.015 0 0.4
0.02 0 0.5

0.025 0 0.5
0.03 0 0.6

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.005 0.01 0.015 0.02 0.025 0.03

FP
R 

&
 F

NR

FPR FNR

α2

Fig. 2 Dependency of rates of false positive/negative on parameter α2

4.2 Experiments using KDD Cup 1999

First, we give the brief description of this data set. Then, we
present our experiments using this data.

4.2.1 KDD Cup 1999

The data set Knowledge Discovery and Data mining (KDD)
Cup 1999 is available in the UCI machine learning reposi-
tory [21]. This data set contains a variety of intrusions sim-
ulated in a military network. The corrected KDD data set
has 42 features (35 numeric and 7 symbolic), where 4 fea-
tures among the symbolic ones are nominal. To use this data
in our numerical experiments, we converted the symbolic
values into numeric ones. The last feature in the data set in-
dicates if an alert is normal or attack. There are 22 different
types of attacks. Each attack belongs to one of four main cat-
egories: denial of service (DOS), unauthorized access from
a remote machine (R2L), unauthorized access to local su-
peruser (root) privileges (U2R) and surveillance and other
probing (PROB). The total number of records is 4,000,000.
In our experiments, we create 4 subsets of the data set KDD
Cup 1999 using its 4 main categories of attacks: U2R, DOS,
R2L and PROB. The details of these subsets are given in Ta-
ble 1, where mA and mN denote the number of data points in
Anomalous and Normal activities, respectively.

Table 1 Description of subsets chosen from KDD Cup 1999

Subset Anomalous Normal
Category Type mA mN

1 U2R bufferoverflow 30 10
2 DOS teardrop 979 200
3 R2L warezclient 1020 210
4 PROB nmap 2316 500

4.2.2 Purity of clusters obtained by ICAOD

Each cluster may contain points from different classes. The
purity gives the ratio of the dominant class size in the cluster
to the cluster size itself (in percents). A large purity value
implies that the cluster is a “pure” subset of the dominant
class.

Let the data set A be a composed of the classes {C1, . . . ,Cq},
and a clustering algorithm finds clusters {A1, . . . ,Ak} in this
data set. The purity of the cluster Ap is defined as follows
[39]:

purity(Ap) =
1
|Ap| max

j=1,...,q
|Ap∩C j|×100, p = 1,2, . . . ,k.

Results for the purity of clusters obtained by the ICAOD
using the data set KDD cup 1999 are presented in Figure 3,
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where in brackets we present the cluster number (iteration)
and the corresponding value of purity. Red dots indicate the
cluster numbers between which the purity is changed sig-
nificantly. We can see that the purity changes drastically be-
tween iterations 54 and 55, considerably between iterations
55 to 68 and also 68 to 114 of the incremental clustering
algorithm. This is due to the fact that the algorithm divides
large classes to get clusters with the better purity.

(54,68)

(55,90) (68,94) (114,99)

0

20

40
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80

100

0 20 40 60 80 100 120

Pu
rit
y

Clusters

Fig. 3 Number of clusters vs. purity of clusters

4.2.3 Stable clusters generated by ICAOD

The maximum number of clusters computed by the ICAOD
is 120. According to results for the purity presented in the
previous subsection we consider a cluster stable if its con-
tent does not change significantly after the 54-th iteration
with respect to some tolerance. The incremental clustering
algorithm starts to decompose large clusters after its 54-th it-
eration and improves the purity of clusters significantly. All
small and remote clusters are not changed after this iteration.
Therefore, all the stable clusters are among those obtained
in the first 54 iterations of the algorithm.

We present the stable clusters generated by the ICAOD
for the first 54 clusters in Figures 4 and 5. In these figures,
x−y shows that the cluster x stays stable over the last y iter-
ations (y = 1,2, . . . ,120). In addition, the number s ∈ [0,1]
shows the portion of the cluster x which does not change its
cluster label over the last y iterations.

These figures show that there are 23 stable clusters. Among
these 23 stable ones 19 clusters stay exactly the same dur-
ing these iterations (with s = 1). According to the procedure
for finding starting cluster centers, the incremental cluster-
ing algorithm chooses starting centers from all clusters in-
cluding stable ones, however the algorithm does not change
the content of these clusters. This means that these clusters
are located away from other clusters and can be considered
as candidate outliers.

