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Abstract 

Despite being a common issue in both developed and developing countries, wastewater 

blockages have severe potential consequences. Blockages can be located at sewer mains or 

individual properties and can also be classified as partial or full. Full blockages completely 

obstruct a wastewater asset, and partial blockages will often develop into full blockages if left 

unattended.  

Currently, blockages are managed by routine manual inspections to wastewater assets on a 

round-robin schedule. This is highly inefficient and costly, as blockages that form between 

these inspections and progress to effluent breaches will go undetected. In this thesis we 

present an Internet of Things (IoT) solution capable of simultaneously monitoring an entire 

wastewater infrastructure for blockages while still remaining inexpensive, reliable, and 

practical. Wireless motes use float switch sensors to detect blockages and transmit this to a 

central system using either LoRa or Wi-Fi communications. Making both LoRa and Wi-Fi 

available ensures the system can be adapted in any situation across a variety of geographic 

and economic restrictions. 

The central system determines whether a surcharge is caused by a blockage or simply the 

result of regular activity not requiring intervention. Detection of false positives is critical, as 

deployment of field technicians is an expensive process that moves resources from other 

skilled work. If a surcharge is determined to be caused by a blockage, the central system will 

classify it as full or partial before estimating the property or length of main between properties 

it is located at. Following this, relevant parties will be notified so field technicians can be 

deployed to resolve the blockage.  

We performed both practical laboratory testing and simulation modelling on our proposed 

system, and confirmed it is indeed capable of detecting, classifying, and locating blockages 

across a wide urban area. Our choice of hardware, software and network equipment ensures 

that the proposed IoT-based solution is inexpensive, workable, and easily deployable.  
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Chapter 1 Introduction 

1.1 Background  
Since the dawn of the 21st century, the Internet of Things (IoT) has evolved from a supply-chain 

management platform [26] to a paradigm whose impact is compared to the introduction of the 

public Internet [35] [41]. The Internet has traditionally been perceived as human-centric, 

where human users request and are served remotely located resources including HTML 

documents and multimedia. IoT challenges this by giving ubiquitous devices Internet 

connectivity, allowing them to communicate with other devices, web servers, resources, and 

services. Estimates state that several billion IoT devices will be connected to the Internet by 

2020 [24], with some predicting a number as large as 50 billion [26] and research challenges 

preparing for trillions of devices in the future [28].These numbers outnumber the amount of 

living humans, meaning the IoT could redefine the Internet as machine-centric in addition to 

human-centric.  

IoT has largely involved giving Internet connectivity to everyday devices including household 

appliances, wearables, industrial machinery, fixtures such as light as taps, and healthcare 

devices.  Connectivity will be natively granted to new devices during manufacturing by 

integrating microcontrollers, sensors, actuators, and network transceivers. For older objects, 

connectivity can be   emulated by attaching IoT-capable sensors and/or actuators which 

interact with the objects. Discussion in recent years has raised the concept of a Smart Earth, 

discussed at levels including the President of the United States [35]. Smart Earth involves 

giving Internet connectivity to roads, urban infrastructure, utilities, and vehicles, alongside 

natural features such as waterways, forests, and animals. Stankovic [28] proposed the IoT will 

eventually become a ‘layer’ of sensing and actuation overlaid on the world, with all humans and 

devices constantly interacting with one another.  

In summary, IoT can be defined by adding Internet connectivity to ubiquitous, non-human 

objects and devices with sensors and actuators. Sensors will gather contextual information for 

these ‘things’, while actuators will carry out some real-world function.  

Many IoT implementations require many inexpensive devices deployed sparsely over long 

distances. Current wireless networks such as Wi-Fi, Bluetooth, LTE and GSM fail to meet these 
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requirements as they often sacrifice range, cost-efficiency, or scalability to meet other 

requirements such as data rate. Limitations of current wireless networks led to the 

development of Low Powered Wide Area Networks (LPWANs) for deploying IoT systems. 

LPWANs have relatively low throughput but offer long communications range, inexpensive 

hardware, high scalability, and low power consumption [30-32] [42-43]. These attributes have 

made LPWANs useful for implementing a wide variety of IoT systems, with smart cities often 

discussed as a potential application.  

Smart Cities are an increasingly popular initiative worldwide, however there is no single 

definition of the term. Zanella et al. [39] provide a good definition - using ICT to better utilise 

public resources and improve public services, while reducing the costs of administration. This 

same study proposes an Urban IoT to realise smart city goals through collecting data on urban 

infrastructure and using this to optimise service delivery by remote actuation.  

Urban IoT can also improve delivery of utilities such as power, water, wastewater, and gas. 

Water and wastewater are arguably the two most essential, as humans cannot live without 

potable water, and wastewater management significantly reduces health hazards. Examples of 

using urban IoT to effectively improve water treatment is shown in [34], while [44-45] show 

examples of enhancing wastewater treatment and disposal.  

Traditional wireless technologies have insufficient range to deploy a network practically and 

cost-effectively. This is because water and wastewater assets are often deployed over long 

distances, deployed underground, or obscured by concrete. Water and wastewater 

infrastructure are often composed of a very large number of assets such as pipes, with many 

located in harsh or hard-to-reach places. An urban IoT to monitor this infrastructure must be 

capable of handling many devices, able to communicate over long distances, and prove 

tolerant to obstructions. As a consequence of requiring many devices, urban IoT for this 

infrastructure must be inexpensive to remain practical for limited budgets. Practicality also 

requires a long battery life, as changing batteries is expensive and often difficult in hard-to-

reach places. Considering the above factors, LPWANs provide the perfect implementation for 

an urban IoT in wastewater or water systems. 
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Figure 1-1 – An illustration of the Smart Earth concept, where data is collected from a wide variety of natural and human-made features to provide an ‘overlay’ of data 

collection. (1), (3), (7), (8), (9), and (10) are examples of this taking place in different natural environments and ecosystems including forests, plains, hills, mountains, 

animal burrows, and waterways. (12), (13), (14), (16) and (18) represent IoT enabled buildings or urban facilities capable of data collection and potentially actuation. This 

includes smart homes, commercial buildings, parks and recreational facilities, parking, and traffic management, and even emergency services. Similarly, (2), (4), and (5) 

show how data can be collected from farms and agricultural equipment. Finally, (11), (17), and (19) demonstrate an IoT-enabled smart water infrastructure. Water is not 

alone in this, as a smart earth could also include power, gas, garbage, or telecommunications infrastructure. 
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An urban IoT implemented with LPWAN technology could theoretically be used for monitoring 

wastewater systems and detecting blockages. Low-power, low-cost wireless sensors could be 

deployed throughout a wastewater system and used to read contextual variables which indicate 

blockage. The low cost and easy maintainability of LPWANs makes a potential network 

practical for deployment in developing countries, where improving wastewater systems could 

significantly reduce fatalities and environmental contamination alongside improving quality 

of life. In first-world countries, an inexpensive system with clear benefits provides significant 

motivation for governments to begin introducing smart city programs. Implementing such a 

system would also increase maintenance efficiency and reduce time of service delivery, 

providing additional benefits to both governments and customers. 

1.2 Wastewater Systems 

Effluent is a term used for liquid waste produced by human habitation. Homes and small 

businesses produce moderate amounts of effluent through fixtures such as sinks, toilets, 

showers, and baths, alongside appliances such as dishwashers and washing machines. 

Commercial facilities and urban infrastructure also produce a larger volume of effluent with a 

higher probability of containing hazardous materials. Effluent is mostly water; however, its 

other components range from human and animal waste to cleaning products and industrial 

chemicals. These present significant risks to both humans and the environment, making safe 

containment and disposal of effluent a high-priority issue for governments.  

The aforementioned disposal and containment of effluent is implemented by urban 

infrastructure collectively termed wastewater systems. Sources of effluent at each property are 

connected to underground pipes named property connections. These carry effluent to 

underground pipes named sewer mains, with each sewer main connected to many property 

connections. Sewer mains end by feeding into other and often larger sewer mains, forming a 

network of pipes that eventually ends at a specified treatment plant or storage facility. Figure 1-

2 illustrates the above system. To reach this intended destination, effluent must always flow 

through pipes in a specific direction. The direction which wastewater flows is named 

downstream, while the opposite direction named upstream.  

An additional pipe named an inspection shaft is attached to each property connection between 

the actual property and sewer main. These rise vertically from the property connection and 

terminate at ground level, allowing observation of the inner property connection. Watertight 
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caps are installed on these shafts to prevent foreign material entering the system or effluent 

leaking out. Field technicians use inspection shafts to search for surcharges, which is the 

industry term for an increase in effluent level. As we discuss below, surcharges can be used to 

determine both the type and location of a potential blockage.  

Blockages can occur at both sewer mains and property connections when normal effluent flow 

is obstructed. This relative location is used to classify blockages, alongside whether they are 

full or partial. Full blockages completely occupy all available space in a pipe, and 

consequentially completely stop effluent flow from that location. In contrast, partial blockages 

do not occupy all available space, and provide one or more ‘gaps’ for effluent to flow through.  

Both types of blockage result in surcharge at assets located upstream, with full blockages 

causing a constant rise and partial blockages causing a fluctuation. Property connection 

blockages will only cause surcharges in that individual property connection, while main 

blockages result in surcharges in all upstream connections. From a diagnostic perspective, a 

property connection blockage will result in that connection’s inspection shaft surcharging. 

Conversely, a main blockage will cause observable surcharges in all upstream inspection 

shafts.  

 

Figure 1-2 – Two properties connecting to their closest sewer main. 1 is the lid covering the first property’s 

inspection shaft, and 2 is that property’s property connection. 3 is the second property’s inspection shaft lid, 

and 4 the second property connection. These serve the same purpose in both properties, and the connections 

carry effluent to the sewer main which is represented by 5. 
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1.3 Research Motivations 

This section provides motivations for undertaking the research in this thesis by detailing the 

critical importance of detecting wastewater blockages and shortfalls of current systems. This 

research is largely motivated by the limitations of current systems, and endeavours to develop 

a new solution addressing these limitations using smart sensors and IoT. Following this, other 

motivations arising from the system’s intended deployment are discussed.  

1.3.1 Monitoring of Wastewater Blockages 

Left unattended, blockages will inevitably cause surcharges, and eventually effluent will breach 

through inspection shafts or property fixtures. These breaches are not only distressing for 

residents but pose significant risks to public health and the environment. Pathogens in 

effluent can cause a myriad of disabling or fatal health conditions, which alarmingly do not 

even require direct contact with the effluent itself. Australia’s Department of Health [8] stated 

that exposure can occur indirectly if animals or insects come into contact with the breach, and 

then with humans.  

Utility providers are responsible for resolving blockages and decontaminating any areas 

exposed to effluent if a breach occurs. Not only is decontamination costly and time-

consuming, but breaches can cause significant damage to a utility provider’s reputation and 

open them to potential legal and regulatory action.  

The current most common method of blockage monitoring is Closed Circuit TV (CCTV) 

inspection. This involves attaching a video camera to a long, retractable tube and pushing it 

through a length of sewer main. Video recorded inside the sewer is displayed on a monitor to 

field technicians in real-time, who inspect the footage for blockages or faults. Inspections are 

performed on every length of main on a round-robin basis, and ad-hoc on specific lengths if a 

blockage is suspected. These video recordings are often archived for further inspection and 

future reference.  

Perhaps the biggest limitation of CCTV inspection is that it can only be performed on a round-

robin basis. A combination of limited resources and large number of wastewater assets result 

in a potentially large time between inspections for a given asset, often measured in months but 

sometimes even years. Round-robin CCTV inspection is also only capable of detecting 

blockages that have formed and become noticeable in the time between each inspection. 

Logically, we can assume the probability of detecting a blockage has a negative relationship 
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with the length of time between inspections.  Many blockages consequentially go undetected 

until they cause an effluent breach, defeating the purpose of inspection.  

Acoustic blockage detection is an increasingly popular alternative to CCTV inspection, 

utilising sonar technology to detect blockages or other abnormalities in a pipe. To utilise 

acoustic detection, technicians lower a special probe into a pipe and activate its sonar 

component. This is much quicker to perform than CCTV inspection, decreasing the length of 

time between inspections for a given asset. However, acoustic detection also shares its biggest 

limitation with CCTV technology; staff must physically visit each main on a round-robin basis. 

There will still be significant lengths of time between a given asset’s subsequent inspections, 

and blockages will form during this time while remaining undetected.  

Addressing the fundamental limitations with CCTV and acoustic detection requires a method 

for simultaneously monitoring an entire wastewater system without regular human 

intervention. Instead of blockages only being detected during sparsely spread routine 

inspections, blockages should be detectable as soon as they begin. Early detection will ensure 

blockages are detected before customers even notice any signs, along with preventing 

exposure to dangerous effluent. Field technicians will also spend much less time performing 

manual sewer inspections and can instead be assigned to tasks requiring more human 

ingenuity.   

Building on Section 1.1’s concepts of Smart Cities and Urban IoT, this research will utilise a 

successful union of hardware and software to develop a system addressing the limitations of 

current blockage detection techniques. By using a low-powered microcontroller, sensor and 

wireless transceiver, a device as shown in Figure 1-3 can be developed to detect sewer 

blockages. This device’s sensor must be capable of detecting surcharges at the point of 

deployment, as surcharge indicates a downstream blockage. If the sensor detects a surcharge, 

a notification can be processed by the microcontroller and sent to a central system using the 

wireless transceiver. 

Software deployed on a central system will be responsible for receiving surcharge alerts from 

devices and determining their location, before notifying appropriate staff. Field technicians 

will be deployed to the blockage’s location and able to resolve the issue before it prevents a 

health risk. The central system should also be capable of determining whether a blockage is 

full or partial, and whether it is located at a property connection or main.  
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Figure 1-3 – An abstract, theoretical model of a hardware device which could detect sewer blockages. This 

would collect water level, as it is the most common and distinctly changing factor when blockages occur – 

essentially, this will be monitoring for surcharges.  

This device contains a sensor to detect surcharges, a microcontroller for processing input, a transceiver for 

sending that input to a central system, and a power supply. The antenna is used for physically conveying the 

message.    

1.3.2 Cost and Complexity of Current Solutions   

Regardless of effectiveness, any wastewater monitoring system will be completely impractical 

if implementation and operation are too expensive. Utilities providers often utilise public 

funds and are fiscally conservative, resulting in hesitation to implement a new system where 

cost outweighs potential benefit or profit. Despite significant improvements to current 

methods such as CCTV or acoustic inspection, the system we will develop still performs the 

same overall function of blockage detection. Ultimately, management decisions at utilities 

providers will depend on the previously alluded comparison of cost and benefit. As a result, we 

must also conduct research on how to keep development, deployment, and maintenance costs 

as low as possible.  

To provide maximum benefit our delivered system must be deployed throughout an entire 

wastewater infrastructure. Any areas where the system is not deployed will effectively be 

unmonitored and blockages will remain undetected. As the area serviced by wastewater 
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infrastructure grows, two requirements will emerge; i - increased number of connected 

properties will require a larger number of devices, and ii - larger overall distance will require a 

greater wireless range. These two requirements do not necessarily grow in a linear fashion, 

with their individual rates of growth dependent on the area’s population density. Both the per-

unit cost of devices and cost of wireless network deployment must be kept low enough for 

utilities providers to realistically implement.   

Looking elsewhere, sewer inspection methods in developing countries are often crude and 

dangerous, putting the persons responsible under significant risk. An example of this is 

‘manual scavenging’, where people enter sewers without protective gear and remove blockages 

or perform repairs by hand. Our research can provide the greatest possible benefit for these 

countries, even potentially saving lives. This increases the motivation for developing very 

inexpensive techniques, as developing countries understandably have lower budgets for 

wastewater development. Any system we develop must not only be practical for wide-scale 

deployment in ‘typical’ environments, but also those with limited funds.  

Complexity also presents another barrier to wide-scale adoption of the system. Regardless of 

cost-effectiveness, any system will provide little practical benefit if technicians are unable to 

operate it. Complex systems require more time and funds be spent on training, 

implementation, and troubleshooting – tipping the cost-benefit ratio further out of the system’s 

favour. Furthermore, onerous, and overly complex systems will be seen by utility providers as 

providing less benefit. Utility providers are often change-adverse, and any new systems must 

prove beneficial relatively quickly and allow for easy transition.  

1.3.3 False Blockage Alarms 

As our research scope does not include developing an actuation method for resolving 

blockages, any blockages will be resolved by notifying the utility provider who then deploy field 

technicians to the correct asset. Deployment not only requires field technicians to immediately 

cease their current task but incurs costs to the employing utility provider in person-hours, 

transport, and asset lifetime. While the benefits of deployment far outweigh the costs if a 

blockage is occurring, this will not be the case if there is no actual blockage. Therefore, to 

ensure any system we develop is both financially viable and attractive to utilities providers, we 

must ensure that most blockage notifications are genuine.  
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False Alarms can be defined as any occasion where our system detects a surcharge, but no 

blockage is occurring. A system that simply detects surcharges with no additional logic will 

produce a myriad of false alarms, making it unviable for the reasons previously stated. There 

are two broad categories of events that can cause false alarms; actual surcharges caused by 

something other than a blockage, and surcharges being detected when none are occurring.  

The first category of events is the most common, occurring on a near-daily basis when an 

appliance or fixture ejects a large amount of effluent in a very short period of time. This 

commonly occurs with dishwashers, washing machines, fixtures built before water-saving 

technology and industrial appliances. Utilities providers have no prerogative to respond to 

these ejections, as they have no negative consequences and are a normal part of wastewater 

infrastructure. Surcharges caused by these ejections are typically short-lived and prone to 

fluctuations much more rapid than partial blockages. Our research must determine a method 

for measuring and correctly processing surcharge durations to construct a model 

differentiating these events from blockages.  

The second category of events occur when the float switch or mote detect a surcharge, but 

none are present. This is in contrast to the first category where a surcharge is present, but not 

caused by blockages. Faulty devices and sensors are the most obvious cause of this event, 

however quirks inherent in all sensors or electronics can also be responsible – examples of this 

include pin floating and switch bouncing. To prevent these from creating false alarms, our 

research must identify each of these quirks and develop methods for managing them. 

Additional effort must be placed into selecting quality equipment within the very limited price 

range and developing robust hardware and software that is naturally more resistant to faults.  

1.4 Research Objectives 

To address the motivations outlined in Section 1.4, the following objectives should be carried 

out;  

1. Design, develop and test an inexpensive, energy-efficient device capable of detecting 

effluent surcharges and notifying a central system.  

2. Design an IoT-based central system capable of processing readings from a large 

number of connected IoT-based devices, processing readings and notifying relevant 

parties. This system must also be capable of differentiating actual blockages from false 

alarms.  
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3. Evaluate the overall system and its functionality using a combination of a real-world 

simulation environment and virtual model. 

1.5 Research Contribution 

This research delivers an IoT-based system consisting of both hardware and software to fulfil 

the objectives outlined in Section 1.4. The system delivered will be capable of monitoring an 

entire wastewater system for blockages, determining blockage type and location, and notifying 

relevant staff of blockages. To fulfil objective 3, the system will be capable of differentiating 

blockages from false alarms such as Rainfall-Dependent Infiltration and Inflow (RDII).  

Monitoring an entire wastewater system requires deploying a large number of devices across 

the system’s potentially vast infrastructure. Manufacturing such a volume of devices is an 

unrealistic goal for this research, however we will provide sufficient information for other 

organisations to manufacture large-scale solutions. This research will also build a smaller-

scale prototype of the system consisting of a single end device and central system for proof-of-

concept and testing.  

To deliver this system, we provide the following;  

1. Research across various disciplines ranging from computer science to public health 

and urban infrastructure.  

2. A detailed design for producing a low-cost, energy-efficient device capable of detecting 

effluent surcharges and communicating wirelessly with a central system. 

3. A detailed design for an IoT-based central system capable of processing inputs from all 

devices in deliverable 2, differentiating genuine blockages from false alarms, and 

classifying and locating blockages.  

4. A prototype system capable of demonstrating an implementation of key requirements 

and the aforementioned design. This will include both a mote and central server 

software, alongside a virtual communications network.  

5. Testing and evaluation of the prototype system developed in deliverable 4.  

Challenges for future research and starting points for future developments with the system will 

also be provided to allow continued evolution of the concept and suitability in a changing 

environment.  
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1.6 Thesis Structure 

Chapter 2 starts by evaluating past research to perform a comprehensive multidisciplinary 

literature review. Applications of computer science to wastewater management and smart 

utilities, IoT systems, wireless communication technologies, and relevant hardware and 

software engineering are reviewed. In addition, other domains such as civil engineering and 

environmental science are reviewed for relevant wastewater management projects.   

The system’s design is provided in Chapter 3, first by developing a detailed overall model of 

the delivered system to separate it into three components; motes, central system, and the 

interface connecting them. Following this, the remainder of the chapter is divided into detailed 

designs for each component. Each component’s detailed design utilises both our own research 

and that of past literature provided in Chapter 2.  

Mote design first evaluates factors and potential issues that must be considered during the 

design process. Considering these issues, we follow this with actual designs for both the mote’s 

hardware components and physical sensor used to detect surcharges. This is then expanded by 

selecting the wireless network technologies and protocols used by the mote and determining 

how these are integrated into the mote. Finally, we design the firmware that will run on these 

motes to utilise the hardware, sensor, and wireless platform.  

Next, we design the overall communications network that links mote and central system. With 

goals of long range, low cost, and energy-efficiency, we utilise the research in Chapter 2 along 

with our own ingenuity to produce a robust and efficient network architecture. 

Chapter 3 concludes with a design for the central system’s software, which is responsible for 

processing all blockage notifications alongside notifying appropriate parties. In our research’s 

context, processing refers to identifying false alarms, classifying, and locating a blockage. This 

design includes specifications for complex and parallel-processing algorithms used to classify 

and locate multiple surcharge messages simultaneously.  

While Chapter 3 delivers the system’s design, Chapter 4 demonstrates an implementation of 

this design through a prototype mote and central server. We first utilise schematics, 

photographs, and actual firmware code to detail how the mote was developed, before detailing 

architecture and specifications for the network and its hosts. Finally, we describe the central 

server’s software in detail, presenting both its architecture and practical deployment on the 

aforementioned network. 
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Finally, Chapter 5 summarises our research, how this project met and surpassed the 

challenges, and other achievements made during the study. This is followed by analysing the 

experimental results and their implications, before suggesting what should be done in future 

for future improvement of the developed system. 
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Chapter 2 Literature Review 

With the scope of our research planned, it is appropriate we start by reviewing previous 

relevant literature. We will begin by utilising past works to provide an overall definition for the 

Internet of Things (IoT) before discussing protocols and services with potential implications 

for our work. Following this, we will review the concept of smart cities by providing a robust 

definition of the concept and a series of examples where it has been used. This look at smart 

cities will be concluded by examining different architectures and protocols that have been 

identified, giving us a practical guideline for deployment the system developed in this 

research. Finally, we provide a more detailed analysis of wastewater infrastructure and 

implications of blockages, before finishing with an examination of other attempts at detecting 

them with an IoT system. Our review will show that while past research has made worthwhile 

contributions, nothing is yet capable of detecting sewer blockages across an urban area in a 

practical and cost-effective manner. Combined with the implication of blockages, this provides 

ample literature for our research to be completed. 

This section is broken further into sub-sections, each associated with one of the points above.  

2.1 Internet of Things (IoT) 

Given that we intend to deliver our solution as an IoT based system, it seems appropriate to 

first discuss the IoT as a concept and provide a solid definition of what the term actually 

means. As a consequence of its somewhat rapid ascension into the mainstream corporate and 

commercial lexicon, there are a myriad of definitions and ‘buzzwords’ obscuring its true 

purpose. 

All prior literature converges on defining the IoT as a concept connecting ‘everyday’ physical 

objects to the Internet and allowing them to communicate with each other and more ‘standard’ 

Internet services. For example, a smart home’s front door could command lights to turn on 

when a person opens the door. Simultaneously, that person would be capable of remotely 

controlling and monitoring the lights through a more traditional web interface. Al-Sawari et al. 

[126] further elaborate by claiming the IoT will involve the Internet’s transition from 

exclusively human-to-human communications to also include human-to-thing and thing-to-
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thing communications. In this context, a thing is any non-human object that connects to the 

Internet.  

The IoT was first introduced as a concept in 1999 by a researcher named Kevin Ashton, who 

intended to bridge real-world objects with the Internet [125] [127]. According to Miraz et al. 

[124], the IoT emerged as a distinct entity in 2008 when more inanimate objects were 

connected to the Internet than human users. Since this inception, the goal of building the IoT 

has always been unifying everything in the world with a standard infrastructure, allowing 

contextual data about the physical world to be collected from an unprecedented number of 

sources.  

Nagakannan et al. [125] state that the introduction of IoT should make human lives simpler and 

more comfortable, which alone is sufficient motivation for investment and development. Routh 

and Pal [127] make a similar statement, claiming IoT is solving current everyday challenges 

and will continue to solve new challenges. Miraz et al. [124] paraphrase futurist Ray Hammond, 

who predicted that the linking of computer networks would increase the spread and 

dissemination of information on an unprecedented basis. While we have seen Hammond’s 

prediction eventuate with the more familiar human-to-human Internet, applying these 

concepts to the IoT sees the unprecedented spread of information regarding the physical world 

we interact with every day. This provides significant motivation to commercial entities, with 

modern organisations often seeing data as their greatest asset – a fact easily proven by the 

increase in data scientist jobs.  

Al-Sawari et al. [126] and Miraz et al. [124] both state things connecting to the IoT have several 

unique requirements, unique consequences of the system’s massive scale and potentially 

scattered or remote deployment. We also propose these requirements stem from the actual 

nature of things– if Internet capabilities are added to everyday objects, any extra components 

must be as subtle and inconspicuous as possible. The unique requirements of IoT systems 

have been the subject of several papers, and it would be possible to fill this entire thesis with a 

study on them. However, for the sake of brevity, we will briefly state them as follows. IoT 

systems require very low power consumption, and therefore also require minimal processing 

power and storage volume alongside very energy-efficient wireless communications schemes.  

The potentially massive number of devices also requires very scalable systems with an equally 

massive number of potential addresses, or at least an intuitive method for handling a smaller 
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address space [119]. Miraz et al. confirm this by affirming that IPv6’s introduction was crucial 

to identifying “billions of sensors”.  

Al Sawari et al. [126] classify IoT communication protocols as either Short Range or Low 

Powered Wide-Area Networks (LPWANs). Naturally, this implies a taxonomy based on 

communications range, and while Short-Range networks have a reach measured in metres, 

LPWANs are typically measured in kilometres [31]. Comparing the specifications Raza et al. 

[43] provides for each LPWAN with those provided in [126] for short range protocols reveals a 

few interesting relationships. Short range networks generally provide a higher data rate than 

LPWANs and provide mesh or multi-hop topologies. In contrast, almost every LPWAN is 

restricted to the star topology, although Finnegan and Brown [67] note that LoRa can 

potentially support mesh networking.  

Examples of short-range networks provided by [126] include the IP-based 6LoWPAN, ZigBee, 

Bluetooth, Radio Frequency Identification (RFID), Near Field Communication (NFC) and Z-

Wave. They also provide SigFox and cellular networks as examples of LPWANs, however 

traditional LTE or GSM cellular networks do not fit this category due to high power 

consumption. More valid examples of LPWANs are provided in [43] and [67] including SigFox, 

LoRa, Weightless, NB-Fi, RPMA, and Telensa. While LTE and GSM are not strictly LPWANs, 

LPWAN adaptations of these standards with lower power consumption do exist such as the low-

powered LTE-M, NB-IoT, and EC-GSM.  

Mohanty et al. [121] architecturally break the IoT into four constituent components. This 

includes the things themselves, a local area network (LAN) that many things connect to, the 

public Internet, and the cloud. A base station device manages multiple things to form a LAN, 

and all traffic from these things must pass through it. One traffic reaches the Internet, it can 

utilise cloud computing as required.  

Throughout the rest of this research, we will refer to Internet-enabled things as Motes. This is a 

prominent term among the business world and general population, and for our purposes refers 

to a combination of physical thing, power supply, microcontroller, and wireless transceiver.  

2.2 Low Powered Wireless Area Networks 

Studies [42] [43] [67] comparing LPWAN protocols show that all commercially available 

networks utilise the star or star-of-stars network topology. Star-of-stars topology (illustrated in 

Figure 2-1) is very similar to standard star topology, with the defining exception that a mote 
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can connect to multiple base stations. Motes will broadcast outgoing messages, and any base 

station in range will accept and process the reading. This potentially increases system 

complexity, as multiple base stations accepting a single message will naturally result in 

duplicates. Duplication can be handled by additional processing, however as always this 

results in further resource consumption.  

Despite increasing the complexity of message processing, star-of-star topology allows 

networks to continue partial operation when base stations are offline, increasing both 

resilience and reliability. Increased resilience makes a star-of-star network much better suited 

to potentially sparse, signal-hostile deployment environments of LPWANs and IoT systems.  

A wide variety of LPWAN platforms are available, with both standardisation and 

communication between multiple platforms in its relative infancy. Additionally, the availability 

of platforms differs across regions based on financial, political, and social factors. This raises 

several problems when attempting to develop a system that will be deployed worldwide, 

especially when considering that developing countries will reap the most benefit. As a 

consequence of reduced investment capacity and profitability for network operators, 

developing countries are likely to have a smaller range of LPWAN platforms available.  

 

Figure 2-1: A simple depiction of the Star-of-Stars topology. The mote labelled x is in communications range 

of both base stations – A and B. As a result, it is capable of sending and receiving traffic from both. 

Algorithms must be implemented on either end to process and discard duplicates, with the highest signal 

strength packet often being retained.  
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After reviewing previous literature regarding different LPWAN platforms, we have determined 

that LoRa is the most suitable for any system we develop. LoRa provides a communication 

range of 5km in urban and 15km in rural environments [42] [67], which is sufficient for 

network deployment over a large area. In addition, LoRa base stations are theoretically capable 

of individually serving over 1,000,000 devices [67].  

However, one of LoRa’s biggest advantages is the ability to deploy private networks. While 

many organisations offer LoRa networks as a service, any organisation worldwide is capable of 

buying an inexpensive LoRa gateway and deploying their own network. Location no longer 

restricts the availability of LPWAN platforms, as by deploying private networks organisations 

can make LoRa available wherever they wish. 

2.3 LoRa 

The term ‘LoRa’ actually refers to two different protocols [68]. LoRa is the physical-layer 

modulation scheme used to transport data over an air interface, while LoRaWAN is the medium 

access control (MAC) protocol allowing multiple motes to send LoRa-modulated messages to a 

single gateway and vice-versa. As expected from the above definitions, LoRaWAN specifies the 

architecture of a LoRa network. LoRa itself is simply the means by which motes and gateways 

communicate in this architecture.  

LoRaWAN specifies a network architecture by classifying all devices (named LoRa Nodes or 

End Points) based on how often they can receive incoming messages [72] as illustrated in 

Figure 2-2. This can be thought of as a form of duty cycling. Gateways are aware of each 

mote’s scheduled receive windows, and store-and-forward messages bound for any connected 

motes according to this schedule [68].  

According to technical specifications on LoRa, Gateways route mote data to a single available 

Network Server (NS) using a higher capacity backhaul. LoRaWAN’s specification states that the 

NS receives and decodes LoRaWAN packets, before routing them to the correct Application 

Servers. 

Application Servers (AS) are simply other servers that communicate with the NS over its 

available interfaces. Our system will utilise a single AS for all intelligent ‘backend’ processing 

and handling of surcharge data. This includes storage and retrieval, determining a surcharge’s 

cause, locating a surcharge, handling alarms, and providing an API for other corporate 

systems.  
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Data sent from an external system to a mote must first be sent to the relevant AS, before being 

forwarded to the correct NS which will route it to that mote’s gateway. In this situation, the NS 

is responsible for encoding the application data in the LoRa format and performing any other 

processing. For both uplink and downlink communications, the LoRaWAN specification also 

delegates responsibility for network security and administration, Adaptive Data Rate (ADR) 

mechanisms, and discarding of duplicate packets to the NS. 

 

 

Figure 2-2: LoRaWAN device classes. The term receive window refers to a period of time during which a 

device is listening for incoming messages and is therefore capable of receiving them. TX denotes a period 

during which a device is transmitting (sending) a message, and RX denotes a receive window. It is important 

for system developers to understand that devices will always consume significantly more power while a 

receive window is open.  

2.3.1 LoRa Frame Format  

Augustin et al. [68] outline the frame format for LoRa’s physical layer. LoRa PHY frames begin 

with a preamble between 10.25 and 65,539.25 symbols long, with this length configurable by 

network developers. Preamble length is determined by spreading rate, with higher spreading 

rates requiring longer preambles. Preambles mostly consist of constant upchirps, starting at 
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the lowest frequency available for the selected bandwidth and ending at the highest. The last 

two of these upchirps modulate a variable named the sync word, performing a form of 

multiplexing by uniquely identifying the current LoRa network among those using the same 

frequency bands. Following these upchirps, 2.25 symbols of downchirp denote the end of the 

preamble.  

Like with many network frame formats, LoRa preambles are followed by a 4-byte header [76]. 

Interestingly, unlike many other network protocols, inclusion of this header is entirely 

optional. Headers contain the payload’s size in bytes, the utilised code rate, whether a message 

Cyclic Redundancy Check (CRC) is present at the end of the frame, and a header CRC. The 

payload’s length in bytes is stored with a single byte, limiting each frame’s payload to 256 

bytes in length.  

When encapsulating these PHY frames for MAC-level communications with LoRaWAN, the 

aforementioned PHY frames are encrypted with AES-128 and several leading fields are added. 

The first of these is FPort, which is a one-byte port multiplexing field. Following this is a group 

of fields named FHDR, which contains the following; 

DevAddr – A 32-bit device address. 7 bits identify the network itself, while 25 bits uniquely 

identify the mote on the network.  

ADR – A one-bit ‘flag’ denoting whether or not LoRa’s ADR mechanism is being utilised.  

ADRAckReq – A one-bit flag presumably used by the ADR mechanism for message 

acknowledgement.  

ACK – A one-bit value acknowledging the last received frame. 

FPending/RFU – A one-bit value called FPending in uplink messages and RFU in downlink 

messages. FPending flags whether or not a frame is pending from the network server, 

instructing the end device to send more frames to keep receive windows open. The purpose of 

RFU is not stated. 

FOptsLen – A 4-bit number stating many additional MAC-layer commands (if any) have been 

added to this frame.  

FCnt – A 16-bit frame counter. This potentially allows 65,536 frames to be transmitted while 

maintain sequence.  
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After FCnt, any MAC-layer commands will be added to the frame. All MAC commands are 

comprised of an 8-bit command ID, optionally followed by any bytes making up that 

command’s parameters. Command parameters can be up to 32 bits in length. If no MAC 

commands are utilised, this space will still be filled with six bits.  

The above sequence is then further encapsulated between other fields. Before this sequence 

are the following three fields; 

MType – A 3-bit code representing the message type. This specifies whether the message is 

uplink or downlink, alongside whether an acknowledgement is required.  

RFU – A 3-bit code which has not been elaborated on.  

Major – A 2-bit code representing the version of the LoRaWAN protocol utilised by this frame. 

At the time of writing, the only permitted value is 0. This will only allow 4 versions as it is a 2-

bit number. 

The MAC sequence previously discussed follows the Major field and is then trailed by a 32-bit 

checksum field named Message Integrity Code (MIC). MIC is calculated using the MType, RFU, 

Major, DevAddr, ADR, ADRAckReq, ACK, FPending/RFU, FOptsLen and FPort fields alongside 

the encrypted PHY payload.  

Considering protocol field values, Augustin et al. provide a formula for calculating the symbols 

required to send a payload, which is as follows. PL is the payload size in bytes, SF is the 

spreading factor, CRC value is 16 if enabled, H is 20 if the PHY frame header is enabled, DE is 

2 if data rate optimisation is enabled and CR denotes code rate. 

𝑆𝑦𝑚𝑏𝑜𝑙𝑠 = 8 + max ([
8𝑃𝐿 − 4𝑆𝐹 +  8 + 𝐶𝑅𝐶 + 𝐻

4 ∗ (𝑆𝐹 − 𝐷𝐸)
 ]

4

𝐶𝑅
 , 0) 

Communication range depends on link budget, the size of which varies according to 

bandwidth, coding scheme, transmission power, carrier frequency, and spreading factor [67]. 

LoRa can also theoretically utilise any bandwidth between 7.8 and 500 kHz, however Finnegan 

and Brown [67] note that only 125, 250 and 500 kHz are used in practise. Higher bandwidths 

result in a higher data rate and greater resistance to interference, but conversely lower 

communications range. The 125 kHz bandwidth appears to be the most commonly utilised in 

existing literature.  
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In both [69] and [75], Lavric and Popa provide examples of SNR limit, bitrate, and time-on-air 

measurements for each spreading factor at a 125 kHz bandwidth. These are detailed in Table 

2-1 and observation shows clear trends. Higher spreading factors result in lower bit and 

symbol rates along with higher time-on-air and power consumption, however, also increase 

SNR limit – resulting in longer range and improved noise tolerance.  

