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Data
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Abstract—Mobile crowdsourcing, as an effective and crucial
technique of Industrial Internet of Things, is enabling smart
city initiatives in the real world. It aims at incorporating the
intelligence of dynamic crowds to collect and compute decentral-
ized ubiquitous sensing data which can be used to solve major
urbanization problems such as traffic congestion. The shared bus,
as a neotype transportation mode, aims at improving the resource
utilization rate and maintaining advantages of convenience and
economy. In this paper, we provide a scheme to profile shared
buses through heterogeneous mobile crowdsourced data (TRPro-
filing). First, we design an MCS-based shared bus data generation
and collection solution to overcome the above data scarcity issue.
Then we propose a Travel Profiling (TP) to profile resident
travel and design a method called Multi-Constraint Evolution
Algorithm (MCEA) to optimize the routes. Experimental results
demonstrate that TRProfiling has an excellent performance in
satisfying passengers’ travel requirements.

Index Terms—Industrial Internet of Things, travel profiling,
mobile crowdsensing, route planning, shared buses.

I. INTRODUCTION

RECENT years have witnessed a proliferation of Indus-
trial Internet of Things (IIoT) techniques [1], including

cyberphysical systems (CPS) [2], Internet of Things, au-
tomation [3], cloud computing [4], Internet of services [5],
wireless technologies, etc. One important application scenario
of IIOT is the smart city which aims at improving the public
services in urban environments and dealing with problems in
urbanization such as traffic congestion, energy consumption,
and environmental pollution. The primary challenge in smart
city consists of two aspects. One is how to collect and capture
the vast amounts of dynamic data effectively in a pervasive
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environments. Another is how to analyze these multi-source
heterogeneous spatial temporal data and then preciously con-
struct profiling through data for specific tasks.

Mobile Crowdsourcing (MCS), as an effective and crucial
technique of IIOT, devotes to connecting a plethora of mobile
devices endowed with several sensing, actuation, and com-
puting capabilities with the wireless network, thus providing
decentralized ubiquitous services and applications in the con-
text of a smart city [6]. Recently, a large number of research
methods based on MCS have been performed and abundant
applications are thus enabled [7]. In the field of intelligent
transportation systems, MCS also provides new ideas for many
issues such as route planning [8], human mobility pattern
exploring [9], and traffic anomaly detection. It provides an
excellent solution to the challenge above-mentioned in smart
city. Fig. 1 displays the conceptualization process of using
crowdsourcing to collect shared bus data.

In relatively large cities, traffic congestion during peak
periods has turned into a daily routine for residents. The
congestion is owing to the unreasonable resource allocation
ultimately. Then in the case of a limited land area, confronted
with the rapid growth in population and vehicles’ number, how
to relieve and eradicate the increasingly serious urban traffic
conditions is plaguing relevant domain experts. Compared
with crowded time-consuming buses, relatively expensive taxi
and excessive fragmented trips of Online car-hailing services,
the shared bus, which are emerging recently, as a neotype
transportation mode, are benefitting from its convenience,
economy, and instantaneity features. However, the above-

Fig. 1: The conceptualization process of using crowdsourcing
to collect shared bus data.

mentioned advantages bring great resistance to the provision
and promotion of shared bus services. The core of convenient,
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instant bus services is to meet passenger demand dynamically,
namely, dynamic route planning. The growth of passengers’
number and stations’ number greatly increases the complexity
of dynamic route planning. This is the key technical reason
why it is impossible to provide a true shared bus service (that
is, to have all of the above advantages) and to promote it to the
market. What’s more, the immaturity of shared bus services
inevitably results in the scarcity of shared bus data, and thus
the dynamic route planning-oriented research is hard to push.
The development of shared buses encounters bottlenecks that
are urgent to be broken. The challenges of routing strategy
of shared buses can be summarized as four parts. First is
insufficient data. Route planning problems extremely rely on
real-world data. However, there is little benchmark dataset that
can be evaluated about shared buses. Second is insufficient
researches. As a novel type of transportation, there is little
research for shared buses routes planning to provide guidance.
Third is high complexity. It’s hard to characterize passengers’
travel requirements accurately. Traditional methods only aim
at maximizing carrying capacity which brings terrible travel
experiences for passengers. Last is real-time requirements.
Shared-bus services require real-time responses to calculate
routes based on current traffic conditions.

