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Thesis Summary 

Early diagnosis of lung cancer improves patient outcomes which has led to a search for non-invasive 

diagnostic tests suitable for population screening. Volatile organic compounds (VOCs) in exhaled 

breath have shown potential, however, confirmation of the metabolic origins and disease specificity of 

candidate markers is required. Cell culture metabolomics can identify disease biomarkers and their 

origins. To date VOC profiles from in vitro cultured cancer cells have little similarity to cancer breath 

VOC profiles. In vivo, cancer cells experience hypoxia whereas in vitro cells are cultured under 

normoxic conditions. Since hypoxia influences cell metabolism, we hypothesize that cancer cells 

cultured under hypoxic conditions will have altered cell metabolism and produce VOC profiles more 

typical of cancer breathe. This study investigates the effect of hypoxia on metabolic reprogramming in 

A549 lung cancer cells cultured under standard normoxic (atmospheric oxygen) or hypoxic (2% 

oxygen) conditions. Results from quantitative RT-PCR demonstrated a significant upregulation in 

hypoxia of the glucose transporter (GLUT1) and the key TCA regulatory gene PDHK1, demonstrating 

that hypoxia plays a pivotal role in regulating metabolism in A549 cells. A ratio-metric assessment of 

Lipid Peroxidation (LPO) and the production of reactive oxygen species (ROS) showed an increase in 

LPO and a slight decrease in the production of ROS in hypoxic cultures, the combined effect of which 

may serve to equip the cells to adapt to and proliferate under low oxygen. Finally, the comparison of 

endogenous VOCs produced by A549 cells under hypoxic and normoxic conditions identified twelve 

VOCs unique to cells grown under hypoxic conditions including n-pentane, a marker of LPO and 

cancer, and 3-methyl hexane, which has been reported as a biomarker of cancer. This data is consistent 

with the hypothesis that a hypoxic tumour microenvironment may influence cell metabolism leading to 

a unique and diagnostic cancer VOC profile.  
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Abstract 

Lung cancer is the leading cause of cancer deaths. Unfortunately, lung cancer is often diagnosed only 

when it becomes symptomatic and is at an advanced stage when few treatment options are available. 

Hence, a diagnostic test suitable for screening widespread populations is required to enable earlier 

diagnosis. Analysis of exhaled breath provides a non-invasive method for early detection of lung cancer. 

Analysis of volatile organic compounds (VOCs) by various mass spectral techniques has identified 

potential biomarkers of disease. Nevertheless, the metabolic origins and the disease specificity of VOCs 

need further elucidation. Cell culture metabolomics can be used as a bottom-up approach to identify 

biomarkers of pathological conditions and can also be used to study the metabolic pathways that 

produce such compounds. This review summarizes the current knowledge of lung cancer biomarkers in 

exhaled breath and emphasizes the critical role of cell culture conditions in determining the VOCs 

produced in-vitro. Hypoxic culture conditions more closely mimic the conditions of cancer cell growth 

in vivo. We propose that since hypoxia influences cell metabolism and so potentially the VOCs that the 

cancer cells produce then cell culture metabolomics projects should consider culturing cancer cells in 

hypoxic conditions. 
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Introduction 

Lung cancer is one of the five most commonly diagnosed cancers and is the leading cause of cancer-

related deaths throughout the world [1-4].  The five-year survival rate for lung cancer patients is poor, 

largely due to symptoms of lung cancer usually becoming apparent only once the disease has reached 

an advanced stage. Methods for detection of lung cancer are generally invasive and not suited to 

widespread population screening; hence there is a need for a non-invasive, accurate and rapid screening 

test for early detection.  

The exhaled breath of lung cancer patients contains volatile organic compounds (VOCs), some of which 

may be useful biomarkers of the disease. These may provide a non-invasive means to screen for lung 

cancer using techniques such as gas chromatography-mass spectrometry (GC-MS). Previous results 

indicate that lung cancer can be diagnosed in this way with some accuracy [5-29].  The diagnostic VOCs 

identified in these studies were mostly alkanes. However, most lung cancer VOCs that have been 

reported are not disease specific and their metabolic origins remain unknown. Knowledge of all the 

VOCs produced by lung cancer cells should lead to a panel of diagnostic biochemical markers that can 

be measured in combination to increase the sensitivity and specificity of lung cancer diagnosis. 

