
i

Intelligent Sewer Blockage Detection
System using Internet of Things

Benjamin Mark Buurman

Bachelor of Information Technology & Systems

A thesis submitted in total fulfilment of the requirements for the degree of

Master of Computing (Research)

School of Science, Engineering & Information Technology

Federation University Australia

Northways Road, Churchill, Victoria 3842 Australia

April 2019

ii

Statement of Authorship

I hereby declare that I am the sole author of this master thesis, and I have not used any sources

other than those listed in the bibliography and identified as references. I further declare that I

have not submitted this thesis at any other institution in order to obtain a degree.

Bairnsdale, Victoria, Australia

20/04/2019

iii

Declarations

I declare that:

• I have read the copyright legislation of the university and understand the provisions

therein.

• My thesis does not contain material infringing the copyright of other persons.

• I have stated clearly and fully in my thesis the extent of any collaboration with others.

To the best of my knowledge and belief, the thesis contains no material previously

published by any other person except where due acknowledgement has been made.

• My thesis submitted contains no material which has been accepted for an award of any

other degree or diploma at any university.

• My thesis has identified work of others relied upon by providing appropriate

acknowledgement, citation, and reference in the text and in the bibliography.

I grant the University the right to display or copy any or all of the thesis, in all forms of media,

for use within the University, and to make available the thesis to other persons or organisations

being either educational or industrial, for reference purposes or for other legitimate

educational purposes.

Bairnsdale, Victoria, Australia

20/04/2019

iv

Dedicated to Stephanie Kate Buurman

v

Acknowledgements

Ben Buurman was supported by an Australian Government Research Training Program (RTP) Fee-Offset

Scholarship through Federation University Australia.

I would like to begin with acknowledging my supervisors, Professor Joarder Kamruzzaman and Dr Gour

Karmakar. Without their continued support, guidance, and encouragement, completing this thesis

would not have been possible. Both are very intelligent, generous, and insightful people who I consider

myself fortunate to have worked with over the years. Not only have I enjoyed the opportunity, but I have

learned much from them – not just in academics, but in life.

The preliminary concept behind this project was developed in consultation with staff at East Gippsland

Water Corporation (EGW) – namely, Mr. Steven Mowat (Innovation Officer and Field Technician) and

Iain McDougall (Information Technology Manager). Both Mr. Mowat and Mr. McDougall have proven

themselves as technical visionaries during their career, and Mr. McDougall supported the project in-

kind until leaving EGW to pursue another opportunity. While the project is no longer being undertaken

at EGW, I owe much to these two persons both as colleagues and friends. I would also like to

acknowledge Mr. Terry Upton and Mr. Mathew Scott at EGW for their support during my work on this

project.

On a related note, I would like to thank my current manager Luke Potter for his wonderful

understanding, flexibility, and encouragement while I completed this thesis.

This would also never have been possible without my family – my father Andrew, mother Sharon,

youngest sister Emily, and middle sister Stephanie who watches over us from heaven. For the entire time

this project was underway, my family never stopped supporting me financially and morally. Without my

family being as supportive, caring, and compassionate as they have been my whole life, I would never be

where I am today.

I would also like to thank my girlfriend, Emily McLennan, who has been absolutely wonderful with her

support and love. Every day she encourages me to be the best person I can and gives me a happiness

and energy that motivate me to do well. Finally, I’d like to thank the following people. In your own ways,

you have all helped me along this journey – Jack Lindsay, Jaymie Dawes, Peter Giacobbe, Guy

Bransgrove, Alex Kyriazis, Kate McSweeney, Karina Burley, Andrew Nyhuis, Anna Dyer, Vikki White, and

Tristan McQuitty.

vi

Abstract

Despite being a common issue in both developed and developing countries, wastewater

blockages have severe potential consequences. Blockages can be located at sewer mains or

individual properties and can also be classified as partial or full. Full blockages completely

obstruct a wastewater asset, and partial blockages will often develop into full blockages if left

unattended.

Currently, blockages are managed by routine manual inspections to wastewater assets on a

round-robin schedule. This is highly inefficient and costly, as blockages that form between

these inspections and progress to effluent breaches will go undetected. In this thesis we

present an Internet of Things (IoT) solution capable of simultaneously monitoring an entire

wastewater infrastructure for blockages while still remaining inexpensive, reliable, and

practical. Wireless motes use float switch sensors to detect blockages and transmit this to a

central system using either LoRa or Wi-Fi communications. Making both LoRa and Wi-Fi

available ensures the system can be adapted in any situation across a variety of geographic

and economic restrictions.

The central system determines whether a surcharge is caused by a blockage or simply the

result of regular activity not requiring intervention. Detection of false positives is critical, as

deployment of field technicians is an expensive process that moves resources from other

skilled work. If a surcharge is determined to be caused by a blockage, the central system will

classify it as full or partial before estimating the property or length of main between properties

it is located at. Following this, relevant parties will be notified so field technicians can be

deployed to resolve the blockage.

We performed both practical laboratory testing and simulation modelling on our proposed

system, and confirmed it is indeed capable of detecting, classifying, and locating blockages

across a wide urban area. Our choice of hardware, software and network equipment ensures

that the proposed IoT-based solution is inexpensive, workable, and easily deployable.

vii

List of Abbreviations

Please note that this list does not include abbreviations that are common general knowledge

(such as CPU), or cases where the abbreviation is the best-known identifier. This is common in

network protocols, for example HTTP or TCP. People often are aware of the acronym more so

than the full term.

IoT Internet of Things

LTE Long-Term Evolution (Cellular Standard)

GSM Global System for Mobile Communications

LPWAN Low Powered Wide-Area Network

WSN Wireless Sensor Network

ICT Information Communication Technologies

CCTV Closed-Circuit Television

NS LoRa Network Server

AS LoRa Application Server

ADR Adaptive Data Rate (Networking Service)

TX Transmission (Serial Communications)

RX Receipt (Serial Communications)

CRC Cyclic Redundancy Check

MAC Media Access Control

SNR Signal-to-Noise Ratio

LWT Last Will and Testament (Networking Service)

MQTT Message Queueing Telemetry Transport

MQTT-SN MQTT for Sensor Networks

MQTT-SN GW MQTT-SN protocol Gateway

viii

RSSI Received Signal Strength Indicator

DCC Dublin City Council

AQI Air Quality Index

GPS Global Positioning System

KDD Knowledge Discovery Process

EGW East Gippsland Water Corporation

DC Direct Current

LED Light-Emitting Diode

CSS Combined Sewer System

GPIO General-Purpose Input and Output

IRQ Interrupt Request

Vcc Voltage at the Common Collector

GND Ground (Electronics)

SCADA Supervisory Control and Data Acquisition

PDU Protocol Data Unit

LIFO Last-In-First-Out

API Application Programming Interface

REST or RESTful Representational State Transfer

RPZ Raspberry Pi Zero

VM Virtual Machine

ix

Table of Contents

Statement of Authorship... ii

Declarations ... iii

Acknowledgements .. v

Abstract .. vi

List of Abbreviations .. vii

List of Figures .. xiii

List of Tables ..xvii

List of Technical Content ... xix

Pseudocode ... xix

Source Code .. xix

Publications from this Work .. xx

Chapter 1: Introduction .. 1

1.1: Background ... 1

1.2: Wastewater Systems ... 4

1.3: Research Motivations ... 6

1.3.1: Monitoring of Wastewater Blockages .. 6

1.3.2: Cost and Complexity of Current Solutions .. 8

1.3.3: False Blockage Alarms ... 9

1.4: Research Objectives ... 10

1.5: Research Contribution .. 11

1.6: Thesis Structure..12

Chapter 2: Literature Review ... 14

2.1: Internet of Things (IoT) ... 14

2.2: Low Powered Wireless Area Networks ... 16

x

2.3: LoRa ... 18

2.3.1 – LoRa Frame Format .. 19

2.4: The MQTT and MQTT-SN Protocols .. 23

2.4.1: MQTT-SN .. 24

2.4.2: MQTT-SN Packet Structure .. 25

2.5: LoRa and MQTT ... 30

2.6: The Node.js Framework ..31

2.6.1: Node Modules and Packages ...31

2.6.2: Parallel Programming with Node.js ... 32

2.7: Smart Cities ... 33

2.7.1: Examples of Smart Cities ... 34

2.7.2: Smart City Services ... 37

2.7.3: Smart City Design and Architecture ... 39

2.7.3.1: Network Architecture .. 40

2.8: Wastewater Blockages ... 43

2.8.2: Risks of Blockages ... 45

2.9: Existing Solutions for Wastewater Management ... 46

2.9.1: Robotic Solutions... 46

2.9.2: Urban IoT Solutions .. 48

2.10: Conclusion .. 54

Chapter 3: Design and Implementation of Monitoring and Detection System 55

3.1: Overall Design ... 56

3.2: Considerations for Mote Design ... 57

3.3.1: Power Levels ... 59

3.3.2: Switch Bounce and Environmental Fluctuations .. 59

3.3.4: Pin Floating .. 60

xi

3.3: Mote Design .. 63

3.4: Network Design .. 71

3.4.1: LoRa Configuration ... 72

3.4.2: MQTT and MQTT-SN Configuration ... 74

3.4.4: Data Communications with LoRa ... 76

3.5: Central System Overview ... 80

3.6: Application Server .. 81

3.6.2: Receive MQTT Messages ... 82

3.6.3: Extract Application Data .. 82

3.6.4: Ensure Inspection Shaft Data is Loaded ... 85

3.6.5: Analyse Current Surcharges ... 91

3.6.6: Notify Relevant Parties ...106

3.6.6: Analysing Heartbeats ...106

3.6.7: Database Integration ..106

3.7: Conclusion ... 110

Chapter 4: Building and Evaluating Prototype ... 111

4.1: Prototype Mote Development .. 112

4.1.1: Prototype Mote Hardware ... 112

4.1.2: Prototype Mote Software ...120

4.1.2.1: The onoff Package (GPIO) .. 121

4.1.2.2: Mote Software .. 123

4.1.2.3: Mote Configuration Parameters ... 124

4.2: Prototype Network .. 125

4.2.1: Virtual Network .. 126

4.2.2: MQTT-SN Gateway ... 127

4.2.3 – MQTT Broker .. 127

xii

4.2.4: Application Server ... 128

4.3: Prototype Application Server .. 128

4.3.1: Application Server Architecture and Modules .. 129

4.3.1.1: The classes Module .. 132

4.3.1.3: The surcharge_pipeline Module ... 135

4.3.1.4: The heartbeat_pipeline Module ... 139

4.4: Evaluation.. 139

4.4.1: Testing MQTT Communications .. 140

4.3.2: Testing Mote Connectivity .. 146

4.3.3: Testing Surcharge Detection ... 150

4.3.4: Testing Blockage Classification .. 159

4.4: Conclusion ... 182

5: Conclusion ... 183

5.1: Summary .. 183

5.2: Future Works .. 186

5.2.1: Further testing ... 186

5.2.2: MQTT-SN Implementation .. 186

5.2.3: Predictive Modelling .. 187

Appendix A: mote.js .. 188

Appendix B: run_appserver.js ... 192

Appendix C: classes.js .. 195

Appendix D: surcharge_pipeline.js .. 208

Bibliography ... 221

xiii

List of Figures

1-1 Illustration of Smart Earth concept. 3

1-2 Demonstration of two properties connecting to sewer main. 5

1-3 Abstract, theoretical model of hardware device to detect sewer blockages. 8

2-1 A simple depiction of the star-of-stars network topology. 17

2-2 LoRaWAN device classes. 19

2-3 A graphical overview of MQTT-SN network architecture. 26

2-4 The process of a wastewater blockage forming. 44

3-1 Overall design of urban IoT systems described in existing literature. 58

3-2 A further refinement of Figure 3-1’s design. 58

3-3 Demonstration of a pull-down resistor. 62

3-4 Demonstration of a pull-up resistor. 62

3-5 Graphical overview of a wireless mote’s typical components. 64

3-6 Demonstration of a float switch placed in an inspection shaft, while the

shaft is not surcharged.

65

3-7 Demonstration of a float switch placed in an inspection shaft, while

surcharged.

65

3-8 Graphical depiction of mote state machine. 68

3-9 Further elaboration of Figures 3-1 and 3-2 showing relationship between

motes, gateways, and the central system.

71

xiv

3-10 Pipeline for surcharge messages that arrive at the application server. 83

3-11 The ClientMessage and SurchargeMessage classes. 84

3-12 Demonstration of how mote records are dynamically retrieved from

database.

88

3-13 A continuation of Figure 3-12, showing further scenarios where surcharge

message arrive for different motes.

89

3-14 An illustrated diagram of the alarm veracity algorithm. 96

3-15 An illustrated diagram of the spatial classification algorithm. 97

3-16 An illustrated diagram of the temporal classification algorithm. 98

3-17 A class diagram for the central system’s application server. 105

3-18 A relational database schema for the central system’s SQL database. 108

3-19 The overall architecture of the system. 109

4-1 Photograph of a Raspberry Pi Zero. 113

4-2 All ports (including GPIO pins) on the Raspberry Pi Zero. 117

4-3 The schematic of our prototype mote. 117

4-4 Photograph of our prototype mote. 118

4-5 Another photograph of our prototype mote, clearly showing GPIO pins. 119

4-6 Virtual network architecture utilised by our prototype. 130

4-7 MQTT Communications Test: Output produced by RSMB MQTT broker

when first started.

141

4-8 MQTT Communications Test: Output produced by application server when

first started

142

xv

4-9 MQTT Communications Test: Output produced by the script mqtt-test. 142

4-10 MQTT Communications Test: Broker output after the application server is

started.

143

4-11 MQTT Communications Test: Application server after mqtt-test sends the

test message.

143

4-12 Mote Connectivity Test: Photograph of output produced by mote when

running the script mote_test.

146

4-13 Mote Connectivity Test: Application server’s output after mote_test is

executed.

147

4-14 Design for the physical testbed used to simulate a surcharging inspection

shaft.

153

4-15 Photographs of the completed test bed from varying perspectives. 153

4-16 The design for the test-bed’s custom pipe cap. 154

4-17 Photographs of the completed pipe cap from varying perspectives. 154

4-18 Our prototype mote placed inside the custom pipe cap. 155

4-19 The test bed being filled with water during our laboratory experiment. 157

4-20 The application server’s output when the float switch is activated during

our laboratory experiment.

158

4-21 A photograph of being drained from the test bed during our laboratory

experiment.

158

4-22 The application server’s output when water is drained from the test bed. 159

4-23 The virtual model produced by our simulation scripts. 161

4-24 Output produced by false alarm simulation script. 163

xvi

4-25 Application server’s output following execution of false alarm detection

script.

164

4-26 Output produced by full main blockage simulation script. 168

4-27 Application server’s output following execution of main blockage

simulation script.

169

4-28 Output produced by partial main blockage simulation script. 175

4-29 Application server output when third-last message from partial main

blockage simulation is received.

176

4-30 Output produced by application server when event is deemed ‘resolved’. 177

xvii

List of Tables

2-1 Effects of spreading factor on LoRa connection with 125 kHz bandwidth. 22

2-2 Practical number of messages sent by LoRa connection per day with each

spreading factor. Assumes coding rate is 4/5, payload is 20 bytes, and

bandwidth is 125 kHz.

23

2-3 Message Variable Part fields for MQTT-SN packets. 27

2-4 Bits constituting the MQTT-SN flags byte. 28

2-5 MQTT-SN Messages. 29

2-6 IoT architecture taxonomies from previous literature. 42

3-1 Mote state machine, expressed as the sum of all possible state changes. 67

3-2 IRQs and vectors utilised by motes. 68

3-3 Required configuration for LoRa air interface 73

3-4 Exchange of MQTT-SN messages when mote establishes connection with

the central system.

77

3-5 Exchange of MQTT-SN messages when mote sends a surcharge message to

central system.

78

3-6 Exchange of MQTT-SN messages when mote sends a heartbeat message to

central system.

78

3-7 Exchange of MQTT-SN messages when mote gracefully disconnects from

central system and enters sleep mode.

78

3-8 Symbols required and time on air for each MQTT-SN command using LoRa. 79

3-9 Estimated performance of our system’s LoRa communications. 80

3-10 Bitwise composition of application data binary string. 85

4-1 A list of Raspberry Pi Zero pins in order of physical arrangement. 115

4-2 Geerling’s power-saving techniques for Raspberry Pi Zero. 120

xviii

4-3 Acceptable values for GPIO object’s edge parameter in Node.js. 122

4-4 Acceptable fields for an anonymous object passed as the options

parameter. Again, applies to GPIO object in Node.js.

122

4-5 Configuration parameters used by mote software. 125

4-6 Specifications for all virtual machines created. 126

4-7 Application server’s constituent Node.js modules. 131

4-8 Configuration parameters stored in application server’s config.json file. 131

4-9 Template for ClientMessage class print() function. 133

4-10 Template for SurchargeMessage class print() function. 133

4-11 Template for Mote class print() function. 134

4-12 Template for Event class print() function. 135

4-13 Database record created for prototype mote – Mote 1. 151

4-14 Configuration values used by prototype mote. 151

4-15 Configuration parameters used by application server during testing. 157

4-16 Database record created for virtual mote - Mote 2. 160

4-17 Database record created for Virtual mote – Mote 3. 162

4-18 Test plan for verifying false alarm classification. 163

4-19 Test plan for verifying classification of full main blockages. 168

4-20 Test plan for verifying classification of partial main blockages. 174

xix

List of Technical Content

Pseudocode

3-1 Process undertaken by IRQ vector when surcharge state changes. 69

3-2 Process undertaken by IRQ vector when heartbeat countdown elapses. 70

3-3 Process for loading inspection shaft/mote data at application server. 90

3-4 Alarm veracity algorithm for application server. 99

3-5 Spatial analysis algorithm used by application server. 101

3-6 Temporal analysis algorithm used by application server. 102

Source Code

4-1 mqtt_test.js 144

4-2 mote_test.js 148

4-3 false_alarm.js 164

4-4 full_main_blockage.js 170

4-6 partial_main_blockage.js 178

xx

Publications from this Work

1. Ben Buurman, Joarder Kamruzzaman, and Gour Karmakar, "Low-Power Wide-Area

Networks: Design Goals, Architecture, Suitability to Use Cases and Research Challenges,"

submitted to IEEE Access and received Revise & Resubmit decision. Revision in progress

and will be submitted soon.

2. Ben Buurman, Joarder Kamruzzaman, and Gour Karmakar, "Intelligent Sewer Blockage

Detection System using Internet of Things". (in preparation)

1

Chapter 1 Introduction

1.1 Background
Since the dawn of the 21st century, the Internet of Things (IoT) has evolved from a supply-chain

management platform [26] to a paradigm whose impact is compared to the introduction of the

public Internet [35] [41]. The Internet has traditionally been perceived as human-centric,

where human users request and are served remotely located resources including HTML

documents and multimedia. IoT challenges this by giving ubiquitous devices Internet

connectivity, allowing them to communicate with other devices, web servers, resources, and

services. Estimates state that several billion IoT devices will be connected to the Internet by

2020 [24], with some predicting a number as large as 50 billion [26] and research challenges

preparing for trillions of devices in the future [28].These numbers outnumber the amount of

living humans, meaning the IoT could redefine the Internet as machine-centric in addition to

human-centric.

IoT has largely involved giving Internet connectivity to everyday devices including household

appliances, wearables, industrial machinery, fixtures such as light as taps, and healthcare

devices. Connectivity will be natively granted to new devices during manufacturing by

integrating microcontrollers, sensors, actuators, and network transceivers. For older objects,

connectivity can be emulated by attaching IoT-capable sensors and/or actuators which

interact with the objects. Discussion in recent years has raised the concept of a Smart Earth,

discussed at levels including the President of the United States [35]. Smart Earth involves

giving Internet connectivity to roads, urban infrastructure, utilities, and vehicles, alongside

natural features such as waterways, forests, and animals. Stankovic [28] proposed the IoT will

eventually become a ‘layer’ of sensing and actuation overlaid on the world, with all humans and

devices constantly interacting with one another.

In summary, IoT can be defined by adding Internet connectivity to ubiquitous, non-human

objects and devices with sensors and actuators. Sensors will gather contextual information for

these ‘things’, while actuators will carry out some real-world function.

Many IoT implementations require many inexpensive devices deployed sparsely over long

distances. Current wireless networks such as Wi-Fi, Bluetooth, LTE and GSM fail to meet these

2

requirements as they often sacrifice range, cost-efficiency, or scalability to meet other

requirements such as data rate. Limitations of current wireless networks led to the

development of Low Powered Wide Area Networks (LPWANs) for deploying IoT systems.

LPWANs have relatively low throughput but offer long communications range, inexpensive

hardware, high scalability, and low power consumption [30-32] [42-43]. These attributes have

made LPWANs useful for implementing a wide variety of IoT systems, with smart cities often

discussed as a potential application.

Smart Cities are an increasingly popular initiative worldwide, however there is no single

definition of the term. Zanella et al. [39] provide a good definition - using ICT to better utilise

public resources and improve public services, while reducing the costs of administration. This

same study proposes an Urban IoT to realise smart city goals through collecting data on urban

infrastructure and using this to optimise service delivery by remote actuation.

Urban IoT can also improve delivery of utilities such as power, water, wastewater, and gas.

Water and wastewater are arguably the two most essential, as humans cannot live without

potable water, and wastewater management significantly reduces health hazards. Examples of

using urban IoT to effectively improve water treatment is shown in [34], while [44-45] show

examples of enhancing wastewater treatment and disposal.

Traditional wireless technologies have insufficient range to deploy a network practically and

cost-effectively. This is because water and wastewater assets are often deployed over long

distances, deployed underground, or obscured by concrete. Water and wastewater

infrastructure are often composed of a very large number of assets such as pipes, with many

located in harsh or hard-to-reach places. An urban IoT to monitor this infrastructure must be

capable of handling many devices, able to communicate over long distances, and prove

tolerant to obstructions. As a consequence of requiring many devices, urban IoT for this

infrastructure must be inexpensive to remain practical for limited budgets. Practicality also

requires a long battery life, as changing batteries is expensive and often difficult in hard-to-

reach places. Considering the above factors, LPWANs provide the perfect implementation for

an urban IoT in wastewater or water systems.

3

Figure 1-1 – An illustration of the Smart Earth concept, where data is collected from a wide variety of natural and human-made features to provide an ‘overlay’ of data

collection. (1), (3), (7), (8), (9), and (10) are examples of this taking place in different natural environments and ecosystems including forests, plains, hills, mountains,

animal burrows, and waterways. (12), (13), (14), (16) and (18) represent IoT enabled buildings or urban facilities capable of data collection and potentially actuation. This

includes smart homes, commercial buildings, parks and recreational facilities, parking, and traffic management, and even emergency services. Similarly, (2), (4), and (5)

show how data can be collected from farms and agricultural equipment. Finally, (11), (17), and (19) demonstrate an IoT-enabled smart water infrastructure. Water is not

alone in this, as a smart earth could also include power, gas, garbage, or telecommunications infrastructure.

4

An urban IoT implemented with LPWAN technology could theoretically be used for monitoring

wastewater systems and detecting blockages. Low-power, low-cost wireless sensors could be

deployed throughout a wastewater system and used to read contextual variables which indicate

blockage. The low cost and easy maintainability of LPWANs makes a potential network

practical for deployment in developing countries, where improving wastewater systems could

significantly reduce fatalities and environmental contamination alongside improving quality

of life. In first-world countries, an inexpensive system with clear benefits provides significant

motivation for governments to begin introducing smart city programs. Implementing such a

system would also increase maintenance efficiency and reduce time of service delivery,

providing additional benefits to both governments and customers.

1.2 Wastewater Systems

Effluent is a term used for liquid waste produced by human habitation. Homes and small

businesses produce moderate amounts of effluent through fixtures such as sinks, toilets,

showers, and baths, alongside appliances such as dishwashers and washing machines.

Commercial facilities and urban infrastructure also produce a larger volume of effluent with a

higher probability of containing hazardous materials. Effluent is mostly water; however, its

other components range from human and animal waste to cleaning products and industrial

chemicals. These present significant risks to both humans and the environment, making safe

containment and disposal of effluent a high-priority issue for governments.

The aforementioned disposal and containment of effluent is implemented by urban

infrastructure collectively termed wastewater systems. Sources of effluent at each property are

connected to underground pipes named property connections. These carry effluent to

underground pipes named sewer mains, with each sewer main connected to many property

connections. Sewer mains end by feeding into other and often larger sewer mains, forming a

network of pipes that eventually ends at a specified treatment plant or storage facility. Figure 1-

2 illustrates the above system. To reach this intended destination, effluent must always flow

through pipes in a specific direction. The direction which wastewater flows is named

downstream, while the opposite direction named upstream.

An additional pipe named an inspection shaft is attached to each property connection between

the actual property and sewer main. These rise vertically from the property connection and

terminate at ground level, allowing observation of the inner property connection. Watertight

5

caps are installed on these shafts to prevent foreign material entering the system or effluent

leaking out. Field technicians use inspection shafts to search for surcharges, which is the

industry term for an increase in effluent level. As we discuss below, surcharges can be used to

determine both the type and location of a potential blockage.

Blockages can occur at both sewer mains and property connections when normal effluent flow

is obstructed. This relative location is used to classify blockages, alongside whether they are

full or partial. Full blockages completely occupy all available space in a pipe, and

consequentially completely stop effluent flow from that location. In contrast, partial blockages

do not occupy all available space, and provide one or more ‘gaps’ for effluent to flow through.

Both types of blockage result in surcharge at assets located upstream, with full blockages

causing a constant rise and partial blockages causing a fluctuation. Property connection

blockages will only cause surcharges in that individual property connection, while main

blockages result in surcharges in all upstream connections. From a diagnostic perspective, a

property connection blockage will result in that connection’s inspection shaft surcharging.

Conversely, a main blockage will cause observable surcharges in all upstream inspection

shafts.

Figure 1-2 – Two properties connecting to their closest sewer main. 1 is the lid covering the first property’s

inspection shaft, and 2 is that property’s property connection. 3 is the second property’s inspection shaft lid,

and 4 the second property connection. These serve the same purpose in both properties, and the connections

carry effluent to the sewer main which is represented by 5.

6

1.3 Research Motivations

This section provides motivations for undertaking the research in this thesis by detailing the

critical importance of detecting wastewater blockages and shortfalls of current systems. This

research is largely motivated by the limitations of current systems, and endeavours to develop

a new solution addressing these limitations using smart sensors and IoT. Following this, other

motivations arising from the system’s intended deployment are discussed.

1.3.1 Monitoring of Wastewater Blockages

Left unattended, blockages will inevitably cause surcharges, and eventually effluent will breach

through inspection shafts or property fixtures. These breaches are not only distressing for

residents but pose significant risks to public health and the environment. Pathogens in

effluent can cause a myriad of disabling or fatal health conditions, which alarmingly do not

even require direct contact with the effluent itself. Australia’s Department of Health [8] stated

that exposure can occur indirectly if animals or insects come into contact with the breach, and

then with humans.

Utility providers are responsible for resolving blockages and decontaminating any areas

exposed to effluent if a breach occurs. Not only is decontamination costly and time-

consuming, but breaches can cause significant damage to a utility provider’s reputation and

open them to potential legal and regulatory action.

The current most common method of blockage monitoring is Closed Circuit TV (CCTV)

inspection. This involves attaching a video camera to a long, retractable tube and pushing it

through a length of sewer main. Video recorded inside the sewer is displayed on a monitor to

field technicians in real-time, who inspect the footage for blockages or faults. Inspections are

performed on every length of main on a round-robin basis, and ad-hoc on specific lengths if a

blockage is suspected. These video recordings are often archived for further inspection and

future reference.

Perhaps the biggest limitation of CCTV inspection is that it can only be performed on a round-

robin basis. A combination of limited resources and large number of wastewater assets result

in a potentially large time between inspections for a given asset, often measured in months but

sometimes even years. Round-robin CCTV inspection is also only capable of detecting

blockages that have formed and become noticeable in the time between each inspection.

Logically, we can assume the probability of detecting a blockage has a negative relationship

7

with the length of time between inspections. Many blockages consequentially go undetected

until they cause an effluent breach, defeating the purpose of inspection.

Acoustic blockage detection is an increasingly popular alternative to CCTV inspection,

utilising sonar technology to detect blockages or other abnormalities in a pipe. To utilise

acoustic detection, technicians lower a special probe into a pipe and activate its sonar

component. This is much quicker to perform than CCTV inspection, decreasing the length of

time between inspections for a given asset. However, acoustic detection also shares its biggest

limitation with CCTV technology; staff must physically visit each main on a round-robin basis.

There will still be significant lengths of time between a given asset’s subsequent inspections,

and blockages will form during this time while remaining undetected.

Addressing the fundamental limitations with CCTV and acoustic detection requires a method

for simultaneously monitoring an entire wastewater system without regular human

intervention. Instead of blockages only being detected during sparsely spread routine

inspections, blockages should be detectable as soon as they begin. Early detection will ensure

blockages are detected before customers even notice any signs, along with preventing

exposure to dangerous effluent. Field technicians will also spend much less time performing

manual sewer inspections and can instead be assigned to tasks requiring more human

ingenuity.

Building on Section 1.1’s concepts of Smart Cities and Urban IoT, this research will utilise a

successful union of hardware and software to develop a system addressing the limitations of

current blockage detection techniques. By using a low-powered microcontroller, sensor and

wireless transceiver, a device as shown in Figure 1-3 can be developed to detect sewer

blockages. This device’s sensor must be capable of detecting surcharges at the point of

deployment, as surcharge indicates a downstream blockage. If the sensor detects a surcharge,

a notification can be processed by the microcontroller and sent to a central system using the

wireless transceiver.

Software deployed on a central system will be responsible for receiving surcharge alerts from

devices and determining their location, before notifying appropriate staff. Field technicians

will be deployed to the blockage’s location and able to resolve the issue before it prevents a

health risk. The central system should also be capable of determining whether a blockage is

full or partial, and whether it is located at a property connection or main.

8

Figure 1-3 – An abstract, theoretical model of a hardware device which could detect sewer blockages. This

would collect water level, as it is the most common and distinctly changing factor when blockages occur –

essentially, this will be monitoring for surcharges.

This device contains a sensor to detect surcharges, a microcontroller for processing input, a transceiver for

sending that input to a central system, and a power supply. The antenna is used for physically conveying the

message.

1.3.2 Cost and Complexity of Current Solutions

Regardless of effectiveness, any wastewater monitoring system will be completely impractical

if implementation and operation are too expensive. Utilities providers often utilise public

funds and are fiscally conservative, resulting in hesitation to implement a new system where

cost outweighs potential benefit or profit. Despite significant improvements to current

methods such as CCTV or acoustic inspection, the system we will develop still performs the

same overall function of blockage detection. Ultimately, management decisions at utilities

providers will depend on the previously alluded comparison of cost and benefit. As a result, we

must also conduct research on how to keep development, deployment, and maintenance costs

as low as possible.

To provide maximum benefit our delivered system must be deployed throughout an entire

wastewater infrastructure. Any areas where the system is not deployed will effectively be

unmonitored and blockages will remain undetected. As the area serviced by wastewater

9

infrastructure grows, two requirements will emerge; i - increased number of connected

properties will require a larger number of devices, and ii - larger overall distance will require a

greater wireless range. These two requirements do not necessarily grow in a linear fashion,

with their individual rates of growth dependent on the area’s population density. Both the per-

unit cost of devices and cost of wireless network deployment must be kept low enough for

utilities providers to realistically implement.

Looking elsewhere, sewer inspection methods in developing countries are often crude and

dangerous, putting the persons responsible under significant risk. An example of this is

‘manual scavenging’, where people enter sewers without protective gear and remove blockages

or perform repairs by hand. Our research can provide the greatest possible benefit for these

countries, even potentially saving lives. This increases the motivation for developing very

inexpensive techniques, as developing countries understandably have lower budgets for

wastewater development. Any system we develop must not only be practical for wide-scale

deployment in ‘typical’ environments, but also those with limited funds.

Complexity also presents another barrier to wide-scale adoption of the system. Regardless of

cost-effectiveness, any system will provide little practical benefit if technicians are unable to

operate it. Complex systems require more time and funds be spent on training,

implementation, and troubleshooting – tipping the cost-benefit ratio further out of the system’s

favour. Furthermore, onerous, and overly complex systems will be seen by utility providers as

providing less benefit. Utility providers are often change-adverse, and any new systems must

prove beneficial relatively quickly and allow for easy transition.

1.3.3 False Blockage Alarms

As our research scope does not include developing an actuation method for resolving

blockages, any blockages will be resolved by notifying the utility provider who then deploy field

technicians to the correct asset. Deployment not only requires field technicians to immediately

cease their current task but incurs costs to the employing utility provider in person-hours,

transport, and asset lifetime. While the benefits of deployment far outweigh the costs if a

blockage is occurring, this will not be the case if there is no actual blockage. Therefore, to

ensure any system we develop is both financially viable and attractive to utilities providers, we

must ensure that most blockage notifications are genuine.

10

False Alarms can be defined as any occasion where our system detects a surcharge, but no

blockage is occurring. A system that simply detects surcharges with no additional logic will

produce a myriad of false alarms, making it unviable for the reasons previously stated. There

are two broad categories of events that can cause false alarms; actual surcharges caused by

something other than a blockage, and surcharges being detected when none are occurring.

The first category of events is the most common, occurring on a near-daily basis when an

appliance or fixture ejects a large amount of effluent in a very short period of time. This

commonly occurs with dishwashers, washing machines, fixtures built before water-saving

technology and industrial appliances. Utilities providers have no prerogative to respond to

these ejections, as they have no negative consequences and are a normal part of wastewater

infrastructure. Surcharges caused by these ejections are typically short-lived and prone to

fluctuations much more rapid than partial blockages. Our research must determine a method

for measuring and correctly processing surcharge durations to construct a model

differentiating these events from blockages.

The second category of events occur when the float switch or mote detect a surcharge, but

none are present. This is in contrast to the first category where a surcharge is present, but not

caused by blockages. Faulty devices and sensors are the most obvious cause of this event,

however quirks inherent in all sensors or electronics can also be responsible – examples of this

include pin floating and switch bouncing. To prevent these from creating false alarms, our

research must identify each of these quirks and develop methods for managing them.

Additional effort must be placed into selecting quality equipment within the very limited price

range and developing robust hardware and software that is naturally more resistant to faults.

1.4 Research Objectives

To address the motivations outlined in Section 1.4, the following objectives should be carried

out;

1. Design, develop and test an inexpensive, energy-efficient device capable of detecting

effluent surcharges and notifying a central system.

2. Design an IoT-based central system capable of processing readings from a large

number of connected IoT-based devices, processing readings and notifying relevant

parties. This system must also be capable of differentiating actual blockages from false

alarms.

11

3. Evaluate the overall system and its functionality using a combination of a real-world

simulation environment and virtual model.

1.5 Research Contribution

This research delivers an IoT-based system consisting of both hardware and software to fulfil

the objectives outlined in Section 1.4. The system delivered will be capable of monitoring an

entire wastewater system for blockages, determining blockage type and location, and notifying

relevant staff of blockages. To fulfil objective 3, the system will be capable of differentiating

blockages from false alarms such as Rainfall-Dependent Infiltration and Inflow (RDII).

Monitoring an entire wastewater system requires deploying a large number of devices across

the system’s potentially vast infrastructure. Manufacturing such a volume of devices is an

unrealistic goal for this research, however we will provide sufficient information for other

organisations to manufacture large-scale solutions. This research will also build a smaller-

scale prototype of the system consisting of a single end device and central system for proof-of-

concept and testing.

To deliver this system, we provide the following;

1. Research across various disciplines ranging from computer science to public health

and urban infrastructure.

2. A detailed design for producing a low-cost, energy-efficient device capable of detecting

effluent surcharges and communicating wirelessly with a central system.

3. A detailed design for an IoT-based central system capable of processing inputs from all

devices in deliverable 2, differentiating genuine blockages from false alarms, and

classifying and locating blockages.

4. A prototype system capable of demonstrating an implementation of key requirements

and the aforementioned design. This will include both a mote and central server

software, alongside a virtual communications network.

5. Testing and evaluation of the prototype system developed in deliverable 4.

Challenges for future research and starting points for future developments with the system will

also be provided to allow continued evolution of the concept and suitability in a changing

environment.

12

1.6 Thesis Structure

Chapter 2 starts by evaluating past research to perform a comprehensive multidisciplinary

literature review. Applications of computer science to wastewater management and smart

utilities, IoT systems, wireless communication technologies, and relevant hardware and

software engineering are reviewed. In addition, other domains such as civil engineering and

environmental science are reviewed for relevant wastewater management projects.

The system’s design is provided in Chapter 3, first by developing a detailed overall model of

the delivered system to separate it into three components; motes, central system, and the

interface connecting them. Following this, the remainder of the chapter is divided into detailed

designs for each component. Each component’s detailed design utilises both our own research

and that of past literature provided in Chapter 2.

Mote design first evaluates factors and potential issues that must be considered during the

design process. Considering these issues, we follow this with actual designs for both the mote’s

hardware components and physical sensor used to detect surcharges. This is then expanded by

selecting the wireless network technologies and protocols used by the mote and determining

how these are integrated into the mote. Finally, we design the firmware that will run on these

motes to utilise the hardware, sensor, and wireless platform.

Next, we design the overall communications network that links mote and central system. With

goals of long range, low cost, and energy-efficiency, we utilise the research in Chapter 2 along

with our own ingenuity to produce a robust and efficient network architecture.

Chapter 3 concludes with a design for the central system’s software, which is responsible for

processing all blockage notifications alongside notifying appropriate parties. In our research’s

context, processing refers to identifying false alarms, classifying, and locating a blockage. This

design includes specifications for complex and parallel-processing algorithms used to classify

and locate multiple surcharge messages simultaneously.

While Chapter 3 delivers the system’s design, Chapter 4 demonstrates an implementation of

this design through a prototype mote and central server. We first utilise schematics,

photographs, and actual firmware code to detail how the mote was developed, before detailing

architecture and specifications for the network and its hosts. Finally, we describe the central

server’s software in detail, presenting both its architecture and practical deployment on the

aforementioned network.

13

Finally, Chapter 5 summarises our research, how this project met and surpassed the

challenges, and other achievements made during the study. This is followed by analysing the

experimental results and their implications, before suggesting what should be done in future

for future improvement of the developed system.

14

Chapter 2 Literature Review

With the scope of our research planned, it is appropriate we start by reviewing previous

relevant literature. We will begin by utilising past works to provide an overall definition for the

Internet of Things (IoT) before discussing protocols and services with potential implications

for our work. Following this, we will review the concept of smart cities by providing a robust

definition of the concept and a series of examples where it has been used. This look at smart

cities will be concluded by examining different architectures and protocols that have been

identified, giving us a practical guideline for deployment the system developed in this

research. Finally, we provide a more detailed analysis of wastewater infrastructure and

implications of blockages, before finishing with an examination of other attempts at detecting

them with an IoT system. Our review will show that while past research has made worthwhile

contributions, nothing is yet capable of detecting sewer blockages across an urban area in a

practical and cost-effective manner. Combined with the implication of blockages, this provides

ample literature for our research to be completed.

This section is broken further into sub-sections, each associated with one of the points above.

2.1 Internet of Things (IoT)

Given that we intend to deliver our solution as an IoT based system, it seems appropriate to

first discuss the IoT as a concept and provide a solid definition of what the term actually

means. As a consequence of its somewhat rapid ascension into the mainstream corporate and

commercial lexicon, there are a myriad of definitions and ‘buzzwords’ obscuring its true

purpose.

All prior literature converges on defining the IoT as a concept connecting ‘everyday’ physical

objects to the Internet and allowing them to communicate with each other and more ‘standard’

Internet services. For example, a smart home’s front door could command lights to turn on

when a person opens the door. Simultaneously, that person would be capable of remotely

controlling and monitoring the lights through a more traditional web interface. Al-Sawari et al.

[126] further elaborate by claiming the IoT will involve the Internet’s transition from

exclusively human-to-human communications to also include human-to-thing and thing-to-

15

thing communications. In this context, a thing is any non-human object that connects to the

Internet.

The IoT was first introduced as a concept in 1999 by a researcher named Kevin Ashton, who

intended to bridge real-world objects with the Internet [125] [127]. According to Miraz et al.

[124], the IoT emerged as a distinct entity in 2008 when more inanimate objects were

connected to the Internet than human users. Since this inception, the goal of building the IoT

has always been unifying everything in the world with a standard infrastructure, allowing

contextual data about the physical world to be collected from an unprecedented number of

sources.

Nagakannan et al. [125] state that the introduction of IoT should make human lives simpler and

more comfortable, which alone is sufficient motivation for investment and development. Routh

and Pal [127] make a similar statement, claiming IoT is solving current everyday challenges

and will continue to solve new challenges. Miraz et al. [124] paraphrase futurist Ray Hammond,

who predicted that the linking of computer networks would increase the spread and

dissemination of information on an unprecedented basis. While we have seen Hammond’s

prediction eventuate with the more familiar human-to-human Internet, applying these

concepts to the IoT sees the unprecedented spread of information regarding the physical world

we interact with every day. This provides significant motivation to commercial entities, with

modern organisations often seeing data as their greatest asset – a fact easily proven by the

increase in data scientist jobs.

