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Abstract 

In this study, evaluation and prediction of rock cohesion is assessed using multiple regression as 

well as group method of data handling (GMDH). It is a well-known fact that cohesion is the most 

crucial rock shear strength parameter, which is a key parameter for the stability evaluation of some 

geotechnical structures such as rock slope. To fulfill the aim of this study, a database of three 

model input parameters, i.e., p-wave velocity, uniaxial compressive strength and Brazilian tensile 

strength and one model output, which is cohesion of limestone samples was prepared and utilized 

by GMDH. Different GMDH models with neurons and layers and selection pressure were tested 

and assessed. It was found that GMDH model number 4 (with 8 layers) shows the best performance 

among all of tested models between the input and output parameters for the prediction and 

assessment of rock cohesion with coefficient of determination (R2) values of 0.928 and 0.929, root 

mean square error (RMSE) values of 0.3545 and 0.3154 for training and testing datasets, 

respectively. Multiple regression analysis was also performed on the same database and R2 values 

were obtained as 0.8173 and 0.8313 between input and output parameters for the training and 

testing of the models, respectively. The GMDH technique developed in this study is introduced as 

a new model in field of rock shear strength parameters.  

Keywords: GMDH, Rock cohesion, P-wave, Uniaxial compressive strength, Brazilian tensile 

strength. 
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1. Introduction 

One of the most important aspects of designing underground structures is that the engineer should 

understand and predict the mechanical behavior of rock under pressure. Rocks under pressure 

encounter two mechanisms of resistance – (1) Internal friction angle (ϕ) and (2) cohesion (C). For 

example, a precise estimate of Shear Strength, which will determine to what extent the rock can 

resist deformation under shear forces, is very important [1]. Shear Strength can be measured 

directly from lab tests on samples, but there are two problems with it – it is time consuming and 

expensive; and good quality samples are difficult to obtain particularly in weak and jointed rocks 

[2]. Hence a method of using rock index tests has been developed [1, 3–6], which makes it easier 

for assessing shear strength. These tests are faster and cost are lesser than uniaxial or triaxial 

compressive tests [7, 8]. Scientists carry out such shear strength tests on samples made of mixture 

rock particles, sand and clay [9–17], and find that increase in the proportion of rock particles 

increases the shear strength [18]. For weak and highly jointed rocks, a non-linear Mohr-Coulomb 

strength criterion has shown good results. However, this test has two limitations propounded by 

Singh and Singh [19]– one is linear strength response and the other is non-consideration of 

intermediate principal stress on strength behavior. By applying Barton’s critical state concept [20], 

non-linear strength criterion was acquired. Bivariate and multiple regression techniques applied 

on 45 different mudrock samples by Hajdawrish and Shakoor [21] established a correlation 

between geological and engineering properties like shear strength. In this manner they determined 

relationships between mineralogy, clay content, water, adsorption, dry density, Atterberg Limits, 

void ration, specific gravity, slake durability and shear strength and reported the estimation of ϕ 

and C in mudrock samples. 
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A comparison of Mohr-Coulomb and Hoek-Brown criteria [22] as applied to shale was studied by 

Yazdani [23]. The study showed that using Hoek-Brown criterion to develop a failure envelope 

gave a better description of the behavior of shale in field. The reason was that the classical Mohr-

Coulomb criterion of prediction of rock behavior did not consider inherent discontinuities in the 

in situ rock masses. In another research, Ghazvinian et al [24] established that under normal stress 

by external loading, the anisotropic shear behavior in compact rock sample is represented by ß, 

the gradient of schistosity planes. The effective shear strength, which depended on influences of 

confinement and anisotropy varied from high to low, with variation in ß. In a study of mechanical 

properties of shale, Islam and Skalle [25] computed various properties under different confinement 

pressures, varying bedding planes, using drained/undrained processes. Lab tests on shale samples 

showed that the Poisson’s ratio had decreased by 40% after drainage, accompanied by a high 

degree of heterogeneity. This led Barton [26] to conclude that non-linear classical Mohr-Coulomb 

criterion gave a more reliable forecast of in rock behavior in different conditions – rock fill or rock 

joints or rock masses.  