Shared buses devote to improving resource utilization and
provide a dynamic transportation mode. The conclusion that
the core of shared bus service optimization lies in the dynamic
integration of travel resources based on public demand can be
drawn by us. In summary, the overall framework of this work
is composed of three steps: Firstly, we collect the passenger’s
order data and the driver’s GPS data through Futurefleet,
a mobile phone shared bus APP. Secondly, after acquiring
shared bus data, the crucial problem is how to understand and
analyze resident travel requirements from multiple aspects and
then construct accurate profiles for passengers. Profiling is an
effective tool to delineate target users and reflect their needs.
In this work, we propose a Travel Profiling (TP) to describe
resident travel, and refine it into travel time, waiting time, seat
utilization rate, delay tolerance, and loss tolerance. Finally,
based on TP, we design a method called Multi-Constraint
Evolution Algorithm (MCEA) to optimize the routes. The
contributions of our work can be concluded as follows:

• We develop a scheme, TRProfiling, by merging shared
bus data generation and collection, travel requirement de-
scription method (TP), and route optimization algorithm
(MCEA), to profile shared buses and offer constructive
suggestions for its development.

• We propose TP to portray resident travel requirements
and refine it into travel time, waiting time, seat utilization
rate, delay tolerance, and loss tolerance based on shared
bus data analysis, and instantiate them by utilizing ma-
chine learning algorithms.

• We design a multi-constraint-based heuristic algorithm to
generate the optimal route based on TP. The experimental
results demonstrate that the optimal route can satisfy the
passengers’ requirements to the most degree.

• We conduct extensive experiments to verify the superi-
ority of our method. The results show that our proposed

scheme has an excellent performance in satisfying the
passengers’ travel needs.

The rest of this paper is organized as follows. In Section
II, we review the related work about MCS and route planning
methods, as well as their overlaps. Section III describes our
proposed approach TRProfiling in detail. Following that, we
conduct extensive comparative experiments to verify the effec-
tiveness of our approach in Section IV. Finally, we conclude
our work and further discuss the open issues in Section V.

II. RELATED WORK

In this section, we mainly introduce the related work con-
sisting of two parts: firstly, we review the current researches
on MCS. And then, we introduce the related studies on route
planning.

A. MCS

MCS has become a promising paradigm with the devel-
opment of smartphone sensing and mobile social networking
techniques. Compared to other sensing modalities, MCS has
advantages of cross-space and large-scale [10]. MCS allows
mobile phone users to share information such as traffic
conditions and location information. Additionally, users can
further upload the data to the cloud for large-scale sensing
and community intelligence mining [11]. In particular, large
amounts of MCS data provides a novel opportunity for re-
search, which further can be applied into many other fields.
These applications include the mobile social recommendation,
environment monitoring, and traffic planning.

In the field of mobile social recommendation, Zheng et
al. [12] measure the similarity among users and provide a
personalized place recommendation service. Ye et al. [13]
also develop a place recommendation service by exploring
user-generated data in location-based social networks. Further-
more, they design a collaborative recommendation algorithm
which consider the geographical influence on user check-in
behaviors. In the area of ecological monitoring, a participatory
noise mapping system is proposed [14].The authors of [15]
and [16] study the short-term recomsumption behaviors and
repeatable recommendation on user check-in dataset. The
authors [14] use mobile phones to determine environmental
noise level. Besides, mobile phones can also be used to gather
information about trucks in order to measure air pollutions
[17]. For traffic planning, Calabrese et al. [18] design a
system which can report real-time urban dynamics by using
traffic data. Based on crowd-powered data, Wolfson et al. [19]
design a taxi ridesharing service called T-Share which can
generate optimized ridesharing schedules. Li et al [20] study
the problem of finding a destination place for a group of users
and they design a framework which can be used to compute
the exact query result and approximate query result for user.

B. Route Planning

Route planning is a hot research topic in the academic field,
and it has important applications in many fields, such as self-
driving, data forwarding, and GPS navigation. In the field of
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transportation, it usually means to find the best route given
origin-destination pair (OD) under predefined conditions. The
most famous and classical route planning problem is the
Traveling Salesmen Problem (TSP), which is a well-known
NP-hard problem in combinatorial optimization domain [21]–
[23]. Many route planning problems can be categorized as TSP
or its extensions including shared bus route planning problems.