Research by Augustin et al. [68] measured the percentage of packets successfully received over 

a 2800m distance obstructed by urban environments. No packets were received with a 

spreading factor of 7, but a spreading factor of 12 saw 80% of packets received. As spreading 

factor was increased, the number of obstacles became increasingly irrelevant as obstacle 

penetration improved. However, this came at a cost – increasing spreading factor also lowered 

bit rate. Alongside reduced bit rate, Finnegan and Brown [67] demonstrated that increased 

spreading factors reduces the number of messages that can practically be sent per day (Table 

2-2).  

Table 2-1: Effects of spreading factor – 125 kHz bandwidth ([69], [75]).  

Spreading 

factor 

Symbols/second SNR limit Time on air for 

10-byte packet 

Bitrate (baud) 

7 976 -7.5 56 5459 

8 488 -10 103 3125 

9 244 -12.5 205 1758 

10 122 -15 371 977 

11 61 -17.5 741 537 

12 30 -20 1483 293 
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Table 2-2: Practical number of messages sent per day with each spreading factor. This 

assumes that the coding rate is 4/5, payload is 20 bytes and bandwidth is 125 kHz ([67]). 

Spreading Factor Messages Per Day (Packets with 20-byte Payload) 

7 417 

8 224 

9 121 

10 66 

11 30 

12 16 

 

2.4 The MQTT and MQTT-SN Protocols 

Several studies recommend using the Message Queueing Telemetry Transport (MQTT) 

application-layer protocol for IoT networks [77] [78], and upon observation their reasoning 

becomes obvious. MQTT is very simple and flexible, and its publish-subscribe architecture is 

perfectly suited to transparent communications between heterogenous systems.  

MQTT requires a server named a broker to operate, which facilitates the aforementioned 

publish-subscribe communication between a number of clients [82]. Clients subscribe to a 

range of topics by sending a subscribe request to the broker and can conversely unsubscribe 

as needed with another request. Clients also ‘publish’ data by assigning it a topic and sending 

it to the broker. When published data arrives at the broker, it will be sent it to all clients that 

have subscribed to its topic. 

In addition, MQTT employs a mechanism named Last Will and Testament (LWT). LWT allows 

clients to specify a message and topic, and if they unexpectedly disconnect from the broker 

this message will be sent to all clients subscribed to that topic. We have given this mechanism 

special mention because of its potential advantages to an IoT system. As shown later in this 

chapter many IoT systems are of critical importance, with examples including infrastructure, 
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medical, and security systems. Many IoT systems will also deploy motes in remote or hard-to-

reach places, making on-site repairs impractical and costly.  

If LWT is cleverly used, the self-healing network capabilities often restricted to short-range 

mesh networks can be extended to LPWANs. Even if this cannot be achieved, LWT can easily 

be used to notify network monitoring software or system administrators, expediating rapid 

response and quick repairs. Self-healing is particularly advantageous for the aforementioned 

types of IoT system. Critical systems can reduce downtime, while massive or remote systems 

can reduce the need for on-site deployment. Even if self-healing is not possible, rapid 

notification and following deployment will make significant reductions to downtime.  

2.4.1 MQTT-SN 

MQTT-SN is a version of MQTT developed especially for IoT systems utilising constrained 

networks and devices [83]. Fuqaha et al. [78] recommend using the connectionless UDP 

transport-layer protocol, as it exhibits far better performance with low-bandwidth and 

unreliable networks than the more ubiquitous TCP protocol [84]. UDP also provides its own 

adaptation of TCP’s Transport Layer Security (TLS) mechanism named Datagram Transport 

Layer Security (DTLS). [81] As the name suggests, DTLS is designed for datagrams as used in 

connectionless systems such as UDP. Several distinctions between MQTT and MQTT-SN can be 

observed and are discussed below.  

Most notably, MQTT-SN does not send a topic’s human-readable name with publish and 

subscribe messages. Instead, a client sends the human-readable topic name to the broker 

once, which responds with a 2-byte ID it has mapped to that name. Other clients can then 

request this ID by sending the name to the broker. Interestingly, this does not always result in 

improved efficiency. If the topic name is under 2 bytes in length, mapping it to an ID will make 

no difference to message size and additional overhead will be required when requesting these 

IDs. In these cases, the process can be skipped, and the original topic name can be used 

instead.  

MQTT-SN clients connect to an MQTT-SN Gateway (MQTT-SN GW) which translates its packets 

into the standard MQTT format before relaying them to the broker. If the MQTT-SN GW and 

client are not on the same network, an MQTT-SN forwarder can be attached to the client’s 

network and held responsible for encapsulating packets and relaying them to the gateway over 
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a backhaul interface. MQTT-SN GWs can also send MQTT-SN packets to the forwarder, which 

will decapsulate them and pass them to the client over that same backhaul.  

Two types of configuration are possible for MQTT-SN GWs; transparent and aggregating 

gateways. Transparent gateways open and maintain an individual MQTT connection to the 

broker for each connecting client, while aggregating gateways open a single MQTT connection 

to the broker and multiplex all client communications. While transparent gateways perform 

direct translation between MQTT-SN and MQTT for each client, aggregating gateways 

intuitively determine which information is essential and only send that.  

Transparent gateways are easier to configure, however aggregating gateways are much better 

suited to a large number of clients. Aggregating gateways prevent the broker from maintaining 

a potentially enormous number of connections and ensure any connection limits are not 

reached.  Figure 2-3 provides a graphical overview of the MQTT-SN architecture.  

2.4.2 MQTT-SN Packet Structure 

All MQTT-SN packets can be broken into two sections [82];  

• A Message Header between 2 and 4 bytes 

• A Message Variable Part of variable length 

The message header has a fixed format, while the message variable part’s length depends on 

the message’s type and any payload. This length is specified in the message header field. 

Message header can be further broken into two fields; Length and MsgType.  

Length specifies the packet’s total length and can actually be between 1 and 3 bytes. If the 

field’s first byte is equal to 1 (00000001), then the remaining two bytes are the packet’s total 

length. If the first byte has a different value, that value is the packet’s length. Notably, packets 

under 256 bytes long are only permitted to use a single byte for storing length. Given that two 

bytes are available for message length, this gives a practical maximum length of 65,536 bytes 

or 65.536 kilobytes.  

MsgType is a single byte and states the message’s type, which outlines the message’s intent 

and stage it fulfils in the MQTT-SN process – examples of this include CONNECT, PUBLISH and 

SUBSCRIBE. As can be seen from the presence of PUBLISH and SUBSCRIBE, these are vital to 

the core process of MQTT-SN. Table 2-4 provides more information on some of these 

messages.  
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A number of fields are available for the Message Variable Part, and each different type of 

message will contain a different combination of these fields. Data other than these fields is not 

permitted in the message variable part, so it will always be some combination of the values 

shown in Table 2-3. Some messages also contain a single byte named flags which consists of 

many 1 or 2-bit values. These provide valuable information about the message being sent and 

are detailed in Table 2-4. 

 

Figure 2-3: A graphical overview of MQTT-SN network architecture as described in this section. MQTT-SN 

clients send MQTT-SN messages to an MQTT-SN GW that translates them to standard MQTT. These are then 

forwarded to the broker, which facilitates publish/subscribe MQTT communications between clients. MQTT 

messages bound for MQTT-SN clients must also pass through the GW to be translated to MQTT-SN. 
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Table 2-3: Message Variable Part fields for MQTT-SN packets. Some fields have been omitted as their 

discussion is not essential to our research.  

Field Name Length (Bytes) Purpose 

ClientId 3 Uniquely identifies an MQTT-SN client 

Data Variable Contains the message payload. 

GwId 1 Uniquely identifies an MQTT-SN GW.  

MsgId 2 
Uniquely identifies a message. A message’s ID will be shared 

with any acknowledgement, allowing the two to be matched.  

TopicID 2 The 2-byte ID assigned to a specific topic.  

TopicName Variable Contains the human-readable topic name. 

WillMsg Variable 
Contains the will message to be sent upon unexpected 

disconnection. 

WillTopic Variable Contains the topic name of the LWT message.  

ReturnCode 1 

If this message is being sent in response to another, this field 

contains the response status – or, the sender’s reply to the 

original sender.   

 

The following values are permitted:  

• 00000000 – Accepted 

• 00000001 – Rejected due to congestion 

• 00000010 – Rejected due to invalid topic ID 

• 00000011 – Rejected due to message not being 

supported 

All other values are reserved.  
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Table 2-4: Bits constituting the MQTT-SN flags byte. Some have been omitted as discussing them is 

not essential to our research.  

Name Length (Bits) Purpose 

DUP 1 
Whether this message is a retransmission of an earlier one. 

This is only relevant for PUBLISH messages. 

Retain 1 

When publishing a message, this flag states whether the 

message’s value should be retained.  

When a message value is retained, the specified topic will stay 

at this value until otherwise specified. This means that any 

new subscribers to that topic will be able to view this current 

value.  

When not retained, the topic’s value will clear once it has been 

sent to all subscribers. This means any new subscribers will 

not be able to see this value. 

Will 1 
Used when a client connects to a broker and indicates whether 

the client will utilise the LWT functionality.  

CleanSession 1 

Used when a client connects to a broker. If true, the broker will 

not store any information on the client such as subscribed 

topics or unpublished messages. This can be set to true if the 

client is only going to publish messages and has no intention 

of subscribing to any topics.  

TopicIdType 2 

If this message contains a topic ID, this states the type of ID 

used. 00000000 indicates a standard topic ID, while 

00000001 indicates a pre-defined topic ID.  

As previously mentioned, topic names under 2 bytes can 

disregard the entire process of mapping to an ID. In this case, 

a value of 00000010 indicates a short topic name is stored in 

the topic ID field.   
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Table 2-5: Some of the types of MQTT-SN message. 

Name Purpose 

CONNECT Establishes a connection between client and gateway. 

WILLTOPICREQ If a client connects to an MQTT-SN GW and states it will utilise the LWT mechanism, the 

gateway will send this message to the client requesting the LWT topic.  

WILLTOPIC Sent by a client in response to a WILLTOPICREQ message 

WILLMSGREQ Like WILLTOPICREQ, this is sent from gateway to client if the client is using the LWT 

mechanism. 

WILLMSG Like WILLTOPIC, this is a client response to a gateway’s WILLMSGREQ containing the 

LWT message. 

PUBLISH Publishes data under a given topic, with both clients and gateways being permitted to send 

it.  

REGISTER Uniquely, the REGISTER message has two purposes. When a gateway assigns a topic a 

unique ID, it will send a REGISTER message to a client informing them of this unique ID. If 

clients know a topic’s name but not the unique ID assigned by the gateway, they can send 

a REGISTER message to the gateway to request it.  

If this is sent from a client, Topic ID will be zero. 

SUBSCRIBE Sent by a client to subscribe to a specified topic. 

DISCONNECT Sent by a client to disconnect from the gateway and close the active connection. These 

messages can optionally contain a Duration field, used by clients which intend to enter 

sleep mode. 

Gateways can also send DISCONNECT messages to client if they are experiencing errors 

processing a client’s message. This will instruct the client to re-establish the connection to 

the gateway, ideally resolving any errors.  
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2.5 LoRa and MQTT 

While the LoRaWAN specification is informative and suited to a wide variety of deployments, it 

fails to account for an MQTT-SN deployment and required components such as gateways and 

brokers. To integrate MQTT functionality with LoRa, our system must deviate slightly from the 

specification’s standard architecture.  By gateways sending packets directly to the MQTT-SN 

GW or MQTT broker, the vital network server component of LoRa processing appears to be 

skipped. Network servers are often described as core components of any LoRa network, where 

gateways communicate directly with network servers and exchange their respective UDP/IP 

packets.   

Thankfully, previous systems have provided examples of how LoRa can integrate with an 

MQTT-based system. The Things Network, a large corporate provider of LoRa networks as a 

service, deploy their network servers as an MQTT client [85]. Network servers subscribe to 

MQTT topics related to LoRa traffic, alongside publishing LoRa-specific information which 

gateways subscribe to. Using this architecture, the MQTT broker acts as the intermediary 

between network server and gateway. Control messages to dictate network function are simply 

published to the MQTT broker by the network server and subscribing gateways can subscribe 

to the relevant topics to retrieve these controls. Network servers can also subscribe to topics 

containing key network management parameters, which will be published by individual 

gateways. 

Penkov et al. also proposed a LoRa/MQTT system architecture for industrial networks that 

utilised a network server. In the paper presenting their architecture [89], each gateway 

connected directly to a network server which passed data to the relevant user application. 

However, this paper did not specify how MQTT was integrated into this architecture, and where 

the broker would fit in the data transfer process.  

Other studies have seemingly ignored the requirement of network servers, using the MQTT 

broker as the sole intermediary between gateway and application server. Spinsante et al. [86] 

developed a network architecture for building automation systems using MQTT and LoRa, with 

no mention of a network server in the research paper presenting the architecture. LoRa 

gateways and the application server both communicated solely with the MQTT broker, which 

acted as an intermediary between the two. In all cases, the Received Signal Strength Indicator 

(RSSI) was far above receiver sensitivity, leading to adequate and reliable performance.  



31 
 

In [87], Wu et al.  presented an IoT system based on LoRa and MQTT for managing elderly 

patients suffering from dementia. Wu et al.’s system involved placing LoRa transceivers in 

patient footwear, which presents similar challenges to our research involving ground-level 

communication. Again, this research paper did not mention a LoRa network server, and 

gateways sent messages directly to the cloud server using MQTT. Kim et al. [88] also proposed 

a generic MQTT architecture for IoT systems in [88], where LoRa gateways appear to correct 

directly to the broker.  

2.6 The Node.js Framework 

Node.js is a server-side JavaScript environment focused on rapid application development, 

extending the ubiquitous client-side language to server-side programming. A study by Chitra 

& Satapathy [104] showed that Node.js exhibits far better performance than a traditional web 

server (IIS) at tasks requiring a large number of I/O operations – or, large numbers of client 

communications. Given the nature of IoT systems involves a potentially massive number of 

devices connecting to a single server, this makes Node.js highly suitable for IoT development. 

Works in [105-108] present different examples of Node.js being used to build a central system 

for an IoT solution. As a result, we will provide a brief discussion of the framework and its core 

features.  

2.6.1 Node Modules and Packages 

Node.js applications and systems are organised into modules – JavaScript files exposing 

classes, functions, or variables to be referenced in other modules or files. Technically, all 

Node.js executables are built from modules, with even a single script forming its own 

monolithic module. If only a single script is used, the module will be completely self-contained 

and have no interaction with other files. Modules ideally have a single clearly defined purpose 

with little-to-no overlap between them. Exposed artefacts should also provide a higher-level 

‘entry point’ to the module, hiding lower-level implementation from developers.  

To expose their intended artefacts, every module creates an object named exports at compile-

time. This object contains a field for each artefact to be exposed, and to add an artefact to this 

object developers assign it a given field name. An example is shown below for an anonymous 

function; 

exports.getDate = function() { return new Date(); }; 



32 
 

Conversely, to access artefacts exposed by a given module developers utilise a function named 

require. This accepts a module’s file path as a parameter, before returning the exports object 

generated by the specified module. When a module is imported through require, it will be 

fully compiled and executed before returning exports. Node.js has a series of directories that 

it will automatically search for modules – if a module is placed in one of these directories, only 

its name needs to be passed.  These directories are stored relative to the executing script’s own 

directory – for example, Node will search the executing script’s own directory, as well as any 

sub-directories with certain names.  

Node.js modules are often grouped in single entities named packages. Packages are imported 

through the require function, and when imported expose all exported objects of constituent 

modules. As a result, packages are an efficient method for organising modules that fulfil a 

greater function. Packages also allow modules to be searchable on public repositories so 

developers can search for a package that fulfils their required purpose. Advantageously, 

packages enforce dependencies between modules and other packages, increasing the 

likelihood of successful compilation.   

2.6.2 Parallel Programming with Node.js 

IoT systems can benefit hugely from processing data arriving from several motes in parallel. 

This further confirms the suitability of Node.js – not only does it show increased performance 

when handling multiple communications [104], but several functions for parallel programming 

are built into the language itself. 

2.6.2.1   Timeouts 

The setTimeout() function asynchronously waits for a specified period of time before 

asynchronously executing a given function. Calling this function actually returns an object 

representing the wait that can be stored as a variable, or alternatively ‘cancelled’ with the 

clearTimeout() method.   

Similarly, setInterval() schedules another function to execute at a specified interval expressed 

in milliseconds. While the function specified by setTimeout will only execute once, functions 

specified with setInterval will continually execute and restart the countdown until cancelled 

with the clearInterval() function.  

Both timeout functions accept two parameters – a first-class function to be executed, and a 

time period for the countdown expressed in milliseconds. 
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2.6.2.2   Promises 

Promises are another special object in Node.js, performing an asynchronous task 

independently of the main flow of execution. Two functions are called inside each promise – 

resolve() and reject(). The value returned by the asynchronous task when successful should be 

passed into resolve, whereas any value returned or created by an unsuccessful task should be 

passed into reject.  

Two higher-order functions can be invoked on a Promise – then() and error(). These each 

accept an additional function as a parameter, with these additional functions having a single 

parameter of their own. The function passed into then will have the value previously passed 

into resolve as its parameter, while the same applies to error and reject. These higher-order 

functions will also not execute until the Promise has finished processing, and either resolve or 

reject values are available. All lines after code after the Promise will execute as normal, and 

any then or error processing will occur in parallel when appropriate.  

2.7 Smart Cities 

In the first chapter of this thesis, we provided Zanella et al. [39]’s definition of smart cities – 

using ICT to better utilise and improve public services, while reducing costs to city authorities. 

A very similar definition is provided by Jin et al. [37], who state that a smart city is one which 

uses ICT to make city services and monitoring more aware, interactive, and efficient. Other 

papers arrive at similar definitions, including [119-121]. Each of these definitions require clear 

benefits to residents and city administrators, with residents experiencing better services and 

administrators experiencing reduced costs. Jin’s definition of services and monitoring poses 

an interesting implication – not only is infrastructure being made ‘smarter’ and more efficient, 

but a potentially massive amount of data can be collected.  

The nature of IoT makes it highly suitable for implementing smart cities, a statement echoed 

by researchers in [35-37]. Notably, Mohanty et al. [121] go as far as stating that the IoT is the 

backbone of the smart city concept. Adding intelligence to infrastructure and city assets can 

transform them into smart things, allowing them to connect to the Internet. Internet-capable 

devices can be placed on existing infrastructure to collect physical information through 

sensors and send commands through electronic interfaces. Newer infrastructure and assets 

can also have Internet capabilities built-in during manufacture, a concept beginning to appear 

in modern infrastructure. Revisiting the first chapter again, Zanella et al. proposed a platform 
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named the Urban IoT to realise smart city goals through collecting data on urban infrastructure 

and using this to optimise service delivery by remote actuation.  

An urban IoT can also improve delivery of utilities such as power, water, wastewater, and gas. 

We are particularly interested in the applications of urban IoT to wastewater management, as 

this aligns with the goals of this research. An example of using urban IoT to effectively improve 

water treatment is shown in [34], while [44-45] show examples of enhancing wastewater 

treatment and disposal. In the following section, we will discuss specific implementations of 

the smart city paradigm in greater detail.  

2.7.1 Examples of Smart Cities 

Zanella et al. [39] provided an example of an urban IoT’s successful implementation, detailing 

the smart city project in Padova, Italy. Developed by the University of Padova, this served as 

both an experiment and demonstration of the potential held by smart cities and urban IoT 

networks. Motes were deployed throughout Padova and placed on streetlights, each connected 

to variety of sensors collecting environmental data. This data included carbon dioxide level, air 

temperature, humidity, noise, and vibration. Perhaps most importantly, these used a light 

sensor to determine if the streetlight was operational; if the light detected was below a certain 

threshold, it could be assumed the streetlight was not working. Motes were also placed in a 

transparent plastic case to protect from the elements; this is a good point to raise, as physical 

ruggedization is often forgotten in theoretical discussion.  

Padova’s motes use the 6LoWPAN multi-hop short-range protocol to form a mesh network, 

with routing handled by the Ipv6 Routing Protocol for Low-Power and Lossy Networks (RPL). 

As these are both IP-based protocols, each mote is uniquely identified with an IPv6 address 

compatible with the public Internet. This mesh network is bridged with the Internet using a 

border router that also acts as a gateway. While each mote is an Internet-connected device, 

messages exchanged in the 6LoWPAN protocol are incompatible with standard TCP/IP 

communications. The aforementioned gateway is the single point of contact between this 

network and the public Internet and is also responsible for translating messages between IP 

and 6LoWPAN as appropriate. A traditional fibre-optic network is used to backhaul this 

network to the public Internet, with all data destined for the central system (backend) required 

to pass through the gateway to reach this link.  
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Working with the previously discussed 6LoWPan protocol, Padova’s smart city also utilises the 

CoAP protocol for application-layer communications.  CoAP is an alternative to HTTP intended 

for use in constrained environments, encoding messages in a raw binary format instead of 

HTTP’s verbose human-readable text. CoAP is also compatible with conventional HTTP GET, 

PUT, POST and DELETE messages, while its response codes also map directly to those used by 

HTTP. While traditional HTTP-based hosts are capable of sending CoAP messages, Zanella et 

al. recommend using a cross proxy to translate between the two formats. The Padova smart city 

utilises CoAP for application-layer communication between nodes, whereas its backend 

database uses conventional HTTP. Consequentially, communication between the two layers 

requires using the cross-proxy as an intermediary.  

The network gateway in Padova’s smart city acts as a database server, collecting data from all 

motes and making it available to the public Internet where practical. As this server utilises 

unconstrained HTTP, a cross proxy is utilised for requesting CoAP mote data. When required, 

the gateway will request information from the cross-proxy. The cross-proxy will retrieve data 

from the correct mote using the CoAP format, before returning it to the gateway in a HTTP 

format.  

Guibene et al. [32] provided another innovative use of the smart city concept, applying it to 

monitoring the River Liffey in Dublin, Ireland. This river had previously overflown and flooded 

an underground car park, and Dublin City Council (DCC) agreed to collaborate with Intel 

Corporation to develop a solution. A wireless mote was developed and placed in the river inside 

a waterproofed floating buoy, connected to a variety of sensors collecting different data. 

Sensors monitoring depth, water temperature, and flow velocity were placed outside the buoy 

to make physical contact with the river. Conversely, sensors inside the waterproofed buoy 

measured air temperature, humidity, and barometric pressure. Like the streetlight motes 

presented in Padova’s smart city, this consisted of a single mote collecting information from 

many sensors.  

While the buoy was deployed in the River Liffey, DCC and Intel also placed ultrasonic level 

sensors reading rainfall gauges across Dublin’s city centre. This is exciting, as different 

sensors spread throughout a city collecting varied information is a perfect demonstration of 

the smart city concept. Unlike Padova’s streetlight motes and the buoy, these seem to have 

consisted of motes with a single dedicated sensor.  
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Dublin’s smart city utilises very different communication protocols to Padova, resulting in 

different network topologies. In contrast to Padova’s multi-hop mesh topology resulting from 

the 6LoWPAN protocol, Dublin utilises two long-range protocols; LoRa and LTE cellular 

communications. Two LoRa gateways were deployed in range of the buoy to test the effects of 

distance, urban obstructions, and line-of-sight. The closest gateway is referred to as DCC, 

located 3km away from the buoy and at 40m higher altitude. Conversely, the other gateway 

(referred to as Three Rock) is 13km from the buoy at an altitude 575m higher. Communications 

are obstructed for both gateways by thick walls and traditional Irish buildings with stone 

masonry. Guibene et al. [32] did not report any problems with communication for either of the 

LoRa gateways, implying that both were able to satisfactorily communicate with the mote. This 

proves that LoRa is a suitable protocol for building urban IoT and smart city systems. LTE 

communications are discussed much less; however, it is assumed they communicate with the 

closest cell tower.  

While not discussed for the rain gauges, Guibene et al. also discuss the power supply and duty 

cycling techniques used by the buoy mote. Three solar panels are mounted on top of the buoy, 

and these charges two 12V lead-acid batteries. This is an example of the increasing trend of 

solar power in smart cities and IoT systems; not only is solar power environmentally friendly, 

but it reduces the frequency of battery replacement. While a central microcontroller CPU is 

constantly active, all connected sensors mostly operate in very-low-power sleep mode. Every 

10 minutes, the CPU will wake required sensors, read their provided data, and transmit it using 

LoRa before re-entering low power mode. A similar process also occurs every 12 hours, 

however this sends data over the LTE network. This is wise, as LTE transmission consumes 

significantly more power than LoRa.   

In response to severe levels of air pollution and the associated health risks, Duangsuwan et al. 

[30] developed an urban IoT system capable of measuring air quality and providing results to 

citizens. It is theorised that not only can city authorities identify the worst polluted areas and 

plan restorative action, but citizens can also avoid these areas when necessary. While benefits 

to city administration are less obvious than immediate advantages for residents, decreasing 

exposure to air pollution will potentially reduce burden on the healthcare system and provide 

political advantage.  
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Duangsuwan et al. used five separate sensors to measure air quality – like the previous two 

smart city platforms discussed, this involves multiple sensors on a single mote collecting 

different values. These sensors respectively collected data on ozone level, ambient noise, 

carbon dioxide level, particulate dust matter, and carbon monoxide level. The mote’s 

microcontroller communicated with these sensors to read and process values using both an  

analogue-to-digital converter (ADC) and the I2C industrial protocol. Two of these motes were 

deployed in separate locations throughout Bangkok, with power provided through a 5V/2A 

power supply.  

To communicate with a central system, the system designed in [30] utilised the NB-IoT LPWAN 

protocol. NB-IoT is a cellular LPWAN standard based on LTE, allowing it to be easily 

implemented with existing LTE infrastructure. This alone makes it very attractive to 

telecommunications providers (telcos), giving it several advantages such as availability, 

support, and the fact telcos will be responsible for installation and maintenance. NB-IoT also 

has a higher data rate than LoRa, however this comes at the cost of higher power consumption 

and lower communication range [43]. In addition, NB-IoT is a licensed spectrum technology, 

so setting up networks incurs a hefty fee. This fee is usually paid for by telcos, however costs 

are passed on to customers. No LPWAN platform is necessarily better than the others, with the 

‘correct’ choice often depending on individual circumstances and preferences. As Bangkok has 

a robust pre-existing LTE infrastructure and installing private equipment could be difficult, it 

can be seen that NB-IoT is an appropriate choice.   

With the aforementioned NB-IoT network, data was collected from each mote and sent to a 

website on the public Internet where citizens could view results. Each individual sensor 

reading is combined to produce a single Air Quality Index (AQI) reading, however the paper is 

unclear on whether this occurs at the node or web server.  

2.7.2 Smart City Services 

While we have discussed individual smart city projects in the previous section, those are only a 

handful of potential smart city applications. Several of the papers [39] [119-120] we reviewed 

on the subject of smart cities provide a list of applications that often converges on the same 

items. Applications with examples provided in the previous section have not been listed here, 

as there are already detailed descriptions.  
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A - Structural Health of Buildings  

By placing sensors in buildings or public infrastructure such as bridges, IoT systems are 

capable of determining structural integrity from vibration or deformation data. Related sensors 

can also monitor environmental conditions and seismograph activity to produce more detailed 

information, determining environmental impact on structural integrity and monitoring 

earthquakes.  

Zanella et al. propose that routine structural health monitoring should send 1 packet per 10 

minutes, with 30 seconds of delay acceptable. However, delays for alarms notifying authorities 

of imminent collapse should not exceed 10 seconds. As power consumption is not exceedingly 

high, batteries provide a suitable source.  

B - Waste Management 

A commonly seen example of waste management in smart cities is the deployment of smart 

garbage containers fitted with weight sensors to determine fullness. Using fullness data, 

municipal authorities can optimise both truck routes and recycling to minimise unnecessary 

cost and environmental impact. For example, empty garbage containers can be excluded from 

truck routes. This should require relatively little battery power, with energy harvesting stated 

as a viable power source.  

C - Traffic Management 

Currently, traffic management is often conducted with expensive and resource-intensive 

camera-based systems capturing high-resolution images. Significant improvements to cost 

and efficiency be achieved by implementing an IoT system that utilises noise and air 

monitoring sensors. By cross-referencing noise and air-quality data with GPS information, a 

model of traffic congestion can be produced for a given area. While the system proposed was 

for a smart parking system, Zhou and Li [129]’s method of detecting cars with geomagnetic 

sensors could also prove invaluable to traffic management.   

D - Energy Consumption Monitoring 

Integrating IoT nodes into a city’s power grid allows citizens to monitor their own power 

consumption, and city authorities to monitor power use through the entire city. City 

authorities can utilise this data to optimise power consumption, identify energy-efficient 

infrastructure, predict future demand, and prioritise supply to different areas.  
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Zanella et al. [39] also proposed an actuation component where power supply can be 

controlled at different points on the grid. Benefits become easily apparent in emergency 

situations or during plant outages, where rolling blackouts or prioritisation of emergency 

services are an unfortunate necessity. Sensors or actuators built into an urban electricity grid 

will also not require any external power source.  

E - Smart Parking 

Unlike many other applications discussed, smart parking is already available in many cities 

and firmly planted in the public consciousness. Zanella et al. provided two purposes for smart 

parking; directing motorists to the best available parking spaces and verifying permits. A 

further example of this was mentioned earlier in [129], where motorists could check for free 

parking spaces in advance.  

F - Actuation and Salubrity of Public Buildings 

Salubrity is a rarely used term meaning invigorating and providing comfort, which can be 

utilised at public buildings by integrating sensor and actuator systems. Public buildings 

include schools, museums, libraries, council offices and recreation facilities. Sensors and 

actuators can provide a myriad of services to these buildings, ranging from climate control to 

chlorine levels in public pools.  

G– Public Security 

CCTV surveillance cameras are often placed throughout a city to deter and investigate criminal 

activity, and many recent models include integrated Internet connectivity. Currently this 

Internet connectivity is used for both viewing footage in real-time and downloading it to an 

online location. However, as technology advances, several new and innovative methods of 

using this footage for public security are being developed. Notably, video and audio footage 

could be streamed to a web service or API that analyses it in real-time for suspicious or 

criminal behaviour. If this behaviour is flagged, security measures such as shutters could then 

be activated at nearby properties.  

2.7.3 Smart City Design and Architecture 

A myriad of design decisions must be made across all stages from initial research to practical 

deployment when developing a smart city. These decisions are evaluated from variety of 

perspectives, with each a number of empty specifications to be given values. As a system 

progresses through development, the results of certain design decisions can cause changes to 
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ones made earlier – for example, changing network protocols can require different overall 

architecture.  

While presenting their research for an urban IoT system in the city of Melbourne, Jin et al. [37] 

outlined several broad perspectives they considered during that system’s design; Network-

Centric, Cloud-Centric, and Data-Centric perspectives. The Network-Centric perspective is 

concerned with fundamental components of the networks connecting motes, gateways, and 

central servers. This examines both the flow of data between each network node, and the 

characteristics of that node which define and regulate the flow of data. Four design decisions 

fall under the network-centric perspective; how data is collected with sensors, addressing 

scheme, network protocols, and QoS mechanisms.  

The Cloud-Centric perspective is more self-explanatory, and only applies to IoT systems 

utilising a cloud-based central system. Cloud-based systems focus on the interface provided to 

each mote or subnet allowing access to the cloud system, alongside the actual processing and 

data storage performed in that cloud system.  

While the network-centric perspective examines how data flows between each node, the Data-

Centric perspective examines the data itself. Another way of phrasing this is that instead of 

how and where the data moves, the actual data moving will be evaluated. Ultimately, this 

perspective is focused on the knowledge discovery process (KDD) - data is analysed to extract 

valuable information, which is interpreted by humans to become knowledge. Three design 

decisions are considered under this perspective, each mapping to another stage of the KDD; 

data collection is how the raw data is collected, data processing is how that data is transformed 

into information, and data interpretation is how it is conveyed as knowledge.  

Siegel et al. [27] defined three perspectives that apply across all of those previously discussed; 

security, privacy, and resource efficiency. These can be thought of as occupying a different 

axis to those above and should be considered when making each of those decisions. While 

Siegel et al. [27] considered security and privacy a single perspective, we feel it prudent to 

draw a distinction. Security focuses on sensor data and actuator commands, while privacy 

focuses on data related to users or organisations.  

2.7.3.1   Network Architecture 

Upon commencing this study, we were aware that IoT systems typically had a basic 

architecture involving a massive amount of ubiquitous and constrained devices (motes) 
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connecting to a central system through an intermediate base station. However, there are many 

different methods of implementing this architecture, each of which forms its own distinct and 

more specific architecture.  Several of these methods have been detailed in previous literature, 

and we will review some in this section. A range of taxonomies have been provided for 

classifying IoT architecture, each based on a different attribute. Jin et al. provided two 

taxonomies in [37]; whether the architecture is based on previous models or not, and what can 

be accessed by external systems to what extent.  

Conversely, Siegel et al. [27] classify IoT architecture by network topology, while Zanella et al. [39] 

base their classification on whether constrained or unconstrained protocols are used. This is highly 

relevant to their presentation of Padova’s smart city, where exclusively constrained protocols were 

used for local area networks and motes. Zanella et al. also emphasise the need for 

intercommunication and transcoding between these protocols. Table 2-6 compares taxonomies 

from each of these sources and provides a list of classifications available for each. Many of the 

architectures detailed are self-explanatory, however some will require further explanation.  

In direct connectivity networks, motes directly query their peers using a point-to-point protocol such 

as Bluetooth or ZigBee. This is best suited to very small and non-critical IoT systems, as it does not 

scale well and has relatively poor security. Hub Connectivity is the most commonly encountered 

architecture in literature and is what most think of when discussing IoT networks. Motes connect to 

a central hub or gateway, which is capable of connecting to multiple motes, peer gateways, or a 

central system. All messages to and from devices pass through this hub, which carries out tasks 

including flow control, under-sampling, and security services. Hubs can further decrease bandwidth 

requirements by aggregating data from all connected nodes, and only sending the aggregate results. 

Siegel et al. [27] conclude that hub connectivity is best suited to small or medium-sized networks 

where payload size is known.   

Cloud Connectivity is proposed as a solution for large-scale networks such as  smart cities, likely 

because of the model’s infinite scalability. This infinite scalability and the mechanisms allowing it 

come at a cost, however, and cloud connectivity is also stated to be needlessly expensive for smaller 

systems. From a technical perspective this is essentially an extension of hub connectivity, where 

each mote communicates with virtual hardware in a cloud environment that can be scaled up or 

down as required. The cloud system abstracts devices and is only concerned with each device’s data 

flow and applications of that data, and consequentially developers must ensure that their IoT 

network is capable with the cloud interface [37] . Developers are permitted to build applications for 
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interfacing with the cloud, while data-mining professionals can build tools for extracting valuable 

information from collected data.  

Another architecture proposed in the literature is autonomous networks, which are completely 

isolated and not connected to public networks such as the Internet. However, some autonomous 

network gateways can still be accessed over public networks, and in these situations act as an 

intermediary for mote traffic. Despite not being connected to the public Internet, motes in many 

autonomous networks utilise the TCP/IP protocol stack with IPv6 because it is scalable, simple, and 

effective. 

Motes or intermediate servers belonging to ubiquitous networks are part of the public Internet and 

can be directly accessed by clients. Intermediate servers are motes often possessing higher 

processing power and higher-capacity power supplies, implemented by some networks to serve 

several other motes as data sinks.  

Table 2-6: IoT architecture taxonomies in literature. 

Source Classified Based On: Classifications 

Jin et al. [37] Whether architecture is built on an existing 

architecture. 

• Evolutionary 

• Clean Slate 

Jin et al. [37]  What is accessible to the public Internet, 

and to what extent. 

• Autonomous 

• Ubiquitous 

• Application-Layer Overlay 

Siegel et al. [27] Network Topology. • Direct Connectivity 

• Hub Connectivity 

• Cloud Connectivity 

Zanella et al. [39] Whether constrained (resource-

conservative) protocols are used. 

• Constrained 

• Unconstrained 

Utilising intermediate servers increases scalability and lowers resource demand on nodes, 

which is useful for serving very constrained motes or massive-scaled networks. Ubiquitous 

networks are often hierarchical, with sub-gateways served by the main gateway forming 

subnets. These subnets can have varying air interfaces and even network topologies provided 

their sub-gateways can communicate with the main gateway.  
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Finally, application-layer overlay architecture is a variant of ubiquitous network architecture 

where intermediate servers named cluster heads are given a special role. Cluster heads 

process data from connected nodes using techniques such as aggregation and feature 

extraction, then send results to the main gateway as needed. As processing is often carried out 

by higher-level software on cluster heads, data should be transported through application-

layer protocols such as HTTP or CoAP. Utilising application-layer protocols provides easy 

access to high-level software through operating system sockets. 