The Application of artificial intelligence in geotechnical engineering is increasing [27–35]. The 

group method of data handling (GMDH) which is a type of neural network (NN), can be considered 

as a potent identification technique without having specific understanding of the processes. It is 

utilized for model complicated systems, in which unknown relationships exist between the 

variables. The GMDH algorithm is considered as a self-organizing approach and it can generate 

complex models, gradually according to their performances [36, 37]. Although GMDH is similar 

to NN, there are a number of advantages compared to NN.  Among them, high speed and using 

easier mathematical functions which are accessible, can be mentioned for GMDH technique [38]. 
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On the other hand, NN does not have an acceptable performance prediction in implementing and 

solving complex problems [37].  

The application of the GMDH method has been used in various fields for evaluating different 

issues. This method has been used for issues that require linear and nonlinear computing. Some 

uses of this method are also used in civil and geotechnical engineering [38–40]. Recently, one of 

the things that has been discussed in the development of this approach has been by Koopialipoor 

et al. [41]. 

As far as authors know, application of GMDH for predicting rock cohesion has not been 

used/evaluated by the researchers. Therefore, in this study, a GMDH model is proposed to be 

developed for forecasting rock cohesion. In the first step, 63 data sets were prepared and used to 

develop a model. In these data sets, the model inputs were - p-wave velocity (Vp), uniaxial 

compressive Strength (UCS) and Brazilian tensile strength (BTS). In the next step, the case study 

and all applied methods were tested for predicting cohesion of the rock. The results would be 

discussed and the most suitable model for prediction of rock cohesion would be introduced to the 

reader. 

 

 

2. Structure of GMDH 

Artificial neural network (ANN) concept is considered as a system of high non-linearity by parallel 

operation, that is motivated by the complicated structure of the human brain [37]. The group 

method of data handling (GMDH) is a type of NN which can be recognized as a self-organizing 

method. It is able to generate complex networks according to their performances estimation on 

asset of multi-input, single-output data pairs (Xi, yi) (=1, 2, .., M). Generating an analytical 
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function in a feed-forward network (FFN) according to a transfer function is called quadratic node.  

In this way, function coefficients are achieved using the regression methods in the principle idea 

of GMDH. The GMDH algorithm is used to display a model consists of a series of neuron layers, 

where in every layer, through a quadratic polynomial, various pairs are connected, and produce 

new neurons in the following layer(s). Such characteristic of the model allows mapping inputs to 

output or outputs.  

In Figure 1, the structure of the technique is given. As can be seen, the four input parameters enter 

the system. In the first layer, different functions are created and then they are selected by the 

criteria, these functions and entered into the stage or the next layer. Finally, a function is named as 

the output of the model. 

The relation 1 shows the general function of the parameters. 

i i1 i2 i3 in
ŷ f (x ,x ,x ,...x ), (i 2,3,...M)   

(1) 
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Figure 1 A proposed structure of GMDH model  

The general trend of this model is based on the determination of the following function parameters: 

 

n n n n n n

o i i i j i i i jk i i k
i 1 i 1 j 1 i 1 k 1j 1

y a a x a x x a x x x ...
    

            
(2) 

In fact, here, a mathematical relationship between different variables must be solved. Coefficients 

of ‘a’ are among the most important parameters to be determined. To determine this parameter, 

different functions are created at each stage and layer. This process is repeated to minimize the 

following equation: 
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M 2

i i i j
1(y y(x ,x ))

E min
M

  
   

(3) 

For more information, refer to recent research [41]. 

The generated functions are determined on each layer using the neurons that they use. To select 

these parameters in the layers, the selectionpressure criterion is defined. This criterion acts so that 

any created function that has the required conditions is sent to the next step, and other functions 

are deleted. This criterion is defined by the mathematical relation 4. The value of this parameter is 

between 0 and 1. When the α parameter is given a value of 1, that is, the functions with the lowest 

error are selected. This causes the number of functions to be selected. When the value is closer to 

zero, more data is selected for the next step. 

c min max
e RMSE (1 ) RMSE      (4) 

RMSE MSE  
(5) 

The main trend of this model is presented in Figure 2. In this flowchart, all the scenarios used to 

implement the water model are mentioned. In the end, to check the performance of the models, the 

regression index of R2 is also used alongside RMSE.  

doto

doto

Num 2

q 1 q q2

NUM 2

q 1 q

ˆ(Y Y )
R 1

(Y Y)







