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This paper elaborates how to identify and evaluate causal factors to improve scientific impact.
Currently, analyzing scientific impact can be beneficial to various academic activities including
funding application, mentor recommendation, and discovering potential cooperators etc. It is
universally acknowledged that high-impact scholars often have more opportunities to receive awards
as an encouragement for their hard working. Therefore, scholars spend great efforts in making
scientific achievements and improving scientific impact during their academic life. However, what
are the determinate factors that control scholars’ academic success? The answer to this question can
help scholars conduct their research more efficiently. Under this consideration, our paper presents
and analyzes the causal factors that are crucial for scholars’ academic success. We first propose
five major factors including article-centered factors, author-centered factors, venue-centered factors,
institution-centered factors, and temporal factors. Then, we apply recent advanced machine learning
algorithms and jackknife method to assess the importance of each causal factor. Our empirical
results show that author-centered and article-centered factors have the highest relevancy to scholars’
future success in the computer science area. Additionally, we discover an interesting phenomenon
that the ℎ-index of scholars within the same institution or university are actually very close to each
other.
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1 INTRODUCTION

The development of our society highly associates with scientists’ diligent research comments.
To recognize and support their contributions, a series of awards and research opportunities
are given to these outstanding researchers. Recently, many researchers focus on how to
determine the outstanding scholars and how to become a successful scholar, and many
indicators from different aspects are proposed to quantify this scientific success [19, 25].
However, among these diverse indicators, which factor(s) is decisive and contributive to the
academic success remains to be explored. Moreover, causal effects learning is a fundamental
problem in machine learning with applications in various fields such as biology, economics,
epidemiology, and computer science [31, 38]. Inspired by the above observations, our paper
focuses on learning the causal effects that play vital roles in scholars’ academic success.
Quantifying the scientific success of scholars has always been an interesting topic that

attracts researchers with diverse backgrounds to study [13, 30, 37, 40]. The goal of science
of success is to first understand the underlying mechanism and then discover a generative
model to predict what the values of scientific success would be taken into account outside
causal factors. Based on citation counts, a series of evaluation metrics have been proposed,
such as journal impact factor [14], g-index [12], and h-index [16] etc. B. Van Houten [34]
defines scientific impact as peer evaluation of scientific research academic works and other
achievements, the importance of scientific impact depends on their research achievements
being valued, recognized and cited by others. To measure the scientific impact, researchers
have identified various controlling factors to capture the diverse characteristics of scholarly
entities. Among these factors, citation counts have been regarded as the primary factor to
evaluate the scientific impact for its simplicity and efficiency.
Besides the citation-based metrics, scientists also investigate this question from the

perspective of network topologies. Initially, the importance of ranking algorithms, such as
PageRank [27] and HITS algorithms [17], are designed for ranking web pages’ importance.
Recently, inspired by these importance ranking algorithms, researchers also widely utilize
them to evaluate the scientific impact in academic networks [2, 11]. Considering the merits
of both PageRank and HITS algorithms, Wang et al. [36] propose the MRCoRank method
to measure the impact of scholarly entities in heterogeneous academic networks through
mutual reinforcement.

Additionally, the development of social media enables scholars share their articles regularly
on Twitter or Facebook. This information sharing effect is no more limited to academic social
networks. It has spread out to many digital libraries and is prevalently used across social
media platforms. Along with this trend, Altmetrics is proposed as another benchmark to
measure the popularity of scholars and their publications by assessing their obtained social
attentions. Meanwhile, researchers start utilizing the Altmetrics to quantify the researcher’s
scientific impact since it can capture the early impact promptly. For instance, Bornmann
et al. [6] normalize publications’ Twitter counts to measure the impact of research, and
then use it for cross-field comparisons. Furthermore, lots of research methods explore the
correlation between Altmetrics and citation counts based methods by statistically analyzing
their interrelationship [9, 39].
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Fig. 1. Illustration of a scholar’s impact relevant factors.

The evaluation of scientific impact can shed light on diverse practical issues, such as
awards or funding applications, job employments and advisor choosing [24]. Commonly,
successful scientific scholars obtain extra opportunity to acquire research resources, receive
grant, and spread their research idea more extensively. Therefore, scholars aspire to improve
their scientific impact continually. However, what factors have causal relationships with
scientific success? Additionally, which factors are most appropriate to evaluate the scientific
success? The above questions still remain unresolved. Therefore, in this paper, we conduct
researches on first, identifying causal factors that contribute to the scientific success and then
gauge the causality importance of these factors. In this paper, we take the most commonly
used h-index as the metric for evaluating scholars’ impact and mine the causal factors that
lead to scholar’s high h-index.
Due to privacy issues and technology limitations, the publications’ information is easier

to access compared to other data sources. It can also represent the corresponding scholars’
academic abilities or contributions considerably. Generally, the title, keywords, authors,
institutions, venue, pages, and published dates of a publication can be directly obtained.
Based on these data, a lot of impact factors can be extracted and calculated as most of the
current work does. While unlike previous work, our method does not focus on improving
the evaluation metrics, instead we are aiming at discovering the causal factors that affect
scholars’ academic success from their publications. To answer this question, we categorized
the impact factors into several categories as shown in Figure 1. They are article factor,
author factor, venue factor, institution factor, and temporal factor. For each factor, we
propose concrete and intuitive indicators to represent each scholar’s academic characters.
After that, by utilizing the machine learning algorithms and jackknife method, we explore
the contribution of each factor on scholars’ academic success.

Contribution. Our research mainly focuses on discovering causal factors of scholars’
academic success. In general, we make the following contributions in this paper:
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∙ Novel features. We present five potential causal factors taking the novel Gini Coeffi-
cient of institutions into account.
∙ Causal detection. Through utilizing the machine learning algorithms and jackknife
method, we find that scholars’ author-centered and article-centered factors are highly
correlated with their academic success.
∙ New insight. Our findings provide researchers a novel and efficient method to improve
their scientific impact.