To solve the traffic route planning problems, many scholars
have conducted plentiful researches. Thomas et al. [24] present
a system for individual trip planning, which incorporates future
traffic hazards in routing. Wang et al. [25] develop an efficient
indexing technique for route planning on timetable graphs
called TTL. Based on the system, they further propose query
algorithms that enable TTL to support three popular types of
route planning queries. By carefully adapting node contraction,
researchers are able to compute point-to-point queries on a
continental network combined with cars, railroads, and flights
[26]. Shang et al [27] solve the problem of efficient processing
trajectory similarity joins by developing search space pruning
techniques and make the parallel processing available.

C. Route Planning with MCS

With the prevalence of smart mobile devices, the scale of
the crowdsensing system has rapidly increased, and a large
number of MCS data can be readily collected. This crowd
data can be used for traffic prediction, public transportation
system design, as well as route planning.

Many studies have investigated route planning using crowd-
sensing data. For instance, B-Planner is a two-phase approach
to exploring the bus route during night time [28]. In [28],
the crowdsourced GPS data from taxis is first used to build
a candidate bus stop set and then a bidirectional probability-
based spreading algorithm is developed to generate candidate
bus routes automatically. Yang et al. [29] define stochastic
skyline routes mechanism considering multiple costs and time-
dependent uncertainty based on crowdsourced GPS data from
vehicles. Then they propose efficient algorithms to retrieve
the best route for a given OD pair and start time. In [30],
the bus passengersâĂŹ surrounding environmental context is
utilized to estimate the bus arrival time, which is the primary
information for most travelers, for different bus stations.

Fig. 2: Flow of TRProfiling.

III. TRPROFILING

Fig. 2 presents the framework of TRProfiling. It consists of
three major components: 1) data generation and collection;
2) travel profiling construction; 3) route optimization. We

TABLE I: The main notations used in TRProfiling.

Notations Descriptions

TP Travel Profiling vector
Tlabeln Passenger’s requirement label
Swt Waiting time of a route
Spass Total number of passengers of a route
Nlp Number of passengers who leave the station
Nwp Number of passengers of whole passengers
Z Multi-cost of MCEA
PSUR Seat utilization rate of a route
Fm Number of passengers of candidate station m
F ∗ Number of passengers that has already got on the bus
(s1, s2, ..., sk) Set of all candidate stations
PTtime Total travel time of a route
Tm Travel time to candidate station m
PWtime Waiting time of a route
Wm Waiting time to candidate station m

describe them in detail in this section. The main notations
used in TRProfiling can be found at Table I.

A. Data Generation and Collection

Futurefleet is a mobile phone APP focused on providing
shared bus services. In order to cope with the deficiency
of shared bus data, we design it in partnership with an
Internet company committed to enhancing travel experiences.
Main participants of shared bus services are passengers and
drivers. Therefore, Futurefleet is refined into driver client and
passenger client for the sake of fully acquiring data.

A shared bus trip involves basic factors such as departure
stations, arrival stations, departure time, and fare. The trips
in the last mile scene that our work focuses on, is from
residential areas to the nearest subway stations. Therefore,
it’s reasonable to regard arrival stations as known. For areas
where shared buses are new, other unknown factors should
be initialized according to passenger requirements. The APP
attracts passengers to suggest departure stations and time,
fare, and so on to participate in bus route customization.
To ensure the authenticity of the data, passengers need to
pay small amount deposit, which could then be refunded or
as fare. We formulate the departure schedule, stations, and
operation routes based on experience with reference to the
above information. We initialize shared buses with fixed bus
routes.

Fig. 3: Simplified representation of data generation and col-
lection.

After initialization, shared buses are put into actual opera-
tion. Through Futurefleet, passengers could query real-time
bus operational information, like locations and the number
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of vacant seats. They submit orders containing destinations
and departure time in the APP. The nearest departure station
would be assigned to the passenger. Within the scope of
authority, passengers’ real-time routes before boarding would
be recorded. The formulated fixed shared bus routes are sent
to drivers. Drivers follow the recommended routes unless
an abnormal event is encountered, like accidents and bad
weather. The APP records the change of routes in the form
of GPS, which is employed to subsequent route optimization.
The simplified representation of data generation and collection
procedure is displayed in Fig. 3.