The use of cell culture metabolomics allows for both the discovery of novel biomarkers of pathological 

conditions and investigation of the metabolic pathways that produce them. However, previous studies 

have found poor correlations between the VOCs from cancer cells in culture and those found by breath 

analysis (see section 2 of this review). We propose that one reason for this discrepancy is the use of 

normoxic in-vitro culture conditions that have traditionally been used for growing cancer cell lines. In 

vivo cancer cells experience low oxygen or hypoxic conditions as a consequence of the diffusion limit 

of oxygen within tissues, which has been measured to be around 150m [30, 31]. Consequently, once 

a tumour grows to greater than 300 m diameter or approximately 15 to 20 cells across, the cells in the 

centre will be experiencing hypoxic conditions. VOCs however are generally hydrophobic and therefore 

lipid soluble and so should pass freely from hypoxic regions of the tumour to enter the circulation to 

travel to the lungs for release by breath. There have been several excellent recent reviews of the VOCs 

associated with lung cancer [32, 33]. In this chapter, I review the current state of knowledge about 
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biomarkers of lung cancer in exhaled breath but with an emphasis on the critical role of cell culture 

conditions in in-vitro studies in determining the VOCs produced.  

Breath Analysis  

Pros and Cons of Breath Analysis  

Breath analysis provides a non-invasive window to observe biochemical processes of the body [34]. 

Ancient physicians knew that the smell of human breath can indicate a certain disease state which could 

be a useful diagnostic tool. For example, diabetes is associated with the sweet smell of acetone in breath, 

renal failure results in a urine-like smell and fishy odour in breath is linked to liver disease [35] (for 

review see Table 1.1 [36]). 

Table 1.1 : Volatile compounds associated with disease 

Volatile compound(s)  Disorder(s)  

Ethane and pentane Oxidative Stress 

Methylated Hydrocarbons Lung or Breast Cancer 

Isoprene Cholesterol metabolism 

Acetone Diabetes Mellitus, ketonemia 

Dimethylsulfide, methyl mercaptane, ethyl mercaptane Liver damage  

Ammonia, dimethylamine, trimethylamine Uremia, Renal damage  

 

Analysis of exhaled breath has many advantages compared to other diagnostic techniques such as 

bronchoscopy or medical imaging. It is non-invasive and painless and exhaled air can be sampled as 

often as necessary without restriction; particularly important for the critically ill and for large scale 

screening in healthy populations for cancer and various other diseases such as renal and liver diseases.  

Currently, clinically available breath tests include: Breath-alcohol test which determines ethanol 

concentration [37], the nitric oxide (NO) test to detect asthma, and diagnosis of Helicobacter pylori 

infection by 13C-urea or ammonia breath tests [38].  

Water soluble and non-volatile chemicals in exhaled breath tend to condense with the water vapour 

whereas VOCs tend to remain in the gas phase. Quantitative analysis of breath condensate is hampered 

by a number of problems including the unclear relationship between assumed alveolar or airway 
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concentrations and substance concentrations in the condensate [39] and the limited stability of some 

compounds. In contrast the kinetics of VOCs can be approximated according to substance solubilities 

and most exhaled VOCs are stable [34]. Consequently, targeting the volatile component of breath for 

analysis reduces many issues associated with analysis of breath condensate.  

VOCs are only a small fraction of the total chemical compounds present in human breath and occur in 

low concentrations in the nmol/L – p/mol/L range [34, 40]. Despite this, in 1971 Pauling et al. detected 

the presence of large numbers of VOCs using microanalysis of breath by newly developed capillary 

Gas Chromatography (GC) [41]. To date, there are more than 800 VOCs detected in the exhaled breath 

in picomolar concentrations [19, 42] and there have been many studies that aim to correlate single 

substances or sets of exhaled markers with clinical conditions [43-47].  

The basic research in breath analysis relies on the advances of analytical technology to detect and 

identify the VOCs. The sample of exhaled breath is analysed using various high-performance equipment 

such as Gas Chromatography Mass Spectrometry (GC-MS), selected Ion-Flow Tube Mass 

Spectrometry (SIFT-MS), Ion-Mobility Spectrometry (IMS) and Proton Transfer Mass Spectrometry 

(PTR-MS). Though GCMS remains a gold standard to perform qualitative and quantitative analysis of 

trace compounds, it is not currently a portable device and also requires trained personnel to operate and 

interpret the data [48, 49]. On the other hand, real time analysis with absolute quantification of VOCs 

can be performed using SIFT-MS but it is both expensive and not ideal for broad profiling [50, 51].  

Although high specificity can be achieved using PTR-MS and IMS, there is a high risk of signal 

interference [52-55]. 