The rest of the paper is organized as follows. Section 2 discusses related work. Section 3
identifies the proposed scientific impact factors. Section 4 verifies the causal factors, assess
their significance and testify them over big scholar dataset. Then, we conclude our work in
Section 5.

2 RELATED WORK

The scientific impact has been studied for decades by researchers from a variety of disciplines.
For a long time, citation counts have been widely applied to measure the scientific impact.
Along with this tendency, researchers have proposed various citation-based metrics. With
the developments of academic networks, scholars also look into the scientific impact problem
from the angle of network importance. These indicators can be employed for both impact
evaluation and future academic success predictions. In this section, we will introduce the
related work from the above-mentioned aspects respectively.
The citation count was first utilized to quantify the impact of journals. From then on,

researchers have proposed a variety of citation-based methods to measure the scientific
impact [33], such as the h-index [16] and g-index [12]. Some scholars claim that citations
should not be regarded as equal [5]. Another example that should be mentioned here is:
Both A and B cite C. Previously the citations from A and B are regarded as equal, but if A
is from a highly-cited paper while B is not, the citations should be differentiated. This is
similar to PageRank-related ideas. A series of approaches for distinguishing the importance
of citations have been proposed [33]. These methods all applied the citation counts as an
important part of the evaluation metrics, while they all make some improvements since
simply relying on citation counts is unilateral for impact evaluation [35].
Besides utilizing citation to quantify the scientific impact, scholarly networks are now

frequently applied to study such problems since the networks contain various types of entities
and relationships [23]. The PageRank and HITS algorithms are widely used for measuring
the scientific impact in academic networks. On the basis of these two algorithms, a series of
network-based evaluation metrics have been proposed [42]. Considering the effect of different
academic network structures, scholars apply the modified importance ranking algorithms
to evaluate the impact of different scholarly entities [3]. Other than considering network
topologies, some researchers also discover novel features and relationships to evaluate the
scientific impact. Wang et al. [36] rank the impact of scholarly entities by exploring the text
features in heterogeneous academic networks. Due to the evolvement nature of academic
networks, some studies also consider the dynamics of citations and the new emergence of
new entities or relationships to evaluate the scientific impact [4, 43].
Other than using citation-based and network-based features to evaluate the scientific

impact, scholars also try to explore the relevant factors which are very crucial for the future
academic performance and predict the future impact [15, 26]. Wang et al. [35] verify the
effectiveness of early citations in predicting the potential citations of articles [7, 18]. Stegehuis
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et al. [32] utilize two significant factors, namely historical citation information and journal
impact factor to predict papers citation distribution.

The prediction of scholars’ future influence, ℎ-index, and future citations are all within the
scope of future impact prediction [8, 35]. Acuna et al. [1] apply the number of papers, ℎ-index,
and academic ages of a scholar to predict his/her future impact. The linear regression method
is utilized to predict the future impact of outstanding scholars from mathematics, physics
and biology research area. And they found that the academic ages of scholars actually play
a significant role in predicting scientific impact [22]. Additionally, Dong et al. [10] study
the question of which paper can increase scholar’s ℎ-index through the linear regression
method. They discover that among six factors, the topic and venue are very crucial for the
predictions.
Scientific impact prediction with causal inference is a recently emerging research field.

Unlike previous methods [1, 8, 35], causal inference based methods first identify potential
causal factors and then use them to guide the scientific impact prediction. Additionally,
previous methods only consider a single perspective for assessing the scientific impact while
neglecting analyzing and ranking the importance of each causal factor.

3 CAUSAL FACTOR IDENTIFICATION

Researchers have studied the problem of scientific impact for decades and propose a variety of
impact factors. However, there is no formal definition for scientific impact and no commonly
accepted standard for scientific impact evaluation up to now. Among these previously studied
impact factors, which factors are most relevant to scholars’ academic success? Discovering
the answer to it can help researchers carry out their research more efficiently. In this section,
we will introduce several novel impact factors, organize the existing factors, and classify
them into different categories.

3.1 Article-centered Factors

Generally, most previous work prefers using the citation counts and the number of articles to
quantify the scientific impact. While beyond these two indicators, there exist diverse article-
based factors that affect the dynamics of scientific impact. To discover the representative
features for articles, we first analyze the elements related to article-centered factors.

Citation counts (𝐶𝑖𝑡𝑠), and the number of publications (𝑁𝑢𝑚𝑝𝑢𝑏) are the basis of article-
based factors. The average citations for each scholar (𝐴𝑣𝑒𝑎𝑖

𝑐𝑖 ), the highest citations (𝐻𝑖𝑎𝑖
𝑐𝑖 ),

the lowest citations (𝐿𝑜𝑎𝑖
𝑐𝑖 ) can be directly obtained through the values of their total 𝐶𝑖𝑡𝑒𝑠

and (𝑁𝑢𝑚𝑝𝑢𝑏). Moreover, the quality of an article depends not only on its content, but
also on its topic popularity. For instance, previously, a wide variety of data cannot be
acquired and processed due to the technical limitations. While with the developments of
data processing technologies and advancement of big data era, paper related to big data
topics receive more attention recently. Consequently, the topics of an article also can affect
its influence. In order to capture this character, we propose the article’s topic popular degree
(ATP), which can be calculated according to the following equation.

𝐴𝑇𝑃 (𝑝𝑖) =

∑︀𝑚
𝑤=1 𝑁𝑢𝑚(𝑤)𝑝𝑖∑︀𝑛

𝑖=1 𝑁𝑢𝑚(𝑖)
(1)

where 𝑝𝑖 represents the paper, 𝑤 is the keyword of paper 𝑝𝑖, 𝑁𝑢𝑚(𝑤) is the number of 𝑤,
𝑚 is the number of keywords in paper 𝑝𝑖, 𝑁𝑢𝑚(𝑖) is the number of the keywords of papers,
and 𝑛 is the total number of publications.
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Besides the above mentioned citation-based factors, the qualities of references also need
to be considered when measuring the scientific impact. Generally, every scholar has a list of
publications, and each publication has a series of references. Citations can be deemed as
academic acknowledgments from other researchers. Similarly, the authors of an article also
are enlightened by its references. Therefore, references can affect the quality of an article.