Al-Sawari et al. [126] and Miraz et al. [124] both state things connecting to the IoT have several

unique requirements, unique consequences of the system’s massive scale and potentially

scattered or remote deployment. We also propose these requirements stem from the actual

nature of things– if Internet capabilities are added to everyday objects, any extra components

must be as subtle and inconspicuous as possible. The unique requirements of IoT systems

have been the subject of several papers, and it would be possible to fill this entire thesis with a

study on them. However, for the sake of brevity, we will briefly state them as follows. IoT

systems require very low power consumption, and therefore also require minimal processing

power and storage volume alongside very energy-efficient wireless communications schemes.

The potentially massive number of devices also requires very scalable systems with an equally

massive number of potential addresses, or at least an intuitive method for handling a smaller

16

address space [119]. Miraz et al. confirm this by affirming that IPv6’s introduction was crucial

to identifying “billions of sensors”.

Al Sawari et al. [126] classify IoT communication protocols as either Short Range or Low

Powered Wide-Area Networks (LPWANs). Naturally, this implies a taxonomy based on

communications range, and while Short-Range networks have a reach measured in metres,

LPWANs are typically measured in kilometres [31]. Comparing the specifications Raza et al.

[43] provides for each LPWAN with those provided in [126] for short range protocols reveals a

few interesting relationships. Short range networks generally provide a higher data rate than

LPWANs and provide mesh or multi-hop topologies. In contrast, almost every LPWAN is

restricted to the star topology, although Finnegan and Brown [67] note that LoRa can

potentially support mesh networking.

Examples of short-range networks provided by [126] include the IP-based 6LoWPAN, ZigBee,

Bluetooth, Radio Frequency Identification (RFID), Near Field Communication (NFC) and Z-

Wave. They also provide SigFox and cellular networks as examples of LPWANs, however

traditional LTE or GSM cellular networks do not fit this category due to high power

consumption. More valid examples of LPWANs are provided in [43] and [67] including SigFox,

LoRa, Weightless, NB-Fi, RPMA, and Telensa. While LTE and GSM are not strictly LPWANs,

LPWAN adaptations of these standards with lower power consumption do exist such as the low-

powered LTE-M, NB-IoT, and EC-GSM.

Mohanty et al. [121] architecturally break the IoT into four constituent components. This

includes the things themselves, a local area network (LAN) that many things connect to, the

public Internet, and the cloud. A base station device manages multiple things to form a LAN,

and all traffic from these things must pass through it. One traffic reaches the Internet, it can

utilise cloud computing as required.

Throughout the rest of this research, we will refer to Internet-enabled things as Motes. This is a

prominent term among the business world and general population, and for our purposes refers

to a combination of physical thing, power supply, microcontroller, and wireless transceiver.

2.2 Low Powered Wireless Area Networks

Studies [42] [43] [67] comparing LPWAN protocols show that all commercially available

networks utilise the star or star-of-stars network topology. Star-of-stars topology (illustrated in

Figure 2-1) is very similar to standard star topology, with the defining exception that a mote

17

can connect to multiple base stations. Motes will broadcast outgoing messages, and any base

station in range will accept and process the reading. This potentially increases system

complexity, as multiple base stations accepting a single message will naturally result in

duplicates. Duplication can be handled by additional processing, however as always this

results in further resource consumption.

Despite increasing the complexity of message processing, star-of-star topology allows

networks to continue partial operation when base stations are offline, increasing both

resilience and reliability. Increased resilience makes a star-of-star network much better suited

to potentially sparse, signal-hostile deployment environments of LPWANs and IoT systems.

A wide variety of LPWAN platforms are available, with both standardisation and

communication between multiple platforms in its relative infancy. Additionally, the availability

of platforms differs across regions based on financial, political, and social factors. This raises

several problems when attempting to develop a system that will be deployed worldwide,

especially when considering that developing countries will reap the most benefit. As a

consequence of reduced investment capacity and profitability for network operators,

developing countries are likely to have a smaller range of LPWAN platforms available.

Figure 2-1: A simple depiction of the Star-of-Stars topology. The mote labelled x is in communications range

of both base stations – A and B. As a result, it is capable of sending and receiving traffic from both.

Algorithms must be implemented on either end to process and discard duplicates, with the highest signal

strength packet often being retained.

18

After reviewing previous literature regarding different LPWAN platforms, we have determined

that LoRa is the most suitable for any system we develop. LoRa provides a communication

range of 5km in urban and 15km in rural environments [42] [67], which is sufficient for

network deployment over a large area. In addition, LoRa base stations are theoretically capable

of individually serving over 1,000,000 devices [67].

However, one of LoRa’s biggest advantages is the ability to deploy private networks. While

many organisations offer LoRa networks as a service, any organisation worldwide is capable of

buying an inexpensive LoRa gateway and deploying their own network. Location no longer

restricts the availability of LPWAN platforms, as by deploying private networks organisations

can make LoRa available wherever they wish.

2.3 LoRa

The term ‘LoRa’ actually refers to two different protocols [68]. LoRa is the physical-layer

modulation scheme used to transport data over an air interface, while LoRaWAN is the medium

access control (MAC) protocol allowing multiple motes to send LoRa-modulated messages to a

single gateway and vice-versa. As expected from the above definitions, LoRaWAN specifies the

architecture of a LoRa network. LoRa itself is simply the means by which motes and gateways

communicate in this architecture.

LoRaWAN specifies a network architecture by classifying all devices (named LoRa Nodes or

End Points) based on how often they can receive incoming messages [72] as illustrated in

Figure 2-2. This can be thought of as a form of duty cycling. Gateways are aware of each

mote’s scheduled receive windows, and store-and-forward messages bound for any connected

motes according to this schedule [68].

According to technical specifications on LoRa, Gateways route mote data to a single available

Network Server (NS) using a higher capacity backhaul. LoRaWAN’s specification states that the

NS receives and decodes LoRaWAN packets, before routing them to the correct Application

Servers.

Application Servers (AS) are simply other servers that communicate with the NS over its

available interfaces. Our system will utilise a single AS for all intelligent ‘backend’ processing

and handling of surcharge data. This includes storage and retrieval, determining a surcharge’s

cause, locating a surcharge, handling alarms, and providing an API for other corporate

systems.

19

Data sent from an external system to a mote must first be sent to the relevant AS, before being

forwarded to the correct NS which will route it to that mote’s gateway. In this situation, the NS

is responsible for encoding the application data in the LoRa format and performing any other

processing. For both uplink and downlink communications, the LoRaWAN specification also

delegates responsibility for network security and administration, Adaptive Data Rate (ADR)

mechanisms, and discarding of duplicate packets to the NS.

Figure 2-2: LoRaWAN device classes. The term receive window refers to a period of time during which a

device is listening for incoming messages and is therefore capable of receiving them. TX denotes a period

during which a device is transmitting (sending) a message, and RX denotes a receive window. It is important

for system developers to understand that devices will always consume significantly more power while a

receive window is open.

2.3.1 LoRa Frame Format

Augustin et al. [68] outline the frame format for LoRa’s physical layer. LoRa PHY frames begin

with a preamble between 10.25 and 65,539.25 symbols long, with this length configurable by

network developers. Preamble length is determined by spreading rate, with higher spreading

rates requiring longer preambles. Preambles mostly consist of constant upchirps, starting at

20

the lowest frequency available for the selected bandwidth and ending at the highest. The last

two of these upchirps modulate a variable named the sync word, performing a form of

multiplexing by uniquely identifying the current LoRa network among those using the same

frequency bands. Following these upchirps, 2.25 symbols of downchirp denote the end of the

preamble.

Like with many network frame formats, LoRa preambles are followed by a 4-byte header [76].

Interestingly, unlike many other network protocols, inclusion of this header is entirely

optional. Headers contain the payload’s size in bytes, the utilised code rate, whether a message

Cyclic Redundancy Check (CRC) is present at the end of the frame, and a header CRC. The

payload’s length in bytes is stored with a single byte, limiting each frame’s payload to 256

bytes in length.

When encapsulating these PHY frames for MAC-level communications with LoRaWAN, the

aforementioned PHY frames are encrypted with AES-128 and several leading fields are added.

The first of these is FPort, which is a one-byte port multiplexing field. Following this is a group

of fields named FHDR, which contains the following;

DevAddr – A 32-bit device address. 7 bits identify the network itself, while 25 bits uniquely

identify the mote on the network.

ADR – A one-bit ‘flag’ denoting whether or not LoRa’s ADR mechanism is being utilised.

ADRAckReq – A one-bit flag presumably used by the ADR mechanism for message

acknowledgement.

ACK – A one-bit value acknowledging the last received frame.

FPending/RFU – A one-bit value called FPending in uplink messages and RFU in downlink

messages. FPending flags whether or not a frame is pending from the network server,

instructing the end device to send more frames to keep receive windows open. The purpose of

RFU is not stated.

FOptsLen – A 4-bit number stating many additional MAC-layer commands (if any) have been

added to this frame.

FCnt – A 16-bit frame counter. This potentially allows 65,536 frames to be transmitted while

maintain sequence.

21

After FCnt, any MAC-layer commands will be added to the frame. All MAC commands are

comprised of an 8-bit command ID, optionally followed by any bytes making up that

command’s parameters. Command parameters can be up to 32 bits in length. If no MAC

commands are utilised, this space will still be filled with six bits.

The above sequence is then further encapsulated between other fields. Before this sequence

are the following three fields;

MType – A 3-bit code representing the message type. This specifies whether the message is

uplink or downlink, alongside whether an acknowledgement is required.

RFU – A 3-bit code which has not been elaborated on.

Major – A 2-bit code representing the version of the LoRaWAN protocol utilised by this frame.

At the time of writing, the only permitted value is 0. This will only allow 4 versions as it is a 2-

bit number.

The MAC sequence previously discussed follows the Major field and is then trailed by a 32-bit

checksum field named Message Integrity Code (MIC). MIC is calculated using the MType, RFU,

Major, DevAddr, ADR, ADRAckReq, ACK, FPending/RFU, FOptsLen and FPort fields alongside

the encrypted PHY payload.

Considering protocol field values, Augustin et al. provide a formula for calculating the symbols

required to send a payload, which is as follows. PL is the payload size in bytes, SF is the

spreading factor, CRC value is 16 if enabled, H is 20 if the PHY frame header is enabled, DE is

2 if data rate optimisation is enabled and CR denotes code rate.

𝑆𝑦𝑚𝑏𝑜𝑙𝑠 = 8 + max ([
8𝑃𝐿 − 4𝑆𝐹 + 8 + 𝐶𝑅𝐶 + 𝐻

4 ∗ (𝑆𝐹 − 𝐷𝐸)
]

4

𝐶𝑅
 , 0)

Communication range depends on link budget, the size of which varies according to

bandwidth, coding scheme, transmission power, carrier frequency, and spreading factor [67].

LoRa can also theoretically utilise any bandwidth between 7.8 and 500 kHz, however Finnegan

and Brown [67] note that only 125, 250 and 500 kHz are used in practise. Higher bandwidths

result in a higher data rate and greater resistance to interference, but conversely lower

communications range. The 125 kHz bandwidth appears to be the most commonly utilised in

existing literature.

22

In both [69] and [75], Lavric and Popa provide examples of SNR limit, bitrate, and time-on-air

measurements for each spreading factor at a 125 kHz bandwidth. These are detailed in Table

2-1 and observation shows clear trends. Higher spreading factors result in lower bit and

symbol rates along with higher time-on-air and power consumption, however, also increase

SNR limit – resulting in longer range and improved noise tolerance.

Research by Augustin et al. [68] measured the percentage of packets successfully received over

a 2800m distance obstructed by urban environments. No packets were received with a

spreading factor of 7, but a spreading factor of 12 saw 80% of packets received. As spreading

factor was increased, the number of obstacles became increasingly irrelevant as obstacle

penetration improved. However, this came at a cost – increasing spreading factor also lowered

bit rate. Alongside reduced bit rate, Finnegan and Brown [67] demonstrated that increased

spreading factors reduces the number of messages that can practically be sent per day (Table

2-2).

Table 2-1: Effects of spreading factor – 125 kHz bandwidth ([69], [75]).

Spreading

factor

Symbols/second SNR limit Time on air for

10-byte packet

Bitrate (baud)

7 976 -7.5 56 5459

8 488 -10 103 3125

9 244 -12.5 205 1758

10 122 -15 371 977

11 61 -17.5 741 537

12 30 -20 1483 293

23

Table 2-2: Practical number of messages sent per day with each spreading factor. This

assumes that the coding rate is 4/5, payload is 20 bytes and bandwidth is 125 kHz ([67]).

Spreading Factor Messages Per Day (Packets with 20-byte Payload)

7 417

8 224

9 121

10 66

11 30

12 16

2.4 The MQTT and MQTT-SN Protocols

Several studies recommend using the Message Queueing Telemetry Transport (MQTT)

application-layer protocol for IoT networks [77] [78], and upon observation their reasoning

becomes obvious. MQTT is very simple and flexible, and its publish-subscribe architecture is

perfectly suited to transparent communications between heterogenous systems.

MQTT requires a server named a broker to operate, which facilitates the aforementioned

publish-subscribe communication between a number of clients [82]. Clients subscribe to a

range of topics by sending a subscribe request to the broker and can conversely unsubscribe

as needed with another request. Clients also ‘publish’ data by assigning it a topic and sending

it to the broker. When published data arrives at the broker, it will be sent it to all clients that

have subscribed to its topic.

In addition, MQTT employs a mechanism named Last Will and Testament (LWT). LWT allows

clients to specify a message and topic, and if they unexpectedly disconnect from the broker

this message will be sent to all clients subscribed to that topic. We have given this mechanism

special mention because of its potential advantages to an IoT system. As shown later in this

chapter many IoT systems are of critical importance, with examples including infrastructure,

24

medical, and security systems. Many IoT systems will also deploy motes in remote or hard-to-

reach places, making on-site repairs impractical and costly.

If LWT is cleverly used, the self-healing network capabilities often restricted to short-range

mesh networks can be extended to LPWANs. Even if this cannot be achieved, LWT can easily

be used to notify network monitoring software or system administrators, expediating rapid

response and quick repairs. Self-healing is particularly advantageous for the aforementioned

types of IoT system. Critical systems can reduce downtime, while massive or remote systems

can reduce the need for on-site deployment. Even if self-healing is not possible, rapid

notification and following deployment will make significant reductions to downtime.

2.4.1 MQTT-SN

MQTT-SN is a version of MQTT developed especially for IoT systems utilising constrained

networks and devices [83]. Fuqaha et al. [78] recommend using the connectionless UDP

transport-layer protocol, as it exhibits far better performance with low-bandwidth and

unreliable networks than the more ubiquitous TCP protocol [84]. UDP also provides its own

adaptation of TCP’s Transport Layer Security (TLS) mechanism named Datagram Transport

Layer Security (DTLS). [81] As the name suggests, DTLS is designed for datagrams as used in

connectionless systems such as UDP. Several distinctions between MQTT and MQTT-SN can be

observed and are discussed below.

Most notably, MQTT-SN does not send a topic’s human-readable name with publish and

subscribe messages. Instead, a client sends the human-readable topic name to the broker

once, which responds with a 2-byte ID it has mapped to that name. Other clients can then

request this ID by sending the name to the broker. Interestingly, this does not always result in

improved efficiency. If the topic name is under 2 bytes in length, mapping it to an ID will make

no difference to message size and additional overhead will be required when requesting these

IDs. In these cases, the process can be skipped, and the original topic name can be used

instead.

MQTT-SN clients connect to an MQTT-SN Gateway (MQTT-SN GW) which translates its packets

into the standard MQTT format before relaying them to the broker. If the MQTT-SN GW and

client are not on the same network, an MQTT-SN forwarder can be attached to the client’s

network and held responsible for encapsulating packets and relaying them to the gateway over

25

a backhaul interface. MQTT-SN GWs can also send MQTT-SN packets to the forwarder, which

will decapsulate them and pass them to the client over that same backhaul.

Two types of configuration are possible for MQTT-SN GWs; transparent and aggregating

gateways. Transparent gateways open and maintain an individual MQTT connection to the

broker for each connecting client, while aggregating gateways open a single MQTT connection

to the broker and multiplex all client communications. While transparent gateways perform

direct translation between MQTT-SN and MQTT for each client, aggregating gateways

intuitively determine which information is essential and only send that.

Transparent gateways are easier to configure, however aggregating gateways are much better

suited to a large number of clients. Aggregating gateways prevent the broker from maintaining

a potentially enormous number of connections and ensure any connection limits are not

reached. Figure 2-3 provides a graphical overview of the MQTT-SN architecture.

2.4.2 MQTT-SN Packet Structure

All MQTT-SN packets can be broken into two sections [82];

• A Message Header between 2 and 4 bytes

• A Message Variable Part of variable length

The message header has a fixed format, while the message variable part’s length depends on

the message’s type and any payload. This length is specified in the message header field.

Message header can be further broken into two fields; Length and MsgType.

Length specifies the packet’s total length and can actually be between 1 and 3 bytes. If the

field’s first byte is equal to 1 (00000001), then the remaining two bytes are the packet’s total

length. If the first byte has a different value, that value is the packet’s length. Notably, packets

under 256 bytes long are only permitted to use a single byte for storing length. Given that two

bytes are available for message length, this gives a practical maximum length of 65,536 bytes

or 65.536 kilobytes.

MsgType is a single byte and states the message’s type, which outlines the message’s intent

and stage it fulfils in the MQTT-SN process – examples of this include CONNECT, PUBLISH and

SUBSCRIBE. As can be seen from the presence of PUBLISH and SUBSCRIBE, these are vital to

the core process of MQTT-SN. Table 2-4 provides more information on some of these

messages.

26

A number of fields are available for the Message Variable Part, and each different type of

message will contain a different combination of these fields. Data other than these fields is not

permitted in the message variable part, so it will always be some combination of the values

shown in Table 2-3. Some messages also contain a single byte named flags which consists of

many 1 or 2-bit values. These provide valuable information about the message being sent and

are detailed in Table 2-4.

Figure 2-3: A graphical overview of MQTT-SN network architecture as described in this section. MQTT-SN

clients send MQTT-SN messages to an MQTT-SN GW that translates them to standard MQTT. These are then

forwarded to the broker, which facilitates publish/subscribe MQTT communications between clients. MQTT

messages bound for MQTT-SN clients must also pass through the GW to be translated to MQTT-SN.

27

Table 2-3: Message Variable Part fields for MQTT-SN packets. Some fields have been omitted as their

discussion is not essential to our research.

Field Name Length (Bytes) Purpose

ClientId 3 Uniquely identifies an MQTT-SN client

Data Variable Contains the message payload.

GwId 1 Uniquely identifies an MQTT-SN GW.

MsgId 2
Uniquely identifies a message. A message’s ID will be shared

with any acknowledgement, allowing the two to be matched.

TopicID 2 The 2-byte ID assigned to a specific topic.

TopicName Variable Contains the human-readable topic name.

WillMsg Variable
Contains the will message to be sent upon unexpected

disconnection.

WillTopic Variable Contains the topic name of the LWT message.

ReturnCode 1

If this message is being sent in response to another, this field

contains the response status – or, the sender’s reply to the

original sender.

The following values are permitted:

• 00000000 – Accepted

• 00000001 – Rejected due to congestion

• 00000010 – Rejected due to invalid topic ID

• 00000011 – Rejected due to message not being

supported

All other values are reserved.

28

Table 2-4: Bits constituting the MQTT-SN flags byte. Some have been omitted as discussing them is

not essential to our research.

Name Length (Bits) Purpose

DUP 1
Whether this message is a retransmission of an earlier one.

This is only relevant for PUBLISH messages.

Retain 1

When publishing a message, this flag states whether the

message’s value should be retained.

When a message value is retained, the specified topic will stay

at this value until otherwise specified. This means that any

new subscribers to that topic will be able to view this current

value.

When not retained, the topic’s value will clear once it has been

sent to all subscribers. This means any new subscribers will

not be able to see this value.

Will 1
Used when a client connects to a broker and indicates whether

the client will utilise the LWT functionality.

CleanSession 1

Used when a client connects to a broker. If true, the broker will

not store any information on the client such as subscribed

topics or unpublished messages. This can be set to true if the

client is only going to publish messages and has no intention

of subscribing to any topics.

TopicIdType 2

If this message contains a topic ID, this states the type of ID

used. 00000000 indicates a standard topic ID, while

00000001 indicates a pre-defined topic ID.

As previously mentioned, topic names under 2 bytes can

disregard the entire process of mapping to an ID. In this case,

a value of 00000010 indicates a short topic name is stored in

the topic ID field.

29

Table 2-5: Some of the types of MQTT-SN message.

Name Purpose

CONNECT Establishes a connection between client and gateway.

WILLTOPICREQ If a client connects to an MQTT-SN GW and states it will utilise the LWT mechanism, the

gateway will send this message to the client requesting the LWT topic.

WILLTOPIC Sent by a client in response to a WILLTOPICREQ message

WILLMSGREQ Like WILLTOPICREQ, this is sent from gateway to client if the client is using the LWT

mechanism.

WILLMSG Like WILLTOPIC, this is a client response to a gateway’s WILLMSGREQ containing the

LWT message.

PUBLISH Publishes data under a given topic, with both clients and gateways being permitted to send

it.

REGISTER Uniquely, the REGISTER message has two purposes. When a gateway assigns a topic a

unique ID, it will send a REGISTER message to a client informing them of this unique ID. If

clients know a topic’s name but not the unique ID assigned by the gateway, they can send

a REGISTER message to the gateway to request it.

If this is sent from a client, Topic ID will be zero.

SUBSCRIBE Sent by a client to subscribe to a specified topic.

DISCONNECT Sent by a client to disconnect from the gateway and close the active connection. These

messages can optionally contain a Duration field, used by clients which intend to enter

sleep mode.

Gateways can also send DISCONNECT messages to client if they are experiencing errors

processing a client’s message. This will instruct the client to re-establish the connection to

the gateway, ideally resolving any errors.

30

2.5 LoRa and MQTT

While the LoRaWAN specification is informative and suited to a wide variety of deployments, it

fails to account for an MQTT-SN deployment and required components such as gateways and

brokers. To integrate MQTT functionality with LoRa, our system must deviate slightly from the

specification’s standard architecture. By gateways sending packets directly to the MQTT-SN

GW or MQTT broker, the vital network server component of LoRa processing appears to be

skipped. Network servers are often described as core components of any LoRa network, where

gateways communicate directly with network servers and exchange their respective UDP/IP

packets.

Thankfully, previous systems have provided examples of how LoRa can integrate with an

MQTT-based system. The Things Network, a large corporate provider of LoRa networks as a

service, deploy their network servers as an MQTT client [85]. Network servers subscribe to

MQTT topics related to LoRa traffic, alongside publishing LoRa-specific information which

gateways subscribe to. Using this architecture, the MQTT broker acts as the intermediary

between network server and gateway. Control messages to dictate network function are simply

published to the MQTT broker by the network server and subscribing gateways can subscribe

to the relevant topics to retrieve these controls. Network servers can also subscribe to topics

containing key network management parameters, which will be published by individual

gateways.

Penkov et al. also proposed a LoRa/MQTT system architecture for industrial networks that

utilised a network server. In the paper presenting their architecture [89], each gateway

connected directly to a network server which passed data to the relevant user application.

However, this paper did not specify how MQTT was integrated into this architecture, and where

the broker would fit in the data transfer process.

Other studies have seemingly ignored the requirement of network servers, using the MQTT

broker as the sole intermediary between gateway and application server. Spinsante et al. [86]

developed a network architecture for building automation systems using MQTT and LoRa, with

no mention of a network server in the research paper presenting the architecture. LoRa

gateways and the application server both communicated solely with the MQTT broker, which

acted as an intermediary between the two. In all cases, the Received Signal Strength Indicator

(RSSI) was far above receiver sensitivity, leading to adequate and reliable performance.

31

In [87], Wu et al. presented an IoT system based on LoRa and MQTT for managing elderly

patients suffering from dementia. Wu et al.’s system involved placing LoRa transceivers in

patient footwear, which presents similar challenges to our research involving ground-level

communication. Again, this research paper did not mention a LoRa network server, and

gateways sent messages directly to the cloud server using MQTT. Kim et al. [88] also proposed

a generic MQTT architecture for IoT systems in [88], where LoRa gateways appear to correct

directly to the broker.

2.6 The Node.js Framework

Node.js is a server-side JavaScript environment focused on rapid application development,

extending the ubiquitous client-side language to server-side programming. A study by Chitra

& Satapathy [104] showed that Node.js exhibits far better performance than a traditional web

server (IIS) at tasks requiring a large number of I/O operations – or, large numbers of client

communications. Given the nature of IoT systems involves a potentially massive number of

devices connecting to a single server, this makes Node.js highly suitable for IoT development.

Works in [105-108] present different examples of Node.js being used to build a central system

for an IoT solution. As a result, we will provide a brief discussion of the framework and its core

features.

2.6.1 Node Modules and Packages

Node.js applications and systems are organised into modules – JavaScript files exposing

classes, functions, or variables to be referenced in other modules or files. Technically, all

Node.js executables are built from modules, with even a single script forming its own

monolithic module. If only a single script is used, the module will be completely self-contained

and have no interaction with other files. Modules ideally have a single clearly defined purpose

with little-to-no overlap between them. Exposed artefacts should also provide a higher-level

‘entry point’ to the module, hiding lower-level implementation from developers.

To expose their intended artefacts, every module creates an object named exports at compile-

time. This object contains a field for each artefact to be exposed, and to add an artefact to this

object developers assign it a given field name. An example is shown below for an anonymous

function;

exports.getDate = function() { return new Date(); };

32

Conversely, to access artefacts exposed by a given module developers utilise a function named

require. This accepts a module’s file path as a parameter, before returning the exports object

generated by the specified module. When a module is imported through require, it will be

fully compiled and executed before returning exports. Node.js has a series of directories that

it will automatically search for modules – if a module is placed in one of these directories, only

its name needs to be passed. These directories are stored relative to the executing script’s own

directory – for example, Node will search the executing script’s own directory, as well as any

sub-directories with certain names.

Node.js modules are often grouped in single entities named packages. Packages are imported

through the require function, and when imported expose all exported objects of constituent

modules. As a result, packages are an efficient method for organising modules that fulfil a

greater function. Packages also allow modules to be searchable on public repositories so

developers can search for a package that fulfils their required purpose. Advantageously,

packages enforce dependencies between modules and other packages, increasing the

likelihood of successful compilation.

2.6.2 Parallel Programming with Node.js

IoT systems can benefit hugely from processing data arriving from several motes in parallel.

This further confirms the suitability of Node.js – not only does it show increased performance

when handling multiple communications [104], but several functions for parallel programming

are built into the language itself.

2.6.2.1 Timeouts

The setTimeout() function asynchronously waits for a specified period of time before

asynchronously executing a given function. Calling this function actually returns an object

representing the wait that can be stored as a variable, or alternatively ‘cancelled’ with the

clearTimeout() method.

Similarly, setInterval() schedules another function to execute at a specified interval expressed

in milliseconds. While the function specified by setTimeout will only execute once, functions

specified with setInterval will continually execute and restart the countdown until cancelled

with the clearInterval() function.

Both timeout functions accept two parameters – a first-class function to be executed, and a

time period for the countdown expressed in milliseconds.

33

2.6.2.2 Promises

Promises are another special object in Node.js, performing an asynchronous task

independently of the main flow of execution. Two functions are called inside each promise –

resolve() and reject(). The value returned by the asynchronous task when successful should be

passed into resolve, whereas any value returned or created by an unsuccessful task should be

passed into reject.

Two higher-order functions can be invoked on a Promise – then() and error(). These each

accept an additional function as a parameter, with these additional functions having a single

parameter of their own. The function passed into then will have the value previously passed

into resolve as its parameter, while the same applies to error and reject. These higher-order

functions will also not execute until the Promise has finished processing, and either resolve or

reject values are available. All lines after code after the Promise will execute as normal, and

any then or error processing will occur in parallel when appropriate.

2.7 Smart Cities

In the first chapter of this thesis, we provided Zanella et al. [39]’s definition of smart cities –

using ICT to better utilise and improve public services, while reducing costs to city authorities.

A very similar definition is provided by Jin et al. [37], who state that a smart city is one which

uses ICT to make city services and monitoring more aware, interactive, and efficient. Other

papers arrive at similar definitions, including [119-121]. Each of these definitions require clear

benefits to residents and city administrators, with residents experiencing better services and

administrators experiencing reduced costs. Jin’s definition of services and monitoring poses

an interesting implication – not only is infrastructure being made ‘smarter’ and more efficient,

but a potentially massive amount of data can be collected.

The nature of IoT makes it highly suitable for implementing smart cities, a statement echoed

by researchers in [35-37]. Notably, Mohanty et al. [121] go as far as stating that the IoT is the

backbone of the smart city concept. Adding intelligence to infrastructure and city assets can

transform them into smart things, allowing them to connect to the Internet. Internet-capable

devices can be placed on existing infrastructure to collect physical information through

sensors and send commands through electronic interfaces. Newer infrastructure and assets

can also have Internet capabilities built-in during manufacture, a concept beginning to appear

in modern infrastructure. Revisiting the first chapter again, Zanella et al. proposed a platform

34

named the Urban IoT to realise smart city goals through collecting data on urban infrastructure

and using this to optimise service delivery by remote actuation.

An urban IoT can also improve delivery of utilities such as power, water, wastewater, and gas.

We are particularly interested in the applications of urban IoT to wastewater management, as

this aligns with the goals of this research. An example of using urban IoT to effectively improve

water treatment is shown in [34], while [44-45] show examples of enhancing wastewater

treatment and disposal. In the following section, we will discuss specific implementations of

the smart city paradigm in greater detail.

2.7.1 Examples of Smart Cities

Zanella et al. [39] provided an example of an urban IoT’s successful implementation, detailing

the smart city project in Padova, Italy. Developed by the University of Padova, this served as

both an experiment and demonstration of the potential held by smart cities and urban IoT

networks. Motes were deployed throughout Padova and placed on streetlights, each connected

to variety of sensors collecting environmental data. This data included carbon dioxide level, air

temperature, humidity, noise, and vibration. Perhaps most importantly, these used a light

sensor to determine if the streetlight was operational; if the light detected was below a certain

threshold, it could be assumed the streetlight was not working. Motes were also placed in a

transparent plastic case to protect from the elements; this is a good point to raise, as physical

ruggedization is often forgotten in theoretical discussion.

Padova’s motes use the 6LoWPAN multi-hop short-range protocol to form a mesh network,

with routing handled by the Ipv6 Routing Protocol for Low-Power and Lossy Networks (RPL).

As these are both IP-based protocols, each mote is uniquely identified with an IPv6 address

compatible with the public Internet. This mesh network is bridged with the Internet using a

border router that also acts as a gateway. While each mote is an Internet-connected device,

messages exchanged in the 6LoWPAN protocol are incompatible with standard TCP/IP

communications. The aforementioned gateway is the single point of contact between this

network and the public Internet and is also responsible for translating messages between IP

and 6LoWPAN as appropriate. A traditional fibre-optic network is used to backhaul this

network to the public Internet, with all data destined for the central system (backend) required

to pass through the gateway to reach this link.

35

Working with the previously discussed 6LoWPan protocol, Padova’s smart city also utilises the

CoAP protocol for application-layer communications. CoAP is an alternative to HTTP intended

for use in constrained environments, encoding messages in a raw binary format instead of

HTTP’s verbose human-readable text. CoAP is also compatible with conventional HTTP GET,

PUT, POST and DELETE messages, while its response codes also map directly to those used by

HTTP. While traditional HTTP-based hosts are capable of sending CoAP messages, Zanella et

al. recommend using a cross proxy to translate between the two formats. The Padova smart city

utilises CoAP for application-layer communication between nodes, whereas its backend

database uses conventional HTTP. Consequentially, communication between the two layers

requires using the cross-proxy as an intermediary.

The network gateway in Padova’s smart city acts as a database server, collecting data from all

motes and making it available to the public Internet where practical. As this server utilises

unconstrained HTTP, a cross proxy is utilised for requesting CoAP mote data. When required,

the gateway will request information from the cross-proxy. The cross-proxy will retrieve data

from the correct mote using the CoAP format, before returning it to the gateway in a HTTP

format.

Guibene et al. [32] provided another innovative use of the smart city concept, applying it to

monitoring the River Liffey in Dublin, Ireland. This river had previously overflown and flooded

an underground car park, and Dublin City Council (DCC) agreed to collaborate with Intel

Corporation to develop a solution. A wireless mote was developed and placed in the river inside

a waterproofed floating buoy, connected to a variety of sensors collecting different data.

Sensors monitoring depth, water temperature, and flow velocity were placed outside the buoy

to make physical contact with the river. Conversely, sensors inside the waterproofed buoy

measured air temperature, humidity, and barometric pressure. Like the streetlight motes

presented in Padova’s smart city, this consisted of a single mote collecting information from

many sensors.

While the buoy was deployed in the River Liffey, DCC and Intel also placed ultrasonic level

sensors reading rainfall gauges across Dublin’s city centre. This is exciting, as different

sensors spread throughout a city collecting varied information is a perfect demonstration of

the smart city concept. Unlike Padova’s streetlight motes and the buoy, these seem to have

consisted of motes with a single dedicated sensor.

36

Dublin’s smart city utilises very different communication protocols to Padova, resulting in

different network topologies. In contrast to Padova’s multi-hop mesh topology resulting from

the 6LoWPAN protocol, Dublin utilises two long-range protocols; LoRa and LTE cellular

communications. Two LoRa gateways were deployed in range of the buoy to test the effects of

distance, urban obstructions, and line-of-sight. The closest gateway is referred to as DCC,

located 3km away from the buoy and at 40m higher altitude. Conversely, the other gateway

(referred to as Three Rock) is 13km from the buoy at an altitude 575m higher. Communications

are obstructed for both gateways by thick walls and traditional Irish buildings with stone

masonry. Guibene et al. [32] did not report any problems with communication for either of the

LoRa gateways, implying that both were able to satisfactorily communicate with the mote. This

proves that LoRa is a suitable protocol for building urban IoT and smart city systems. LTE

communications are discussed much less; however, it is assumed they communicate with the

closest cell tower.

While not discussed for the rain gauges, Guibene et al. also discuss the power supply and duty

cycling techniques used by the buoy mote. Three solar panels are mounted on top of the buoy,

and these charges two 12V lead-acid batteries. This is an example of the increasing trend of

solar power in smart cities and IoT systems; not only is solar power environmentally friendly,

but it reduces the frequency of battery replacement. While a central microcontroller CPU is

constantly active, all connected sensors mostly operate in very-low-power sleep mode. Every

10 minutes, the CPU will wake required sensors, read their provided data, and transmit it using

LoRa before re-entering low power mode. A similar process also occurs every 12 hours,

however this sends data over the LTE network. This is wise, as LTE transmission consumes

significantly more power than LoRa.

In response to severe levels of air pollution and the associated health risks, Duangsuwan et al.

[30] developed an urban IoT system capable of measuring air quality and providing results to

citizens. It is theorised that not only can city authorities identify the worst polluted areas and

plan restorative action, but citizens can also avoid these areas when necessary. While benefits

to city administration are less obvious than immediate advantages for residents, decreasing

exposure to air pollution will potentially reduce burden on the healthcare system and provide

political advantage.

37

Duangsuwan et al. used five separate sensors to measure air quality – like the previous two

smart city platforms discussed, this involves multiple sensors on a single mote collecting

different values. These sensors respectively collected data on ozone level, ambient noise,

carbon dioxide level, particulate dust matter, and carbon monoxide level. The mote’s

microcontroller communicated with these sensors to read and process values using both an

analogue-to-digital converter (ADC) and the I2C industrial protocol. Two of these motes were

deployed in separate locations throughout Bangkok, with power provided through a 5V/2A

power supply.

To communicate with a central system, the system designed in [30] utilised the NB-IoT LPWAN

protocol. NB-IoT is a cellular LPWAN standard based on LTE, allowing it to be easily

implemented with existing LTE infrastructure. This alone makes it very attractive to

telecommunications providers (telcos), giving it several advantages such as availability,

support, and the fact telcos will be responsible for installation and maintenance. NB-IoT also

has a higher data rate than LoRa, however this comes at the cost of higher power consumption

and lower communication range [43]. In addition, NB-IoT is a licensed spectrum technology,

so setting up networks incurs a hefty fee. This fee is usually paid for by telcos, however costs

are passed on to customers. No LPWAN platform is necessarily better than the others, with the

‘correct’ choice often depending on individual circumstances and preferences. As Bangkok has

a robust pre-existing LTE infrastructure and installing private equipment could be difficult, it

can be seen that NB-IoT is an appropriate choice.

With the aforementioned NB-IoT network, data was collected from each mote and sent to a

website on the public Internet where citizens could view results. Each individual sensor

reading is combined to produce a single Air Quality Index (AQI) reading, however the paper is

unclear on whether this occurs at the node or web server.

2.7.2 Smart City Services

While we have discussed individual smart city projects in the previous section, those are only a

handful of potential smart city applications. Several of the papers [39] [119-120] we reviewed

on the subject of smart cities provide a list of applications that often converges on the same

items. Applications with examples provided in the previous section have not been listed here,

as there are already detailed descriptions.

38

A - Structural Health of Buildings

By placing sensors in buildings or public infrastructure such as bridges, IoT systems are

capable of determining structural integrity from vibration or deformation data. Related sensors

can also monitor environmental conditions and seismograph activity to produce more detailed

information, determining environmental impact on structural integrity and monitoring

earthquakes.

Zanella et al. propose that routine structural health monitoring should send 1 packet per 10

minutes, with 30 seconds of delay acceptable. However, delays for alarms notifying authorities

of imminent collapse should not exceed 10 seconds. As power consumption is not exceedingly

high, batteries provide a suitable source.

B - Waste Management

A commonly seen example of waste management in smart cities is the deployment of smart

garbage containers fitted with weight sensors to determine fullness. Using fullness data,

municipal authorities can optimise both truck routes and recycling to minimise unnecessary

cost and environmental impact. For example, empty garbage containers can be excluded from

truck routes. This should require relatively little battery power, with energy harvesting stated

as a viable power source.

C - Traffic Management

Currently, traffic management is often conducted with expensive and resource-intensive

camera-based systems capturing high-resolution images. Significant improvements to cost

and efficiency be achieved by implementing an IoT system that utilises noise and air

monitoring sensors. By cross-referencing noise and air-quality data with GPS information, a

model of traffic congestion can be produced for a given area. While the system proposed was

for a smart parking system, Zhou and Li [129]’s method of detecting cars with geomagnetic

sensors could also prove invaluable to traffic management.

D - Energy Consumption Monitoring

Integrating IoT nodes into a city’s power grid allows citizens to monitor their own power

consumption, and city authorities to monitor power use through the entire city. City

authorities can utilise this data to optimise power consumption, identify energy-efficient

infrastructure, predict future demand, and prioritise supply to different areas.

39

Zanella et al. [39] also proposed an actuation component where power supply can be

controlled at different points on the grid. Benefits become easily apparent in emergency

situations or during plant outages, where rolling blackouts or prioritisation of emergency

services are an unfortunate necessity. Sensors or actuators built into an urban electricity grid

will also not require any external power source.

E - Smart Parking

Unlike many other applications discussed, smart parking is already available in many cities

and firmly planted in the public consciousness. Zanella et al. provided two purposes for smart

parking; directing motorists to the best available parking spaces and verifying permits. A

further example of this was mentioned earlier in [129], where motorists could check for free

parking spaces in advance.

F - Actuation and Salubrity of Public Buildings

Salubrity is a rarely used term meaning invigorating and providing comfort, which can be

utilised at public buildings by integrating sensor and actuator systems. Public buildings

include schools, museums, libraries, council offices and recreation facilities. Sensors and

actuators can provide a myriad of services to these buildings, ranging from climate control to

chlorine levels in public pools.

G– Public Security

CCTV surveillance cameras are often placed throughout a city to deter and investigate criminal

activity, and many recent models include integrated Internet connectivity. Currently this

Internet connectivity is used for both viewing footage in real-time and downloading it to an

online location. However, as technology advances, several new and innovative methods of

using this footage for public security are being developed. Notably, video and audio footage

could be streamed to a web service or API that analyses it in real-time for suspicious or

criminal behaviour. If this behaviour is flagged, security measures such as shutters could then

be activated at nearby properties.

2.7.3 Smart City Design and Architecture

A myriad of design decisions must be made across all stages from initial research to practical

deployment when developing a smart city. These decisions are evaluated from variety of

perspectives, with each a number of empty specifications to be given values. As a system

progresses through development, the results of certain design decisions can cause changes to

40

ones made earlier – for example, changing network protocols can require different overall

architecture.

While presenting their research for an urban IoT system in the city of Melbourne, Jin et al. [37]

outlined several broad perspectives they considered during that system’s design; Network-

Centric, Cloud-Centric, and Data-Centric perspectives. The Network-Centric perspective is

concerned with fundamental components of the networks connecting motes, gateways, and

central servers. This examines both the flow of data between each network node, and the

characteristics of that node which define and regulate the flow of data. Four design decisions

fall under the network-centric perspective; how data is collected with sensors, addressing

scheme, network protocols, and QoS mechanisms.