In this way, by submitting orders and going to departure
stations, the information of passengers’ order and route is
generated separately. Drivers follow the published fixed routes
or emergency diversion, and the relevant GPS data is thus
recorded. The mobile terminal, that is, the APP, sends the
above GPS information and order information to the cloud.
After a simple integration, the collection of initial structured
shared bus data is basically achieved.

In the follow-up study of this work, we focus on how to use
shared bus data to analyze residents’ travel requirements, that
is, to profile residents’ travel, and generate real and flexible
shared bus routes that dynamically change with passenger
demand.

B. Travel Profiling Construction

We formulate Travel Profiling as a vector, which is shown
in Equation. (1).

TP =< Tlabel1, Tlabel2, Tlabel3, ..., Tlabeln > (1)

where Tlabeln is the label that reflects passengers’ require-
ments. Labels contained in TP represent travel requirements
from different aspects and this enables TP interpretability. TP
could be obtained through statistical analysis of passenger
travel behaviors. Next we present a detailed description of TP
initialization (labels’ refinement) and TP instantiation (labels’
numeralization).

1) Travel Profiling Initialization: Since passengers prefer
to arrive at destinations as quickly as possible, we statisti-
cally analyze the travel time and waiting time according to
passengers’ travel behaviors. Fig. 4(a) shows the distribution
of travel time for passengers and are divided into five time
intervals. It is obvious that the travel time of more than half
of the passengers mainly centralizes in 10 minutes, which
illustrates that the short distance travel is the focus of shared
buses passengers. This puts the timing requirement with higher
priority. Fig. 4(b) represents the distribution of the waiting time
of passengers. From the figure, we can observe that nearly 70
percents of passengers prefer to wait less than 2 minutes at one
station and no one accepts to wait more than eight minutes.
We can summarize that passengers would tolerate waiting for
a limited time range. When the waiting time is higher than
the threshold, passengers would leave the station and choose
the other transportation method. Therefore, we introduce two
definitions, i.e., delay tolerance and loss tolerance to describe
this scene. Besides, considering the company’s profit, the Seat
Utilization Rate (SUR) of each path is another factor that
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Fig. 4: The statistical analysis of passenger travel behaviors.

should be considered. We count the SUR of each route of
seven days from Monday to Sunday, as shown in Table. II.
After the above analysis, the labels of TP can be summarized
as follows:

Travel Time The time that passengers spend on the shared
bus is called as travel time. It is equal to the span between
the boarding time and the time of getting off. Every passenger
wants to reach the destination as fast as possible with the help
of the travel time.

Waiting Time An essential factor to influence the travel
experiences of passengers is the waiting time. The waiting time
refers to the time passengers spending at one station waiting
for the shared bus, which can be considered as the time from
creating the order to checking the ticket.

Seat Utilization Rate To meet the demand for the profit
of the company, we introduce the label of seat utilization
rate, which controls whether the shared bus company can gain
profit or not. The seat utilization rate can be determined by the
passenger flow and the number of seats of the shared buses.

Delay Tolerance The waiting time is another essential
element among the passengers’ demands. We assume that
every passenger has a maximal threshold for the waiting time.
When the waiting time is greater than the threshold, passengers
will leave the station. Delay tolerance is used to representing
the threshold, and it is equal to the average value of the waiting
time.

Loss Tolerance Shared buses will lose passengers if the
waiting time for passengers is greater than the delay toler-
ance. The loss tolerance of a station can be obtained by the
number of passenger loss divided by the total number of the
station. Shared buses will yield unsatisfactory experiences for
passengers if the loss tolerance is too large.
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TABLE II: The seat utilization of routes.

XXXXXXXXRoutes
Week Mon Tues Wed Thur Fir Sat Sun

Route 1 0.465 0.456 0.471 0.455 0.479 0.14 0.09
Route 2 0.246 0.246 0.265 0.269 0.27 0.086 0.053
Route 3 0.535 0.526 0.544 0.529 0.55 0.165 0.106

2) Travel Profiling Instantiation: In order to get the input
and constraints of the MCEA, a series of methods are designed
to instantiate TP. Detailed descriptions of how to instantiate
each label of TP are introduced as follows:

Travel Time Estimation Due to the terrible traffic condition
caused by traffic jams, the travel time continuously varies in
the different time intervals. According to the operation rules
of shared buses, the travel time is counted every 15 minutes.
Based on (TTM), the travel time between every two stations
at a particular time can be obtained. The TTM is one of the
inputs of the MCEA which can be used to calculate PTtime

defined in Equation. (17).
Waiting Time Estimation The waiting time is equal to

the difference between order creation time and the bus arrival
time. Thus, the order creation time is predicted in order to
calculate the waiting time. To predict the order creation time of
each station, the AutoRegressive Integrated Moving Average
model (ARIMA) is employed. Based on the TTM and the
start time of the shared bus, the arrival time that the shared
buses arrive at each station can be obtained. After that, the
Waiting Time Matrix (WTM) which is used to calculate the
PWtime in Equation. (18) can be calculated.