Primarily, the highest (𝐻𝑖𝑟𝑒𝑓𝑐𝑖 ), the average (𝐴𝑣𝑒𝑟𝑒𝑓𝑐𝑖 ), the lowest citation counts (𝐿𝑜𝑟𝑒𝑓𝑐𝑖 ), and
the average number of references (𝐴𝑣𝑒𝑟𝑒𝑓𝑛𝑢𝑚) are the most direct measurements to quantify
the qualities of references. Beyond the citations, the impact of references’ venues is also
utilized to evaluate the impact of references since many researchers tend to cite articles from
high impact venues regardless of the relevance between articles.
To measure the relevance between articles (𝑅𝑒𝑙𝑟𝑒𝑓 ), we first solve this problem from

the angle of authors. According to each author’s publications, their research areas can
be represented by exacting articles’ keywords. Therefore, we utilize the differences among
authors’ keywords to calculate the relevance between articles and references. The information
entropy is applied to quantify it, and the calculation formula is as follows:

𝑅𝑒𝑙𝑝→𝑞
𝑟𝑒𝑓 = −

𝑟∑︁
𝑖=1

𝑊𝑖 log2 (𝑊𝑖) (2)

where 𝑅𝑒𝑙𝑝→𝑞
𝑟𝑒𝑓 represents the relevance between article 𝑞 and its reference 𝑝, 𝑊𝑖 is word’s

frequency in article 𝑞 and 𝑝’s keywords’ information, and 𝑟 is words’ total counts.
Furthermore, the relevance between the articles and their reference also needs to be

considered. Due to unavailability of articles’ full texts, we use the cosine similarity to
measure the relevance between the articles’ and their references’ titles and keywords. For
each article and its reference, we extract the sequence of words (𝑚1,𝑚2,𝑚3, ...,𝑚𝑛) from
their titles and keywords. Then a vector can be obtained based on the above sequence for
each paper. According to these vectors, the relevance between an article and its reference
can be calculated as follows:

𝑆𝑖𝑚(𝑝1, 𝑝2) =

∑︀𝑛
𝑖=1(𝑉𝑝1,𝑖 * 𝑉𝑝2,𝑖)√︁∑︀𝑛

𝑖=1 𝑉
2
𝑝1,𝑖
*
√︁∑︀𝑛

𝑖=1 𝑉
2
𝑝2,𝑖

(3)

where 𝑆𝑖𝑚(𝑝1, 𝑝2) represents relevance between paper 𝑝1 and 𝑝2, 𝑉𝑝1 is vector of 𝑝1, and
𝑉𝑝2

is 𝑝2’s vector.

3.2 Venue-centered Factors

Besides citation-based metric, PageRank can also be used to measure the qualities of the
venues, which reflects the scientific success of an author. To gauge the importance of venues,
the PageRank values (𝑃𝑅(𝑣𝑖)) in the paper-venue network are first calculated. Then, the
average citations of papers published in the venues (𝐴𝑣𝑒𝑣𝑖𝑐𝑖 ) is used to measure the quality
of venues. Furthermore, with the aids of the concept of scholar’s ℎ-index, we calculate the
ℎ-index of venue (ℎ(𝑣𝑖)). Specifically, the definition of the ℎ-index of a venue is similar to
the original calculation procedure of ℎ-index, and the ℎ-index value of a venue equals to ℎ
that at least ℎ papers in the venue have ℎ citations.

𝑃𝑅(𝑣𝑖) =

𝑛∑︁
𝑗=1

𝐴𝑣𝑒𝑣𝑖𝑐𝑗 (4)
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3.3 Author-centered Factors

Aside from article-centered factors, the factors that represent scholars’ attributes are vital to
their impact as well. Each scholar’s ℎ-index (ℎ𝑎𝑖

) and PageRank value (𝑃𝑅𝑎𝑖
) in collaboration

network are intuitive factors to indicate a scholar’s impact. Meanwhile, the journal impact
factor (JIF) can be calculated based on them, and is widely applied to measure the impact
of journals for its simplicity. According to the concept of JIF, the author’s impact factor
(AIF) is proposed. Similarly, the AIF of a scholar in year 𝑡 is scholar’s 𝐴𝑣𝑒𝑐𝑖 in △𝑡 years
before year 𝑡. Besides the citation counts, the sum of PageRank scores of scholars’ papers
𝑃𝑅𝑝𝑢𝑏 in citation network also can indicate their importance.

Other than these two factors, scholars have proposed several well-known factors to quantify
the dynamics of scholars’ impact. The 𝑄 value is widely applied to reveal the mutual reinforce
process of scholars’ impact on their papers [30] and is stable during scientists’ whole academic
careers. The calculation formula of Q value is as follows:

𝑄(𝑎𝑖) = 𝑒⟨𝑙𝑜𝑔𝑐𝑖𝛼⟩ − 𝜇𝑝 (5)

where 𝑄(𝑎𝑖) represents scholar Q value, ⟨𝑙𝑜𝑔𝑐𝑖𝛼⟩ is 𝑎𝑖’s average citations in logarithmic way,
𝛼 is 𝑎𝑖’s 𝛼-th article, and 𝜇𝑝 is the average potential influence of articles.