The Cloud-Centric perspective is more self-explanatory, and only applies to IoT systems

utilising a cloud-based central system. Cloud-based systems focus on the interface provided to

each mote or subnet allowing access to the cloud system, alongside the actual processing and

data storage performed in that cloud system.

While the network-centric perspective examines how data flows between each node, the Data-

Centric perspective examines the data itself. Another way of phrasing this is that instead of

how and where the data moves, the actual data moving will be evaluated. Ultimately, this

perspective is focused on the knowledge discovery process (KDD) - data is analysed to extract

valuable information, which is interpreted by humans to become knowledge. Three design

decisions are considered under this perspective, each mapping to another stage of the KDD;

data collection is how the raw data is collected, data processing is how that data is transformed

into information, and data interpretation is how it is conveyed as knowledge.

Siegel et al. [27] defined three perspectives that apply across all of those previously discussed;

security, privacy, and resource efficiency. These can be thought of as occupying a different

axis to those above and should be considered when making each of those decisions. While

Siegel et al. [27] considered security and privacy a single perspective, we feel it prudent to

draw a distinction. Security focuses on sensor data and actuator commands, while privacy

focuses on data related to users or organisations.

2.7.3.1 Network Architecture

Upon commencing this study, we were aware that IoT systems typically had a basic

architecture involving a massive amount of ubiquitous and constrained devices (motes)

41

connecting to a central system through an intermediate base station. However, there are many

different methods of implementing this architecture, each of which forms its own distinct and

more specific architecture. Several of these methods have been detailed in previous literature,

and we will review some in this section. A range of taxonomies have been provided for

classifying IoT architecture, each based on a different attribute. Jin et al. provided two

taxonomies in [37]; whether the architecture is based on previous models or not, and what can

be accessed by external systems to what extent.

Conversely, Siegel et al. [27] classify IoT architecture by network topology, while Zanella et al. [39]

base their classification on whether constrained or unconstrained protocols are used. This is highly

relevant to their presentation of Padova’s smart city, where exclusively constrained protocols were

used for local area networks and motes. Zanella et al. also emphasise the need for

intercommunication and transcoding between these protocols. Table 2-6 compares taxonomies

from each of these sources and provides a list of classifications available for each. Many of the

architectures detailed are self-explanatory, however some will require further explanation.

In direct connectivity networks, motes directly query their peers using a point-to-point protocol such

as Bluetooth or ZigBee. This is best suited to very small and non-critical IoT systems, as it does not

scale well and has relatively poor security. Hub Connectivity is the most commonly encountered

architecture in literature and is what most think of when discussing IoT networks. Motes connect to

a central hub or gateway, which is capable of connecting to multiple motes, peer gateways, or a

central system. All messages to and from devices pass through this hub, which carries out tasks

including flow control, under-sampling, and security services. Hubs can further decrease bandwidth

requirements by aggregating data from all connected nodes, and only sending the aggregate results.

Siegel et al. [27] conclude that hub connectivity is best suited to small or medium-sized networks

where payload size is known.

Cloud Connectivity is proposed as a solution for large-scale networks such as smart cities, likely

because of the model’s infinite scalability. This infinite scalability and the mechanisms allowing it

come at a cost, however, and cloud connectivity is also stated to be needlessly expensive for smaller

systems. From a technical perspective this is essentially an extension of hub connectivity, where

each mote communicates with virtual hardware in a cloud environment that can be scaled up or

down as required. The cloud system abstracts devices and is only concerned with each device’s data

flow and applications of that data, and consequentially developers must ensure that their IoT

network is capable with the cloud interface [37] . Developers are permitted to build applications for

42

interfacing with the cloud, while data-mining professionals can build tools for extracting valuable

information from collected data.

Another architecture proposed in the literature is autonomous networks, which are completely

isolated and not connected to public networks such as the Internet. However, some autonomous

network gateways can still be accessed over public networks, and in these situations act as an

intermediary for mote traffic. Despite not being connected to the public Internet, motes in many

autonomous networks utilise the TCP/IP protocol stack with IPv6 because it is scalable, simple, and

effective.

Motes or intermediate servers belonging to ubiquitous networks are part of the public Internet and

can be directly accessed by clients. Intermediate servers are motes often possessing higher

processing power and higher-capacity power supplies, implemented by some networks to serve

several other motes as data sinks.

Table 2-6: IoT architecture taxonomies in literature.

Source Classified Based On: Classifications

Jin et al. [37] Whether architecture is built on an existing

architecture.

• Evolutionary

• Clean Slate

Jin et al. [37] What is accessible to the public Internet,

and to what extent.

• Autonomous

• Ubiquitous

• Application-Layer Overlay

Siegel et al. [27] Network Topology. • Direct Connectivity

• Hub Connectivity

• Cloud Connectivity

Zanella et al. [39] Whether constrained (resource-

conservative) protocols are used.

• Constrained

• Unconstrained

Utilising intermediate servers increases scalability and lowers resource demand on nodes,

which is useful for serving very constrained motes or massive-scaled networks. Ubiquitous

networks are often hierarchical, with sub-gateways served by the main gateway forming

subnets. These subnets can have varying air interfaces and even network topologies provided

their sub-gateways can communicate with the main gateway.

43

Finally, application-layer overlay architecture is a variant of ubiquitous network architecture

where intermediate servers named cluster heads are given a special role. Cluster heads

process data from connected nodes using techniques such as aggregation and feature

extraction, then send results to the main gateway as needed. As processing is often carried out

by higher-level software on cluster heads, data should be transported through application-

layer protocols such as HTTP or CoAP. Utilising application-layer protocols provides easy

access to high-level software through operating system sockets.

Results are only transmitted from cluster heads when scheduled or in response to events such

as alarms. In addition, store-and-forward mechanisms can further conserve energy by

decreasing the frequency of non-critical alarm transmission. Dividing an IoT network into

cluster heads and subnets mitigates a common issue where large bottlenecks form around a

single gateway. As the number of cluster heads increases, the bottlenecks present at each

decrease in severity. However, introducing too many cluster heads is also disadvantageous.

Excessive cluster heads create overly complex routing, increased hardware cost, under-

utilisation of resources and further exhaustion of address space.

2.8 Wastewater Blockages

As discussed in the previous chapter, wastewater blockages occur when a solid obstruction

inhibits the flow of effluent through a wastewater asset. We will discuss this phenomenon in

further detail here; information was obtained through conversations with field technicians at

East Gippsland Water corporation (EGW). EGW provide water and wastewater services to the

East Gippsland region of Victoria, Australia. East Gippsland covers an area of 21,000

kilometres however only has a population of 45,000 people. This is a very low population

density, and much of East Gippsland is covered by old growth forest and national parks. As of

April 2019, EGW provide water services to 26,450 customers and wastewater services to

22,491 [130]. These services operate in isolated systems collecting from different rivers across

East Gippsland’s sparsely spread population centres.

Blockages usually form over time from the accumulation of foreign objects introduced to the

asset. These objects can enter the asset through intended means when people use fixtures to

inappropriately dispose of objects. Several incidents were observed at EGW where sanitary

products, disposable wipes, nappies and even items of clothing were flushed down toilets

alongside isolated incidents where children flushed toys. These objects collected until they

44

reached a sufficient size and formed a blockage. Most blockages at EGW were large collections

of the aforementioned objects, however at times large flushed objects such as toys

singlehandedly caused blockages. Animal fats are also responsible for many blockages, often

introduced to effluent through food manufacturing and domestic cooking. Fat will stick to

infrastructure and collect as lipids attract each other, leading to blockages called fatbergs.

Conversely, foreign objects can also enter the wastewater system through unintended means

such as breaks in a pipe or maintenance shafts left open. Perhaps the most notable example of

this was when tree roots grow towards a pipe and eventually puncture it. Wastewater is highly

nutritious to plant life, and roots that have entered a pipe will grow inside it relatively quickly.

The rapid growth of roots inside a pipe will eventually grow thicker, collect other solid

material, and obstruct it to create a blockage. This is such a common occurrence that it was the

most common cause of blockages at EGW. EGW also identified rocks, landfill, and tree detritus

as potential causes of blockage that enter the system through broken assets. Figure 2-4 shows

the gradual build-up of blockages.

Figure 2-4 – the process of a blockage forming by objects ‘sticking’ together. In this example, the blockage is

caused by deposits of fat sticking together and growing in size over time. This time progression is shown by

the figures in order from (1) to (4).

45

2.8.2 Risks of Blockages

While we briefly stated the dangers of effluent exposure in Chapter 1, this section will provide

additional detail on these dangers to emphasise both the real danger of effluent and the

importance of our research. Early detection of blockages will allow resolution before effluent

can breach the system and contaminate ground, fixtures, or properties. Following the

discussion in this section, it will be evident that this early detection can potentially save lives

and natural resources.

Pathogens present in effluent can cause a wide range of disabling or fatal medical conditions.

The World Health Organization [17] state that inadequate sanitation is responsible for 280,000

annual deaths. Examples of diseases caused by these pathogens include salmonella, hepatitis

A, trachoma, poliomyelitis (polio), cholera, typhoid, and dysentery [8] [15]. Salmonella is

responsible for 450 deaths per year in the United States alone [9], and complications range

from permanent heart damage [10] to brain damage and paralysis [11]. To provide an example,

Australian Monika Samaan was left unable to speak and confined to a wheelchair after

contracting salmonella [12]. Another example of the dangers of effluent is Trachoma, the

leading cause of infectious blindness affecting 1.9 million people worldwide [13]. Worryingly,

Trachoma is highly contagious and can be spread by contact with insects that have touched

infected persons or effluent. Australia is the only place in the developed world where Trachoma

poses an issue [14].

As previously mentioned, effluent contamination can be direct or indirect [8]. To reiterate,

direct exposure involves physical contact with effluent while indirect contact involves contact

with animals or insects who have had direct contact. This has alarming implications as insects

are highly mobile, attracted to effluent and commonly land on humans. If one insect has had

contact with effluent and lands on a human, this chance encounter could prove fatal or

permanently damaging. Many of the aforementioned illnesses, especially trachoma, are easily

spread through indirect contact. Combined with the hot conditions and population of flies in

Australia, this has potential to create a significant public health concern. This is only worse in

developing countries where sanitation is very poor, and polluted conditions combine with the

often-hot weather attract an enormous number of flies. These countries often employ manual

scavenging [18-19] to resolve blockages, and during 2017 a life in India was claimed every five

days from this practise.

46

2.9 Existing Solutions for Wastewater Management

2.9.1 Robotic Solutions

Following our review of smart city technologies and IoT platforms, we will now examine robotic

solutions for resolving wastewater blockages. As the name suggests, robotic solutions involve

constructing a remote-controlled robot and deploying it inside wastewater infrastructure to

carry out inspection. Robotic solutions reduce risk of exposure to hazardous effluent and are

much less expensive than traditional solutions such as CCTV cable and probe inspection.

Lower costs allow developing countries to move away from manual scavenging, while allowing

developed countries to perform more frequent and simultaneous inspections.

We have reviewed literature detailing development of two separate robotic solutions- the

BhrtyArtana robot developed by Vaani et al. [49], and an unnamed robot developed by

Shrivastava et al. [48]. Both of these solutions were developed in India, likely in response to the

endemic practise of manual scavenging described in Section 2.8.2. Despite some differences

in implementation, both solutions discussed have a very similar overall design and purpose.

Both consist of robots that navigate a sewer pipe and terminals placed at ground level. These

terminals have a direct connection with the robots, meaning messages between them do not

navigate the public Internet. When a blockage is encountered, the robot will send a message to

the ground-level terminal that notifies an observing user. These terminals will subsequently

relay messages to other devices or networks as required.

Both robots utilise wheels driven by DC gears motors for movement, however BhrtyArtana uses

four wheels while Shrivastava et al.’s solution uses two rear wheels driven by a front castor

wheel. Vaani et al. discovered that utilising high-friction wheels increased efficiency and

produced more favourable test results, providing another design strategy for future robotic

solutions. Another commonality is that both robots use an acoustic sensor to navigate pipes

and detect blockages, notifying an above-ground terminal of any blockages found.

Vaani et al. do not specify how BhrtyArtana utilises its acoustic sensor to navigate pipes,

however Shrivastava et al. have provided a detailed description. While they will not be the

same due to being two different robots with different designers, it can be assumed some

similarities exist. Shrivastava et al.’s description is also robust and efficient, allowing it to

serve as guidance to future researchers and developers.

47

If an acoustic sensor detects an echo, it is assumed to either imply a corner in the pipe or a

blockage. To determine which is occurring, the sensor rotates 90 degrees to the left. If no echo

is detected, the pipe has turned to the left. Conversely if an echo is detected, the pipe will

rotate 180 degrees to the right. If no echo is detected, the pipe has turned to the right, but if an

echo is detected it can be assumed a blockage is obstructing the way forward. Rotation of the

sensor and processing of readings is carried out by the control board. The robot’s wheels will

turn towards the appropriate direction if it is determined the pipe has turned, whereas if a

blockage has been detected the robot will notify users through the ground terminal.

Shrivastava et al. also state that each vehicle rotation or movement will require acoustic

recalculation.

While Shrivastava et al.’s solution is completely passive and only detects blockages,

BhrtyArtana includes an actuation component for resolving any blockages found. This is

achieved through rotating propeller head of serrated aluminium attached to its front, capable

of cutting through any blockages discovered. As the rotating motor has much higher power

requirements than the robot’s other components, it is powered by a separate high-capacity

battery. Shrivastava et al.’s robot also sends readings to the ground station as text, while

BhrtyArtana captures live footage of the sewer through an infrared LED camera; this footage is

streamed to the ground station. Another extra feature provided by BhrtyArtana is its wireless

connection to the ground terminal, whereas Shrivastava et al.’s robot communicates using a

long cable.

Despite having no attached camera, Shrivastava et al.’s robot is capable of determining

distance it travelled from its deployment point. Each revolution of its wheels triggers an

attached reed switch, sending a single pulse to the robot’s main microcontroller. The

microcontroller then calculates distance using the following equation. In this equation W is

the number of wheel revolutions, and r is the radius of rear wheels.

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑇𝑟𝑎𝑣𝑒𝑙𝑙𝑒𝑑 = 𝑊(2𝜋𝑟)

Although BhrtyArtana’s additional features provide significant advantages over Shrivastava et

al.’s robot, they also raise its cost and complexity. One of our key research objectives is to

minimise the cost of any system developed, and this goal should be taken even further in

developing countries such as India. When taking this into consideration, it can be argued that

48

Shrivastava et al.’s solution provides as much benefit as BhrtyArtana’s; it still detects

blockages like BhrtyArtana and is likely to be much less expensive.

All testing showed that Shrivastava et al.’s robot was successful and fit for purpose, providing

an inexpensive, safe and effective solution for acoustic monitoring of sewer blockages.

Shrivastava et al. provided a detailed description of their testing and its outcomes, while

comparatively little was provided for BhrtyArtana. Despite this, Vaani et al. state BhrtyArtana

can successfully traverse through a pipe of 10 inches in diameter.

2.9.2 Urban IoT Solutions

While robotic solutions have some advantages over the conventional CCTV and acoustic probe

inspection discussed in Chapter 1, the key issue with those methods still remains. Robots can

only be deployed in a single asset at any given time, either on a round-robin routine or in

response to a reported issue. If an issue has been reported, events noticeable to customers

such as foul odour or effluent breaches have already occurred. Ideally, a solution for detecting

sewer blockages would exist that is capable of monitoring an entire sewer system

simultaneously.

Several systems have been developed that utilise IoT technology to deploy motes throughout

wastewater infrastructure, with each simultaneously monitoring local physical conditions.

These monitor urban infrastructure and intend to enhance service delivery to citizens while

improving processes for municipal governments; therefore, they fall within the smart city

concept. We will discuss them in the following section as they provide both inspiration and

prior lessons for our own research.

Stoianov et al. [53] delivered a system named PipeNet in 2007 to assist the United States

Government with improving sub-standard water and wastewater infrastructure. PipeNet

involved placing a range of heterogenous sensors across infrastructure to monitor physical

variables in real-time, with sensors grouped into clusters based on overall purpose. We will

only consider Cluster 3 in this review, as it aligns with the goals of our research by monitoring

effluent levels. Pipelines named Combined Sewer Systems (CSSs) are used in the United States

to carry both effluent and stormwater to its intended destination, with overflow collecting in

the aptly named sewer overflow collectors. Cluster 3’s sensors were deployed in these overflow

collectors to measure the level of effluent currently overflowing.

49

Two years later in the United Kingdom, See et al. [52] developed a system to monitor effluent

level that was much smaller in scope than PipeNet, but equally as relevant to our research.

Sensor motes were deployed in assets named gullies across several properties – gullies are

attached to a property’s sewer connection and give effluent a ‘safe’ place to overflow if needed

before breaching to the surface. By deploying level sensor motes in these gullies, See et al.

hoped to build a blockage detection system. Reviewing this has significant benefit for us, as

this is a very similar goal to our own research.

Much more recently, Saravanan et al. [34] developed a system to improve sanitation in the

Indian village of Mori. Mori’s water is supplied through a series of canals linked to a central

tank, and quality issues would only be identified when observed by villagers – by which time, it

could be too late to avoid contamination. Saravanan et al. developed a mote that would be

deployed in the central tank and use a range of sensors to monitor different water quality

variables. This holds striking similarities the mote deployed by Guibene et al. [32] in Dublin’s

Liffey River. Saravanan et al. also developed a series of actuation motes to remotely operate

locks on Mori’s canals, however we will not discuss these as they are out of our research’s

scope.

Each system we reviewed has the same basic architecture, consistent with what we described in

Section 2.1. In relation to the architectures discussed in Section 2.7.3.2, these can all be

classified as Hub Connectivity with either Ubiquitous or Application-Layer Overly

architectures. More specifically, each uses one or more attached low-power sensors to read a

physical variable from their deployed environment. An energy-efficient wireless network

infrastructure is then used to send these values to a more powerful base station, which

subsequently passes them to a central system for processing.

2.9.2.1 Mote Hardware

See et al. used Crossbow Mica2 units as motes, operating in the lowest possible duty cycle of

1%. During the other 99% of operational time, the motes would operate in very low power

sleep mode consuming 20µA of power. However, in the remaining 1%, motes would enter

sensing mode and read input from attached sensors and evaluate whether a surcharge was

occurring. If so, an internal counter of surcharges would be incremented, and if not, this

counter would be reset. When the counter reaches five subsequent surcharges, the

microcontroller switches to radio broadcast mode and transmits an alarm to the base station.

50

Upon successful message transmission, the subsequent surcharge counter is set back to 0.

These motes consumed 9mA of power during sensing mode, and 18mA during message

transmission.

Stoianov et al. [53] implement Intel’s Mote platform, connecting sensors through eight

analogue channels with adjustable sample rate. These motes implement a similar duty cycling

mechanism to See et al. [52], however the sleep mode is less energy efficient and consumes

2mA. Additional comparisons show that PipeNet’s motes are less energy efficient overall,

consuming 16mA in sensing mode and 30mA during data transmission. Stoianov et al. also

discovered that the mote’s onboard RAM was insufficient for store-and-forward processing at

the required sample rate, and in response developed a streaming mechanism to send data

between motes. Multiple buffers were introduced to allow for lower throughput and higher

latency under difficult conditions, and it was observed that 600 samples could be streamed per

second. This is an innovative idea for constrained systems, and our research will take

advantage of this if required.

Finally, Shrivastava et al.’s motes were built using the popular Arduino board. Each sensor was

connected using Arduino’s GPIO interface, which was also utilised to communicate with a LoRa

transceiver. Less information is provided about these motes; however, Arduino boards are far

easier to develop with and often do not require customisation.

2.9.2.2 Mote Sensors

Stoianov et al. [53] and Saravanan et al. [34] both deliver motes that connect to a range of

heterogenous sensors. Saravanan et al.’s system only consists of a single mote, and this has

many sensors that measure different values; Oxidation Reduction Potential, pH, salinity, water

level, turbidity, temperature and flow. In contrast, PipeNet involved deploying multiple motes,

and these are classified into Clusters based on the attached sensors. Sensors in Cluster 1

measure water pressure and pH, Cluster 2 measures water pressure, and Cluster 3 measures

effluent level. For both of these systems, we will solely examine the methods used to measure

water or effluent level as other information is out of our research’s scope. We will not go into

further detail on Saravanan et al.’s method for level detection as it uses conventional acoustic

sensing with no modifications. However, both other projects implement unique level sensing

methods, which we will discuss below.

51

While See et al. [52]’s motes only monitor the single variable of effluent level, this is achieved

using multiple sensors. The implementation of multiple sensors results from See et al.

developing their own custom acoustic sensing mechanism, which they undertook believing

commercially available sensors were too delicate for their system’s harsh environment. This

mechanism has two sensors – both a transmitter and receiver. The transmitter produces sound

waves, and the receiver records the amplitude of those waves. If the amplitude is above a

certain threshold, it is assumed that both the transmitter and receiver are underwater,

implying effluent has reached the transceiver’s height. This does not produce a quantitative

measure of effluent level like conventional acoustic sensors, and instead returns one of three

discrete status; Low, Medium, or High. See et al. also considered using the conventional time

domain for ultrasonic sensing, however considered it too prone to error.

Motes in PipeNet’s Cluster 3 also employ an array of sensors for measuring the single variable

of effluent level. Each mote contains three sensors; two pressure transducers and an ultrasonic

sensor. Pressure transducers are placed at a pre-determined height and produce a reading if

effluent surcharges at a given threshold. If the difference in pressure readings exceeds a pre-

set value, the ultrasonic sensor will be activated and used to determine level. The ultrasonic

sensor is only used if absolutely necessary, as it consumes 550mW in contrast to the pressure

sensors’ 10 mW.

2.9.2.3 Network Technologies

Both Stoianov et al. [53] and See et al. [52] utilised short-range WSN communication protocols,

while Saravanan et al. utilised LoRa LPWAN technology. While WSNs have a much shorter

communication range than LPWANs, they are very energy-efficient and inexpensive. See et al.

utilised the popular ZigBee protocol, giving their network multi-hop mesh communications

and self-healing capabilities. Stoianov et al. instead utilised Bluetooth technology, taking

advantage of the scatternet formation to allow a higher number of devices per network. While

Bluetooth piconets typically cannot contain more than 8 devices due to a 3-bit address space,

the scatternet formation breaks piconets into hierarchical subnets. This can continue

recursively, resulting in a star-of-stars topology.

2.9.2.4 Base Stations

PipeNet and See et al.’s systems have extremely similar base stations, both consisting of a

Stargate mini-computer that receives data from connected motes and sends it to a central

system. Motes in these systems both utilise a store and forward mechanism, where motes will

52

cache sensor readings and wait until the base station is ready or a pre-defined threshold has

been reached before sending them. See et al. [52] state this duty cycling is intended to

conserve power, allowing the base station to be in sleep mode when not receiving messages.

PipeNet builds on this duty cycling further, attaching a cluster head mote to the base station to

collects input from all others. The cluster head is responsible for caching all messages before

periodically passing them to the base station.

Again, Saravanan et al. [34]’s approach is very different, utilising a LoRa gateway for a base

station. However, an unexpected similarity can be found with PipeNet in the use of a cluster

head mechanism. A microcontroller connected to the LoRa gateway performs a store-and-

forward action on data from sensors, manages connection acknowledgements, and

administers the network. This is a logical decision, as LoRa gateways are often little more than

‘relays’ that communicate information between the local network and backhaul.

2.9.2.5 Results and Evaluation

See et al. [52] developed eight wireless sensors and deployed them in a densely-populated

residential area in Bradford, UK – an area where each home had a gully placed relatively

adjacent to its neighbours. The Stargate base station was placed on a lamppost in the street,

with the closest sensor located 12.3 metres away and the furthest 66.5 metres away.

Additionally, the shortest distance between two sensors was 5.5 metres and the longest 38.5

metres.

During the initial test, only the two sensors with line-of-sight to the base station operated

correctly. Following this, two changes were made in an attempt to increase performance; the

base station was given a high-gain antenna, and additional repeaters were added 40-70 metres

away from it. These changes had the intended effect, allowing five sensors to communicate

with the base station. Further investigation after this second test revealed that all three

unreachable sensors were obstructed by concrete, rubbish, or other urban detritus. See et al.

provided suggestions for improving communications in similar systems, including adding

more relay points and base station aerials. Primarily, however, this shows the potentially

devastating effect of urban obstructions – a fact we must consider during our own research and

development.

Stoianov et al. [53] also performed a small-scale field test on PipeNet and observed similar

issues to those encountered by See et al. Problems were also encountered with the Stargate

53

minicomputer utilised, however these will not be discussed as this hardware has since been

superseded. Performance results for ground-based antennas or those placed inside

underground assets will be highly beneficial to us, as deploying motes in inspection shafts will

create similar conditions.

On one occasion, performance was significantly degraded by snowfall covering an antenna.

Rainfall also had an impact on performance; however, this was far smaller than that caused by

snow. An antenna embedded in the road was accidentally destroyed during resurfacing, and a

replacement was installed inside a shaft covered by a cast-iron lid 4.5 inches thick. As could be

expected, being installed under a cast-iron lid caused significant reductions in performance.

These results show the effects of both urban obstruction and weather conditions, with snowfall

and rain forming their own obstructions. In both cases, increased link budget or lower-

frequency air interfaces could potentially solve the problem.

A similar incident to the road-embedded antenna’s destruction occurred when maintenance

staff accidentally destroyed a Cluster 3 antenna during routine inspections of CSS pipelines.

These both show the often-overlooked risks to physical security when implementing an urban

IoT system, especially in areas prone to construction work or heavy human activity. Installing

motes in off-limits, locked, or inaccessible places can rectify this problem, however if these

assets are constructed with thick materials the issue of obstruction may occur again.

Additionally, installing motes in inaccessible places results in more difficulty replacing

batteries or performing maintenance.

87% of Cluster 1 messages were received, as were 62% of Cluster 2 messages and 72.3% of

Cluster 3’s messages. The lower percentage of received messages in Clusters 2 and 3 was

likely caused by the breakage incidents and subsequent attempted fixes that negatively

impacted message reliability. Stoianov et al. also stressed the issue of time synchronisation,

stating that more accurate synchronisation should be a goal of future research. Keeping this in

mind, we will aim for effective and accurate timekeeping.

Saravanan et al. [34] did not provide detailed information on their system’s network reliability,

however the paper produced implies that deployment was very successful, and information was

received as appropriate. This is further supported by the fact they were able to produce a

logistic regression model in the Weka data mining suite that produced 99% predictive

accuracy. This potentially demonstrates an advantage gained by using LPWAN technology, a

54

logical conclusion when considering the higher link budget, low bandwidths, and LoRa’s

spread-spectrum capabilities.

2.10 Conclusion

In this chapter we have reviewed and presented literature detailing current smart city systems

alongside the technologies and initiatives that enable these systems, with an additional focus

on LPWAN platforms. LPWAN technology provides low-power communications capable of

allowing motes to connect and communicate over long distances. We also reviewed the

techniques currently used for detecting sewer blockages, detailing how they operate while

revealing problems and inefficiencies. Considering these issues with current techniques, and

the potential of IoT-based smart city systems, we are encouraged to develop an intelligent

sewer blockage detection system utilising IoT infrastructure. Current literature has revealed

that no practical solution has yet been developed for doing this. In the following chapter, we

present the design and implementation of such a system.

55

Chapter 3 Design and Implementation of
Monitoring and Detection System

The first chapter showed the severe consequences of sewer blockages and need to resolve

them in a manner both timely and efficient. Following this, the second chapter revealed no

solution exists that can practically detect sewer blockages over a wide area. Many existing

solutions employ short-range devices, requiring a large number of repeaters or base stations

to effectively deploy over a wide area. Others are too ambitious, using complex and expensive

sensors to detect blockages or monitoring a range of additional variables.

Our research intends to deliver a system capable of monitoring sewer blockages across a wide

area, while remaining sufficiently simple and cost-effective for deployment in areas of all

economic status. In this chapter, a detailed design capable of carrying out these intentions will

be presented. This design encompasses custom hardware, firmware, and software working

with communications protocols across all layers of the network. Chapter 2 also reviewed

previous literature and technical specifications for a range of protocols and services across all

layers of network architecture – LoRa, MQTT, and the Node.js framework. These protocols and

services will prove instrumental in the design presented here.

The system’s primary function is to determine when a sewer blockage is occurring and notify

relevant persons. Sewer blockages are indicated by surcharges occurring at property

connections, so logically, detection can be carried out through motes placed at these

connections. These motes must incorporate a sensor capable of reading a physical variable

indicating surcharge, alongside the typical components of microcontroller and wireless

transceiver.

Using the states of all motes across the wastewater system, the central system will be capable

of:

• Differentiating an actual blockage and a ‘false alarm’;

• Classifying blockages as either full or partial;

• Determining whether blockages are located at the property connection or in the main

itself;

56

• Locating the property connection, or length of main between two property

connections, where the blockage is occurring;

An interface provided by the central system will also expose this information to external

systems, including interfaces to communication platforms (e.g., SMS or Voice APIs) and other

corporate systems. Corporate system integration opens a wide range of possibilities, including

synthesis of business intelligence and optimisation of existing processes. Examples of systems

that can be integrated include weather services, asset management systems, business

intelligence platforms, and other control or instrumentation solutions.

3.1 Overall Design

Existing literature shows that urban IoT systems conform to an overall design as illustrated in

Figure 3-1 where many distributed motes communicate with a single central system. This has

been previously described in Sections 2.1 and 2.7.3. Our system can be separated into two

logical components (i – motes and ii – central system), separated by the public Internet

allowing communications. For the system to be practical, communications to and from motes

must be wireless.

Being placed throughout an entire wastewater infrastructure, motes will often be distributed

over a long distance and sometimes be placed sparsely. Depending on the property owner’s

individual preferences and economic status, motes will be capable of connecting to the central

system using one of two wireless platforms as shown in Figure 3-2 - Wi-Fi or an LPWAN. Both

platforms are simply methods for connecting a mote to the public Internet, where it can be

routed to the central server. Our network will be capable of supporting motes using both

platforms, and all motes will co-exist seamlessly regardless of air interface. Messages at the

central system from both platforms will be indistinguishable from one another.

Many utility providers utilise a home or business’ own Wi-Fi gateway to provide connectivity

to Internet-connected devices such as smart meters. Our system’s motes will send and receive

an extremely small amount of data per month, greatly reducing customer concerns regarding

congestion and data allowance. Many urban areas also provide free Wi-Fi connections that can

be utilised, and existing IoT systems have also taken advantage of this. Using existing Wi-Fi

connections conforms to a crowd-sourcing model of network deployment and removes the

often-high costs of deployment and maintenance from system providers. However, this leaves

57

network uptime and reliability in the hands of network owners – albeit at potentially reduced

legal obligation.

Wi-Fi crowdsourcing is practical in densely populated areas of wealthier cities, however more

rural areas, or cities without funds for public Wi-Fi will make this model impractical. In

addition, some homes and businesses will refuse to allow utilities companies to share their

connection – a decision they have every right to make. For these circumstances, an LPWAN will

be deployed over the covered area. LPWAN networks have been designed for use in IoT

applications, and embody this trade-off by offering energy-efficient, highly scalable long-

distance communications with very low data rates. While LPWAN networks provide a very long

range and low power consumption, they are less reliable and slower than Wi-Fi networks.

In large urban areas, it is likely that there will be a range of motes connected to both LPWAN

and Wi-Fi systems. Variation can arise from customers not willing to share their Wi-Fi

connection, black spots, outages, and variations in socioeconomic status. This must be

facilitated wherever possible, meaning all motes that connect to a Wi-Fi access point must also

be capable of connecting to an LPWAN.

3.2 Considerations for Mote Design

Before developing a functional design for our system’s motes, it is important to consider key

issues known to adversely impact motes or battery-powered devices in other systems. A

functional design is concerned with how a system will carry out its required tasks, however,

often fails to consider the practicality and sustainability of carrying these out. Without

considering these issues, our motes could send spurious data, report inaccurate readings, or

drain all their power within days or even hours.

In this section we will discuss each identified issue, and our design in section 3.3 will propose

a solution.

58

Figure 3-1: The overall design of urban IoT systems described in existing literature. Several motes connect to

a central system responsible for communicating with all motes and collectively processing data. Motes

connect to the central system using the public Internet, and their physical connection to the public Internet

must be facilitated with a wireless network platform. The central server, however, does not follow the same

restrictions and can use a wired connection if needed.

Figure 3-2: A further refinement of Figure 3-1, showing the general urban IoT architecture adapted to our

system’s ‘dual network’ configuration of co-existing Wi-Fi and LPWAN networks.

59

3.3.1 Power Levels

A mote operating continuously at normal power consumption will quickly drain its battery,

lasting days or even hours instead of the years expected from IoT systems. If a mote detects

changes in a General-Purpose Input/Output (GPIO) input through constant polling, this will

require the mote to constantly be running at full power. If we determine an alternative to

polling, the mote will no longer be constantly inspecting its GPIO pins and can be considered

idle when not doing so. Examples of this have already been seen in Sections 2.7.2 and 2.9,

where sleep or low power modes were commonly used as a power-saving measure. Low power

modes are made practical by specialised processor instructions called Interrupt Requests

(IRQs).

IRQs are very high-priority instructions to the CPU, which when received cause it to cease any

lower-priority instructions and start executing a particular sequence of code. This sequence of

code is named an Interrupt Vector and can be mapped to a particular pin in some

microcontrollers, causing certain state transitions on that pin to request the code’s execution.

Additionally, some microcontrollers are capable of mapping IRQs to the internal clock, firing

IRQ events at a specific time or when a programmed countdown timer elapses. Embedded

operating systems or firmware maintain a data structure named an Interrupt Vector Table

which maps all IRQs to a pointer to the correct vector.

Many microcontrollers offer various low-power modes of operation that each consume less

power and disable more features. ‘Deep sleep’ modes are often available, where

microcontrollers consume very little power but are almost completely inert and are unable to

perform normal processing. However, some microcontrollers are capable of reacting to IRQs

from GPIO state changes while in deep sleep. A powered-off microcontroller cannot monitor

surcharge, however a deep-sleep microcontroller can while using very little power.

3.3.2 Switch Bounce and Environmental Fluctuations

Another issue that must be considered is switch bouncing, occurring when a switch’s contacts

bounce off each other when being pushed together [64] - a simple problem of physics.

Bouncing causes a switch to rapidly fluctuate between open and closed states before finally

settling at the intended state. In a digital system, this causes many fluctuations between 0 and

1 before settling at the final value.

60

The system under development utilises a float switch to determine whether surcharges are

occurring. Float switches utilise a simple mechanism that is pushed up by a rising water

surface, pushing two contacts together to close a circuit – these will be discussed in greater

detail later in this chapter. Our system sends a message to the central server whenever the float

switch’s state changes. If the float switch bounces and rapidly changes state several times,

theoretically each of these changes could result in a message being sent. As message

transmission consumes a significant amount of power, unnecessary messages resulting from

switch bounce can cause significant power wastage. In more concrete terms, theoretically

power usage could increase by the amount of state changes involved in a given bounce.

Our system is also at risk of another type of bouncing – one that is not an error in the switch,

but instead an attribute of the mote’s own environment. Contacts close the float switch when

the effluent’s rising surface pushes them together. In an inspection shaft, effluent is prone to

‘bobbing’ or rapidly fluctuating level by slight amounts, which triggers rapid state changes.

Unlike switch bounce, this is not a false reading, but a real reading the system must attempt to

filter.

Switch Debouncing is a technique utilised to filter out the rapid state changes caused by

switch bounce and ensure only the final intended state is processed by the system.

Debouncing can be implemented by both hardware and software, however we will utilise

software debouncing for the system under development. Software debouncing is not only less

expensive and simpler to implement, but also allows real ‘bobbing’ state changes to be filtered.

Software debouncing often involves delaying execution for a pre-determined length of time

after a state change to ‘wait out’ any switch bounces.

3.3.4 Pin Floating

For each digital pin, microcontrollers consider a specific range of voltages high (1) and another

range low (0). There is often a space between these ranges where a reading cannot be

considered high nor low. A pin with voltage in this intermediate range is said to be floating,

and this presents a common issue for electronic design. Ideally, this floating range should be

avoided whenever possible. Microcontrollers react unpredictably to pin floating, however a

common behaviour is rapid fluctuation between 0 and 1.

Pins not connected to a voltage source or ground are prone to floating as they conduct

electromagnetic noise such as radio waves and static electricity. This makes sense, when

61

considering that an exposed pin is in essence a very small antenna. Electrical noise is capable

of pulling pin voltage into the high or low ranges, however, can also pull it into the floating

space. Open switches are also prone to floating, as an open switch is electrically equivalent to

an exposed pin.

Our system’s float switches will spend the majority of their time open, when their respective

inspection shafts are not surcharging. While open, these float switches will be prone to the

electrical fluctuations caused by floating. This is dangerous as each fluctuation can potentially

trigger a message transmission to the central system. If messages are constantly sending while

float switches are open, motes could exhaust their batteries in mere hours.

Two solutions are commonly used to remedy switch floating, and these are discussed below.

The first and simplest solution is simply connecting the switch to ground, pulling an open

switch to 0 while still allowing closed switches to return 1. However, any direct connection

between voltage and ground results in a short circuit, which can instantly destroy or cripple

microcontrollers. Placing a resistor between voltage and ground will prevent a short circuit

occurring, while allowing the technique to remain effective. This is referred to as utilising a

pull-down resistor. Figure 3-3 illustrates the problems with the initial solution, alongside how

this is solved with a pull-down resistor.

Conversely, a direct line can be placed between voltage source and GPIO, with the float switch

connected to both that line and ground. When the switch is open, current will flow directly

from the voltage source to GPIO, registering a 1. Closing the switch will direct the current to

ground and away from GPIO, causing it to register a 0. Again, a resistor must be placed

between the voltage source and ground to prevent a short circuit, lending this technique its

name of pull-up resistor. As can be observed, pull-up resistors reverse the values returned by

opening and closing a switch. Figure 3-4 again illustrates the initial solution’s problems and

shows how pull-up resistors provide a solution.

Many microcontrollers include embedded pull-up and pull-down resistors for GPIO pins;

however, it is important not to make this assumption without checking technical

specifications.

62

Figure 3-3: Demonstration of a pull-down resistor. In (b), closing the switch allows current to flow uninhibited

from Vcc to GND – this creates a short circuit. By adding a resistor to the connection between the switch and

GND as seen in (c), the current becomes inhibited by the resistor and short-circuiting does not occur.

Figure 3-4: Demonstration of a pull-up resistor. In the (b), closing the switch creates an uninhibited current

between Vcc and GND – resulting in a short circuit. When a resistor is placed between Vcc and I/O as seen in

(c), this inhibits the current and prevents short circuiting. While the connection between the switch and GND

has no resistor, Ohm’s law proves the current will be the same at all points of the circuit.

63

3.3 Mote Design

In this section we present a design for the motes our system will deploy throughout wastewater

inspection shafts. This design is built around meeting the system’s core requirements and

carrying out the expected functionality, while providing solutions to the issues raised in

section 3.2

Each mote will consist of four key components as illustrated by Figure 3-5; i – power supply, ii

– surcharge detection sensor, iii – wireless transceiver, and iv – microcontroller. Boundaries

between each of these components are often blurred, as a greater number of modern solutions

integrate multiple components on a single board. Examples of this include the Raspberry Pi

and Arduino solutions, both of which contain microcontrollers and integrated Wi-Fi adapters.

Some existing systems detect surcharge by utilising a level sensor to measure the level of

effluent in a given asset, and represent it using an analogue float or integer value. However,

the presence or lack of surcharge can also be easily represented through a binary value –

surcharge (1) or no surcharge (0). Our system is only concerned with whether a surcharge is

occurring or not, as opposed to the water’s actual level. Using binary values requires

significantly less computational, storage, network, and power resources than utilising numeric

values. This results in less expensive systems with faster processing and increased

communications range.

Utility providers responsible for wastewater infrastructure are responsible for deciding which

level in a given inspection shaft indicates a surcharge. Inspection shafts can be classified

according to shape, location, property connection angles and other factors, with a single level

determined for each classification. Our system’s motes must utilise a simple binary sensor

capable of determining if at any given time, surcharge effluent is at this level.

Thankfully, float switch sensors fit perfectly into our requirements. These have a long history

of use in the water and wastewater industries, however, have traditionally been connected to

large SCADA or instrumentation systems through a wired connection. These systems are

expensive and have seldom used wireless sensors, so it would be unrealistic for any utilities

providers to integrate every property’s inspection shaft into them. Our research will provide

further innovation by using these switches for sensing in a low-cost system deployed

separately to SCADA environments.

64

Figure 3-5: A graphical overview of a wireless mote’s typical components and their interactions.

Float switches are simple digital switches that close their circuit when rising water pushes

contacts together. These contacts will remain closed while water is at or above their placed

level, and only open again when water falls below it. Our system will position float switches

inside inspection shafts, so their contacts are at the level indicating surcharge. Contacts will

push together and close the circuit when this level is reached and separate to open the circuit

when effluent falls below it again. Figure 3-6 shows a float switch at its initial open state, while

Figure 3-7 shows it when a surcharge causes it to close.