 
   

 
  
 

 

(6) 
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Figure 2 The general trend of implementing a GMDH model 

 

 

3. Laboratory Investigation 

 

Core drilled rock samples in NX size were collected from the subject rock mass. The ends of core 

samples were trimmed and cut to standard sizes as per ISRM [42]. The ends were thoroughly 

smoothened, using a lathe machine, to avoid end-effects, and then various physico-mechanical 

properties were determined. 
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3.1 Measurement of p-wave Velocity 

 

A PUNDIT (Portable Ultrasonic Non-destructive Digital Indicating Tester) was used to determine 

the p-wave velocity of rock samples. As per ISRM [43], a prepared sample is subjected to a 

mechanical pulse generated by piezo-electric transducers in the PUNDIT. High voltage electric 

pulses are converted to mechanical pulses - p-waves - by piezo-electric transducers. These 

mechanical pulses applied at one end of the sample and received at the other end enable the 

instrument to determine the p-wave velocity. 

 

3.2 Measurement of Uniaxial Compressive Strength (UCS) 

 

As per ISRM [44], NX Size (54mm diameter) cylindrical core-samples of rock are collected and 

loaded between the platens of the Universal Testing Machine (UTM). A steady stress rate of 1.0 

MPa per sec is applied till the failure occurs. The stress values are plotted and the peak of the 

curve, where it takes a dip at failure, is noted and that is recorded as the compressive strength of 

the sample. 

 

 

3.3 Measurement of Brazilian Tensile Strength: 

 

The Brazilian Test is a popular method of measuring tensile strength, in which a tensile failure is 

induced along one axis while applying a compressive strength along another axis. The principal of 

the Brazilian Test is that when subjected to biaxial stress fields, most rocks fail in tensile strength 

in one axis, when a compressive strength is applied at the other axis. The point to be noted, 

however, is that the magnitude of the compressive stress should not exceed three times that of the 

of the tensile stress [45].  
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3.4 Measurement of Cohesion: 

 

The equipment used for measuring cohesion consists of a hydraulic actuator, hydraulic pressure 

unit, loadframe, data acquisition and measuring devices and a controller unit. Such equipment is 

used to carry out triaxial compression tests, using isotropic confining pressures (σ3). This comes 

very close to simulating the stresses in a rockmass that is subject to weight of the overburden. In 

order to do this, a core sample is inserted into a triaxial cell and a hydraulic fluid is used as a 

medium to apply confining pressure. Keeping the confining pressure or cell pressure at a constant 

level, the axial load is gradually increased using the hydraulic actuator. Measurements are 

transmitted into the data logger and analyzed using testing software. A Mohr circle is drawn for 

each sample. 

In this study, the cohesion tests were carried out on a number of similar samples, using different 

confining pressures. The data was used to draw a number of Mohr circles. Then tangent line drawn 

through the Mohr circles is the measure of cohesion of rock samples. 

 

 

4. Statistical Data 

 

Enormous amount of literature available shows that shear strength of rock bodies can be predicted 

using simple rock indices as inputs. Tests used to assess rock indices are simple and easy to 

perform.  

In this study, to develop a model for assessing shear strength, a series of rock index tests were 

carried out on limestone samples. 63 samples were tested to generate the database, measuring Vp, 

UCS, BTS and Trixial Compression Tests. These indices were used as inputs to determine the 

cohesion (C) as output. The values of C were used for further analyses. These data, along with 

other related data comprising of the database are presented in Table1.  
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Table1 Database with Statistical Information of Rock Test Indices 

 

Data 
Abbreviation 

Unit 
Data 

type 
Min Max 

Var 
Mean 

P-wave velocity Vp m/s Input 3405.78 4735.10 100789.1 3978.74 

Uniaxial compressive strength  UCS MPa Input 94.53 137.95 105.76 110.10 

Brazilian tensile strength BTS MPa Input 11.68 17.31 1.90 14.07 

Cohesion C MPa Output 16.13 21.50 1.80 18.45 

 

 

The process of developing statistical and GMDH models for predicting cohesion properties using 

data from the database is described in the following sections. 