While in each scholar’s academic career, they will encounter a variety of researchers from
different disciplines. Scholars will benefit from the academic exchanges and discussions with
other researchers, and furthermore improve their own scientific impact. As a consequence,
the capacities of coauthors also can affect the qualities of their articles and scholars’ impact
in the meantime. To capture coauthors’ influence, several factors are proposed. Typically, the
ℎ-index of coauthors represents their abilities. Based on it, a series of factors can be easily
obtained. The max (ℎ𝑚𝑎𝑥𝑎𝑖

𝑐𝑜) and average values (ℎ𝑎𝑣𝑒𝑎𝑖
𝑐𝑜) of scholar 𝑎𝑖s’ coauthors can be

directly acquired through each author’s ℎ-index. Then we use the differentials between 𝑎𝑖’s
ℎ-index and ℎ𝑚𝑎𝑥𝑎𝑖

𝑐𝑜 (ℎ𝑑𝑖𝑓𝑎𝑖) to represent the distance between influential coauthors and 𝑎𝑖.
Besides using the ℎ-index to quantify coauthors’ academic capacities, we then consider the

effects of coauthors’ diverse research backgrounds on scholars’ impact. Since co-operations
among researchers are getting more and more frequently, the integration of scholars from
multi-disciplines also has the positive influence on promoting the developments of science and
technologies. To measure the range of coauthors’ disciplines, we apply the theory of entropy.
The detail information on scholars’ specific disciplines and institutions can be obtained from
the dataset. For each scholar, we quantify the diversity of his or her coauthors (𝐷𝑖𝑣(𝑎𝑖))
by utilizing the theory of entropy. The diversity is computed according to the following
equation.

𝐷𝑖𝑣(𝑎𝑖)𝑖𝑛𝑠𝑡 = −
𝑟∑︁

𝑚=1

𝑤𝑚 log2 (𝑤𝑚) (6)

𝐷𝑖𝑣(𝑎𝑖)𝑘𝑒𝑦 = −
𝑞∑︁

𝜌=1

𝑘𝜌 log2 (𝑘𝜌) (7)

𝐷𝑖𝑣(𝑎𝑖) = 𝐷𝑖𝑣(𝑎𝑖)𝑖𝑛𝑠𝑡 +𝐷𝑖𝑣(𝑎𝑖)𝑘𝑒𝑦 (8)

where 𝐷𝑖𝑣(𝑎𝑖)𝑖𝑛𝑠𝑡 and 𝐷𝑖𝑣(𝑎𝑖)𝑘𝑒𝑦 represent author 𝑎𝑖’s diversity of cooperators’ institutions
and their papers’ keywords, and 𝐷𝑖𝑣(𝑎𝑖) indicates 𝑎𝑖’s overall cooperators’ diversities. 𝑤𝑚

is word 𝑚’s frequency in the overall 𝑎𝑖’s cooperators’ institutions’ information, and 𝑟 is
word 𝑚’s total counts in Eq. (9). 𝑘𝜌 is word 𝜌’s frequency in all 𝑎𝑖’s cooperators’ papers’
keywords, and 𝑞 is the total number of word 𝜌.
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3.4 Institution-centered Factors

The effects of institutions on scholars’ impact also need to be considered since research
funding or policy issues can significantly influence researchers’ progress on their studies.
Meanwhile, scholars’ academic achievements also can be affected by the capacities of their
colleagues because they may frequently share research ideas and techniques. Generally, we
explore the effects of institutions from two major aspects: scholars’ academic environments
and the economic factors.

We measure the academic environments from the perspective of colleagues. When conduct-
ing researches, people tend to exchange idea with their co-authors or colleagues. Additionally,
researchers are also affected by the influencing group or individuals in their institution. This
influence is usually defined as peer pressure (or social pressure). Taking this peer pressure
influence into account, we try to identify the relevance of peer pressure on scholars’ academic
performance. In other words, is there an actual relationship between them? To answer the
above questions, we proposed several factors to reveal the correlation between scholars’
academic success and their colleagues. Initially, we gauge the research capacities of scholars’
colleagues. For each scholar, his or her colleague’s ℎ-index (ℎ𝑐𝑜𝑙), number of publications
(𝑁𝑢𝑚𝑐𝑜𝑙

𝑝𝑢𝑏), citation counts (𝐶𝑖𝑡𝑠𝑐𝑜𝑙), and PageRank score (𝑃𝑅𝑐𝑜𝑙) can be calculated over
the dataset.

Furthermore, we employ the concept of Gini coefficient from the economic field to describe
academic reputation of an institution. The Gini coefficient originally utilizes the definition
of Lorenz global curves to compute the distribution of income in economic field. Its value
ranges from 0 to 1. The bigger the value is, the more economic inequality is. In our paper,
we quantify the Gini coefficient of institutions using the values of scholar’s ℎ-index, citations,
and the number of papers. The Gini coefficient of an institution can be calculated as follows:

𝐺(𝑖) = 1− 1

𝑛
(2

𝑛−1∑︁
𝑚=1

𝑃𝑚 + 1) (9)

Here, 𝐺(𝑖) represents the Gini coefficient value of institution 𝑖 and 𝑛 is the number of research
groups within the institution 𝑖. For a research group, 𝑚 indicates the group index among 𝑛
groups. Also, 𝑃𝑚 is the proportion of the sum of group 𝑚 in the whole values of institution 𝑖.
Therefore, according to the values of scholar’s ℎ-index, citations, and the number of papers,
the reputation of each institution are calculated using three Gini coefficient values which are
𝐺(𝑖)ℎ, 𝐺(𝑖)𝐶𝑖𝑡, and 𝐺(𝑖)𝑝𝑢𝑏.

3.5 Temporal Factors

Previous studies have verified the effect of temporal dynamics on scientific impact, such as
predicting academic rising stars. For young researchers, they may have a fast growth stage
after starting the academic career. The performance during this period is very crucial for
their future academic success. We propose two temporal factors to capture this phenomenon.
The first one is the academic ages (𝑁𝑢𝑚𝑦𝑒𝑎𝑟𝑠), which are the years since scholars publish
their first academic papers. Another factor is scholars’ dynamics of ℎ-index during △𝑡 years.
In this paper, we set the△𝑡 = 3, 5, 7, and then calculate the difference (𝐻𝑖𝑛𝑑𝑒𝑥-𝑑𝑖𝑓) between
the predicted time and △𝑡 years ago.