Advantages of float switches include their inexpensiveness, wide availability, simplicity of

implementation and binary output. It should be noted that during our research, we observed

that cheap float switches were likely to break from regular handling. However, during a

practical deployment, float switches will experience far less human contact as they are placed

in the shaft. Considering that the advantages outweighing disadvantages, we have selected

float switches for our mote’s sensor component.

Float switches will be connected to the mote’s microcontroller using two pins. A digital GPIO

pin configured in output mode will be connected to the positive end, providing power to the

switch’s circuit. The negative end will be connected to a digital GPIO pin configured in input

mode, responsible for receiving the switch’s digital value. This digital value will differ

depending on the switch’s state, as an open switch will return a different value to a closed

switch.

65

Figure 3-6: A float switch placed in an inspection shaft, during an inspection shaft’s default non-surcharged

state. (a) shows the float switch deployed in an inspection shaft, while (b) shows the float switch alone. The

float switch’s contacts are also denoted by (1) and (2). While effluent in the pipe stays below the level

indicating surcharge, gravity will pull (1) and (2) apart.

Figure 3-7: A continuation of figure 3-6, showing the inspection shaft when effluent has reached the level

indicating surcharge. The effluent’s surface has pushed the contacts shown in (1) and (2) together, causing the

circuit to close. The red arrows show the range of motion permitted for the contacts.

66

If a pull-down resistor is used, a value of 1 will indicate a surcharge and 0 will indicate no

surcharge. The opposite applies if a pull-up resistor is used, where 0 will indicate surcharge

and 1 will indicate no surcharge. We selected microcontrollers with a pull-down resistor, as

pull-down resistors are easier to implement and do not swap the switch’s input values.

Considering this, we can develop a state machine for each mote as seen in Table 3-1; each state

change is caused by a change in the float switch’s GPIO channel. This state machine is also

illustrated by the State Machine Diagram in Figure 3-8.

To conserve power, our system’s motes will normally operate in deep-sleep mode and only

‘wake up’ when a specific IRQ is raised. Many microcontrollers raise IRQs when certain pins

change state, alongside raising IRQs when the internal clock reaches a certain time or specific

a period of time elapses. We can utilise this functionality to optimise our system’s power

consumption, ensuring motes only wake from deep sleep when a specific IRQ is raised. The

correct IRQs will be mapped to an interrupt vector that carries out the appropriate functionality

before placing the mote back into deep sleep. This results in a paradigm where at any given

time, motes are either in deep sleep or reacting to an IRQ.

The mote’s float switch will be connected to an interrupt-enabled pin, allowing the

microcontroller to raise an IRQ when the switch opens or closes – meaning an IRQ is raised

when surcharge states changes. This IRQ will be mapped to the vector detailed by pseudocode

in Pseudocode 3-1, responsible for processing surcharge status and sending an update to the

central system if necessary.

While battery level information will be sent to the central system every time surcharge state

changes, this is not sufficient to ensure system uptime. Some motes will rarely experience

surcharge, with long gaps between events. In these cases, battery level will fall unacceptably

low, or even empty before the central system is made aware. If the battery’s charge is

completely drained, the central system will never be aware of surcharges or receive

information from that mote.

Heartbeat messages regularly sent by each mote ensure the central system is kept aware of

battery level. As is common in the IoT domain, this presents a trade-off between freshness of

mote state information and energy efficiency. Increased frequency of heartbeat messages

results in greater system reliability, as the longest time a mote can be down without knowledge

67

is equal to the time between heartbeats. However, this will also consume additional power as

motes transmit messages and wait for acknowledgements more frequently.

To facilitate this, we will develop an interrupt vector capable of sending a heartbeat message to

the central system. This vector will be mapped to a timer configured with the microcontroller’s

internal clock, counting down the time between each heartbeat. When this timer elapses, the

microcontroller clock will raise an IRQ to execute the appropriate vector. Sending of

unnecessary messages (and therefore unnecessary power consumption) will be prevented by

resetting this counter if a surcharge occurs. There is no need to send a heartbeat message if a

surcharge message containing battery level has recently be sent. Pseudocode 3-2 details the

functionality of the IRQ vector mapped to this timer interrupt.

Table 3-2 summarises the IRQs utilised by our motes. All functionality will be carried out by

the vectors mapped to these IRQs, and the mote will spend the remainder of its time in deep

sleep.

Table 3-1: Mote state machine, expressed as the sum of all possible state changes.

ID Initial State Event New State (1)

A Not Surcharged (0) Water is below surcharge threshold and

reaches it

Surcharged

B Not surcharged (0) Water is below surcharge threshold and

exceeds it

Surcharged (1)

C Surcharged (1) Water is above surcharge threshold and

falls below it

Not Surcharged (0)

D Surcharged (1) Water is above surcharge threshold and

falls below it

Not Surcharged (0)

E Surcharged (1) Water is at surcharge threshold and

exceeds it

Surcharged (1)

F Surcharged (1) Water is above surcharge threshold and

falls to it

Surcharged (1)

68

Table 3-2: IRQs and vectors utilised by motes.

Trigger/Interrupt Purpose Detailed in

Float switch state changes Send new surcharge state to

central system

Pseudocode 3-1

Internal clock countdown

elapses

Send heartbeat message to

central system

Pseudocode 3-2

Figure 3-8: A graphical depiction of the mote’s state machine. Alongside the previously detailed transitions

between surcharged and not surcharged, this also shows further operational states. When first purchased, a

mote will be powered down. Powering it on by activating a switch or connecting a power supply will

transition it to Start Up, where it performs all necessary start-up tasks such as binding IRQs to vectors. Once

this has finished, it will transition to the running state where it will remain until powered down again. The

running state can initially be in the Not Surcharged or Surcharged substate, depending on the deployed

inspection shaft’s current state. Following this, the mote will transition between Surcharged and Not

Surcharged as detailed in Table 3-1.

69

Pseudocode 3-1: Process undertaken by IRQ vector when surcharge state changes.

//Debounce switch input. Period of time should be configurable.

wait(debounce_time);

var status = read_float_switch();

if (status == last_reading_sent)

{

 go_to_sleep();

}

else

{

 var to_send = marshall_for_server(status, battery_level);

 var to_send_encapsulated = packet_encapsulate(to_send);

 //How many times to try sending data to central server. Example is 10.

 var how_many_times = 10;

 //How many attempts have been made to transmit data

 var attempts = 0;

 //Set to true when message is successfully acknowledged

 var acked = false;

 while(!acked || attempts < how_many_times)

 {

 /* Assume the attempt_to_send method returns true if successful

 and false if unsuccessful or acknowledgement times out */

 acked = attempt_to_send(to_send_encapsulated);

 }

 /* Only update last value sent to server and restart heartbeat countdown

 if message was successfully sent */

 if (acked)

 {

 //The values/results of these statements are kept while device is sleeping

 last_message_sent_to_server = status;

 restart_heartbeat_countdown();

 }

 go_to_sleep();

}

70

Pseudocode 3-2: Process undertaken by IRQ vector when heartbeat countdown elapses.

var to_send = marshall_for_server(battery_level);

var to_send_encapsulated = packet_encapsulate(to_send);

//How many times to try sending data to central server. Example is 10.

var how_many_times = 10;

//How many attempts have been made to transmit data

var attempts = 0;

//Set to true when message is successfully acknowledged

var acked = false;

while(!acked || attempts < how_many_times)

{

 /* Assume the attempt_to_send method returns true if successful

 and false if unsuccessful or acknowledgement times out */

 acked = attempt_to_send(to_send_encapsulated);

}

restart_heartbeat_countdown();

go_to_sleep();

71

3.4 Network Design

Before arriving at the central system, messages must be sent over the air to a base station.

Base stations are collection devices consisting of either a Wi-Fi Access Point (AP) or LPWAN

gateway, depending on the air interface chosen. Figure 3-9 further develops the architecture

shown in Figure 3-2, showing the relationship between motes, base stations, and the central

system. Base stations have no transformative effects on the information sent, simply

encapsulating it into appropriate transport-layer PDUs and routing it to the central system

over the public Internet backhaul. Conversely, data sent to the base station over the public

Internet will have transport-layer data removed be forwarded to the correct device.

Figure 3-9: A further elaboration of Figures 3-1 and 3-2, showing the relationship between motes, gateways,

and the central system. Wi-Fi APs (1) and LPWAN Base Stations (2) connect to the central system (3) using a

TCP or UDP/IP connection, however the more lightweight UDP is often recommended for IoT. Each mote

will be connected to its own gateway using either Wi-Fi or LPWAN air interface, however each gateway’s

connection to the central server will involve standard Internet protocols (if not the same). Therefore, the only

technical distinction (from a networking perspective) is the air interfaces used by each mote to connect to their

gateway.

72

We will not provide a detailed discussion on Wi-Fi in this paper, as its specifications and

implementation methods have been discussed ad nauseum in previous research. Wi-Fi is

prominent and ubiquitous in our modern world, with almost every home having at least one

compatible device. Consequentially, a wealth of resources are available for establishing Wi-Fi

networks, with many single-board computers or motes having antennas built in during

manufacture.

However, LPWANs are yet to reach this level of permeation, with commercial networks only

now beginning to enter the market. There is much less knowledge about LPWANs widely

available, and the term is hardly mainstream. We discussed the LoRa platform in Section 2.3,

and for reasons discussed therein we have chosen this platform to implement in our design.

Chapter 2 also discussed both MQTT and MQTT-SN publish-subscribe protocols and their

suitability to IoT systems. MQTT has been described by several studies as well-suited to IoT,

and MQTT-SN builds on this by decreasing bandwidth and processing requirements. For these

reasons, we will implement the MQTT-SN and MQTT protocols for application layer

communications.

Sections 3.4.1 – 3.4.3 will discuss how these protocols are bought together across multiple

layers.

3.4.1 LoRa Configuration

We discussed many of LoRa’s configuration parameters in Chapter 2, and how they can be

adjusted by developers. In this section, we will briefly address the values we have selected for

these parameters and how they are implemented for our system. Our selections have been

based on our system’s unique requirements, and how we have tailored our system to best fulfil

them.

LoRa can theoretically utilise any bandwidth between 7.8 and 500 kHz, however Finnegan and

Brown [67] note that only 125, 250 and 500 kHz are used in practise. Higher bandwidths result

in a higher data rate and greater resistance to interference, but conversely lower

communications range. Our system should select the lowest practical bandwidth to maximise

communications range, while still maintaining an acceptable data rate. Weighing the high

requirements of range and obstacle permeation with the low speed requirements, a 125 kHz

bandwidth will be utilised. This also has the advantage of being the most commonly studied

bandwidth in existing literature

73

Table 2-1 outlined the effects of adjusting spreading factor, with higher spreading factors

lowering bit rate but increasing link budget. This is supplemented by Table 2-2, which

presented that increasing spreading factor decreases the number of messages that can be sent

per day. Considering the data provided, it would be sensible for spreading factors equal to or

less than 10 be used, with 11 only being suitable if distance or urban obstruction made lower

link budgets completely unacceptable. We therefore recommend a spreading factor of 10, with

11 being a contingency option in remote or highly obstructed environments.

If we use a 125kHz bandwidth and spreading factor of 10, our motes will be capable of sending

122 symbols per second and 66 messages per day. Conversely, using the same bandwidth, a

spreading factor of 11 will be capable of sending 61 symbols per second and 30 messages per

day. This is quite a significant loss of performance and reinforces our statement that 11 is

strictly a contingency option.

Chapter 2 also discussed the taxonomy provided by LoRa for connected nodes depending on

how often their receive windows are open. Despite Class A being the most power-efficient

choice, we will configure motes to be Class B with a single RX window open each day. This

allows for future versions or individual implementations of the system where remote

configuration or over-the-air updates might be required.

Table 3-3 reviews the configuration parameters we have selected thus far for our LoRa

implementation.

Table 3-3: Required configuration for system LoRa air interface.

Carrier Frequency 2.1GHz, 5.0GHz or 443 MHz

Bandwidth 125 kHz

Spreading Factor 10

Device Class Class B

74

3.4.2 MQTT and MQTT-SN Configuration

Utilising the previous discussion of MQTT-SN and the system’s design goals, we can define the

entire range of messages sent between mote and base station from an application level. All

data will be sent through an MQTT-SN message, and this will be the same from both Wi-Fi and

LPWAN notes. The reason for this is obvious – the only distinction between Wi-Fi and LPWAN

motes is the modulation used to carry messages from mote to base station.

A connection between mote and MQTT broker must be established each time a mote is

powered on or ‘wakes’ from low-power mode. All messages sent using this connection must be

translated from MQTT-SN to standard MQTT by the MQTT-SN GW, which will forward all

received messages to the broker. Consequentially, all messages destined for the broker will be

sent to the MQTT-SN GW, and their destination address must be that of the MQTT-SN GW. The

MQTT-SN GW will be aware of the broker’s address, and simply forward translated messages.

Establishing this connection is achieved through the message exchange detailed in Table 3-4.

MQTT requires each client to be uniquely identified with a string between 1 and 23 characters,

which is represented with between 8 and 184 bits. To ensure each mote has a unique identifier

that will always fit within these limits, we will simply use the primary key of that mote’s

database record. Primary keys often consist of a simple integer value and given the potentially

massive number of motes this could eventually reach a very high number. We will plan for a

maximum of seven characters identifying motes in each MQTT message, as this will allow

9,999,999 unique motes. This consequentially results in a maximum ID length of 56 bits.

To utilise the LWT functionality discussed in Section 2.4, a message under the topic ‘lost’ will

be published with the abruptly disconnected mote’s unique ID. The application server will

subscribe to the lost topic and process it accordingly by notifying system administrators.

MQTT-SN packet headers can also vary in length, with the Length field being between 1 and 3

bytes. As our solution is unlikely to exceed 256 bytes of packet data, we will use a single byte to

store message length.

When a surcharge occurs, a mote will publish both state and status information under the

‘surcharge’ topic. The PUBLISH message sent by the mote to facilitate this will contain the

following data:

• Client ID (56-bit);

• Timestamp;

75

• Battery level;

• The current surcharge status;

A 64-bit integer will be used for storing timestamp as seconds since the Unix epoch, with 64

bits used to avoid overflow in the year 2038. While optimistic, it is prudent to ensure systems

are viable for as long into the future as possible. Battery level will be stored as an 8-bit integer

representing percentage, as an 8-bit value is the shortest capable of reaching 100. Following

this, a single bit will be required for storing the surcharge status – 1 indicates a surcharge is

occurring, while 0 indicates no surcharge is occurring. Each of these fields will be separated

by a single 8-bit character representing a space, resulting in a 153-bit payload. To make the

payload evenly divisible into bytes, seven trailing zeroes will be added to the end – bringing its

length to 20 bytes.

Heartbeat messages contain all fields found in surcharge messages, with the exception of

surcharge status. As surcharge status is not included, the message does not require the 8-bit

space character following battery level. This results in a smaller payload of 144 bits, which

evenly divides into 18 bytes. Because of this even division, no trailing messages are required.

Finally, when a mote re-enters low power ‘sleep’ mode after it has finished message

transmission, it must gracefully disconnect from the Broker. An unexpected or ‘ungraceful’

connection will cause that mote’s LWT mechanism to activate, falsely notifying the application

server of an error.

Tables 3-5 – 3-7 outline message exchanges between motes and the MQTT broker facilitating

each of the previously discussed communications. Each message’s length is determined by

adding the previously discussed payload lengths to a 2-byte header and message variable part.

The lengths of each message type’s variable part can be found in the MQTT-SN specification

[83] As discussed in Section 2.4.2, messages shorter than 256 bytes only require a 2-byte

header. The first of these bytes is the message’s length, and the second is the message type.

Each message sent by our system is shorter than 256 bytes and will therefore have a 2-byte

header.

With the entire range of communications defined from an application and transport-layer level,

we can now shift focus to the network layer of communications and below. This involves the

routing, packetisation, and modulation of data. As backhauling over the public Internet will be

76

the same across data from any type of mote, we must specifically examine how both LPWAN

and Wi-Fi air interfaces will work to deliver messages from mote to the base stations

commencing this backhaul.

3.4.4 Data Communications with LoRa

With spreading factor selected, we can determine the number of symbols required for

transmitting each MQTT command and its payload over the LoRa interface. This is determined

using equation 2-1 as seen in Chapter 2, and we have put placed results in Table 3-8. Time on

air is determined using the rate of 122 symbols per second, which results from our spreading

factor of 10. The largest MQTT-format message sent is the CONNECT command at 64 bytes in

length. This easily fits into a 256-byte payload, meaning that only a single LoRa frame will ever

need to be sent between mote and gateway. These data rates are sufficient to meet

requirements, and still falls under a single second for most commands while never exceeding

1.2 seconds for others. Table 3-9 estimates performance seen for communications between

motes and base stations using LoRa.

77

Table 3-4: The exchange of MQTT-SN messages occurring when a mote establishes an MQTT-SN

connection with the central system. Message length is derived from the MQTT-SN specification [83].

Direction Message Type Notes Length (Bytes)

Mote – Broker CONNECT CleanSession is set to 1.

Will is set to 1.

KeepAlive is set to 120 seconds.

64

Broker – Mote CONNACK 3

Broker-Mote WILLTOPICREQ 2

Mote-Broker WILLTOPIC Retain is set to 0. Message retaining is not

needed as the application server will be

the sole subscriber.

LWT topic is ‘lost’, which is represented by

4 bytes.

7

Broker-Mote WILLMSGREQ 2

Mote-Broker WILLMSG LWT message is 16-byte unique mote ID. 18

Mote-Broker REGISTER Get unique ID for ‘surcharge’ topic. This

topic name is represented by 8 bytes.

14

Broker-Mote REGACK 7

Mote-Broker REGISTER Get unique ID for ‘heartbeat’ topic. This

topic name is represented by 9 bytes.

15

Broker-Mote REGACK 7

Total Bytes Transferred 139

78

 Table 3-5: The exchange of MQTT-SN messages when a mote publishes a message of the surcharge

topic.

Direction Message Type Notes Length (Bytes)

Mote – Broker PUBLISH Retain is set to 0.

TopicID is set to 0 to specify a standard

topic ID.

26

Broker – Mote PUBACK 7

Total Bytes Transferred 33

Table 3-6: The exchange of MQTT-SN messages when a mote publishes a message of the heartbeat

topic.

Direction Message Type Notes Length (Bytes)

Mote – Broker PUBLISH Retain is set to 0.

TopicID is set to 0

24

Broker – Mote PUBACK 7

Total Bytes Transferred 31

Table 3-7: The exchange of messages when a mote gracefully disconnects from the central system by

re-entering sleep mode.

Direction Message Type Notes Length (Bytes)

Mote – Broker DISCONNECT The duration field is not used as motes will

not receive any messages.

2

79

Table 3-8: Symbols required and time on air for each MQTT-SN command using LoRa.

MQTT Command Packet Size Symbols Required Time on Air (Seconds)

CONNECT 64 137 1.123

CONNACK 3 15 0.123

WILLTOPICREQ 2 13 0.107

WILLTOPIC 7 23 0.189

WILLMSGREQ 2 13 0.107

WILLMSG 18 45 0.369

REGISTER (surcharge topic) 14 37 0.303

REGISTER (heartbeat topic) 15 39 0.320

REGACK 7 23 0.189

PUBLISH (surcharge topic) 30 69 0.566

PUBLISH (heartbeat topic) 26 61 0.500

PUBACK 7 23 0.189

DISCONNECT 2 13 0.107

80

Table 3-9: Estimated performance of system LoRa communications.

Message Size (with MAC Overhead) 30 bytes

Packets per Communication 1

Symbols per Communication 69

Symbol Rate 122 symbols/second

Code Rate 4/8, or 0.5 (50%)

Time on Air 0.566 seconds

Data Rate 1.77 packets per second (53 bytes/sec)

3.5 Central System Overview

The central system encompasses a variety of linked servers and components separated from

individual motes via the public Internet backhaul. This includes the Application Server (AS),

LoRa Network Servers (NS) MQTT broker, and the MQTT-SN GW responsible for receiving

messages from base stations and forwarding them as appropriate. Messages sent through both

Wi-Fi and LoRa connections will initially enter the central system at the MQTT-SN GW,

encapsulated in packets for the UDP/IP protocol stack. The MQTT-SN GW and broker must be

fully compatible with the UDP/IP protocol stack, and consequentially able to extract MQTT

PDUs from its payload.

Using a wireless platform is advisable, and resultingly backhaul networks will be implemented

using either GSM or LTE. Both GSM and LTE transceivers will be provided at base stations, and

which is used will depend on availability at the deployment area. As both LTE and GSM

communications are relatively expensive and have data quotas, transmission from base station

to central server should be minimised. While the system aims to minimise cost, the much

lower number of base stations compared to motes makes this increased cost acceptable.

81

3.6 Application Server

If the MQTT broker acts as the system’s spinal cord carrying messages between nodes and

components, the Application Server can be imagined as the brain carrying out more

intelligent processing. Readings from sensors are simply data with no meaning, and the

application server uses these readings to synthesise meaningful information that is passed to

external parties as knowledge.

Earlier we outlined the high-level basic requirements of the application server;

1. Differentiating between an actual blockage and a ‘false alarm’.

2. Classifying blockages as either full or partial.

3. Determining whether blockages are located at the property connection or in the main

itself.

4. Locating the property connection, or length of main between two property

connections, where the blockage is occurring.

These requirements outline the information that needs to be produced from mote data. This

information must be passed to the appropriate external systems to generate knowledge,

alongside being stored in a non-volatile data source for future analysis and use by external

systems.

As our system’s data flow is developed around the MQTT protocol, the application server will

receive all incoming data from motes using MQTT. MQTT makes this process relatively simple,

as the application server simply needs to subscribe to the surcharge and heartbeat topics

published by motes. In addition, future versions of the system can support remote

configuration with the application server publishing topics that motes subscribe to. While

mote messages will originally arrive in the MQTT-SN format, they will be translated to standard

MQTT by the MQTT-SN GW before ever reaching the broker.

Considering the above, we can develop a simple process flow for the application server to

adhere to when receiving surcharge data. The process flow is shown in Figure 3-10 and each

component described in the following section. As the visual representation in Figure 3-10

makes clear, this follows a pipe-and-filter architecture.

82

3.6.2 Receive MQTT Messages

The first component is responsible for receiving MQTT messages from the subscribed

surcharge topic, which will be facilitated through an MQTT driver or library. As a result, the

raw payload data wrapped in an MQTT packet at the mote will be extracted. Upon being

received and extracted from the MQTT payload, this value will be perceived by the server as a

single 232-bit raw binary value. While this is an accurate portrayal of the how the data was

transported, it is useless for higher-level processing. This binary value will be passed to the

next step, where the original and discrete variables can be extracted.

3.6.3 Extract Application Data

This component will begin processing immediately after receiving a binary value from the

first. Earlier, we demonstrated how each discrete data value from a mote was encoded into a

single binary value for transportation using MQTT-SN. Once the data has finished

transportation, this process can be reversed to decode the string into its original variables.

Table 3-10 shows how the variables are structured in the original binary string.

Before beginning processing, basic integrity checks should be applied to the string. This will

ensure that if a malformed or ‘bad’ value reaches the server, it will not waste valuable

computation resources on wasted decoding attempts.

Alongside saving time, integrity checks can potentially prevent critical errors encountered

when attempting to decode erroneous data. By doing this, we can contribute further to meeting

requirements for minimising resource consumption and maximising uptime.

However, considering the requirement of minimising resource consumption, we must also

ensure that performing these integrity checks does not consume more resources than

attempting to decode malformed data. As a result, initial integrity checks will consist of;

• Ensuring the value is 232 bits long.

• Ensuring the trailing seven bits are equal to 10x0.

• Ensuring the 17th, 26th, and 35th bytes are equal to an ASCII space (10x32, or

2x0100000).

83

Figure 3-10: The pipeline for surcharge messages that arrive at the application server.

84

These checks use very little computational resources and can be performed very quickly, while

preventing the most serious data malformations and potential critical errors. They should also

be performed in order, with failing one check preventing all others from executing. As the

checks are arranged in ascending order of complexity, this introduces further potential for

conservation of resources.

If all checks are passed, each value can be extracted from the binary string and cast to the

relevant data type. Client ID will be cast to a string, Timestamp to a Date/Time value, Battery

Level to an integer, and Surcharge Status to a boolean.

These values can then be used to create a temporary object of the SurchargeMessage class

shown in Figure 3-11, which will be sent to the next component. SurchargeMessage is itself an

extension of the more generic ClientMessage class – ClientMessage represents any message

sent from a mote and contains the minimum fields every message must contain regardless of

type. In contrast, SurchargeMessage contains fields needed only when the message indicates

surcharge. The previously mentioned temporary object forms both the output of this

component and the input of the next.

Figure 3-11: The ClientMessage and SurchargeMessage classes.

85

Table 3-10: Bitwise composition of application data binary string

Data Bit Length

Client ID 128

“ “ character 8

Timestamp 64

“ “ character 8

Battery Level 8

“ “ character 8

Surcharge Status 1

Trailing zeroes 7

Total 232

3.6.4 Ensure Inspection Shaft Data is Loaded

With the temporary SurchargeMessage object loaded into this component, the server can now

begin to convert that data into information – or, use those data values to represent tangible

attributes of a mote placed in an inspection shaft.

Records for each mote and its surrounding inspection shaft will be stored in a permanent SQL

database. Each surcharge message arriving from a given mote will include that mote’s latest

surcharge status (surcharged or not surcharged), alongside that mote’s unique ID. This ID will

also be stored in the mote’s database record, and as it is unique to each mote, can be used to

retrieve it with a standard database query.

Reading and potentially writing database records each time a surcharge message arrives could

be highly inefficient, especially in partial blockages where surcharge status can fluctuate

rapidly in a short amount of time. If a blockage occurs in the sewer main, it will also result in

several motes communicating with the application server, which will all require records to be

86

retrieved. Combine this with multiple potential fluctuations, and the amount of database

interactions quickly becomes impractical.

After considering the application server and system requirements in combination with design

principles, we have identified an intuitive solution that allows an accurate representation of

surcharges and their involved sewer infrastructure while maintaining efficiency and

conserving resources.

Mote records will only be retrieved from the database and converted to objects on an as-needed

basis. Objects representing all retrieved motes will be stored in a dictionary and indexed by

their unique ID – using a dictionary allows the object to be accessed in constant O(1) time if

the key is known. Each surcharge message’s client ID can be used to check if the mote has

been retrieved by searching the dictionary and retrieve its object if so. Both of these operations

can be completed in O(1) time.

If a surcharge message arrives for a given mote, its representing object will be placed in the

aforementioned dictionary which we will refer to as the active motes dictionary. Whether the

message represents a true blockage or false alarm, the mote’s object will be stored in this

dictionary until a pre-defined time passes with no activity. Once this time passes for any given

mote, it will be removed from the dictionary to preserve volatile memory.

Every mote’s object contains the unique ID of its downstream neighbour, alongside a field for

storing a link to that neighbour’s object. When a surcharge message arrives for a mote not

stored in the active motes dictionary, records will be retrieved for both the concerned mote and

its downstream neighbour. These records will be used to create objects representing both

motes, with the downstream neighbour ID populated for both. The actual surcharging mote

will also have its link field populated, linking it to the downstream neighbour. The downstream

neighbour’s link field cannot be populated, as its own neighbour has not been retrieved. This

creates a linked-list data structure for neighbouring motes. Following this retrieval and

linking, both mote objects will be placed in the active motes dictionary.

By default, the link to neighbour object will be null, and is only populated if that mote receives

a surcharge message. However, if a mote object’s downstream neighbour ID is also null, the

database has no records of downstream neighbours for that mote. Our system will assume that

mote is the last downstream on its sewer main. If a mote is the last downstream on its sewer

main, having no downstream neighbour record is the correct way to represent it.

87

If a surcharge message arrives for a mote currently present in the active motes dictionary, the

matching mote object will be retrieved and updated to match the surcharge message. If that

mote object has a downstream neighbour (the downstream neighbour ID is not null) but the

link is empty, its downstream neighbour will be retrieved from the database and linked. The

retrieved downstream neighbour, as always, will store the ID of its own neighbour.

This process is illustrated in Figures 3-12 and 3-13 and explained through the pseudocode in

Pseudocode 3-3.

One gap is still present in this model when considering the analyses to be performed – the time

domain. Rapid fluctuations in surcharge status are used to differentiate partial blockages from

full blockages, and the length of a single surcharge often distinguishes a genuine blockage

from a false alarm. Considering the above, utilisation of the time domain is essential when

developing our computational model.

Each surcharge state change that occurs for a mote should be given its own object, storing

both the current state and time of change. When a surcharge message arrives at the

application server, the extracted surcharge status and timestamp will be used to create one of

these objects. Once the relevant mote has been loaded into volatile memory and linked with its

upstream and downstream neighbours, this will be added to that mote’s object.

Each of these state change objects should be stored in a stack data structure for each mode,

with the stack’s LIFO processing allowing processing of state changes from latest to earliest.

Using a stack also ensures that the current value for that mote can be retrieved instantly.

Following this section, we have a comprehensive and efficient model for representing a sewer

network in the application server’s active memory. With this model established, we can now

discuss how it is used to determine surcharge cause and differentiate types of blockages from

false alarms.

88

Figure 3-12: A demonstration of how mote records are dynamically retrieved. All mote records are stored in a

dictionary data structure object keyed by their unique ID. The rightmost figure lists these dictionary keys

(which map to the relevant mote records) in their indexed order – also the order they were retrieved.

In (1), a surcharge message arrives for Shaft E. Both Shaft E and Shaft D’s mote records are retrieved, and a

field in shaft E is populated with a link to shaft D. Like all mote records, Shaft D contains the ID of its

downstream neighbour, even if no reference exists.

In (2), a surcharge message arrives for Shaft D. Shaft D’s record has already been retrieved, however its

downstream neighbour has not. The ID of its downstream neighbour is used to query the database, and the

matching mote record (Shaft C) is retrieved. Shaft D is then updated to include a link to Shaft C’s object.

Finally, in (3), a surcharge message arrives for Shaft C. The above process repeats, downloading a record for

Shaft B and linking it to Shaft C’s record.

89

Figure 3-13 : A continuation of Figure 3-12, showing further scenarios where surcharge messages arrive for

different motes.

In (4), a surcharge message arrives for Shaft Q. As this is not downstream to any previously surcharging

motes, both it and its own downstream mote records will be downloaded. As always, Shaft Q will contain a

link to Shaft P. These will be placed after the previously retrieved motes at the next two indices.

In (5), a surcharge message arrives for Shaft B. Its upstream neighbour (Shaft C already surcharged in Figure

3-16, so Shaft B’s record is also stored. Like always, its downstream neighbour (Shaft A) will be downloaded

and linked to Shaft B. Both the downstream mote link and ID are null in Shaft A, meaning that it is the end of

the main and has no downstream neighbours. Despite being linked to Shaft B, Shaft A’s record will be stored

two places removed from it in the dictionary of all retrieved mote records.

In (6), Shaft P surcharges and its downstream neighbour (Shaft O) is retrieved with a link added to Shaft P.

This furthers the example shown in (5), being placed after Shaft A in the dictionary despite the direct link.

90

Pseudocode 3-3: Process used for loading inspection shaft data.

/* param theSurcharge is SurchargeMessage object passed from ‘Extract

 Application Data’ component */

function load_inspection_shaft_data(SurchargeMessage theSurcharge)

{

 Mote surchargingMote;

 if(!activeMotesDictionary.hasKey(theSurcharge.ID))

 {

 surchargingMote = retrieve_from_database(theSurcharge.ID);

 downstreamMote = retrieve_from_database(surchargingMote.downstreamID);

 surchargingMote.downstream = downstreamMote;

 //Assume this method takes a key and value to add to dictionary

 activeMotesDictionary.add(surchargingMote.ID, surchargingMote);

 }

 else

 {

 surchargingMote = activeMotesDictionary[theSurcharge.ID];

 /* If the surcharging mote has a downstream neighbour that is not yet

 loaded - mote’s upstream neighbour has surcharged in the past. If

 downstream ID is null, the mote has no neighbour. */

 if(surchargingMote.downstreamID != null && surchargingMote.downstream ==

 null)

 {

 neighbour = retrieve_from_database(surchargingMote.downstreamID);

 surchargingMote.downstream = neighbour;

 activeMotesDictionary.add(neighbour.ID, neighbour);

 }

 }

 return surchargingMote;

}

91

3.6.5 Analyse Current Surcharges

With a model of all actively surcharging motes and their neighbours loaded into application

memory, it is possible to utilise a single mote’s state change message to determine the exact

cause of that state change. We aim to determine if the simple sensor reading of whether

effluent is above a certain level indicates;

• A partial blockage

• A full blockage

• A blockage located at the inspection shaft

• A blockage located along the sewer main

• A false alarm (e.g., daily mass ejection)

Every surcharge message will be individually analysed in three steps; i – Alarm Veracity, ii –

Spatial Analysis, and iii – Time Analysis. If conditions are met for each analysis, its results will

be passed to the next stage – another example of pipe and filter architecture. Each of these

stages are briefly discussed below, and graphically illustrated in Figures 3-14, 3-15 and 3-16.

Following this Pseudocode 3-4, 3-5, and 3-6 implements each stage in pseudocode to provide a

detailed description.

When entering this process, every SurchargeMessage object is converted to or merged with an

object of the Event class. Event class represents any occurrence in sewer infrastructure

causing surcharges across one or more assets – this includes false alarms and all types of

blockage. An event contains all surcharges resulting from the same root cause, and therefore

motes can only belong to one currently occurring event at any given time. After some time

without an involved mote experiencing surcharge, events will become inactive, meaning the

root cause (blockage or false alarm) is no longer causing surcharges. This time is configurable

by system administrators and is referred to as the inactive timer.

All motes involved in an event object will be located downstream from one another – the only

way for a blockage to span multiple motes is a sewer main blockage, and main blockages

surcharge neighbouring inspection shafts. Each Event object contains a link to a single Mote

object, and all other surcharging motes can be accessed from the linked mote’s own link to its

downstream neighbours. This is effective as all surcharging motes on the same main form a

linked list, as detailed in Section 3.6.4. Each Mote object has a Stack of objects belonging to a

class named StateChange, that represent the surcharge state changes occurring for that mote

92

in the current event. StateChange objects contain both the current state (as of that change), and

the time of state change. This can be seen in the application server’s class diagram at Figure 3-

17.

3.6.5.1 Alarm Veracity

Alarm Veracity accepts the raw sensor reading from the source mote as a SurchargeMessage

object and determines whether it represents an actual blockage or is a false alarm. False

alarms, like partial blockages, usually involve rapid fluctuations between surcharged and not

surcharged. However, unlike partial blockages, false alarms will have much quicker

fluctuations and ‘settle’ after a small number. This difference in fluctuation number and speed

will be used to differentiate the two.

Before any other step is taken, the active motes dictionary is checked to determine whether

that mote or its downstream neighbour have had recent surcharge activity. If the mote and

neighbour have had no recent activity, an Event object will be created for that mote and

surcharge, and the false alarm timer will begin counting down. If this elapses and no other

surcharges are received for that mote or its neighbour, the Event object is passed to Spatial

Analysis.

If an additional surcharge arrives while the false alarm timer is counting down, the Event

object will be added to a list of current false alarms. If more than two surcharge messages

arrive for that mote or downstream neighbour while the Event object is classified as a false

alarm, it could in fact be an unusual partial blockage. To determine whether this is the case, it

will be released from the false alarms list and passed to Spatial Analysis.

If the mote or its downstream neighbour have had recent surcharge activity and there are

either no false alarms or a greater number than 2 false alarms stored (as previously

mentioned), that surcharge will be used to create a StateChange object and added to the correct

Mote object as stored in the active motes dictionary. That mote will already be referenced in an

Event object’s linked list of affected motes. As all objects in our application server’s code are

treated as references, any update to the object will affect its presence everywhere.

If the stack is not empty, the arriving state change is a continuation of the event which caused

the previous ones. Differentiating these is important; a surcharge that occurs for a long period

of time is very different to one which quickly disappears. Adding new state changes to an

93

existing event also assists with analysing that event and determining both its cause and

fluctuation rate.

3.6.5.2 Spatial Classification

As previously discussed, spatial classification determines whether a blockage is occurring at a

property connection or main and is conceptually rather simple. If the blockage’s Event mote

contains more than one mote, it will be a main surcharge. All events will have a single Mote

value, however if that Mote contains a reference to another Mote downstream, it will form a

linked list. These motes will chain together through the downstream reference until the

furthest downstream or end of the main is reached.

Every surcharge message will be added to a retrieved mote’s stack of state changes by looking

that mote up in the active motes dictionary. As both the dictionary and Event linked list contain

references to the same object (and therefore memory location), updating one will update the

other. Using the dictionary not only results in less complicated programming but allows

updates to be performed in real time.

As main surcharges progress, surcharges will arrive for motes that do not yet belong to an

event – however, their downstream neighbour does. The surcharges in these motes will

obviously belong to the same event as their downstream neighbours, as they will have the same

root cause. The downstream neighbour will be assigned to the newly surcharging mote’s own

downstream reference, placing it at the front of the linked list. Following this, the Event’s mote

reference will be overwritten with the newly surcharging mote. This replaces the existing

linked list ‘starting point’ with a new one that includes all surcharging motes.

The Event class’ mote reference will be made private so any changes must be facilitated

through a mutator method. Each time this mutator method is called to replace the linked-list,

additional code in that mutator’s body will be executed. This code will measure the length of

the linked-list and classify the event accordingly. If an event has a mote value with no

downstream reference, it is classified as a ‘property connection or main’ blockage. Following

this classification, a timer named the property_connection_timer will begin to count down. If

this timer elapses and no further motes are added to the event, it will be fully classified as a

property connection blockage.

A Property Connection or Main blockage appears the same as a standard property connection

blockage, however, is separately classified for the benefit of field staff. This ensures that if field

94

staff attend the site and do not find the blockage in the property connection, they can assume it

is occurring in the main between that connection and its downstream neighbour. By

implementing this distinction, we have accounted for the fact that all main blockages are

initially indistinguishable from property connection blockages. This potentially also allows for

main blockages to be resolved while still only affecting a single property.

If the mote value for an event is overriden with a mote that has a downstream value pointing to

another mote, the mutator will reclassify it as a main blockage if it has surcharged since the

event’s commencement.

Following this, the Event object can use its own mote value to provide an estimated location for

the blockage. If the Event is a main blockage, it will assume the blockage is located between its

furthest downstream surcharging mote and that mote’s own downstream neighbour.

Conversely, if the Event is a property connection blockage, it will assume the blockage is

occurring at that property connection. Early in the Event’s inception, it will be classified as a

property connection or main blockage, allowing for both possibilities. In this situation both of

the above potential locations will be raised, with the incorrect one being removed on further

classification.

With spatial classification complete and the blockage located, the Event object will be passed

into the Time Classification component.

3.6.5.3 Temporal Classification

In contrast to spatial classification which was concerned with the number of motes linked to an

Event object, temporal classification will examine each of these motes’ surcharge event

histories. While it is easy to determine the ‘latest’ surcharge in a property connection blockage

involving a single mote, it is more difficult in a main blockage that occurs across several

motes. To keep things relatively simple, our system will compare the most recent surcharge for

all involved motes by popping their individual stacks. Consequentially, the ‘latest’ surcharge

for a main blockage will be the most recent from all involved motes.

Every time a surcharge status of 0 arrives for a given event, our system will check whether all

involved motes have statuses of 0. If this is the case, a timer named inactive_countdown will

begin counting down. If this timer elapses with no further state changes arriving for the Event,

it will be considered resolved and removed from the storage of active events. However, if a

95

further state change arrives, this indicates a new fluctuation in a partial blockage. The

blockage has therefore been classified as partial.

If a surcharge status of 1 arrives, the stacks of all involved Motes will be checked. If any Mote’s

stack has previously cycled between both 1 and 0, the blockage is causing fluctuating effluent

levels and therefore cycling between surcharged and not surcharged. Our system assumes this

indicates a partial blockage. Conversely, if the Event’s latest surcharge status is 1 and no motes

have previously cycled between 1 and 0, the application server will assume this is a full

blockage as no fluctuations are occurring.

Whenever a blockage is classified as partial and all involved motes have surcharge statuses of

1, a timer named partial_to_full_countdown will begin counting down. If this time elapses with

no further state changes for motes involved at the time the countdown begun, the blockage will

be reclassified as full.

This discussion shows the need for several background timers counting down for successful

classification of surcharge events. As a consequence, the platform and language chosen for

developing the application server must be highly suited to asynchronous and parallel

programming.

Each time a blockage is classified or reclassified, a clone of the relevant Event object will be

passed into the main application server pipeline’s final component – Notify Relevant Parties.

96

Figure 3-14: An illustrated diagram of the Alarm Veracity algorithm. The falseAlarmCount value of the Event

object stores how many times an Event has been determined as a ‘false alarm’ by the system.