Seat Utilization Rate Analysis Seat utilization rate is
the ratio of the actual passenger capacity of a route and
the total number of seats on the shared bus. A bus should
maximally utilize its capacity as well as make sure the bus
is not overloaded. In order to calculate the actual passenger
capacity, we employ machine learning algorithm to predict the
distribution and volume of boarding passengers for each sta-
tion during different time intervals. The input features include
historical flow, time, distance, and week. After prediction, the
Passenger Flow Matrice (PFM) can be formed to calculate
the PSURflow

in Equation. (15), as well as the seat utilization
rate.

Delay Tolerance Analysis Delay tolerance is a constraint
for the MCEA. It refers to the maximal time that passengers
willing to wait. Based on the WTM , the waiting time of
a route can be calculated. Delay Tolerance is equal to the
average of the waiting time in Equation. (2)

Dt =
Swt

Spass
(2)

where Swt is the waiting time of a route that can be obtained
from the WTM , and Spass is the total number of passengers
of a route which can be retrieved from the PFM . The
delay tolerance of a route must be less than n based on the
constraints (8).

Loss Tolerance Analysis Passengers will lose their patience
if they wait too long. Loss tolerance is another constraint of a
route which is used to measure the rate of passengers’ drain.

Before the shared bus reaches a station, the number of the
passengers who leave the station can be counted. Therefore,
the loss tolerance of the station can be calculated as Equation.
(3)

Lt =
Nlp

Nwp
(3)

where Nlp is the number of the passengers who leave the
station, and Nwp is the number of whole passengers. The loss
tolerance of a route is the average of the loss tolerance of all
the stations on the route. And it must be less than m according
to constrains (9).

C. Route Optimization

1) Problem Formulation: An optimal route taking into
account multi-constraints can be modeled as a TSP problem
which is a typical NP-hard problem in combinatorial opti-
mization. To solve this problem, we model it as a completely
connected graph G(V,E) in an N -dimensional Euclidean
space (N is the size of the stations), in which stations are
the graph’s vertices, paths are the graph’s edges, and a path’s
multi-cost is the edge’s length. Mathematically, the problem
can be defined as given a set of n stations, the goal is to
discover a route for these stations to minimizes Z which is
the sum of the multi-cost of each path(i, j) on the route. The
overall system parameters can be abstracted as follows:

min Z = γ(
n∑

i=1

n∑
j=1

cijxij) (4)

cij = tij + wij (5)

s.t.



n∑
i=1

xij = 1, ∀j ∈ V (6)

n∑
j=1

xij = 1, ∀i ∈ V (7)

∑
i∈S

∑
j∈S

xij ≤ |S| − 1, ∀S ⊂ V, 2 ≤ |S| ≤ n− 1 (8)

k < Sr ≤ 1 (9)
Dt < n (10)
Lt < m (11)
xij ∈ {0, 1} (12)
γ ∈ [1,∞) (13)

xij =

{
1, path(i, j) is on the route

0, path(i, j) isn′t on the route
(14)

The objective function (2) minimizes the multi-cost cij of
the route, which contains travel time tij and waiting time wij

in the equation. 5. Constraints (4)(5) ensure every station on
the route must be visited only once and constraints (6) is
the underlying elimination constraints. Constraint (7) provides
a minimal value for the seat utilization rate to ensure the
profit of the company. Constraints (8)(9) ensure that loss
tolerance and delay tolerance must be lower than m and n
respectively, which are obtained from the statistical analysis. In
the Constraint (10), xij is a binary variable judging whether a
path(i, j) is on the route or not, and it is shown as equation.12.
The γ in the contains (11) is the reciprocal of load factor,
which is no less than 1.
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2) Multi-Constraint Evolution Algorithm: Our work aims
to find the optimal route to minimize the multi-cost Z, which
is defined in Equation. (4), and the optimal route satisfies the
constraints that we get from the TP instantiation, i.e., delay
tolerance, loss tolerance, and seat utilization rate. In order to
generate the optimal route, we design a heuristic algorithm
called MCEA. The fundamental idea of the MCEA is that
given an OD pair, we select the next station based on the
probability P and add that station to the visited set. We repeat
this process until all the stations are visited. Then, a new route
can be generated. The multi-cost Z can be updated if the multi-
cost Z of the new route is less than the old one. The algorithm
will converge until the Z is smaller than predefined threshold.
And finally, the optimal route can be obtained. The probability
P is computed by four parts, i.e., PSURflow