𝜌 =
𝑐𝑜𝑣(𝑋,𝑌 )

𝜎𝑋𝜎𝑌
=

𝐸(𝑋𝑌 )− 𝐸(𝑋)𝐸(𝑌 )√︀
𝐸(𝑋2)− 𝐸2(𝑋)

√︀
𝐸(𝑌 2)− 𝐸2(𝑌 )

(10)
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Fig. 2. The linear regression phenomena between the ℎ-index and the four most relevant factors.

where 𝑐𝑜𝑣 is the covariance between two groups of results, and 𝜎 indicates their standard
deviation. Its value ranges from −1 to 1 with correlation varying from the most negative to
the most positive.
From the above-mentioned factors, we try to list the relevant indicators of scholars’

academic success as comprehensive possible. These indicators are categorized into five major
categories, which are article-centered factors, author-centered factors, venue-centered factors,
institution-centered factors, and temporal factors. These factors are described in Table 1.
Meanwhile, we primarily investigate the correlation between these factors and scholar’s
ℎ-index through the most direct way. The Pearson Correlation Coefficient is applied to
measure the relevance between two ranking results. The calculation procedure of Pearson
Correlation Coefficient is shown as follows:

According to Table 1, we can see that the author-centered and article-centered factors are
the most correlative factors among all the proposed indicators following by the temporal-
centered factors. To further present the linear correlation phenomenon between the ℎ-index
and the other factors, we then depict the results of the four most relevant factors. As
shown in Figure 2, scholars’ number of citations and publications, academic years, and the
differentials of ℎ-index in △𝑡 years are highly correlate with scholars’ future ℎ-index. With
the increase of academic age, h-index keeps increase until academic age is 15, after that
keeps steady.
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Table 1 Causal Factor Descriptions and Correlations.

Feature Description Correlation

Article

𝐶𝑖𝑡𝑠 The citation counts of scholars. 0.7629
𝑁𝑢𝑚𝑝𝑢𝑏 The number of publications of scholars. 0.7782
𝐴𝑣𝑒𝑐𝑖 The average citations of each scholar. 0.2772
𝐻𝑖𝑐𝑖 The highest citations of each scholar. 0.2349
𝐿𝑜𝑐𝑖 The lowest citations of each scholar. 0.2067
𝐴𝑇𝑃 The article’s topic popular degree. 0.0134

𝐻𝑖𝑟𝑒𝑓𝑐𝑖 The highest citations of references. 0.1648

𝐴𝑣𝑒𝑟𝑒𝑓𝑐𝑖 The average citations of references. 0.1439

𝐿𝑜𝑟𝑒𝑓𝑐𝑖 The lowest citations of references. 0.0648
𝐴𝑣𝑒𝑟𝑒𝑓𝑛𝑢𝑚 The average number of references. 0.2496
𝑅𝑒𝑙𝑟𝑒𝑓 The relevance between articles. 0.0174
𝑆𝑖𝑚(𝑝1, 𝑝2) The cosine similarity between articles. 0.1437

Venue
𝑃𝑅(𝑣𝑖) Venues’ PageRank values in the paper-venue network. 0.2146
𝐴𝑣𝑒𝑣𝑖𝑐𝑖 The average citations of papers published in venues. 0.1924
ℎ(𝑣𝑖) The ℎ-index of venues. 0.2081

Author

ℎ(𝑎𝑖) Each scholar’s ℎ-index value. 0.9782
𝑃𝑅𝑎𝑖

Each scholar’s PageRank value in co-author network. 0.6274
𝐴𝐼𝐹 The author impact factor. 0.3826
𝑄𝑣𝑎𝑙𝑢𝑒 The author’s Q value. 0.5394
ℎ𝑚𝑎𝑥𝑎𝑖

𝑐𝑜 The max ℎ-index value of scholar’s coauthors. 0.8253
𝑁𝑢𝑚𝑎𝑖

𝑐𝑜 The number of scholar’s coauthors. 0.426
ℎ𝑎𝑣𝑒𝑎𝑖

𝑐𝑜 The average ℎ-index value of scholar’s coauthors. 0.482
ℎ𝑙𝑜𝑎𝑖

𝑐𝑜 The lowest ℎ-index value of scholar’s coauthors. 0.275

ℎ𝑑𝑖𝑓𝑎𝑖

The differentials between the max and the
lowest ℎ-index value of scholar’s coauthors.

0.538

𝐷𝑖𝑣(𝑎𝑖) The diversity of coauthors. 0.1743

Institution

ℎ𝑐𝑜𝑙 The ℎ-index of scholars’s colleague. 0.2947
𝑁𝑢𝑚𝑐𝑜𝑙

𝑝𝑢𝑏 The number of publications of scholars’s colleague. 0.1368

𝐶𝑖𝑡𝑠𝑐𝑜𝑙 The citation counts of scholars’s colleague. 0.1937
𝑃𝑅𝑐𝑜𝑙 The PageRank score of scholars’s colleague. 0.0264
𝐺(𝑖)ℎ The Gini coefficient on ℎ-index of institution. 0.0937
𝐺(𝑖)𝐶𝑖𝑡 The Gini coefficient on citation counts of institution. 0.0153

𝐺(𝑖)𝑝𝑢𝑏
The Gini coefficient on number of publications

of institution.
0.1632

𝐺𝐷𝑃 The GDP value of the institution’s country. 0.1937

Temporal
𝑁𝑢𝑚𝑦𝑒𝑎𝑟𝑠 Scholar’s academic ages. 0.5863

𝐻𝑖𝑛𝑑𝑒𝑥-𝑑𝑖𝑓
The difference between scholar’s ℎ-index and

△𝑡 years ago.
0.6248

It is not difficult to understand the high relevance of 𝐶𝑖𝑡𝑒𝑠, 𝑁𝑢𝑚𝑝𝑢𝑏, and ℎ𝑎𝑖
. While

the venue-centered and institution-centered factors seem to be negatively correlated with
scholar’s ℎ-index. However, this table cannot accurately depict the effectiveness of these
factors on predicting the future academic success of scholars since the factors may reveal the
same phenomenon together. From this table, it can only show the linear correlation between
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Fig. 3. V-structure causal inference model
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Fig. 4. Causal inference framework

them, and their performance in predicting scholar’s ℎ-index are investigated in the next
section.