Results are only transmitted from cluster heads when scheduled or in response to events such 

as alarms. In addition, store-and-forward mechanisms can further conserve energy by 

decreasing the frequency of non-critical alarm transmission. Dividing an IoT network into 

cluster heads and subnets mitigates a common issue where large bottlenecks form around a 

single gateway. As the number of cluster heads increases, the bottlenecks present at each 

decrease in severity. However, introducing too many cluster heads is also disadvantageous. 

Excessive cluster heads create overly complex routing, increased hardware cost, under-

utilisation of resources and further exhaustion of address space. 

2.8 Wastewater Blockages 

As discussed in the previous chapter, wastewater blockages occur when a solid obstruction 

inhibits the flow of effluent through a wastewater asset. We will discuss this phenomenon in 

further detail here; information was obtained through conversations with field technicians at 

East Gippsland Water corporation (EGW). EGW provide water and wastewater services to the 

East Gippsland region of Victoria, Australia. East Gippsland covers an area of 21,000 

kilometres however only has a population of 45,000 people. This is a very low population 

density, and much of East Gippsland is covered by old growth forest and national parks. As of 

April 2019, EGW provide water services to 26,450 customers and wastewater services to 

22,491 [130]. These services operate in isolated systems collecting from different rivers across 

East Gippsland’s sparsely spread population centres.  

Blockages usually form over time from the accumulation of foreign objects introduced to the 

asset. These objects can enter the asset through intended means when people use fixtures to 

inappropriately dispose of objects.  Several incidents were observed at EGW where sanitary 

products, disposable wipes, nappies and even items of clothing were flushed down toilets 

alongside isolated incidents where children flushed toys. These objects collected until they 
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reached a sufficient size and formed a blockage. Most blockages at EGW were large collections 

of the aforementioned objects, however at times large flushed objects such as toys 

singlehandedly caused blockages. Animal fats are also responsible for many blockages, often 

introduced to effluent through food manufacturing and domestic cooking. Fat will stick to 

infrastructure and collect as lipids attract each other, leading to blockages called fatbergs.  

Conversely, foreign objects can also enter the wastewater system through unintended means 

such as breaks in a pipe or maintenance shafts left open. Perhaps the most notable example of 

this was when tree roots grow towards a pipe and eventually puncture it. Wastewater is highly 

nutritious to plant life, and roots that have entered a pipe will grow inside it relatively quickly. 

The rapid growth of roots inside a pipe will eventually grow thicker, collect other solid 

material, and obstruct it to create a blockage. This is such a common occurrence that it was the 

most common cause of blockages at EGW. EGW also identified rocks, landfill, and tree detritus 

as potential causes of blockage that enter the system through broken assets. Figure 2-4 shows 

the gradual build-up of blockages.  

 

Figure 2-4 – the process of a blockage forming by objects ‘sticking’ together. In this example, the blockage is 

caused by deposits of fat sticking together and growing in size over time. This time progression is shown by 

the figures in order from (1) to (4).   
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2.8.2 Risks of Blockages 

While we briefly stated the dangers of effluent exposure in Chapter 1, this section will provide 

additional detail on these dangers to emphasise both the real danger of effluent and the 

importance of our research. Early detection of blockages will allow resolution before effluent 

can breach the system and contaminate ground, fixtures, or properties. Following the 

discussion in this section, it will be evident that this early detection can potentially save lives 

and natural resources. 

Pathogens present in effluent can cause a wide range of disabling or fatal medical conditions. 

The World Health Organization [17] state that inadequate sanitation is responsible for 280,000 

annual deaths. Examples of diseases caused by these pathogens include salmonella, hepatitis 

A, trachoma, poliomyelitis (polio), cholera, typhoid, and dysentery [8] [15]. Salmonella is 

responsible for 450 deaths per year in the United States alone [9], and complications range 

from permanent heart damage [10] to brain damage and paralysis [11]. To provide an example, 

Australian Monika Samaan was left unable to speak and confined to a wheelchair after 

contracting salmonella [12]. Another example of the dangers of effluent is Trachoma, the 

leading cause of infectious blindness affecting 1.9 million people worldwide [13]. Worryingly, 

Trachoma is highly contagious and can be spread by contact with insects that have touched 

infected persons or effluent. Australia is the only place in the developed world where Trachoma 

poses an issue [14].  

As previously mentioned, effluent contamination can be direct or indirect [8]. To reiterate, 

direct exposure involves physical contact with effluent while indirect contact involves contact 

with animals or insects who have had direct contact. This has alarming implications as insects 

are highly mobile, attracted to effluent and commonly land on humans. If one insect has had 

contact with effluent and lands on a human, this chance encounter could prove fatal or 

permanently damaging. Many of the aforementioned illnesses, especially trachoma, are easily 

spread through indirect contact. Combined with the hot conditions and population of flies in 

Australia, this has potential to create a significant public health concern. This is only worse in 

developing countries where sanitation is very poor, and polluted conditions combine with the 

often-hot weather attract an enormous number of flies. These countries often employ manual 

scavenging [18-19] to resolve blockages, and during 2017 a life in India was claimed every five 

days from this practise. 
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2.9 Existing Solutions for Wastewater Management 

2.9.1 Robotic Solutions 

Following our review of smart city technologies and IoT platforms, we will now examine robotic 

solutions for resolving wastewater blockages. As the name suggests, robotic solutions involve 

constructing a remote-controlled robot and deploying it inside wastewater infrastructure to 

carry out inspection. Robotic solutions reduce risk of exposure to hazardous effluent and are 

much less expensive than traditional solutions such as CCTV cable and probe inspection. 

Lower costs allow developing countries to move away from manual scavenging, while allowing 

developed countries to perform more frequent and simultaneous inspections.  

We have reviewed literature detailing development of two separate robotic solutions- the 

BhrtyArtana robot developed by Vaani et al. [49], and an unnamed robot developed by 

Shrivastava et al. [48]. Both of these solutions were developed in India, likely in response to the 

endemic practise of manual scavenging described in Section 2.8.2. Despite some differences 

in implementation, both solutions discussed have a very similar overall design and purpose. 

Both consist of robots that navigate a sewer pipe and terminals placed at ground level. These 

terminals have a direct connection with the robots, meaning messages between them do not 

navigate the public Internet. When a blockage is encountered, the robot will send a message to 

the ground-level terminal that notifies an observing user. These terminals will subsequently 

relay messages to other devices or networks as required.  

Both robots utilise wheels driven by DC gears motors for movement, however BhrtyArtana uses 

four wheels while Shrivastava et al.’s solution uses two rear wheels driven by a front castor 

wheel. Vaani et al. discovered that utilising high-friction wheels increased efficiency and 

produced more favourable test results, providing another design strategy for future robotic 

solutions. Another commonality is that both robots use an acoustic sensor to navigate pipes 

and detect blockages, notifying an above-ground terminal of any blockages found.  

Vaani et al. do not specify how BhrtyArtana utilises its acoustic sensor to navigate pipes, 

however Shrivastava et al. have provided a detailed description. While they will not be the 

same due to being two different robots with different designers, it can be assumed some 

similarities exist. Shrivastava et al.’s description is also robust and efficient, allowing it to 

serve as guidance to future researchers and developers.  
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If an acoustic sensor detects an echo, it is assumed to either imply a corner in the pipe or a 

blockage. To determine which is occurring, the sensor rotates 90 degrees to the left. If no echo 

is detected, the pipe has turned to the left. Conversely if an echo is detected, the pipe will 

rotate 180 degrees to the right. If no echo is detected, the pipe has turned to the right, but if an 

echo is detected it can be assumed a blockage is obstructing the way forward. Rotation of the 

sensor and processing of readings is carried out by the control board. The robot’s wheels will 

turn towards the appropriate direction if it is determined the pipe has turned, whereas if a 

blockage has been detected the robot will notify users through the ground terminal. 

Shrivastava et al. also state that each vehicle rotation or movement will require acoustic 

recalculation.  

While Shrivastava et al.’s solution is completely passive and only detects blockages, 

BhrtyArtana includes an actuation component for resolving any blockages found. This is 

achieved through rotating propeller head of serrated aluminium attached to its front, capable 

of cutting through any blockages discovered. As the rotating motor has much higher power 

requirements than the robot’s other components, it is powered by a separate high-capacity 

battery. Shrivastava et al.’s robot also sends readings to the ground station as text, while 

BhrtyArtana captures live footage of the sewer through an infrared LED camera; this footage is 

streamed to the ground station. Another extra feature provided by BhrtyArtana is its wireless 

connection to the ground terminal, whereas Shrivastava et al.’s robot communicates using a 

long cable. 

Despite having no attached camera, Shrivastava et al.’s robot is capable of determining 

distance it travelled from its deployment point. Each revolution of its wheels triggers an 

attached reed switch, sending a single pulse to the robot’s main microcontroller. The 

microcontroller then calculates distance using the following equation. In this equation W is 

the number of wheel revolutions, and r is the radius of rear wheels.  

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑇𝑟𝑎𝑣𝑒𝑙𝑙𝑒𝑑 =  𝑊(2𝜋𝑟) 

Although BhrtyArtana’s additional features provide significant advantages over Shrivastava et 

al.’s robot, they also raise its cost and complexity. One of our key research objectives is to 

minimise the cost of any system developed, and this goal should be taken even further in 

developing countries such as India. When taking this into consideration, it can be argued that 
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Shrivastava et al.’s solution provides as much benefit as BhrtyArtana’s; it still detects 

blockages like BhrtyArtana and is likely to be much less expensive.  

All testing showed that Shrivastava et al.’s robot was successful and fit for purpose, providing 

an inexpensive, safe and effective solution for acoustic monitoring of sewer blockages. 

Shrivastava et al. provided a detailed description of their testing and its outcomes, while 

comparatively little was provided for BhrtyArtana. Despite this, Vaani et al. state BhrtyArtana 

can successfully traverse through a pipe of 10 inches in diameter.  

2.9.2 Urban IoT Solutions 

While robotic solutions have some advantages over the conventional CCTV and acoustic probe 

inspection discussed in Chapter 1, the key issue with those methods still remains. Robots can 

only be deployed in a single asset at any given time, either on a round-robin routine or in 

response to a reported issue. If an issue has been reported, events noticeable to customers 

such as foul odour or effluent breaches have already occurred. Ideally, a solution for detecting 

sewer blockages would exist that is capable of monitoring an entire sewer system 

simultaneously.  

Several systems have been developed that utilise IoT technology to deploy motes throughout 

wastewater infrastructure, with each simultaneously monitoring local physical conditions. 

These monitor urban infrastructure and intend to enhance service delivery to citizens while 

improving processes for municipal governments; therefore, they fall within the smart city 

concept. We will discuss them in the following section as they provide both inspiration and 

prior lessons for our own research.  

Stoianov et al. [53] delivered a system named PipeNet in 2007 to assist the United States 

Government with improving sub-standard water and wastewater infrastructure. PipeNet 

involved placing a range of heterogenous sensors across infrastructure to monitor physical 

variables in real-time, with sensors grouped into clusters based on overall purpose. We will 

only consider Cluster 3 in this review, as it aligns with the goals of our research by monitoring 

effluent levels. Pipelines named Combined Sewer Systems (CSSs) are used in the United States 

to carry both effluent and stormwater to its intended destination, with overflow collecting in 

the aptly named sewer overflow collectors. Cluster 3’s sensors were deployed in these overflow 

collectors to measure the level of effluent currently overflowing.  
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Two years later in the United Kingdom, See et al. [52] developed a system to monitor effluent 

level that was much smaller in scope than PipeNet, but equally as relevant to our research.  

Sensor motes were deployed in assets named gullies across several properties – gullies are 

attached to a property’s sewer connection and give effluent a ‘safe’ place to overflow if needed 

before breaching to the surface. By deploying level sensor motes in these gullies, See et al. 

hoped to build a blockage detection system. Reviewing this has significant benefit for us, as 

this is a very similar goal to our own research.  

Much more recently, Saravanan et al. [34] developed a system to improve sanitation in the 

Indian village of Mori. Mori’s water is supplied through a series of canals linked to a central 

tank, and quality issues would only be identified when observed by villagers – by which time, it 

could be too late to avoid contamination. Saravanan et al. developed a mote that would be 

deployed in the central tank and use a range of sensors to monitor different water quality 

variables. This holds striking similarities the mote deployed by Guibene et al. [32] in Dublin’s 

Liffey River. Saravanan et al. also developed a series of actuation motes to remotely operate 

locks on Mori’s canals, however we will not discuss these as they are out of our research’s 

scope.  

Each system we reviewed has the same basic architecture, consistent with what we described in 

Section 2.1. In relation to the architectures discussed in Section 2.7.3.2, these can all be 

classified as Hub Connectivity with either Ubiquitous or Application-Layer Overly 

architectures. More specifically, each uses one or more attached low-power sensors to read a 

physical variable from their deployed environment. An energy-efficient wireless network 

infrastructure is then used to send these values to a more powerful base station, which 

subsequently passes them to a central system for processing.  

2.9.2.1   Mote Hardware 

See et al. used Crossbow Mica2 units as motes, operating in the lowest possible duty cycle of 

1%. During the other 99% of operational time, the motes would operate in very low power 

sleep mode consuming 20µA of power. However, in the remaining 1%, motes would enter 

sensing mode and read input from attached sensors and evaluate whether a surcharge was 

occurring. If so, an internal counter of surcharges would be incremented, and if not, this 

counter would be reset. When the counter reaches five subsequent surcharges, the 

microcontroller switches to radio broadcast mode and transmits an alarm to the base station. 
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Upon successful message transmission, the subsequent surcharge counter is set back to 0. 

These motes consumed 9mA of power during sensing mode, and 18mA during message 

transmission.  

Stoianov et al. [53] implement Intel’s Mote platform, connecting sensors through eight 

analogue channels with adjustable sample rate. These motes implement a similar duty cycling 

mechanism to See et al. [52], however the sleep mode is less energy efficient and consumes 

2mA. Additional comparisons show that PipeNet’s motes are less energy efficient overall, 

consuming 16mA in sensing mode and 30mA during data transmission. Stoianov et al. also 

discovered that the mote’s onboard RAM was insufficient for store-and-forward processing at 

the required sample rate, and in response developed a streaming mechanism to send data 

between motes. Multiple buffers were introduced to allow for lower throughput and higher 

latency under difficult conditions, and it was observed that 600 samples could be streamed per 

second. This is an innovative idea for constrained systems, and our research will take 

advantage of this if required.  

Finally, Shrivastava et al.’s motes were built using the popular Arduino board. Each sensor was 

connected using Arduino’s GPIO interface, which was also utilised to communicate with a LoRa 

transceiver. Less information is provided about these motes; however, Arduino boards are far 

easier to develop with and often do not require customisation.   

2.9.2.2   Mote Sensors 

Stoianov et al. [53] and Saravanan et al. [34] both deliver motes that connect to a range of 

heterogenous sensors. Saravanan et al.’s system only consists of a single mote, and this has 

many sensors that measure different values; Oxidation Reduction Potential, pH, salinity, water 

level, turbidity, temperature and flow. In contrast, PipeNet involved deploying multiple motes, 

and these are classified into Clusters based on the attached sensors. Sensors in Cluster 1 

measure water pressure and pH, Cluster 2 measures water pressure, and Cluster 3 measures 

effluent level. For both of these systems, we will solely examine the methods used to measure 

water or effluent level as other information is out of our research’s scope. We will not go into 

further detail on Saravanan et al.’s method for level detection as it uses conventional acoustic 

sensing with no modifications. However, both other projects implement unique level sensing 

methods, which we will discuss below.  
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While See et al. [52]’s motes only monitor the single variable of effluent level, this is achieved 

using multiple sensors. The implementation of multiple sensors results from See et al. 

developing their own custom acoustic sensing mechanism, which they undertook believing 

commercially available sensors were too delicate for their system’s harsh environment. This 

mechanism has two sensors – both a transmitter and receiver. The transmitter produces sound 

waves, and the receiver records the amplitude of those waves. If the amplitude is above a 

certain threshold, it is assumed that both the transmitter and receiver are underwater, 

implying effluent has reached the transceiver’s height.  This does not produce a quantitative 

measure of effluent level like conventional acoustic sensors, and instead returns one of three 

discrete status; Low, Medium, or High. See et al. also considered using the conventional time 

domain for ultrasonic sensing, however considered it too prone to error.  

Motes in PipeNet’s Cluster 3 also employ an array of sensors for measuring the single variable 

of effluent level. Each mote contains three sensors; two pressure transducers and an ultrasonic 

sensor. Pressure transducers are placed at a pre-determined height and produce a reading if 

effluent surcharges at a given threshold. If the difference in pressure readings exceeds a pre-

set value, the ultrasonic sensor will be activated and used to determine level. The ultrasonic 

sensor is only used if absolutely necessary, as it consumes 550mW in contrast to the pressure 

sensors’ 10 mW.  

2.9.2.3   Network Technologies 

Both Stoianov et al. [53] and See et al. [52] utilised short-range WSN communication protocols, 

while Saravanan et al. utilised LoRa LPWAN technology. While WSNs have a much shorter 

communication range than LPWANs, they are very energy-efficient and inexpensive. See et al. 

utilised the popular ZigBee protocol, giving their network multi-hop mesh communications 

and self-healing capabilities. Stoianov et al. instead utilised Bluetooth technology, taking 

advantage of the scatternet formation to allow a higher number of devices per network. While 

Bluetooth piconets typically cannot contain more than 8 devices due to a 3-bit address space, 

the scatternet formation breaks piconets into hierarchical subnets. This can continue 

recursively, resulting in a star-of-stars topology.  

2.9.2.4   Base Stations 

PipeNet and See et al.’s systems have extremely similar base stations, both consisting of a 

Stargate mini-computer that receives data from connected motes and sends it to a central 

system. Motes in these systems both utilise a store and forward mechanism, where motes will 
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cache sensor readings and wait until the base station is ready or a pre-defined threshold has 

been reached before sending them. See et al. [52] state this duty cycling is intended to 

conserve power, allowing the base station to be in sleep mode when not receiving messages. 

PipeNet builds on this duty cycling further, attaching a cluster head mote to the base station to 

collects input from all others. The cluster head is responsible for caching all messages before 

periodically passing them to the base station. 

Again, Saravanan et al. [34]’s approach is very different, utilising a LoRa gateway for a base 

station. However, an unexpected similarity can be found with PipeNet in the use of a cluster 

head mechanism. A microcontroller connected to the LoRa gateway performs a store-and-

forward action on data from sensors, manages connection acknowledgements, and 

administers the network. This is a logical decision, as LoRa gateways are often little more than 

‘relays’ that communicate information between the local network and backhaul.   

2.9.2.5   Results and Evaluation 

See et al. [52] developed eight wireless sensors and deployed them in a densely-populated 

residential area in Bradford, UK – an area where each home had a gully placed relatively 

adjacent to its neighbours. The Stargate base station was placed on a lamppost in the street, 

with the closest sensor located 12.3 metres away and the furthest 66.5 metres away.  

Additionally, the shortest distance between two sensors was 5.5 metres and the longest 38.5 

metres.  

During the initial test, only the two sensors with line-of-sight to the base station operated 

correctly. Following this, two changes were made in an attempt to increase performance;  the 

base station was given a high-gain antenna, and additional repeaters were added 40-70 metres 

away from it. These changes had the intended effect, allowing five sensors to communicate 

with the base station. Further investigation after this second test revealed that all three 

unreachable sensors were obstructed by concrete, rubbish, or other urban detritus. See et al. 

provided suggestions for improving communications in similar systems, including adding 

more relay points and base station aerials. Primarily, however, this shows the potentially 

devastating effect of urban obstructions – a fact we must consider during our own research and 

development. 

Stoianov et al. [53] also performed a small-scale field test on PipeNet and observed similar 

issues to those encountered by See et al. Problems were also encountered with the Stargate 
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minicomputer utilised, however these will not be discussed as this hardware has since been 

superseded. Performance results for ground-based antennas or those placed inside 

underground assets will be highly beneficial to us, as deploying motes in inspection shafts will 

create similar conditions.  

On one occasion, performance was significantly degraded by snowfall covering an antenna. 

Rainfall also had an impact on performance; however, this was far smaller than that caused by 

snow. An antenna embedded in the road was accidentally destroyed during resurfacing, and a 

replacement was installed inside a shaft covered by a cast-iron lid 4.5 inches thick. As could be 

expected, being installed under a cast-iron lid caused significant reductions in performance. 

These results show the effects of both urban obstruction and weather conditions, with snowfall 

and rain forming their own obstructions. In both cases, increased link budget or lower-

frequency air interfaces could potentially solve the problem.  

A similar incident to the road-embedded antenna’s destruction occurred when maintenance 

staff accidentally destroyed a Cluster 3 antenna during routine inspections of CSS pipelines. 

These both show the often-overlooked risks to physical security when implementing an urban 

IoT system, especially in areas prone to construction work or heavy human activity. Installing 

motes in off-limits, locked, or inaccessible places can rectify this problem, however if these 

assets are constructed with thick materials the issue of obstruction may occur again. 

Additionally, installing motes in inaccessible places results in more difficulty replacing 

batteries or performing maintenance.  

87% of Cluster 1 messages were received, as were 62% of Cluster 2 messages and 72.3% of 

Cluster 3’s messages. The lower percentage of received messages in Clusters 2 and 3 was 

likely caused by the breakage incidents and subsequent attempted fixes that negatively 

impacted message reliability. Stoianov et al. also stressed the issue of time synchronisation, 

stating that more accurate synchronisation should be a goal of future research. Keeping this in 

mind, we will aim for effective and accurate timekeeping.  

Saravanan et al. [34] did not provide detailed information on their system’s network reliability, 

however the paper produced implies that deployment was very successful, and information was 

received as appropriate. This is further supported by the fact they were able to produce a 

logistic regression model in the Weka data mining suite that produced 99% predictive 

accuracy. This potentially demonstrates an advantage gained by using LPWAN technology, a 
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logical conclusion when considering the higher link budget, low bandwidths, and LoRa’s 

spread-spectrum capabilities.  

2.10 Conclusion 

In this chapter we have reviewed and presented literature detailing current smart city systems 

alongside the technologies and initiatives that enable these systems, with an additional focus 

on LPWAN platforms. LPWAN technology provides low-power communications capable of 

allowing motes to connect and communicate over long distances. We also reviewed the 

techniques currently used for detecting sewer blockages, detailing how they operate while 

revealing problems and inefficiencies. Considering these issues with current techniques, and 

the potential of IoT-based smart city systems, we are encouraged to develop an intelligent 

sewer blockage detection system utilising IoT infrastructure. Current literature has revealed 

that no practical solution has yet been developed for doing this. In the following chapter, we 

present the design and implementation of such a system. 
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Chapter 3 Design and Implementation of 
Monitoring and Detection System 

The first chapter showed the severe consequences of sewer blockages and need to resolve 

them in a manner both timely and efficient. Following this, the second chapter revealed no 

solution exists that can practically detect sewer blockages over a wide area. Many existing 

solutions employ short-range devices, requiring a large number of repeaters or base stations 

to effectively deploy over a wide area. Others are too ambitious, using complex and expensive 

sensors to detect blockages or monitoring a range of additional variables.  

Our research intends to deliver a system capable of monitoring sewer blockages across a wide 

area, while remaining sufficiently simple and cost-effective for deployment in areas of all 

economic status. In this chapter, a detailed design capable of carrying out these intentions will 

be presented. This design encompasses custom hardware, firmware, and software working 

with communications protocols across all layers of the network. Chapter 2 also reviewed 

previous literature and technical specifications for a range of protocols and services across all 

layers of network architecture – LoRa, MQTT, and the Node.js framework. These protocols and 

services will prove instrumental in the design presented here.  

The system’s primary function is to determine when a sewer blockage is occurring and notify 

relevant persons. Sewer blockages are indicated by surcharges occurring at property 

connections, so logically, detection can be carried out through motes placed at these 

connections. These motes must incorporate a sensor capable of reading a physical variable 

indicating surcharge, alongside the typical components of microcontroller and wireless 

transceiver.  

Using the states of all motes across the wastewater system, the central system will be capable 

of: 

• Differentiating an actual blockage and a ‘false alarm’; 

• Classifying blockages as either full or partial; 

• Determining whether blockages are located at the property connection or in the main 

itself; 
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• Locating the property connection, or length of main between two property 

connections, where the blockage is occurring; 

An interface provided by the central system will also expose this information to external 

systems, including interfaces to communication platforms (e.g., SMS or Voice APIs) and other 

corporate systems. Corporate system integration opens a wide range of possibilities, including 

synthesis of business intelligence and optimisation of existing processes. Examples of systems 

that can be integrated include weather services, asset management systems, business 

intelligence platforms, and other control or instrumentation solutions.   

3.1 Overall Design 

Existing literature shows that urban IoT systems conform to an overall design as illustrated in 

Figure 3-1 where many distributed motes communicate with a single central system. This has 

been previously described in Sections 2.1 and 2.7.3. Our system can be separated into two 

logical components (i – motes and ii – central system), separated by the public Internet 

allowing communications. For the system to be practical, communications to and from motes 

must be wireless.   

Being placed throughout an entire wastewater infrastructure, motes will often be distributed 

over a long distance and sometimes be placed sparsely. Depending on the property owner’s 

individual preferences and economic status, motes will be capable of connecting to the central 

system using one of two wireless platforms as shown in Figure 3-2 - Wi-Fi or an LPWAN. Both 

platforms are simply methods for connecting a mote to the public Internet, where it can be 

routed to the central server. Our network will be capable of supporting motes using both 

platforms, and all motes will co-exist seamlessly regardless of air interface. Messages at the 

central system from both platforms will be indistinguishable from one another.  

Many utility providers utilise a home or business’ own Wi-Fi gateway to provide connectivity 

to Internet-connected devices such as smart meters. Our system’s motes will send and receive 

an extremely small amount of data per month, greatly reducing customer concerns regarding 

congestion and data allowance. Many urban areas also provide free Wi-Fi connections that can 

be utilised, and existing IoT  systems have also taken advantage of this. Using existing Wi-Fi 

connections conforms to a crowd-sourcing model of network deployment and removes the 

often-high costs of deployment and maintenance from system providers. However, this leaves 
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network uptime and reliability in the hands of network owners – albeit at potentially reduced 

legal obligation.  

Wi-Fi crowdsourcing is practical in densely populated areas of wealthier cities, however more 

rural areas, or cities without funds for public Wi-Fi will make this model impractical. In 

addition, some homes and businesses will refuse to allow utilities companies to share their 

connection – a decision they have every right to make. For these circumstances, an LPWAN will 

be deployed over the covered area. LPWAN networks have been designed for use in IoT 

applications, and embody this trade-off by offering energy-efficient, highly scalable long-

distance communications with very low data rates. While LPWAN networks provide a very long 

range and low power consumption, they are less reliable and slower than Wi-Fi networks.  

In large urban areas, it is likely that there will be a range of motes connected to both LPWAN 

and Wi-Fi systems. Variation can arise from customers not willing to share their Wi-Fi 

connection, black spots, outages, and variations in socioeconomic status. This must be 

facilitated wherever possible, meaning all motes that connect to a Wi-Fi access point must also 

be capable of connecting to an LPWAN.  

3.2 Considerations for Mote Design 

Before developing a functional design for our system’s motes, it is important to consider key 

issues  known to adversely impact motes or battery-powered devices in other systems. A 

functional design is concerned with how a system will carry out its required tasks, however, 

often fails to consider the practicality and sustainability of carrying these out. Without 

considering these issues, our motes could send spurious data, report inaccurate readings, or 

drain all their power within days or even hours. 

In this section we will discuss each identified issue, and our design in section 3.3 will propose 

a solution.   



58 
 

 

Figure 3-1: The overall design of urban IoT systems described in existing literature. Several motes connect to 

a central system responsible for communicating with all motes and collectively processing data.  Motes 

connect to the central system using the public Internet, and their physical connection to the public Internet 

must be facilitated with a wireless network platform. The central server, however, does not follow the same 

restrictions and can use a wired connection if needed. 

 

Figure 3-2: A further refinement of Figure 3-1, showing the general urban IoT architecture adapted to our 

system’s ‘dual network’ configuration of co-existing Wi-Fi and LPWAN networks. 
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3.3.1 Power Levels 

A mote operating continuously at normal power consumption will quickly drain its battery, 

lasting days or even hours instead of the years expected from IoT systems. If a mote detects 

changes in a General-Purpose Input/Output (GPIO) input through constant polling, this will 

require the mote to constantly be running at full power. If we determine an alternative to 

polling, the mote will no longer be constantly inspecting its GPIO pins and can be considered 

idle when not doing so. Examples of this have already been seen in Sections 2.7.2 and 2.9, 

where sleep or low power modes were commonly used as a power-saving measure. Low power 

modes are made practical by specialised processor instructions called Interrupt Requests 

(IRQs).  

IRQs are very high-priority instructions to the CPU, which when received cause it to cease any 

lower-priority instructions and start executing a particular sequence of code. This sequence of 

code is named an Interrupt Vector and can be mapped to a particular pin in some 

microcontrollers, causing certain state transitions on that pin to request the code’s execution. 

Additionally, some microcontrollers are capable of mapping IRQs to the internal clock, firing 

IRQ events at a specific time or when a programmed countdown timer elapses. Embedded 

operating systems or firmware maintain a data structure named an Interrupt Vector Table 

which maps all IRQs to a pointer to the correct vector.  

Many microcontrollers offer various low-power modes of operation that each consume less 

power and disable more features. ‘Deep sleep’ modes are often available, where 

microcontrollers consume very little power but are almost completely inert and are unable to 

perform normal processing. However, some microcontrollers are capable of reacting to IRQs 

from GPIO state changes while in deep sleep. A powered-off microcontroller cannot monitor 

surcharge, however a deep-sleep microcontroller can while using very little power.   

3.3.2 Switch Bounce and Environmental Fluctuations 

Another issue that must be considered is switch bouncing, occurring when a switch’s contacts 

bounce off each other when being pushed together [64] - a simple problem of physics. 

Bouncing causes a switch to rapidly fluctuate between open and closed states before finally 

settling at the intended state. In a digital system, this causes many fluctuations between 0 and 

1 before settling  at the final value.   
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The system under development utilises a float switch to determine whether surcharges are 

occurring. Float switches utilise a simple mechanism that is pushed up by a rising water 

surface, pushing two contacts together to close a circuit – these will be discussed in greater 

detail later in this chapter. Our system sends a message to the central server whenever the float 

switch’s state changes. If the float switch bounces and rapidly changes state several times, 

theoretically each of these changes could result in a message being sent. As message 

transmission consumes a significant amount of power, unnecessary messages resulting from 

switch bounce can cause significant power wastage. In more concrete terms, theoretically 

power usage could increase by the amount of state changes involved in a given bounce.  

Our system is also at risk of another type of bouncing – one that is not an error in the switch, 

but instead an attribute of the mote’s own environment. Contacts close the float switch when 

the effluent’s rising surface pushes them together. In an inspection shaft, effluent is prone to 

‘bobbing’ or rapidly fluctuating level by slight amounts, which triggers rapid state changes. 

Unlike switch bounce, this is not a false reading, but a real reading the system must attempt to 

filter.  

Switch Debouncing is a technique utilised to filter out the rapid state changes caused by 

switch bounce and ensure only the final intended state is processed by the system. 

Debouncing can be implemented by both hardware and software, however we will utilise 

software debouncing for the system under development. Software debouncing is not only less 

expensive and simpler to implement, but also allows real ‘bobbing’ state changes to be filtered. 

Software debouncing often involves delaying execution for a pre-determined length of time 

after a state change to ‘wait out’ any switch bounces.  

3.3.4 Pin Floating 

For each digital pin, microcontrollers consider a specific range of voltages high (1) and another 

range low (0). There is often a space between these ranges where a reading cannot be 

considered high nor low. A pin with voltage in this intermediate range is said to be floating, 

and this presents a common issue for electronic design. Ideally, this floating range should be 

avoided whenever possible. Microcontrollers react unpredictably to pin floating, however a 

common behaviour is rapid fluctuation between 0 and 1. 

Pins not connected to a voltage source or ground are prone to floating as they conduct 

electromagnetic noise such as radio waves and static electricity. This makes sense, when 
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considering that an exposed pin is in essence a very small antenna. Electrical noise is capable 

of pulling pin voltage into the high or low ranges, however, can also pull it into the floating 

space. Open switches are also prone to floating, as an open switch is electrically equivalent to 

an exposed pin.  

Our system’s float switches will spend the majority of their time open, when their respective 

inspection shafts are not surcharging. While open, these float switches will be prone to the 

electrical fluctuations caused by floating. This is dangerous as each fluctuation can potentially 

trigger a message transmission to the central system. If messages are constantly sending while 

float switches are open, motes could exhaust their batteries in mere hours.  

Two solutions are commonly used to remedy switch floating, and these are discussed below.  

The first and simplest solution is simply connecting the switch to ground, pulling an open 

switch to 0 while still allowing closed switches to return 1. However, any direct connection 

between voltage and ground results in a short circuit, which can instantly destroy or cripple 

microcontrollers. Placing a resistor between voltage and ground will prevent a short circuit 

occurring, while allowing the technique to remain effective. This is referred to as utilising a 

pull-down resistor. Figure 3-3 illustrates the problems with the initial solution, alongside how 

this is solved with a pull-down resistor.  

Conversely, a direct line can be placed between voltage source and GPIO, with the float switch 

connected to both that line and ground. When the switch is open, current will flow directly 

from the voltage source to GPIO, registering a 1. Closing the switch will direct the current to 

ground and away from GPIO, causing it to register a 0. Again, a resistor must be placed 

between the voltage source and ground to prevent a short circuit, lending this technique its 

name of pull-up resistor. As can be observed, pull-up resistors reverse the values returned by 

opening and closing a switch. Figure 3-4 again illustrates the initial solution’s problems and 

shows how pull-up resistors provide a solution. 

Many microcontrollers include embedded pull-up and pull-down resistors for GPIO pins; 

however, it is important not to make this assumption without checking technical 

specifications.  



62 
 

 

Figure 3-3: Demonstration of a pull-down resistor. In (b), closing the switch allows current to flow uninhibited 

from Vcc to GND – this creates a short circuit. By adding a resistor to the connection between the switch and 

GND as seen in (c), the current becomes inhibited by the resistor and short-circuiting does not occur.  

 

Figure 3-4: Demonstration of a pull-up resistor. In the (b), closing the switch creates an uninhibited current 

between Vcc and GND – resulting in a short circuit. When a resistor is placed between Vcc and I/O as seen in 

(c), this inhibits the current and prevents short circuiting. While the connection between the switch and GND 

has no resistor, Ohm’s law proves the current will be the same at all points of the circuit.  
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3.3 Mote Design 

In this section we present a design for the motes our system will deploy throughout wastewater 

inspection shafts. This design is built around meeting the system’s core requirements and 

carrying out the expected functionality, while providing solutions to the issues raised in 

section 3.2 

Each mote will consist of four key components as illustrated by Figure 3-5; i – power supply, ii 

– surcharge detection sensor, iii – wireless transceiver, and iv – microcontroller. Boundaries 

between each of these components are often blurred, as a greater number of modern solutions 

integrate multiple components on a single board. Examples of this include the Raspberry Pi 

and Arduino solutions, both of which contain microcontrollers and integrated Wi-Fi adapters.  

Some existing systems detect surcharge by utilising a level sensor to measure the level of 

effluent in a given asset, and represent it using an analogue float or integer value. However, 

the presence or lack of surcharge can also be easily represented through a binary value – 

surcharge (1) or no surcharge (0). Our system is only concerned with whether a surcharge is 

occurring or not, as opposed to the water’s actual level. Using binary values requires 

significantly less computational, storage, network, and power resources than utilising numeric 

values. This results in less expensive systems with faster processing and increased 

communications range.  

Utility providers responsible for wastewater infrastructure are responsible for deciding which 

level in a given inspection shaft indicates a surcharge. Inspection shafts can be classified 

according to shape, location, property connection angles and other factors, with a single level 

determined for each classification. Our system’s motes must utilise a simple binary sensor 

capable of determining if at any given time, surcharge effluent is at this level.  

Thankfully, float switch sensors fit perfectly into our requirements. These have a long history 

of use in the water and wastewater industries, however, have traditionally been connected to 

large SCADA or instrumentation systems through a wired connection. These systems are 

expensive and have seldom used wireless sensors, so it would be unrealistic for any utilities 

providers to integrate every property’s inspection shaft into them. Our research will provide 

further innovation by using these switches for sensing in a low-cost system deployed 

separately to SCADA environments. 

 



64 
 

 

Figure 3-5: A graphical overview of a wireless mote’s typical components and their interactions.  

Float switches are simple digital switches that close their circuit when rising water pushes 

contacts together. These contacts will remain closed while water is at or above their placed 

level, and only open again when water falls below it. Our system will position float switches 

inside inspection shafts, so their contacts are at the level indicating surcharge. Contacts will 

push together and close the circuit when this level is reached and separate to open the circuit 

when effluent falls below it again. Figure 3-6 shows a float switch at its initial open state, while 

Figure 3-7 shows it when a surcharge causes it to close.  