, PSURseat , PTtime ,
and PWtime

. The definitions of them are given below.
• PSUR: PSUR can influence the seat utilization rate of a

route, which contains PSURflow
and PSURseat

. PSURflow

is used to measure the influence of passenger flow on
the selected routes. Usually, the station which has more
passengers can improve the seat utilization rate, and has
a higher probability to be chosen as the next station. The
PSURflow

is computed by

PSURflow
{sm|(s1, s2...sk)} =

Fm + F ∗∑k
i=1 Fi + F ∗ ∗ k

(15)

here, Fm is the number of passengers of candidate
station m, which can be retrieved from the PFM , and
(s1, s2...sk) is the set of all candidate stations. F ∗ is the
number of passengers that already get on in the previous
stations, and it can be employed to avoid local minimum.
PSURseat

can measure the importance of the number of
seats for the selected routes. To ensure passengers’ travel
experiences and safety, every passenger should have a
seat, and the bus returns to the terminal as soon as it’s
full. Therefore, the bus should always move forward to
the destination with the continuous improvement of the
load factor. The PSURseat

is computed by

PSURseat{sm|(s1, s2...sk)} =
∑k

i=1 Si_end − Sm_end∑k
i=1 Si_end ∗ (k − 1)

(16)

where Sm_end is the distance from candidate station m
to the end, which can be got from the TDM , so TDM
is also an input of the MCEA.

• PTtime
: The total travel time of a route can be controlled

by PTtime
. Usually, the station which has the shorter

travel time are more likely to be chosen. The PTtime
is

computed by

PTtime
{sm|(s1, s2...sk)} =

∑k
i=1 Ti − Tm∑k

i=1 Ti ∗ (k − 1)
(17)

where Tm is the travel time to candidate station m, which
can be got from the TTM .

• PWtime : PWtime can control the total waiting time of a
route. If a station has a shorter waiting time, it has the
higher probability to be chosen as the next station. The

PWtime
can be computed by

PWtime
{sm|(s1, s2...sk)} =

∑k
i=1Wi −Wm∑k

i=1Wi ∗ (k − 1)
(18)

where Wm is the waiting time to candidate station m,
which can be got from the WTM .

According to the probability theory, we assume X and Y
are two independent random variables, and their probability
functions are X(z) and Y (z). Q represents the sum of X and
Y , and the probability function of Q is equal to the convolution
of X(z) and Y (z) [31]. Therefore, the final probability P can
be computed by

P = PSURflow

⊙
PSURseat

⊙
PTtime

⊙
PWtime

(19)

where P is the final probability of the MCEA to select
the next station randomly. Algorithm 1 is the pseudocode
of the MCEA. In Lines 5-13 of 1, the final probability P
is calculated according to Equation (19) and then the next
station si is selected according to the calculated probability. In
Lines 14-20, the constraints (9)-(11) of the objective function
(4) is computed, followed by updating the four elements of
probability P in Equation (19).

IV. EXPERIMENTS

In order to demonstrate the effectiveness of our method, we
conduct experiments of our proposed scheme TRProfiling. We
first describe the details of shared bus data and data processing
and then provide the evaluation of TRProfiling compared with
other algorithms based on the obtained real-world shared bus
datasets.

A. Data Description

We cooperate with the Futurefleet and operate shared bus
services in Yongkang city, Minhang Zone, Shanghai and spend
more than six months to collect the datasets. Yongkang City
is a large residential area and the distance from residential
homes to the nearest stations is average 2KM. Every morning,
a large number of residents need to commute by subway. Fig.5
shows the application area of the experiments. The dataset
consists of order data, and GPS trajectory data from April
1st, 2017 to September 6th, 2017. The order data contains
information about passengers’ travel behaviors, e.g., order ID,
passenger ID, station ID of passenger boarding, order creation
date and time, passenger boarding date and time. It consists
of about 50,000 records of passengers from 6:00 a.m. to
22:00 p.m., including payment in cash and canceled orders.
The GPS trajectory data covers all stations of Yongkang City,
Shanghai. The information includes bus IDs, longitude and
latitude, recording time, last station ID, region code, bus driver
information, azimuth, precision, etc. The detailed description
of the dataset is shown in Table III and Table IV.