These analytical methods are potentially useful, but not well suited to point of care diagnostics in 

clinical practice. However portable analytical devices are being developed using Field Asymmetric Ion-

Mobility Spectrometer or FAIMS technology and Aspiration Ion-Mobility Spectrometry or AIMS [56]. 

Arasaradnam et al have found that FAIMS technology can be used to differentiate between patients 

with colorectal cancer and healthy controls with 80% sensitivity and 60% specificity [57]. Also, 

standardisation of protocols for collection and analysis of exhaled breath must occur in order to achieve 

consistency in VOC profile analysis [58-60]. 
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Biological Origins of VOCs 

Breath VOCs may be endogenous (generated within the body) or exogenous (absorbed as contaminants 

from the environment). The origins of many endogenous VOCs have now been identified through an 

improved understanding of the mechanisms and kinetics of their synthesis [5] (and for review see [32]) 

(Table 1.2). Alkanes and methylated alkanes in breath are markers of oxidative stress [61-67], which 

are the products from the reaction of lipids with reactive oxygen species (ROS). ROS comprise of 

oxygen free radicals and hydrogen peroxide and are constantly produced in the mitochondria from 

where they can leak into the cytoplasm [62]. Cellular anti-oxidant defences such as glutathione (in 

reduced form) usually protect cells from ROS, but when these defences are insufficient, ROS causes 

peroxidative damage to proteins, polyunsaturated fatty acids, and DNA [64]. These peroxidative 

changes to DNA bases may be carcinogenic [68, 69]. Considerable evidence supports the hypothesis 

that oxidative stress appears to be increased in some cancers [63] including lung cancer [19]. 

Table 1.2: VOCs – Biological Origin 

 VOCs Biological Basis 

Acetaldehyde Ethanol metabolism [70, 71] 

Acetone Decarboxylation of acetoacetate and acetyl-CoA 

Ethane & Pentane Lipid Peroxidation[34] 

Ethylene Lipid Peroxidation [72] 

Hydrogen & Methane Gut Bacteria [73] 

Isoprene Cholesterol biosynthesis [74] 

Methylamine Protein metabolism [72]  

 

Breath methyl alkanes are products of lipid peroxidation of polyunsaturated fatty acids in cell 

membranes, a process that also generates alkanes such as ethane and pentane that are found in exhaled 

breath [67].  Alkanes are metabolised to alkyl alcohols by cytochrome P450 (CYP) – mixed function 

oxidase enzymes [75] and a number of studies have demonstrated that these enzymes are activated in 

lung cancer [76-79]. For example, poly-aromatic hydrocarbons in tobacco smoke induce CYP 1A1 and 

CYP 1A2 activity, resulting in the accelerated drug metabolism and activation of some procarcinogens 

[80]. Consequently, the biotransformation of volatile alkanes and mono methylated alkanes that are 
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produced by oxidative stress may be accelerated by CYP enzymes that have been activated in patients 

with lung cancer so producing aldehydes, alcohols and ketones in measurable quantities in breath [81].  

Acetaldehyde is related to ethanol metabolism [70].  Sources of endogenous acetone often are associated 

with oxidation of free fatty acids or ketosis as a result of starvation or untreated diabetes [82, 83], and 

isoprene, an unsaturated hydrocarbon, is endogenously produced as a by-product of cholesterol 

biosynthesis via the mevalonate pathway in mammals [84-86] and has been reported on breath using 

various analytical techniques [59, 71, 87, 88]. Methylamine is often linked with protein metabolism as 

mentioned in Table 1.2.   

VOCs Identified in Breath of Cancer Patients 

A number of studies have detected chemical compounds in breath samples from patients with and 

without lung cancer [19, 41, 79, 80, 89, 90]. Although the VOCs identified as markers of lung cancer 

differ between reports, the results have all shown significant variations between exhaled breath of lung 

cancer patients and healthy volunteers [89]. The source and physiological function of most lung cancer 

VOCs, however, are still unknown [90]. Some of them could be of exogenous origin and so be inhaled, 

absorbed from the lungs and metabolised in the body, and the metabolites excreted by expiration. Other 

VOCs that are of endogenous origin may be generated as products of internal metabolic processes [89].  

VOCs found in the breath of lung cancer patients include a wide range of aldehydes, alkanes and 

methylated alkanes containing C2-C11 carbons.   