Advantages of float switches include their inexpensiveness, wide availability, simplicity of 

implementation and binary output. It should be noted that during our research, we observed 

that cheap float switches were likely to break from regular handling. However, during a 

practical deployment, float switches will experience far less human contact as they are placed 

in the shaft.  Considering that the advantages outweighing disadvantages, we have selected 

float switches for our mote’s sensor component.  

Float switches will be connected to the mote’s microcontroller using two pins. A digital GPIO 

pin configured in output mode will be connected to the positive end, providing power to the 

switch’s circuit. The negative end will be connected to a digital GPIO pin configured in input 

mode, responsible for receiving the switch’s digital value. This digital value will differ 

depending on the switch’s state, as an open switch will return a different value to a closed 

switch.
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Figure 3-6: A float switch placed in an inspection shaft, during an inspection shaft’s default non-surcharged 

state. (a) shows the float switch deployed in an inspection shaft, while (b) shows the float switch alone. The 

float switch’s contacts are also denoted by (1) and (2). While effluent in the pipe stays below the level 

indicating surcharge, gravity will pull (1) and (2) apart.  

 

Figure 3-7: A continuation of figure 3-6, showing the inspection shaft when effluent has reached the level 

indicating surcharge. The effluent’s surface has pushed the contacts shown in (1) and (2) together, causing the 

circuit to close. The red arrows show the range of motion permitted for the contacts.  
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If a pull-down resistor is used, a value of 1 will indicate a surcharge and 0 will indicate no 

surcharge. The opposite applies if a pull-up resistor is used, where 0 will indicate surcharge 

and 1 will indicate no surcharge. We selected microcontrollers with a pull-down resistor, as 

pull-down resistors are easier to implement and do not swap the switch’s input values.  

Considering this, we can develop a state machine for each mote as seen in Table 3-1; each state 

change is caused by a change in the float switch’s GPIO channel. This state machine is also 

illustrated by the State Machine Diagram in Figure 3-8.  

To conserve power, our system’s motes will normally operate in deep-sleep mode and only 

‘wake up’ when a specific IRQ is raised. Many microcontrollers raise IRQs when certain pins 

change state, alongside raising IRQs when the internal clock reaches a certain time or specific 

a period of time elapses. We can utilise this functionality to optimise our system’s power 

consumption, ensuring motes only wake from deep sleep when a specific IRQ is raised. The 

correct IRQs will be mapped to an interrupt vector that carries out the appropriate functionality 

before placing the mote back into deep sleep. This results in a paradigm where at any given 

time, motes are either in deep sleep or reacting to an IRQ.  

The mote’s float switch will be connected to an interrupt-enabled pin, allowing the 

microcontroller to raise an IRQ when the switch opens or closes – meaning an IRQ is raised 

when surcharge states changes. This IRQ will be mapped to the vector detailed by pseudocode 

in Pseudocode 3-1, responsible for processing surcharge status and sending an update to the 

central system if necessary.  

While battery level information will be sent to the central system every time surcharge state 

changes, this is not sufficient to ensure system uptime. Some motes will rarely experience 

surcharge, with long gaps between events. In these cases, battery level will fall unacceptably 

low, or even empty before the central system is made aware. If the battery’s charge is 

completely drained, the central system will never be aware of surcharges or receive 

information from that mote.  

Heartbeat messages regularly sent by each mote ensure the central system is kept aware of 

battery level. As is common in the IoT domain, this presents a trade-off between freshness of 

mote state information and energy efficiency. Increased frequency of heartbeat messages 

results in greater system reliability, as the longest time a mote can be down without knowledge 
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is equal to the time between heartbeats. However, this will also consume additional power as 

motes transmit messages and wait for acknowledgements more frequently. 

To facilitate this, we will develop an interrupt vector capable of sending a heartbeat message to 

the central system. This vector will be mapped to a timer configured with the microcontroller’s 

internal clock, counting down the time between each heartbeat. When this timer elapses, the 

microcontroller clock will raise an IRQ to execute the appropriate vector. Sending of 

unnecessary messages (and therefore unnecessary power consumption) will be prevented by 

resetting this counter if a surcharge occurs. There is no need to send a heartbeat message if a 

surcharge message containing battery level has recently be sent. Pseudocode 3-2 details the 

functionality of the IRQ vector mapped to this timer interrupt.  

Table 3-2 summarises the IRQs utilised by our motes. All functionality will be carried out by 

the vectors mapped to these IRQs, and the mote will spend the remainder of its time in deep 

sleep.  

Table 3-1: Mote state machine, expressed as the sum of all possible state changes.  

ID Initial State Event New State (1) 

A Not Surcharged (0) Water is below surcharge threshold and 

reaches it 

Surcharged 

B Not surcharged (0) Water is below surcharge threshold and 

exceeds it 

Surcharged (1) 

C Surcharged (1) Water is above surcharge threshold and 

falls below it 

Not Surcharged (0) 

D Surcharged (1) Water is above surcharge threshold and 

falls below it 

Not Surcharged (0) 

E Surcharged (1) Water is at surcharge threshold and 

exceeds it 

Surcharged (1) 

F Surcharged (1) Water is above surcharge threshold and 

falls to it 

Surcharged (1) 
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Table 3-2: IRQs and vectors utilised by motes. 

Trigger/Interrupt Purpose Detailed in 

Float switch state changes Send new surcharge state to 

central system 

Pseudocode 3-1 

Internal clock countdown 

elapses 

Send heartbeat message to 

central system 

Pseudocode 3-2 

 

 

 

Figure 3-8: A graphical depiction of the mote’s state machine. Alongside the previously detailed transitions 

between surcharged and not surcharged, this also shows further operational states. When first purchased, a 

mote will be powered down. Powering it on by activating a switch or connecting a power supply will 

transition it to Start Up, where it performs all necessary start-up tasks such as binding IRQs to vectors. Once 

this has finished, it will transition to the running state where it will remain until powered down again. The 

running state can initially be in the Not Surcharged or Surcharged substate, depending on the deployed 

inspection shaft’s current state. Following this, the mote will transition between Surcharged and Not 

Surcharged as detailed in Table 3-1. 
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Pseudocode 3-1: Process undertaken by IRQ vector when surcharge state changes. 

//Debounce switch input. Period of time should be configurable. 

wait(debounce_time); 

var status = read_float_switch(); 

if (status == last_reading_sent) 

{ 

    go_to_sleep(); 

} 

else 

{ 

   var to_send = marshall_for_server(status, battery_level); 

   var to_send_encapsulated = packet_encapsulate(to_send); 

   //How many times to try sending data to central server. Example is 10. 

   var how_many_times = 10; 

   //How many attempts have been made to transmit data 

   var attempts = 0; 

   //Set to true when message is successfully acknowledged 

   var acked = false; 

   while(!acked || attempts < how_many_times) 

   { 

      /* Assume the attempt_to_send method returns true if successful 

         and false if unsuccessful or acknowledgement times out */ 

      acked = attempt_to_send(to_send_encapsulated); 

   } 

   /* Only update last value sent to server and restart heartbeat countdown 

      if message was successfully sent */ 

   if (acked) 

   { 

      //The values/results of these statements are kept while device is sleeping 

      last_message_sent_to_server = status; 

      restart_heartbeat_countdown(); 

   } 

   go_to_sleep(); 

} 
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Pseudocode 3-2: Process undertaken by IRQ vector when heartbeat countdown elapses. 

var to_send = marshall_for_server(battery_level); 

var to_send_encapsulated = packet_encapsulate(to_send); 

//How many times to try sending data to central server. Example is 10. 

var how_many_times = 10; 

//How many attempts have been made to transmit data 

var attempts = 0; 

//Set to true when message is successfully acknowledged 

var acked = false; 

while(!acked || attempts < how_many_times) 

{ 

   /* Assume the attempt_to_send method returns true if successful 

      and false if unsuccessful or acknowledgement times out */ 

   acked = attempt_to_send(to_send_encapsulated); 

} 

restart_heartbeat_countdown(); 

go_to_sleep(); 
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3.4 Network Design 

Before arriving at the central system, messages must be sent over the air to a base station. 

Base stations are collection devices consisting of either a Wi-Fi Access Point (AP) or LPWAN 

gateway, depending on the air interface chosen. Figure 3-9 further develops the architecture 

shown in Figure 3-2, showing the relationship between motes, base stations, and the central 

system. Base stations have no transformative effects on the information sent, simply 

encapsulating it into appropriate transport-layer PDUs and routing it to the central system 

over the public Internet backhaul. Conversely, data sent to the base station over the public 

Internet will have transport-layer data removed be forwarded to the correct device. 

 

Figure 3-9: A further elaboration of Figures 3-1 and 3-2, showing the relationship between motes, gateways, 

and the central system. Wi-Fi APs (1) and LPWAN Base Stations (2) connect to the central system (3) using a 

TCP or UDP/IP connection, however the more lightweight UDP is often recommended for IoT. Each mote 

will be connected to its own gateway using either Wi-Fi or LPWAN air interface, however each gateway’s 

connection to the central server will involve standard Internet protocols (if not the same). Therefore, the only 

technical distinction (from a networking perspective) is the air interfaces used by each mote to connect to their 

gateway.  
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We will not provide a detailed discussion on Wi-Fi in this paper, as its specifications and 

implementation methods have been discussed ad nauseum in previous research. Wi-Fi is 

prominent and ubiquitous in our modern world, with almost every home having at least one 

compatible device. Consequentially, a wealth of resources are available for establishing Wi-Fi 

networks, with many single-board computers or motes having antennas built in during 

manufacture.  

However, LPWANs are yet to reach this level of permeation, with commercial networks only 

now beginning to enter the market. There is much less knowledge about LPWANs widely 

available, and the term is hardly mainstream. We discussed the LoRa platform in Section 2.3, 

and for reasons discussed therein we have chosen this platform to implement in our design. 

Chapter 2 also discussed both MQTT and MQTT-SN publish-subscribe protocols and their 

suitability to IoT systems. MQTT has been described by several studies as well-suited to IoT, 

and MQTT-SN builds on this by decreasing bandwidth and processing requirements. For these 

reasons, we will implement the MQTT-SN and MQTT protocols for application layer 

communications.  

Sections 3.4.1 – 3.4.3 will discuss how these protocols are bought together across multiple 

layers.  

3.4.1 LoRa Configuration 

We discussed many of LoRa’s configuration parameters in Chapter 2, and how they can be 

adjusted by developers. In this section, we will briefly address the values we have selected for 

these parameters and how they are implemented for our system. Our selections have been 

based on our system’s unique requirements, and how we have tailored our system to best fulfil 

them.  

LoRa can theoretically utilise any bandwidth between 7.8 and 500 kHz, however Finnegan and 

Brown [67] note that only 125, 250 and 500 kHz are used in practise. Higher bandwidths result 

in a higher data rate and greater resistance to interference, but conversely lower 

communications range. Our system should select the lowest practical bandwidth to maximise 

communications range, while still maintaining an acceptable data rate. Weighing the high 

requirements of range and obstacle permeation with the low speed requirements, a 125 kHz 

bandwidth will be utilised. This also has the advantage of being the most commonly studied 

bandwidth in existing literature  
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Table 2-1 outlined the effects of adjusting spreading factor, with higher spreading factors 

lowering bit rate but increasing link budget. This is supplemented by Table 2-2, which 

presented that increasing spreading factor decreases the number of messages that can be sent 

per day. Considering the data provided, it would be sensible for spreading factors equal to or 

less than 10 be used, with 11 only being suitable if distance or urban obstruction made lower 

link budgets completely unacceptable. We therefore recommend a spreading factor of 10, with 

11 being a contingency option in remote or highly obstructed environments.  

If we use a 125kHz bandwidth and spreading factor of 10, our motes will be capable of sending 

122 symbols per second and 66 messages per day. Conversely, using the same bandwidth, a 

spreading factor of 11 will be capable of sending 61 symbols per second and 30 messages per 

day. This is quite a significant loss of performance and reinforces our statement that 11 is 

strictly a contingency option. 

Chapter 2 also discussed the taxonomy provided by LoRa for connected nodes depending on 

how often their receive windows are open. Despite Class A being the most power-efficient 

choice, we will configure motes to be Class B with a single RX window open each day. This 

allows for future versions or individual implementations of the system where remote 

configuration or over-the-air updates might be required. 

Table 3-3 reviews the configuration parameters we have selected thus far for our LoRa 

implementation.  

Table 3-3: Required configuration for system LoRa air interface. 

Carrier Frequency 2.1GHz, 5.0GHz or 443 MHz 

Bandwidth 125 kHz 

Spreading Factor 10 

Device Class Class B 
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3.4.2 MQTT and MQTT-SN Configuration 

Utilising the previous discussion of MQTT-SN and the system’s design goals, we can define the 

entire range of messages sent between mote and base station from an application level. All 

data will be sent through an MQTT-SN message, and this will be the same from both Wi-Fi and 

LPWAN notes. The reason for this is obvious – the only distinction between Wi-Fi and LPWAN 

motes is the modulation used to carry messages from mote to base station.  

A connection between mote and MQTT broker must be established each time a mote is 

powered on or ‘wakes’ from low-power mode. All messages sent using this connection must be 

translated from MQTT-SN to standard MQTT by the MQTT-SN GW, which will forward all 

received messages to the broker. Consequentially, all messages destined for the broker will be 

sent to the MQTT-SN GW, and their destination address must be that of the MQTT-SN GW. The 

MQTT-SN GW will be aware of the broker’s address, and simply forward translated messages. 

Establishing this connection is achieved through the message exchange detailed in Table 3-4.  

MQTT requires each client to be uniquely identified with a string between 1 and 23 characters, 

which is represented with between 8 and 184 bits. To ensure each mote has a unique identifier 

that will always fit within these limits, we will simply use the primary key of that mote’s 

database record. Primary keys often consist of a simple integer value and given the potentially 

massive number of motes this could eventually reach a very high number. We will plan for a 

maximum of seven characters identifying motes in each MQTT message, as this will allow 

9,999,999 unique motes. This consequentially results in a maximum ID length of 56 bits. 

To utilise the LWT functionality discussed in Section 2.4, a message under the topic ‘lost’ will 

be published with the abruptly disconnected mote’s unique ID. The application server will 

subscribe to the lost topic and process it accordingly by notifying system administrators. 

MQTT-SN packet headers can also vary in length, with the Length field being between 1 and 3 

bytes. As our solution is unlikely to exceed 256 bytes of packet data, we will use a single byte to 

store message length. 

When a surcharge occurs, a mote will publish both state and status information under the 

‘surcharge’ topic. The PUBLISH message sent by the mote to facilitate this will contain the 

following data: 

• Client ID (56-bit); 

• Timestamp; 
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• Battery level; 

• The current surcharge status; 

A 64-bit integer will be used for storing timestamp as seconds since the Unix epoch, with 64 

bits used to avoid overflow in the year 2038. While optimistic, it is prudent to ensure systems 

are viable for as long into the future as possible. Battery level will be stored as an 8-bit integer 

representing percentage, as an 8-bit value is the shortest capable of reaching 100.  Following 

this, a single bit will be required for storing the surcharge status – 1 indicates a surcharge is 

occurring, while 0 indicates no surcharge is occurring.  Each of these fields will be separated 

by a single 8-bit character representing a space, resulting in a 153-bit payload. To make the 

payload evenly divisible into bytes, seven trailing zeroes will be added to the end – bringing its 

length to 20 bytes.  

Heartbeat messages contain all fields found in surcharge messages, with the exception of 

surcharge status. As surcharge status is not included, the message does not require the 8-bit 

space character following battery level. This results in a smaller payload of 144 bits, which 

evenly divides into 18 bytes. Because of this even division, no trailing messages are required.  

Finally, when a mote re-enters low power ‘sleep’ mode after it has finished message 

transmission, it must gracefully disconnect from the Broker. An unexpected or ‘ungraceful’ 

connection will cause that mote’s LWT mechanism to activate, falsely notifying the application 

server of an error.  

Tables 3-5 – 3-7 outline message exchanges between motes and the MQTT broker facilitating 

each of the previously discussed communications. Each message’s length is determined by 

adding the previously discussed payload lengths to a 2-byte header and message variable part. 

The lengths of each message type’s variable part can be found in the MQTT-SN specification 

[83] As discussed in Section 2.4.2, messages shorter than 256 bytes only require a 2-byte 

header. The first of these bytes is the message’s length, and the second is the message type. 

Each message sent by our system is shorter than 256 bytes and will therefore have a 2-byte 

header.  

With the entire range of communications defined from an application and transport-layer level, 

we can now shift focus to the network layer of communications and below. This involves the 

routing, packetisation, and modulation of data. As backhauling over the public Internet will be 
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the same across data from any type of mote, we must specifically examine how both LPWAN 

and Wi-Fi air interfaces will work to deliver messages from mote to the base stations 

commencing this backhaul.  

3.4.4 Data Communications with LoRa 

With spreading factor selected, we can determine the number of symbols required for 

transmitting each MQTT command and its payload over the LoRa interface. This is determined 

using equation 2-1 as seen in Chapter 2, and we have put placed results in Table 3-8. Time on 

air is determined using the rate of 122 symbols per second, which results from our spreading 

factor of 10. The largest MQTT-format message sent is the CONNECT command at 64 bytes in 

length. This easily fits into a 256-byte payload, meaning that only a single LoRa frame will ever 

need to be sent between mote and gateway. These data rates are sufficient to meet 

requirements, and still falls under a single second for most commands while never exceeding 

1.2 seconds for others. Table 3-9 estimates performance seen for communications between 

motes and base stations using LoRa.
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Table 3-4: The exchange of MQTT-SN messages occurring when a mote establishes an MQTT-SN 

connection with the central system. Message length is derived from the MQTT-SN specification [83]. 

Direction Message Type Notes Length (Bytes) 

Mote – Broker CONNECT CleanSession is set to 1.  

Will is set to 1.  

KeepAlive is set to 120 seconds. 

64 

Broker – Mote CONNACK  3 

Broker-Mote WILLTOPICREQ  2 

Mote-Broker WILLTOPIC Retain is set to 0. Message retaining is not 

needed as the application server will be 

the sole subscriber.  

LWT topic is ‘lost’, which is represented by 

4 bytes.  

7 

Broker-Mote WILLMSGREQ  2 

Mote-Broker WILLMSG LWT message is 16-byte unique mote ID. 18 

Mote-Broker REGISTER Get unique ID for ‘surcharge’ topic. This 

topic name is represented by 8 bytes. 

14 

Broker-Mote REGACK  7 

Mote-Broker REGISTER Get unique ID for ‘heartbeat’ topic. This 

topic name is represented by 9 bytes. 

15 

Broker-Mote REGACK  7 

Total Bytes Transferred 139 
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 Table 3-5: The exchange of MQTT-SN messages when a mote publishes a message of the surcharge 

topic.  

Direction Message Type Notes Length (Bytes) 

Mote – Broker PUBLISH Retain is set to 0.  

TopicID is set to 0 to specify a standard 

topic ID.  

26 

Broker – Mote PUBACK  7 

Total Bytes Transferred 33 

 

Table 3-6: The exchange of MQTT-SN messages when a mote publishes a message of the heartbeat 

topic.  

Direction Message Type Notes Length (Bytes) 

Mote – Broker PUBLISH Retain is set to 0.  

TopicID is set to 0 

24 

Broker – Mote PUBACK  7 

Total Bytes Transferred 31 

 

Table 3-7: The exchange of messages when a mote gracefully disconnects from the central system by 

re-entering sleep mode.  

Direction Message Type Notes Length (Bytes) 

Mote – Broker DISCONNECT  The duration field is not used as motes will 

not receive any messages.  

2 
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Table 3-8: Symbols required and time on air for each MQTT-SN command using LoRa.  

MQTT Command Packet Size Symbols Required Time on Air (Seconds) 

CONNECT 64 137 1.123 

CONNACK 3 15 0.123 

WILLTOPICREQ 2 13 0.107 

WILLTOPIC 7 23 0.189 

WILLMSGREQ 2 13 0.107 

WILLMSG 18 45 0.369 

REGISTER (surcharge topic) 14 37 0.303 

REGISTER (heartbeat topic) 15 39 0.320 

REGACK 7 23 0.189 

PUBLISH (surcharge topic) 30 69 0.566 

PUBLISH (heartbeat topic) 26 61 0.500 

PUBACK 7 23 0.189 

DISCONNECT 2 13 0.107 
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Table 3-9: Estimated performance of system LoRa communications.  

Message Size (with MAC Overhead) 30 bytes 

Packets per Communication 1 

Symbols per Communication 69 

Symbol Rate 122 symbols/second 

Code Rate 4/8, or 0.5 (50%) 

Time on Air 0.566 seconds 

Data Rate 1.77 packets per second (53 bytes/sec) 

 

3.5 Central System Overview 

The central system encompasses a variety of linked servers and components separated from 

individual motes via the public Internet backhaul. This includes the Application Server (AS), 

LoRa Network Servers (NS) MQTT broker, and the MQTT-SN GW responsible for receiving 

messages from base stations and forwarding them as appropriate. Messages sent through both 

Wi-Fi and LoRa connections will initially enter the central system at the MQTT-SN GW, 

encapsulated in packets for the UDP/IP protocol stack. The MQTT-SN GW and broker must be 

fully compatible with the UDP/IP protocol stack, and consequentially able to extract MQTT 

PDUs from its payload.   

Using a wireless platform is advisable, and resultingly backhaul networks will be implemented 

using either GSM or LTE. Both GSM and LTE transceivers will be provided at base stations, and 

which is used will depend on availability at the deployment area. As both LTE and GSM 

communications are relatively expensive and have data quotas, transmission from base station 

to central server should be minimised. While the system aims to minimise cost, the much 

lower number of base stations compared to motes makes this increased cost acceptable. 



81 
 

3.6 Application Server 

If the MQTT broker acts as the system’s spinal cord carrying messages between nodes and 

components, the Application Server can be imagined as the brain carrying out more 

intelligent processing. Readings from sensors are simply data with no meaning, and the 

application server uses these readings to synthesise meaningful information that is passed to 

external parties as knowledge. 

Earlier we outlined the high-level basic requirements of the application server; 

1. Differentiating between an actual blockage and a ‘false alarm’. 

2. Classifying blockages as either full or partial.  

3. Determining whether blockages are located at the property connection or in the main 

itself. 

4. Locating the property connection, or length of main between two property 

connections, where the blockage is occurring.  

These requirements outline the information that needs to be produced from mote data. This 

information must be passed to the appropriate external systems to generate knowledge, 

alongside being stored in a non-volatile data source for future analysis and use by external 

systems.  

As our system’s data flow is developed around the MQTT protocol, the application server will 

receive all incoming data from motes using MQTT. MQTT makes this process relatively simple, 

as the application server simply needs to subscribe to the surcharge and heartbeat topics 

published by motes. In addition, future versions of the system can support remote 

configuration with the application server publishing topics that motes subscribe to. While 

mote messages will originally arrive in the MQTT-SN format, they will be translated to standard 

MQTT by the MQTT-SN GW before ever reaching the broker.  

Considering the above, we can develop a simple process flow for the application server to 

adhere to when receiving surcharge data. The process flow is shown in Figure 3-10 and each 

component described in the following section. As the visual representation in Figure 3-10 

makes clear, this follows a pipe-and-filter architecture.   
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3.6.2 Receive MQTT Messages 

The first component is responsible for receiving MQTT messages from the subscribed 

surcharge topic, which will be facilitated through an MQTT driver or library. As a result, the 

raw payload data wrapped in an MQTT packet at the mote will be extracted. Upon being 

received and extracted from the MQTT payload, this value will be perceived by the server as a 

single 232-bit raw binary value. While this is an accurate portrayal of the how the data was 

transported, it is useless for higher-level processing. This binary value will be passed to the 

next step, where the original and discrete variables can be extracted.  

3.6.3 Extract Application Data 

This component will begin processing immediately after receiving a binary value from the 

first. Earlier, we demonstrated how each discrete data value from a mote was encoded into a 

single binary value for transportation using MQTT-SN. Once the data has finished 

transportation, this process can be reversed to decode the string into its original variables. 

Table 3-10 shows how the variables are structured in the original binary string.  

Before beginning processing, basic integrity checks should be applied to the string. This will 

ensure that if a malformed or ‘bad’ value reaches the server, it will not waste valuable 

computation resources on wasted decoding attempts. 

Alongside saving time, integrity checks can potentially prevent critical errors encountered 

when attempting to decode erroneous data. By doing this, we can contribute further to meeting 

requirements for minimising resource consumption and maximising uptime.  

However, considering the requirement of minimising resource consumption, we must also 

ensure that performing these integrity checks does not consume more resources than 

attempting to decode malformed data. As a result, initial integrity checks will consist of; 

• Ensuring the value is 232 bits long. 

• Ensuring the trailing seven bits are equal to 10x0. 

• Ensuring the 17th, 26th, and 35th bytes are equal to an ASCII space (10x32, or 

2x0100000). 
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Figure 3-10: The pipeline for surcharge messages that arrive at the application server.
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These checks use very little computational resources and can be performed very quickly, while 

preventing the most serious data malformations and potential critical errors. They should also 

be performed in order, with failing one check preventing all others from executing. As the 

checks are arranged in ascending order of complexity, this introduces further potential for 

conservation of resources.  

If all checks are passed, each value can be extracted from the binary string and cast to the 

relevant data type. Client ID will be cast to a string, Timestamp to a Date/Time value, Battery 

Level to an integer, and Surcharge Status to a boolean.  

These values can then be used to create a temporary object of the SurchargeMessage class 

shown in Figure 3-11, which will be sent to the next component. SurchargeMessage is itself an 

extension of the more generic ClientMessage class – ClientMessage represents any message 

sent from a mote and contains the minimum fields every message must contain regardless of 

type. In contrast, SurchargeMessage contains fields needed only when the message indicates 

surcharge. The previously mentioned temporary object forms both the output of this 

component and the input of the next.  

 

Figure 3-11: The ClientMessage and SurchargeMessage classes. 
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Table 3-10: Bitwise composition of application data binary string 

Data Bit Length 

Client ID 128   

“ “ character 8 

Timestamp 64 

“ “ character 8 

Battery Level 8 

“ “ character 8 

Surcharge Status 1 

Trailing zeroes 7 

Total 232 

3.6.4 Ensure Inspection Shaft Data is Loaded 

With the temporary SurchargeMessage object loaded into this component, the server can now 

begin to convert that data into information – or, use those  data values to represent tangible 

attributes of a mote placed in an inspection shaft.  

Records for each mote and its surrounding inspection shaft will be stored in a permanent SQL 

database. Each surcharge message arriving from a given mote will include that mote’s latest 

surcharge status (surcharged or not surcharged), alongside that mote’s unique ID. This ID will 

also be stored in the mote’s database record, and as it is unique to each mote, can be used to 

retrieve it with a standard database query.  

Reading and potentially writing database records each time a surcharge message arrives could 

be highly inefficient, especially in partial blockages where surcharge status can fluctuate 

rapidly in a short amount of time. If a blockage occurs in the sewer main, it will also result in 

several motes communicating with the application server, which will all require records to be 



86 
 

retrieved. Combine this with multiple potential fluctuations, and the amount of database 

interactions quickly becomes impractical.  

After considering the application server and system requirements in combination with design 

principles, we have identified an intuitive solution that allows an accurate representation of 

surcharges and their involved sewer infrastructure while maintaining efficiency and 

conserving resources.  

Mote records will only be retrieved from the database and converted to objects on an as-needed 

basis. Objects representing all retrieved motes will be stored in a dictionary and indexed by 

their unique ID – using a dictionary allows the object to be accessed in constant O(1) time if 

the key is known. Each surcharge message’s client ID can be used to check if the mote has 

been retrieved by searching the dictionary and retrieve its object if so. Both of these operations 

can be completed in O(1) time.  

If a surcharge message arrives for a given mote, its representing object will be placed in the 

aforementioned dictionary which we will refer to as the active motes dictionary. Whether the 

message represents a true blockage or false alarm, the mote’s object will be stored in this 

dictionary until a pre-defined time passes with no activity. Once this time passes for any given 

mote, it will be removed from the dictionary to preserve volatile memory.  

Every mote’s object contains the unique ID of its downstream neighbour, alongside a field for 

storing a link to that neighbour’s object. When a surcharge message arrives for a mote not 

stored in the active motes dictionary, records will be retrieved for both the concerned mote and 

its downstream neighbour. These records will be used to create objects representing both 

motes, with the downstream neighbour ID populated for both. The actual surcharging mote 

will also have its link field populated, linking it to the downstream neighbour. The downstream 

neighbour’s link field cannot be populated, as its own neighbour has not been retrieved. This 

creates a linked-list data structure for neighbouring motes. Following this retrieval and 

linking, both mote objects will be placed in the active motes dictionary.  

By default, the link to neighbour object will be null, and is only populated if that mote receives 

a surcharge message. However, if a mote object’s downstream neighbour ID is also null, the 

database has no records of downstream neighbours for that mote. Our system will assume that 

mote is the last downstream on its sewer main. If a mote is the last downstream on its sewer 

main, having no downstream neighbour record is the correct way to represent it.  
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If a surcharge message arrives for a mote currently present in the active motes dictionary, the 

matching mote object will be retrieved and updated to match the surcharge message. If that 

mote object has a downstream neighbour (the downstream neighbour ID is not null) but the 

link is empty, its downstream neighbour will be retrieved from the database and linked. The 

retrieved downstream neighbour, as always, will store the ID of its own neighbour.  

This process is illustrated in Figures 3-12 and 3-13 and explained through the pseudocode in 

Pseudocode 3-3.  

One gap is still present in this model when considering the analyses to be performed – the time 

domain. Rapid fluctuations in surcharge status are used to differentiate partial blockages from 

full blockages, and the length of a single surcharge often distinguishes a genuine blockage 

from a false alarm. Considering the above, utilisation of the time domain is essential when 

developing our computational model.  

Each surcharge state change that occurs for a mote should be given its own object, storing 

both the current state and time of change. When a surcharge message arrives at the 

application server, the extracted surcharge status and timestamp will be used to create one of 

these objects. Once the relevant mote has been loaded into volatile memory and linked with its 

upstream and downstream neighbours, this will be added to that mote’s object.  

Each of these state change objects should be stored in a stack data structure for each mode, 

with the stack’s LIFO processing allowing processing of state changes from latest to earliest. 

Using a stack also ensures that the current value for that mote can be retrieved instantly.  

Following this section, we have a comprehensive and efficient model for representing a sewer 

network in the application server’s active memory. With this model established, we can now 

discuss how it is used to determine surcharge cause and differentiate types of blockages from 

false alarms.    
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Figure 3-12: A demonstration of how mote records are dynamically retrieved. All mote records are stored in a 

dictionary data structure object keyed by their unique ID. The rightmost figure lists these dictionary keys 

(which map to the relevant mote records) in their indexed order – also the order they were retrieved. 

In (1), a surcharge message arrives for Shaft E. Both Shaft E and Shaft D’s mote records are retrieved, and a 

field in shaft E is populated with a link to shaft D. Like all mote records, Shaft D contains the ID of its 

downstream neighbour, even if no reference exists. 

In (2), a surcharge message arrives for Shaft D. Shaft D’s record has already been retrieved, however its 

downstream neighbour has not. The ID of its downstream neighbour is used to query the database, and the 

matching mote record (Shaft C) is retrieved. Shaft D is then updated to include a link to Shaft C’s object. 

Finally, in (3), a surcharge message arrives for Shaft C. The above process repeats, downloading a record for 

Shaft B and linking it to Shaft C’s record. 
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Figure 3-13 : A continuation of Figure 3-12, showing further scenarios where surcharge messages arrive for 

different motes.  

In (4), a surcharge message arrives for Shaft Q. As this is not downstream to any previously surcharging 

motes, both it and its own downstream mote records will be downloaded. As always, Shaft Q will contain a 

link to Shaft P. These will be placed after the previously retrieved motes at the next two indices.  

In (5), a surcharge message arrives for Shaft B. Its upstream neighbour (Shaft C already surcharged in Figure 

3-16, so Shaft B’s record is also stored. Like always, its downstream neighbour (Shaft A) will be downloaded 

and linked to Shaft B. Both the downstream mote link and ID are null in Shaft A, meaning that it is the end of 

the main and has no downstream neighbours. Despite being linked to Shaft B, Shaft A’s record will be stored 

two places removed from it in the dictionary of all retrieved mote records. 

In (6), Shaft P surcharges and its downstream neighbour (Shaft O) is retrieved with a link added to Shaft P. 

This furthers the example shown in (5), being placed after Shaft A in the dictionary despite the direct link. 
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Pseudocode 3-3: Process used for loading inspection shaft data.  

/* param theSurcharge is SurchargeMessage object passed from ‘Extract  

   Application Data’ component */ 

function load_inspection_shaft_data(SurchargeMessage theSurcharge) 

{ 

   Mote surchargingMote; 

   if(!activeMotesDictionary.hasKey(theSurcharge.ID)) 

   { 

      surchargingMote = retrieve_from_database(theSurcharge.ID); 

      downstreamMote = retrieve_from_database(surchargingMote.downstreamID); 

      surchargingMote.downstream = downstreamMote; 

      //Assume this method takes a key and value to add to dictionary 

      activeMotesDictionary.add(surchargingMote.ID, surchargingMote); 

   } 

   else 

   { 

      surchargingMote = activeMotesDictionary[theSurcharge.ID]; 

      /* If the surcharging mote has a downstream neighbour that is not yet   

         loaded - mote’s upstream neighbour has surcharged in the past. If 

         downstream ID is null, the mote has no neighbour. */ 

      if(surchargingMote.downstreamID != null && surchargingMote.downstream ==  

         null) 

      { 

         neighbour = retrieve_from_database(surchargingMote.downstreamID); 

         surchargingMote.downstream = neighbour;  

         activeMotesDictionary.add(neighbour.ID, neighbour);    

      } 

   } 

   return surchargingMote;    

} 
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3.6.5 Analyse Current Surcharges 

With a model of all actively surcharging motes and their neighbours loaded into application 

memory, it is possible to utilise a single mote’s state change message to determine the exact 

cause of that state change. We aim to determine if the simple sensor reading of whether 

effluent is above a certain level indicates; 

• A partial blockage 

• A full blockage 

• A blockage located at the inspection shaft 

• A blockage located along the sewer main 

• A false alarm (e.g., daily mass ejection) 

Every surcharge message will be individually analysed in three steps; i – Alarm Veracity, ii – 

Spatial Analysis, and iii – Time Analysis. If conditions are met for each analysis, its results will 

be passed to the next stage – another example of pipe and filter architecture. Each of these 

stages are briefly discussed below, and graphically illustrated in Figures 3-14, 3-15 and 3-16. 

Following this Pseudocode 3-4, 3-5, and 3-6 implements each stage in pseudocode to provide a 

detailed description. 

When entering this process, every SurchargeMessage object is converted to or merged with an 

object of the Event class. Event class represents any occurrence in sewer infrastructure 

causing surcharges across one or more assets – this includes false alarms and all types of 

blockage. An event contains all surcharges resulting from the same root cause, and therefore 

motes can only belong to one currently occurring event at any given time. After some time 

without an involved mote experiencing surcharge, events will become inactive, meaning the 

root cause (blockage or false alarm) is no longer causing surcharges. This time is configurable 

by system administrators and is referred to as the inactive timer.  

All motes involved in an event object will be located downstream from one another – the only 

way for a blockage to span multiple motes is a sewer main blockage, and main blockages 

surcharge neighbouring inspection shafts. Each Event object contains a link to a single Mote 

object, and all other surcharging motes can be accessed from the linked mote’s own link to its 

downstream neighbours. This is effective as all surcharging motes on the same main form a 

linked list, as detailed in Section 3.6.4. Each Mote object has a Stack of objects belonging to a 

class named StateChange, that represent the surcharge state changes occurring for that mote 
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in the current event. StateChange objects contain both the current state (as of that change), and 

the time of state change. This can be seen in the application server’s class diagram at Figure 3-

17.  

3.6.5.1   Alarm Veracity  

Alarm Veracity accepts the raw sensor reading from the source mote as a SurchargeMessage 

object and determines whether it represents an actual blockage or is a false alarm. False 

alarms, like partial blockages, usually involve rapid fluctuations between surcharged and not 

surcharged. However, unlike partial blockages, false alarms will have much quicker 

fluctuations and ‘settle’ after a small number. This difference in fluctuation number and speed 

will be used to differentiate the two.  

Before any other step is taken, the active motes dictionary is checked to determine whether 

that mote or its downstream neighbour have had recent surcharge activity. If the mote and 

neighbour have had no recent activity, an Event object will be created for that mote and 

surcharge, and the false alarm timer will begin counting down. If this elapses and no other 

surcharges are received for that mote or its neighbour, the Event object is passed to Spatial 

Analysis. 

If an additional surcharge arrives while the false alarm timer is counting down, the Event 

object will be added to a list of current false alarms. If more than two surcharge messages 

arrive for that mote or downstream neighbour while the Event object is classified as a false 

alarm, it could in fact be an unusual partial blockage. To determine whether this is the case, it 

will be released from the false alarms list and passed to Spatial Analysis.  