4 CAUSAL FACTOR VERIFICATION

In this section, we explore the performance of the above-mentioned factors on predicting
scholar’s ℎ-index. In order to investigate their effectiveness, we use advanced machine learning
techniques. Among them, we apply the XGboost, linear regression, gradient boosting decision
trees, and classification and regression tree separately on the dataset. Then, by comparing
the performance, we find the most appropriate machine learning method.

4.1 Structured Causal Model (SCM) Construction

The core of the structural theory of causation lies a ”structural causation model (SCM)
[21, 29, 41]”. Therefore, in our paper, we first present a simple causal model as shown in Fig. 3.
Here, 𝑆 is a collider: arrows ’collide’ at S. the path 𝐴→ 𝑆 ← 𝐵 is blocked. In other words,
𝐴 is not associated with 𝐵 through 𝑆. Given a collider 𝑆. the causal factors are independent
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with each other. We call this structure a 𝑉 -structure [20]. In this 𝑉 -structure, 𝐴 and 𝐵
represent parents of 𝑆. However, in our paper, scientific success 𝑆 can be determined and
influenced by multiple causal factors. Therefore, we expand in Fig. 3(a) as a heterogeneous
structured causal model as shown in 3(b) formulated as the following equation.

𝑃 (𝑆) = 𝑃 (𝑆|𝐹1) . . . 𝑃 (𝑆|𝐹𝑛) Causal Factor Discovery (11)

4.2 Causal Effects Prediction

A SCM model 𝑆, consisting of two sets of variables, 𝑋 and 𝑌 ,and a set 𝐹 of functions that
determine how values are assigned to each variable 𝑋𝑖 ∈ 𝑋. Here, we assume that, given the
prediction output 𝑌 , the function 𝑓 represents the effect 𝑌 as a function of the direct causes
𝑋 and marginal loss 𝜖 with learning parameters 𝜃1. After we identify factors that contribute
to our scientific success, we need to measure the significance for each causal factor. From
the observational big scholarly dataset, we apply advanced machine learning techniques to
discover the causal relationships and how various causal factors, including Author, Paper,
Venue, Institution and Temporal facilitates understanding the scientific success.

𝑆 = 𝐹 (𝑋,𝑌, 𝜖; 𝜃1) Loss Function (12)

In this section, we apply the following four advanced machine learning techniques to
estimate the causal effects.

XGBoost: XGBoost is a scalable end-to-end tree boosting system and is faster than the
most current widely used methods. The idea of the boosting algorithm is to integrate many
weak classifiers together to form a strong classifier, and XGBoost is a lifting tree model
which integrates many CART regression tree models to form a strong classifier. Its tree
boosting mainly consists two parts, which are the regularized learning objective and the
gradient tree boosting process.

Linear Regression (LR): Regression analysis is widely used for prediction and forecast-
ing, and it can also be used to find out which among all independent variables are related
with the dependent variable. Linear regression requires that the model is linear in regression
parameters. The predictor function is utilized to model the data, and the data can be used
to estimate the unknown parameters. Linear Regression is fast in modeling and runs fast in
the case of large amounts of data.

Gradient Boosting Decision Trees (GBDT): GBDT is an iterative decision tree
algorithm, which includes many decision trees and the final result equals to the sum of all
the trees’ decisions. The core of GBDT is that every tree learns the residual of the sum of
all previous tree conclusions, which is the sum of the real values after adding the predicted
values. It can discover a variety of distinct features and their combinations.

Classification and Regression Trees (CART): It can be used to create a classification
tree or a regression tree. When CART is used as a classification tree, the feature attributes
can be continuous or discrete, and a CART classification tree uses Gini index in node
splitting. When CART is used as regression tree, observation attributes are required to
be continuous type. Because the least absolute deviation (LAD) or least square deviation
(LSD) method is usually used when selecting feature attributes by node splitting, the feature
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attributes are also continuous type. In our paper, we apply it as a regression tree to predict
scholar’s future impact based on the input variables.

4.3 Dataset

In this paper, we use two datasets of different disciplines. One is the sub-dataset extracted
from the Microsoft Academic Graph (MAG). The MAG dataset contains detailed paper
information including title, keywords, authors, institutions, venues, publication date, and
citations from 27 macro-areas and 306 sub-areas. The whole dataset includes over 35 million
papers, 38 million authors, and more than 324 million citation relationships. We use a
sub-dataset includes 79,321 scholar profiles and 105,123 articles focusing on computer science
domain with complete academic careers.
The other is a subset of American Physical Society (APS). The APS dataset contains

physics paper information of title, authors, institutions, venues, publication date, and citations.
The whole dataset includes 540,232 papers, 394,801 authors, and more than 6 million citation
relationships of 12 APS journals. We use a sub-dataset including PRC and PRE papers,
80,360 scholar profiles and 98,011 articles in total.