 

5. Model Development 

 

For identifying the best method of estimating rock cohesion, multiple regression analysis were 

used along with GMDH predictive models (Under two different conditions). The objective was to 

tabulate and compare the performance of each predictive model in assessing rock cohesion, and 

identify the most effective model.  

The following sub-sections contain the process of each of the predictive models studied and 

compared.  

 

5.1 Developing GMDH  

In this section, implementation of the water model is considered. The purpose of this research is 

to develop a new soil model for prediction of water. As mentioned, the water model is a kind of 

neural network, which is actually introduced as a new method. To design this model, input and 

output data were selected from Table 1. After initial data analysis, they were divided into two 

parts: training and testing. According to the researchers' recommendations, 80% of the data was 

allocated to the training and other data to the testing [46, 47].  
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Given that any prediction model is affected by various parameters, in this model, parameters such 

as the number of neurons, the layer and the selection pressure are effective. In the previous section, 

explanations were given in these cases. In the following, to develop the model, there are several 

discussions on these parameters. These parameters are evaluated for effective prediction of rock 

cohesion. 

 

5.1.1 Numbers of Neuron  

One of the parameters that is considered in neural networks is the number of neurons. Choosing 

this parameter, given the conditions in which each data has in computational space, can has a great 

importance on the performance of the models. In the GMDH model, the choice of this number 

varies according to each layer. As mentioned in the previous section, this model has different 

layers, and each layer can have different number of neurons depending on its previous layer. 

However, a high limit for the number of neurons should be used to allow the model to run. Some 

researchers have proposed the maximum number of neurons in the GMDH model from equation

 n

2

n(n 1)

2


 , where n is the number of inputs. Although, according to conditions it may be 

possible which the number of neurons receive more neurons than this limit. If more neurons are 

selected from the limit, the percentage of divergence is usually higher in the results, and the result 

may not be desirable. 

In this section, 12 models with a number of neurons from 2 to 20 were designed. Each model was 

run several times, and the best conditions were chosen. The two statistical parameters, R2 and 

RMSE, were used as indicators to compare the performance of the models [48–50]. The R2 or 
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RMSE value is closer to 1 and zero, respectively, the model offer an excellent performance. After 

the R2 and RMSE values were assigned to both the training and test sections for 12 models, the 

scoring method introduced by  Zorlu et al. [3] was performed. This method is based on the fact 

that the higher the R2 value, the higher the score and vice versa. The lower the RMSE, the higher 

the score is given. This was done for each row of models, and ultimately they get their points in 

the end. With this method, the model with the highest score is introduced as the best model that 

predicts rock cohesion. In Table 2, Model 8 with the highest score (30) is selected as the best model 

obtained by the neuron changes. 

Table 2 Effects of neuron number on GMDH performance 

Model 

No 

Number 

of 

Neuron 

 

Network Result Ranking Total 

Rank 

Train Test Train Test  

R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

1 2 0.931 0.3663 0.929 0.3631 9 5 6 5 25 

2 4 0.925 0.3757 0.901 0.4497 6 2 1 2 11 

3 6 0.924 0.3648 0.936 0.3479 5 6 9 8 28 

4 8 0.939 0.3608 0.909 0.4498 10 8 2 1 21 

5 10 0.931 0.3580 0.916 0.3488 9 9 3 7 28 

6 12 0.916 0.3777 0.917 0.4334 3 8 4 3 18 

7 14 0.923 0.3616 0.948 0.3606 4 1 10 6 21 

8 16 0.929 0.3474 0.935 0.3814 8 10 8 4 30 

9 18 0.928 0.3725 0.928 0.3176 7 4 5 9 23 

10 20 0.928 0.3729 0.931 0.3038 7 3 7 10 27 
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5.1.2 Number of layers 

The next step to improve the performance of the GMDH model is to check the number of layers. 

In neural network models such as ANN, researchers usually used 3 layers, the first and last layers 

are introduced as input and output layers. While the hidden layer is the layer that is checked on the 

neurons. Unlike other neural models, the GMDH model can have several layers, and each with 

different neurons can be included. However, selecting the number of optimum layers can be 

effective in performance and runtime system. 