If the mote or its downstream neighbour have had recent surcharge activity and there are 

either no false alarms or a greater number than 2 false alarms stored (as previously 

mentioned), that surcharge will be used to create a StateChange object and added to the correct 

Mote object as stored in the active motes dictionary. That mote will already be referenced in an 

Event object’s linked list of affected motes. As all objects in our application server’s code are 

treated as references, any update to the object will affect its presence everywhere.  

If the stack is not empty, the arriving state change is a continuation of the event which caused 

the previous ones. Differentiating these is important; a surcharge that occurs for a long period 

of time is very different to one which quickly disappears. Adding new state changes to an 
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existing event also assists with analysing that event and determining both its cause and 

fluctuation rate.  

3.6.5.2   Spatial Classification 

As previously discussed, spatial classification determines whether a blockage is occurring at a 

property connection or main and is conceptually rather simple. If the blockage’s Event mote 

contains more than one mote, it will be a main surcharge. All events will have a single Mote 

value, however if that Mote contains a reference to another Mote downstream, it will form a 

linked list. These motes will chain together through the downstream reference until the 

furthest downstream or end of the main is reached.  

Every surcharge message will be added to a retrieved mote’s stack of state changes by looking 

that mote up in the active motes dictionary. As both the dictionary and Event linked list contain 

references to the same object (and therefore memory location), updating one will update the 

other. Using the dictionary not only results in less complicated programming but allows 

updates to be performed in real time.  

As main surcharges progress, surcharges will arrive for motes that do not yet belong to an 

event – however, their downstream neighbour does. The surcharges in these motes will 

obviously belong to the same event as their downstream neighbours, as they will have the same 

root cause. The downstream neighbour will be assigned to the newly surcharging mote’s own 

downstream reference, placing it at the front of the linked list. Following this, the Event’s mote 

reference will be overwritten with the newly surcharging mote. This replaces the existing 

linked list ‘starting point’ with a new one that includes all surcharging motes.  

The Event class’ mote reference will be made private so any changes must be facilitated 

through a mutator method. Each time this mutator method is called to replace the linked-list, 

additional code in that mutator’s body will be executed. This code will measure the length of 

the linked-list and classify the event accordingly. If an event has a mote value with no 

downstream reference, it is classified as a ‘property connection or main’ blockage. Following 

this classification, a timer named the property_connection_timer will begin to count down. If 

this timer elapses and no further motes are added to the event, it will be fully classified as a 

property connection blockage.  

A Property Connection or Main blockage appears the same as a standard property connection 

blockage, however, is separately classified for the benefit of field staff. This ensures that if field 
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staff attend the site and do not find the blockage in the property connection, they can assume it 

is occurring in the main between that connection and its downstream neighbour. By 

implementing this distinction, we have accounted for the fact that all main blockages are 

initially indistinguishable from property connection blockages. This potentially also allows for 

main blockages to be resolved while still only affecting a single property.  

If the mote value for an event is overriden with a mote that has a downstream value pointing to 

another mote, the mutator will reclassify it as a main blockage if it has surcharged since the 

event’s commencement.   

Following this, the Event object can use its own mote value to provide an estimated location for 

the blockage. If the Event is a main blockage, it will assume the blockage is located between its 

furthest downstream surcharging mote and that mote’s own downstream neighbour. 

Conversely, if the Event is a property connection blockage, it will assume the blockage is 

occurring at that property connection. Early in the Event’s inception, it will be classified as a 

property connection or main blockage, allowing for both possibilities. In this situation both of 

the above potential locations will be raised, with the incorrect one being removed on further 

classification.   

With spatial classification complete and the blockage located, the Event object will be passed 

into the Time Classification component.  

3.6.5.3   Temporal Classification 

In contrast to spatial classification which was concerned with the number of motes linked to an 

Event object, temporal classification will examine each of these motes’ surcharge event 

histories. While it is easy to determine the ‘latest’ surcharge in a property connection blockage 

involving a single mote, it is more difficult in a main blockage that occurs across several 

motes. To keep things relatively simple, our system will compare the most recent surcharge for 

all involved motes by popping their individual stacks. Consequentially, the ‘latest’ surcharge 

for a main blockage will be the most recent from all involved motes.  

Every time a surcharge status of 0 arrives for a given event, our system will check whether all 

involved motes have statuses of 0. If this is the case, a timer named inactive_countdown will 

begin counting down. If this timer elapses with no further state changes arriving for the Event, 

it will be considered resolved and removed from the storage of active events. However, if a 
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further state change arrives, this indicates a new fluctuation in a partial blockage. The 

blockage has therefore been classified as partial.  

If a surcharge status of 1 arrives, the stacks of all involved Motes will be checked. If any Mote’s 

stack has previously cycled between both 1 and 0, the blockage is causing fluctuating effluent 

levels and therefore cycling between surcharged and not surcharged. Our system assumes this 

indicates a partial blockage. Conversely, if the Event’s latest surcharge status is 1 and no motes 

have previously cycled between 1 and 0, the application server will assume this is a full 

blockage as no fluctuations are occurring.  

Whenever a blockage is classified as partial and all involved motes have surcharge statuses of 

1, a timer named partial_to_full_countdown will begin counting down. If this time elapses with 

no further state changes for motes involved at the time the countdown begun, the blockage will 

be reclassified as full.  

This discussion shows the need for several background timers counting down for successful 

classification of surcharge events. As a consequence, the platform and language chosen for 

developing the application server must be highly suited to asynchronous and parallel 

programming. 

Each time a blockage is classified or reclassified, a clone of the relevant Event object will be 

passed into the main application server pipeline’s final component – Notify Relevant Parties.
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Figure 3-14: An illustrated diagram of the Alarm Veracity algorithm. The falseAlarmCount value of the Event 

object stores how many times an Event has been determined as a ‘false alarm’ by the system. 
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Figure 3-15: An illustrated diagram of the Spatial Classification algorithm. An Event with one mote 

surcharging will initially be classified as a Property Connection or Main blockage, and this will be passed into 

Time Classification. If the property_connection_timer elapses, it will be reclassified as a Property Connection 

blockage. The reclassified Event will be passed into the Time Analysis again to determine if things have 

changed since its last time analysis. 
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Figure 3-16: An illustrated diagram of the Temporal Classification algorithm. Note that it is assumed the 

partial_to_full_countdown and inactive_countdown timers will be cancelled whenever a new surcharge occurs 

for a mote in the same event. 
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Pseudocode 3-4: Alarm Veracity process for application server – See figure 3-14 

// surchargingMote is Mote object returned from function in Pseudocode 3-3 

// Check if surchargingMote belongs to existing event. 

Mote concernedEvent = null; 

foreach(Event next in currentEvents) 

{ 

   /* Assume search() recursively searches linked list of Motes for matching.  

      (Match = mote where ID field matches the search string). Will return 

       matching mote if found, and null if no match is found. 

      First search for mote itself, then for downstream neighbour. 

   */ 

   Mote directHit = next.involvedMotes.search(surchargingMote.ID); 

   if(directHit != null)   

   {      

      concernedEvent = next; 

      break;  

   } 

   else 

   { 

      Mote neighbourHit = 

next.involvedMotes.search(surchargingMote.downstreamID); 

      if(neighbourHit != null) 

     { 

        concernedEvent = next; 

        break; 

     } 

   } 

} 

//If concernedEvent has not been found, no current Event exists. Create one.  

if(concernedEvent == null) 

{ 

   Event theEvent = new Event(surchargingMote); 

   currentEvents.add(theEvent); 

   theEvent.begin_false_alarm_countdown(); 
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}   

   if(concernedEvent.false_alarm_countdown_running) 

   { 

      concernedEvent.falseAlarmFlags += 1; 

   } 

   //concernedEvent false alarm countdown is not running 

   else 

   { 

      if(concernedEvent.falseAlarmFlags.length == 1 ||   

         concernedEvent.falseAlarmFlags.length == 2) 

      { 

         concernedEvent.falseAlarmFlags +=1; 

      } 

      else 

      { 

         concernedEvent.falseAlarmFlags = 0; 

         //Assume this begins spatial analysis with event. 

         begin_spatial_analysis(concernedEvent); 

      } 

   } 
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Pseudocode 3-5: Spatial Analysis algorithm utilised by application server – See figure 3-15 

// concernedEvent is Event object passed to this stage in Pseudocode 3-4 

// Assume getLength() recursively gets the length of a linked list. 

if (concernedEvent.involvedMotes.getLength() > 1) 

{ 

   concernedEvent.spatialClassification = “MAIN”; 

   //Assume this begins time analysis for event 

   begin_time_analysis(concernedEvent); 

} 

else 

{ 

   concernedEvent.spatialClassification = “MAIN OR PROPERTY CONNECTION”; 

   begin_time_analysis(concernedEvent);  

} 

/* Assume code in then() executes when asynchronous wait is over. This is based 

   on ‘Promsies’ in asynchronous programming. */  

asynchronous_wait(property_connection_timer).then 

( 

   if(concernedEvent.involvedMotes.getLength() > 1) 

   { 

      concernedEvent.spatialClassification = “MAIN”; 

      begin_time_analysis(concernedEvent); 

   } 

); 
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Pseudocode 3-6: Time Analysis algorithm utilised by application server – See figure 3-16 

// concernedEvent is Event object passed to this stage in Pseudocode 3-5 

//Get latest state change for Event 

StateChange latest = null; 

// Assume toArray() recursively converts linked list to array 

foreach(Mote next in involvedList.involvedMotes.toArray()) 

{ 

   StateChange nextChange = next.stateChanges.pop(); 

   if(latest == null || (nextChange.time > latest.time)) 

   { 

      latest = nextChange; 

   } 

} 

if(latest.status == 0) 

{    

    /* Use check_all_inactive (Detailed below) to check if all Motes involved in  

       this Event are currently not experiencing surcharge. This will return  

       true if all Motes are inactive, and false if vice versa. */ 

    if(check_all_inactive(concernedEvent)) 

    { 

       asynchronous_wait(inactive_timer).then 

       ( 

         if (check_all_inactive(concernedEvent)) 

            concernedEvent.resolved = true; 

       ); 

    } 

} 
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// Latest surcharge status is 1 

else 

{ 

   /* Use check_previous_fluctuations to determine if any Motes in this Event  

      have previously cycled between 0 and 1. This is done by the  

      check_previous_fluctuations method detailed below.       

   */    

   if(check_previous_fluctuations(concernedEvent)) 

   { 

      changesBeforeWait = get_state_change_count(concernedEvent); 

      event.timeClassification = “PARTIAL”; 

      asynchronous_wait(partial_to_full_timer).then 

       ( 

         /* See if event has had any new state changes arrive. If so, the 

            count performed now will be different to the one performed  

            earlier. */  

         changesAfterWait = get_state_change_count(concernedEvent); 

         if (changesBeforeWait == changesAfterWait) 

            event.timeClassification = “FULL”; 

       ); 

   } 

   else 

   { 

      event.timeClassification = “FULL”; 

   } 

} 
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/* Determine if any Motes in this Event (toCheck) have previously cycled between  

   0 and 1. If a Mote’s stateChanges stack has a length > 2, this will be the  

   case. */ 

function check_previous_fluctuations(Event toCheck) 

{ 

   foreach(Mote next in toCheck.involvedMotes.toArray())  

   {  

      if(next.stateChanges.length > 2)       

      return true; 

   } 

   return false; 

} 

// Determine if all Motes in this event (toCheck) are currently not surcharged. 

function check_all_inactive(Event toCheck) 

{ 

   foreach(Mote next in toCheck.involvedMotes.toArray())  

   { 

      if(next.stateChanges.pop().status == 1) 

         return false; 

   } 

   return true; 

} 

// Gets the total number of state changes for all Motes in an Event 

function get_state_change_count(Event toCount) 

{ 

   var toReturn = 0; 

   foreach(Mote next in toCheck.involvedMotes.toArray())  

   { 

      toReturn += next.stateChanges.length; 

   } 

   return toReturn; 

} 



105 
 

 

Figure 3-17: A class diagram for the central system’s application server. The Application class is used to store data structures accessible to all areas of the application, 

alongside configuration values set by user such as timer length. Considering this, it can be thought of as storage for global variables. 

Note that this is unlikely to completely match the final set of classes, namespaces etc included in our solution – this is simply a theoretical design. Our implementation 

presented in the next chapter is based on this design. 
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3.6.6 Notify Relevant Parties 

Whenever an Event is classified or reclassified as a blockage, it will be passed into this 

component which is responsible for ensuring required external parties can be made aware of 

the Event. Our system will automatically perform the minimum required functionality by 

sending an email message to a list of addresses stored in an external configuration file. 

However, solely sending emails is not sufficient for organisations (such as the majority of 

utility providers) that do not have staff constantly monitoring emails. In response, we have 

developed a mechanism for ‘connecting’ the application server to other systems that provide 

more sophisticated communications such as SMS and telephony. 

The application server will expose a RESTful API that allows all current alarms to be retrieved 

by external systems as a list of JSON objects. Organisations can easily write small scripts or use 

specialised software to extract this list, convert it to the relevant format, and pass it to an API 

allowing more sophisticated communications. Many APIs exist for SMS, telephony, VoIP, and 

other messaging platforms. As most modern APIs utilise JSON, conversion should be relatively 

simple and resource efficient. The model discussed is illustrated below. 

3.6.6 Analysing Heartbeats 

Compared to state change messages, heartbeat messages are simple to process and react to. 

Heartbeats arrive at the application server through an MQTT message, and battery level is 

compared with a pre-set threshold. If battery level is below this threshold, an email will be sent 

to relevant staff members. Regardless of whether this threshold is met, a record of that 

heartbeat will be written to the database. If this database write occurs, it will be performed in 

parallel with the email notification.  

A small program will execute outside the main application server software on an hourly basis, 

scanning each mote’s database records for when the last heartbeat was received. If this 

exceeds a certain threshold and heartbeats have not been received for an unacceptable time, 

an email will be sent to relevant parties. An additional record will be updated with the time this 

email was sent, and future scans will re-send the email if another day has passed.  

3.6.7 Database Integration 

While we have touted the benefits of our data structure solution located in application memory, 

it is important that permanent database storage is not neglected. Databases allow information 

to be retained, retrieved for future analysis, and harvested by stakeholders for a wide variety of 
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business cases. Most importantly, building a valid model of inspection shafts and motes 

requires a permanent storage of information to be based on. Creating a valid database 

mechanism requires defining - 

• The schema (logical structure) of how data is stored. 

• When information will be written to the database. 

Information must be periodically written to the database for obvious reasons, however as 

always, a balance must be struck. Excessive database writes will impact system performance 

and consume excessive resources, while too few database writes could result in data loss and 

untimely data. If the system experiences interruption while processing surcharges, it should 

be possible to reload the     retrieve information from the database which is as recent and 

relevant as possible. Ideally, data retrieved from the database will detail currently occurring 

events and differentiate them from historic events.  

Considering the above, records should be updated whenever the object representing them is 

significantly changed. Database writes passing updated object states should occur when;  

• An event starts, is classified or reclassified, or ends. 

• A new surcharge is detected. 

• A mote’s details are significantly updated.  

Figure 3-18 shows a SQL relational schema for a database theoretically capable of meeting all 

requirements.  

The second point may raise some contention, as every message from a mote will contain 

updated information such as battery life. In events that involve frequent messages (such as 

partial blockages), mote information is unlikely to significantly change and writing it to the 

database will prove a waste of resources. To combat this, mote information will only be updated 

by heartbeat messages, or surcharge messages which deliver changed values. 

From a programming perspective, it would be inefficient to have a monitor routine constantly 

running in the background and checking for object changes. Instead, code for updating the 

database and evaluating necessity should be implemented into mutator methods for object 

values. Alarms and notifications should be prioritised and written to the database in parallel to 

being ‘sent’ out via email.  
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Finally, database operations should all be executed as transactions and continually re-attempt 

if an error is encountered. If the number of unsuccessful encounters exceeds a given value, an 

alarm should be sent to relevant parties.  

The previously mentioned RESTful API should operate almost exclusively by read/write 

operations to this database, further increasing the need for regular updates and database 

writes. This is especially true when considering that external alarm systems will use this API 

(and therefore the database) for sending critical alarms to required parties.  

 

Figure 3-18: A relational database schema for the central system’s SQL database. The falseAlarmFlags field in 

event stores how many times that event was classified as a false alarm – whether correctly or not. Any 

notification sent to relevant users through any communications system should also be stored here as a row of 

the notification table. The type field of this table provides a numeric code that can be mapped to the type of 

communication used. Individual system administrators can specify different numbers for different 

communication platforms; however, we recommend that 1 is always used for email.  
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Finally, the overall architecture for the entire system can be succinctly described in Figure 3-

19.  

 

Figure 3-19: The overall architecture of our system.  
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3.7 Conclusion 

As discussed at the beginning of this chapter, we intend to deliver a system capable of 

monitoring sewer blockages across a wide area while remaining practical and cost-effective. 

Successfully implementing this system requires a robust design to follow during development, 

providing us with answers for how to meet our research requirements. This chapter presented 

detailed designs for a sensor mote, central system, and network architecture.  

Our mote design outlined how constrained hardware and software capable of detecting 

wastewater surcharges. We chose to utilise a float switch for physically sensing whether a 

surcharge is occurring and produced a theoretical model and set of requirements for a 

microcontroller capable of interfacing with it. This model was then accompanied with 

algorithms and designs for software that can process float switch data and send appropriate 

messages to the central system. 

Following this, we designed a network facilitating communication between motes following the 

aforementioned design and a central system. The design allows both LPWAN and Wi-Fi 

connections to co-exist, implementing MQTT and MQTT-SN protocol communications. We also 

ensured that surcharge and heartbeat data can be sent through these protocols while still being 

sufficiently lightweight for LPWAN networks. 

Finally, our central system design specifies how to receive incoming messages from motes, 

process these messages, differentiate actual blockages or false alarms, and classify blockages.  

This design was presented through a combination of traditional software engineering tools 

such as UML diagrams and database schemas, alongside visual and pseudocode 

representation of complex algorithms. 

Collectively, these produced an overall design for a system capable of meeting our research 

requirements. However, successfully developing a design only proved our system is 

theoretically possible. In the following chapter we will develop a prototype derived from this 

design to verify it is capable of delivering a real, working system. 
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Chapter 4 Building and Evaluating Prototype 

In the first two chapters we demonstrated the need for a system capable of detecting sewer 

blockages on a city-wide scale and found that no practical solution currently exists. To fulfil the 

goal of building an IoT-based blockage detection system, we presented a detailed design based 

on that goal in Chapter 3. Our design is capable of carrying out the much-needed sewer 

blockage system, and most importantly is practical for large-scale deployment in a variety of 

environmental and socioeconomic conditions.   

However, even the most robust and detailed design requires a form of prototyping and 

practical evaluation. Things that appear effective or fulfil all requirements in a theoretical 

environment are often thwarted by real-world variables. Testing also reveals previously 

undetected issues that are not obvious during purely theoretical design and allows those 

issues to be resolved in future iterations or versions of design.  

We have developed a prototype implementation of Chapter 3’s design capable of 

demonstrating its practicality and showing that it can produce a working system. First, this 

delivers a mote device adhering to the design specified in Chapter 3. Follow this, we deliver an 

implementation of that chapter’s design for a central system. While some functionality such as 

email alerts and a user interface have not been delivered, these are secondary to the main 

innovation and purpose of our system. With a mote and central system prototype developed, a 

practical demonstration of the design at all layers of architecture is possible.  

In this chapter, we detail the prototype mote and central system produced, and provide 

instructions for their practical implementation. This allows future endeavours to adopt our 

work and implement their own version of the system on a commercial scale. To verify the 

prototype system, and therefore design, are operating as intended we have also performed 

some testing. The testing process shows the prototype system successfully reading surcharge 

events and classifying blockages, and both the process and results are outlined in this chapter.  
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4.1 Prototype Mote Development 
To build the mote, we decided to use commercially available and easily configurable hardware 

components as many of these are designed for electronic prototyping. This assembly of pre-

existing components will prove our design can be implemented effectively, allowing future 

implementations to apply our design to dedicated, manufactured components. This section 

will first discuss the selection and configuration of these components, before detailing the 

software developed to carry out the required functionality.  

Only one mote was produced, as this will be sufficient to prove that motes can effectively send 

surcharge messages to the central system. Our intention when developing the prototypes is to 

prove that the design can be implemented, and one mote will be enough to do so. This also 

allowed us to work within the time and financial constraints of development, and within the 

scope of the degree.  

4.1.1 Prototype Mote Hardware 

After considering several single-board computers, microcontrollers, and electronic devices, we 

selected the Raspberry Pi Zero (RPZ) single board computer. RPZs are physically compact at 

only 65x30x5mm in size [110], extremely cost-effective with a price per unit averaging only 

$21 at the time of writing and include an integrated Wi-Fi transceiver. Unlike many other 

single-board computers, RPZs utilise a fully featured Linux operating system developers can 

interact with using a GUI or terminal. Most user-facing features will be disabled during testing 

to conserve power; however, these will prove invaluable during the development and testing 

process. To utilise the GUI, the RPZ provides a mini-HDMI port for more conventional displays 

and a proprietary PiTFT video connection for Raspberry Pi-specific touch screens [111]. A 

photograph of an RPZ without any connected wires or cables is shown in Figure 4-1.  

In addition to the connections mentioned above, the RPZ also contains two micro USB ports. 

The port closest to the HDMI connection is used for connecting peripheral devices, while the 

other is reserved for use as a power supply. Providing power through the micro USB port is 

very easy, as USB to Micro USB cables are widely available alongside USB wall adapters. 

Making this even easier, many modern buildings now include USB ports in electrical outlets. 

Power can also be provided through the RPZ’s GPIO pins, with the 3.3V and 5V power pins 

accepting electrical input – however, using the micro USB cable is much more likely to work 
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correctly. Despite this, using GPIO pins is a good option when power supplies not compatible 

with USB are required.  

 

Figure 4-1: A photograph of a Raspberry Pi Zero (RPZ). This is the same RPZ used to build the mote for our 

prototype system.  

Sensors and other devices connect to the RPZ using its GPIO interface. The RPZ exposes 40 

pins, laid out in a grid 2 pins wide and 20 high. Not all of these pins are able to be used as 

GPIO interfaces, with some being reserved for power, grounding, and system functionality. Of 

the pins with GPIO capabilities, some of these will be unreachable by default as they are 

reserved for other protocols or applications. These pins can be utilised if absolutely necessary, 

however it is not recommended they be used. This is particularly relevant with the UART RX 

and TX pins, which are required by an enormous number of other devices.  

Pins are accessed by the operating system and its applications using identifying numbers 

mapped to a physical pin. There are four numbering schemes available to the RPZ [90] – 

Broadcom Pin Number (BCM), WiringPi, Physical and Rev 1 Pi.  Notably, the Physical scheme 

uses numbers identical to those printed on the board next to each GPIO pin, providing an 

exact replica of the physical pin number. WiringPi could be recommended for more 

performance-critical or advanced systems, as it provides a library using the C programming 

language [92].  

We will utilise the BCM scheme for several reasons – perhaps most importantly, it is specified 

by Broadcom, who also developed the RPZ’s internal CPU. Under most circumstances, it is 

advisable to utilise any specifications developed by the original hardware manufacturer. Table 
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4-1 lists each pin available on the RPZ in order of its physical number and provides some more 

information [91] [92]. Following this, Figure 4-2 provides an illustration of all GPIO pins, 

components, and other ports on the RPZ.  

Serendipitously, the RPZ has built-in pull-up and pull-down resistors for every I/O pin, which 

can be activated or deactivated from the operating system and many software libraries [92].  

As the RPZ integrates most of the components required by our system’s motes into a single 

board, very few electrical connections are needed. The float switch used to detect surcharges 

will be connected to both a 3.3V output and GPIO pin, with one providing power to the switch 

while the other provides a digital signal to the mote’s microcontroller. Power will constantly 

flow from the 3.3V pin, however if the float switch is open it will not reach the GPIO pin – 

resulting in a value of 0. Once the float switch closes, however, the 3.3V power will flow 

through to the GPIO pin and cause a value of 1. A pull-down resistor must be enabled on the 

GPIO pin chosen to prevent short circuiting, as a closed float switch results in a direct 

connection between power and ground.  

Ideally, the float power and GPIO pins will be placed as close together as possible, to maximise 

the amount of float switch cable utilised. If the pins used are placed far apart, a significant 

amount of float switch cabling will be wasted stretching between the pins. After considering 

the pin layout as shown in both Table 4-1 and Figure 4-2, we have decided to use pin 1 as the 

float switch’s power source and pin 7 as the input. This results in a very simple schematic as 

shown in Figure 4-3, that is used to produce the device shown in Figures 4-4 and 4-5. 

We utilised the micro USB port to power our mote, connecting it to a 2200mAh portable 

power-pack manufactured by Gecko Gear [131]. This power pack was chosen as a result of its 

high capacity, availability, low price, and water resistance. While this power pack was large and 

unable to fit into a standard pipe cap, this was seen as irrelevant for the current prototype. 

Future deployments of our design will use different power supplies depending on local 

requirements and availability and will likely use different devices. Consequentially, there is no 

need to specifically test the power supply being used, with testing focused on the system’s 

functionality when implementing our design. Searching the Internet has also shown that many 

smaller batteries compatible with our mote design and RPZ are available. 
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Altogether, the prototype mote cost $85.35 AUD to develop. The RPZ was $21.41, the 16GB 

MicroSD card for storing its operating system was $23.59, the power supply was $24.95, and 

the float switch was $9.54. Bringing the total to its final value of $85.35, a transparent case was 

also purchased for $5.50. This inexpensive addition proves extremely valuable, as physical 

ruggedization and protection is an essential yet often overlooked part of mote development. 

Mass-manufacturing can be expected to significantly decrease this price, especially if less 

expensive power sources or purpose-built microcontrollers are utilised.  

Table 4-1: A list of Raspberry Pi Zero (RPZ) pins, in order of their physical arrangement 

Physical Number Purpose BCM Number Comments 

1 3.3V I/O   

2 5V I/O   

3 I/O GPIO2 Reserved for I2C protocol 

4 5V I/O   

5 I/O GPIO3 Reserved for I2C protocol 

6 Ground pin   

7 I/O GPIO4  

8 I/O GPIO14 Reserved for UART serial protocol 

9 Ground Pin   

10 I/O GPIO15 Reserved for UART serial protocol 

11 I/O GPIO17  

12 I/O GPIO18  

13 I/O GPIO27  

14 Ground Pin   

15 I/O GPIO22  

16 I/O GPIO23  

17 3.3V I/O   

18 I/O GPIO24  
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19 I/O GPIO10 Reserved for SPI protocol 

20 Ground Pin   

21 I/O GPIO9 Reserved for SPI protocol 

22 I/O GPIO25  

23 I/O GPIO11 Reserved for SPI protocol 

24 I/O GPIO8 Reserved for SPI protocol 

25 Ground Pin   

26 I/O GPIO7 Reserved for SPI protocol 

27 Do not connect 

28 Do not connect 

29 I/O GPIO5  

30 Ground Pin   

31 I/O GPIO6  

32 I/O GPIO12  

33 I/O GPIO13  

34 Ground Pin   

35 I/O GPIO19  

36 I/O GPIO16  

37 I/O GPIO26  

38 I/O GPIO20  

39 Ground Pin   

40 I/O GPIO21  
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Figure 4-2: All ports (including GPIO pins) on the Raspberry Pi Zero. Each GPIO pin illustrated has the same 

numbering as shown in Table 4-1, with added colour coding for clarity. Green pins are power outputs, while 

blue pins are grounds. Red pins are unable to be used under any circumstances, while orange pins are able to 

be used but it is not recommended. No wired communication port is provided, and the Wi-Fi antenna is 

embedded in the board so cannot be seen. 

 

Figure 4-3: The schematic of our prototype mote. Our mote is relatively simple but highly workable, as the 

RPZ integrates most necessary features including a pull-down resistor. Here a float switch is shown connected 

to GPIO pin 1 for 3.3V power and providing input to GPIO pin 7.
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Figure 4-4: Our prototype mote. The Raspberry Pi Zero (RPZ) can be seen in the centre of the image, 

protected by a clear case. The float switch is connected to the device through the GPIO pins and can be seen at 

the bottom left-hand side of the image. Finally, the battery we utilised can be seen to the right of the RPZ, 

where it connects to the Micro USB power port.  
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Figure 4-5: Another view of our prototype mote, clearly showing the GPIO pins. Conforming to our design 

and produced schematic, the float switch is connected to both a 3.3V power pin and GPIO pin 17. The power 

pin provides power to the circuit, and pin 17 will therefore report on the circuit’s status. If the circuit is broken 

by the float switch being open, GPIO Pin 17 will be low current (0). Conversely, if the float switch is closed 

and the circuit is complete, GPIO 17 will be equal to the current flowing from the power pin (1). 
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Geerling [109] provides commands that conserve power by disabling the HDMI port, along 

with disabling a built-in LED. While the RPZ does not have a dedicated deep-sleep mode, 

disabling these components can partially replicate its functionality. Our testing will also utilise 

a mains power connection or portable battery unit, as we are not concerned with testing power 

consumption. Future, non-prototype implementations of our design will implement custom-

built hardware or microcontrollers with their own power-saving functionality or increasingly 

efficient hardware. Table 4-2 lists the commands provided by Geerling to conserve power.  

In addition to these commands, Geerling states that further power can be consumed by 

unplugging all peripherals and terminating background daemons. Our mote will have no 

keyboard, mouse, or other peripherals attached, which will save at least 50mA. We will also 

install the Raspbian Lite Linux distribution on our motes, which has a lower number of 

background daemons than standard Raspbian.  

Table 4-2: Geerling’s power-saving techniques for Raspberry Pi Zero [109].  

Command Purpose 
Power Saved 

(mA) 

/usr/bin/tvservice -o Disable HDMI Output 25 

echo none | sudo tee 
/sys/class/leds/led0/trigger 

echo 1 | sudo tee 
/sys/class/leds/led0/brightness 

Disable LED 5 

 

4.1.2 Prototype Mote Software 

Python is the most common language used for prototyping and development on the Raspberry 

Pi and has grown into a somewhat unofficial standard for the platform. We originally intended 

to follow this standard and utilise the Python language, however during development of the 

central system we discovered a GPIO package for Node.js named onoff [113]. Further research 

into onoff revealed that not only was it developed considering the Raspberry Pi platform, but it 

would allow us to meet all design requirements.  
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Utilising Node.js instead of Python has many advantages, most notably allowing a shared 

language and platform between mote and application server. In addition, Node.js has more 

familiar syntax, is fully capable of asynchronous and parallel programming, and has a large 

online following. Our Mote software utilises both the aforementioned onoff package, and the 

same mqtt package used in application server development.  

4.1.2.1   The onoff Package (GPIO) 

Using the onoff package, developers create an object of the Gpio class for each GPIO pin on the 

board they wish to read from or write to. When creating a new Gpio object, developers are 

required to pass both the pin’s identifying number and whether it is acting as an input (“in”) or 

output (“out”) to the constructor. For example, if the developer wants to configure the GPIO pin 

located at 17 as an input;  

let thePin = new Gpio(17, “in”); 

Gpio objects have a function named watch that accepts an anonymous function as a parameter, 

with that anonymous function having two of its own parameters - err and value. When current 

at the physical pin represented by a Gpio object changes, the anonymous function passed into 

watch will execute. The value parameter will be equal to the pin’s current value, while err will 

store information on any errors that occur.  

Gpio’s constructor also has two optional parameters – edge and options. If the microcontroller 

being utilised supports interrupts, edge specifies which state changes in current will trigger an 

interrupt. Acceptable values for the edge parameter are shown in Table 4-3.  

Conversely, the options parameter accepts a JSON-style anonymous object with one or more of 

the attributes shown in Table 4-4. Developers can use as many or as few of these attributes as 

the situation requires, and we will definitely utilise the debounceTimeout option to prevent 

false alarms. This also complies with our mote design’s emphasis on preventing false alarms 

through switch debouncing.
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Table 4-3: Acceptable values for the Gpio object’s edge parameter  

Value Outcome 

“none” The pin will never fire an interrupt 

“rising” 
The pin will fire an interrupt when the value 

changes from low current (0) to high current (1) 

“falling” 
The pin will fire an interrupt when the value 

changes from high current (1) to low current (0) 

“both” 
Any current changes between high (1) and low 

(0) or vice versa will fire an interrupt 

 

Table 4-4: Acceptable fields for an anonymous object passed as the options parameter  

Value Outcome 

debounceTimeout 

Performs software debouncing on a pin by waiting a given 

period of time after each state change. This specifies how 

long to wait in milliseconds.  

activeLow 

Whether to invert values read from or written to the pin – 

low current will register 1, and high current will register 0. 

This also applies to any interrupts. 

reconfigureDirection 

If the involved pin has already had its direction 

(input/output) configured by another application or 

instance of this application, these states whether to ‘clear’ it 

for this object. 

This is expressed as a boolean value and is true by default.  
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4.1.2.2   Mote Software 

Utilising the onoff and mqtt packages alongside custom Node.js code, we have developed a 

single script for carrying out all mote functionality named Mote.js. Like all Node.js applications 

the mote software is built from modules, however in this case only consists of a single module 

containing all needed code. With the onoff and mqtt packages already discussed, we will now 

examine the remaining tasks carried out with custom code and the language’s own features.  

Scheduled heartbeats will be handled using Node.js’ built-in setInterval() function.– if a 

surcharge message is sent, the heartbeat interval will be cancelled and recreated to ‘reset’ it. 

An anonymous function will be passed to the interval, along with the length between 

heartbeats in milliseconds. As 24 hours is the generally agreed-on time for heartbeats, this will 

be an integer value of 86483647. Thankfully, the maximum value for setInterval is 2147483647 

milliseconds (596.5 hours), so this is an acceptable value. In addition, the anonymous function 

will carry out the correct MQTT publish operation needed to send the heartbeat message to the 

central system.  

Mote.js executes automatically when the mote is powered on, and its function can be 

summarised as the following algorithm; 

• Check configuration parameters.  

• Check whether the MQTT broker is reachable. 

• Create Gpio object for Pin 7. Pass the correct parameters to debounce by waiting for the 

time specified in config.json and throw interrupts on all state changes.  

• Bind watch event listener to Pin 7’s Gpio object. This will be a function that executes 

every time Pin 7’s state changes. More details are provided for this function below.  

• If Pin 7 is at its default 0 value, execute the power-saving commands in Table 4-2. 

• Create the interval object for sending heartbeat messages every 24 hours.  

Following this, the script will wait until the watch event for Pin 7 is ‘caught’ or the heartbeat 

interval elapses. While actual implementations of our design should enter a deep-sleep mode 

and only wake on interrupts at the float switch input, we have replicated as much of this 

functionality as possible on the RPZ. All non-essential system functions such as Wi-Fi will be 

disabled by default, and only re-activate when reacting to a heartbeat or surcharge state 
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change. Once the MQTT message has been sent in response to these events, these non-

essential components will be de-activated again.   

Any functions executed when Pin 7 fires a watch event or the heartbeat timer elapses can be 

classified as event listeners. Event listeners in our mote’s software largely perform the same 

task, which we will briefly outline before stating the small differences.  

The event listeners will both begin by re-activating the Wi-Fi adapter, before using the mqtt 

package’s connect method to establish a connection with the broker. If the connection can be 

established, the same package’s publish method will then transmit the correct MQTT message 

to the broker. If the connection cannot be established or the message cannot be sent, the failed 

task will be re-attempted the number of times specified in config parameters. Following this, 

the Wi-Fi adapter will be deactivated.  

Between the two event listeners, the only significant difference is the actual message being 

published. These will both publish a space-separated string containing the Mote’s address, a 

timestamp and battery level. However, the watch function will have an additional space-

separated value at the end of the string containing the current surcharge status. In addition, 

the watch function will publish its message under the “surcharge” topic, while the interval will 

publish it under the “heartbeat’ topic.  

In addition, when a message is sent using the watch event listener, there is no need to execute 

the regular heartbeat for another 24 hours. Consequentially, the watch function will clear and 

recreate the interval function. 

4.1.2.3   Mote Configuration Parameters 

Like the application server, mote configuration parameters are contained in a JSON file named 

config.json. Table 4-5 shows the parameters we have implemented in this configuration file, 

and their effect on the system. 
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Table 4-5: Configuration parameters used by mote.js script. 

Variable Name Purpose 

moteID The unique ID of this mote in the application server database. 

debounceTime 
How long to wait when a surcharge state change is detected to 

filter switch bounce. 

gatewayAddress The IP address of the MQTT Broker. 

gatewayPort The port used to communicate with the MQTT Broker. 

surchargeAttempts How many times to attempt sending a surcharge message. 

heartbeatAttempts How many times to attempt sending a heartbeat message. 

 

4.2 Prototype Network 
Recent years have seen organisations shift from individual servers hosted on a single physical 

machine to many servers running on fewer, more powerful hosts. These powerful hosts can be 

located in an on-site server room, however, are even more frequently located at powerful 

offsite data centres – a paradigm often referred to as ‘the cloud’. Therefore, it is reasonable to 

assume that many organisations deploying our solution will host the central system on one or 

more virtual machines.  