4.4 Evaluation Metrics

In order to evaluate the performance of different learning algorithms and factors, we adopt four
typical metrics including MAE (Mean Absolute Error), MAPE (Mean Absolute Percentage
Error), MSE (Mean Squared Error), ACC (Accuracy), and 𝑅2. Given the true value 𝑦, and
the predictive value 𝑦, the above-mentioned evaluation metrics can be calculated as follows:

𝑀𝐴𝐸 =
1

𝑛

𝑛∑︁
𝑖=1

|𝑦 − 𝑦| (13)

𝑀𝐴𝑃𝐸 =
100

𝑛

𝑛∑︁
𝑖=1

|𝑦 − 𝑦

𝑦
| (14)

𝑀𝑆𝐸 =
1

𝑛

𝑛∑︁
𝑖=1

|𝑦 − 𝑦|2 (15)

𝐴𝐶𝐶 =
1

𝑛

𝑛∑︁
𝑖=1

𝐼(𝑓(𝑦𝑖) = 𝑦) (16)

𝑅2 = 1−
∑︀𝑛

𝑖=1 |𝑦 − 𝑦|2∑︀𝑛
𝑖=1 |𝑦 − 𝑦|2

(17)

4.5 Validation by experiments

With the learning algorithms and factors we introduced above, scholar’s ℎ-index can be
predicted. We use the previous △𝑡 years’ information for training, and the real data in 2015
(MAG) or 2013 (APS) to validate. On the train set, we perform a 5-folds cross-validation to
tune the hyperparameter of models. For XGBoost and GBDT, the main hyperparameters we
have tuned include the learning rate, maximum depth of trees, sub-sample rate, sub-feature
rate and the regularization coefficient. For CART, the main hyperparameters we have tuned
include the learning rate, maximum depth of trees. For LR, the main hyper parameters we
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have tuned include the learning rate and the regularization coefficient. All hyper parameters
are tuned by grid search on the parameter space. The results are illustrated from the aspect
of MAE, MAPE, MSE, ACC, and 𝑅2.

Table 2 shows the predictive performances of different methods on the evaluation metrics
mentioned above on MAG dataset. MSE, MAE, and MAPE are used to compare the
predictive results and the true values. In the table, 𝑅2 indicates the correlation between the
predictive results and the true values and 𝐴𝐶𝐶 indicates the accuracy. Hence, the better
prediction performance can be inferred by their values. It is obvious that the performance
of XGBoost is the best among all the methods using different time periods because it
outperforms other methods on 4 of 5 metrics, which gets the smallest MAPE and MES and
highest Acc and 𝑅2 score in three groups experiments. While for different △𝑡 values, there
exist various prediction results. The performance of △𝑡=7 achieves the best score, and the
results by △𝑡=10 are the worst. However, there only exists a slight difference between the
results of △𝑡=5 and △𝑡=7. In the following parts, we analyze the results in △𝑡=7 on the
MAG dataset.

Table 2 The Performance of Difference Learning Algorithms on MAG.

MAE MAPE MSE ACC 𝑅2

△𝑡=5

XGBoost 0.73 0.07 1.09 0.86 0.99
LR 0.82 0.10 1.18 0.80 0.92

GBDT 0.69 0.08 1.16 0.84 0.95
CART 0.96 0.18 2.30 0.79 0.81

△𝑡=7

XGBoost 0.79 0.07 1.19 0.86 0.99
LR 0.83 0.11 1.30 0.79 0.90

GBDT 0.73 0.09 1.25 0.85 0.94
CART 0.98 0.20 2.49 0.78 0.80

△𝑡=10

XGBoost 0.81 0.09 1.27 0.83 0.91
LR 0.84 0.13 1.43 0.73 0.86

GBDT 0.74 0.10 1.32 0.81 0.84
CART 0.99 0.29 2.68 0.74 0.63

The predictive performances of these methods on the APS dataset are shown in Table
3. In the table, we observed that the overall prediction performances on APS are better
than on MAG, which has smaller errors and higher fitting degree (𝑅2). We noticed that the
performance of XGBoost is also the best. Different from the results on MAG, all methods
perform better on the period △𝑡 = 10 than other groups. In the following parts, we analyze
the results in △𝑡=10 on the APS dataset.

4.6 Causal Factor Evaluation

The above analyses verify the causal relationships between various factors and the overall
ℎ-index results. However, the contribution and importance of factors still need to be explored.
To solve this question, we first apply the ”jackknife” method [28] to verify the function of
each group’s factors separately. The ”jackknife” method includes two phases: Adding and
Removing. During Adding phase, we use one group of factors each time to predict the result.
During Removing phase, we remove a group of factors and train the model with the rest
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Table 3 The Performance of Difference Learning Algorithms on APS.

MAE MAPE MSE ACC 𝑅2

△𝑡=5

XGBoost 0.54 0.06 0.62 0.81 0.97
LR 0.57 0.08 0.65 0.80 0.96

GBDT 0.55 0.06 0.63 0.80 0.96
CART 0.56 0.09 0.73 0.78 0.95

△𝑡=7

XGBoost 0.51 0.07 0.55 0.82 0.97
LR 0.53 0.10 0.55 0.80 0.96

GBDT 0.51 0.07 0.56 0.81 0.97
CART 0.54 0.08 0.70 0.80 0.96

△𝑡=10

XGBoost 0.45 0.06 0.46 0.85 0.98
LR 0.47 0.07 0.48 0.83 0.97

GBDT 0.45 0.08 0.47 0.84 0.97
CART 0.46 0.07 0.60 0.80 0.96

(a) XGBoost (b) Linear Regression

(c) CART (d) GBDT

Fig. 5. Factor contribution analysis on MAG. Four models trained with only or without the denoted
factors. F: full feature set; A: Author factors; P: Paper factors; V: Venue factors; I: Institution factors; T:
Temporal factors.

factors. After these two phases, factor’s individual contribution to the overall prediction task
can be explored.

ACM Trans. Knowl. Discov. Data., Vol. 0, No. 0, Article 00. Publication date: 2020.



00:16 X. Kong et al.