A recent review by Saalberg (2016) summarises the compounds which have been identified as 

biomarkers of lung cancer in breath and in-vitro by various research groups, however some of the VOCs 

stated as biomarkers may be questioned as being of endogenous origin [91]. For example, benzene, 

ethyl benzene, toluene and xylene isomers which are known to originate exogenously (mainly 

petroleum and cigarette smoke by-products present in the environment) and styrene, which is also a 

petroleum product as well as a common GC column bleed product, have all been reported as biomarkers 

of cancer [20, 22, 23, 27, 66, 92, 93]. Also, some studies have reported other compounds related to 

cigarette smoking as markers of lung cancer, including alkenes and aromatic compounds such as 

acetonitrile, 2-methyl furan, 2,5-dimethyl furan, furan, 1,3-cyclohexadiene, 1,3-cyclopentadiene, 2-
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methyl-1-butene and 1,4-pentadiene, as well as N, N–Dimethyl acetamide, a known contaminant found 

originating from the Tedlar bags used for breath sampling [94, 95].  

As analytical technology rapidly advances, so has the detection of compounds in breath. Many 

compounds have been detected whose biochemical origin is unknown and many VOC metabolites 

reported as biomarkers have been found not to be disease specific. Hence, validation of the biomarkers 

is a necessary step in developing a specific and sensitive test for the early detection of lung cancer.  In-

vitro analysis of established cancer cell lines is an approach that should help identify endogenous VOCs 

and define the underlying mechanisms that lead to quantitative or qualitative changes in their 

concentrations in lung cancer breath.  

Cell Culture Metabolomics  

Validation of Biomarkers      

The integrated analysis of metabolomics and other ‘omics’ technologies may provide sensitive ways to 

detect changes related to disease and discover novel biomarkers [96]. Subtle changes in metabolism can 

be detected by analyses of the products of cellular processes which in turn can lead to development of 

prognostic models useful for early detection of cancer.   

The metabolome is downstream of the transcriptome and proteome, and is considered to be 

complementary to genomics, transcriptomics, and proteomics [97, 98].  Understanding the metabolome 

may also assist in identifying intermediate or provisional cancer biomarkers for establishing preventive 

or therapeutic approaches for health [96]. 

VOCs in breath can derive from cancer cells, healthy cells, immune cells and microbes [99]. Several 

studies have investigated the release of VOCs from human cancer cells in vitro [93, 99-102], for 

example headspace on-line measurements by selected ion flow tube mass spectrometry were able to 

detect acetaldehyde release from the lung cancer cell lines SK-MES and CALU-1 [102]. 

If some breath markers of lung cancer do derive from the cancer cells themselves, then there should be 

an overlap between the set of VOCs produced by cancer cells in culture and the VOCs detected in the 

breath of lung cancer patients. Comparison of the VOC profiles of breath analysis and cell cultures 
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(Table 1.3) reveals that, of the 68 VOCs detected in either breath or cell culture, 16 VOCs were detected 

in both. There were an additional 17 VOCs detected only in breath and 22 found only in lung cancer 

cell cultures and 13 VOCs found only in controls (non-transformed cell lines). This poor relationship 

indicates that in-vitro culture of lung cancer cells is not a good model for the production of VOCs in 

breath of lung cancer patients. A more detailed examination of the compounds identified shows that of 

the 16 compounds common to both cell culture headspace and lung cancer breath, five were straight 

chain alkanes and methylated alkanes, which is consistent with lipid breakdown associated with 

oxidative stress [37, 89]. Interaction of reactive oxygen species (ROS) with polyunsaturated fatty acids 

such as linoleic acid and palmitic acid in the cell membrane results in a series of reactions called lipid 

peroxidation. During the process of peroxidation of polyunsaturated fatty acids volatile alkanes are 

formed that can be excreted in breath unchanged or distributed throughout the body, partly metabolized, 

and then excreted in breath. 
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Table 1.3: Comparison of VOCs found in breath and in-vitro analysis of cells cultured under standard 

normoxic conditions. 