B. Data Preprocessing

During the data preprocessing stage, we preserve the data
between 6:40 a.m. and 9:40 a.m., because we focus on
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Fig. 6: Comparison of TRProfiling and real route.
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Fig. 8: Comparison of TRProfiling and other methods.

Fig. 5: The application area of the experiments.

TABLE III: Description of APP order data.

Field Annotation

OrderID ID of each order
Type Orders type
RegionID Region ID
PassengerID ID of each passenger
CreateDate Order creation date and time
CheckTicketDate Passenger boarding date and time
UpStopID Station ID of passengers boarding
RideCount the number of passengers

promoting the efficiency of going to work, which is more
urgent than going off work. Furthermore, we filter out the
data of missing values, payment in cash and canceled orders.
Based on the operating rules that it takes the shared buses
nearly 20 minutes for a trip, the period is divided into small
time intervals of 10 minutes from 6:40 am to 9:40 am. From
the GPS trajectory data, the travel time and distance between
each station can be calculated. In our paper, we use station
i and j as the origin station and the destination respectively,
and the OD pair (Station i, Station j) is determined.

TABLE IV: Description of shared bus GPS data.

Field Annotation

BusID Shared bus ID
Time Record time
Timestamp Record timestamp
Latitude The latitude of shared bus
Longitude The Longitude of shared bus
RegionID Region ID
StationID ID of the last station
LastLatitude Last latitude of shard bus
LastLongitude Last longitude of shared bus
SeatNum The number of seats of shared bus
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Fig. 7: Comparison of Loss Tolerance.

C. Optimal Route Evaluation

We conduct a series of simulation experiments and compare
with the actual routes with four metrics, i.e., passenger flow,
travel time, waiting time, and loss tolerance, to evaluate the
practicability of our method.

We choose several rush hours in the morning and predict
the results shown in Fig. 6. To sum up, the travel time of our
method is consistent with actual route data. However, the value
of passenger flow and passenger waiting time are much better



IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 8

Algorithm 1 Multi-Constraints Evolution Algorithm

Input: G(V,E),The graph of the stations with a given OD
pair

TDM : Travel Distance Matrix
PFM : Passenger Flow Matrix
TTM : Travel Time Matrix
WTM : Waiting Time Matrix
SN : The number of seats

Output: R: The Optimal Route
1: Pnum = 0, Pnum is the number of passengers that has

already got on the bus
2: Select Rinit, Rinit is the initial route selected from the

actual routes that satisfy three constraints (7), (8) and (9)
3: Calculate RinitZ based on Equation. (4) and Equation.

(5)
4: while Algorithm is not convergent do
5: while Pnum ≤ SN AND G(V,E) != ∅ do
6: for each station ∈ candidate stations do
7: Calculate P with Equation. (19)
8: end for
9: select station si based on probability P

10: add si to R
11: update Pnum

12: remove si from G(V,E)
13: end while
14: Calculate three constraints of R: RLt

, RDt
, RSr

of
Equation. (9), Equation. (10), Equation. (11)

15: if RLt
< m AND RDt

< n AND k < RSr
≤ 1 then

16: Calculate RZ based on Equation. (4) and Equation.
(5)

17: if RZ < RinitZ then
18: Rinit ← R
19: RinitZ ← RZ

20: update PSURflow
,PSURseat

,PTtime
,PWtime

based
on the Equation. (15), Equation. (16), Equation.
(17), Equation. (18)

21: end if
22: end if
23: end while
24: return R

than real routes. Furthermore, our optimized method reduces
the passenger waiting time by nearly a half on some departure
time spots. It illustrates that the comprehensive performance
of TRProfiling has a large advantage compared with the actual
routes.

Fig. 7 shows the comparison of loss tolerance between
the optimal route and real route. It is quite obvious that
the loss probability of passengers significantly reduces after
optimization. In other words, the optimized route strategy not
only greatly improve the revenues of bus companies, but also
it is suitable for satisfying different passengers’ needs.