Our central system design actually consists of three servers; an MQTT-SN gateway, an MQTT 

broker, and an Application Server. We have developed a virtual machine for each of these 

servers, hosted on a single physical host machine. All virtual servers utilise the Ubuntu Server 

operating system, however assigned resources differ between servers depending on their 

predicted processing requirements. The specifications for each virtual server are shown in 

Table 4-6.  The host machine we utilised is a Windows 10 desktop computer with an Intel Core 

i7-4770k CPU, running 8 cores at 3.50 GHz. This host machine also has 32GB of RAM and a 

Nvidia GTX 980 TI graphics card – considering these points, there is a significantly large 

resource pool for virtual machines to draw from.  
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4.2.1 Virtual Network 

Each virtual server was also given a virtual network adapter, and the host machine’s own 

adapter was bridged to these adapters to share connectivity. Virtual network adapters are 

assigned their own IP address using the LAN’s DHCP service, and all packets passing through 

the host machine’s physical adapter are intercepted by the bridging service. Packets with a 

virtual network adapter’s IP address are relayed to the appropriate adapter, while packets with 

the host machine’s network address are processed as normal by the host. From an 

administrator’s perspective, this gives the appearance of all virtual servers being individual 

entities on the same LAN as the physical host. This is illustrated in Figure 4-6. 

Table 4-6: Specifications for each virtual machine in our virtual network. 

 Processor Memory Storage Video Memory Operating 

System 

Test MQTT 

Client 

1 CPU 4096 MB 30.44 GB 16 MB Ubuntu Server 

x64 

MQTT-SN 

Gateway 

1 CPU 2048 MB 30.44 GB 16 MB Ubuntu Server 

x64 

MQTT 

Broker 

1 CPU 4096 MB 30.44 GB 16 MB Ubuntu Server 

x64 

Application 

Server 

1 CPU 8192 MB 41.08 GB 16 MB Ubuntu Server 

x64 

MQTT servers were implemented using pre-existing software provided by the Eclipse 

Foundation. Eclipse provide a range of client and server solutions for both MQTT and MQTT-

SN, including the Mosquitto [95] MQTT broker and MQTT-SN gateway [97] developed by 

Eclipse’s Paho project. The Paho project is especially relevant to this research, as it involves 

Eclipse’s attempt to develop MQTT and MQTT-SN solutions for IoT networks [98]. In addition, 

current literature shows that many systems developed for research using MQTT have  

successfully utilised the Mosquitto broker [99-103]. This gives Mosquitto an unofficial 

‘recommendation’ among academia.  
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4.2.2  MQTT-SN Gateway 

While developing mote software, we quickly realised that no reputable MQTT-SN library was 

available for the Node.js language. Upon further investigation, it appeared this issue was 

endemic across many languages and frameworks; MQTT-SN libraries are relatively 

uncommon. Developing our own MQTT-SN library would prove both difficult and time-

consuming, and consequentially utilisation of MQTT-SN has been postponed. We will develop 

and test a robust MQTT-SN library in a future research project, and potentially even create the 

currently missing industry standard. However, for this project, we will use standard MQTT to 

prove the design’s concept. 

While we will not implement the MQTT-SN protocol in this prototype, we have ensured the 

system is fully compatible with it for future research. Previous literature provided very little 

information on practical implementation of MQTT-SN, so we instead turned to developer sites, 

specifications, and Internet blogs for previous experience. Notably, a blog by J.P. Talusan [115] 

provided extremely useful information. Talusan proposed that not all MQTT brokers will work 

well with MQTT-SN and recommended using the RSMB (Really Small Message Broker) [117] 

developed by the Eclipse Foundation’s Paho project.  RSMB is a close relative of the ubiquitous 

Mosquitto broker, however unlike its more common counterpart has full support for MQTT-SN. 

4.2.3  MQTT Broker 

To ensure compatibility with future research of MQTT-SN and resulting implementations, we 

utilised RSMB for our central system’s broker. RSMB was installed under the /usr/sbin 

directory on its virtual server, placed in a dedicated sub-directory named rsmb. Following 

installation, the bash script for starting the broker using a given configuration file were located 

in the following directory;  

/usr/sbin/rsmb/rsmb/src 

The bash script for running the broker is named broker_mqtts, and the configuration file 

broker.cfg. Before it could be used, the broker was configured to listen for the correct 

addresses on the correct port. We determined that the broker should communicate with clients 

or gateways on any IP address, and it should use the MQTT standard port of 1883. To achieve 

this, the following line was added to the configuration file; 

listener 1883 INADDR_ANY 
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A listener is any combination of ports and IP addresses that the broker can communicate with 

and is defined by affixing the string listener with a port and address range. INADDR_ANY 

simply means that all IP addresses are acceptable for the given port.  

To start the broker, the script must be executed with the configuration file to use as a 

parameter. To ensure the broker held root permissions, we used the following command;  

sudo ./broker_mqtts broker.cfg 

4.2.4  Application Server 

Application server software and the MySQL database it utilised are both hosted on the same 

virtual server. MySQL installation followed the standard process for Ubuntu server, installed 

using apt-get with no changes to configuration. Editing a file named mysqld.cnf changes the 

configuration parameters and environment variables for the MySQL server, and we used this to 

allow communications with the application server software. This file was located at 

/etc/mysql/mysql.conf.d/ on the virtual server. 

Configuring the MySQL server was a simple process, as only one parameter needed to be 

changed. The bind-address parameter was changed to ‘0.0.0.0’, allowing any host at any IP to 

access the database. While this would raise security concerns for a practical deployment, it was 

sufficient for our isolated prototype. While localhost would have given exclusive access to the 

application server, we required the ability to administer and configure the database from the 

physical host using MySQL Workbench.  

In addition, the application server’s actual software is stored at a directory named 

/srv/node/app_server, where node is a custom directory for storing Node.js applications and 

app_server is a custom directory to store application server files. Section 2.6 describes the 

Node.js framework and provides more information on why it was selected.   

This sub-section has only provided details on the virtual server used to host the application 

server’s software, and how it was configured. The actual application server software is detailed 

in Section 4.3, as it is sufficiently complex to warrant its own section.  

4.3 Prototype Application Server 
While motes produce surcharge data and MQTT components facilitate its delivery, the 

application server is responsible for converting the simple binary data to robust information. 
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There is currently no solution capable of detecting and classifying sewer blockages, especially 

given the inexpensive and simple nature of our motes. Consequentially, development of the 

server was highly complicated and had potential to be very time-consuming. Thankfully, by 

utilising the Node.js framework, we were able to develop the server in a practical timeframe.  

4.3.1 Application Server Architecture and Modules 

The application server is started by executing a script named run_appserver.js, located in a 

custom directory named /srv/node/app_server. This script contains the main flow of execution 

for the server, executing all tasks required on start-up before beginning the run loop. These 

tasks include importing all required packages, loading configuration parameters, and creating 

data structures that will be shared throughout all asynchronous executions. Following these, 

the server will attempt to establish a connection with the MQTT broker. If the connection is 

successful, the server will execute its infinite run loop while waiting for events – this includes 

MQTT messages being received. 

Many of the modules utilised by the application server were developed by us to carry out the 

server’s unique functionality. We will now detail each of these custom-built modules in the 

following sub-sections, as they collectively carry out Chapter 3’s design. Each module and its 

purpose are listed in Table 4-7. These modules, along with those retrieved from a repository 

and developed by third parties, are located in a sub-directory named node_modules. As this 

subdirectory is searched by the required method, there is no need to use a fully qualified file 

path for importing each package. The node_modules directory also contains a JSON file named 

config.json that stores all configuration parameters used by the server. While future versions 

of the system could potentially allow these parameters to be changed while the server is 

running, currently these are only set once when the server is initially started. Consequentially, 

each change to these parameters requires the server be restarted.  

Table 4-8 shows the parameters outlined in the config.json file, along with the values we have 

selected for our prototype. We have set the timer values to short times to carry out testing more 

efficiently, however real deployments should meet with field staff to determine the best values. 
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Figure 4-6: The virtualised network architecture. LAN Gateway and Host Machine are both physical devices, while the others are virtual servers. This is a standard LAN, 

with the Host Machine and LAN Gateway connected using a physical Cat6 medium. 
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Table 4-7: Application server modules.   

Module File Name Purpose 

classes.js All classes and global or environment variables used by the 

application server. 

surcharge_pipeline.js Programmatic implementation of the surcharge pipeline 

discussed in Section 3.6.5 

heartbeat_pipeline.js Programmatic implementation of the heartbeat pipeline 

discussed in Section 3.6.6. 

 

Table 4-8: Configuration parameters stored in the config.json file.    

Field Purpose 

brokerAddress IP Address of MQTT broker. 

falseAlarm  Length of False Alarm Timer (ms) 

propertyConnectionOrMain Length of Property Connection or Main  timer (ms) 

partialOrFull Length of Partial or Full Blockage timer (ms) 

inactive Length of Inactive Countdown timer (ms) 

batteryThreshold If a Mote’s battery is below this amount, notify relevant users. 

Set to 999 so all notifications on prototype will print. 

dbAddress Address of MySQL database. Set to localhost, as database server 

is located on same host. 

dbPort Port used to connect to MySQL database server. 

dbUser Account used to access MySQL database.  

dbPassword Password for above mentioned account. 

dbInitial Name of database on server to connect with. 
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4.3.1.1   The classes Module 

In object-oriented programming, entity classes represent a tangible ‘thing’ - for our project, 

this includes motes, events, and surcharges. As the name suggests, the classes module 

contains all entity classes utilised throughout the server. Most entity classes are relatively 

simple collections of fields; however, the Mote class is significantly more complex. Each mote 

is represented by a linked list containing itself and all downstream neighbours on the same 

main and may itself be a ‘link’ in an upstream neighbour’s list. Consequentially, the Mote class 

has a myriad of recursive methods used for linked-list navigation and processing.  

Two additional classes are also specified by this module that do not represent ‘real’ entities but 

are instead used by the server for sharing data between parallel executions. The first, 

AppServerSession, stores data structures that must remain consistent across parallel 

executions of the same method. When simultaneous processes attempt to access the 

AppServerSession, they will be accessing the same memory location without creating clones. 

The second, ApplicationParams, is used to store configuration parameters and environment 

variables loaded from config.json.  

Mote, Event, SurchargeMessage and ClientMessage classes have a function named print() that 

prints a detailed description of the object invoked on to standard output. As our prototype does 

not include the alarm and notification sub-system, this method has been invaluable for 

evaluating the server’s performance and fulfilment of requirements. This also utilises Node’s 

Chalk package [118] to create more visually output. Tables 4-9 to 4-12 show the values printed 

for each class and their arrangement. These provide examples of what will be printed when the 

method is called.  

It should also be noted that the classes we developed ended up diverging from the diagram 

shown in Figure 3-17; this is common during software development, and often occurs when 

further requirements emerge. 
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Table 4-9: Template for ClientMessage print() function.   

*********ClientMessage********* 

Mote: [ClientMessage.clientID] 

Timestamp: [ClientMessage.timestamp] 

Battery Level: [ClientMessage.batteryLevel] 

 

Table 4-10: Template for SurchargeMessage print() function.   

*******SurchargeMessage******* 

Mote: [SurchargeMessage.clientID] 

Timestamp: [SurchargeMessage.timestamp] 

Battery Level: [SurchargeMessage.batteryLevel] 

Surcharge Value: [SurchargeMessage.surchargeStatus] 

In both of the above outputs, the battery level value will be given a different coloured 

background depending on its value. If the battery level is above 70% it will be green, if it is 

below 30% it will be red, and any other value will be amber. For SurchargeMessage, the 

surcharge value will also have a red background if it is 1. 
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Table 4-11: Template for Mote print() function.   

*********** Mote *********** 

Database ID: [Mote.id] 

MAC Address: [Mote.physicalAddress] 

Location: [Mote.streetAddress] 

 

Battery Level: [Mote.batteryLevel] 

Last Communication: [Mote.lastCommunication] 

Surcharge Status: [Mote.surchargeStatus] 

 

Downstream Mote:  

  ID: [Mote.downstreamID]; 

  Physical Address: [Mote.downstream.physicalAddress]; 

  Location: [Mote.downstream.streetAddress]; 

  Surcharge Status: [Mote.downstream.surchargeStatus]; 

The Mote’s battery level value will follow the same ‘traffic light’ colouration as ClientMessage 

and SurchargeMessage. Like SurchargeMessage, the Surcharge Status value will have a red 

background if it is 1.  
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Table 4-12: Template for Event print() method.   

*********** Event *********** 

Database ID: [Event.id] 

Started: [Event.occurred] 

Status: See below 

 

False Alarm? See below 

Spatial Classification: [Event.spatialClassification] 

Time Classification: [Event.timeClassification] 

Predicted Location: [Event.location] 

 

Involved Motes: 

**************************** 

See Below 

***************** *********** 

 

4.3.1.3   The surcharge_pipeline Module 

As the name suggests, the surcharge_pipeline module implements the surcharge pipeline 

design we presented in Section 3.6.5. Consistent with our design, this exports a single function 

named surchargePipeline() as an ‘entry point’ to the pipeline. No other functions are exposed, 

keeping the pipeline’s actual processing opaque to other modules. surchargePipeline accepts 

an AppServerSession and ApplicationParams object as parameters, meaning these are passed 

from the calling function into the pipeline. 
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surchargePipeline returns a Promise object when executed that is immediately returned to the 

main script (run_appserver.js). As typical, this will remain as a virtually empty unresolved 

promise object until all functions of the pipeline are complete or processing could not occur. 

Following this, the main script will notify observers through standard output that the Promise 

is resolved or rejected, inferring that the pipeline has either completed classification or 

encountered an error. If an error is encountered, it will be rejected, and details printed to 

standard output.  

The Promise concept is utilised further throughout the surcharge pipeline’s implementation, 

becoming a key component of the pipeline’s architecture. Each stage of the pipeline as defined 

in Section 3.6.5 is given its own function that returns a Promise object. surchargePipeline itself 

returns a Promise, and each call to these functions returning their own Promise is called from 

that promise. This means that not only is surchargePipeline returning a Promise, but the 

Promise it returns is itself waiting on a sequence of Promsies. This can be conceptualised as 

the asynchronous equivalent of invoking a function that subsequently invokes several other 

functions, before returning a single value determined by the results of those invocations.  

If a stage function’s returned Promise object resolves, the next stage will be executed to return 

its own Promise, and this process will repeat until the pipeline has been completed. This is a 

commonly utilised architecture in Node.js programming named promise chaining, allowing 

asynchronous tasks to be completed in a defined order. Once all stages of the pipeline are 

complete, the final Event object will be resolved to run_appserver. Conversely, if a stage 

function’s promise object rejects, the entire pipeline will reject and pass the error to 

run_appserver.  

4.3.1.3-i   Memory Management and Data Coordination 

Co-ordinating the surcharge pipeline’s code to handle simultaneous messages from motes was 

the greatest challenge encountered during our research. When multiple motes belong to the 

same event, these can transmit messages to the application server with little-to-no time 

between transmission. This not only requires the server to support multiple parallel executions 

of the same pipeline, but for data to remain consistent across these parallel executions. If a 

data structure is changed in one pipeline execution, this change must affect all others 

currently occurring. 
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Sharing data structures between parallel processes also introduces the challenges of race 

conditions, conflicts, and duplication of work. For example, if two messages arrive for the same 

event and do not change its classification, only the first should produce a notification.  

Section 3.6.5’s design for the surcharge pipeline utilised dictionary data structures for storing 

currently occurring Events, inactive Events, and active Mote objects. These dictionaries are 

stored as fields of the AppServerSession class, and a reference to an object of this class is 

passed into each invocation of surchargePipeline(). As the object is declared in the parent 

function of surchargePipeline, it will be passed by reference (memory location) and remain 

consistent across each invocation.  Consequentially, all pipeline executions will interact with 

the exact same Motes and Events at consistent memory addresses. 

4.3.1.3-ii   Timers and Sequencing 

As discussed in Section 4.2.3, all blockage and false alarm classifications require a timer. 

Node’s setTimeout() method is used to create the required timer, however some additional 

effort has gone into co-ordinating them across parallel processes. Each timer was given a 

dedicated field in the Event class, allowing each Event to have its own instance of that timer. 

For each timer field added to the Event class, a corresponding boolean field was also added to 

state whether the timer is currently active. The surcharge pipeline populates both timer and 

boolean fields as appropriate.   

Timers are often utilised by the surcharge pipeline for comparing the state of an Event object 

and its Motes before and after the time has elapsed. If a message arrives and initiates a timer, 

other messages for the same Event will continue to make changes while the timer is running. 

However, in some cases, an arriving message can make the timer irrelevant – to prevent 

wasting time, under these circumstances the timer will be cancelled with clearTimeout().  

Functions utilising timers have been designed to return Promise objects. Once the timer has 

completed its countdown, or if the countdown is interrupted by an expected event, the 

function will resolve with the involved object’s new state. However, if the function is invoked 

while the countdown is running and there is no need to stop it, the Promise will instead reject. 

Rejected Promises will not progress to the next stage of the pipeline. This ensures that only a 

single instance of each Event will pass to each stage of the pipeline, and any potential 

duplicates produced by parallel processing are discarded.  
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4.3.1.3-iii   Observing Results 

While the surcharge pipeline design concludes with notifying relevant parties, we have not 

included this feature in our prototype server. There has already been sufficient research on 

integrating email and communication systems with Node.js, and therefore this part is 

straightforward. Instead, we will utilise the print() method of each relevant class to observe 

pipeline results. This can be seen in Section 4.4, where results of testing are shown as 

screenshots of produced standard output.   

A function named __prototypePrintResults() has been added to the surcharge pipeline for 

invoking  print() on relevant objects.  

4.3.1.3-iv   Database Interaction 

Our original intention was to implement a separate module for database interaction, 

containing several data access classes with functions that read and/or wrote database records 

for a single entity class. This is a staple of traditional object-oriented programming, where 

every entity class with a database presence is given a data access class. However, we quickly 

discovered this was not viable in Node.js – as always, the asynchronous nature of the language 

challenged traditional programming conventions. 

We used Node.js’ mysql.js package for communicating with the application server’s MySQL 

database. This package provides several functions for reading and writing database records, 

however unlike conventional languages, each of these functions was asynchronous. Invoking 

one of these to perform a database operation would fail if called from a conventional function, 

as it would instantly return an empty object (or unresolved Promise) before completing the task 

in the background. When the task was complete, any results would be unassigned and 

disposed of by the garbage collector. 

Instead, any invocations of mysql.js functions required placement in a Promise object. This 

would wait for the asynchronous database operations to be carried out, before resolving or 

rejecting the results. Considering the surcharge pipeline already contains a complex chain of 

Promises, we determined creating a separate module with its own Promises would be 

unwieldly. Instead, we performed the required database operations directly within the relevant 

pipeline functions.  

Database operations were also limited to those absolutely necessary, with no database writes 

(SQL INSERT, UPDATE or DELETE methods) performed. Plenty of examples already exist 
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proving that mysql.js database writes are possible and given our limited timeframe we only 

included functionality relevant for testing. As our testing focuses on surcharge detection and 

immediate classification, there is no benefit to be gained from writing database records. 

Additionally, of data created during prototyping is spurious and would require deletion before 

practical deployment.  

4.3.1.4   The heartbeat_pipeline Module 

Another module whose function is made obvious by name, heartbeat_pipeline implements the 

design presented in Section 3.6.6 for the system’s heartbeat processing pipeline. As a 

pipeline, this is similar in structure and concept to surcharge_pipeline – however, this is far 

less complex and does not require coordination of parallel processes. Only one heartbeat can 

occur at any time for a given mote, and heartbeats for the same mote are separated by long 

periods of time. Consequentially, we have significantly decreased complexity by making this 

pipeline’s code mostly synchronous. Asynchronous functionality is restricted to implementing 

Promises for database operations, where required by the asynchronous mysql.js library.  

Like surcharge_pipeline, a single method named heartbeatPipeline() is exposed by this 

module as an entry point to the pipeline itself. This does not require an AppServerSession 

object as a parameter as no data structures are shared among parallel executions, however it 

does require the ApplicationParams object for accessing configuration parameters.  

As we have not implemented email or other communications platforms in the prototype, this 

pipeline’s final stage of notifying relevant parties has also been removed. Like in 

surcharge_pipeline, this has been replaced with a temporary method that invokes the relevant 

print() methods to produce standard output.  

4.4 Evaluation 
While our design is the primary deliverable, it must be demonstrated that the design can be 

practically implemented. Even the most robust design is relatively useless if it cannot be 

proven in reality. The prototype detailed throughout the first part of chapter has implemented 

our design, and in this section, we will test that implementation. Testing not only reveals flaws 

in the implementation, but also errors made during the actual design process. Following 

testing, we are able to make valid and informed suggestions for future designs or 

implementations.  
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Ideally, we would perform the full scope of our testing in a real-world environment by 

deploying a series of motes across a wastewater infrastructure’s inspection shafts. However, 

this was impractical for several reasons. Deployment across wastewater infrastructure requires 

gaining permission from a managing utilities provider, and unfortunately, we were unable to 

obtain this within the timeframe of this Masters project. Our research was also conducted 

under significant time constraints, and this would have likely made real-world deployment 

impractical. In response, we have performed a single test to evaluate the system’s entire 

process in a laboratory environment simulating wastewater infrastructure and surcharge 

events. Additional tests are concerned with classification algorithms present at the application 

server, and therefore do not require field testing as such. Consequentially, these will be carried 

out with a simulated virtual model.  

4.4.1 Testing MQTT Communications 

Before testing the mote or central system, it was essential to verify that MQTT communications 

are operating as expected. Doing so guaranteed that any future communications problems are 

caused by faults in hardware or software implementations, and unrelated to the actual network. 

This created something similar to a control variable and helped us narrow the scope of future 

repairs through process elimination.   

To perform this testing, we developed a virtual machine named Test MQTT Client. This virtual 

machine was implemented like the others in our prototype, using a virtual network adapter 

bridged with the host machine’s physical adapter. Table 4-6 shows the specifications for this 

virtual machine, and Figure 4-6 shows its place in the virtual network alongside all other 

prototype machines. This virtual machine was also used in many other tests we performed, as 

detailed in Sections 4.4.4 - 4.4.5.  

All MQTT testing for MQTT communications was performed using Node.js’ mqtt package to 

accurately determine if this package could carry out its intended function in the remainder of 

prototype software. A simple script named mqtt-test as shown in Code 4-1 was written, 

publishing MQTT messages with the subject test.  Following this, additional code was added to 

run_appserver.js for processing messages with the topic test. 

Before running this script, the MQTT broker had produced the output shown in Figure 4-7 and 

the application server had produced the output shown in Figure 4-8. These figures 
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demonstrate the default values of these systems, allowing a comparison to be made with their 

output following the script’s execution. 

When executed, the mqtt-test produced the output shown in Figure 4.9. This showed the 

message had successfully been sent to the broker, displaying the contents of the message sent. 

The MQTT broker output displayed the messages shown in Figure 4-10, confirming that a 

message had been received. Finally, the application server produced the output shown in 

Figure 4-11, proving MQTT communications were functioning as intended. This also 

confirmed that Node.js’ mqtt library is capable of establishing a connection and correctly 

facilitating publish and subscribe operations. Additionally, we could be confident that the 

RSMB broker is able to establish a connection with a single host and manage all subscriptions.  

 

 

Figure 4-7: The output produced by the RSMB MQTT Broker when it is first started.  

This provides some information on the broker itself and its developers, alongside stating the configuration file 

used. When the MQTT Protocol Starting, listening on port message is displayed, the broker is fully 

operational and is now waiting for any incoming messages on that port. It is now possible to test the broker, 

and consequentially the greater MQTT system. 
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Figure 4-8: The output produced by the application server when first started.  

This states that the server has successfully created its required data structures (ApplicationParams and 

AppServerSession), which additionally implies required modules have been loaded. Following this, the output 

demonstrates that the server was able to successfully connect to the MQTT broker and subscribe to the 

surcharge, heartb eat, and test topics – the last of which is used for this test. 

 

 

Figure 4-9: Output produced by the test script mqtt-test.  

his shows that the message has been successfully sent to the broker and displays the message topic and 

contents.  
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Figure 4-10: Broker output after the application server is started.  

This confirms what is shown in Figure 4-9, that the server is able to successfully connect to the broker.  

 

 

Figure 4-11: Application server after mqtt-test sends the test message.  

The response is stating that a message with the topic test has been received and displays the message’s 

contents. It can be observed that the received message’s contents are the exact same as the contents sent in 

Figure 4-9. Consequentially, it is proven that the broker is fully capable of processing MQTT messages, and 

the application server is capable of subscribing to topics and receiving messages of those topics.  
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Code 4-1: mqtt_test.js  

const MQTT = require("mqtt"); 

const chalk = require("chalk"); 

const BROKER_ADDRESS = "mqtt://192.168.20.17"; 

//Get date and time in string format readable by application server 

function currentDate() 

{ 

    let raw = new Date(); 

    let utcString = raw.toUTCString(); 

 

    //Replace spaces with hyphens for processing at server. These will be 
replaced with spaces again once this processing is complete. 

    return utcString.replace(/ /g, "-"); 

} 

//Publishes an MQTT message of a given topic, using the mqtt library. 

function mqttPublish(topic, message) 

{ 

    let conn = MQTT.connect(BROKER_ADDRESS); 

 

    conn.on("connect", () => 

    { 

        console.log(chalk.green("Successfully connected to broker at " + 
BROKER_ADDRESS)); 

 

        conn.publish(topic, message, (err)=> 

        { 

            if(err) 

                console.error(err); 

            else 

                console.log(chalk.green("Message '" + message + "' of topic '" + 
topic + "' published successfully"));             

            console.log(""); 

        });  

    });     

} 
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// 'main' and entry function for firmware. 

function main() 

{     

    console.log(chalk.bgMagenta("------------- Wastewater Blockage Detection 
System ---------------")); 

    console.log(""); 

    console.log(chalk.bgMagenta("----------- Test MQTT Publish-Subscribe 
Communication ------------")); 

    console.log(chalk.bgMagenta("-- Developed by Ben Buurman for Federation 
University Australia --")); 

    console.log(chalk.bgMagenta("-- As deliverable for Master of Computing 
degree (By Research) ---")); 

    console.log(""); 

    //Send first message 

    mqttPublish("test", "Message successfully sent at " + currentDate()); 

} 

 

//Begin processing - execute main method 

main();  
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4.3.2 Testing Mote Connectivity  

With confirmation our MQTT infrastructure was operating as intended, we next tested whether 

motes were capable of connecting to and utilising this infrastructure. As our design places 

responsibility for initiating MQTT communications entirely on motes, their ability to access 

and utilise the infrastructure is critical. 

We loaded the script named mote_test shown in Code 4-3 on to our prototype mote and 

executed it. By doing this, we not only established the mote could access the MQTT 

infrastructure, but also that it is capable of communicating with the application server.  

Figure 4-12 shows the mote’s output when executing Code 4-3, while Figure 4-13 shows the 

output produced by the application server.  This confirmed that not only could motes connect 

to the MQTT infrastructure, but they could also successfully publish messages to the 

application server – therefore, implementing our design’s scope of data communications.  

 

Figure 4-12: A screenshot of the output produced by the mote when running Code 4-3.  

This shows that the mote is successfully able to establish a connection with the MQTT broker and can 

subsequently publish a message to the broker. This utilises the same standard PUBLISH message seen in the 

previous test, however, is from a physical device as opposed to a virtual machine.
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Figure 4-13: The application server’s output after Code 4-3 is executed and the mote produces the output seen 

in Figure 4-12.  

This shows the message is successfully received and its contents are not corrupted or altered during 

transmission. Note the fact that these results are identical to those seen in Figure 4-11despite the mote being a 

completely different device, CPU architecture, and operating system. This shows that; 

i - our code is capable of running on many platforms but still producing the same results. 

ii – the application server will consistently process code from different platforms.
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Code 4-2: mote_test.js  

//mote_test.js - Tests that mote can connect to central system with MQTT  

//Import required modules. 'fs' and 'chalk' are in lower-case as these are de-
facto standards/expected 

const GPIO = require("onoff"); 

const SHELL = require("child_process"); 

const RASPBERRY_PI = require("systeminformation"); 

const MQTT = require("mqtt"); 

const fs = require("fs"); 

 

//Import configuration parameters from config.json 

let BROKER_ADDRESS = "mqtt://192.168.20.17"; 

let BROKER_PORT = 1883; 

let MOTE_ID = "1"; 

 

//Get date and time in string format readable by application server 

function currentDate() 

{ 

    let raw = new Date(); 

    let utcString = raw.toUTCString(); 

    //Replace spaces with hyphens for processing at server. These will be 
replaced with spaces again once this processing is complete. 

    return utcString.replace(/ /g, "-"); 

} 

 

//Publishes an MQTT message of a given topic, using the mqtt library. 

function mqttPublish(topic, message) 

{ 

    let conn = MQTT.connect(BROKER_ADDRESS); 

    conn.on("connect", () => 

    { 

        console.log("Successfully connected to broker at " + BROKER_ADDRESS); 

 

        conn.publish(topic, message, (err)=> 

        { 
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            if(err) 

                console.log(err); 

            else 

                console.log("Message '" + message + "' of topic '" + topic + "' 
published successfully"); 

             

            console.log(""); 

        });  

    });     

} 

// 'main' and entry function for firmware. 

function main() 

{     

    console.log("***** Wastewater Blockage Detection System - MQTT Test *****"); 

    console.log("Developed by Ben Buurman for Federation University Australia"); 

    console.log("As deliverable for Master of Computing degree (By Research)"); 

    console.log(""); 

 

    mqttPublish("test", "Message successfully sent by mote 1 at " + 
currentDate()) 

} 

//Begin processing - execute main method 

main();  
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4.3.3 Testing Surcharge Detection 

Confident in our mote’s ability to send surcharge messages to the central system, the next step 

was to test whether it could actually detect surcharges and send these to the central system. 

This simultaneously evaluated the central system’s ability to process surcharge messages; we 

had demonstrated it was capable of receiving messages, but these were simple strings with no 

advanced processing.  

By testing the process of a mote detecting a surcharge, sending it to the central system, and 

having the central system analyse and classify it, we tested the entire system and its process. 

With this test complete we could confidently state our design was viable, as we had observed 

the entire system process operating from start to finish. 

Two actions were required to perform this test. First, we developed an environment in our lab 

to accurately simulate a surcharge. This environment was essential for testing the system, as it 

allowed us to observe how motes react to an actual surcharge. Next, we created a SQL database 

record for the mote used during testing. The simulation environment is discussed in Section 

4.3.3.1; however, we will discuss the SQL record task below.  

Without adding a database record, the application server would not be able to identify the mote 

and could therefore not process the surcharge. We created the record shown in Table 4-13, 

which was assigned a primary key of 1. The mote’s config.json file was updated to the values 

shown in Table 4-14, ensuring it would send a client ID matching the primary key of its 

database record. When the mote’s messages arrive at the application server, the unique ID will 

be used to confirm the mote’s identity and retrieve Table 4-13’s record.   
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Table 4-13: Database record created for mote. 

Field/Column Value 

id (PK) 1 

physicalAddress 080027C9DA32 

streetAddress 10 Test Street 

downstream null 

batteryLevel 100 

surchargeStatus 0 

lastCommunication null 

 

Table 4-14: Configuration parameter values on mote.  

Parameter Value 

moteID “1” 

debounceTime 5000 (5 seconds) 

gatewayAddress 192.168.20.17 

gatewayPort 1883 

surchargeAttempts 1 

heartbeatAttempts 1 
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4.3.3.1   Surcharge Simulation 

To effectively test the mote’s ability to detect surcharges, the obvious solution was to expose 

the mote to a surcharge and observe whether it was detected - therefore, we constructed a 

simple ‘test bed’ to install the mote in. The test bed simulated a surcharge by creating the 

same conditions (although with sanitary fresh water as opposed to wastewater), allowing us to 

observe the mote’s response.  

Our test bed’s design is shown in Figure 4-14, and Figure 4-15 shows a photograph of the 

completed construct. The test bed was simple to develop, with its main body consisting of a 

short horizontal length of pipe and longer length of vertical pipe protruding upwards from its 

centre. This created a perpendicular shape best described as ‘an upside-down T’. A hose 

fitting was added to one end of the horizontal pipe so the test bed could be filled with water, 

eventually creating a rising surface in the vertical pipe – a simulated surcharge.  

The most significant component of our test bed, however, was a customised pipe cap that 

allowed the mote and float switch to be safely installed in the test bed  and detect the simulated 

surcharge. Our cap had a small hole drilled in it, and a rigid plastic tube attached to its 

underside with the hollow centre placed over the hole. With this, the float switch could be 

placed in the shaft and attached to the end of the tube, while its wires were threaded up to 

emerge from the hole in the cap. The rigid plastic tube is an essential component, as it 

prevents the float switch from being freely suspended and moving with the surcharge surface. 

A design for this cap is shown in Figure 4-16, and Figures 4-17 and 4-18 show photographs of 

the actual product.  
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Figure 4-14: The design for our testbed. The float switch is connected using the special cap detailed in Figures 

4-16 to 4-18. Water is introduced to the testbed through the hose-fitting and will fill the pipes, beginning to 

rise up the perpendicular shaft. This will produce identical results to a surcharge and ideally trigger the float 

switch.  

  

Figure 4-15: Photographs of the completed test bed from varying perspectives. Aside from an additional, 

shorter perpendicular pipe, this confirms to the general design laid down in the previous figure. All 

components specified in the design are shown in the left image, while the right image has been added to show 

the hose fitting for allowing water in. When water is introduced with that hose fitting,  the perpendicular pipes 

will begin to fill with water. The mote will be placed in the tall pipe in the left image, and the float switch will 

activate when the rising surface reaches it. 
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Figure 4-16: The design for our custom pipe cap. This sits on top of the vertical pipe in Figures 4-14 and 4-15, 

allowing the float switch to be correctly added to testbed and capable of detecting surcharges. Waterproofing 

also prevents electronic damage to the prototype mote. 

    

Figure 4-17: The custom pipe cap produced from our design, shown from a variety of perspectives. The left 

image shows how the cap looks as it will be suspended in an inspection shaft, with the float switch at the 

bottom activating when a rising surface pushes its contacts up. The float switch is outlined with a red circle. 

Conversely, the right image shows the cap’s hollow space where the mote will sit. Wires from the Float switch 

protrude through the hole in the cap, where they can be connected to the mote. 
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Figure 4-18: The mote placed inside our custom pipe cap. Unfortunately, as the USB battery we utilised was 

too large to properly fit inside the pipe cap, the mote system protruded from the cap. However, as this device 

is only a prototype, we were less concerned with the relative size and more with ensuring the device had 

power. Dedicated, small batteries are available for our purpose, however we were unable to procure one in 

time for testing.  

Future implementations of our design will likely use a different power source or even device, and therefore 

the size of our battery is irrelevant for optimised testing of the developed system.  

4.3.3.2   Mote Testing and Results  

With the mote installed in our test bed as shown in the previous section, we executed Mote.js 

and began filling the test bed with water – a photograph of this process is shown in Figure 4-19. 

Considering that surcharge was being measured for a single shaft with consistently rising 

water levels, we were simulating the events of a full property connection blockage. As a result, 

we expected our application server to report a full property connection blockage. Upon 

examination of Table 4-13, we can elaborate further by expecting a full property connection 

blockage to be reported at 10 Test Street. This is because the mote’s unique ID matches the 

primary key of that database record, which will be retrieved by the central server after 

extracting the mote ID.  

Our application server also utilises several timers to classify each surcharge event. As we have 

discussed several times, these will run where appropriate to compare event state before and 

after their countdown. We set these values unusually low for the test so it could be performed 

more efficiently and with less waiting. The timer lengths we used, alongside other 

configuration parameters, are shown in Table 4-15. These values were chosen to expediate 

testing while still remaining accurate. Accuracy was ensued by keeping each timer’s length 
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relative to the others consistent with expectations of real-world phenomena. For example, the 

falseAlarm timer was the shortest as real-world false alarms will be much shorter in duration. 

The only exception to this was the inactive timer, which was given an arbitrary short value to 

expediate testing.  

To begin the test, we filled the test bed with water to cause rising levels in the vertical pipe. 

After enough time had passed, the surface of this rising water pushed the float switch’s 

contacts together and simulated the surcharge threshold being reached. Following this, the 

application server produced the output shown in Figure 4-20. This shows that not only was the 

device successful in identifying and sending a surcharge, but the application server was 

capable of receiving and correctly classifying it.  

Following this, we drained the test bed of all water as shown in Figure 4-21 to simulate a 

surcharge ceasing or being resolved. Almost immediately after the water was drained, the level 

dropped below the surcharge threshold, resulting in the application server producing the 

output shown in Figure 4-22. This showed that not only could the system correctly detect and 

identify a blockage, but it was also capable of determining when a blockage had ceased or 

fluctuated.  