97

Figure 3-15: An illustrated diagram of the Spatial Classification algorithm. An Event with one mote

surcharging will initially be classified as a Property Connection or Main blockage, and this will be passed into

Time Classification. If the property_connection_timer elapses, it will be reclassified as a Property Connection

blockage. The reclassified Event will be passed into the Time Analysis again to determine if things have

changed since its last time analysis.

98

Figure 3-16: An illustrated diagram of the Temporal Classification algorithm. Note that it is assumed the

partial_to_full_countdown and inactive_countdown timers will be cancelled whenever a new surcharge occurs

for a mote in the same event.

99

Pseudocode 3-4: Alarm Veracity process for application server – See figure 3-14

// surchargingMote is Mote object returned from function in Pseudocode 3-3

// Check if surchargingMote belongs to existing event.

Mote concernedEvent = null;

foreach(Event next in currentEvents)

{

 /* Assume search() recursively searches linked list of Motes for matching.

 (Match = mote where ID field matches the search string). Will return

 matching mote if found, and null if no match is found.

 First search for mote itself, then for downstream neighbour.

 */

 Mote directHit = next.involvedMotes.search(surchargingMote.ID);

 if(directHit != null)

 {

 concernedEvent = next;

 break;

 }

 else

 {

 Mote neighbourHit =

next.involvedMotes.search(surchargingMote.downstreamID);

 if(neighbourHit != null)

 {

 concernedEvent = next;

 break;

 }

 }

}

//If concernedEvent has not been found, no current Event exists. Create one.

if(concernedEvent == null)

{

 Event theEvent = new Event(surchargingMote);

 currentEvents.add(theEvent);

 theEvent.begin_false_alarm_countdown();

100

}

 if(concernedEvent.false_alarm_countdown_running)

 {

 concernedEvent.falseAlarmFlags += 1;

 }

 //concernedEvent false alarm countdown is not running

 else

 {

 if(concernedEvent.falseAlarmFlags.length == 1 ||

 concernedEvent.falseAlarmFlags.length == 2)

 {

 concernedEvent.falseAlarmFlags +=1;

 }

 else

 {

 concernedEvent.falseAlarmFlags = 0;

 //Assume this begins spatial analysis with event.

 begin_spatial_analysis(concernedEvent);

 }

 }

101

Pseudocode 3-5: Spatial Analysis algorithm utilised by application server – See figure 3-15

// concernedEvent is Event object passed to this stage in Pseudocode 3-4

// Assume getLength() recursively gets the length of a linked list.

if (concernedEvent.involvedMotes.getLength() > 1)

{

 concernedEvent.spatialClassification = “MAIN”;

 //Assume this begins time analysis for event

 begin_time_analysis(concernedEvent);

}

else

{

 concernedEvent.spatialClassification = “MAIN OR PROPERTY CONNECTION”;

 begin_time_analysis(concernedEvent);

}

/* Assume code in then() executes when asynchronous wait is over. This is based

 on ‘Promsies’ in asynchronous programming. */

asynchronous_wait(property_connection_timer).then

(

 if(concernedEvent.involvedMotes.getLength() > 1)

 {

 concernedEvent.spatialClassification = “MAIN”;

 begin_time_analysis(concernedEvent);

 }

);

102

Pseudocode 3-6: Time Analysis algorithm utilised by application server – See figure 3-16

// concernedEvent is Event object passed to this stage in Pseudocode 3-5

//Get latest state change for Event

StateChange latest = null;

// Assume toArray() recursively converts linked list to array

foreach(Mote next in involvedList.involvedMotes.toArray())

{

 StateChange nextChange = next.stateChanges.pop();

 if(latest == null || (nextChange.time > latest.time))

 {

 latest = nextChange;

 }

}

if(latest.status == 0)

{

 /* Use check_all_inactive (Detailed below) to check if all Motes involved in

 this Event are currently not experiencing surcharge. This will return

 true if all Motes are inactive, and false if vice versa. */

 if(check_all_inactive(concernedEvent))

 {

 asynchronous_wait(inactive_timer).then

 (

 if (check_all_inactive(concernedEvent))

 concernedEvent.resolved = true;

);

 }

}

103

// Latest surcharge status is 1

else

{

 /* Use check_previous_fluctuations to determine if any Motes in this Event

 have previously cycled between 0 and 1. This is done by the

 check_previous_fluctuations method detailed below.

 */

 if(check_previous_fluctuations(concernedEvent))

 {

 changesBeforeWait = get_state_change_count(concernedEvent);

 event.timeClassification = “PARTIAL”;

 asynchronous_wait(partial_to_full_timer).then

 (

 /* See if event has had any new state changes arrive. If so, the

 count performed now will be different to the one performed

 earlier. */

 changesAfterWait = get_state_change_count(concernedEvent);

 if (changesBeforeWait == changesAfterWait)

 event.timeClassification = “FULL”;

);

 }

 else

 {

 event.timeClassification = “FULL”;

 }

}

104

/* Determine if any Motes in this Event (toCheck) have previously cycled between

 0 and 1. If a Mote’s stateChanges stack has a length > 2, this will be the

 case. */

function check_previous_fluctuations(Event toCheck)

{

 foreach(Mote next in toCheck.involvedMotes.toArray())

 {

 if(next.stateChanges.length > 2)

 return true;

 }

 return false;

}

// Determine if all Motes in this event (toCheck) are currently not surcharged.

function check_all_inactive(Event toCheck)

{

 foreach(Mote next in toCheck.involvedMotes.toArray())

 {

 if(next.stateChanges.pop().status == 1)

 return false;

 }

 return true;

}

// Gets the total number of state changes for all Motes in an Event

function get_state_change_count(Event toCount)

{

 var toReturn = 0;

 foreach(Mote next in toCheck.involvedMotes.toArray())

 {

 toReturn += next.stateChanges.length;

 }

 return toReturn;

}

105

Figure 3-17: A class diagram for the central system’s application server. The Application class is used to store data structures accessible to all areas of the application,

alongside configuration values set by user such as timer length. Considering this, it can be thought of as storage for global variables.

Note that this is unlikely to completely match the final set of classes, namespaces etc included in our solution – this is simply a theoretical design. Our implementation

presented in the next chapter is based on this design.

106

3.6.6 Notify Relevant Parties

Whenever an Event is classified or reclassified as a blockage, it will be passed into this

component which is responsible for ensuring required external parties can be made aware of

the Event. Our system will automatically perform the minimum required functionality by

sending an email message to a list of addresses stored in an external configuration file.

However, solely sending emails is not sufficient for organisations (such as the majority of

utility providers) that do not have staff constantly monitoring emails. In response, we have

developed a mechanism for ‘connecting’ the application server to other systems that provide

more sophisticated communications such as SMS and telephony.

The application server will expose a RESTful API that allows all current alarms to be retrieved

by external systems as a list of JSON objects. Organisations can easily write small scripts or use

specialised software to extract this list, convert it to the relevant format, and pass it to an API

allowing more sophisticated communications. Many APIs exist for SMS, telephony, VoIP, and

other messaging platforms. As most modern APIs utilise JSON, conversion should be relatively

simple and resource efficient. The model discussed is illustrated below.

3.6.6 Analysing Heartbeats

Compared to state change messages, heartbeat messages are simple to process and react to.

Heartbeats arrive at the application server through an MQTT message, and battery level is

compared with a pre-set threshold. If battery level is below this threshold, an email will be sent

to relevant staff members. Regardless of whether this threshold is met, a record of that

heartbeat will be written to the database. If this database write occurs, it will be performed in

parallel with the email notification.

A small program will execute outside the main application server software on an hourly basis,

scanning each mote’s database records for when the last heartbeat was received. If this

exceeds a certain threshold and heartbeats have not been received for an unacceptable time,

an email will be sent to relevant parties. An additional record will be updated with the time this

email was sent, and future scans will re-send the email if another day has passed.

3.6.7 Database Integration

While we have touted the benefits of our data structure solution located in application memory,

it is important that permanent database storage is not neglected. Databases allow information

to be retained, retrieved for future analysis, and harvested by stakeholders for a wide variety of

107

business cases. Most importantly, building a valid model of inspection shafts and motes

requires a permanent storage of information to be based on. Creating a valid database

mechanism requires defining -

• The schema (logical structure) of how data is stored.

• When information will be written to the database.

Information must be periodically written to the database for obvious reasons, however as

always, a balance must be struck. Excessive database writes will impact system performance

and consume excessive resources, while too few database writes could result in data loss and

untimely data. If the system experiences interruption while processing surcharges, it should

be possible to reload the retrieve information from the database which is as recent and

relevant as possible. Ideally, data retrieved from the database will detail currently occurring

events and differentiate them from historic events.

Considering the above, records should be updated whenever the object representing them is

significantly changed. Database writes passing updated object states should occur when;

• An event starts, is classified or reclassified, or ends.

• A new surcharge is detected.

• A mote’s details are significantly updated.

Figure 3-18 shows a SQL relational schema for a database theoretically capable of meeting all

requirements.

The second point may raise some contention, as every message from a mote will contain

updated information such as battery life. In events that involve frequent messages (such as

partial blockages), mote information is unlikely to significantly change and writing it to the

database will prove a waste of resources. To combat this, mote information will only be updated

by heartbeat messages, or surcharge messages which deliver changed values.

From a programming perspective, it would be inefficient to have a monitor routine constantly

running in the background and checking for object changes. Instead, code for updating the

database and evaluating necessity should be implemented into mutator methods for object

values. Alarms and notifications should be prioritised and written to the database in parallel to

being ‘sent’ out via email.

108

Finally, database operations should all be executed as transactions and continually re-attempt

if an error is encountered. If the number of unsuccessful encounters exceeds a given value, an

alarm should be sent to relevant parties.

The previously mentioned RESTful API should operate almost exclusively by read/write

operations to this database, further increasing the need for regular updates and database

writes. This is especially true when considering that external alarm systems will use this API

(and therefore the database) for sending critical alarms to required parties.

Figure 3-18: A relational database schema for the central system’s SQL database. The falseAlarmFlags field in

event stores how many times that event was classified as a false alarm – whether correctly or not. Any

notification sent to relevant users through any communications system should also be stored here as a row of

the notification table. The type field of this table provides a numeric code that can be mapped to the type of

communication used. Individual system administrators can specify different numbers for different

communication platforms; however, we recommend that 1 is always used for email.

109

Finally, the overall architecture for the entire system can be succinctly described in Figure 3-

19.

Figure 3-19: The overall architecture of our system.

110

3.7 Conclusion

As discussed at the beginning of this chapter, we intend to deliver a system capable of

monitoring sewer blockages across a wide area while remaining practical and cost-effective.

Successfully implementing this system requires a robust design to follow during development,

providing us with answers for how to meet our research requirements. This chapter presented

detailed designs for a sensor mote, central system, and network architecture.

Our mote design outlined how constrained hardware and software capable of detecting

wastewater surcharges. We chose to utilise a float switch for physically sensing whether a

surcharge is occurring and produced a theoretical model and set of requirements for a

microcontroller capable of interfacing with it. This model was then accompanied with

algorithms and designs for software that can process float switch data and send appropriate

messages to the central system.

Following this, we designed a network facilitating communication between motes following the

aforementioned design and a central system. The design allows both LPWAN and Wi-Fi

connections to co-exist, implementing MQTT and MQTT-SN protocol communications. We also

ensured that surcharge and heartbeat data can be sent through these protocols while still being

sufficiently lightweight for LPWAN networks.

Finally, our central system design specifies how to receive incoming messages from motes,

process these messages, differentiate actual blockages or false alarms, and classify blockages.

This design was presented through a combination of traditional software engineering tools

such as UML diagrams and database schemas, alongside visual and pseudocode

representation of complex algorithms.

Collectively, these produced an overall design for a system capable of meeting our research

requirements. However, successfully developing a design only proved our system is

theoretically possible. In the following chapter we will develop a prototype derived from this

design to verify it is capable of delivering a real, working system.

111

Chapter 4 Building and Evaluating Prototype

In the first two chapters we demonstrated the need for a system capable of detecting sewer

blockages on a city-wide scale and found that no practical solution currently exists. To fulfil the

goal of building an IoT-based blockage detection system, we presented a detailed design based

on that goal in Chapter 3. Our design is capable of carrying out the much-needed sewer

blockage system, and most importantly is practical for large-scale deployment in a variety of

environmental and socioeconomic conditions.

However, even the most robust and detailed design requires a form of prototyping and

practical evaluation. Things that appear effective or fulfil all requirements in a theoretical

environment are often thwarted by real-world variables. Testing also reveals previously

undetected issues that are not obvious during purely theoretical design and allows those

issues to be resolved in future iterations or versions of design.

We have developed a prototype implementation of Chapter 3’s design capable of

demonstrating its practicality and showing that it can produce a working system. First, this

delivers a mote device adhering to the design specified in Chapter 3. Follow this, we deliver an

implementation of that chapter’s design for a central system. While some functionality such as

email alerts and a user interface have not been delivered, these are secondary to the main

innovation and purpose of our system. With a mote and central system prototype developed, a

practical demonstration of the design at all layers of architecture is possible.

In this chapter, we detail the prototype mote and central system produced, and provide

instructions for their practical implementation. This allows future endeavours to adopt our

work and implement their own version of the system on a commercial scale. To verify the

prototype system, and therefore design, are operating as intended we have also performed

some testing. The testing process shows the prototype system successfully reading surcharge

events and classifying blockages, and both the process and results are outlined in this chapter.

112

4.1 Prototype Mote Development
To build the mote, we decided to use commercially available and easily configurable hardware

components as many of these are designed for electronic prototyping. This assembly of pre-

existing components will prove our design can be implemented effectively, allowing future

implementations to apply our design to dedicated, manufactured components. This section

will first discuss the selection and configuration of these components, before detailing the

software developed to carry out the required functionality.

Only one mote was produced, as this will be sufficient to prove that motes can effectively send

surcharge messages to the central system. Our intention when developing the prototypes is to

prove that the design can be implemented, and one mote will be enough to do so. This also

allowed us to work within the time and financial constraints of development, and within the

scope of the degree.

4.1.1 Prototype Mote Hardware

After considering several single-board computers, microcontrollers, and electronic devices, we

selected the Raspberry Pi Zero (RPZ) single board computer. RPZs are physically compact at

only 65x30x5mm in size [110], extremely cost-effective with a price per unit averaging only

$21 at the time of writing and include an integrated Wi-Fi transceiver. Unlike many other

single-board computers, RPZs utilise a fully featured Linux operating system developers can

interact with using a GUI or terminal. Most user-facing features will be disabled during testing

to conserve power; however, these will prove invaluable during the development and testing

process. To utilise the GUI, the RPZ provides a mini-HDMI port for more conventional displays

and a proprietary PiTFT video connection for Raspberry Pi-specific touch screens [111]. A

photograph of an RPZ without any connected wires or cables is shown in Figure 4-1.

In addition to the connections mentioned above, the RPZ also contains two micro USB ports.

The port closest to the HDMI connection is used for connecting peripheral devices, while the

other is reserved for use as a power supply. Providing power through the micro USB port is

very easy, as USB to Micro USB cables are widely available alongside USB wall adapters.

Making this even easier, many modern buildings now include USB ports in electrical outlets.

Power can also be provided through the RPZ’s GPIO pins, with the 3.3V and 5V power pins

accepting electrical input – however, using the micro USB cable is much more likely to work

113

correctly. Despite this, using GPIO pins is a good option when power supplies not compatible

with USB are required.

Figure 4-1: A photograph of a Raspberry Pi Zero (RPZ). This is the same RPZ used to build the mote for our

prototype system.

Sensors and other devices connect to the RPZ using its GPIO interface. The RPZ exposes 40

pins, laid out in a grid 2 pins wide and 20 high. Not all of these pins are able to be used as

GPIO interfaces, with some being reserved for power, grounding, and system functionality. Of

the pins with GPIO capabilities, some of these will be unreachable by default as they are

reserved for other protocols or applications. These pins can be utilised if absolutely necessary,

however it is not recommended they be used. This is particularly relevant with the UART RX

and TX pins, which are required by an enormous number of other devices.

Pins are accessed by the operating system and its applications using identifying numbers

mapped to a physical pin. There are four numbering schemes available to the RPZ [90] –

Broadcom Pin Number (BCM), WiringPi, Physical and Rev 1 Pi. Notably, the Physical scheme

uses numbers identical to those printed on the board next to each GPIO pin, providing an

exact replica of the physical pin number. WiringPi could be recommended for more

performance-critical or advanced systems, as it provides a library using the C programming

language [92].

We will utilise the BCM scheme for several reasons – perhaps most importantly, it is specified

by Broadcom, who also developed the RPZ’s internal CPU. Under most circumstances, it is

advisable to utilise any specifications developed by the original hardware manufacturer. Table

114

4-1 lists each pin available on the RPZ in order of its physical number and provides some more

information [91] [92]. Following this, Figure 4-2 provides an illustration of all GPIO pins,

components, and other ports on the RPZ.

Serendipitously, the RPZ has built-in pull-up and pull-down resistors for every I/O pin, which

can be activated or deactivated from the operating system and many software libraries [92].

As the RPZ integrates most of the components required by our system’s motes into a single

board, very few electrical connections are needed. The float switch used to detect surcharges

will be connected to both a 3.3V output and GPIO pin, with one providing power to the switch

while the other provides a digital signal to the mote’s microcontroller. Power will constantly

flow from the 3.3V pin, however if the float switch is open it will not reach the GPIO pin –

resulting in a value of 0. Once the float switch closes, however, the 3.3V power will flow

through to the GPIO pin and cause a value of 1. A pull-down resistor must be enabled on the

GPIO pin chosen to prevent short circuiting, as a closed float switch results in a direct

connection between power and ground.

Ideally, the float power and GPIO pins will be placed as close together as possible, to maximise

the amount of float switch cable utilised. If the pins used are placed far apart, a significant

amount of float switch cabling will be wasted stretching between the pins. After considering

the pin layout as shown in both Table 4-1 and Figure 4-2, we have decided to use pin 1 as the

float switch’s power source and pin 7 as the input. This results in a very simple schematic as

shown in Figure 4-3, that is used to produce the device shown in Figures 4-4 and 4-5.

We utilised the micro USB port to power our mote, connecting it to a 2200mAh portable

power-pack manufactured by Gecko Gear [131]. This power pack was chosen as a result of its

high capacity, availability, low price, and water resistance. While this power pack was large and

unable to fit into a standard pipe cap, this was seen as irrelevant for the current prototype.

Future deployments of our design will use different power supplies depending on local

requirements and availability and will likely use different devices. Consequentially, there is no

need to specifically test the power supply being used, with testing focused on the system’s

functionality when implementing our design. Searching the Internet has also shown that many

smaller batteries compatible with our mote design and RPZ are available.

115

Altogether, the prototype mote cost $85.35 AUD to develop. The RPZ was $21.41, the 16GB

MicroSD card for storing its operating system was $23.59, the power supply was $24.95, and

the float switch was $9.54. Bringing the total to its final value of $85.35, a transparent case was

also purchased for $5.50. This inexpensive addition proves extremely valuable, as physical

ruggedization and protection is an essential yet often overlooked part of mote development.

Mass-manufacturing can be expected to significantly decrease this price, especially if less

expensive power sources or purpose-built microcontrollers are utilised.

Table 4-1: A list of Raspberry Pi Zero (RPZ) pins, in order of their physical arrangement

Physical Number Purpose BCM Number Comments

1 3.3V I/O

2 5V I/O

3 I/O GPIO2 Reserved for I2C protocol

4 5V I/O

5 I/O GPIO3 Reserved for I2C protocol

6 Ground pin

7 I/O GPIO4

8 I/O GPIO14 Reserved for UART serial protocol

9 Ground Pin

10 I/O GPIO15 Reserved for UART serial protocol

11 I/O GPIO17

12 I/O GPIO18

13 I/O GPIO27

14 Ground Pin

15 I/O GPIO22

16 I/O GPIO23

17 3.3V I/O

18 I/O GPIO24

116

19 I/O GPIO10 Reserved for SPI protocol

20 Ground Pin

21 I/O GPIO9 Reserved for SPI protocol

22 I/O GPIO25

23 I/O GPIO11 Reserved for SPI protocol

24 I/O GPIO8 Reserved for SPI protocol

25 Ground Pin

26 I/O GPIO7 Reserved for SPI protocol

27 Do not connect

28 Do not connect

29 I/O GPIO5

30 Ground Pin

31 I/O GPIO6

32 I/O GPIO12

33 I/O GPIO13

34 Ground Pin

35 I/O GPIO19

36 I/O GPIO16

37 I/O GPIO26

38 I/O GPIO20

39 Ground Pin

40 I/O GPIO21

117

Figure 4-2: All ports (including GPIO pins) on the Raspberry Pi Zero. Each GPIO pin illustrated has the same

numbering as shown in Table 4-1, with added colour coding for clarity. Green pins are power outputs, while

blue pins are grounds. Red pins are unable to be used under any circumstances, while orange pins are able to

be used but it is not recommended. No wired communication port is provided, and the Wi-Fi antenna is

embedded in the board so cannot be seen.

Figure 4-3: The schematic of our prototype mote. Our mote is relatively simple but highly workable, as the

RPZ integrates most necessary features including a pull-down resistor. Here a float switch is shown connected

to GPIO pin 1 for 3.3V power and providing input to GPIO pin 7.

118

Figure 4-4: Our prototype mote. The Raspberry Pi Zero (RPZ) can be seen in the centre of the image,

protected by a clear case. The float switch is connected to the device through the GPIO pins and can be seen at

the bottom left-hand side of the image. Finally, the battery we utilised can be seen to the right of the RPZ,

where it connects to the Micro USB power port.

119

Figure 4-5: Another view of our prototype mote, clearly showing the GPIO pins. Conforming to our design

and produced schematic, the float switch is connected to both a 3.3V power pin and GPIO pin 17. The power

pin provides power to the circuit, and pin 17 will therefore report on the circuit’s status. If the circuit is broken

by the float switch being open, GPIO Pin 17 will be low current (0). Conversely, if the float switch is closed

and the circuit is complete, GPIO 17 will be equal to the current flowing from the power pin (1).

120

Geerling [109] provides commands that conserve power by disabling the HDMI port, along

with disabling a built-in LED. While the RPZ does not have a dedicated deep-sleep mode,

disabling these components can partially replicate its functionality. Our testing will also utilise

a mains power connection or portable battery unit, as we are not concerned with testing power

consumption. Future, non-prototype implementations of our design will implement custom-

built hardware or microcontrollers with their own power-saving functionality or increasingly

efficient hardware. Table 4-2 lists the commands provided by Geerling to conserve power.

In addition to these commands, Geerling states that further power can be consumed by

unplugging all peripherals and terminating background daemons. Our mote will have no

keyboard, mouse, or other peripherals attached, which will save at least 50mA. We will also

install the Raspbian Lite Linux distribution on our motes, which has a lower number of

background daemons than standard Raspbian.

Table 4-2: Geerling’s power-saving techniques for Raspberry Pi Zero [109].

Command Purpose
Power Saved

(mA)

/usr/bin/tvservice -o Disable HDMI Output 25

echo none | sudo tee
/sys/class/leds/led0/trigger

echo 1 | sudo tee
/sys/class/leds/led0/brightness

Disable LED 5

4.1.2 Prototype Mote Software

Python is the most common language used for prototyping and development on the Raspberry

Pi and has grown into a somewhat unofficial standard for the platform. We originally intended

to follow this standard and utilise the Python language, however during development of the

central system we discovered a GPIO package for Node.js named onoff [113]. Further research

into onoff revealed that not only was it developed considering the Raspberry Pi platform, but it

would allow us to meet all design requirements.

121

Utilising Node.js instead of Python has many advantages, most notably allowing a shared

language and platform between mote and application server. In addition, Node.js has more

familiar syntax, is fully capable of asynchronous and parallel programming, and has a large

online following. Our Mote software utilises both the aforementioned onoff package, and the

same mqtt package used in application server development.

4.1.2.1 The onoff Package (GPIO)

Using the onoff package, developers create an object of the Gpio class for each GPIO pin on the

board they wish to read from or write to. When creating a new Gpio object, developers are

required to pass both the pin’s identifying number and whether it is acting as an input (“in”) or

output (“out”) to the constructor. For example, if the developer wants to configure the GPIO pin

located at 17 as an input;

let thePin = new Gpio(17, “in”);

Gpio objects have a function named watch that accepts an anonymous function as a parameter,

with that anonymous function having two of its own parameters - err and value. When current

at the physical pin represented by a Gpio object changes, the anonymous function passed into

watch will execute. The value parameter will be equal to the pin’s current value, while err will

store information on any errors that occur.

Gpio’s constructor also has two optional parameters – edge and options. If the microcontroller

being utilised supports interrupts, edge specifies which state changes in current will trigger an

interrupt. Acceptable values for the edge parameter are shown in Table 4-3.

Conversely, the options parameter accepts a JSON-style anonymous object with one or more of

the attributes shown in Table 4-4. Developers can use as many or as few of these attributes as

the situation requires, and we will definitely utilise the debounceTimeout option to prevent

false alarms. This also complies with our mote design’s emphasis on preventing false alarms

through switch debouncing.

122

Table 4-3: Acceptable values for the Gpio object’s edge parameter

Value Outcome

“none” The pin will never fire an interrupt

“rising”
The pin will fire an interrupt when the value

changes from low current (0) to high current (1)

“falling”
The pin will fire an interrupt when the value

changes from high current (1) to low current (0)

“both”
Any current changes between high (1) and low

(0) or vice versa will fire an interrupt

Table 4-4: Acceptable fields for an anonymous object passed as the options parameter

Value Outcome

debounceTimeout

Performs software debouncing on a pin by waiting a given

period of time after each state change. This specifies how

long to wait in milliseconds.

activeLow

Whether to invert values read from or written to the pin –

low current will register 1, and high current will register 0.

This also applies to any interrupts.

reconfigureDirection

If the involved pin has already had its direction

(input/output) configured by another application or

instance of this application, these states whether to ‘clear’ it

for this object.

This is expressed as a boolean value and is true by default.

123

4.1.2.2 Mote Software

Utilising the onoff and mqtt packages alongside custom Node.js code, we have developed a

single script for carrying out all mote functionality named Mote.js. Like all Node.js applications

the mote software is built from modules, however in this case only consists of a single module

containing all needed code. With the onoff and mqtt packages already discussed, we will now

examine the remaining tasks carried out with custom code and the language’s own features.

Scheduled heartbeats will be handled using Node.js’ built-in setInterval() function.– if a

surcharge message is sent, the heartbeat interval will be cancelled and recreated to ‘reset’ it.

An anonymous function will be passed to the interval, along with the length between

heartbeats in milliseconds. As 24 hours is the generally agreed-on time for heartbeats, this will

be an integer value of 86483647. Thankfully, the maximum value for setInterval is 2147483647

milliseconds (596.5 hours), so this is an acceptable value. In addition, the anonymous function

will carry out the correct MQTT publish operation needed to send the heartbeat message to the

central system.

Mote.js executes automatically when the mote is powered on, and its function can be

summarised as the following algorithm;

• Check configuration parameters.

• Check whether the MQTT broker is reachable.

• Create Gpio object for Pin 7. Pass the correct parameters to debounce by waiting for the

time specified in config.json and throw interrupts on all state changes.

• Bind watch event listener to Pin 7’s Gpio object. This will be a function that executes

every time Pin 7’s state changes. More details are provided for this function below.

• If Pin 7 is at its default 0 value, execute the power-saving commands in Table 4-2.

• Create the interval object for sending heartbeat messages every 24 hours.

Following this, the script will wait until the watch event for Pin 7 is ‘caught’ or the heartbeat

interval elapses. While actual implementations of our design should enter a deep-sleep mode

and only wake on interrupts at the float switch input, we have replicated as much of this

functionality as possible on the RPZ. All non-essential system functions such as Wi-Fi will be

disabled by default, and only re-activate when reacting to a heartbeat or surcharge state

124

change. Once the MQTT message has been sent in response to these events, these non-

essential components will be de-activated again.

Any functions executed when Pin 7 fires a watch event or the heartbeat timer elapses can be

classified as event listeners. Event listeners in our mote’s software largely perform the same

task, which we will briefly outline before stating the small differences.

The event listeners will both begin by re-activating the Wi-Fi adapter, before using the mqtt

package’s connect method to establish a connection with the broker. If the connection can be

established, the same package’s publish method will then transmit the correct MQTT message

to the broker. If the connection cannot be established or the message cannot be sent, the failed

task will be re-attempted the number of times specified in config parameters. Following this,

the Wi-Fi adapter will be deactivated.

Between the two event listeners, the only significant difference is the actual message being

published. These will both publish a space-separated string containing the Mote’s address, a

timestamp and battery level. However, the watch function will have an additional space-

separated value at the end of the string containing the current surcharge status. In addition,

the watch function will publish its message under the “surcharge” topic, while the interval will

publish it under the “heartbeat’ topic.

In addition, when a message is sent using the watch event listener, there is no need to execute

the regular heartbeat for another 24 hours. Consequentially, the watch function will clear and

recreate the interval function.

4.1.2.3 Mote Configuration Parameters

Like the application server, mote configuration parameters are contained in a JSON file named

config.json. Table 4-5 shows the parameters we have implemented in this configuration file,

and their effect on the system.

125

Table 4-5: Configuration parameters used by mote.js script.

Variable Name Purpose

moteID The unique ID of this mote in the application server database.

debounceTime
How long to wait when a surcharge state change is detected to

filter switch bounce.

gatewayAddress The IP address of the MQTT Broker.

gatewayPort The port used to communicate with the MQTT Broker.

surchargeAttempts How many times to attempt sending a surcharge message.

heartbeatAttempts How many times to attempt sending a heartbeat message.

4.2 Prototype Network
Recent years have seen organisations shift from individual servers hosted on a single physical

machine to many servers running on fewer, more powerful hosts. These powerful hosts can be

located in an on-site server room, however, are even more frequently located at powerful

offsite data centres – a paradigm often referred to as ‘the cloud’. Therefore, it is reasonable to

assume that many organisations deploying our solution will host the central system on one or

more virtual machines.

Our central system design actually consists of three servers; an MQTT-SN gateway, an MQTT

broker, and an Application Server. We have developed a virtual machine for each of these

servers, hosted on a single physical host machine. All virtual servers utilise the Ubuntu Server

operating system, however assigned resources differ between servers depending on their

predicted processing requirements. The specifications for each virtual server are shown in

Table 4-6. The host machine we utilised is a Windows 10 desktop computer with an Intel Core

i7-4770k CPU, running 8 cores at 3.50 GHz. This host machine also has 32GB of RAM and a

Nvidia GTX 980 TI graphics card – considering these points, there is a significantly large

resource pool for virtual machines to draw from.

126

4.2.1 Virtual Network

Each virtual server was also given a virtual network adapter, and the host machine’s own

adapter was bridged to these adapters to share connectivity. Virtual network adapters are

assigned their own IP address using the LAN’s DHCP service, and all packets passing through

the host machine’s physical adapter are intercepted by the bridging service. Packets with a

virtual network adapter’s IP address are relayed to the appropriate adapter, while packets with

the host machine’s network address are processed as normal by the host. From an

administrator’s perspective, this gives the appearance of all virtual servers being individual

entities on the same LAN as the physical host. This is illustrated in Figure 4-6.

Table 4-6: Specifications for each virtual machine in our virtual network.

 Processor Memory Storage Video Memory Operating

System

Test MQTT

Client

1 CPU 4096 MB 30.44 GB 16 MB Ubuntu Server

x64

MQTT-SN

Gateway

1 CPU 2048 MB 30.44 GB 16 MB Ubuntu Server

x64

MQTT

Broker

1 CPU 4096 MB 30.44 GB 16 MB Ubuntu Server

x64

Application

Server

1 CPU 8192 MB 41.08 GB 16 MB Ubuntu Server

x64

MQTT servers were implemented using pre-existing software provided by the Eclipse

Foundation. Eclipse provide a range of client and server solutions for both MQTT and MQTT-

SN, including the Mosquitto [95] MQTT broker and MQTT-SN gateway [97] developed by

Eclipse’s Paho project. The Paho project is especially relevant to this research, as it involves

Eclipse’s attempt to develop MQTT and MQTT-SN solutions for IoT networks [98]. In addition,

current literature shows that many systems developed for research using MQTT have

successfully utilised the Mosquitto broker [99-103]. This gives Mosquitto an unofficial

‘recommendation’ among academia.

127

4.2.2 MQTT-SN Gateway

While developing mote software, we quickly realised that no reputable MQTT-SN library was

available for the Node.js language. Upon further investigation, it appeared this issue was

endemic across many languages and frameworks; MQTT-SN libraries are relatively

uncommon. Developing our own MQTT-SN library would prove both difficult and time-

consuming, and consequentially utilisation of MQTT-SN has been postponed. We will develop

and test a robust MQTT-SN library in a future research project, and potentially even create the

currently missing industry standard. However, for this project, we will use standard MQTT to

prove the design’s concept.

While we will not implement the MQTT-SN protocol in this prototype, we have ensured the

system is fully compatible with it for future research. Previous literature provided very little

information on practical implementation of MQTT-SN, so we instead turned to developer sites,

specifications, and Internet blogs for previous experience. Notably, a blog by J.P. Talusan [115]

provided extremely useful information. Talusan proposed that not all MQTT brokers will work

well with MQTT-SN and recommended using the RSMB (Really Small Message Broker) [117]

developed by the Eclipse Foundation’s Paho project. RSMB is a close relative of the ubiquitous

Mosquitto broker, however unlike its more common counterpart has full support for MQTT-SN.

4.2.3 MQTT Broker

To ensure compatibility with future research of MQTT-SN and resulting implementations, we

utilised RSMB for our central system’s broker. RSMB was installed under the /usr/sbin

directory on its virtual server, placed in a dedicated sub-directory named rsmb. Following

installation, the bash script for starting the broker using a given configuration file were located

in the following directory;

/usr/sbin/rsmb/rsmb/src

The bash script for running the broker is named broker_mqtts, and the configuration file

broker.cfg. Before it could be used, the broker was configured to listen for the correct

addresses on the correct port. We determined that the broker should communicate with clients

or gateways on any IP address, and it should use the MQTT standard port of 1883. To achieve

this, the following line was added to the configuration file;

listener 1883 INADDR_ANY

128

A listener is any combination of ports and IP addresses that the broker can communicate with

and is defined by affixing the string listener with a port and address range. INADDR_ANY

simply means that all IP addresses are acceptable for the given port.

To start the broker, the script must be executed with the configuration file to use as a

parameter. To ensure the broker held root permissions, we used the following command;

sudo ./broker_mqtts broker.cfg

4.2.4 Application Server

Application server software and the MySQL database it utilised are both hosted on the same

virtual server. MySQL installation followed the standard process for Ubuntu server, installed

using apt-get with no changes to configuration. Editing a file named mysqld.cnf changes the

configuration parameters and environment variables for the MySQL server, and we used this to

allow communications with the application server software. This file was located at

/etc/mysql/mysql.conf.d/ on the virtual server.

Configuring the MySQL server was a simple process, as only one parameter needed to be

changed. The bind-address parameter was changed to ‘0.0.0.0’, allowing any host at any IP to

access the database. While this would raise security concerns for a practical deployment, it was

sufficient for our isolated prototype. While localhost would have given exclusive access to the

application server, we required the ability to administer and configure the database from the

physical host using MySQL Workbench.

In addition, the application server’s actual software is stored at a directory named

/srv/node/app_server, where node is a custom directory for storing Node.js applications and

app_server is a custom directory to store application server files. Section 2.6 describes the

Node.js framework and provides more information on why it was selected.

This sub-section has only provided details on the virtual server used to host the application

server’s software, and how it was configured. The actual application server software is detailed

in Section 4.3, as it is sufficiently complex to warrant its own section.

4.3 Prototype Application Server
While motes produce surcharge data and MQTT components facilitate its delivery, the

application server is responsible for converting the simple binary data to robust information.

129

There is currently no solution capable of detecting and classifying sewer blockages, especially

given the inexpensive and simple nature of our motes. Consequentially, development of the

server was highly complicated and had potential to be very time-consuming. Thankfully, by

utilising the Node.js framework, we were able to develop the server in a practical timeframe.

4.3.1 Application Server Architecture and Modules

The application server is started by executing a script named run_appserver.js, located in a

custom directory named /srv/node/app_server. This script contains the main flow of execution

for the server, executing all tasks required on start-up before beginning the run loop. These

tasks include importing all required packages, loading configuration parameters, and creating

data structures that will be shared throughout all asynchronous executions. Following these,

the server will attempt to establish a connection with the MQTT broker. If the connection is

successful, the server will execute its infinite run loop while waiting for events – this includes

MQTT messages being received.

Many of the modules utilised by the application server were developed by us to carry out the

server’s unique functionality. We will now detail each of these custom-built modules in the

following sub-sections, as they collectively carry out Chapter 3’s design. Each module and its

purpose are listed in Table 4-7. These modules, along with those retrieved from a repository

and developed by third parties, are located in a sub-directory named node_modules. As this

subdirectory is searched by the required method, there is no need to use a fully qualified file

path for importing each package. The node_modules directory also contains a JSON file named

config.json that stores all configuration parameters used by the server. While future versions

of the system could potentially allow these parameters to be changed while the server is

running, currently these are only set once when the server is initially started. Consequentially,

each change to these parameters requires the server be restarted.

Table 4-8 shows the parameters outlined in the config.json file, along with the values we have

selected for our prototype. We have set the timer values to short times to carry out testing more

efficiently, however real deployments should meet with field staff to determine the best values.

130

Figure 4-6: The virtualised network architecture. LAN Gateway and Host Machine are both physical devices, while the others are virtual servers. This is a standard LAN,

with the Host Machine and LAN Gateway connected using a physical Cat6 medium.

131

Table 4-7: Application server modules.

Module File Name Purpose

classes.js All classes and global or environment variables used by the

application server.

surcharge_pipeline.js Programmatic implementation of the surcharge pipeline

discussed in Section 3.6.5

heartbeat_pipeline.js Programmatic implementation of the heartbeat pipeline

discussed in Section 3.6.6.

Table 4-8: Configuration parameters stored in the config.json file.

Field Purpose

brokerAddress IP Address of MQTT broker.

falseAlarm Length of False Alarm Timer (ms)

propertyConnectionOrMain Length of Property Connection or Main timer (ms)

partialOrFull Length of Partial or Full Blockage timer (ms)

inactive Length of Inactive Countdown timer (ms)

batteryThreshold If a Mote’s battery is below this amount, notify relevant users.

Set to 999 so all notifications on prototype will print.

dbAddress Address of MySQL database. Set to localhost, as database server

is located on same host.

dbPort Port used to connect to MySQL database server.

dbUser Account used to access MySQL database.

dbPassword Password for above mentioned account.

dbInitial Name of database on server to connect with.

132

4.3.1.1 The classes Module

In object-oriented programming, entity classes represent a tangible ‘thing’ - for our project,

this includes motes, events, and surcharges. As the name suggests, the classes module

contains all entity classes utilised throughout the server. Most entity classes are relatively

simple collections of fields; however, the Mote class is significantly more complex. Each mote

is represented by a linked list containing itself and all downstream neighbours on the same

main and may itself be a ‘link’ in an upstream neighbour’s list. Consequentially, the Mote class

has a myriad of recursive methods used for linked-list navigation and processing.

Two additional classes are also specified by this module that do not represent ‘real’ entities but

are instead used by the server for sharing data between parallel executions. The first,

AppServerSession, stores data structures that must remain consistent across parallel

executions of the same method. When simultaneous processes attempt to access the

AppServerSession, they will be accessing the same memory location without creating clones.

The second, ApplicationParams, is used to store configuration parameters and environment

variables loaded from config.json.

Mote, Event, SurchargeMessage and ClientMessage classes have a function named print() that

prints a detailed description of the object invoked on to standard output. As our prototype does

not include the alarm and notification sub-system, this method has been invaluable for

evaluating the server’s performance and fulfilment of requirements. This also utilises Node’s

Chalk package [118] to create more visually output. Tables 4-9 to 4-12 show the values printed

for each class and their arrangement. These provide examples of what will be printed when the

method is called.

It should also be noted that the classes we developed ended up diverging from the diagram

shown in Figure 3-17; this is common during software development, and often occurs when

further requirements emerge.

133

Table 4-9: Template for ClientMessage print() function.

*********ClientMessage*********

Mote: [ClientMessage.clientID]

Timestamp: [ClientMessage.timestamp]

Battery Level: [ClientMessage.batteryLevel]

Table 4-10: Template for SurchargeMessage print() function.

*******SurchargeMessage*******

Mote: [SurchargeMessage.clientID]

Timestamp: [SurchargeMessage.timestamp]

Battery Level: [SurchargeMessage.batteryLevel]

Surcharge Value: [SurchargeMessage.surchargeStatus]

In both of the above outputs, the battery level value will be given a different coloured

background depending on its value. If the battery level is above 70% it will be green, if it is

below 30% it will be red, and any other value will be amber. For SurchargeMessage, the

surcharge value will also have a red background if it is 1.

134

Table 4-11: Template for Mote print() function.