D. Comparison of Route Planning Approach

To further verify the effectiveness of our proposed TRPro-
filing, we conduct a comparison among different schemes,

i.e., ant colony algorithm [32], [33], and Hopfield neural
network [34].The ant colony algorithm is one of the most
classical bionics algorithms proved to be efficient in many
fields. The Hopfield neural network is an artificial intelli-
gence algorithm which is applied in solving combinatorial
optimization problems in recent years [22]. As shown in
Fig. 8, TRProfiling is obviously better than other methods
in reducing the passenger waiting time. Besides, TRProfiling
also has advantages to improve passenger flow. Ant colony
method, as the metaheuristic approximation method, allows
parallel implementation due to its inherent nature [35], which
is superior to TRProfiling in reducing travel time. However,
it is acceptable for TPProfiling considering the improvement
in other aspects. Therefore, the performance of TRProfiling is
better than the other algorithms in the dynamic route planning
for shared buses in the aspect of meeting passenger demands.
TRProfiling can accurately characterize the travel demands of
passengers and then use the MCEA algorithm to select the
optimal routes considering these demands.

V. CONCLUSION

To overcome the data scarcity issue and optimize shared bus
services, we propose a heterogeneous mobile crowdsourced
data-based shared bus profiling scheme, TRProfiling. First, we
design an MCS-based data generation and collection solution
and cooperate with an Internet company, Yitong Innovation
Techonology (Dalian) Co., to implement a mobile APP, Fu-
turefleet, to collect shared bus data. Two datasets, order data
and GPS, covering data for more than six months, are acquired.
Then based on the analysis of these datasets, we construct TP
to describe resident travel requirements and adopt machine
learning algorithms to instantiate them. Following that, MCEA
is presented to select the optimal route for shared buses,
considering multi-cost, i.e., the multiple features of TP. At
last, a series of experiments are performed to demonstrate the
effectiveness of our method. It also indicates that TRProfiling
has immense value in industrial applications and provides
construction suggestions to the development of shared buses.

In order to make the TRProfiling more effective, we will
devote into considering more costs such as air pollution and
traffic jams to enrich TP in further work. We will also focus
on optimizing the algorithm to improve the efficiency of
TRProfiling scheme.
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JournalâĂŤThe International Journal on Very Large Data Bases, vol. 27,
no. 3, pp. 395–420, 2018.

[28] C. Chen, D. Zhang, N. Li, and Z.-H. Zhou, “B-planner: Planning
bidirectional night bus routes using large-scale taxi gps traces,” IEEE
Transactions on Intelligent Transportation Systems, vol. 15, no. 4, pp.
1451–1465, 2014.

[29] B. Yang, C. Guo, C. S. Jensen, M. Kaul, and S. Shang, “Stochastic
skyline route planning under time-varying uncertainty,” in Data Engi-
neering (ICDE), 2014 IEEE 30th International Conference on. IEEE,
2014, pp. 136–147.

[30] P. Zhou, Y. Zheng, and M. Li, “How long to wait? predicting bus arrival
time with mobile phone based participatory sensing,” IEEE Transactions
on Mobile Computing, vol. 13, no. 6, pp. 1228–1241, 2014.

[31] C. M. Grinstead and J. L. Snell, Introduction to probability. American
Mathematical Soc., 2012.

[32] M. M. Hamed, H. R. Al-Masaeid, and Z. M. B. Said, “Short-term
prediction of traffic volume in urban arterials,” Journal of Transportation
Engineering, vol. 121, no. 3, pp. 249–254, 1995.

[33] M. Dorigo and M. Birattari, “Ant colony optimization,” in Encyclopedia
of machine learning. Springer, 2011, pp. 36–39.

[34] J. J. Hopfield, “Neural networks and physical systems with emergent
collective computational abilities,” Proceedings of the national academy
of sciences, vol. 79, no. 8, pp. 2554–2558, 1982.

[35] R. S. Parpinelli, H. S. Lopes, and A. A. Freitas, “Data mining with an
ant colony optimization algorithm,” IEEE transactions on evolutionary
computation, vol. 6, no. 4, pp. 321–332, 2002.


	A shared bus profiling Scheme copyright
	FedUni ResearchOnline
	https://researchonline.federation.edu.au


	A shared bus profiling Scheme Accepted