After finding the set of stable clusters we apply the rule
on the cardinality of these clusters and keep only those which
satisfy the condition in Definition 2. In this step we iden-
tify the set of candidate outliers. All stable clusters satisfy
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… …  s=0.96
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14-35

19-47
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Fig. 4 Stable clusters generated by the ICAOD
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Fig. 5 Stable clusters generated by the ICAOD (cont)
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this condition, and therefore they are considered as candi-
date outliers. Finally, we apply Definition 4 to the set of can-
didate outliers to determine how far these clusters are from
normal clusters. This step identifies the clusters 2-6, 9-10,
15, 18-19, 24, 27, 29, 37, 46-47 and 50-51 as outliers.

4.2.4 Relationship between outliers and different attacks

In this subsection, we discuss the relationship between the
outliers obtained by the ICAOD and different types of at-
tacks. The outlier clusters found by the proposed algorithm
contain the attacks from all four categories. The clusters 2-6
contain most of attacks from the category DOS (approxi-
mately 99.5 %). The clusters 9, 10, 15 and 16 contain all
attacks from the category U2R. The attacks from the cate-
gory R2L fall into the outlier clusters 18, 19, 24, 27, 29, 32,
35 and 42. Finally, the clusters 46, 47, 50 and 51 include all
attacks from the category PROB.

4.2.5 Rate of false positive/negative generated by ICAOD

The implicit cost of a false alert in the cyber security do-
main is a serious issue. That is when a malicious activity is
classified as normal activity and vice versa.
The T PR generated by the ICAOD on the data set KDD Cup
1999 is 0.9953 which means that the algorithm can detect
99.53 % of the attacks correctly in outlier clusters. This al-
gorithm has very low false positive/negative rates: FPR is
0.0051 and FNR is 0.0047.

4.2.6 Comparison of Algorithms

The comparison on the performance of the ICAOD with
some other existing algorithms is given in this subsection.

Outliers detection algorithms. In Tables 2 and 3, we present
the performance of the ICAOD and outliers detection algo-
rithms using the measures T PR and FPR, given in (2), and
data subsets from Table 1 (rates are given as percentage).
In all data subsets, the T PRs generated by the ICAOD is
significantly higher than those obtained by algorithms LOF,
LDOF and CCD. Moreover, the ICAOD has a larger T PR
than KDEOS and NAN algorithms in these data subsets. The
only exception is the OC algorithm whose T PR in the data
subset 1 is slightly greater than that of the ICAOD. How-
ever, the latter algorithm outperforms the former one in the
data subsets 2, 3 and 4. The ICAOD detects all outliers in
the data subset 2, whereas the highest T PR among the other
algorithms is only 94 (obtained by the KDEOS algorithm).
Furthermore, the ICAOD and OC algorithms have generated
the lowest FPRs in all data subsets compared to the other
five algorithms.

Table 2 T PR for different outliers detection algorithms

Subset ICAOD LOF KDEOS LDOF NAN CCD OC

1 86 73 80 75 83 73 88
2 100 81 94 83 85 79 93
3 99 76 93 85 79 78 90
4 99 78 85 81 83 77 91

Table 3 FPR for outliers detection algorithms

Subset ICAOD LOF KDEOS LDOF NAN CCD OC

1 10 24 25 22 23 18 10
2 5 26 18 24 25 19 3
3 14 15 19 21 16 17 15
4 12 31 26 26 20 13 12

ML-IDS algorithms . To compare the accuracy of the ICAOD
and other ML-IDS algorithms, we use the performance mea-
sure BCR given in (3). It can be observed from Table 4
that the ICAOD has the highest BCR in average in compari-
son with other ML-IDS algorithms: its BCR is significantly
higher than that of the later algorithms in the data subset 1;
it has the second highest BCR in the data subset 2; its BCRs
are larger than those of others in the data subsets 3 and 4.

Table 4 BCR for ML-IDS algorithms

Subset ICAOD ANN RF SVM

1 88.0 40.9 75.2 61.1
2 97.5 98.4 92.6 90.0
3 92.5 86.6 82.2 73.0
4 93.5 92.0 86.8 90.9

4.3 Experiments using UNSW-NB15

In this subsection, we present the experimental results using
the data set UNSW-NB15. First, we provide a brief discerp-
tion of this data.

4.3.1 UNSW-NB15

The raw network packets of the UNSW-NB 15 data set [27]
is created by the IXIA Perfect Storm tool in the Cyber Range
Lab of the Australian Centre for Cyber security to gener-
ate a hybrid of real modern normal activities and synthetic
contemporary attack behaviors. Tcpdump tool is utilized to
capture 100 GB of the raw traffic (e.g., Pcap files). The Ar-
gus, Bro-IDS tools are utilized and twelve algorithms are
developed to generate totally 49 features (43 numeric and 6
nominal). To use this data in our experiments, we converted
nominal values into numeric ones. The last feature in the
data set indicates if an alert is normal or attack. This data
set has nine families of attacks, namely: Fuzzers, Analysis,
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Backdoors, DoS, Exploits, Generic, Reconnaissance, Shell-
code and Worms. The total number of records is 2,540,044.
Similar to the paper [27], in our experiments, we take some
part of the data set UNSW-NB15 and divide it into training
and test sets. Details of these sets are given in Table 5.