Notably, classifying the blockage took some time, while detecting that the blockage had 

stopped was almost instantaneous. Reviewing the algorithms used in blockage classification 

explains why this is the case; initial classification requires the false alarm and property 

connection or blockage timers in Table 4-15 to elapse - however, processing the first surcharge 

cessation requires no timers. 

Despite the overall success, two issues were identified during this test. Notably, even after the 

blockage had ceased, the central server did not mark it as resolved.  We also observed that 

mote battery level was incorrectly being reported as 0 – this is likely an issue with the Node 

package we utilised for reading system information.  Still, we will attempt to resolve these 

issues in future implementations of our design and take note of their potential cause. 
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Table 4-15: Configuration parameters used on Application Server during testing.  

Field Value 

brokerAddress 192.168.20.19 

falseAlarm 20000 

propertyConnectionOrMain 100000 

partialOrFull 300000 

inactive 25000 

batteryThreshold 999 

dbAddress localhost 

dbPort 3306 

dbUser ben  

dbPassword Pa$$w0rd 

dbInitial appserver 

 

 

Figure 4-19: The test bed being filled with water. A standard garden hose is attached to the fitting and turned 

on, allowing water to fill the pipe. Our mote can be seen at the top of the tall pipe.  
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Figure 4-20: The application server output following the float switch being activated as seen in Figure 4-19. 

Note that the Event has no Database ID – this is because we are not writing Events to the database in this 

prototype. Results clearly show that a Full Property Connection blockage has been detected at the false 

address 10 Test Street, and the involved mote is currently surcharged.  

 

Figure 4-21: Water being drained from the test bed by removing the hose. Consequentially, the water level in 

the tall pipe dropped quickly and the float switch’s contacts came apart. This simulates a surcharge ceasing, 

likely from a blockage no longer being present or from natural fluctuations in a partial blockage.  
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Figure 4-22: The output produced by the application server following Figure 4-21. Note that the Surcharge 

Status field now displays NOT SURCHARGED as its value.  

4.3.4 Testing Blockage Classification 

A key component of our design is its  ability to classify different types of blockage – this 

includes false alarms, spatial classification, and time classification. While we have 

demonstrated our system can detect and process surcharges, we have not yet evaluated the full 

scope of its classification abilities. Demonstrating all classifications logically requires 

simulating all types of blockage, some of which cause surcharges across multiple motes. For 

the reasons discussed at the start of Section 4.1 limiting our ability to test motes in a real-world 

deployment we will perform these tests in virtual simulated environment. This environment is 

delivered through a virtual model of a sewer main with three property connections, each of 

which have an installed mote, and is displayed in Figure 4-23.  

Three property connections were modelled as this is the minimum number required to test the 

entire range of blockages the system can classify. If two connections are present, there will be 

no observable difference between two blockages at neighbouring property connections or a 

main blockage. However, if three connections are present, surcharges can be simulated at both 

the first and last connection with no surcharge in the middle one. This produces a distinct 

observable result to a main blockage.  
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To successfully model a mote for each connection in the virtual model, three Mote records 

needed to be added to the application server database. The Mote record from the previous real-

world test has been reused, while two additional records have been added as detailed in Tables 

16-17. The downstream value provides a link between each Mote as discussed throughout our 

research.  

A Node.js script was written for each simulated event, publishing MQTT surcharge messages 

identical to those produced by the actual event simulated. Each message will contain the 

appropriate mote ID, mapping it to one of the database records in Tables 4-13, 4-16  and 4-27. 

From the application server’s perspective, these will be indistinguishable to messages sent 

from actual motes with real surcharges occurring. We have also ensured these scripts produce 

verbose output, allowing us to observe the messages published and verify their content and 

timing are correct.  

These simulation tests are detailed in the following sub-sections with each providing a table 

detailing the test, a copy of the code used to perform the simulation, and screenshots of 

results. The code  included in this section has comments and standard output print commands 

removed, however full versions of each code can be found in the appendices. In addition, the 

time column is relative and starts when the first message is sent. It also cannot be guaranteed 

that events will occur at the exact times stated, so these can be thought of as best-effort. 

Battery level values in the published MQTT messages were also been fabricated for these tests, 

as the script is running on a virtual machine.  

Table 4-16: Database record created for Mote 2. 

Field/Column Value 

id (PK) 2 

physicalAddress 40cc1cd26e64 (Randomly generated) 

streetAddress 9 Test Street 

downstream 1 

batteryLevel 70 

surchargeStatus 0 

lastCommunication null 
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Figure 4-23: The virtual model produced by our simulation scripts. Each mote’s ID and MAC address is shown above the simulated property connection, as this is where 

the mote would theoretically be installed.  
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Table 4-17: Database record created for Mote 3. 

Field/Column Value 

id (PK) 3 

physicalAddress 616852765a61 (Randomly generated) 

streetAddress 8 Test Street 

downstream 2 

batteryLevel 30 

surchargeStatus 0 

lastCommunication null 

Having designed the simulation scenario, in the following sub-section we test false alarms 

alongside blockage classifications using the simulation data shown in the above details. The 

simulation scenario is constructed by utilising this data.  

4.3.4.1   False Alarm Detection 

The ability to differentiate false alarms from genuine blockages is a critical requirement of our 

system, having been discussed since Chapter 1 and elaborated throughout the remainder of 

this thesis. Consequentially, we will perform this test first by simulating a false alarm event.  

This simulation is carried out when false_alarm.js delivers an initial surcharge message for 

Mote 1, followed by a second one 10 seconds later. As this time falls below the false alarm timer 

of 20 seconds we specified, this should be detected as a false alarm.  

Figure 4-24 shows the output produced by false_alarm.js when it has completed execution, 

and Figure 2-25 shows the application server’s output. These collectively demonstrate that the 

application server is capable of differentiating false alarms from genuine blockages if the timer 

is set correctly, which fulfils a key requirement of our research.  
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Table 4-18: Test plan for verifying false alarm classification. 

Event Simulated: False Alarm at Mote 1 

Script Used: false_alarm.js 

Messages Sent: 

Time: Mote ID: Battery Level: Surcharge Status: 

- 2 30% 1 

0:10 2 30% 0 

 

 

Figure 4-24: The output produced by false_alarm.js when all messages to simulate a false alarm’s rapid 

fluctuations have been sent. The message strings show the 10 second difference between the two being sent.  
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Figure 4-25: The application server’s output after receiving the second message. This shows that the 

simulation has correctly been classified as a false alarm. The False alarm countdown is already occurring 

message appears when a message arrives while the false alarm countdown is elapsing and is only used for our 

own debugging.   

Code 4-3: false_alarm.js  

const MQTT = require("mqtt"); 

const chalk = require("chalk"); 

 

const BROKER_ADDRESS = ""; 

 

const MOTE_2 = ["", "30"]; 

 

//Get date and time in string format readable by application server 

function currentDate() 

{ 

    let raw = new Date(); 
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    let yy = raw.getFullYear().toString(); 

    let MM = (raw.getMonth() + 1).toString(); 

    let dd = raw.getDate().toString(); 

    let hh = raw.getHours().toString(); 

    let mm = raw.getMinutes().toString(); 

    let ss = raw.getSeconds().toString(); 

 

    return (dd + "-" + MM + "-" + yy + "-" + hh + ":" + mm + ":" + ss); 

} 

 

//Publishes an MQTT message of a given topic, using the mqtt library. 

function mqttPublish(topic, message) 

{ 

    let conn = MQTT.connect(BROKER_ADDRESS); 

 

    conn.on("connect", () => 

    { 

        console.log(chalk.green("Successfully connected to broker at " + 
BROKER_ADDRESS)); 

 

        conn.publish(topic, message, (err)=> 

        { 

            if(err) 

                console.error(err); 

            else 

                console.log(chalk.green("Message '" + message + "' of topic '" + 
topic + "' published successfully")); 

             

            console.log(""); 

        });  

    });     

} 

 

// 'main' and entry function for firmware. 

function main() 
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{     

    console.log(chalk.bgMagenta("------------- Wastewater Blockage Detection 
System ---------------")); 

    console.log(""); 

    console.log(chalk.bgMagenta("------ Simulation: False Alarm at Mote 2 ------
")); 

    console.log(chalk.bgMagenta("-- Developed by Ben Buurman for Federation 
University Australia --")); 

    console.log(chalk.bgMagenta("-- As deliverable for Master of Computing 
degree (By Research) ---")); 

    console.log(""); 

 

    //Send first message 

    mqttPublish(getMoteString(MOTE_2, 1)); 

 

    //Wait 1 minute (600000 milliseconds) and send next message 

    setTimeout( ()=> 

    { 

        mqttPublish(getMoteString(MOTE_1, 0)); 

 

    }, 300000); 

 

    console.log(chalk.yellow("All timers successfully set. Waiting..")); 

 

} 

 

//Begin processing - execute main method 

main();  
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4.3.4.2   Full Main Blockages 

Our testing with the mote prototype proved the application server’s ability to classify full 

blockages at the property connection. This consequentially demonstrated its abilities to both 

spatially classify property connection blockages, and temporally classify full blockages. 

Following this, we verified its ability to classify full blockages located at the main. This involves 

the retrieval of multiple main records, and the ability to determine their connections with each 

other.  

This simulation was carried out by a script named full_main_blockage.js, which sent two 

surcharge messages; first for Mote 2, and then for Mote 3. These were sent one minute apart, 

as while this is a very short time it is still longer than the false alarm counter. In addition, it is 

also shorter than the spatial classification timer of 2 minutes. Being shorter than this second 

countdown means that we can test what happens when a message arrives while the countdown 

is elapsing – ideally, it will cause that countdown to cancel and only display a single result.  

Figure 4-26 shows the output produced by full_main_blockage.js upon completing execution. 

This confirms that both messages were sent a minute apart, meaning that results at the 

application server are a realistic approximation of our system’s ability to handle full main 

blockages. 

Following this, Figure 4-27 shows the output produced at the application server when finished 

classification. This is the best possible outcome, as it has correctly classified the two 

surcharges as a main blockage and determined their location. Not only this, only a single 

output was produced. This shows that the spatial classification timer started by the first 

message was cancelled, and processing for that message stopped in favour of the second. In 

combination with previous results, this shows our system is very competent with handling 

parallel processing and synchronisation. 
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Table 4-19: Test plan for verifying classification of full main blockages. 

Event Simulated: Full main blockage between Motes 2 and 3. 

Script Used: full_main_blockage.js 

Messages Sent: 

Time: Mote ID: Battery Level: Surcharge Status: 

- 2 90% 1 

1:00 1 85% 1 

 

 

Figure 4-26: Output produced by full_main_blockage.js when both messages have been sent. Observing the 

message strings shows that messages are sent exactly one minute apart. 
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Figure 4-27: Classification produced by the application server – output displaying the classification itself is 

highlighted.  

This correctly predicts that the simulated blockage is a main blockage, located in the main between virtual 

properties 8 and 9 Test Street. Below the classification, all mote records retrieved during this process are 

listed. Mote 2 and 3 have been retrieved as they both reported surcharges, while Mote 1 was retrieved because 

it is downstream from Mote 2. 
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Code 4-4: full_main_blockage.js  

const MQTT = require("mqtt"); 

const chalk = require("chalk"); 

 

const BROKER_ADDRESS = ""; 

 

const MOTE_2 = ["", "90"]; 

const MOTE_1 = ["", "85"]; 

 

//Get date and time in string format readable by application server 

function currentDate() 

{ 

    let raw = new Date(); 

    let utcString = raw.toUTCString(); 

    //Replace spaces with hyphens for processing at server. These will be 
replaced with spaces again once this processing is complete. 

    return utcString.replace(/ /g, "-"); 

} 

//Publishes an MQTT message of a given topic, using the mqtt library. 

function mqttPublish(topic, message) 

{ 

    let conn = MQTT.connect(BROKER_ADDRESS); 

 

    conn.on("connect", () => 

    { 

        console.log(chalk.green("Successfully connected to broker at " + 
BROKER_ADDRESS)); 

 

        conn.publish(topic, message, (err)=> 

        { 

            if(err) 

                console.error(err); 

            else 

                console.log(chalk.green("Message '" + message + "' of topic '" + 
topic + "' published successfully")); 
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            console.log(""); 

        });  

    });     

}// 'main' and entry function for firmware. 

function main() 

{     

    console.log(chalk.bgMagenta("------------- Wastewater Blockage Detection 
System ---------------")); 

    console.log(""); 

    console.log(chalk.bgMagenta("------ Simulation: Full Main Blockage between 
motes 2 and 3 ------")); 

    console.log(chalk.bgMagenta("-- Developed by Ben Buurman for Federation 
University Australia --")); 

    console.log(chalk.bgMagenta("-- As deliverable for Master of Computing 
degree (By Research) ---")); 

    console.log(""); 

 

    //Send first message 

    mqttPublish(getMoteString(MOTE_2, 1)); 

 

    //Wait 5 minutes (300000 milliseconds) and send second message 

    setTimeout( ()=> 

    { 

        mqttPublish(getMoteString(MOTE_1, 1)); 

 

    }, 300000);   

 

    //Wait 15 minutes (900000 milliseconds) and send third message 

    setTimeout( ()=> 

    { 

        mqttPublish(getMoteString(MOTE_1, 0)); 

 

    }, 900000);  

 

    //Wait 20 minutes (1200000 milliseconds) and send final message 

    setTimeout( ()=> 
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    { 

        mqttPublish(getMoteString(MOTE_2, 0)); 

         

    }, 1200000); 

 

    console.log(chalk.yellow("All timers successfully set. Waiting..")); 

} 

 

//Begin processing - execute main method 

main();  
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4.3.4.3   Partial Main Blockages 

Having proven the application server can successfully perform both spatial classifications and 

classify a full blockage, the only remaining classification to test is the partial blockage. The 

same temporal classification algorithm is used to classify both main and property connection 

partial blockage, however classifying a partial main blockage involves more complex 

parameters. Consequentially, we chose to test a partial main blockage, as the success of this 

test will confirm the algorithm operates as expected and imply successful classification of a 

partial property connection blockage. 

A script named partial_main_blockage.js simulated a partial blockage at the main between 

motes 2 and 3. This was achieved by sending messages that simulate a fluctuation at two 

neighbouring property connections; every thirty seconds, an alternate mote would send a state 

change. From the perspective of a single mote, this resulted in each mote sending a state 

change every minute. Once all timers had been executed and all messages sent, this script had 

produced the output shown in Figure 4-28. 

Upon receiving the third-last message, the application server classified the event as shown in 

Figure 4.-29. This is the expected outcome – the application server estimated a partial 

blockage in the main between Motes 2 and 3. The started field shown in Figure 4-29 also 

matches the time the first message was sent, proving that all messages were processed as the 

same event. Our application server was therefore successfully able to classify partial 

blockages, whether occurring at the main or a property connection. We were also able to have 

complete confidence in our server’s ability to handle the asynchronous and parallel processing 

required for IoT systems. 

One final issue was also addressed; in Section 4.3.3.2, we discussed that the application server 

could not determine that the blockage was resolved. While this was not critical, we made some 

small changes to the code in hope of fixing this bug. Our efforts were fruitful, and after the 

final message was received and the appropriate time had passed, the server produced the 

output shown in Figure 4-30. This notifies users that the blockage is now resolved.
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Table 4-20: Our test to verify classification of partial main blockages.   

Event Simulated: Partial main blockage between Motes 2 and 3 

Script Used: partial_main_blockage.js 

Messages Sent: 

Time: Mote ID: Battery Level: Surcharge Status: 

- 2 90% 1 

0:30 3 85% 1 

1:00 2 90% 0 

1:30 3 85% 0 

2:00 2 90% 1 

2:50 3 85% 1 

03:00 2 90% 0 

03:50 3 85% 0 
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Figure 4-28: Output produced by partial_main_blockage.js when once all messages to simulate a partial main 

blockage have been sent. It can be observed that all messages were sent roughly 30 seconds apart, with each 

individual mote having a message sent every 60 seconds.  
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Figure 4-29: Upon receiving the third-last message shown in Figure 4-27, the server performed the 

classification shown - output stating the classification results is highlighted.  

This shows us that the blockage is still ongoing and has been classified as a partial blockage in the main 

between 8 and 9 test street. The Involved Motes output demonstrates that Mote 3 is currently surcharging, 

while Motes 2 and 1 are not. Mote 1 has been retrieved as it is downstream from Mote 2. 
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Figure 4-30: Output produced some time after the final message in Figure 4-26 was received – lines showing 

the updated status are highlighted.  

Note that the time listed in Started is still the same as the first message, meaning that this refers to the same 

event. These results show that the blockage is resolved, and all motes have stopped surcharging. 
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Code 4-5: partial_main_blockage.js  

const MQTT = require("mqtt"); 

const chalk = require("chalk"); 

 

const BROKER_ADDRESS = "mqtt://192.168.20.19"; 

 

//Contains mote ID and simulated battery level - mote details for sending to 
application server 

const MOTE_1 = ["2", "90"]; 

const MOTE_2 = ["3", "85"]; 

 

//Get date and time in string format readable by application server 

function currentDate() 

{ 

    let raw = new Date(); 

    let utcString = raw.toUTCString(); 

 

    //Replace spaces with hyphens for processing at server. These will be 
replaced with spaces again once this processing is complete. 

    return utcString.replace(/ /g, "-"); 

} 

 

//Publishes an MQTT message of a given topic, using the mqtt library. 

function mqttPublish(topic, message) 

{ 

    let conn = MQTT.connect(BROKER_ADDRESS); 

 

    conn.on("connect", () => 

    { 

        console.log(chalk.green("Successfully connected to broker at " + 
BROKER_ADDRESS)); 

 

        conn.publish(topic, message, (err)=> 

        { 

            if(err) 
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                console.error(err); 

            else 

                console.log(chalk.green("Message '" + message + "' of topic '" + 
topic + "' published successfully")); 

             

            console.log(""); 

        });  

    });     

} 

 

 

//For a specified mote and surcharge status, returns a string for sending to the 
application server.  

function getMoteString(moteObject, surchargeStatus) 

{ 

    return moteObject[0] + " " + currentDate() + " " + moteObject[1] + " " + 
surchargeStatus.toString(); 

} 

 

 

// 'main' and entry function for firmware. 

function main() 

{     

    console.log(chalk.bgMagenta("------------- Wastewater Blockage Detection 
System ---------------")); 

    console.log(""); 

    console.log(chalk.bgMagenta("------ Simulation: Partial Main Blockage 
between motes 2 and 3 ------")); 

    console.log(chalk.bgMagenta("-- Developed by Ben Buurman for Federation 
University Australia --")); 

    console.log(chalk.bgMagenta("-- As deliverable for Master of Computing 
degree (By Research) ---")); 

    console.log(""); 

 

    //Send first message 

    mqttPublish("surcharge", getMoteString(MOTE_1, 1)); 

 

    //Send second message 
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    setTimeout( ()=> 

    { 

        mqttPublish("surcharge", getMoteString(MOTE_2, 1)); 

 

    }, 30000);   

 

    //Send third message 

    setTimeout( ()=> 

    { 

        mqttPublish("surcharge", getMoteString(MOTE_1, 0)); 

 

    }, 60000);   

 

    //Send fourth message 

    setTimeout( ()=> 

    { 

        mqttPublish("surcharge", getMoteString(MOTE_2, 0)); 

 

    }, 90000);  

 

    //Send fifth message 

    setTimeout( ()=> 

    { 

        mqttPublish("surcharge", getMoteString(MOTE_1, 1)); 

 

    }, 120000);  

 

    //Send sixth message 

    setTimeout( ()=> 

    { 

        mqttPublish("surcharge", getMoteString(MOTE_2, 1)); 

 

    }, 150000);  

 

    //Send sixth message 
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    setTimeout( ()=> 

    { 

        mqttPublish("surcharge", getMoteString(MOTE_1, 0)); 

 

    }, 180000);  

 

    //Send sixth message 

    setTimeout( ()=> 

    { 

        mqttPublish("surcharge", getMoteString(MOTE_2, 0)); 

 

    }, 210000);  

 

 

    console.log(chalk.yellow("All timers successfully set. Waiting..")); 

 

} 

 

//Begin processing - execute main method 

main();  
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4.4 Conclusion 

Using the design produced in Chapter 3, this chapter detailed the development of a prototype 

system capable of carrying out our research goals. The mote design was followed to build a 

mote from a Raspberry Pi Zero (RPZ) capable of connecting to a central system using Wi-Fi. 

Using virtual machines to host an MQTT broker and application server, we were successfully 

able to create the central system and its required infrastructure. However, because of 

limitations with both our time and available resources, we were unable to implement MQTT-SN 

protocol. Finally, we created a prototype application server using the corresponding design 

and following its algorithms.  

Testing was performed to evaluate whether our design was capable of realistically carrying out 

our research goals. First, we tested whether the MQTT protocol was working as expected. This 

was conducted by testing communications between a virtual client and the broker, and then 

between our prototype mote and the broker. On both occasions, communications were fully 

operational.  

Next, we tested the mote’s ability to detect actual surcharges. Surcharges were simulated in a 

laboratory environment using a testbed that structurally emulated a sewer main and attached 

property connection. The mote was deployed in the simulation environment’s property 

connection in the same way it would be deployed in a real-world inspection shaft. The testbed 

was filled with water to simulate a surcharge, and output from the application server showed 

that the mote was correctly detecting surcharges starting and stopping.  

Finally, other surcharge events the application server was required to detect were simulated in 

a completely virtual environment. These were false alarms, full main blockages, and partial 

main blockages. Partial property connection blockages were not tested, as successful 

classification of a partial main blockage infers they can also be detected. For each simulation, 

the application server correctly classified the surcharge. 

Test results confirmed that we have produced a design and derived prototype capable of 

detecting wastewater blockages across a wide area, alongside correctly classifying them, while 

remaining practical and inexpensive. In the next chapter we will discuss the greater 

implications of this and provide areas for future works. 
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5 Conclusion 

5.1 Summary 

Wastewater blockages are a relatively common occurrence resulting from normal phenomena 

such as improper use of home fixtures and growth of tree roots into a pipe. Blockages left 

unresolved will eventually completely obstruct the flow of effluent through the pipe, which 

subsequently leads to effluent breaching the surface through pipe shafts or fixtures. These 

breaches not only present significant risk of financial loss to wastewater providers, but can 

cause illness, disability, or even death in exposed humans. Despite this, techniques used for 

detection and management of blockages are mostly archaic and inefficient, involving routine 

inspections of each asset or response to customer complaints. Routine inspections incur 

significant person-hours and cost, and even then, are unlikely to detect most blockages. By the 

time customers make a complaint, it is often too late, and effluent has already breached. Our 

research originated from a simple concept - simultaneously monitoring an entire wastewater 

system for blockages and notifying relevant parties as soon as possible.   

Current blockage detection methods function by examining an asset at each property named 

an Inspection Shaft. Blockages cause effluent levels across all assets to rise, and therefore 

increased levels in an inspection shaft can indicate a blockage. This increased level is known 

as a surcharge, and technicians can gather a surprisingly large amount of information from 

observing it. A constantly rising surcharge is likely the result of a full blockage, while a slowly 

fluctuating surcharge likely originates from a partial blockage. Surcharges isolated to one 

property connection imply the blockage is located in that same connection, while multiple 

affected connections imply the blockage is located at the connected main. In addition, 

surcharges consisting of relatively few short fluctuations are often everyday activity requiring 

no action from utilities providers – we refer to these as false alarms. Our research now had a 

modus operandi – monitoring surcharge levels across property connections would be 

theoretically capable of detecting and locating blockages. Along with this, observing the 

fluctuations of surcharges and their speed would allow us to classify blockages according to 

the previously mentioned types.  
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Considering the severe consequences of wastewater blockages and inefficiency of current 

detection methods, there has been surprisingly little past research into alternative and more 

efficient solutions. Past research made several worthy contributions to the field, however 

solutions proposed or delivered were impractical for real deployment. Some of these solutions 

were unacceptably expensive, overly complicated, or impractical due to their own limited 

software and hardware. For example, some solutions used sensors with very short-range 

wireless communications, requiring an unreasonably high number of repeaters and gateways. 

When previous solutions were practical, they were only concerned with monitoring very few 

assets for blockages. In response, we have leveraged the lessons learned by this research and 

more general studies into wireless networks and smart cities to produce an alternative 

solution. 

In this thesis, we presented a detailed design for our solution capable of monitoring sewer 

blockages across an entire urban infrastructure while remaining inexpensive, simple, and 

reliable. Surcharges are detected using wireless motes consisting of a float switch sensor, 

microcontroller, power supply and two wireless transceivers. Our prototype mote cost $85.35 

AUD including the Raspberry Pi Zero mote with built-in Wi-Fi transceiver, float switch, and 

power supply. For large scale production, this cost is expected to significantly decrease, 

further demonstrating the affordability and practicality of our system.  

Both LoRa and Wi-Fi transceivers will be available, offering two independent transmission 

media for connecting to the system’s backend. LoRa is useful for long-distance 

communication in urban areas, while the shorter-range Wi-Fi allows the system to leverage off 

home or public Wi-Fi. Motes will spend most of their time in a low-power sleep mode, however, 

will wake when the float switch detects a surcharge. Following surcharge detection, motes will 

activate the correct wireless transceiver and send a message detailing this surcharge to a 

central system using the public Internet. We have selected the MQTT-SN application-layer 

publish-subscribe protocol, a variant of the MQTT protocol commonly utilised in IoT systems, 

to facilitate all communications. MQTT-SN is functionally the same as MQTT, however is 

designed especially for sensor networks and consumes significantly less network, processing, 

and power resources.  

The central system is a collection of backend servers accessible on the public Internet, 

collectively responsible for managing network communications, receiving messages from 
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motes, and performing intelligent processing on surcharge messages. Intelligent processing 

first determines whether the surcharge is caused by a genuine blockage or false alarm. No 

further action is required for false alarms, however if the surcharge is genuine a blockage it 

will be classified according to the previously mentioned blockage types. This process is broken 

down into spatial (property connection or main) and temporal (partial or full) classifications. 

Following spatial classification, the central system is also capable of determining the exact 

property or length of sewer main between properties where the blockage is located.   

Following the finalisation of our design, we developed a prototype to evaluate its performance 

and compliance with our research goals. This prototype consists of a mote, central server, and 

the network infrastructure required for them to communicate. The prototype mote was 

constructed using a Raspberry Pi Zero mini-computer and float switch sensor, while the 

prototype central system consisted of an MQTT broker and application server deployed on 

virtual machines. We were unable to use MQTT-SN for our prototype as no reputable code 

libraries were available, and there was insufficient time to develop our own. Despite this, the 

MQTT Broker we utilised is compatible with MQTT-SN for future works. Each of these virtual 

machines run the Ubuntu Server operating system, and all software was developed in the 

Node.js language.  

Testing conducted on our prototype system showed that the prototype operated as expected 

and fulfilled all research goals, further proving our design is both viable and practical. The first 

test was performed in laboratory environment, with a physical testbed set up to emulate a 

property connection and attached inspection shaft. Our prototype mote was installed in the 

test-bed’s inspection shaft, before we simulated a surcharge by filling the testbed with water. 

Results were confirmatory as the mote successfully detected the surcharge, before successfully 

transmitting a notification to the central system where it was correctly classified. This was 

followed by several simulation tests evaluating the central system’s ability to classify and 

locate blockages, using a virtual model of three property connections on the same main. 

Results were again confirmatory, as all tests produced results as expected and demonstrated 

the application server and classification algorithms was operating correctly. With our design 

proved both practical, viable, and operational, we have developed the first wastewater blockage 

detection system practically capable of monitoring an entire urban infrastructure. This has 

huge potential for improving services worldwide, reducing environmental pollution, and even 

saving lives.  
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5.2 Future Works 

Despite our successful delivery, the current research can be extended in a number of ways, 

some of which are discussed below.  

5.2.1 Further testing  

While we verified that our delivered design is capable of practical deployment, time and 

resource constraints prevented us from conducting further testing that could prove beneficial. 

We proved that the solution works but could only undertake limited testing on how well it 

works. As a result, we lack quantitative measures of performance and classification accuracy. 

In addition, non-functional requirements including battery life and signal performance should 

be tested to further measure practicality.  

This additional testing can be achieved by developing several prototype motes and deploying 

them throughout an actual wastewater infrastructure. While this requires collaboration with a 

utility provider, many would be eager to contribute with our research now proven through this 

thesis.  Deployment would last for a predetermined period of time, and during this time data 

would be collected to be analysed upon conclusion. Primarily, surcharge detection and 

blockage classification should be compared with actual surcharges and blockages that have 

occurred.  

50% of motes deployed should utilise the LoRa protocol while the other 50% utilise home or 

public Wi-Fi networks. Mote programming should be updated to log each attempt at sending a 

message and following testing these attempts can be compared to the amount successfully 

received. This will not only give an overall metric for network reliability but allow researchers 

to compare the performance of LoRa and Wi-Fi deployment.  

5.2.2 MQTT-SN Implementation 

While our solution is compatible with MQTT-SN, we were unable to test this protocol during our   

research as no reputable software libraries were available. We conducted testing with the 

closely related and more resource-hungry MQTT protocol, and our success implies that any 

MQTT-SN implementation will also operate correctly. However, the degree of resource 

consumption saved between MQTT and MQTT-SN is still unknown. While MQTT-SN consumes 

less resources, the benefits are not often as obvious for systems with small messages, and 

processing at an MQTT-SN Gateway incurs additional overhead.  
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Future research should develop a robust and practical MQTT-SN library for Node.js or similar 

languages, contributing significantly to both academia and the computing industry. Once this 

library has been developed, it should be implemented by a subsequent version of our solution 

and its performance compared with standard MQTT. Observed differences in performance will 

not only apply to our system, but to any IoT systems with similar scale and message size. This 

information will prove invaluable to future research and development across many domains 

involving IoT.   

5.2.3 Predictive Modelling 

Future research should determine if any independent environmental variables such as 

weather, asset condition, and time have an effect on surcharge probability and blockage type. 

This can be done by deploying motes at a variety of real-world locations and measuring these 

variables each time a surcharge is classified by the application server. If these relationships 

exist, they can be used to build a statistical model determining the probability of classification 

depending on these factors. Weather, particularly rainfall, should be examined closely as 

stormwater entering sewer assets has been known to cause surcharges.  

With a statistical model developed, it will be possible to introduce a predictive element to the 

system. If the environmental variables are known each time a surcharge is detected, the 

application server can perform a more accurate classification scheme. Furthermore, if the 

environmental variables are regularly detected, the application server will be able to predict 

surcharges and specific blockage types at different locations before they occur. History of 

surcharges and blockage occurrences at particular localities and pipe sections can be 

considered to embed local content into such a protection This could be a significant 

development for the industry and change blockage resolution from reactive to proactive. 
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Appendix A mote.js 

//Import required modules. 'fs' and 'chalk' are in lower-case as these are de-

facto standards/expected 

const GPIO = require("onoff"); 

const SHELL = require("child_process"); 

const RASPBERRY_PI = require("systeminformation"); 

const MQTT = require("mqtt"); 

const fs = require("fs"); 

 

//Import configuration parameters from config.json 

let configJson = JSON.parse(fs.readFileSync("config.json", "utf-8")); 

let DEBOUNCE_TIME = parseInt(configJson.debounceTime); 

let BROKER_ADDRESS = configJson.gatewayAddress; 

let BROKER_PORT = parseInt(configJson.gatewayPort); 

let SURCHARGE_ATTEMPTS = parseInt(configJson.surchargeAttempts); 

let HEARTBEAT_ATTEMPTS = parseInt(configJson.heartbeatAttempts); 

let MOTE_ID = configJson.moteID; 

 

//Commands to execute power-saving functionality 

const POWER_SAVING_COMMANDS =  

[ 

    "/usr/bin/tvservice -o",  

    "echo none | sudo tee /sys/class/leds/led0/trigger",  

    "echo 1 | sudo tee /sys/class/leds/led0/brightness" 

]; 

 

let previousValue = 0; 

let heartbeatTimer = null; 

 

//Get date and time in string format readable by application server 

function currentDate() 

{ 

    let raw = new Date(); 

    let utcString = raw.toUTCString(); 

 

    //Replace spaces with hyphens for processing at server. These will be 

replaced with spaces again once this processing is complete. 

    return utcString.replace(/ /g, "-"); 

} 

 

//Publishes an MQTT message of a given topic, using the mqtt library. 

function mqttPublish(topic, message) 

{ 

    let conn = MQTT.connect(BROKER_ADDRESS); 

 

    conn.on("connect", () => 
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    { 

        console.log("Successfully connected to broker at " + BROKER_ADDRESS); 

 

        conn.publish(topic, message, (err)=> 

        { 

            if(err) 

                console.log(err); 

            else 

                console.log("Message '" + message + "' of topic '" + topic + 

"' published successfully"); 

             

            console.log(""); 

        });  

    });     

} 

 

//Declare handler method for reacting to float switch state change. Value is 

current value of float switch. 

let floatSwitch_onchange = function(err, value) 

{ 

    if(value != previousValue) 

    { 

        let batteryLevel = RASPBERRY_PI.battery(); 

 

        batteryLevel.then((result) =>  

        { 

            let messageString = MOTE_ID + " " + currentDate + " " + 

result.percent.toString() + " " + value.toString(); 

             

            let messageSuccess = false; 

            let attemptCtr = 0; 

 

            while(!messageSuccess && attemptCtr < SURCHARGE_ATTEMPTS) 

            { 

                messageSuccess = mqttPublish("surcharge", messageString); 

                attemptCtr++; 

            } 

 

            //Set previousValue to current value 

            previousValue = value; 

 

            //Reset heartbeat countdown by clearing timeout and starting again 

            clearInterval(heartbeatTimer); 

        heartbeatTimer = setInterval(heartbeat_ontimeout, 86483647) 

        }); 

    } 

} 
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//Declare handler method for reacting to heartbeat timer elapsing.  

let heartbeat_ontimeout = function() 

{ 

    let messageString = MOTE_ID + " " + currentDate + " " + batteryLevel; 

 

    let messageSuccess = false; 

    let attemptCtr = 0; 

 

    while(!messageSuccess && attemptCtr < HEARTBEAT_ATTEMPTS) 

    { 

        messageSuccess = mqttPublish("heartbeat", messageString); 

        attemptCtr++; 

    } 

} 

 

// 'main' and entry function for firmware. 

function main() 

{     

    console.log("***** Wastewater Blockage Detection System - Mote Software 

*****"); 

    console.log("Developed by Ben Buurman for Federation University 

Australia"); 

    console.log("As deliverable for Master of Computing degree (By 

Research)"); 

    console.log(""); 

 

    //Declare float switch input pin and event listener 

    let floatSwitch = new GPIO(17, "in", "both", {debounceTimeout: 

DEBOUNCE_TIME}); 

    floatSwitch.watch(floatSwitch_onchange); 

 

    //Declare pin for activating/deactivating power-save options 

    let powerSave = new GPIO(1, "in", "both"); 

     

    //Declare heartbeat timer and event listener 

    heartbeatTimer = setInterval(heartbeat_ontimeout, 86483647); 

 

    //If power-saving functionality enabled, Execute power-saving measures 

asynchronously 

    if(powerSave.readSync() == 1)     

    for(let i = 0; i < POWER_SAVING_COMMANDS.length; i++) 

        SHELL.spawn(POWER_SAVING_COMMANDS[i]); 

 

    //Node event loop will now run indefinitely while waiting for event 

listeners 

    console.log("Initialisation complete. Now waiting for surcharge or 

heartbeat elapse..") 

    console.log(""); 
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} 

 

//Begin processing - execute main method 

main();  
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Appendix B run_appserver.js 

//Import required packages 

let mqtt = require("mqtt"); 

let chalk = require("chalk"); 

let processSurcharge = require("surcharge_pipeline.js"); 

let processHeartbeat = require("heartbeat_pipeline.js"); 

 

console.log(chalk.inverse("Starting...")) 

 

//Load global configuration 

let config = new processSurcharge.ApplicationParams(); 

console.log("Configuration parameters loaded..."); 

 

//Create Session object required for sharing data structures across parallel 

executions of each pipeline 

let theSession = new processSurcharge.AppServerSession(); 

console.log("Session data structures created...") 

 

//Attempt connection to MQTT Broker and MySQL Server 

let mqtt_conn = mqtt.connect(config.BROKER_IP); 

console.log(chalk.yellow("Attempting connection to MQTT Broker...")); 

 

//Executes when the system establishes a connection to the MQTT broker. 