(a) XGBoost (b) Linear Regression

(c) CART (d) GBDT

Fig. 6. Factor contribution analysis on APS. Four models trained with only or without the denoted
factors. F: full feature set; A: Author factors; P: Paper factors; V: Venue factors; I: Institution factors; T:
Temporal factors.

As shown in Figure 5, in the experiments on MAG dataset, the drop in ACC values by
the removal of article-centered factors in the four methods demonstrate that they are of
great significance in predicting the ℎ-index. On the contrary, when removing other types
of factors, the decline of the predictive performance is not so obvious. This fact can reveal
the importance of article-centered factors on predicting scholars’ future success. For adding
factors, article-centered factors still show their important roles in predicting the future
scientific impact. Moreover, author-centered and temporal-centered factors also show their
effectiveness for scholar’s ℎ-index prediction.
The same analyses are performed on APS dataset, as shown in Figure 6. Different from

the results on MAG, the drop in ACC values by the removal of author-centered factors
greatly influences the predicting of ℎ-index, which indicates that the author-centered factors
are of great significance in the APS dataset. Same as previous experiments, when removing
other types of factors, the decline of the predictive performance is not so obvious. For adding
factors, author-centered factors still show their important roles. Moreover, article-centered
factors also show their effectiveness for scholar’s ℎ-index prediction in APS dataset, but
other features have no obvious effects, which differs from experiment results on MAG.
Furthermore, we analyzed the feature importance given by XGBoost of results on MAG

and APS dataset. In XGBoost, feature importance can be calculated as times that a feature
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(a) MAG (b) APS

Fig. 7. The importance score of different factors.

has been used to divide samples on leaves of trees in the model. The more frequently a
feature has been used, the more important it is to the model. As shown in Figure 7, in both
datasets, the top influential factors are still the same with the above conclusions, where
the article-centered factors are still the most important for predicting the future academic
success in MAG, which takes 41.67% importance scores; and the author-centered factors are
importance in APS, which takes 42.33% importance scores.

In addition, we also analyze the Gini Coefficient of different institutions. Gini Coefficient
smaller than 0.2 indicates the institutions are absolute equal. Gini Coefficient from 0.2 to
0.3 indicates the institutions are relatively equal. Gini Coefficient from 0.3 to 0.4 indicates
the institutions are relatively rational. Finally, Gini Coefficient greater than 0.4 indicates
the great disparity between institutions.
To have a comprehensive Gini coefficient of an institution, we first rank the institutions

according to the number of scholars. Then according to the ranking list, the Gini coefficient
on citations, number of publications, and ℎ-index can be obtained. We show the Gini
coefficient of top 5%, 10%, 20%, and the last 10%. As shown in Table 4 and Table 5, there
exist some interesting phenomena. For top 5% ranking institutions, both in MAG and APS,
their Gini Coefficient values are under 0.2, which indicate that scholars’ ℎ-index is very
close to their colleagues in the same institution. In top 10% ranking institutions, except
for citations, the Gini Coefficients for the number of papers and ℎ-index are under 0.2,
which still show the equality of scholars on these two aspects. While for institutions in top
20% and last 10%, their Gini Coefficient for the number of papers and citation exceed 0.2.
It is apparent that there exist some differences in the number of papers and citation of
researchers in these institutions. However, the ℎ-index level of scholars in all the institutions
mentioned above is very similar to their colleagues. This phenomenon shows that scholars in
the same institution are birds of s feather flock together. And this phenomenon is the same
in computer science and physics. The reason behind this is that the scholarly communication
among them is very convenient and frequent, and they can directly feel the peer pressure
from their colleagues to some extent. Therefore, scholars are trying to keep up with their
colleagues in academic research, and their overall scientific impacts are quite similar to each
other. Also, when providing faculty positions for researchers, there may exist standard hiring
requirements for the same institution. As a consequence, the scholars in the same institution
are at the same academic level.
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Table 4 The average Gini Coefficients of top ranking institutions on MAG.

Number of papers Citation ℎ-index
Top 5% 0.102418 0.161101 0.042667
Top 10% 0.191524 0.277041 0.091791
Top 20% 0.230564 0.327122 0.121142
Last 10% 0.351485 0.452952 0.200423

Table 5 The average Gini Coefficients of top ranking institutions on APS.

Number of papers Citation ℎ-index
Top 5% 0.011092 0.070037 0.015215
Top 10% 0.169559 0.205179 0.145778
Top 20% 0.216014 0.249943 0.184754
Last 10% 0.266891 0.297307 0.228714

5 CONCLUSION AND FUTURE WORK

In this paper, we aim at discovering the causal factors that play crucial roles in predicting
the scholars’ academic success. To solve this issue, we first propose five potential causal
factors, which are the article-centered factors, author-centered factors, venue-centered factors,
institution-centered factors, and temporal factors. Then by utilizing the state of the art
machine learning algorithms, we find that the article and author-centered factors are most
significant causal factors for forecasting scholars’ future success.

Furthermore, we analyze each factor’s contribution by using the ”jackknife” method and
grading factors during the predicting process. The results further demonstrate the importance
of article and author-centered factors. We further analyze the specific importance ranking
of these five groups of factors used in our experiments. After this process, we find that, in
the MAG dataset, the article-centered factors have 41.47% importance, the author-centered
factors are in 25% importance, the temporal-centered factors are in 16.67% importance,
and the venue and institution-centered factors are in 8.33% importance, while in the APS
dataset, the article-centered factors have 33.42% importance, the author-centered factors
are in 42.33% importance, the temporal-centered factors are in 6.39% importance, and the
venue-centered factors have 8.50% importance , and institution-centered factors are in 9.36%
importance. Meanwhile, we also find that the ℎ-index of scholars in the same institutions
tend to be very close to each other.
In the future, we plan to identify more factors and conduct our experiments on other

datasets from various disciplines to demonstrate the validity of our work.
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