Table 5 Description of subsets from UNSW-NB15

Subset Total Anomalous Normal
Training 175342 119341 56000
Testing 82332 45332 37000
Total 257674 164674 93000

4.3.2 Relationship of purity with FP and FN

Figure 6 presents the relationship of FP and FN with the pu-
rity of clusters obtained by the ICAOD. Overall, values of
both FP and FN decrease as the purity increases. The de-
crease in the value of FP is not significant and may oscillate,
whereas the value of FN tends to decrease without any seri-
ous oscillations. In order to have a significant decrease in the
values of FP and FN, one may consider a larger number of
clusters since usually we get a higher purity as the number
of clusters increases (see, for example , Figure 3).

FP
 &

 F
N

Purity

FP FN

Fig. 6 Purity vs. FP and FN

4.3.3 Comparison of Algorithms

The experimental results comparing the ICAOD against sev-
eral existing algorithms are given below.

Outliers detection algorithms. To evaluate the prediction abil-
ity of the ICAOD and other outliers detection algorithms us-
ing the data set UNSW-NB15, we first train the algorithms
using the training data set and find outliers. Then these out-
liers are used to make predictions using data from the testing
set. The results of T PR and FNR (in percentage) are pre-
sented in Figure 7 and for T NR and FPR (in percentage) in
Figure 8.
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Fig. 7 T PR and FNR for outliers detection algorithms
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Fig. 8 T NR and FPR for outliers detection algorithms

From Figure 7 we observe that the ICAOD provides the
best performance. It identifies 88.41 % of anomalous pack-
ets correctly and only 11.59 % of anomalous packets as nor-
mal. T PR and FNR for the algorithm NAN are 79.47 and
20.53 percentages, respectively. The LOF algorithm demon-
strates the worst performance with 69.76 and 30.24 % for
T PR and FNR, respectively. Furthermore, Figure 8 shows
that the ICAOD has the highest T NR and it detects 87.68
% of the normal packets correctly, followed by NAN with
85.30 %. The CCD algorithm has the worst performance
with the lowest T NR, 72.86 %.

ML-IDS algorithms . Figure 9 demonstrates the BCR of the
ICAOD and other ML-IDS algorithms for different attacks
of the data set UNSW-NB15. The results show that RF has
the highest value of the BCR; the ICAOD has the second
BCR; SVM is the third with a slightly small value of the
BCR and ANN has the lowest BCR.

5 Conclusions

In this paper, we introduced an incremental clustering algo-
rithm to detect outliers generated by an intrusion detection
system. We gave definitions of the stable and outlier clus-
ters. The proposed algorithm first finds the set of stable clus-
ters, and then selects candidate outliers among them. Clus-
ters which are not candidates are considered as normal clus-
ters. Using an average distance between centroid of normal
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Fig. 9 BCR for ML-IDS algorithms

clusters, the algorithm determines the outliers representing
anomalous events.

The performance of the proposed algorithm was demon-
strated using the well-known data sets for IDSs, KDD Cup
1999 and UNSW-NB15. Results show that the algorithm is
able to detect outliers with a high accuracy. In addition, us-
ing the performance measures true and false positive rates,
the ICAOD was compared with some existing outliers de-
tection methods. The experimental results confirm that the
ICAOD achieves higher accuracy and detection rate than
those of other outliers detection methods. Furthermore, we
compared the ICAOD with three well-known machine learn-
ing based IDS (ML-IDS) algorithms. The results obtained
show that the ICAOD has the highest balanced accuracy
(BCR) in average in all data subsets from KDD Cup 1999
and the second highest in the data set UNSW-NB15. We did
not present the comparison of algorithms based on the re-
quired CPU time as these algorithms were implemented us-
ing different platforms. However, we discuss computational
complexity of the proposed algorithm which is rather poly-
nomial.

Note that this paper is more theoretical and addresses
mostly the algorithmic development. The aim of the pro-
posed algorithm is to detect false alerts generated by the IDS
in a network system. Further studies are needed to deter-
mine how this algorithm can be applied in multiple network
routes and also how the running time and accuracy of the al-
gorithm will be affected by increasing the number of packets
analyzed. These will be the subjects of the future research.
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