*********** Mote ***********

Database ID: [Mote.id]

MAC Address: [Mote.physicalAddress]

Location: [Mote.streetAddress]

Battery Level: [Mote.batteryLevel]

Last Communication: [Mote.lastCommunication]

Surcharge Status: [Mote.surchargeStatus]

Downstream Mote:

 ID: [Mote.downstreamID];

 Physical Address: [Mote.downstream.physicalAddress];

 Location: [Mote.downstream.streetAddress];

 Surcharge Status: [Mote.downstream.surchargeStatus];

The Mote’s battery level value will follow the same ‘traffic light’ colouration as ClientMessage

and SurchargeMessage. Like SurchargeMessage, the Surcharge Status value will have a red

background if it is 1.

135

Table 4-12: Template for Event print() method.

*********** Event ***********

Database ID: [Event.id]

Started: [Event.occurred]

Status: See below

False Alarm? See below

Spatial Classification: [Event.spatialClassification]

Time Classification: [Event.timeClassification]

Predicted Location: [Event.location]

Involved Motes:

See Below

***************** ***********

4.3.1.3 The surcharge_pipeline Module

As the name suggests, the surcharge_pipeline module implements the surcharge pipeline

design we presented in Section 3.6.5. Consistent with our design, this exports a single function

named surchargePipeline() as an ‘entry point’ to the pipeline. No other functions are exposed,

keeping the pipeline’s actual processing opaque to other modules. surchargePipeline accepts

an AppServerSession and ApplicationParams object as parameters, meaning these are passed

from the calling function into the pipeline.

136

surchargePipeline returns a Promise object when executed that is immediately returned to the

main script (run_appserver.js). As typical, this will remain as a virtually empty unresolved

promise object until all functions of the pipeline are complete or processing could not occur.

Following this, the main script will notify observers through standard output that the Promise

is resolved or rejected, inferring that the pipeline has either completed classification or

encountered an error. If an error is encountered, it will be rejected, and details printed to

standard output.

The Promise concept is utilised further throughout the surcharge pipeline’s implementation,

becoming a key component of the pipeline’s architecture. Each stage of the pipeline as defined

in Section 3.6.5 is given its own function that returns a Promise object. surchargePipeline itself

returns a Promise, and each call to these functions returning their own Promise is called from

that promise. This means that not only is surchargePipeline returning a Promise, but the

Promise it returns is itself waiting on a sequence of Promsies. This can be conceptualised as

the asynchronous equivalent of invoking a function that subsequently invokes several other

functions, before returning a single value determined by the results of those invocations.

If a stage function’s returned Promise object resolves, the next stage will be executed to return

its own Promise, and this process will repeat until the pipeline has been completed. This is a

commonly utilised architecture in Node.js programming named promise chaining, allowing

asynchronous tasks to be completed in a defined order. Once all stages of the pipeline are

complete, the final Event object will be resolved to run_appserver. Conversely, if a stage

function’s promise object rejects, the entire pipeline will reject and pass the error to

run_appserver.

4.3.1.3-i Memory Management and Data Coordination

Co-ordinating the surcharge pipeline’s code to handle simultaneous messages from motes was

the greatest challenge encountered during our research. When multiple motes belong to the

same event, these can transmit messages to the application server with little-to-no time

between transmission. This not only requires the server to support multiple parallel executions

of the same pipeline, but for data to remain consistent across these parallel executions. If a

data structure is changed in one pipeline execution, this change must affect all others

currently occurring.

137

Sharing data structures between parallel processes also introduces the challenges of race

conditions, conflicts, and duplication of work. For example, if two messages arrive for the same

event and do not change its classification, only the first should produce a notification.

Section 3.6.5’s design for the surcharge pipeline utilised dictionary data structures for storing

currently occurring Events, inactive Events, and active Mote objects. These dictionaries are

stored as fields of the AppServerSession class, and a reference to an object of this class is

passed into each invocation of surchargePipeline(). As the object is declared in the parent

function of surchargePipeline, it will be passed by reference (memory location) and remain

consistent across each invocation. Consequentially, all pipeline executions will interact with

the exact same Motes and Events at consistent memory addresses.

4.3.1.3-ii Timers and Sequencing

As discussed in Section 4.2.3, all blockage and false alarm classifications require a timer.

Node’s setTimeout() method is used to create the required timer, however some additional

effort has gone into co-ordinating them across parallel processes. Each timer was given a

dedicated field in the Event class, allowing each Event to have its own instance of that timer.

For each timer field added to the Event class, a corresponding boolean field was also added to

state whether the timer is currently active. The surcharge pipeline populates both timer and

boolean fields as appropriate.

Timers are often utilised by the surcharge pipeline for comparing the state of an Event object

and its Motes before and after the time has elapsed. If a message arrives and initiates a timer,

other messages for the same Event will continue to make changes while the timer is running.

However, in some cases, an arriving message can make the timer irrelevant – to prevent

wasting time, under these circumstances the timer will be cancelled with clearTimeout().

Functions utilising timers have been designed to return Promise objects. Once the timer has

completed its countdown, or if the countdown is interrupted by an expected event, the

function will resolve with the involved object’s new state. However, if the function is invoked

while the countdown is running and there is no need to stop it, the Promise will instead reject.

Rejected Promises will not progress to the next stage of the pipeline. This ensures that only a

single instance of each Event will pass to each stage of the pipeline, and any potential

duplicates produced by parallel processing are discarded.

138

4.3.1.3-iii Observing Results

While the surcharge pipeline design concludes with notifying relevant parties, we have not

included this feature in our prototype server. There has already been sufficient research on

integrating email and communication systems with Node.js, and therefore this part is

straightforward. Instead, we will utilise the print() method of each relevant class to observe

pipeline results. This can be seen in Section 4.4, where results of testing are shown as

screenshots of produced standard output.

A function named __prototypePrintResults() has been added to the surcharge pipeline for

invoking print() on relevant objects.

4.3.1.3-iv Database Interaction

Our original intention was to implement a separate module for database interaction,

containing several data access classes with functions that read and/or wrote database records

for a single entity class. This is a staple of traditional object-oriented programming, where

every entity class with a database presence is given a data access class. However, we quickly

discovered this was not viable in Node.js – as always, the asynchronous nature of the language

challenged traditional programming conventions.

We used Node.js’ mysql.js package for communicating with the application server’s MySQL

database. This package provides several functions for reading and writing database records,

however unlike conventional languages, each of these functions was asynchronous. Invoking

one of these to perform a database operation would fail if called from a conventional function,

as it would instantly return an empty object (or unresolved Promise) before completing the task

in the background. When the task was complete, any results would be unassigned and

disposed of by the garbage collector.

Instead, any invocations of mysql.js functions required placement in a Promise object. This

would wait for the asynchronous database operations to be carried out, before resolving or

rejecting the results. Considering the surcharge pipeline already contains a complex chain of

Promises, we determined creating a separate module with its own Promises would be

unwieldly. Instead, we performed the required database operations directly within the relevant

pipeline functions.

Database operations were also limited to those absolutely necessary, with no database writes

(SQL INSERT, UPDATE or DELETE methods) performed. Plenty of examples already exist

139

proving that mysql.js database writes are possible and given our limited timeframe we only

included functionality relevant for testing. As our testing focuses on surcharge detection and

immediate classification, there is no benefit to be gained from writing database records.

Additionally, of data created during prototyping is spurious and would require deletion before

practical deployment.

4.3.1.4 The heartbeat_pipeline Module

Another module whose function is made obvious by name, heartbeat_pipeline implements the

design presented in Section 3.6.6 for the system’s heartbeat processing pipeline. As a

pipeline, this is similar in structure and concept to surcharge_pipeline – however, this is far

less complex and does not require coordination of parallel processes. Only one heartbeat can

occur at any time for a given mote, and heartbeats for the same mote are separated by long

periods of time. Consequentially, we have significantly decreased complexity by making this

pipeline’s code mostly synchronous. Asynchronous functionality is restricted to implementing

Promises for database operations, where required by the asynchronous mysql.js library.

Like surcharge_pipeline, a single method named heartbeatPipeline() is exposed by this

module as an entry point to the pipeline itself. This does not require an AppServerSession

object as a parameter as no data structures are shared among parallel executions, however it

does require the ApplicationParams object for accessing configuration parameters.

As we have not implemented email or other communications platforms in the prototype, this

pipeline’s final stage of notifying relevant parties has also been removed. Like in

surcharge_pipeline, this has been replaced with a temporary method that invokes the relevant

print() methods to produce standard output.

4.4 Evaluation
While our design is the primary deliverable, it must be demonstrated that the design can be

practically implemented. Even the most robust design is relatively useless if it cannot be

proven in reality. The prototype detailed throughout the first part of chapter has implemented

our design, and in this section, we will test that implementation. Testing not only reveals flaws

in the implementation, but also errors made during the actual design process. Following

testing, we are able to make valid and informed suggestions for future designs or

implementations.

140

Ideally, we would perform the full scope of our testing in a real-world environment by

deploying a series of motes across a wastewater infrastructure’s inspection shafts. However,

this was impractical for several reasons. Deployment across wastewater infrastructure requires

gaining permission from a managing utilities provider, and unfortunately, we were unable to

obtain this within the timeframe of this Masters project. Our research was also conducted

under significant time constraints, and this would have likely made real-world deployment

impractical. In response, we have performed a single test to evaluate the system’s entire

process in a laboratory environment simulating wastewater infrastructure and surcharge

events. Additional tests are concerned with classification algorithms present at the application

server, and therefore do not require field testing as such. Consequentially, these will be carried

out with a simulated virtual model.

4.4.1 Testing MQTT Communications

Before testing the mote or central system, it was essential to verify that MQTT communications

are operating as expected. Doing so guaranteed that any future communications problems are

caused by faults in hardware or software implementations, and unrelated to the actual network.

This created something similar to a control variable and helped us narrow the scope of future

repairs through process elimination.

To perform this testing, we developed a virtual machine named Test MQTT Client. This virtual

machine was implemented like the others in our prototype, using a virtual network adapter

bridged with the host machine’s physical adapter. Table 4-6 shows the specifications for this

virtual machine, and Figure 4-6 shows its place in the virtual network alongside all other

prototype machines. This virtual machine was also used in many other tests we performed, as

detailed in Sections 4.4.4 - 4.4.5.

All MQTT testing for MQTT communications was performed using Node.js’ mqtt package to

accurately determine if this package could carry out its intended function in the remainder of

prototype software. A simple script named mqtt-test as shown in Code 4-1 was written,

publishing MQTT messages with the subject test. Following this, additional code was added to

run_appserver.js for processing messages with the topic test.

Before running this script, the MQTT broker had produced the output shown in Figure 4-7 and

the application server had produced the output shown in Figure 4-8. These figures

141

demonstrate the default values of these systems, allowing a comparison to be made with their

output following the script’s execution.

When executed, the mqtt-test produced the output shown in Figure 4.9. This showed the

message had successfully been sent to the broker, displaying the contents of the message sent.

The MQTT broker output displayed the messages shown in Figure 4-10, confirming that a

message had been received. Finally, the application server produced the output shown in

Figure 4-11, proving MQTT communications were functioning as intended. This also

confirmed that Node.js’ mqtt library is capable of establishing a connection and correctly

facilitating publish and subscribe operations. Additionally, we could be confident that the

RSMB broker is able to establish a connection with a single host and manage all subscriptions.

Figure 4-7: The output produced by the RSMB MQTT Broker when it is first started.

This provides some information on the broker itself and its developers, alongside stating the configuration file

used. When the MQTT Protocol Starting, listening on port message is displayed, the broker is fully

operational and is now waiting for any incoming messages on that port. It is now possible to test the broker,

and consequentially the greater MQTT system.

142

Figure 4-8: The output produced by the application server when first started.

This states that the server has successfully created its required data structures (ApplicationParams and

AppServerSession), which additionally implies required modules have been loaded. Following this, the output

demonstrates that the server was able to successfully connect to the MQTT broker and subscribe to the

surcharge, heartb eat, and test topics – the last of which is used for this test.

Figure 4-9: Output produced by the test script mqtt-test.

his shows that the message has been successfully sent to the broker and displays the message topic and

contents.

143

Figure 4-10: Broker output after the application server is started.

This confirms what is shown in Figure 4-9, that the server is able to successfully connect to the broker.

Figure 4-11: Application server after mqtt-test sends the test message.

The response is stating that a message with the topic test has been received and displays the message’s

contents. It can be observed that the received message’s contents are the exact same as the contents sent in

Figure 4-9. Consequentially, it is proven that the broker is fully capable of processing MQTT messages, and

the application server is capable of subscribing to topics and receiving messages of those topics.

144

Code 4-1: mqtt_test.js

const MQTT = require("mqtt");

const chalk = require("chalk");

const BROKER_ADDRESS = "mqtt://192.168.20.17";

//Get date and time in string format readable by application server

function currentDate()

{

 let raw = new Date();

 let utcString = raw.toUTCString();

 //Replace spaces with hyphens for processing at server. These will be
replaced with spaces again once this processing is complete.

 return utcString.replace(/ /g, "-");

}

//Publishes an MQTT message of a given topic, using the mqtt library.

function mqttPublish(topic, message)

{

 let conn = MQTT.connect(BROKER_ADDRESS);

 conn.on("connect", () =>

 {

 console.log(chalk.green("Successfully connected to broker at " +
BROKER_ADDRESS));

 conn.publish(topic, message, (err)=>

 {

 if(err)

 console.error(err);

 else

 console.log(chalk.green("Message '" + message + "' of topic '" +
topic + "' published successfully"));

 console.log("");

 });

 });

}

145

// 'main' and entry function for firmware.

function main()

{

 console.log(chalk.bgMagenta("------------- Wastewater Blockage Detection
System ---------------"));

 console.log("");

 console.log(chalk.bgMagenta("----------- Test MQTT Publish-Subscribe
Communication ------------"));

 console.log(chalk.bgMagenta("-- Developed by Ben Buurman for Federation
University Australia --"));

 console.log(chalk.bgMagenta("-- As deliverable for Master of Computing
degree (By Research) ---"));

 console.log("");

 //Send first message

 mqttPublish("test", "Message successfully sent at " + currentDate());

}

//Begin processing - execute main method

main();

146

4.3.2 Testing Mote Connectivity

With confirmation our MQTT infrastructure was operating as intended, we next tested whether

motes were capable of connecting to and utilising this infrastructure. As our design places

responsibility for initiating MQTT communications entirely on motes, their ability to access

and utilise the infrastructure is critical.

We loaded the script named mote_test shown in Code 4-3 on to our prototype mote and

executed it. By doing this, we not only established the mote could access the MQTT

infrastructure, but also that it is capable of communicating with the application server.

Figure 4-12 shows the mote’s output when executing Code 4-3, while Figure 4-13 shows the

output produced by the application server. This confirmed that not only could motes connect

to the MQTT infrastructure, but they could also successfully publish messages to the

application server – therefore, implementing our design’s scope of data communications.

Figure 4-12: A screenshot of the output produced by the mote when running Code 4-3.

This shows that the mote is successfully able to establish a connection with the MQTT broker and can

subsequently publish a message to the broker. This utilises the same standard PUBLISH message seen in the

previous test, however, is from a physical device as opposed to a virtual machine.

147

Figure 4-13: The application server’s output after Code 4-3 is executed and the mote produces the output seen

in Figure 4-12.

This shows the message is successfully received and its contents are not corrupted or altered during

transmission. Note the fact that these results are identical to those seen in Figure 4-11despite the mote being a

completely different device, CPU architecture, and operating system. This shows that;

i - our code is capable of running on many platforms but still producing the same results.

ii – the application server will consistently process code from different platforms.

148

Code 4-2: mote_test.js

//mote_test.js - Tests that mote can connect to central system with MQTT

//Import required modules. 'fs' and 'chalk' are in lower-case as these are de-
facto standards/expected

const GPIO = require("onoff");

const SHELL = require("child_process");

const RASPBERRY_PI = require("systeminformation");

const MQTT = require("mqtt");

const fs = require("fs");

//Import configuration parameters from config.json

let BROKER_ADDRESS = "mqtt://192.168.20.17";

let BROKER_PORT = 1883;

let MOTE_ID = "1";

//Get date and time in string format readable by application server

function currentDate()

{

 let raw = new Date();

 let utcString = raw.toUTCString();

 //Replace spaces with hyphens for processing at server. These will be
replaced with spaces again once this processing is complete.

 return utcString.replace(/ /g, "-");

}

//Publishes an MQTT message of a given topic, using the mqtt library.

function mqttPublish(topic, message)

{

 let conn = MQTT.connect(BROKER_ADDRESS);

 conn.on("connect", () =>

 {

 console.log("Successfully connected to broker at " + BROKER_ADDRESS);

 conn.publish(topic, message, (err)=>

 {

149

 if(err)

 console.log(err);

 else

 console.log("Message '" + message + "' of topic '" + topic + "'
published successfully");

 console.log("");

 });

 });

}

// 'main' and entry function for firmware.

function main()

{

 console.log("***** Wastewater Blockage Detection System - MQTT Test *****");

 console.log("Developed by Ben Buurman for Federation University Australia");

 console.log("As deliverable for Master of Computing degree (By Research)");

 console.log("");

 mqttPublish("test", "Message successfully sent by mote 1 at " +
currentDate())

}

//Begin processing - execute main method

main();

150

4.3.3 Testing Surcharge Detection

Confident in our mote’s ability to send surcharge messages to the central system, the next step

was to test whether it could actually detect surcharges and send these to the central system.

This simultaneously evaluated the central system’s ability to process surcharge messages; we

had demonstrated it was capable of receiving messages, but these were simple strings with no

advanced processing.

By testing the process of a mote detecting a surcharge, sending it to the central system, and

having the central system analyse and classify it, we tested the entire system and its process.

With this test complete we could confidently state our design was viable, as we had observed

the entire system process operating from start to finish.

Two actions were required to perform this test. First, we developed an environment in our lab

to accurately simulate a surcharge. This environment was essential for testing the system, as it

allowed us to observe how motes react to an actual surcharge. Next, we created a SQL database

record for the mote used during testing. The simulation environment is discussed in Section

4.3.3.1; however, we will discuss the SQL record task below.

Without adding a database record, the application server would not be able to identify the mote

and could therefore not process the surcharge. We created the record shown in Table 4-13,

which was assigned a primary key of 1. The mote’s config.json file was updated to the values

shown in Table 4-14, ensuring it would send a client ID matching the primary key of its

database record. When the mote’s messages arrive at the application server, the unique ID will

be used to confirm the mote’s identity and retrieve Table 4-13’s record.

151

Table 4-13: Database record created for mote.

Field/Column Value

id (PK) 1

physicalAddress 080027C9DA32

streetAddress 10 Test Street

downstream null

batteryLevel 100

surchargeStatus 0

lastCommunication null

Table 4-14: Configuration parameter values on mote.

Parameter Value

moteID “1”

debounceTime 5000 (5 seconds)

gatewayAddress 192.168.20.17

gatewayPort 1883

surchargeAttempts 1

heartbeatAttempts 1

152

4.3.3.1 Surcharge Simulation

To effectively test the mote’s ability to detect surcharges, the obvious solution was to expose

the mote to a surcharge and observe whether it was detected - therefore, we constructed a

simple ‘test bed’ to install the mote in. The test bed simulated a surcharge by creating the

same conditions (although with sanitary fresh water as opposed to wastewater), allowing us to

observe the mote’s response.

Our test bed’s design is shown in Figure 4-14, and Figure 4-15 shows a photograph of the

completed construct. The test bed was simple to develop, with its main body consisting of a

short horizontal length of pipe and longer length of vertical pipe protruding upwards from its

centre. This created a perpendicular shape best described as ‘an upside-down T’. A hose

fitting was added to one end of the horizontal pipe so the test bed could be filled with water,

eventually creating a rising surface in the vertical pipe – a simulated surcharge.

The most significant component of our test bed, however, was a customised pipe cap that

allowed the mote and float switch to be safely installed in the test bed and detect the simulated

surcharge. Our cap had a small hole drilled in it, and a rigid plastic tube attached to its

underside with the hollow centre placed over the hole. With this, the float switch could be

placed in the shaft and attached to the end of the tube, while its wires were threaded up to

emerge from the hole in the cap. The rigid plastic tube is an essential component, as it

prevents the float switch from being freely suspended and moving with the surcharge surface.

A design for this cap is shown in Figure 4-16, and Figures 4-17 and 4-18 show photographs of

the actual product.

153

Figure 4-14: The design for our testbed. The float switch is connected using the special cap detailed in Figures

4-16 to 4-18. Water is introduced to the testbed through the hose-fitting and will fill the pipes, beginning to

rise up the perpendicular shaft. This will produce identical results to a surcharge and ideally trigger the float

switch.

Figure 4-15: Photographs of the completed test bed from varying perspectives. Aside from an additional,

shorter perpendicular pipe, this confirms to the general design laid down in the previous figure. All

components specified in the design are shown in the left image, while the right image has been added to show

the hose fitting for allowing water in. When water is introduced with that hose fitting, the perpendicular pipes

will begin to fill with water. The mote will be placed in the tall pipe in the left image, and the float switch will

activate when the rising surface reaches it.

154

Figure 4-16: The design for our custom pipe cap. This sits on top of the vertical pipe in Figures 4-14 and 4-15,

allowing the float switch to be correctly added to testbed and capable of detecting surcharges. Waterproofing

also prevents electronic damage to the prototype mote.

Figure 4-17: The custom pipe cap produced from our design, shown from a variety of perspectives. The left

image shows how the cap looks as it will be suspended in an inspection shaft, with the float switch at the

bottom activating when a rising surface pushes its contacts up. The float switch is outlined with a red circle.

Conversely, the right image shows the cap’s hollow space where the mote will sit. Wires from the Float switch

protrude through the hole in the cap, where they can be connected to the mote.

155

Figure 4-18: The mote placed inside our custom pipe cap. Unfortunately, as the USB battery we utilised was

too large to properly fit inside the pipe cap, the mote system protruded from the cap. However, as this device

is only a prototype, we were less concerned with the relative size and more with ensuring the device had

power. Dedicated, small batteries are available for our purpose, however we were unable to procure one in

time for testing.

Future implementations of our design will likely use a different power source or even device, and therefore

the size of our battery is irrelevant for optimised testing of the developed system.

4.3.3.2 Mote Testing and Results

With the mote installed in our test bed as shown in the previous section, we executed Mote.js

and began filling the test bed with water – a photograph of this process is shown in Figure 4-19.

Considering that surcharge was being measured for a single shaft with consistently rising

water levels, we were simulating the events of a full property connection blockage. As a result,

we expected our application server to report a full property connection blockage. Upon

examination of Table 4-13, we can elaborate further by expecting a full property connection

blockage to be reported at 10 Test Street. This is because the mote’s unique ID matches the

primary key of that database record, which will be retrieved by the central server after

extracting the mote ID.

Our application server also utilises several timers to classify each surcharge event. As we have

discussed several times, these will run where appropriate to compare event state before and

after their countdown. We set these values unusually low for the test so it could be performed

more efficiently and with less waiting. The timer lengths we used, alongside other

configuration parameters, are shown in Table 4-15. These values were chosen to expediate

testing while still remaining accurate. Accuracy was ensued by keeping each timer’s length

156

relative to the others consistent with expectations of real-world phenomena. For example, the

falseAlarm timer was the shortest as real-world false alarms will be much shorter in duration.

The only exception to this was the inactive timer, which was given an arbitrary short value to

expediate testing.

To begin the test, we filled the test bed with water to cause rising levels in the vertical pipe.

After enough time had passed, the surface of this rising water pushed the float switch’s

contacts together and simulated the surcharge threshold being reached. Following this, the

application server produced the output shown in Figure 4-20. This shows that not only was the

device successful in identifying and sending a surcharge, but the application server was

capable of receiving and correctly classifying it.

Following this, we drained the test bed of all water as shown in Figure 4-21 to simulate a

surcharge ceasing or being resolved. Almost immediately after the water was drained, the level

dropped below the surcharge threshold, resulting in the application server producing the

output shown in Figure 4-22. This showed that not only could the system correctly detect and

identify a blockage, but it was also capable of determining when a blockage had ceased or

fluctuated.

Notably, classifying the blockage took some time, while detecting that the blockage had

stopped was almost instantaneous. Reviewing the algorithms used in blockage classification

explains why this is the case; initial classification requires the false alarm and property

connection or blockage timers in Table 4-15 to elapse - however, processing the first surcharge

cessation requires no timers.

Despite the overall success, two issues were identified during this test. Notably, even after the

blockage had ceased, the central server did not mark it as resolved. We also observed that

mote battery level was incorrectly being reported as 0 – this is likely an issue with the Node

package we utilised for reading system information. Still, we will attempt to resolve these

issues in future implementations of our design and take note of their potential cause.

157

Table 4-15: Configuration parameters used on Application Server during testing.

Field Value

brokerAddress 192.168.20.19

falseAlarm 20000

propertyConnectionOrMain 100000

partialOrFull 300000

inactive 25000

batteryThreshold 999

dbAddress localhost

dbPort 3306

dbUser ben

dbPassword Pa$$w0rd

dbInitial appserver

Figure 4-19: The test bed being filled with water. A standard garden hose is attached to the fitting and turned

on, allowing water to fill the pipe. Our mote can be seen at the top of the tall pipe.

158

Figure 4-20: The application server output following the float switch being activated as seen in Figure 4-19.

Note that the Event has no Database ID – this is because we are not writing Events to the database in this

prototype. Results clearly show that a Full Property Connection blockage has been detected at the false

address 10 Test Street, and the involved mote is currently surcharged.

Figure 4-21: Water being drained from the test bed by removing the hose. Consequentially, the water level in

the tall pipe dropped quickly and the float switch’s contacts came apart. This simulates a surcharge ceasing,

likely from a blockage no longer being present or from natural fluctuations in a partial blockage.

159

Figure 4-22: The output produced by the application server following Figure 4-21. Note that the Surcharge

Status field now displays NOT SURCHARGED as its value.

4.3.4 Testing Blockage Classification

A key component of our design is its ability to classify different types of blockage – this

includes false alarms, spatial classification, and time classification. While we have

demonstrated our system can detect and process surcharges, we have not yet evaluated the full

scope of its classification abilities. Demonstrating all classifications logically requires

simulating all types of blockage, some of which cause surcharges across multiple motes. For

the reasons discussed at the start of Section 4.1 limiting our ability to test motes in a real-world

deployment we will perform these tests in virtual simulated environment. This environment is

delivered through a virtual model of a sewer main with three property connections, each of

which have an installed mote, and is displayed in Figure 4-23.

Three property connections were modelled as this is the minimum number required to test the

entire range of blockages the system can classify. If two connections are present, there will be

no observable difference between two blockages at neighbouring property connections or a

main blockage. However, if three connections are present, surcharges can be simulated at both

the first and last connection with no surcharge in the middle one. This produces a distinct

observable result to a main blockage.

160

To successfully model a mote for each connection in the virtual model, three Mote records

needed to be added to the application server database. The Mote record from the previous real-

world test has been reused, while two additional records have been added as detailed in Tables

16-17. The downstream value provides a link between each Mote as discussed throughout our

research.

A Node.js script was written for each simulated event, publishing MQTT surcharge messages

identical to those produced by the actual event simulated. Each message will contain the

appropriate mote ID, mapping it to one of the database records in Tables 4-13, 4-16 and 4-27.

From the application server’s perspective, these will be indistinguishable to messages sent

from actual motes with real surcharges occurring. We have also ensured these scripts produce

verbose output, allowing us to observe the messages published and verify their content and

timing are correct.

These simulation tests are detailed in the following sub-sections with each providing a table

detailing the test, a copy of the code used to perform the simulation, and screenshots of

results. The code included in this section has comments and standard output print commands

removed, however full versions of each code can be found in the appendices. In addition, the

time column is relative and starts when the first message is sent. It also cannot be guaranteed

that events will occur at the exact times stated, so these can be thought of as best-effort.

Battery level values in the published MQTT messages were also been fabricated for these tests,

as the script is running on a virtual machine.

Table 4-16: Database record created for Mote 2.

Field/Column Value

id (PK) 2

physicalAddress 40cc1cd26e64 (Randomly generated)

streetAddress 9 Test Street

downstream 1

batteryLevel 70

surchargeStatus 0

lastCommunication null

161

Figure 4-23: The virtual model produced by our simulation scripts. Each mote’s ID and MAC address is shown above the simulated property connection, as this is where

the mote would theoretically be installed.

162

Table 4-17: Database record created for Mote 3.

Field/Column Value

id (PK) 3

physicalAddress 616852765a61 (Randomly generated)

streetAddress 8 Test Street

downstream 2

batteryLevel 30

surchargeStatus 0

lastCommunication null

Having designed the simulation scenario, in the following sub-section we test false alarms

alongside blockage classifications using the simulation data shown in the above details. The

simulation scenario is constructed by utilising this data.

4.3.4.1 False Alarm Detection

The ability to differentiate false alarms from genuine blockages is a critical requirement of our

system, having been discussed since Chapter 1 and elaborated throughout the remainder of

this thesis. Consequentially, we will perform this test first by simulating a false alarm event.

This simulation is carried out when false_alarm.js delivers an initial surcharge message for

Mote 1, followed by a second one 10 seconds later. As this time falls below the false alarm timer

of 20 seconds we specified, this should be detected as a false alarm.

Figure 4-24 shows the output produced by false_alarm.js when it has completed execution,

and Figure 2-25 shows the application server’s output. These collectively demonstrate that the

application server is capable of differentiating false alarms from genuine blockages if the timer

is set correctly, which fulfils a key requirement of our research.

163

Table 4-18: Test plan for verifying false alarm classification.

Event Simulated: False Alarm at Mote 1

Script Used: false_alarm.js

Messages Sent:

Time: Mote ID: Battery Level: Surcharge Status:

- 2 30% 1

0:10 2 30% 0

Figure 4-24: The output produced by false_alarm.js when all messages to simulate a false alarm’s rapid

fluctuations have been sent. The message strings show the 10 second difference between the two being sent.

164

Figure 4-25: The application server’s output after receiving the second message. This shows that the

simulation has correctly been classified as a false alarm. The False alarm countdown is already occurring

message appears when a message arrives while the false alarm countdown is elapsing and is only used for our

own debugging.

Code 4-3: false_alarm.js

const MQTT = require("mqtt");

const chalk = require("chalk");

const BROKER_ADDRESS = "";

const MOTE_2 = ["", "30"];

//Get date and time in string format readable by application server

function currentDate()

{

 let raw = new Date();

165

 let yy = raw.getFullYear().toString();

 let MM = (raw.getMonth() + 1).toString();

 let dd = raw.getDate().toString();

 let hh = raw.getHours().toString();

 let mm = raw.getMinutes().toString();

 let ss = raw.getSeconds().toString();

 return (dd + "-" + MM + "-" + yy + "-" + hh + ":" + mm + ":" + ss);

}

//Publishes an MQTT message of a given topic, using the mqtt library.

function mqttPublish(topic, message)

{

 let conn = MQTT.connect(BROKER_ADDRESS);

 conn.on("connect", () =>

 {

 console.log(chalk.green("Successfully connected to broker at " +
BROKER_ADDRESS));

 conn.publish(topic, message, (err)=>

 {

 if(err)

 console.error(err);

 else

 console.log(chalk.green("Message '" + message + "' of topic '" +
topic + "' published successfully"));

 console.log("");

 });

 });

}

// 'main' and entry function for firmware.

function main()

166

{

 console.log(chalk.bgMagenta("------------- Wastewater Blockage Detection
System ---------------"));

 console.log("");

 console.log(chalk.bgMagenta("------ Simulation: False Alarm at Mote 2 ------
"));

 console.log(chalk.bgMagenta("-- Developed by Ben Buurman for Federation
University Australia --"));

 console.log(chalk.bgMagenta("-- As deliverable for Master of Computing
degree (By Research) ---"));

 console.log("");

 //Send first message

 mqttPublish(getMoteString(MOTE_2, 1));

 //Wait 1 minute (600000 milliseconds) and send next message

 setTimeout(()=>

 {

 mqttPublish(getMoteString(MOTE_1, 0));

 }, 300000);

 console.log(chalk.yellow("All timers successfully set. Waiting.."));

}

//Begin processing - execute main method

main();

167

4.3.4.2 Full Main Blockages

Our testing with the mote prototype proved the application server’s ability to classify full

blockages at the property connection. This consequentially demonstrated its abilities to both

spatially classify property connection blockages, and temporally classify full blockages.

Following this, we verified its ability to classify full blockages located at the main. This involves

the retrieval of multiple main records, and the ability to determine their connections with each

other.

This simulation was carried out by a script named full_main_blockage.js, which sent two

surcharge messages; first for Mote 2, and then for Mote 3. These were sent one minute apart,

as while this is a very short time it is still longer than the false alarm counter. In addition, it is

also shorter than the spatial classification timer of 2 minutes. Being shorter than this second

countdown means that we can test what happens when a message arrives while the countdown

is elapsing – ideally, it will cause that countdown to cancel and only display a single result.

Figure 4-26 shows the output produced by full_main_blockage.js upon completing execution.

This confirms that both messages were sent a minute apart, meaning that results at the

application server are a realistic approximation of our system’s ability to handle full main

blockages.

Following this, Figure 4-27 shows the output produced at the application server when finished

classification. This is the best possible outcome, as it has correctly classified the two

surcharges as a main blockage and determined their location. Not only this, only a single

output was produced. This shows that the spatial classification timer started by the first

message was cancelled, and processing for that message stopped in favour of the second. In

combination with previous results, this shows our system is very competent with handling

parallel processing and synchronisation.

168

Table 4-19: Test plan for verifying classification of full main blockages.

Event Simulated: Full main blockage between Motes 2 and 3.

Script Used: full_main_blockage.js

Messages Sent:

Time: Mote ID: Battery Level: Surcharge Status:

- 2 90% 1

1:00 1 85% 1

Figure 4-26: Output produced by full_main_blockage.js when both messages have been sent. Observing the

message strings shows that messages are sent exactly one minute apart.

169

Figure 4-27: Classification produced by the application server – output displaying the classification itself is

highlighted.

This correctly predicts that the simulated blockage is a main blockage, located in the main between virtual

properties 8 and 9 Test Street. Below the classification, all mote records retrieved during this process are

listed. Mote 2 and 3 have been retrieved as they both reported surcharges, while Mote 1 was retrieved because

it is downstream from Mote 2.

170

Code 4-4: full_main_blockage.js

const MQTT = require("mqtt");

const chalk = require("chalk");

const BROKER_ADDRESS = "";

const MOTE_2 = ["", "90"];

const MOTE_1 = ["", "85"];

//Get date and time in string format readable by application server

function currentDate()

{

 let raw = new Date();

 let utcString = raw.toUTCString();

 //Replace spaces with hyphens for processing at server. These will be
replaced with spaces again once this processing is complete.

 return utcString.replace(/ /g, "-");

}

//Publishes an MQTT message of a given topic, using the mqtt library.

function mqttPublish(topic, message)

{

 let conn = MQTT.connect(BROKER_ADDRESS);

 conn.on("connect", () =>

 {

 console.log(chalk.green("Successfully connected to broker at " +
BROKER_ADDRESS));

 conn.publish(topic, message, (err)=>

 {

 if(err)

 console.error(err);

 else

 console.log(chalk.green("Message '" + message + "' of topic '" +
topic + "' published successfully"));

171

 console.log("");

 });

 });

}// 'main' and entry function for firmware.

function main()

{

 console.log(chalk.bgMagenta("------------- Wastewater Blockage Detection
System ---------------"));

 console.log("");

 console.log(chalk.bgMagenta("------ Simulation: Full Main Blockage between
motes 2 and 3 ------"));

 console.log(chalk.bgMagenta("-- Developed by Ben Buurman for Federation
University Australia --"));

 console.log(chalk.bgMagenta("-- As deliverable for Master of Computing
degree (By Research) ---"));

 console.log("");

 //Send first message

 mqttPublish(getMoteString(MOTE_2, 1));

 //Wait 5 minutes (300000 milliseconds) and send second message

 setTimeout(()=>

 {

 mqttPublish(getMoteString(MOTE_1, 1));

 }, 300000);

 //Wait 15 minutes (900000 milliseconds) and send third message

 setTimeout(()=>

 {

 mqttPublish(getMoteString(MOTE_1, 0));

 }, 900000);

 //Wait 20 minutes (1200000 milliseconds) and send final message

 setTimeout(()=>

172

 {

 mqttPublish(getMoteString(MOTE_2, 0));

 }, 1200000);

 console.log(chalk.yellow("All timers successfully set. Waiting.."));

}

//Begin processing - execute main method

main();

173

4.3.4.3 Partial Main Blockages

Having proven the application server can successfully perform both spatial classifications and

classify a full blockage, the only remaining classification to test is the partial blockage. The

same temporal classification algorithm is used to classify both main and property connection

partial blockage, however classifying a partial main blockage involves more complex

parameters. Consequentially, we chose to test a partial main blockage, as the success of this

test will confirm the algorithm operates as expected and imply successful classification of a

partial property connection blockage.

A script named partial_main_blockage.js simulated a partial blockage at the main between

motes 2 and 3. This was achieved by sending messages that simulate a fluctuation at two

neighbouring property connections; every thirty seconds, an alternate mote would send a state

change. From the perspective of a single mote, this resulted in each mote sending a state

change every minute. Once all timers had been executed and all messages sent, this script had

produced the output shown in Figure 4-28.

Upon receiving the third-last message, the application server classified the event as shown in

Figure 4.-29. This is the expected outcome – the application server estimated a partial

blockage in the main between Motes 2 and 3. The started field shown in Figure 4-29 also

matches the time the first message was sent, proving that all messages were processed as the

same event. Our application server was therefore successfully able to classify partial

blockages, whether occurring at the main or a property connection. We were also able to have

complete confidence in our server’s ability to handle the asynchronous and parallel processing

required for IoT systems.

One final issue was also addressed; in Section 4.3.3.2, we discussed that the application server

could not determine that the blockage was resolved. While this was not critical, we made some

small changes to the code in hope of fixing this bug. Our efforts were fruitful, and after the

final message was received and the appropriate time had passed, the server produced the

output shown in Figure 4-30. This notifies users that the blockage is now resolved.

174

Table 4-20: Our test to verify classification of partial main blockages.

Event Simulated: Partial main blockage between Motes 2 and 3

Script Used: partial_main_blockage.js

Messages Sent:

Time: Mote ID: Battery Level: Surcharge Status:

- 2 90% 1

0:30 3 85% 1

1:00 2 90% 0

1:30 3 85% 0

2:00 2 90% 1

2:50 3 85% 1

03:00 2 90% 0

03:50 3 85% 0

175

Figure 4-28: Output produced by partial_main_blockage.js when once all messages to simulate a partial main

blockage have been sent. It can be observed that all messages were sent roughly 30 seconds apart, with each

individual mote having a message sent every 60 seconds.

176

Figure 4-29: Upon receiving the third-last message shown in Figure 4-27, the server performed the

classification shown - output stating the classification results is highlighted.

This shows us that the blockage is still ongoing and has been classified as a partial blockage in the main

between 8 and 9 test street. The Involved Motes output demonstrates that Mote 3 is currently surcharging,

while Motes 2 and 1 are not. Mote 1 has been retrieved as it is downstream from Mote 2.

177

Figure 4-30: Output produced some time after the final message in Figure 4-26 was received – lines showing

the updated status are highlighted.

Note that the time listed in Started is still the same as the first message, meaning that this refers to the same

event. These results show that the blockage is resolved, and all motes have stopped surcharging.

178

Code 4-5: partial_main_blockage.js

const MQTT = require("mqtt");

const chalk = require("chalk");

const BROKER_ADDRESS = "mqtt://192.168.20.19";

//Contains mote ID and simulated battery level - mote details for sending to
application server

const MOTE_1 = ["2", "90"];

const MOTE_2 = ["3", "85"];

//Get date and time in string format readable by application server

function currentDate()

{

 let raw = new Date();

 let utcString = raw.toUTCString();

 //Replace spaces with hyphens for processing at server. These will be
replaced with spaces again once this processing is complete.

 return utcString.replace(/ /g, "-");

}

//Publishes an MQTT message of a given topic, using the mqtt library.

function mqttPublish(topic, message)

{

 let conn = MQTT.connect(BROKER_ADDRESS);

 conn.on("connect", () =>

 {

 console.log(chalk.green("Successfully connected to broker at " +
BROKER_ADDRESS));

 conn.publish(topic, message, (err)=>

 {

 if(err)

179

 console.error(err);

 else

 console.log(chalk.green("Message '" + message + "' of topic '" +
topic + "' published successfully"));

 console.log("");

 });

 });

}

//For a specified mote and surcharge status, returns a string for sending to the
application server.

function getMoteString(moteObject, surchargeStatus)

{

 return moteObject[0] + " " + currentDate() + " " + moteObject[1] + " " +
surchargeStatus.toString();

}

// 'main' and entry function for firmware.

function main()

{

 console.log(chalk.bgMagenta("------------- Wastewater Blockage Detection
System ---------------"));

 console.log("");

 console.log(chalk.bgMagenta("------ Simulation: Partial Main Blockage
between motes 2 and 3 ------"));

 console.log(chalk.bgMagenta("-- Developed by Ben Buurman for Federation
University Australia --"));

 console.log(chalk.bgMagenta("-- As deliverable for Master of Computing
degree (By Research) ---"));

 console.log("");

 //Send first message

 mqttPublish("surcharge", getMoteString(MOTE_1, 1));

 //Send second message

180

 setTimeout(()=>

 {

 mqttPublish("surcharge", getMoteString(MOTE_2, 1));

 }, 30000);

 //Send third message

 setTimeout(()=>

 {

 mqttPublish("surcharge", getMoteString(MOTE_1, 0));

 }, 60000);

 //Send fourth message

 setTimeout(()=>

 {

 mqttPublish("surcharge", getMoteString(MOTE_2, 0));

 }, 90000);

 //Send fifth message

 setTimeout(()=>

 {

 mqttPublish("surcharge", getMoteString(MOTE_1, 1));

 }, 120000);

 //Send sixth message

 setTimeout(()=>

 {

 mqttPublish("surcharge", getMoteString(MOTE_2, 1));

 }, 150000);

 //Send sixth message

181

 setTimeout(()=>

 {

 mqttPublish("surcharge", getMoteString(MOTE_1, 0));

 }, 180000);

 //Send sixth message

 setTimeout(()=>

 {

 mqttPublish("surcharge", getMoteString(MOTE_2, 0));

 }, 210000);

 console.log(chalk.yellow("All timers successfully set. Waiting.."));

}

//Begin processing - execute main method

main();

182

4.4 Conclusion

Using the design produced in Chapter 3, this chapter detailed the development of a prototype

system capable of carrying out our research goals. The mote design was followed to build a

mote from a Raspberry Pi Zero (RPZ) capable of connecting to a central system using Wi-Fi.