In this section, five models were implemented to evaluate the effect of the number of layers. These 

models consisted of 2 to 10 layers. In this step, R2 and RMSE were used to help select the most 

effective model. In the previous section, the number of Neuron 16 (Model 8) was selected as the 

best model. In this case, all models were designed with 16 neurons. Scoring is the same as the 

previous section. In Table 3, the results of this review are presented. As can be seen, Model No. 4 

has earned the highest score. The training and testing values of prediction model are for R2 0.928 

and 0.929. 
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Table 3 Effects of the layer number on GMDH model 

Model 

No 

Number 

of 

Layer 

 

Network Result Ranking Total 

Rank Train Test Train Test 

R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

1 2 0.920 0.3759 0.922 0.3206 1 1 4 4 10 

2 4 0.932 0.3605 0.915 0.3711 3 2 3 3 12 

3 6 0.934 0.3395 0.893 0.4556 4 4 1 1 10 

4 8 0.928 0.3545 0.929 0.3154 2 3 5 5 15 

5 10 0.939 0.3222 0.905 0.4367 5 5 2 2 14 

 

5.1.3 Selection pressure 

The selection of each function has been introduced as a major factor in the design of the GMDH 

model by various researchers. This selection is known as the "selection pressure". Using this 

criterion, a number of data from the previous step, which created the best function in those 

conditions, are selected and entered the next layer. This process is repeated in the new phase to 

reach the final layer at the end. Finally, the best function that can really provide this model is 

chosen as the output of the GMDH model. The method of selecting this criterion is based on the 

number of data or system error. Some researchers have suggested that better performance can be 

obtained based on system error. In this research, it is also determined by system error. The more 

percentage of variations is chosen from the lower values, the more time is spent. Of course, further 

investigations make it possible to examine different conditions by constructing different functions. 

In Table 4, a range of changes in the selection pressure criterion was used for GMDH models. 9 

models were developed on this basis. These models were designed and executed based on the best 
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model of the previous stage, which included 16 neurons and 8 layers. Like previous processes, two 

R2 and RMSE parameters were used to evaluate the models in this section. After obtaining these 

two values for the training and testing sections, the results were scored and the best model was 

obtained. According to this method, Model No. 6 was introduced as the best model for predicting 

rock cohesion. Based on this, in the next section of the final model, which includes 16 neurons, 

and 8 layers and 60% selection pressure, and the influence of the number of parameters on 

prediction of rock cohesion is evaluated. 

Table 4 Effects of various selection pressure percentages on GMDH performance 

Model 

No 

Selection 

pressure 

(%) 

Network Result Ranking Total 

Rank Train Test Train Test 

R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

1 10 0.929 0.3701 0.880 0.3974 6 3 1 1 11 

2 20 0.929 0.3671 0.925 0.3419 6 4 7 5 22 

3 30 0.928 0.3613 0.935 0.3489 5 5 8 4 22 

4 40 0.936 0.3501 0.883 03809 9 8 2 2 21 

5 50 0.929 0.3731 0.902 0.3316 6 2 3 8 19 

6 60 0.927 0.3457 0.941 0.3125 4 9 9 9 31 

7 70 0.922 0.3920 0.921 0.3348 3 1 6 7 17 

8 80 0.931 0.3502 0.920 0.3366 8 7 5 6 26 

9 90 0.930 0.3591 0.908 0.3745 7 6 4 3 20 
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5.2 MR model  

In this section, a linear regression (MR) model is developed using the same data as the GMDH 

model. The MR model is used to check the amount of rock cohesion prediction, and then a 

comparison is made between its results and the model of developed GMDH in this study. To design 

this model, the data were divided into two parts: training and test, with percentages of 80 and 20 

percent, respectively [51]. This model creates a linear relationship between dependent and 

independent variables. This modeling is used by various researchers to assess the performance of 

developed models for initial evaluation [30, 41]. 

In this study, A ML model was obtained for comparison with the GMDH model results. In Figure 

3 and 4, the results of this model are presented for rock cohesion evaluation. As can be seen, the 

accuracy of this model is less than GMDH models. 