//mqt__conn.on("connect", function() 

mqtt_conn.on("connect", () => 

{ 

    console.log(chalk.green("Successfully connected to MQTT broker at " + 

config.BROKER_IP)); 

 

    mqtt_conn.subscribe("surcharge", 0, function(err, granted) 

    { 

        if(err)         

            console.log(chalk.bgRed("Could not subscribe to 'surcharge' 

topic")); 

         

 

        console.log(chalk.green("Subscribed to 'surcharge' topic")); 

    }); 

 

    mqtt_conn.subscribe("heartbeat", 0, function(err, granted) 

    { 

        if(err) 

            console.log(chalk.bgRed("Could not subscribe to 'heartbeat' 

topic")); 

 

        console.log(chalk.green("Subscribed to 'heartbeat' topic at broker")); 

        console.log(""); 
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    }); 

 

}); 

 

//Executes when an MQTT message is received from the broker 

//mqtt_conn.on("message", function (topic, message) 

mqtt_conn.on("message", (topic, message) => 

{ 

    //React to different topics of messages 

    if(topic.toString() == "surcharge") 

    { 

        //Pass message received, session data structures, and configuration 

parameters into Surcharge Pipeline 

        let pipelineInstance = new processSurcharge.surchargePipeline(message, 

theSession, config); 

 

        console.log(chalk.inverse("New pipelineInstance begun for " + 

message)); 

        console.log(""); 

 

        pipelineInstance.then( (classifiedEvent) =>  

        { 

            if(classifiedEvent.isFalseAlarm == true) 

            { 

                console.log(chalk.bgYellow("Surcharge is caused by false alarm 

- no action is required.")); 

                console.log("") 

            } 

            else 

            { 

                console.log("Surcharge pipeline processed"); 

            } 

        },  

        (rejected) =>  

        { 

            console.log(""); 

            console.log(chalk.bgRed(" !!!!!!!!!!!!! ")); 

            console.log(chalk.bgRed("Error processing surcharge at 

pipeline")); 

            console.log(chalk.bgRed(rejected)); 

            console.log(""); 

             

        }); 

    } 

    else if (topic.toString() == "heartbeat") 

    { 

        //Pass message received and configuration parameters into Heartbeat 

Pipeline 
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        processHeartbeat.heartbeatPipeline(message, config); 

    } 

    else if(topic.toString() == "test") 

    { 

        console.log(chalk.green("Test message successfully received")); 

        console.log("Contents: " + message); 

        console.log(""); 

    } 

    else 

    { 

        console.warn(chalk.bgYellow("MQTT Message of non-standard topic 

received. Please check system security and take any required measures."));         

        console.warn("Message topic: " + topic); 

        console.warn("Message Contents: "); 

        console.warn(message); 

        console.warn(""); 

    } 

 

}); 
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Appendix C classes.js 

let fs = require("fs"); 

let chalk = require("chalk"); 

 

//Stores information, data structures, and interface/package objects required 

throughout all parallel executions of Surcharge and Heartbeat pipelines 

class AppServerSession  

{ 

    constructor() 

    { 

        //Instantiate all Data Structures shared across pipelines 

        this.activeMotes = new Array(); 

        this.activeEvents = new Array(); 

        this.resolvedEvents = new Array(); 

    } 

 

     

    /*  

        Adds a new Event to the AppServerSession's activeEvents dictionary. 

Performs all needed processing - this includes adding the Mote to the Event 

and incrementing the  

        Event's surcharging counter if appropriate. 

    */ 

    addEvent(theMote) 

    {        

        let theEvent = new WastewaterEvent(theMote.lastCommunication); 

        theEvent.involvedMotes = theMote; 

         

        if(theMote.surchargeStatus == 1) 

            theEvent.surchargingMotes++; 

         

        this.activeEvents.push(theEvent); 

         

        if(theMote != null && theMote.id != null) 

            this.activeMotes[theMote.id] = theMote; 

 

        return theEvent; 

    } 

 

    //Searches for any active events involving a given mote. Returns the event 

if a match is found, or null if no match is found. 

    searchEvent(theMote) 

    { 

        for(let i = 0; i < this.activeEvents.length; i++) 

        { 

            let next = this.activeEvents[i]; 
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            if(next.involvedMotes.getDownstreamNeighbourByID(theMote.id) != 

null)             

                return next;                      

        } 

 

        //If this point is reached, no results are found. Return null. 

        return null; 

    }    

} 

 

/* 

 Represents all runtime parameters/environment variables used by this instance 

of the application server. These are able to be set by system administrators 

using the configuration file. 

*/ 

class ApplicationParams 

{ 

    //Reads parameters/configuration information from the  file at the 

provided path 

    constructor(filepath = "config.json") 

    { 

        //Declare global structures used across application server 

        this.currentEvents = new Array(); 

        this.loadedMotes = new Array(); 

        this.resolvedEvents = new Array(); 

 

        //Load configuration parameters from JSON file 

        let theFile = fs.readFileSync(filepath, "utf-8"); 

        let configJSON = JSON.parse(theFile); 

         

        this.BROKER_IP = configJSON.brokerAddress; 

 

        this.FALSE_ALARM_TIMER = configJSON.falseAlarm; 

        this.PROPERTY_CONNECTION_TIMER = configJSON.propertyConnectionOrMain; 

        this.PARTIAL_TO_FULL_TIMER = configJSON.partialOrFull; 

        this.INACTIVE_TIMER = configJSON.inactive; 

 

        this.BATTERY_LEVEL_THRESHOLD = configJSON.batteryThreshold; 

 

        this.SQL_LOCATION =  configJSON.dbAddress; 

        this.SQL_PORT = configJSON.dbPort; 

        this.SQL_USER = configJSON.dbUser; 

        this.SQL_PASS = configJSON.dbPassword; 

        this.INITIAL_DB = configJSON.dbInitial;                 

    } 

} 
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/* 

 Represents any message recieved from a mote or other MQTT client with the 

same message signature. 

*/ 

class ClientMessage 

{ 

    //Note - a battery level of -1 indicates that the battery level is 

unknown. 

    constructor(initID, initClientID, initTimestamp, initBatteryLevel = -1) 

    { 

        this.id = initID; 

        this.clientID = initClientID; 

        this.timestamp = initTimestamp; 

        this.batteryLevel = initBatteryLevel; 

         

        //Initialise mote value 

        this.involvedMote = null; 

    } 

 

    //Prints a detailed summary of this ClientMessage and its fields to 

Standard Output. 

    print() 

    { 

        console.log(chalk.bgCyan.blue("*********ClientMessage*********")); 

        console.log(chalk.bold("Mote: ") + this.clientID); 

        console.log(chalk.bold("Timestamp :") + this.timestamp.toString()); 

 

        if(this.batteryLevel > 70) 

            console.log(chalk.bold("Battery Level: ") + 

chalk.greenBright(this.batteryLevel)); 

        else if (this.batteryLevel < 30) 

            console.log(chalk.bold("Battery Level: ") + 

chalk.redBright(this.batteryLevel)); 

        else 

            console.log(chalk.bold("Battery Level: ") + 

chalk.yellow(this.batteryLevel)); 

 

        console.log(""); 

    } 

} 

 

/* 

 An extension of ClientMessage that represents messages representing a 

surcharge state change. This stores all information that a standard 

ClientMessage does, along with an additional boolean 

 field for the new state. 

*/ 
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class SurchargeMessage extends ClientMessage 

{ 

    constructor(initID, initClientID, initTimestamp, initSurchargeStatus, 

initBatteryLevel = -1) 

    { 

        super(initID, initClientID, initTimestamp, initBatteryLevel); 

        this.surchargeStatus = initSurchargeStatus; 

    } 

 

    //Prints a detailed summary of this SurchargeMessage and its fields to 

Standard Output. 

    print() 

    { 

        console.log(chalk.bgBlue.white("*********SurchargeMessage*********")); 

        console.log(chalk.bold("Mote: ") + this.clientID); 

        console.log(chalk.bold("Timestamp: ") + this.timestamp.toString()); 

 

        if(this.batteryLevel > 70) 

            console.log(chalk.bold("Battery Level: ") + 

chalk.greenBright(this.batteryLevel)); 

        else if (this.batteryLevel < 30) 

            console.log(chalk.bold("Battery Level: ") + 

chalk.redBright(this.batteryLevel)); 

        else 

            console.log(chalk.bold("Battery Level: ") + 

chalk.yellow(this.batteryLevel)); 

         

 

        if(this.surchargeStatus == true)         

            console.log(chalk.bold("Surcharge Status: ") + 

chalk.bgRed("SURCHARGED"));         

        else         

            console.log(chalk.bold("Surcharge Status: ") + 

chalk.bgGreen.black("NOT SURCHARGED")); 

         

 

        console.log(""); 

    } 

} 

 

/* 

 Represents a mote placed in a property's inspection shaft to detect 

surcharges. This holds information about the Mote, along with any currently 

occuring events. 

*/ 

class Mote 

{ 
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    constructor(initID, initPhysicalAddress, initStreetAddress, 

initDownstreamID, initDownstream, initBatteryLevel, initSurchargeStatus = 0, 

initLastCommunication = null) 

    { 

        this.id = initID; 

        this.physicalAddress = initPhysicalAddress; 

        this.streetAddress = initStreetAddress; 

 

        this.batteryLevel = initBatteryLevel; 

        this.lastCommunication = initLastCommunication; 

        this.surchargeStatus = initSurchargeStatus; 

 

        this.downstreamID = initDownstreamID; 

        this.downstream = initDownstream; 

 

        //Initially set the Mote's current Event to null. This references any 

event currently occuring for the mote, forming a two way reference as events 

also reference all motes involved.  

        this.event = null; 

 

        //In JavaScript, stacks can be represented as arrays given their 

push/pop methods. Initialise as new, empty array. 

        this.stateChanges = new Array(); 

         

    } 

 

    //Prints a detailed summary of this Mote and its fields to Standard 

Output. 

    print() 

    { 

        console.log(chalk.bold("Database ID: ") + this.id); 

        console.log(chalk.bold("MAC Address: ") + this.physicalAddress); 

        console.log(chalk.bold("Location: ") + this.streetAddress); 

        console.log(""); 

 

        if(this.batteryLevel > 70) 

            console.log(chalk.bold("Battery Level: ") + 

chalk.greenBright(this.batteryLevel)); 

        else if (this.batteryLevel < 30) 

            console.log(chalk.bold("Battery Level: ") + 

chalk.redBright(this.batteryLevel)); 

        else 

            console.log(chalk.bold("Battery Level: ") + 

chalk.yellow(this.batteryLevel)); 

 

        console.log(chalk.bold("Last Communication: ") + 

this.lastCommunication.toString()); 
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        console.log(""); 

 

        if(this.surchargeStatus == true)         

            console.log(chalk.bold("Surcharge Status: ") + 

chalk.bgRed("SURCHARGED")); 

         

        else         

            console.log(chalk.bold("Surcharge Status: ") + 

chalk.bgGreen.black("NOT SURCHARGED")); 

 

        console.log(""); 

    } 

 

    //Uses a surcharge message received from this mote's physical hardware to 

update the object 

    updateDetails(theMsg) 

    { 

        this.batteryLevel = theMsg.batteryLevel; 

        this.surchargeStatus = theMsg.surchargeStatus; 

        this.lastCommunication = theMsg.timestamp; 

 

        this.stateChanges.push(new StateChange(theMsg.timestamp, 

theMsg.surchargeStatus)); 

    } 

 

    //Returns any mote downstream with the specified ID. If none can be found, 

will return null. This is the 'wrapper' for the recursive 

__traverseDownstreamList method. 

    getDownstreamNeighbourByID(idToGet) 

    { 

        if(this.id == idToGet) 

            return this; 

        else 

            return this.__traverseDownstreamList(this, idToGet); 

    } 

 

     

    /* 

     Recursive method that checks if a given mote (next)'s downstream 

neighbour has the ID specified. If so, it will return that downstream 

neighbour. If not, it will go to the next.  

     If the mote has no downstream neighbour at all, it will return null as 

this means the end of the 'main' has been reached.  

    */  

    __traverseDownstreamList(next, idToGet) 

    { 

        //Failure base case 
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        if(next.downstream == undefined || next.downstream == null)         

            return null;         

        //Success base case 

        else if (next.downstream.id == idToGet)         

            return next.downstream;         

        //Continue recursion 

        else         

            return this.__traverseDownstreamList(next.downstream, idToGet); 

         

    } 

 

    /* 

     Checks if this Mote and any of its downstream neighbours have 

'fluctuated' - meaning that it has more than three state changes (0->1->0). 

     This is a 'wrapper' for the hidden recursive method 

__recursivelyCheckFluctuation. 

 

     Returns true if a fluctuation is detected, and false if none are detected 

    */ 

    isMoteFluctuating() 

    { 

        return this.__recursivelyCheckFluctuation(this); 

    } 

 

    /* 

     Recursively checks if a mote or its downstream neighbours are 

fluctuating. Returns true if a fluctuation is detected, and false if none are 

detected. 

     Fluctuation means more than three state changes (0->1->0) 

    */ 

    __recursivelyCheckFluctuation(next) 

    { 

        //Failure base case - this mote is fluctuating. Return true 

        if (next.stateChanges.length >= 3) 

        { 

            return true; 

        } 

        else 

        { 

            //If the next node has no downstream neighbours, this is the 

'end'. Return false, as it has made it this far without returning true. 

            if(next.downstream == null) 

                return false; 

            else 

                return this.__recursivelyCheckFluctuation(next.downstream); 

        } 

    } 
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    /* 

     Returns true if all motes have a surcharge status of false, and false if 

one or motes have surcharge statuses of true. This essentially determines if 

any main blockage has been resolved 

     This is the 'wrapper' for the hidden recursive method 

__recursivelyCheckSurcharge 

    */ 

    isMainResolved() 

    { 

        return this.__recursivelyCheckSurcharge(this) 

    } 

 

     

    /*  

     Recursive method that determines if the next mote and all its downstream 

neighbours, are undergoing surcharge.  

     Return false if a surcharge can be detected here or downstream, and true 

otherwise. 

    */ 

    __recursivelyCheckSurcharge(next) 

    { 

        //Failure base case - this mote is surcharging 

        if (next.surchargeStatus == true) 

        { 

            return false; 

        } 

        else 

        { 

            //If the next node has no downstream neighbours, this is the 

'end'. Return true, as it has made it this far without returning false. 

            if(next.downstream == null) 

                return true; 

            else 

                return this.__recursivelyCheckSurcharge(next.downstream); 

        } 

    } 

     

 

    /* 

     Searches this mote's downstream linked-list for a Mote matching 

newState's unique ID. If a match is found, that mote's mutable values will be 

overwritten with those of newState. The mutable 

     values are batteryLevel, lastCommunication, surchargeStatus, and 

stateChanges.  

    */ 

    updateMoteState(newState) 
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    { 

        //If this mote is the one to update, overwrite mutable values and 

return true; 

        if(this.id == newState.id) 

        { 

            this.batteryLevel = newState.batteryLevel; 

            this.surchargeStatus = newState.surchargeStatus; 

            this.lastCommunication = newState.lastCommunication; 

            this.stateChanges.push(new StateChange(newState.lastCommunication, 

newState.surchargeStatus)); 

        } 

        else 

        { 

            this.__traverseDownstreamAndUpdate(this, newState); 

        } 

    } 

 

    /* 

     Recursive method that checks whether a mote's downstream neighbour's ID 

matches the newState object's ID (newState is a mote record). If so, that 

neighbour's mutable values will be  

     overwritten with newState's mutable values. If not, it will go to the 

next. 

    */ 

    __traverseDownstreamAndUpdate(next, newState) 

    { 

        //Failure base case 

        if(next.downstream == undefined || next.downstream == null) 

        { 

            return false;      

        }    

        //Success base case 

        else if (next.downstream.id == newState.id) 

        { 

            //Update downstream mote's values 

            next.downstream.batteryLevel = newState.batteryLevel; 

            next.downstream.surchargeStatus = newState.surchargeStatus; 

            next.downstream.lastCommunication = newState.lastCommunication; 

            next.downstream.stateChanges.push(new 

StateChange(newState.lastCommunication, newState.surchargeStatus)); 

 

            return true; 

        }       

        //Continue recursion 

        else   

        {       

            return this.__traverseDownstreamAndUpdate(next.downstream, 

newState); 
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        } 

    } 

 

    //Return all downstream motes in a downstream-order array. 

    getDownstreamNeighboursAsArray() 

    { 

        return this.__buildDownstreamArray([this]); 

    } 

 

    /* 

     Recursive method that builds returns an array of the current mote's 

downstream neighbours. If there are no downstream neighbours, it will meet the 

base case and return itself. 

     The parameter 'next' represents the current state of the array -  

    */ 

    __buildDownstreamArray(next) 

    { 

        //Base case - end of LinkedList / 'main' has been reached 

        if (next[next.length -1].downstream == undefined || next[next.length -

1].downstream == null)         

            return next; 

        else         

            return next.concat(this.__buildDownstreamArray([next[next.length -

1].downstream])); 

         

    } 

 

} 

 

/* 

 Represents any state change that occurs at a Mote. This is when a mote goes 

from surcharged to not surcharged, or vice-versa.  

*/ 

class StateChange 

{ 

    constructor(initTime, initStatus) 

    { 

        this.time = initTime; 

        this.status = initStatus; 

    } 

} 

 

/* 
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 Represents any Event that occurs across the wastewater network. This includes 

all types of  blockages and false alarms, and stores the mote involved. 

*/ 

class WastewaterEvent 

{ 

    constructor(initOccurred, initID = null) 

    { 

        this.id = initID; 

        this.occurred = initOccurred; 

        this.involvedMotes = null; 

        this.surchargingMotes = 0; 

 

        //Initialise event fields to default values. As no classification has 

occured yet, these will be 'empty'. 

        this.falseAlarmCount = 0; 

        this.isFalseAlarm = null; 

        this.spatialClassification = ""; 

        this.timeClassification = ""; 

 

        //Initialise status fields to default values. 

        this.resolved = false; 

        this.location = ""; 

        this.latestSurchargeStatus = null; 

 

        //Initialise notifications sent value as new array. This will be empty 

as no notifications can be sent yet.  

        this.notifcationsSent = new Array(); 

 

        //Initiate values used for classification timers 

        this.__falseAlarmCountdownRunning = false; 

        this.__propertyConnectionTimerRunning = false; 

        this.__partialToFullCountdownTimerRunning = false; 

        this.__inactiveCountdownTimerRunning = false;  

 

        //Initialise Event timers. These will be 'null' and will populate with 

timers following declaration. Once finished, the timers will re-set to null.         

        let falseAlarmTimer = null; 

        let propertyConnectionTimer = null; 

        let partialToFullTimer = null; 

        let inactiveTimer = null; 

    } 

 

    //Prints a detailed summary of this Event and its fields to Standard 

Output. 

    print() 

    { 

        console.log(chalk.bgYellow.black("************* Event 

*************")); 
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        console.log(chalk.bold("Database ID: ") + this.id); 

        console.log(chalk.bold("Started: ") + this.occurred); 

 

        if(this.resolved == true)         

            console.log(chalk.bold("Status: ") + chalk.bgGreen.black("Blockage 

Resolved")); 

        else        

            console.log(chalk.bold("Status: ") + chalk.bgRed("Ongoing"));              

         

        console.log(""); 

 

        if(this.falseAlarmCount == 1 || this.falseAlarmCount == 2) 

        { 

            console.log(chalk.bold.yellow("Event is False Alarm")); 

        } 

        else 

        { 

            console.log(chalk.bold("Spatial Classification: ") + 

this.spatialClassification); 

            console.log(chalk.bold("Time Classification: ") + 

this.timeClassification); 

            console.log(chalk.bold("Predicted Location: ") + this.location); 

        } 

 

        console.log(""); 

        console.log(chalk.bold("Involved Motes:")); 

        console.log(""); 

        console.log(chalk.bgCyan.black("****************************")); 

        console.log(""); 

 

        let motesArray = this.involvedMotes.getDownstreamNeighboursAsArray(); 

 

        for(let i = 0; i < motesArray.length; i++) 

            if(motesArray[i] != null && motesArray[i] != undefined) 

                console.log(motesArray[i].print()); 

 

        console.log(""); 

        console.log(chalk.bgCyan.black("****************************")); 

        console.log(""); 

    } 

     

} 

 

exports.AppServerSession = AppServerSession; 

exports.ApplicationParams = ApplicationParams; 

exports.ClientMessage = ClientMessage; 

exports.SurchargeMessage = SurchargeMessage; 

exports.Mote = Mote; 
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exports.StateChange = StateChange; 

exports.Event = WastewaterEvent; 
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Appendix D surcharge_pipeline.js 

let app_server = require("data_conn.js"); 

let mysql = require("mysql"); 

let chalk = require("chalk"); 

 

surchargePipeline = function surchargePipeline(messageString, session, config) 

{ 

    return new Promise( (resolve, reject) => 

    { 

        //Declare database connection for use during this pipeline 

        let db = mysql.createConnection( 

            {host: config.SQL_LOCATION,  

            port: config.SQL_PORT,  

            user: config.SQL_USER,  

            password: config.SQL_PASS, 

            database: config.INITIAL_DB}); 

 

        db.connect((err) =>  

        { 

            if(err) 

            { 

                console.log(""); 

                console.log(chalk.bgRed.black(" COULD NOT CONNECT TO MYSQL 

DATABASE ")); 

                console.log(err); 

                console.log(""); 

            } 

 

        }); 

 

        //Convert the message string into a SurchargeMessage object. 

        let theMessage = __decodeSurchargeString(messageString); 

 

        if(theMessage != null) 

        { 

            let moteData = __loadMoteData(theMessage, session, db); 

 

            moteData.then((step1) => 

            { 

                let alarmVeracity = __checkAlarmVeracity(step1, config); 

 

                alarmVeracity.then((step2) => 

                { 

                    if(step2.isFalseAlarm) 

                    { 

                        resolve(step2); 

                    } 
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                    else 

                    { 

                        let spatialClassification = 

__alarmSpatialClassification(step2, config); 

 

                        spatialClassification.then((step3) =>  

                        { 

                            step3.location = locateBlockage(step3); 

                            let temporalClassification = 

__alarmTimeClassification(step3, config); 

 

                            temporalClassification.then((step4) =>  

                            { 

                                session.activeEvents[step4.id] = null; 

                                session.resolvedEvents[step4.id] = step4; 

 

                                __prototypePrintResults(theMessage, step4, 

db); 

 

                                resolve(step4); 

                            }); 

 

                        }); 

                    } 

                     

                }, (rejected) =>  

                { 

                    console.log(chalk.yellow("False alarm countdown is already 

occuring. This does not need to be processed.")); 

                }); 

            }); 

        } 

        else 

        {            

            reject(messageString); 

        } 

    }); 

} 

 

//Converts a space-encoded string sent from a mote to a valid 

SurchargeMesssage object. 

function __decodeSurchargeString(stringToDecode) 

{ 

    //Heartbeat string structure is shown in Section 3.6.3 of thesis 

    let surchargeStringSplit = (stringToDecode.toString()).split(" "); 

    let formattedDate = surchargeStringSplit[1].replace(/-/g, " "); 

 

    if(surchargeStringSplit.length != 4) 
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    { 

        console.log("Error - Malformed surcharge alert string"); 

        return null; 

    } 

 

    let decodedClientID = parseInt(surchargeStringSplit[0]); 

    let decodedTimestamp = new Date(formattedDate); 

    let decodedBatteryLevel = parseInt(surchargeStringSplit[2]); 

    let decodedSurchargeStatus = (parseInt(surchargeStringSplit[3]) == 1) ? 

true : false; 

 

    let toReturn = new app_server.SurchargeMessage(null, decodedClientID, 

decodedTimestamp, decodedSurchargeStatus, decodedBatteryLevel); 

 

    return toReturn; 

} 

 

 

//Checks to see if the effected mote is currently represented in the active 

motes dictionary. 

function __loadMoteData(involvedSurchargeMessage, session, db) 

{ 

    return new Promise( (resolve, reject) =>  

    { 

        let theMote = null; 

        let theEvent = null; 

 

        //This mote is in session's activeMotes dictionary 

        if(involvedSurchargeMessage.clientID in session.activeMotes) 

        { 

            console.log("Mote has already been loaded to session's ActiveMotes 

dictionary"); 

 

            theMote = session.activeMotes[involvedSurchargeMessage.clientID]; 

            theEvent = session.searchEvent(theMote); 

 

            //If mote has surcharge status of 0, and this has surcharge status 

of 1, increment event's surcharge counter 

            if(theMote.surchargeStatus == 0 && 

involvedSurchargeMessage.surchargeStatus == 1)             

                theEvent.surchargingMotes++; 

                      

            //If the mote has a surcharge status of 1, and this has a 

surcharge status of 0, increment event's surcharge counter        

            else if (theMote.surchargeStatus == 1 && 

involvedSurchargeMessage.surchargeStatus == 0) 

                theEvent.surchagingMotes--; 
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            theMote.updateDetails(involvedSurchargeMessage);             

 

            if(theEvent != null) 

            { 

                resolve(theEvent) 

            } 

            else 

            { 

                console.log(chalk.red("No event could be retrieved for 

previously loaded mote.")); 

                reject(null); 

            } 

        } 

        else 

        { 

            console.log("Mote has not been loaded to session's ActiveMotes 

dictionary"); 

 

            //Determine if mote's upstream neighbour has been loaded into 

session ActiveMotes dictionary 

            for(let i = 0; i < session.activeMotes.length; i++) 

            { 

                let next = session.activeMotes[i]; 

 

                if((next != null && next != undefined) && next.downstreamID == 

involvedSurchargeMessage.clientID) 

                {                     

                    theMote = next; 

                    break; 

                } 

            } 

 

            //Determine if mote was found in previous loop to search for 

upstream neighbour. If not, theMote will still be null. 

            if(theMote != null) 

            { 

                console.log("Mote's upstream neighbour found in dictionary. 

Retrieving mote's downstream neighbour if applicable.") 

 

                //Get downstream mote 

                if(theMote.downstreamID != null && theMote.downstream == null) 

                { 

                    getMoteRecord(theMote.downstreamID).then((nbr) => 

                    { 

                        theMote.downstream = nbr; 

                        theEvent = session.addEvent(nbr); //MIGHT CHANGE BACK 

                        resolve(theEvent); 
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                    }); 

                } 

            } 

            else 

            { 

                console.log("Mote or upstream neighbour not found. Retrieving 

mote details now. "); 

 

                getMoteAndNeighbour(involvedSurchargeMessage.clientID, 

involvedSurchargeMessage, db).then((mote) => 

                { 

                        //Check if downstream Mote belongs to current event 

                        if(mote.downstream != null && 

session.searchEvent(mote.downstream) != null) 

                        { 

                            theEvent = session.searchEvent(mote.downstream); 

 

                            console.log("Downstream mote belongs to current 

event. Merge with current Event linked list"); 

                             

                            if(theEvent.involvedMotes.downstream != null) 

                                mote.downstream.downstream = 

theEvent.involvedMotes.downstream; 

                             

                            theEvent.involvedMotes = mote; 

                            session.activeMotes[mote.id] = mote; 

                            theEvent.surchargingMotes += mote.surchargeStatus; 

                        } 

                        else 

                        { 

                            console.log("Downstream mote does not belong to 

current event"); 

                            theEvent = session.addEvent(mote); 

                        } 

 

                     

                    resolve(theEvent); 

                }); 

            } 

         

        } 

    }); 

} 

 

/* 

    Retrieves a Mote's record from the database, along with that of any 

downstream neighbour. Updates the mote record from any included surcharge 

message, before  
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    adding the downstream neighbour to the mote. 

*/ 

function getMoteAndNeighbour(moteID, surchargeMessage, db) 

{ 

    return new Promise ((resolve, reject) => 

    { 

        getMoteRecord(moteID, db).then( (mote) => 

        { 

            mote.updateDetails(surchargeMessage); 

 

            if(mote.downstreamID != null) 

            { 

                getMoteRecord(mote.downstreamID, db).then((neighbour) =>  

                { 

                    mote.downstream = neighbour; 

                    resolve(mote); 

                }); 

            } 

            else 

            { 

                resolve(mote); 

            } 

        });          

    }); 

} 

 

 

//Returns promise to retrieve a given Mote record based on ID. This is the 

'inner' hidden method used by getMoteAndNeighbour(). 

function getMoteRecord(IDtoGet, db) 

{ 

    return new Promise( (resolve, reject) =>  

    { 

        console.log("Retrieving Mote with ID " + IDtoGet); 

 

        db.query("SELECT * FROM mote WHERE id = ?", [IDtoGet], function(error, 

results, fields) 

        { 

            if(error) 

            { 

                console.log(chalk.red("Could not retrive Mote with ID " + 

IDtoGet)); 

                console.log(error); 

                console.log(""); 

                reject(null); 

            } 

 

            if(results.length > 0 && results[0] != null) 
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            {                 

                let involvedMote = new app_server.Mote(results[0].id, 

results[0].physicalAddress, results[0].streetAddress, results[0].downstream, 

null,  

                    results[0].batteryLevel, 0, results[0].lastCommunication); 

 

                console.log("Mote object with ID " + IDtoGet + " retrieved"); 

                resolve(involvedMote); 

 

            } 

            else 

            { 

                console.log(chalk.red("No results found for Mote")); 

                reject(null); 

            }    

        }); 

         

    }); 

} 

 

 

 //Determines if an Event is caused by a false alarm/regular daily occurrence. 

function __checkAlarmVeracity(theEvent, config) 

{ 

    return new Promise(function(resolve, reject) 

    {    

        console.log(""); 

        console.log(chalk.yellow.black("Beginning Alarm Veracity check")); 

 

        //If it has already been proven event is not false alarm, do not run 

this test. 

        if(theEvent.isFalseAlarm == false) 

            resolve(theEvent); 

 

        //If false alarm countdown is NOT running on Event, and event has no 

false alarm flags raised, begin false alarm countdown 

        if( (theEvent.__falseAlarmCountdownRunning == false) && 

theEvent.falseAlarmCount == 0) 

        { 

 

            //Set __falseAlarmCountdownRunning to true, and set it back to 

false when timer is elapsed 

            theEvent.__falseAlarmCountdownRunning = true; 

             

            //This code will execute after timer has finished running 

            theEvent.falseAlarmTimer = setTimeout(() => 

            { 

                theEvent.__falseAlarmCountdownRunning = false; 
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                if(theEvent.falseAlarmCount == 1  || theEvent.falseAlarmCount 

== 2) 

                    theEvent.isFalseAlarm = true; 

                else 

                    theEvent.isFalseAlarm = false;            

 

                //Resolve Event. Number of false alarms will have been updated 

by any other surcharge notifications.  

                resolve(theEvent); 

 

            }, 20000); 

 

        } 

        //If the false alarm countdown IS running on an event, increment false 

alarm count 

        else if (theEvent.__falseAlarmCountdownRunning) 

        { 

            theEvent.falseAlarmCount++; 

 

            //Reject this event, as an earlier Surcharge notification already 

has countdown running for the Event.   

            reject(theEvent);                 

        } 

    }); 

} 

 

 

 //Spatially classifies an event based on where it is occuring - this produces 

either a main blockage or property connection blockage. 

function __alarmSpatialClassification(theEvent, config) 

{ 

    return new Promise(function(resolve, reject) 

    { 

        console.log(""); 

        console.log(chalk.yellow.black("Beginning Spatial Classification")); 

 

        //If the Event has multiple involved motes, it is a main blockage. 

Resolve it as a main blockage.  

        if(theEvent.surchargingMotes > 1) 

        { 

            console.log(chalk.yellow("Event has multiple motes surcharging")); 

 

            //If the Event's propertyConnectioon timer is currently counting 

down, cancel it as it is no longer needed. 

            if (theEvent.__propertyConnectionTimerRunning) 

            { 

                clearTimeout(theEvent.propertyConnectionTimer); 
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                theEvent.__propertyConnectionTimerRunning = false; 

            } 

 

            console.log(chalk.green("Event is main blockage")); 

 

            theEvent.spatialClassification = "main"; 

            resolve(theEvent); 

        } 

        else if (theEvent.surchargingMotes == 1 && 

theEvent.spatialClassification == "property connection") 

        { 

            //There is no need to reclassify the event, so resolve it 

            resolve(theEvent); 

        } 

        else 

        { 

            console.log(chalk.yellow("Event has one or less motes 

surcharging")); 

 

             

             //If Event property conneciton timer is already running, another 

mote surcharge occurence is 'waiting' on this Event.             

            if(theEvent.__propertyConnectionTimerRunning == true) 

                reject(theEvent); 

 

             

            //If the event has one involved mote, it could be a property 

connection blockage.                      

            theEvent.__propertyConnectionTimerRunning = true; 

 

            console.log(chalk.yellow("Begin property connection timer")); 

 

            theEvent.propertyConnectionTimer = setTimeout(function() 

            { 

                console.log(chalk.yellow("Property connection timer has 

elapsed")); 

 

                theEvent.__falseAlarmCountdownRunning = false; 

                 

                //Once timeout has elapsed, make sure other motes have not 

surcharged for this event in meantime. 

                if(theEvent.surchargingMotes > 1) 

                    theEvent.spatialClassification = "main"; 

                else 

                    theEvent.spatialClassification = "property connection"; 

 

                resolve(theEvent); 
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            }, 100000); 

        } 

    }); 

} 

 

//Accepts an Event object (Representing a blockage) and returns a string 

stating its street address/location 

function locateBlockage(theEvent) 

{ 

    //Determine blockage location 

    if(theEvent.spatialClassification == "property connection") 

    { 

        return "Property Connection at " + 

theEvent.involvedMotes.streetAddress; 

    } 

    else 

    { 

        //Get all motes in event  

        let downstreamAsArray = 

theEvent.involvedMotes.getDownstreamNeighboursAsArray(); 

 

        //Remove all non-surcharging motes from downstream as array 

        let filtered = downstreamAsArray.filter(function(value, index, arr) 

        { 

           return (value.surchargeStatus == 1);  

        }); 

 

        if(filtered.length > 0) 

        { 

            let lastValue = filtered[filtered.length - 1]; 

             

            if(lastValue.downstream != null && lastValue.downstream != 

undefined)         

                return "Main between " + lastValue.streetAddress + " and " + 

lastValue.downstream.streetAddress; 

             

            else         

                return "Main between " + lastValue.streetAddress + " and end 

of main"; 

        } 

        else 

        { 

            //Do not change location 

            return theEvent.location; 

        } 

         

    } 
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} 

 

 

 //Classifies an event based on whether it is caused by a full or parital 

blockage (Time classification) 

function __alarmTimeClassification(theEvent, config) 

{ 

    return new Promise(function(resolve, reject) 

    { 

        console.log(""); 

        console.log(chalk.yellow.black("Beginning Time Classification")); 

 

        //If the latest surcharge status is false 

        if(theEvent.latestSurchargeStatus == false) 

        { 

            //Determine if all motes are 'inactive' - surcharge status of 0. 

This method will return true if no motes are surcharging 

            if (theEvent.involvedMotes.isMainResolved()) 

            { 

                theEvent.__inactiveCountdownTimerRunning = true; 

                //Begin inactive countdown timer 

 

                setTimeout(function() 

                { 

                    theEvent.__inactiveCountdownTimerRunning = false; 

                     

                    //If all motes are still inactive 

                    if(theEvent.involvedMotes.isMainResolved()) 

                    { 

                        theEvent.resolved = true; 

                        resolve(theEvent); 

                    } 

                 

                }, 25000);   

 

            } 

            else 

            { 

                //If latest surcharge status is 0, do nothing for now.  

                reject(theEvent); 

            }            

             

        } 

        else //Latest surcharge status is true 

        { 
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            //If the inactive timer was running, one or motes has fluctuated 

from false to true when all were previously false. This is clearly a partial 

blockage.             

            if(theEvent.__inactiveCountdownTimerRunning || 

theEvent.__partialToFullCountdownTimerRunning) 

            { 

                theEvent.__inactiveCountdownTimerRunning = false; 

                theEvent.__partialToFullCountdownTimerRunning = false; 

 

                clearTimeout(theEvent.partialToFullTimer); 

                clearTimeout(theEvent.inactiveTimer); 

 

                theEvent.timeClassification = "partial"; 

                resolve(theEvent); 

            } 

            else 

            { 

                //Check if any motes have cycled between surcharged, not 

surcharged, and then surcharged again. If so, this indicates a likely partial 

blockage.  

                if(theEvent.involvedMotes.isMoteFluctuating()) 

                { 

                    theEvent.timeClassification = "partial"; 

                    theEvent.__partialToFullCountdownTimerRunning = true; 

                     

                    //Begin the partial_to_full countdown timer. If this is 

elapses with no interruption, the event is a full blockage as fluctuations 

have 'stopped'.  

                    setTimeout(function() 

                    { 

                        theEvent.__partialToFullCountdownTimerRunning = false; 

 

                        if(theEvent.involvedMotes.isMainResolved()) 

                        { 

                            theEvent.resolved = true; 

                        } 

                        else 

                        { 

                            theEvent.timeClassification = "full"; 

                        } 

 

                        resolve(theEvent); 

 

                    }, 300000);   

 

                } 

                else //If not, this likely indicates a full blockage 

                { 
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                    theEvent.timeClassification = "full"; 

                    resolve(theEvent); 

                }                    

            } 

        } 

    }); 

} 

 

    console.log(""); 

    console.log(chalk.inverse("--------- Classification results: ------------

")); 

    console.log(""); 

    theEvent.print(); 

} 

 

exports.surchargePipeline = surchargePipeline; 

exports.ApplicationParams = app_server.ApplicationParams; 

exports.AppServerSession = app_server.AppServerSession; 
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