Using virtual machines to host an MQTT broker and application server, we were successfully

able to create the central system and its required infrastructure. However, because of

limitations with both our time and available resources, we were unable to implement MQTT-SN

protocol. Finally, we created a prototype application server using the corresponding design

and following its algorithms.

Testing was performed to evaluate whether our design was capable of realistically carrying out

our research goals. First, we tested whether the MQTT protocol was working as expected. This

was conducted by testing communications between a virtual client and the broker, and then

between our prototype mote and the broker. On both occasions, communications were fully

operational.

Next, we tested the mote’s ability to detect actual surcharges. Surcharges were simulated in a

laboratory environment using a testbed that structurally emulated a sewer main and attached

property connection. The mote was deployed in the simulation environment’s property

connection in the same way it would be deployed in a real-world inspection shaft. The testbed

was filled with water to simulate a surcharge, and output from the application server showed

that the mote was correctly detecting surcharges starting and stopping.

Finally, other surcharge events the application server was required to detect were simulated in

a completely virtual environment. These were false alarms, full main blockages, and partial

main blockages. Partial property connection blockages were not tested, as successful

classification of a partial main blockage infers they can also be detected. For each simulation,

the application server correctly classified the surcharge.

Test results confirmed that we have produced a design and derived prototype capable of

detecting wastewater blockages across a wide area, alongside correctly classifying them, while

remaining practical and inexpensive. In the next chapter we will discuss the greater

implications of this and provide areas for future works.

183

5 Conclusion

5.1 Summary

Wastewater blockages are a relatively common occurrence resulting from normal phenomena

such as improper use of home fixtures and growth of tree roots into a pipe. Blockages left

unresolved will eventually completely obstruct the flow of effluent through the pipe, which

subsequently leads to effluent breaching the surface through pipe shafts or fixtures. These

breaches not only present significant risk of financial loss to wastewater providers, but can

cause illness, disability, or even death in exposed humans. Despite this, techniques used for

detection and management of blockages are mostly archaic and inefficient, involving routine

inspections of each asset or response to customer complaints. Routine inspections incur

significant person-hours and cost, and even then, are unlikely to detect most blockages. By the

time customers make a complaint, it is often too late, and effluent has already breached. Our

research originated from a simple concept - simultaneously monitoring an entire wastewater

system for blockages and notifying relevant parties as soon as possible.

Current blockage detection methods function by examining an asset at each property named

an Inspection Shaft. Blockages cause effluent levels across all assets to rise, and therefore

increased levels in an inspection shaft can indicate a blockage. This increased level is known

as a surcharge, and technicians can gather a surprisingly large amount of information from

observing it. A constantly rising surcharge is likely the result of a full blockage, while a slowly

fluctuating surcharge likely originates from a partial blockage. Surcharges isolated to one

property connection imply the blockage is located in that same connection, while multiple

affected connections imply the blockage is located at the connected main. In addition,

surcharges consisting of relatively few short fluctuations are often everyday activity requiring

no action from utilities providers – we refer to these as false alarms. Our research now had a

modus operandi – monitoring surcharge levels across property connections would be

theoretically capable of detecting and locating blockages. Along with this, observing the

fluctuations of surcharges and their speed would allow us to classify blockages according to

the previously mentioned types.

184

Considering the severe consequences of wastewater blockages and inefficiency of current

detection methods, there has been surprisingly little past research into alternative and more

efficient solutions. Past research made several worthy contributions to the field, however

solutions proposed or delivered were impractical for real deployment. Some of these solutions

were unacceptably expensive, overly complicated, or impractical due to their own limited

software and hardware. For example, some solutions used sensors with very short-range

wireless communications, requiring an unreasonably high number of repeaters and gateways.

When previous solutions were practical, they were only concerned with monitoring very few

assets for blockages. In response, we have leveraged the lessons learned by this research and

more general studies into wireless networks and smart cities to produce an alternative

solution.

In this thesis, we presented a detailed design for our solution capable of monitoring sewer

blockages across an entire urban infrastructure while remaining inexpensive, simple, and

reliable. Surcharges are detected using wireless motes consisting of a float switch sensor,

microcontroller, power supply and two wireless transceivers. Our prototype mote cost $85.35

AUD including the Raspberry Pi Zero mote with built-in Wi-Fi transceiver, float switch, and

power supply. For large scale production, this cost is expected to significantly decrease,

further demonstrating the affordability and practicality of our system.

Both LoRa and Wi-Fi transceivers will be available, offering two independent transmission

media for connecting to the system’s backend. LoRa is useful for long-distance

communication in urban areas, while the shorter-range Wi-Fi allows the system to leverage off

home or public Wi-Fi. Motes will spend most of their time in a low-power sleep mode, however,

will wake when the float switch detects a surcharge. Following surcharge detection, motes will

activate the correct wireless transceiver and send a message detailing this surcharge to a

central system using the public Internet. We have selected the MQTT-SN application-layer

publish-subscribe protocol, a variant of the MQTT protocol commonly utilised in IoT systems,

to facilitate all communications. MQTT-SN is functionally the same as MQTT, however is

designed especially for sensor networks and consumes significantly less network, processing,

and power resources.

The central system is a collection of backend servers accessible on the public Internet,

collectively responsible for managing network communications, receiving messages from

185

motes, and performing intelligent processing on surcharge messages. Intelligent processing

first determines whether the surcharge is caused by a genuine blockage or false alarm. No

further action is required for false alarms, however if the surcharge is genuine a blockage it

will be classified according to the previously mentioned blockage types. This process is broken

down into spatial (property connection or main) and temporal (partial or full) classifications.

Following spatial classification, the central system is also capable of determining the exact

property or length of sewer main between properties where the blockage is located.

Following the finalisation of our design, we developed a prototype to evaluate its performance

and compliance with our research goals. This prototype consists of a mote, central server, and

the network infrastructure required for them to communicate. The prototype mote was

constructed using a Raspberry Pi Zero mini-computer and float switch sensor, while the

prototype central system consisted of an MQTT broker and application server deployed on

virtual machines. We were unable to use MQTT-SN for our prototype as no reputable code

libraries were available, and there was insufficient time to develop our own. Despite this, the

MQTT Broker we utilised is compatible with MQTT-SN for future works. Each of these virtual

machines run the Ubuntu Server operating system, and all software was developed in the

Node.js language.

Testing conducted on our prototype system showed that the prototype operated as expected

and fulfilled all research goals, further proving our design is both viable and practical. The first

test was performed in laboratory environment, with a physical testbed set up to emulate a

property connection and attached inspection shaft. Our prototype mote was installed in the

test-bed’s inspection shaft, before we simulated a surcharge by filling the testbed with water.

Results were confirmatory as the mote successfully detected the surcharge, before successfully

transmitting a notification to the central system where it was correctly classified. This was

followed by several simulation tests evaluating the central system’s ability to classify and

locate blockages, using a virtual model of three property connections on the same main.

Results were again confirmatory, as all tests produced results as expected and demonstrated

the application server and classification algorithms was operating correctly. With our design

proved both practical, viable, and operational, we have developed the first wastewater blockage

detection system practically capable of monitoring an entire urban infrastructure. This has

huge potential for improving services worldwide, reducing environmental pollution, and even

saving lives.

186

5.2 Future Works

Despite our successful delivery, the current research can be extended in a number of ways,

some of which are discussed below.

5.2.1 Further testing

While we verified that our delivered design is capable of practical deployment, time and

resource constraints prevented us from conducting further testing that could prove beneficial.

We proved that the solution works but could only undertake limited testing on how well it

works. As a result, we lack quantitative measures of performance and classification accuracy.

In addition, non-functional requirements including battery life and signal performance should

be tested to further measure practicality.

This additional testing can be achieved by developing several prototype motes and deploying

them throughout an actual wastewater infrastructure. While this requires collaboration with a

utility provider, many would be eager to contribute with our research now proven through this

thesis. Deployment would last for a predetermined period of time, and during this time data

would be collected to be analysed upon conclusion. Primarily, surcharge detection and

blockage classification should be compared with actual surcharges and blockages that have

occurred.

50% of motes deployed should utilise the LoRa protocol while the other 50% utilise home or

public Wi-Fi networks. Mote programming should be updated to log each attempt at sending a

message and following testing these attempts can be compared to the amount successfully

received. This will not only give an overall metric for network reliability but allow researchers

to compare the performance of LoRa and Wi-Fi deployment.

5.2.2 MQTT-SN Implementation

While our solution is compatible with MQTT-SN, we were unable to test this protocol during our

research as no reputable software libraries were available. We conducted testing with the

closely related and more resource-hungry MQTT protocol, and our success implies that any

MQTT-SN implementation will also operate correctly. However, the degree of resource

consumption saved between MQTT and MQTT-SN is still unknown. While MQTT-SN consumes

less resources, the benefits are not often as obvious for systems with small messages, and

processing at an MQTT-SN Gateway incurs additional overhead.

187

Future research should develop a robust and practical MQTT-SN library for Node.js or similar

languages, contributing significantly to both academia and the computing industry. Once this

library has been developed, it should be implemented by a subsequent version of our solution

and its performance compared with standard MQTT. Observed differences in performance will

not only apply to our system, but to any IoT systems with similar scale and message size. This

information will prove invaluable to future research and development across many domains

involving IoT.

5.2.3 Predictive Modelling

Future research should determine if any independent environmental variables such as

weather, asset condition, and time have an effect on surcharge probability and blockage type.

This can be done by deploying motes at a variety of real-world locations and measuring these

variables each time a surcharge is classified by the application server. If these relationships

exist, they can be used to build a statistical model determining the probability of classification

depending on these factors. Weather, particularly rainfall, should be examined closely as

stormwater entering sewer assets has been known to cause surcharges.

With a statistical model developed, it will be possible to introduce a predictive element to the

system. If the environmental variables are known each time a surcharge is detected, the

application server can perform a more accurate classification scheme. Furthermore, if the

environmental variables are regularly detected, the application server will be able to predict

surcharges and specific blockage types at different locations before they occur. History of

surcharges and blockage occurrences at particular localities and pipe sections can be

considered to embed local content into such a protection This could be a significant

development for the industry and change blockage resolution from reactive to proactive.

188

Appendix A mote.js

//Import required modules. 'fs' and 'chalk' are in lower-case as these are de-

facto standards/expected

const GPIO = require("onoff");

const SHELL = require("child_process");

const RASPBERRY_PI = require("systeminformation");

const MQTT = require("mqtt");

const fs = require("fs");

//Import configuration parameters from config.json

let configJson = JSON.parse(fs.readFileSync("config.json", "utf-8"));

let DEBOUNCE_TIME = parseInt(configJson.debounceTime);

let BROKER_ADDRESS = configJson.gatewayAddress;

let BROKER_PORT = parseInt(configJson.gatewayPort);

let SURCHARGE_ATTEMPTS = parseInt(configJson.surchargeAttempts);

let HEARTBEAT_ATTEMPTS = parseInt(configJson.heartbeatAttempts);

let MOTE_ID = configJson.moteID;

//Commands to execute power-saving functionality

const POWER_SAVING_COMMANDS =

[

 "/usr/bin/tvservice -o",

 "echo none | sudo tee /sys/class/leds/led0/trigger",

 "echo 1 | sudo tee /sys/class/leds/led0/brightness"

];

let previousValue = 0;

let heartbeatTimer = null;

//Get date and time in string format readable by application server

function currentDate()

{

 let raw = new Date();

 let utcString = raw.toUTCString();

 //Replace spaces with hyphens for processing at server. These will be

replaced with spaces again once this processing is complete.

 return utcString.replace(/ /g, "-");

}

//Publishes an MQTT message of a given topic, using the mqtt library.

function mqttPublish(topic, message)

{

 let conn = MQTT.connect(BROKER_ADDRESS);

 conn.on("connect", () =>

189

 {

 console.log("Successfully connected to broker at " + BROKER_ADDRESS);

 conn.publish(topic, message, (err)=>

 {

 if(err)

 console.log(err);

 else

 console.log("Message '" + message + "' of topic '" + topic +

"' published successfully");

 console.log("");

 });

 });

}

//Declare handler method for reacting to float switch state change. Value is

current value of float switch.

let floatSwitch_onchange = function(err, value)

{

 if(value != previousValue)

 {

 let batteryLevel = RASPBERRY_PI.battery();

 batteryLevel.then((result) =>

 {

 let messageString = MOTE_ID + " " + currentDate + " " +

result.percent.toString() + " " + value.toString();

 let messageSuccess = false;

 let attemptCtr = 0;

 while(!messageSuccess && attemptCtr < SURCHARGE_ATTEMPTS)

 {

 messageSuccess = mqttPublish("surcharge", messageString);

 attemptCtr++;

 }

 //Set previousValue to current value

 previousValue = value;

 //Reset heartbeat countdown by clearing timeout and starting again

 clearInterval(heartbeatTimer);

 heartbeatTimer = setInterval(heartbeat_ontimeout, 86483647)

 });

 }

}

190

//Declare handler method for reacting to heartbeat timer elapsing.

let heartbeat_ontimeout = function()

{

 let messageString = MOTE_ID + " " + currentDate + " " + batteryLevel;

 let messageSuccess = false;

 let attemptCtr = 0;

 while(!messageSuccess && attemptCtr < HEARTBEAT_ATTEMPTS)

 {

 messageSuccess = mqttPublish("heartbeat", messageString);

 attemptCtr++;

 }

}

// 'main' and entry function for firmware.

function main()

{

 console.log("***** Wastewater Blockage Detection System - Mote Software

*****");

 console.log("Developed by Ben Buurman for Federation University

Australia");

 console.log("As deliverable for Master of Computing degree (By

Research)");

 console.log("");

 //Declare float switch input pin and event listener

 let floatSwitch = new GPIO(17, "in", "both", {debounceTimeout:

DEBOUNCE_TIME});

 floatSwitch.watch(floatSwitch_onchange);

 //Declare pin for activating/deactivating power-save options

 let powerSave = new GPIO(1, "in", "both");

 //Declare heartbeat timer and event listener

 heartbeatTimer = setInterval(heartbeat_ontimeout, 86483647);

 //If power-saving functionality enabled, Execute power-saving measures

asynchronously

 if(powerSave.readSync() == 1)

 for(let i = 0; i < POWER_SAVING_COMMANDS.length; i++)

 SHELL.spawn(POWER_SAVING_COMMANDS[i]);

 //Node event loop will now run indefinitely while waiting for event

listeners

 console.log("Initialisation complete. Now waiting for surcharge or

heartbeat elapse..")

 console.log("");

191

}

//Begin processing - execute main method

main();

192

Appendix B run_appserver.js

//Import required packages

let mqtt = require("mqtt");

let chalk = require("chalk");

let processSurcharge = require("surcharge_pipeline.js");

let processHeartbeat = require("heartbeat_pipeline.js");

console.log(chalk.inverse("Starting..."))

//Load global configuration

let config = new processSurcharge.ApplicationParams();

console.log("Configuration parameters loaded...");

//Create Session object required for sharing data structures across parallel

executions of each pipeline

let theSession = new processSurcharge.AppServerSession();

console.log("Session data structures created...")

//Attempt connection to MQTT Broker and MySQL Server

let mqtt_conn = mqtt.connect(config.BROKER_IP);

console.log(chalk.yellow("Attempting connection to MQTT Broker..."));

//Executes when the system establishes a connection to the MQTT broker.

//mqt__conn.on("connect", function()

mqtt_conn.on("connect", () =>

{

 console.log(chalk.green("Successfully connected to MQTT broker at " +

config.BROKER_IP));

 mqtt_conn.subscribe("surcharge", 0, function(err, granted)

 {

 if(err)

 console.log(chalk.bgRed("Could not subscribe to 'surcharge'

topic"));

 console.log(chalk.green("Subscribed to 'surcharge' topic"));

 });

 mqtt_conn.subscribe("heartbeat", 0, function(err, granted)

 {

 if(err)

 console.log(chalk.bgRed("Could not subscribe to 'heartbeat'

topic"));

 console.log(chalk.green("Subscribed to 'heartbeat' topic at broker"));

 console.log("");

193

 });

});

//Executes when an MQTT message is received from the broker

//mqtt_conn.on("message", function (topic, message)

mqtt_conn.on("message", (topic, message) =>

{

 //React to different topics of messages

 if(topic.toString() == "surcharge")

 {

 //Pass message received, session data structures, and configuration

parameters into Surcharge Pipeline

 let pipelineInstance = new processSurcharge.surchargePipeline(message,

theSession, config);

 console.log(chalk.inverse("New pipelineInstance begun for " +

message));

 console.log("");

 pipelineInstance.then((classifiedEvent) =>

 {

 if(classifiedEvent.isFalseAlarm == true)

 {

 console.log(chalk.bgYellow("Surcharge is caused by false alarm

- no action is required."));

 console.log("")

 }

 else

 {

 console.log("Surcharge pipeline processed");

 }

 },

 (rejected) =>

 {

 console.log("");

 console.log(chalk.bgRed(" !!!!!!!!!!!!! "));

 console.log(chalk.bgRed("Error processing surcharge at

pipeline"));

 console.log(chalk.bgRed(rejected));

 console.log("");

 });

 }

 else if (topic.toString() == "heartbeat")

 {

 //Pass message received and configuration parameters into Heartbeat

Pipeline

194

 processHeartbeat.heartbeatPipeline(message, config);

 }

 else if(topic.toString() == "test")

 {

 console.log(chalk.green("Test message successfully received"));

 console.log("Contents: " + message);

 console.log("");

 }

 else

 {

 console.warn(chalk.bgYellow("MQTT Message of non-standard topic

received. Please check system security and take any required measures."));

 console.warn("Message topic: " + topic);

 console.warn("Message Contents: ");

 console.warn(message);

 console.warn("");

 }

});

195

Appendix C classes.js

let fs = require("fs");

let chalk = require("chalk");

//Stores information, data structures, and interface/package objects required

throughout all parallel executions of Surcharge and Heartbeat pipelines

class AppServerSession

{

 constructor()

 {

 //Instantiate all Data Structures shared across pipelines

 this.activeMotes = new Array();

 this.activeEvents = new Array();

 this.resolvedEvents = new Array();

 }

 /*

 Adds a new Event to the AppServerSession's activeEvents dictionary.

Performs all needed processing - this includes adding the Mote to the Event

and incrementing the

 Event's surcharging counter if appropriate.

 */

 addEvent(theMote)

 {

 let theEvent = new WastewaterEvent(theMote.lastCommunication);

 theEvent.involvedMotes = theMote;

 if(theMote.surchargeStatus == 1)

 theEvent.surchargingMotes++;

 this.activeEvents.push(theEvent);

 if(theMote != null && theMote.id != null)

 this.activeMotes[theMote.id] = theMote;

 return theEvent;

 }

 //Searches for any active events involving a given mote. Returns the event

if a match is found, or null if no match is found.

 searchEvent(theMote)

 {

 for(let i = 0; i < this.activeEvents.length; i++)

 {

 let next = this.activeEvents[i];

196

 if(next.involvedMotes.getDownstreamNeighbourByID(theMote.id) !=

null)

 return next;

 }

 //If this point is reached, no results are found. Return null.

 return null;

 }

}

/*

 Represents all runtime parameters/environment variables used by this instance

of the application server. These are able to be set by system administrators

using the configuration file.

*/

class ApplicationParams

{

 //Reads parameters/configuration information from the file at the

provided path

 constructor(filepath = "config.json")

 {

 //Declare global structures used across application server

 this.currentEvents = new Array();

 this.loadedMotes = new Array();

 this.resolvedEvents = new Array();

 //Load configuration parameters from JSON file

 let theFile = fs.readFileSync(filepath, "utf-8");

 let configJSON = JSON.parse(theFile);

 this.BROKER_IP = configJSON.brokerAddress;

 this.FALSE_ALARM_TIMER = configJSON.falseAlarm;

 this.PROPERTY_CONNECTION_TIMER = configJSON.propertyConnectionOrMain;

 this.PARTIAL_TO_FULL_TIMER = configJSON.partialOrFull;

 this.INACTIVE_TIMER = configJSON.inactive;

 this.BATTERY_LEVEL_THRESHOLD = configJSON.batteryThreshold;

 this.SQL_LOCATION = configJSON.dbAddress;

 this.SQL_PORT = configJSON.dbPort;

 this.SQL_USER = configJSON.dbUser;

 this.SQL_PASS = configJSON.dbPassword;

 this.INITIAL_DB = configJSON.dbInitial;

 }

}

197

/*

 Represents any message recieved from a mote or other MQTT client with the

same message signature.

*/

class ClientMessage

{

 //Note - a battery level of -1 indicates that the battery level is

unknown.

 constructor(initID, initClientID, initTimestamp, initBatteryLevel = -1)

 {

 this.id = initID;

 this.clientID = initClientID;

 this.timestamp = initTimestamp;

 this.batteryLevel = initBatteryLevel;

 //Initialise mote value

 this.involvedMote = null;

 }

 //Prints a detailed summary of this ClientMessage and its fields to

Standard Output.

 print()

 {

 console.log(chalk.bgCyan.blue("*********ClientMessage*********"));

 console.log(chalk.bold("Mote: ") + this.clientID);

 console.log(chalk.bold("Timestamp :") + this.timestamp.toString());

 if(this.batteryLevel > 70)

 console.log(chalk.bold("Battery Level: ") +

chalk.greenBright(this.batteryLevel));

 else if (this.batteryLevel < 30)

 console.log(chalk.bold("Battery Level: ") +

chalk.redBright(this.batteryLevel));

 else

 console.log(chalk.bold("Battery Level: ") +

chalk.yellow(this.batteryLevel));

 console.log("");

 }

}

/*

 An extension of ClientMessage that represents messages representing a

surcharge state change. This stores all information that a standard

ClientMessage does, along with an additional boolean

 field for the new state.

*/

198

class SurchargeMessage extends ClientMessage

{

 constructor(initID, initClientID, initTimestamp, initSurchargeStatus,

initBatteryLevel = -1)

 {

 super(initID, initClientID, initTimestamp, initBatteryLevel);

 this.surchargeStatus = initSurchargeStatus;

 }

 //Prints a detailed summary of this SurchargeMessage and its fields to

Standard Output.

 print()

 {

 console.log(chalk.bgBlue.white("*********SurchargeMessage*********"));

 console.log(chalk.bold("Mote: ") + this.clientID);

 console.log(chalk.bold("Timestamp: ") + this.timestamp.toString());

 if(this.batteryLevel > 70)

 console.log(chalk.bold("Battery Level: ") +

chalk.greenBright(this.batteryLevel));

 else if (this.batteryLevel < 30)

 console.log(chalk.bold("Battery Level: ") +

chalk.redBright(this.batteryLevel));

 else

 console.log(chalk.bold("Battery Level: ") +

chalk.yellow(this.batteryLevel));

 if(this.surchargeStatus == true)

 console.log(chalk.bold("Surcharge Status: ") +

chalk.bgRed("SURCHARGED"));

 else

 console.log(chalk.bold("Surcharge Status: ") +

chalk.bgGreen.black("NOT SURCHARGED"));

 console.log("");

 }

}

/*

 Represents a mote placed in a property's inspection shaft to detect

surcharges. This holds information about the Mote, along with any currently

occuring events.

*/

class Mote

{

199

 constructor(initID, initPhysicalAddress, initStreetAddress,

initDownstreamID, initDownstream, initBatteryLevel, initSurchargeStatus = 0,

initLastCommunication = null)

 {

 this.id = initID;

 this.physicalAddress = initPhysicalAddress;

 this.streetAddress = initStreetAddress;

 this.batteryLevel = initBatteryLevel;

 this.lastCommunication = initLastCommunication;

 this.surchargeStatus = initSurchargeStatus;

 this.downstreamID = initDownstreamID;

 this.downstream = initDownstream;

 //Initially set the Mote's current Event to null. This references any

event currently occuring for the mote, forming a two way reference as events

also reference all motes involved.

 this.event = null;

 //In JavaScript, stacks can be represented as arrays given their

push/pop methods. Initialise as new, empty array.

 this.stateChanges = new Array();

 }

 //Prints a detailed summary of this Mote and its fields to Standard

Output.

 print()

 {

 console.log(chalk.bold("Database ID: ") + this.id);

 console.log(chalk.bold("MAC Address: ") + this.physicalAddress);

 console.log(chalk.bold("Location: ") + this.streetAddress);

 console.log("");

 if(this.batteryLevel > 70)

 console.log(chalk.bold("Battery Level: ") +

chalk.greenBright(this.batteryLevel));

 else if (this.batteryLevel < 30)

 console.log(chalk.bold("Battery Level: ") +

chalk.redBright(this.batteryLevel));

 else

 console.log(chalk.bold("Battery Level: ") +

chalk.yellow(this.batteryLevel));

 console.log(chalk.bold("Last Communication: ") +

this.lastCommunication.toString());

200

 console.log("");

 if(this.surchargeStatus == true)

 console.log(chalk.bold("Surcharge Status: ") +

chalk.bgRed("SURCHARGED"));

 else

 console.log(chalk.bold("Surcharge Status: ") +

chalk.bgGreen.black("NOT SURCHARGED"));

 console.log("");

 }

 //Uses a surcharge message received from this mote's physical hardware to

update the object

 updateDetails(theMsg)

 {

 this.batteryLevel = theMsg.batteryLevel;

 this.surchargeStatus = theMsg.surchargeStatus;

 this.lastCommunication = theMsg.timestamp;

 this.stateChanges.push(new StateChange(theMsg.timestamp,

theMsg.surchargeStatus));

 }

 //Returns any mote downstream with the specified ID. If none can be found,

will return null. This is the 'wrapper' for the recursive

__traverseDownstreamList method.

 getDownstreamNeighbourByID(idToGet)

 {

 if(this.id == idToGet)

 return this;

 else

 return this.__traverseDownstreamList(this, idToGet);

 }

 /*

 Recursive method that checks if a given mote (next)'s downstream

neighbour has the ID specified. If so, it will return that downstream

neighbour. If not, it will go to the next.

 If the mote has no downstream neighbour at all, it will return null as

this means the end of the 'main' has been reached.

 */

 __traverseDownstreamList(next, idToGet)

 {

 //Failure base case

201

 if(next.downstream == undefined || next.downstream == null)

 return null;

 //Success base case

 else if (next.downstream.id == idToGet)

 return next.downstream;

 //Continue recursion

 else

 return this.__traverseDownstreamList(next.downstream, idToGet);

 }

 /*

 Checks if this Mote and any of its downstream neighbours have

'fluctuated' - meaning that it has more than three state changes (0->1->0).

 This is a 'wrapper' for the hidden recursive method

__recursivelyCheckFluctuation.

 Returns true if a fluctuation is detected, and false if none are detected

 */

 isMoteFluctuating()

 {

 return this.__recursivelyCheckFluctuation(this);

 }

 /*

 Recursively checks if a mote or its downstream neighbours are

fluctuating. Returns true if a fluctuation is detected, and false if none are

detected.

 Fluctuation means more than three state changes (0->1->0)

 */

 __recursivelyCheckFluctuation(next)

 {

 //Failure base case - this mote is fluctuating. Return true

 if (next.stateChanges.length >= 3)

 {

 return true;

 }

 else

 {

 //If the next node has no downstream neighbours, this is the

'end'. Return false, as it has made it this far without returning true.

 if(next.downstream == null)

 return false;

 else

 return this.__recursivelyCheckFluctuation(next.downstream);

 }

 }

202

 /*

 Returns true if all motes have a surcharge status of false, and false if

one or motes have surcharge statuses of true. This essentially determines if

any main blockage has been resolved

 This is the 'wrapper' for the hidden recursive method

__recursivelyCheckSurcharge

 */

 isMainResolved()

 {

 return this.__recursivelyCheckSurcharge(this)

 }

 /*

 Recursive method that determines if the next mote and all its downstream

neighbours, are undergoing surcharge.

 Return false if a surcharge can be detected here or downstream, and true

otherwise.

 */

 __recursivelyCheckSurcharge(next)

 {

 //Failure base case - this mote is surcharging

 if (next.surchargeStatus == true)

 {

 return false;

 }

 else

 {

 //If the next node has no downstream neighbours, this is the

'end'. Return true, as it has made it this far without returning false.

 if(next.downstream == null)

 return true;

 else

 return this.__recursivelyCheckSurcharge(next.downstream);

 }

 }

 /*

 Searches this mote's downstream linked-list for a Mote matching

newState's unique ID. If a match is found, that mote's mutable values will be

overwritten with those of newState. The mutable

 values are batteryLevel, lastCommunication, surchargeStatus, and

stateChanges.

 */

 updateMoteState(newState)

203

 {

 //If this mote is the one to update, overwrite mutable values and

return true;

 if(this.id == newState.id)

 {

 this.batteryLevel = newState.batteryLevel;

 this.surchargeStatus = newState.surchargeStatus;

 this.lastCommunication = newState.lastCommunication;

 this.stateChanges.push(new StateChange(newState.lastCommunication,

newState.surchargeStatus));

 }

 else

 {

 this.__traverseDownstreamAndUpdate(this, newState);

 }

 }

 /*

 Recursive method that checks whether a mote's downstream neighbour's ID

matches the newState object's ID (newState is a mote record). If so, that

neighbour's mutable values will be

 overwritten with newState's mutable values. If not, it will go to the

next.

 */

 __traverseDownstreamAndUpdate(next, newState)

 {

 //Failure base case

 if(next.downstream == undefined || next.downstream == null)

 {

 return false;

 }

 //Success base case

 else if (next.downstream.id == newState.id)

 {

 //Update downstream mote's values

 next.downstream.batteryLevel = newState.batteryLevel;

 next.downstream.surchargeStatus = newState.surchargeStatus;

 next.downstream.lastCommunication = newState.lastCommunication;

 next.downstream.stateChanges.push(new

StateChange(newState.lastCommunication, newState.surchargeStatus));

 return true;

 }

 //Continue recursion

 else

 {

 return this.__traverseDownstreamAndUpdate(next.downstream,

newState);

204

 }

 }

 //Return all downstream motes in a downstream-order array.

 getDownstreamNeighboursAsArray()

 {

 return this.__buildDownstreamArray([this]);

 }

 /*

 Recursive method that builds returns an array of the current mote's

downstream neighbours. If there are no downstream neighbours, it will meet the

base case and return itself.

 The parameter 'next' represents the current state of the array -

 */

 __buildDownstreamArray(next)

 {

 //Base case - end of LinkedList / 'main' has been reached

 if (next[next.length -1].downstream == undefined || next[next.length -

1].downstream == null)

 return next;

 else

 return next.concat(this.__buildDownstreamArray([next[next.length -

1].downstream]));

 }

}

/*

 Represents any state change that occurs at a Mote. This is when a mote goes

from surcharged to not surcharged, or vice-versa.

*/

class StateChange

{

 constructor(initTime, initStatus)

 {

 this.time = initTime;

 this.status = initStatus;

 }

}

/*

205

 Represents any Event that occurs across the wastewater network. This includes

all types of blockages and false alarms, and stores the mote involved.

*/

class WastewaterEvent

{

 constructor(initOccurred, initID = null)

 {

 this.id = initID;

 this.occurred = initOccurred;

 this.involvedMotes = null;

 this.surchargingMotes = 0;

 //Initialise event fields to default values. As no classification has

occured yet, these will be 'empty'.

 this.falseAlarmCount = 0;

 this.isFalseAlarm = null;

 this.spatialClassification = "";

 this.timeClassification = "";

 //Initialise status fields to default values.

 this.resolved = false;

 this.location = "";

 this.latestSurchargeStatus = null;

 //Initialise notifications sent value as new array. This will be empty

as no notifications can be sent yet.

 this.notifcationsSent = new Array();

 //Initiate values used for classification timers

 this.__falseAlarmCountdownRunning = false;

 this.__propertyConnectionTimerRunning = false;

 this.__partialToFullCountdownTimerRunning = false;

 this.__inactiveCountdownTimerRunning = false;

 //Initialise Event timers. These will be 'null' and will populate with

timers following declaration. Once finished, the timers will re-set to null.

 let falseAlarmTimer = null;

 let propertyConnectionTimer = null;

 let partialToFullTimer = null;

 let inactiveTimer = null;

 }

 //Prints a detailed summary of this Event and its fields to Standard

Output.

 print()

 {

 console.log(chalk.bgYellow.black("************* Event

*************"));

206

 console.log(chalk.bold("Database ID: ") + this.id);

 console.log(chalk.bold("Started: ") + this.occurred);

 if(this.resolved == true)

 console.log(chalk.bold("Status: ") + chalk.bgGreen.black("Blockage

Resolved"));

 else

 console.log(chalk.bold("Status: ") + chalk.bgRed("Ongoing"));

 console.log("");

 if(this.falseAlarmCount == 1 || this.falseAlarmCount == 2)

 {

 console.log(chalk.bold.yellow("Event is False Alarm"));

 }

 else

 {

 console.log(chalk.bold("Spatial Classification: ") +

this.spatialClassification);

 console.log(chalk.bold("Time Classification: ") +

this.timeClassification);

 console.log(chalk.bold("Predicted Location: ") + this.location);

 }

 console.log("");

 console.log(chalk.bold("Involved Motes:"));

 console.log("");

 console.log(chalk.bgCyan.black("****************************"));

 console.log("");

 let motesArray = this.involvedMotes.getDownstreamNeighboursAsArray();

 for(let i = 0; i < motesArray.length; i++)

 if(motesArray[i] != null && motesArray[i] != undefined)

 console.log(motesArray[i].print());

 console.log("");

 console.log(chalk.bgCyan.black("****************************"));

 console.log("");

 }

}

exports.AppServerSession = AppServerSession;

exports.ApplicationParams = ApplicationParams;

exports.ClientMessage = ClientMessage;

exports.SurchargeMessage = SurchargeMessage;

exports.Mote = Mote;

207

exports.StateChange = StateChange;

exports.Event = WastewaterEvent;

208

Appendix D surcharge_pipeline.js

let app_server = require("data_conn.js");

let mysql = require("mysql");

let chalk = require("chalk");

surchargePipeline = function surchargePipeline(messageString, session, config)

{

 return new Promise((resolve, reject) =>

 {

 //Declare database connection for use during this pipeline

 let db = mysql.createConnection(

 {host: config.SQL_LOCATION,

 port: config.SQL_PORT,

 user: config.SQL_USER,

 password: config.SQL_PASS,

 database: config.INITIAL_DB});

 db.connect((err) =>

 {

 if(err)

 {

 console.log("");

 console.log(chalk.bgRed.black(" COULD NOT CONNECT TO MYSQL

DATABASE "));

 console.log(err);

 console.log("");

 }

 });

 //Convert the message string into a SurchargeMessage object.

 let theMessage = __decodeSurchargeString(messageString);

 if(theMessage != null)

 {

 let moteData = __loadMoteData(theMessage, session, db);

 moteData.then((step1) =>

 {

 let alarmVeracity = __checkAlarmVeracity(step1, config);

 alarmVeracity.then((step2) =>

 {

 if(step2.isFalseAlarm)

 {

 resolve(step2);

 }

209

 else

 {

 let spatialClassification =

__alarmSpatialClassification(step2, config);

 spatialClassification.then((step3) =>

 {

 step3.location = locateBlockage(step3);

 let temporalClassification =

__alarmTimeClassification(step3, config);

 temporalClassification.then((step4) =>

 {

 session.activeEvents[step4.id] = null;

 session.resolvedEvents[step4.id] = step4;

 __prototypePrintResults(theMessage, step4,

db);

 resolve(step4);

 });

 });

 }

 }, (rejected) =>

 {

 console.log(chalk.yellow("False alarm countdown is already

occuring. This does not need to be processed."));

 });

 });

 }

 else

 {

 reject(messageString);

 }

 });

}

//Converts a space-encoded string sent from a mote to a valid

SurchargeMesssage object.

function __decodeSurchargeString(stringToDecode)

{

 //Heartbeat string structure is shown in Section 3.6.3 of thesis

 let surchargeStringSplit = (stringToDecode.toString()).split(" ");

 let formattedDate = surchargeStringSplit[1].replace(/-/g, " ");

 if(surchargeStringSplit.length != 4)

210

 {

 console.log("Error - Malformed surcharge alert string");

 return null;

 }

 let decodedClientID = parseInt(surchargeStringSplit[0]);

 let decodedTimestamp = new Date(formattedDate);

 let decodedBatteryLevel = parseInt(surchargeStringSplit[2]);

 let decodedSurchargeStatus = (parseInt(surchargeStringSplit[3]) == 1) ?

true : false;

 let toReturn = new app_server.SurchargeMessage(null, decodedClientID,

decodedTimestamp, decodedSurchargeStatus, decodedBatteryLevel);

 return toReturn;

}

//Checks to see if the effected mote is currently represented in the active

motes dictionary.

function __loadMoteData(involvedSurchargeMessage, session, db)

{

 return new Promise((resolve, reject) =>

 {

 let theMote = null;

 let theEvent = null;

 //This mote is in session's activeMotes dictionary

 if(involvedSurchargeMessage.clientID in session.activeMotes)

 {

 console.log("Mote has already been loaded to session's ActiveMotes

dictionary");

 theMote = session.activeMotes[involvedSurchargeMessage.clientID];

 theEvent = session.searchEvent(theMote);

 //If mote has surcharge status of 0, and this has surcharge status

of 1, increment event's surcharge counter

 if(theMote.surchargeStatus == 0 &&

involvedSurchargeMessage.surchargeStatus == 1)

 theEvent.surchargingMotes++;

 //If the mote has a surcharge status of 1, and this has a

surcharge status of 0, increment event's surcharge counter

 else if (theMote.surchargeStatus == 1 &&

involvedSurchargeMessage.surchargeStatus == 0)

 theEvent.surchagingMotes--;

211

 theMote.updateDetails(involvedSurchargeMessage);

 if(theEvent != null)

 {

 resolve(theEvent)

 }

 else

 {

 console.log(chalk.red("No event could be retrieved for

previously loaded mote."));

 reject(null);

 }

 }

 else

 {

 console.log("Mote has not been loaded to session's ActiveMotes

dictionary");

 //Determine if mote's upstream neighbour has been loaded into

session ActiveMotes dictionary

 for(let i = 0; i < session.activeMotes.length; i++)

 {

 let next = session.activeMotes[i];

 if((next != null && next != undefined) && next.downstreamID ==

involvedSurchargeMessage.clientID)

 {

 theMote = next;

 break;

 }

 }

 //Determine if mote was found in previous loop to search for

upstream neighbour. If not, theMote will still be null.

 if(theMote != null)

 {

 console.log("Mote's upstream neighbour found in dictionary.

Retrieving mote's downstream neighbour if applicable.")

 //Get downstream mote

 if(theMote.downstreamID != null && theMote.downstream == null)

 {

 getMoteRecord(theMote.downstreamID).then((nbr) =>

 {

 theMote.downstream = nbr;

 theEvent = session.addEvent(nbr); //MIGHT CHANGE BACK

 resolve(theEvent);

212

 });

 }

 }

 else

 {

 console.log("Mote or upstream neighbour not found. Retrieving

mote details now. ");

 getMoteAndNeighbour(involvedSurchargeMessage.clientID,

involvedSurchargeMessage, db).then((mote) =>

 {

 //Check if downstream Mote belongs to current event

 if(mote.downstream != null &&

session.searchEvent(mote.downstream) != null)

 {

 theEvent = session.searchEvent(mote.downstream);

 console.log("Downstream mote belongs to current

event. Merge with current Event linked list");

 if(theEvent.involvedMotes.downstream != null)

 mote.downstream.downstream =

theEvent.involvedMotes.downstream;

 theEvent.involvedMotes = mote;

 session.activeMotes[mote.id] = mote;

 theEvent.surchargingMotes += mote.surchargeStatus;

 }

 else

 {

 console.log("Downstream mote does not belong to

current event");

 theEvent = session.addEvent(mote);

 }

 resolve(theEvent);

 });

 }

 }

 });

}

/*

 Retrieves a Mote's record from the database, along with that of any

downstream neighbour. Updates the mote record from any included surcharge

message, before

213

 adding the downstream neighbour to the mote.