 

Figure 3 The proposed MR model to estimate rock cohesion  
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Figure 4 The proposed MR model to estimate rock cohesion  

6. Evaluation of input numbers 

In order to investigate the effects of input numbers, two models of GMDH1 (2 inputs) and GMDH2 

(3inputs) models in predicting rock cohesion were developed. In this section, by comparing these 

two models, the effect of inputs on the prediction of GMDH is investigated. It should be noted that 

for GMDH1 model, UCS and BTS and for GMDH2 model, Vp, UCS and BTS were used, 

respectively. The developed GMDH model was studied with the best conditions obtained from the 

previous stage (Number of neuron=16, Number of layer=8 and Selection pressure=60%). To 

evaluate the performance of developed models, two statistics indexes of R2 and RMSE are used 

[47, 52]. During modeling, various models were made to reduce errors. This way help to check the 

results carefully. In this study, according to past research, five models were implemented [53, 54]. 

Table 5 and 6 show the obtained R2 and RMSE results for all 5 developed models in predicting 

rock cohesion with 2 and 3 inputs.  As stated earlier, the previous method for ranking of  R2 and 
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RMSE was used. Therefore, based on total rank values, GMDH1 model number 1 with rank = 16 

and GMDH2 model number 5 with rank = 16 show the best performance capacity in their class.   

The final results (R2 = 0.834, R2 = 0.749 for training and testing of GMDH1 and R2 = 0.943, R2 = 

0.939 for training and testing of GMDH2) indicated that GMDH2 model has a great capacity in 

comparison with GMDH1 model for prediction of rock cohesion. Additionally, here the influence 

of the input parameters on the performance of the system can be studied. However, the existence 

of the third parameter (Vp) can improve up to 10% of the model's performance. Given that the two 

parameters of UCS and BTS have a great influence on Rock Cohesion, the third parameter can 

increase the prediction of rock cohesion. Finally, the prediction models for training and testing 

sections of model GMDH2 are shown in Figures 5 and 6, respectively. Figure 7 shows the values 

obtained from the two models and the actual values. In this figure it can be concluded that three 

parameters can improve the performance of the rock cohesion prediction with high accuracy. 

Table 5 The result values for the developed model of GMDH1 in predicting rock cohesion with 

2 inputs 

 Network Result Ranking Total 

Rank Model  Train Test Train Test 

R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

GMDH 1 0.834 0.5222 0.749 0.6837 3 5 5 3 16 

GMDH 2 0.849 0.5390 0.691 0.8434 5 4 1 1 11 

GMDH 3 0.837 0.5724 0.726 0.5566 4 2 3 5 14 

GMDH 4 0.849 0.5431 0.699 0.8032 5 3 2 2 12 

GMDH 5 0.807 0.6187 0.729 0.6683 2 1 4 4 11 
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Table 6 The result values for the developed model of GMDH2 in predicting rock cohesion with 

3 input 

 Network Result Ranking Total 

Rank Model  Train Test Train Test 

R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

GMDH 1 0.938 0.3017 0.922 0.3059 2 1 1 2 6 

GMDH 2 0.940 0.2939 0.938 0.3001 3 3 4 4 14 

GMDH 3 0.947 0.2849 0.924 0.3089 5 5 2 1 13 

GMDH 4 0.934 0.2899 0.933 0.3042 1 4 3 3 11 

GMDH 5 0.943 0.2943 0.939 0.2991 4 2 5 5 16 

 

 

Figure 5 Training rock cohesion values for the best developing GMDH2 model with 3 inputs 
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Figure 6 Testing rock cohesion values for the best developing GMDH2 model with 3 inputs 

 

 

Figure 7 The results of GMDH1 and GMDH2 
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7. Conclusions 

In this paper, an attempt has been done to find models for estimating / predicting cohesion in rocks 

using a new intelligent method. In the first stage, laboratory tests were measured for 63 samples. 

Four sets of data were measured including Vp, UCS, BTS and Cohesion. Then, the first three sets 

were given as inputs to conduct the intelligent model namely GMDH. This method, which is a 

branch of neural networks, was fully implemented and its prediction performance was 

investigated. At the end, the best model was selected with regard to two and three input parameters 

and their impacts. From the comparison between the two models (1 and 2), it can be concluded 

that the Vp parameter can increase the performance of the model up to 10%. ، To investigate 

performance of the GMDH technique, MR methodology was also considered and constructed. In 

terms of R2, values of 0.943 and 0.939 for training and testing of GMDH and 0.817 and 0.831 for 

training and testing of MR indicate that GMDH technique is a capable method for rock cohesion 

prediction and it can be used for similar condition.  
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