*/

function getMoteAndNeighbour(moteID, surchargeMessage, db)

{

 return new Promise ((resolve, reject) =>

 {

 getMoteRecord(moteID, db).then((mote) =>

 {

 mote.updateDetails(surchargeMessage);

 if(mote.downstreamID != null)

 {

 getMoteRecord(mote.downstreamID, db).then((neighbour) =>

 {

 mote.downstream = neighbour;

 resolve(mote);

 });

 }

 else

 {

 resolve(mote);

 }

 });

 });

}

//Returns promise to retrieve a given Mote record based on ID. This is the

'inner' hidden method used by getMoteAndNeighbour().

function getMoteRecord(IDtoGet, db)

{

 return new Promise((resolve, reject) =>

 {

 console.log("Retrieving Mote with ID " + IDtoGet);

 db.query("SELECT * FROM mote WHERE id = ?", [IDtoGet], function(error,

results, fields)

 {

 if(error)

 {

 console.log(chalk.red("Could not retrive Mote with ID " +

IDtoGet));

 console.log(error);

 console.log("");

 reject(null);

 }

 if(results.length > 0 && results[0] != null)

214

 {

 let involvedMote = new app_server.Mote(results[0].id,

results[0].physicalAddress, results[0].streetAddress, results[0].downstream,

null,

 results[0].batteryLevel, 0, results[0].lastCommunication);

 console.log("Mote object with ID " + IDtoGet + " retrieved");

 resolve(involvedMote);

 }

 else

 {

 console.log(chalk.red("No results found for Mote"));

 reject(null);

 }

 });

 });

}

 //Determines if an Event is caused by a false alarm/regular daily occurrence.

function __checkAlarmVeracity(theEvent, config)

{

 return new Promise(function(resolve, reject)

 {

 console.log("");

 console.log(chalk.yellow.black("Beginning Alarm Veracity check"));

 //If it has already been proven event is not false alarm, do not run

this test.

 if(theEvent.isFalseAlarm == false)

 resolve(theEvent);

 //If false alarm countdown is NOT running on Event, and event has no

false alarm flags raised, begin false alarm countdown

 if((theEvent.__falseAlarmCountdownRunning == false) &&

theEvent.falseAlarmCount == 0)

 {

 //Set __falseAlarmCountdownRunning to true, and set it back to

false when timer is elapsed

 theEvent.__falseAlarmCountdownRunning = true;

 //This code will execute after timer has finished running

 theEvent.falseAlarmTimer = setTimeout(() =>

 {

 theEvent.__falseAlarmCountdownRunning = false;

215

 if(theEvent.falseAlarmCount == 1 || theEvent.falseAlarmCount

== 2)

 theEvent.isFalseAlarm = true;

 else

 theEvent.isFalseAlarm = false;

 //Resolve Event. Number of false alarms will have been updated

by any other surcharge notifications.

 resolve(theEvent);

 }, 20000);

 }

 //If the false alarm countdown IS running on an event, increment false

alarm count

 else if (theEvent.__falseAlarmCountdownRunning)

 {

 theEvent.falseAlarmCount++;

 //Reject this event, as an earlier Surcharge notification already

has countdown running for the Event.

 reject(theEvent);

 }

 });

}

 //Spatially classifies an event based on where it is occuring - this produces

either a main blockage or property connection blockage.

function __alarmSpatialClassification(theEvent, config)

{

 return new Promise(function(resolve, reject)

 {

 console.log("");

 console.log(chalk.yellow.black("Beginning Spatial Classification"));

 //If the Event has multiple involved motes, it is a main blockage.

Resolve it as a main blockage.

 if(theEvent.surchargingMotes > 1)

 {

 console.log(chalk.yellow("Event has multiple motes surcharging"));

 //If the Event's propertyConnectioon timer is currently counting

down, cancel it as it is no longer needed.

 if (theEvent.__propertyConnectionTimerRunning)

 {

 clearTimeout(theEvent.propertyConnectionTimer);

216

 theEvent.__propertyConnectionTimerRunning = false;

 }

 console.log(chalk.green("Event is main blockage"));

 theEvent.spatialClassification = "main";

 resolve(theEvent);

 }

 else if (theEvent.surchargingMotes == 1 &&

theEvent.spatialClassification == "property connection")

 {

 //There is no need to reclassify the event, so resolve it

 resolve(theEvent);

 }

 else

 {

 console.log(chalk.yellow("Event has one or less motes

surcharging"));

 //If Event property conneciton timer is already running, another

mote surcharge occurence is 'waiting' on this Event.

 if(theEvent.__propertyConnectionTimerRunning == true)

 reject(theEvent);

 //If the event has one involved mote, it could be a property

connection blockage.

 theEvent.__propertyConnectionTimerRunning = true;

 console.log(chalk.yellow("Begin property connection timer"));

 theEvent.propertyConnectionTimer = setTimeout(function()

 {

 console.log(chalk.yellow("Property connection timer has

elapsed"));

 theEvent.__falseAlarmCountdownRunning = false;

 //Once timeout has elapsed, make sure other motes have not

surcharged for this event in meantime.

 if(theEvent.surchargingMotes > 1)

 theEvent.spatialClassification = "main";

 else

 theEvent.spatialClassification = "property connection";

 resolve(theEvent);

217

 }, 100000);

 }

 });

}

//Accepts an Event object (Representing a blockage) and returns a string

stating its street address/location

function locateBlockage(theEvent)

{

 //Determine blockage location

 if(theEvent.spatialClassification == "property connection")

 {

 return "Property Connection at " +

theEvent.involvedMotes.streetAddress;

 }

 else

 {

 //Get all motes in event

 let downstreamAsArray =

theEvent.involvedMotes.getDownstreamNeighboursAsArray();

 //Remove all non-surcharging motes from downstream as array

 let filtered = downstreamAsArray.filter(function(value, index, arr)

 {

 return (value.surchargeStatus == 1);

 });

 if(filtered.length > 0)

 {

 let lastValue = filtered[filtered.length - 1];

 if(lastValue.downstream != null && lastValue.downstream !=

undefined)

 return "Main between " + lastValue.streetAddress + " and " +

lastValue.downstream.streetAddress;

 else

 return "Main between " + lastValue.streetAddress + " and end

of main";

 }

 else

 {

 //Do not change location

 return theEvent.location;

 }

 }

218

}

 //Classifies an event based on whether it is caused by a full or parital

blockage (Time classification)

function __alarmTimeClassification(theEvent, config)

{

 return new Promise(function(resolve, reject)

 {

 console.log("");

 console.log(chalk.yellow.black("Beginning Time Classification"));

 //If the latest surcharge status is false

 if(theEvent.latestSurchargeStatus == false)

 {

 //Determine if all motes are 'inactive' - surcharge status of 0.

This method will return true if no motes are surcharging

 if (theEvent.involvedMotes.isMainResolved())

 {

 theEvent.__inactiveCountdownTimerRunning = true;

 //Begin inactive countdown timer

 setTimeout(function()

 {

 theEvent.__inactiveCountdownTimerRunning = false;

 //If all motes are still inactive

 if(theEvent.involvedMotes.isMainResolved())

 {

 theEvent.resolved = true;

 resolve(theEvent);

 }

 }, 25000);

 }

 else

 {

 //If latest surcharge status is 0, do nothing for now.

 reject(theEvent);

 }

 }

 else //Latest surcharge status is true

 {

219

 //If the inactive timer was running, one or motes has fluctuated

from false to true when all were previously false. This is clearly a partial

blockage.

 if(theEvent.__inactiveCountdownTimerRunning ||

theEvent.__partialToFullCountdownTimerRunning)

 {

 theEvent.__inactiveCountdownTimerRunning = false;

 theEvent.__partialToFullCountdownTimerRunning = false;

 clearTimeout(theEvent.partialToFullTimer);

 clearTimeout(theEvent.inactiveTimer);

 theEvent.timeClassification = "partial";

 resolve(theEvent);

 }

 else

 {

 //Check if any motes have cycled between surcharged, not

surcharged, and then surcharged again. If so, this indicates a likely partial

blockage.

 if(theEvent.involvedMotes.isMoteFluctuating())

 {

 theEvent.timeClassification = "partial";

 theEvent.__partialToFullCountdownTimerRunning = true;

 //Begin the partial_to_full countdown timer. If this is

elapses with no interruption, the event is a full blockage as fluctuations

have 'stopped'.

 setTimeout(function()

 {

 theEvent.__partialToFullCountdownTimerRunning = false;

 if(theEvent.involvedMotes.isMainResolved())

 {

 theEvent.resolved = true;

 }

 else

 {

 theEvent.timeClassification = "full";

 }

 resolve(theEvent);

 }, 300000);

 }

 else //If not, this likely indicates a full blockage

 {

220

 theEvent.timeClassification = "full";

 resolve(theEvent);

 }

 }

 }

 });

}

 console.log("");

 console.log(chalk.inverse("--------- Classification results: ------------

"));

 console.log("");

 theEvent.print();

}

exports.surchargePipeline = surchargePipeline;

exports.ApplicationParams = app_server.ApplicationParams;

exports.AppServerSession = app_server.AppServerSession;

221

Bibliography

[1] D. Yagain, S. Chennapnoor and H. Yagain, “Design and implementation of high-speed,

low-area switch debouncer ASIC for deep submicron technology,” in 2011 Annual IEEE

India Conference, Hyderabad, India, 2011.

[2] Z. Zhou, W. Nie, Z. Xi and X. Wang, “A High-Electrical-Reliability MEMS Inertial Switch

Based on Latching Mechanism and Debounce Circuit,” IEEE Sensors Journal, vol. 16,

no. 7, pp. 1918 - 1925, 2016.

[3] A. Nayyar and V. Puri, “A review of Arduino board's, Lilypad's & Arduino shields,” in

2016 3rd International Conference on Computing for Sustainable Global Development

(INDIACom), New Dehli, India, 2016.

[4] Y. A. Badamasi, “The working principle of an Arduino,” in 2014 11th International

Conference on Electronics, Computer and Computation (ICECCO), Abuja, Nigeria, 2014.

[5] Z. Cheng, Y. Li and R. West, “Demo abstract: A multithreaded arduino system for

embedded computing,” in 21st IEEE Real-Time and Embedded Technology and

Applications Symposium, Seattle, USA, 2015.

[6] J. P. Pawar, A. S, A. S and S. K. B, “Real time energy measurement using smart meter,” in

2016 Online International Conference on Green Engineering and Technologies (IC-

GET), Coimbatore, India, 2016.

[7] J. G. Ganssle, “A Guide to Debouncing,” 06 2008. [Online]. Available:

https://pubweb.eng.utah.edu/~cs5780/debouncing.pdf. [Accessed 25 09 2018].

[8] Australian Department of Health, “Disease from sewage,” Australian Department of

Health, 11 2010. [Online]. Available:

http://www.health.gov.au/internet/publications/publishing.nsf/Content/ohp-enhealth-

manual-atsi-cnt-l~ohp-enhealth-manual-atsi-cnt-l-ch2~ohp-enhealth-manual-atsi-cnt-l-

ch2.3. [Accessed 25 09 2018].

222

[9] Centers for Disease Control and Prevention, “Salmonella,” Centers for Disease Control

and Prevention , 12 09 2018. [Online]. Available:

https://www.cdc.gov/salmonella/index.html. [Accessed 25 09 2018].

[10] B. Hibbert, C. Costiniuk, R. Hibbert, P. Joseph, H. Alanazi, T. Simard, C. Dennie, J. B.

Angel and E. R. O'Brien, “Cardiovascular complications of Salmonella enteritidis

infection,” Canadian Journal of Cardiology, vol. 26, pp. 323-325, 2010.

[11] C. P. D. MD, “Salmonella,” eMedicineHealth, 24 07 2018. [Online]. Available:

https://www.emedicinehealth.com/salmonella/article_em.htm. [Accessed 25 09 2018].

[12] P. Bibby, “KFC ordered to pay $8m to brain-damaged girl,” Sydney Morning Herald, 27

04 2012. [Online]. Available: https://www.smh.com.au/national/nsw/kfc-ordered-to-pay-

8m-to-brain-damaged-girl-20120427-1xpkc.html. [Accessed 25 09 2018].

[13] W. H. Organization, “Trachoma,” World Health Organization, 16 02 2018. [Online].

Available: http://www.who.int/news-room/fact-sheets/detail/trachoma. [Accessed 25 09

2018].

[14] The Fred Hollows Foundation, “Trachoma,” The Fred Hollows Foundation, [Online].

Available: https://www.hollows.org/au/eye-health/trachoma. [Accessed 25 09 2018].

[15] S. Toze, “Microbial Pathogens in Wastewater,” Commonwealth Scientific and Industrial

Research Organisation, Canberra, Australia, 1997.

[16] M. B. Ali, K. Horoshenkov and S. Tait, “Rapid detection of sewer defects and blockages

using acoustic-based instrumentation,” Water Science & Technology, vol. 64, no. 8, pp.

1700-1707, 2011.

[17] World Health Organization, “Sanitation,” World Health Organization, 19 02 2018.

[Online]. Available: http://www.who.int/news-room/fact-sheets/detail/sanitation.

[Accessed 25 09 2018].

[18] M. Safi, “'Manual scavenging': death toll of Indian sewer cleaners revealed,” The

Guardian, 18 09 2018. [Online]. Available:

223

https://www.theguardian.com/world/2018/sep/19/death-toll-of-indian-sewer-cleaners-

revealed-for-first-time. [Accessed 25 09 2018].

[19] S. Nair, “One manual scavenging death every five days: Official data,” Indian Express, 18

09 2018. [Online]. Available: https://indianexpress.com/article/india/official-data-shows-

one-manual-scavenging-death-every-five-days-5361531/. [Accessed 25 09 2019].

[20] Environmental Protection Authority Victoria, “Stormwater,” Environmental Protection

Authority Victoria, 26 06 2012. [Online]. Available: https://www.epa.vic.gov.au/your-

environment/water/stormwater. [Accessed 26 09 2018].

[21] New South Wales Office of Environment and Heritage, “Stormwater,” New South Wales

Office of Environment and Heritage, 04 07 2018. [Online]. Available:

https://www.environment.nsw.gov.au/stormwater/. [Accessed 26 09 2018].

[22] N. C. f. G. R. a. Training, “What is groundwater?,” National Centre for Groundwater

Research and Training, [Online]. Available: http://www.groundwater.com.au/pages/what-

is-groundwater. [Accessed 26 09 2018].

[23] T. N. Pham, M.-F. Tsai, D. B. Nguyen, C.-R. Dow and D.-J. Deng, “A Cloud-Based Smart-

Parking System Based on Internet-of-Things Technologies,” IEEE Access, vol. 3, pp.

1581-1591, 2015.

[24] A. R. Biswas and R. Giaffreda, “IoT and cloud convergence: Opportunities and

challenges,” in 2014 IEEE World Forum on Internet of Things (WF-IoT), Seoul, South

Korea, 2014.

[25] M. Singh, A. Singh and S. Kim, “Blockchain: A game changer for securing IoT data,” in

2018 IEEE 4th World Forum on Internet of Things (WF-IoT), Singapore, Singapore, 2018.

[26] W. Shi, J. Cao, Q. Zhang, Y. Li and L. Xu, “Edge Computing: Vision and Challenges,”

IEEE Internet of Things Journal, vol. 3, no. 5, pp. 637-646, 2016.

[27] J. E. Siegel, S. Kumar and S. E. Sarma, “The Future Internet of Things: Secure, Efficient,

and Model-Based,” IEEE Things of Things Journal, vol. 5, no. 4, pp. 2386-2398, 2018.

224

[28] J. A. Stankovic, “Research Directions for the Internet of Things,” IEEE Internet of Things

Journal, vol. 1, no. 1, pp. 3-9, 2014.

[29] M. Chernyshev, Z. Baig, O. Bello and S. Zeadally, “Internet of Things (IoT): Research,

Simulators, and Testbeds,” IEEE Internet of Things Journal, vol. 5, no. 3, pp. 1637-1647,

2018.

[30] S. Duangsuwan, A. Takam, R. Nujankaew and P. Jamjareegulgarn, “A Study of Air

Pollution Smart Sensors LPWAN via NB-IoT for Thailand Smart Cities 4.0,” in 2018 10th

International Conference on Knowledge and Smart Technology (KST), Chiang Mai,

Thailand, 2018.

[31] D. Patel and M. Won, “Experimental Study on Low Power Wide Area Networks (LPWAN)

for Mobile Internet of Things,” in 2017 IEEE 85th Vehicular Technology Conference

(VTC Spring), Sydney, Australia, 2017.

[32] W. Guibene, J. Nowack, N. Chalikias, K. Fitzgibbon, M. Kelly and D. Prendergast,

“Evaluation of LPWAN Technologies for Smart Cities: River Monitoring Use-Case,” in

2017 IEEE Wireless Communications and Networking Conference Workshops

(WCNCW), San Francisco, USA, 2017.

[33] K. Mikhaylov, M. Stusek, P. Masek, V. Petrov, J. Petajajarvi, S. Andreev, J. Pokorny, J.

Hosek, A. Pouttu and Y. Koucheryavy, “Multi-RAT LPWAN in Smart Cities: Trial of

LoRaWAN and NB-IoT Integration,” in 2018 IEEE International Conference on

Communications (ICC), Kansas City, USA, 2018.

[34] N. Saravanan, A. Das and V. Iyer, “Smart water grid management using LPWAN IoT

technology,” in 2017 Global Internet of Things Summit (GIoTS), Geneva, Switzerland,

2017.

[35] I. Ganchev, Z. Ji and M. O'Droma, “A generic IoT architecture for smart cities,” in 25th

IET Irish Signals & Systems Conference 2014 and 2014 China-Ireland International

Conference on Information and Communications Technologies (ISSC 2014/CIICT 2014),

Limerick, Ireland, 2013.

225

[36] X. Chen, J. Liu, X. Li, L. Sun and Y. Zhen, “Integration of IoT with smart grid,” in IET

International Conference on Communication Technology and Application (ICCTA 2011),

Beijing, China, 2011.

[37] J. Jin, J. Gubbi and M. Palaniswami, “An Information Framework for Creating a Smart

City Through Internet of Things,” IEEE Internet of Things Journal , vol. 1, no. 2, pp. 112 -

121, 2014.

[38] O. Jo, Y.-K. Kim and J. Kim, “Internet of Things for Smart Railway: Feasibility and

Applications,” IEEE Internet of Things Journal, vol. 5, no. 2, pp. 482-490, 2017.

[39] A. Zanella, N. Bui, A. Castellani, L. Vangelista and M. Zorzi, “Internet of Things for

Smart Cities,” IEEE Internet of Things Journal, vol. 1, no. 1, pp. 22-32, 2014.

[40] M. Wollschlaeger, T. Sauter and J. Jasperneite, “The Future of Industrial

Communication: Automation Networks in the Era of the Internet of Things and Industry

4.0,” IEEE Industrial Electronics Magazine, vol. 11, no. 1, pp. 17-27, 2017.

[41] M. D. V. Pena, J. J. Rodriguez-Andina and M. Manic, “The Internet of Things: The Role of

Reconfigurable Platforms,” IEEE Industrial Electronics Magazine, vol. 11, no. 3, pp. 6-

19, 2017.

[42] U. Raza, P. Kulkarni and M. Sooriyabandara, “Low Power Wide Area Networks: An

Overview,” IEEE Communications Surveys and Tutorials, vol. 19, no. 2, pp. 855-873,

2017.

[43] K. Mekki, E. Bajic, F. Chaxel and F. Meyer, “A comparative study of LPWAN technologies

for large-scale IoT deployment,” ICT Express, 2018.

[44] D. Vakula and Y. K. Kolli, “Waste water management for smart cities,” in 2017

International Conference on Intelligent Sustainable Systems (ICISS), Palladam, India,

2017.

[45] M. Sonrani, M. Abbatangelo, E. Carmona, G. Duina, M. Malgaretti, E. Comini, V.

Sberveglieri, M. P. Bhandari, D. Bolpagni and G. Sberveglieri, “Array of Semiconductor

226

Nanowires Gas Sensor for IoT in Wastewater Management,” in 2018 Workshop on

Metrology for Industry 4.0 and IoT, Brescia, Italy, 2018.

[46] N. Dlodlo, O. Gcaba and A. Smith, “Internet of things technologies in smart cities,” in

2016 IST-Africa Week Conference, Durban, South Africa, 2016.

[47] Z. Li, Q. Shi, W. Hu and Y. Li, “A sewer sensor monitoring system based on embedded

system,” in 2018 13th IEEE Conference on Industrial Electronics and Applications

(ICIEA), Wuhan, China, 2018.

[48] A. Shrivastava, “Development of robotic sewerage blockage detector controlled by

embedded systems,” in IEEE-International Conference On Advances In Engineering,

Science And Management (ICAESM -2012), Nagapattinam, Tamil Nadu, India, 2012.

[49] I. Vaani, S. J. Sushil, U. V. Kunjamma, A. Ramachandran, V. T. Bai and B. Thyla,

“BhrtyArtana (A pipe cleaning and inspection robot),” in 2017 Third International

Conference on Sensing, Signal Processing and Security (ICSSS), Chennai, India, 2017.

[50] M. S. Khan, “Empirical Modeling of Acoustic Signal Attenuation in Municipal Sewer

Pipes for Condition Monitoring Applications,” in 2018 IEEE Green Technologies

Conference (GreenTech), Austin, TX, USA, 2018.

[51] M. S. Khan and R. Patil, “Statistical Analysis of Acoustic Response of PVC Pipes for Crack

Detection,” in SoutheastCon 2018, St. Petersburg, FL, USA, 2018.

[52] C. See, K. Horoshenkov, S. Tait, R. Abd-Alhameed, Y. Hu, E. Elkhazmi and J. Gardiner, “A

Zigbee based wireless sensor network for sewerage monitoring,” in 2009 Asia Pacific

Microwave Conference, Singapore, Singapore, 2009.

[53] I. Stoianov, L. Nachman, S. Madden, T. Tokmouline and M. Csail, “PIPENET: A Wireless

Sensor Network for Pipeline Monitoring,” in 2007 6th International Symposium on

Information Processing in Sensor Networks, Cambridge, MA, USA, 2007.

[54] J. Yan, Z. Feng, J. Wu and J. Ma, “Research on identifying drainage pipeline blockage

based on multi-feature fusion,” in 2017 29th Chinese Control And Decision Conference

(CCDC), Chongqing, China, 2017.

227

[55] Q. Hongrong, L. Jianzhong, Z. Guohui and L. Luexhuan, “Study of problems and

corrective actions of urban drainage network,” in 2011 International Conference on

Electric Technology and Civil Engineering (ICETCE), Lushan, China, 2011.

[56] W. Tsang, P. Carey, G. O'Connor and P. Connaughton, “Bluetooth Terminology,” Trinity

College Dublin School of Computer Science and Statistics, [Online]. Available:

http://ntrg.cs.tcd.ie/undergrad/4ba2.01/group3/terminology.html. [Accessed 10 10

2018].

[57] R. Fielding, “Fielding Dissertation: CHAPTER 5 Representational State Transfer (REST),”

University of California, Irvine, 2000. [Online]. Available:

https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm. [Accessed 16

10 2018].

[58] T. K. D. P. R. K. John Schneider, “Efficient XML Interchange (EXI) Format 1.0 (Second

Edition),” 11 02 2014. [Online]. Available: https://www.w3.org/TR/exi/. [Accessed 16 10

2018].

[59] H. Wajahat and H. S. Kim, “Efficient XML interchange for automated demand response

in smart grid networks,” in 2014 14th International Symposium on Communications and

Information Technologies (ISCIT), Incheon, South Korea, 2014.

[60] D. Peintner, H. Kosch and J. Heur, “Efficient XML Interchange for rich internet

applications,” in 2009 IEEE International Conference on Multimedia and Expo, New

York, NY, USA, 2009.

[61] A. P. Castellani, M. Gheda, N. Bui, M. Rossi and M. Zorzi, “Web Services for the Internet

of Things through CoAP and EXI,” in 2011 IEEE International Conference on

Communications Workshops (ICC), Kyoto, Japan, 2011.

[62] Z. Shelby, K. Hartke and C. Bormann, “The Constrained Application Protocol (CoAP),” 06

2014. [Online]. Available: https://tools.ietf.org/html/rfc7252. [Accessed 06 10 2018].

[63] A. Castellani, S. Loreto, A. Rahman, T. Fossati and E. Dijk, “Best Practises for HTTP-

CoAP Mapping Implementation,” Internet Engineering Task Force, 03 05 2012. [Online].

228

Available: https://tools.ietf.org/html/draft-castellani-core-http-mapping-02. [Accessed

17 10 2018].

[64] J. Ganssle, “A Guide to Debouncing, or, How to Debounce a Contact in Two Easy Pages,”

The Ganssle Group, 03 2014. [Online]. Available:

http://www.ganssle.com/debouncing.htm. [Accessed 08 11 2018].

[65] B. Huang, “Logic Levels,” Sparkfun, [Online]. Available:

https://learn.sparkfun.com/tutorials/logic-levels/all. [Accessed 08 11 2018].

[66] “Defining Logical Levels: true and false (Boolean Constants),” Arduino, 2018. [Online].

Available:

https://www.arduino.cc/reference/en/language/variables/constants/constants/.

[Accessed 08 11 2018].

[67] J. Finnegan and S. Brown, “A Comparative Survey of LPWA Networking,” Maynooth

University Department of Computer Science, Maynooth, Ireland, 2018.

[68] A. Augustin, J. Yi, T. Clausen and W. M. Townsley, “A Study of LoRa: Long Range & Low

Power Networks for the Internet of Things,” Sensors - Open Access Journal, vol. 16,

2016.

[69] A. Lavric and V. Popa, “Internet of Things and LoRa Low-Power Wide-Area Networks: A

Survey,” in 2017 International Symposium on Signals, Circuits and Systems (ISSCS)`,

Iasi, Romania, 2017.

[70] L. Gregora, L. Vojtech and M. Neruda, “Indoor Signal Propagation of LoRa Technology,”

in 2016 17th International Conference on Mechatronics - Mechatronika (ME), Prague,

Czech Republic, 2016.

[71] A. Lavric and V. Popa, “LoRa™ wide-area networks from an Internet of Things

perspective,” in 2017 9th International Conference on Electronics, Computers and

Artificial Intelligence (ECAI), Targoviste, Romania, 2017.

229

[72] S. Devalal and A. Karthikeyan, “LoRa Technology - An Overview,” in 2018 Second

International Conference on Electronics, Communication and Aerospace Technology

(ICECA), Coimbatore, India, 2018.

[73] L. Vangelista, “Modulation, Frequency Shift Chirp Modulation: The LoRa Modulation,”

IEEE Signal Processing Letters, vol. 24, no. 12, pp. 1818-1821, 2017.

[74] L. Trinh, V. Bui, F. Ferrero, T. Nguyen and M. Le, “Signal propagation of LoRa

technology using for smart building applications,” in 2017 IEEE Conference on Antenna

Measurements & Applications (CAMA), Tsukuba, Japan, 2017.

[75] A. Lavric and V. Popa, “Internet of Things and LoRa™ low-power wide-area networks

challenges,” in 2017 9th International Conference on Electronics, Computers and

Artificial Intelligence (ECAI), Targoviste, Romania, 2017.

[76] U. Noreen, A. Bounceur and L. Clavier, “A study of LoRa low power and wide area

network technology,” in 2017 International Conference on Advanced Technologies for

Signal and Image Processing (ATSIP), Fez, Morocco, 2017.

[77] A. Sahadevan, D. Mathew, J. Mookathana and B. A. Jose, “An Offline Online Strategy for

IoT Using MQTT,” in 2017 IEEE 4th International Conference on Cyber Security and

Cloud Computing (CSCloud), New York, NY, USA, 2017.

[78] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari and M. Ayyash, “Internet of

Things: A Survey on Enabling Technologies, Protocols, and Applications,” IEEE

Communications Surveys & Tutorials, vol. 17, no. 4, pp. 2347-2376, 2015.

[79] M. Loriot, A. Aljer and I. Shahrour, “Analysis of the use of LoRaWan technology in a

large-scale smart city demonstrator,” in 2017 Sensors Networks Smart and Emerging

Technologies (SENSET), Beirut, Lebanon, 2017.

[80] B. Oniga, V. Dadarlat, E. D. Poorter and A. Munteanu, “A secure LoRaWAN sensor

network architecture,” in 2017 IEEE SENSORS, Glasgow, UK, 2017.

[81] B. Oniga, V. Dadarlat, E. D. Poorter and A. Munteanu, “Analysis, design and

implementation of secure LoRaWAN sensor networks,” in 2017 13th IEEE International

230

Conference on Intelligent Computer Communication and Processing (ICCP), Cluj-

Napoca, Romania, 2017.

[82] R. J. Cohn, R. J. Coppen, A. Banks and R. Gupta, “MQTT Version 3.1.1 - OASIS Standard,”

29 08 2014. [Online]. Available: http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-

v3.1.1-os.pdf. [Accessed 05 12 2018].

[83] A. Stanford-Clark and H. L. Truong, “MQTT For Sensor Networks (MQTT-SN) Protocol

Specification,” 14 11 2013. [Online]. Available: http://mqtt.org/new/wp-

content/uploads/2009/06/MQTT-SN_spec_v1.2.pdf. [Accessed 09 12 2018].

[84] M. Masirap, M. H. Amaran, Y. M. Yussoff, R. A. Rahman and H. Hashim, “Evaluation of

reliable UDP-based transport protocols for Internet of Things (IoT),” in 2016 IEEE

Symposium on Computer Applications & Industrial Electronics (ISCAIE), Batu

Feringghi, Malaysia, 2016.

[85] The Things Network, “Network Architecture,” The Things Network, 2019. [Online].

Available: https://www.thethingsnetwork.org/docs/network/architecture.html. [Accessed

13 01 2019].

[86] S. Spinsante, G. Ciattaglia, A. D. Campo, D. Perla, D. Pigini, G. Cancellieri and E. Gambi,

“A LoRa enabled building automation architecture based on MQTT,” in 2017 AEIT

International Annual Conference, Cagliari, Italy, 2017.

[87] H.-K. Wu, T.-W. Hung, S.-H. Wang and J.-W. Wang, “Development of a shoe-based

dementia patient tracking and rescue system,” in 2018 IEEE International Conference

on Applied System Invention (ICASI), Chiba, Japan, 2018.

[88] J.-H. Kim, S.-H. Hong, S.-H. Yang and J.-H. Kim, “Design of Universal Broker

Architecture for Edge Networking,” in 2017 International Conference on Networking,

Architecture, and Storage (NAS), Shenzen, China, 2017.

[89] S. Penkov, A. Taneva, V. Kalkov and S. Ahmed, “Industrial network design using Low-

Power Wide-Area Network,” in 2017 4th International Conference on Systems and

Informatics (ICSAI), Hangzhou, China, 2017.

231

[90] Pinout, “The comprehensive GPIO Pinout guide for the Raspberry Pi.,” Pinout, [Online].

Available: The comprehensive GPIO Pinout guide for the Raspberry Pi.. [Accessed 22 01

2019].

[91] G. (. Unknown), “Raspberry Pi GPIO Tutorial: The Basics Explained,” PiMyLifeUp, 09 09

2015. [Online]. Available: https://pimylifeup.com/raspberry-pi-gpio/. [Accessed 22 01

2019].

[92] M. T. Jim Lindblom, “Raspberry gPIo,” Sparkfun, 29 10 2015. [Online]. Available:

https://learn.sparkfun.com/tutorials/raspberry-gpio/all. [Accessed 22 01 2019].

[93] S. Mischie, “On teaching Raspberry Pi for undergraduate university programmes,” in

2016 12th IEEE International Symposium on Electronics and Telecommunications

(ISETC), Timisoara, Romania, 2016.

[94] J. Geerling, “Raspberry Pi Zero - Power Consumption Comparison,” 27 11 2015.

[Online]. Available: https://www.jeffgeerling.com/blogs/jeff-geerling/raspberry-pi-zero-

power. [Accessed 23 01 2019].

[95] R. Light, “Mosquitto: server and client implementation of the MQTT protocol,” The

Journal of Open Source Software, vol. 2, no. 13, 2017.

[96] Eclipse Foundation, “Eclipse Paho - MQTT-SN Transparent Gateway,” Eclipse

Foundation, [Online]. Available: https://www.eclipse.org/paho/components/mqtt-sn-

transparent-gateway/. [Accessed 23 01 2019].

[97] T. Yamaguchi, “MQTT-SN Transparent / Aggrigating Gateway,” GitHub Inc, [Online].

Available: https://github.com/eclipse/paho.mqtt-sn.embedded-

c/tree/master/MQTTSNGateway. [Accessed 23 01 2019].

[98] Eclipse Foundation, “Paho,” Eclipse Foundation, [Online]. Available:

https://www.eclipse.org/paho/. [Accessed 23 01 2019].

[99] R. K. Kodali and S. Soratkal, “MQTT based home automation system using ESP8266,” in

2016 IEEE Region 10 Humanitarian Technology Conference (R10-HTC), Agra, India,

2016.

232

[100] R. K. Kodali and V. S. K. Gorantla, “Weather tracking system using MQTT and SQLite,” in

2017 3rd International Conference on Applied and Theoretical Computing and

Communication Technology (iCATccT), Tumkur, India, 2018.

[101] A. Panwar, A. Singh, R. Kumawat, S. Jaidka and K. Garg, “Eyrie smart home automation

using Internet of Things,” in 2017 Computing Conference, London, UK, 2017.

[102] J. Zambada, R. Quintero, R. Isijara, R. Galeana and L. Santillan, “n IoT based scholar bus

monitoring system,” in 2015 IEEE First International Smart Cities Conference (ISC2),

Guadalajara, Mexico, 2015.

[103] Y. Upadhyay, A. Borole and D. Dileepan, “MQTT based secured home automation

system,” in 2016 Symposium on Colossal Data Analysis and Networking (CDAN), Indore,

India, 2016.

[104] L. P. Chitra and R. Satapathy, “Performance comparison and evaluation of Node.js and

traditional web server (IIS),” in 2017 International Conference on Algorithms,

Methodology, Models and Applications in Emerging Technologies (ICAMMAET),

Chennai, India, 2017.

[105] A. J. Poulter, S. J. Johnston and S. J. Cox, “Using the MEAN stack to implement a RESTful

service for an Internet of Things application,” in 2015 IEEE 2nd World Forum on

Internet of Things (WF-IoT), Milan, Italy, 2015.

[106] M. Sutiono, H. Nugroho and K. Karyono, “ApplianceHub: A wireless communication

system for smart devices (case study: Smart Rice Cooker),” in 2016 International

Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications

(ICRAMET), Jakarta, Indonesia, 2016.

[107] M. Moness, A. M. Moustafa, A.-R. H. Muhammad and A.-S. A. Younis, “Hybrid controller

for a software-defined architecture of industrial internet lab-scale process,” in 2017 12th

International Conference on Computer Engineering and Systems (ICCES), Cairo, Egypt,

2017.

[108] O. Chieochan, A. Saokaew and E. Boonchieng, “IOT for smart farm: A case study of the

Lingzhi mushroom farm at Maejo University,” in 2017 14th International Joint

233

Conference on Computer Science and Software Engineering (JCSSE), Nakhon Si

Thammarat, Thailand, 2017.

[109] J. Geerling, “Raspberry Pi Zero - Conserve power and reduce draw to 80mA,” Jeff

Geerling, 29 11 2015. [Online]. Available: https://www.jeffgeerling.com/blogs/jeff-

geerling/raspberry-pi-zero-conserve-energy. [Accessed 24 01 2019].

[110] L. Fried, “A Tour of the Pi Zero,” Adafruit Industries, 06 08 2017. [Online]. Available:

https://learn.adafruit.com/introducing-the-raspberry-pi-zero/a-tour-of-the-pi-zero.

[Accessed 07 02 2019].

[111] L. Fried, “Introducing the Raspberry Pi Zero - Video Outputs,” Adafruit Industries, 26 11

2015. [Online]. Available: https://learn.adafruit.com/introducing-the-raspberry-pi-

zero/video-outputs. [Accessed 07 02 2018].

[112] NPM Enterprise, “MQTT.js,” NPM Enterprise, [Online]. Available:

https://www.npmjs.com/package/mqtt. [Accessed 2019 02 27].

[113] NPM Enterprise, “onoff.js,” NPM Enterprise, 05 03 2019. [Online]. Available:

https://www.npmjs.com/package/onoff. [Accessed 08 03 2019].

[114] M. F. G. M. '. (. Nicholas Humfrey, “MQTT-SN Tools,” GitHub, 16 06 2018. [Online].

Available: https://github.com/njh/mqtt-sn-tools. [Accessed 08 03 2019].

[115] J. P. Talusan, “Trying MQTT-SN on Raspberry Pi,” 08 02 2018. [Online]. Available:

https://jpinjpblog.wordpress.com/2018/02/08/trying-mqtt-sn-on-raspberry-pi/.

[Accessed 08 03 2019].

[116] M. Foksa, “rsmb MQTT and MQTT-SN Broker,” GitHub Inc, 04 12 2015. [Online].

Available: https://github.com/MichalFoksa/rsmb. [Accessed 09 03 2019].

[117] N. Humfrey, R. Light and I. Craggs, “Mosquitto RSMB (Really Small Message Broker),”

GitHub, 26 06 2017. [Online]. Available: https://github.com/eclipse/mosquitto.rsmb.

[Accessed 09 03 2019].

[118] S. S. Josh Junon, “NPM - Chalk,” NPM Enterprise, 01 2019. [Online]. Available:

https://www.npmjs.com/package/chalk. [Accessed 11 03 2019].

234

[119] H. Arasteh, V. Hosseinnezhad, V. Loia, A. Tommaseti, O. Troisi, M. Shafie-Khah and P.

Siano, “Iot-based smart cities: A survey,” in 2016 IEEE 16th International Conference on

Environment and Electrical Engineering (EEEIC), Florence, Italy, 2016.

[120] K. Avijit and D. R. Chinnaiyan, “IOT for Smart Cities,” International Journal of Scientific

Research in Computer Science, Engineering and Information Technology , vol. 3, no. 4,

pp. 1126-1139, 2018.

[121] S. P. Mohanty, U. Choppali and E. Kougianos, “Everything you wanted to know about

smart cities: The Internet of things is the backbone,” IEEE Consumer Electronics

Magazine, vol. 5, no. 3, pp. 60-70, 2016.

[122] M. B. Rodger Lea, “Smart Cities: an IoT-centric Approach,” in Proceedings of the 2014

International Workshop on Web Intelligence and Smart Sensing, Saint Etienne, France,

2014.

[123] H. A. Patawala, P. B. Navnath, P. B. Yogesh and P. S. Z. Ashwini, “IOT Based Water

Management System for Smart City,” International Journal of Advance Research, Ideas,

and Innovations in Technology, vol. 3, no. 2, pp. 379-383, 2017.

[124] M. H. Miraz, M. Ali, P. S. Excell and R. Picking, “A Review on Internet of Things (loT),

Internet of Everything and Internet of Nano Things (IoNT),” in 2015 Internet

Technologies and Applications (ITA), Wrexham, UK, 2015.

[125] M. Nagakannan, C. J. Inbaraj, K. M. Kannan and S. Ramkumar, “A RECENT REVIEW ON

IOT BASED TECHNIQUES AND APPLICATIONS,” in 2018 2nd International Conference

on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)I-SMAC (IoT in Social,

Mobile, Analytics and Cloud) (I-SMAC), 2018 2nd International Conference on,

Palladam, India, 2018.

[126] S. Al-Sarawi, M. Anbar, K. Alieyan and M. Alzubaidi, “Internet of Things (IoT)

communication protocols: Review,” in 2017 8th International Conference on

Information Technology (ICIT), Amman, Jordan, 2017.

235

[127] K. Routh and T. Pal, “A survey on technological, business and societal aspects of

Internet of Things by Q3, 2017,” in 2018 3rd International Conference On Internet of

Things: Smart Innovation and Usages (IoT-SIU), Bhimtal, India, 2018.

[128] D. E. Boyle, D. C. Yates and E. M. Yeatman, “Urban Sensor Data Streams: London 2013,”

IEEE Internet Computing, vol. 17, no. 6, pp. 12-20, 2013.

[129] F. Zhou and Q. Li, “Parking Guidance System Based on ZigBee and Geomagnetic Sensor

Technology,” in 2014 13th International Symposium on Distributed Computing and

Applications to Business, Engineering and Science, Xian Ning, China, 2014.

[130] East Gippsland Water Corporation, “East Gippsland Water - About Us,” Scribblevision,

04 2019. [Online]. Available: https://www.egwater.vic.gov.au/about-us/. [Accessed 13 04

2019].

[131] Gecko Gear Australia Pty Ltd, “Gecko Tradie Tough Portable Power Pack 2200 mAh -

Black/Grey,” Gecko Gear Australia Pty Ltd, 2019. [Online]. Available:

http://geckogear.com.au/gecko-tradie-tough-powerup-2200-mah-black-grey-

gg900053/. [Accessed 28 03 2019].