 

Class Compound Structure Breath In-vitro 

(Normal 

Cells) 

In-vitro 

(Cancer 

Cells) 

References 

Hydrocarbons       
Alkanes 
(Straight chain) 

  
    

 Pentane  
+a _ _ [5, 20, 

103]  

 Heptane  + _ _  [5, 20] 

 Octane  
+  b(hFB)  (A549) [20, 100] 

 Decane  

+ _  [19, 20, 

93, 104, 

105]   

 Undecane  
+ _  [19, 94, 

101] 

Alkanes 
(branched) 

2-methyl pentane 
 

+ _ _ [20, 99, 

103] 

 
2,3,3-

trimethylpentane 
   

_ (hFB&HBEp

C) 

(NCI-H2087) [100, 

101] 

 
2,3,4-trimethyl 

pentane 
 

_  _ [100]  

 
2,4-dimethyl 

hexane 
 

_  _ [100]  

 
2,3,5-trimethyl 

hexane 
 

_   (Calu-1) [100, 

101] 

 2-methyl heptane 
 

+ _ _ [19] 

 3-methyl heptane 
 

_  _ [100]  

 4-methyl heptane 
 

_  _ [100]  

 
2,4-dimethyl 

heptane 
 

+ _ (Calu-1) [7, 19, 

101]  

 

2,2,4,6,6-

pentamethyl 

heptane  

+ _ _ [20]  

 3-methyl octane 
 

+ _ _ [19] 

 4-methyl octane 
 

+ _ (Calu-1) [7, 101]  

 3-methyl nonane  
+ _ _ [19]  

Cycloalkanes 
1-methyl-2-pentyl 

cyclopropane  

+ 

 

_ _ [19] 

 
Methyl cyclo 

pentane  

+ _ + [19, 93] 

 Cyclo hexane 
 

+   [19]  

Alkenes 1-hexene  
+ _ + [19, 66, 

93] 
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Class Compound Structure Breath In-vitro 

(Normal 

Cells) 

In-vitro 

(Cancer 

Cells) 

References 

 1-heptene  + _ _ [19] 

 
2,4,dimethyl-1-

heptene  

_   (A549) [100]  

 

2-methyl -1,3-

butadiene 

(Isoprene)  

+ _ + [19, 20, 

93]   

Alcohols Ethanol  
+ _  (A549) [27, 100] 

 
2-methyl-1-

propanol 
 

_ (hFB) _ [100]  

 
2-methyl-2-

propanol 
 

_   (HBEpC) _ [100] 

 
3-methyl-1-

butanol 
 

+ (hFB) _ [92, 100] 

 2-ethyl-1-hexanol 
 

_ (hFB)  (NCI-H2087) [99]  

Aldehydes Formaldehyde 
 

+ _ _ [33] 

 Acetaldehyde 
 

+  (NCI-H2087, 
CALU-1) 

[99, 101, 

102]  

 2-methyl propanal 

 

_  (A549,NCI-

H2087, 

Calu-1) 

[99-101]  

 Butanal 
 

+ _ (A549) [21, 100] 

 Pentanal 
 

+ _ _ [17, 21, 

27]   

 Hexanal  

+  (NCI-H1666, 
Calu-1) 

[17, 19, 

21, 27, 

92, 93, 

106, 107] 

 Heptanal  

+ _ + [17, 19, 

21, 92, 

106, 107]  

 Octanal 
 

+  _ [17, 21]  

 Nonanal 
 

+ _ _ [17, 21]  

 prop-2-enal 
 

+ _     (Calu-1) [22, 101]  

 
2-methylprop-2-

enal 
 

_   (HBEpC)  (A549,NCI-

H1666,Calu-1) 
[100, 101, 

106]  

 
2-ethylprop-2-

enal 
 

_ _ (A549,Calu-1) [100, 101]  

 2-butenal 
 

_  _ [100]  

 
2-methyl-2-

butenal 

 

_ _ (A549,Calu-1) [100, 101] 
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Class Compound Structure Breath In-vitro 

(Normal 

Cells) 

In-vitro 

(Cancer 

Cells) 

References 

 2-methyl butenal 

 

_   (NCI-H2087) [99, 100] 

 3-methyl butenal 
 

_   [99-101, 

106]  

 Benzaldehyde 

 

_    (Calu-1) [100, 101]  

Ketones Acetone 
 

+    (A549)                [27, 100] 

 2-butanone 
 

+ _  (Calu-1) [101, 108] 

 2-pentanone 
 

+   [7, 15, 27, 

100]  

 2-hexanone 
 

_  _ [100] 

 3-pentene-2-one 
 

_  _ [100] 

 1-phenyl ethanone 

 

+ _ _ [19] 

Esters Methyl acetate 
 

_  _ [100]  

 n-propyl acetate 
 

_  _ [100] 

 n-butyl acetate 
 

_  _ [100] 

Ethers 
Methyl-tert-butyl 

ether  

_  (HBEpC)  (A549) 
 

(Calu-1) 

 

[98, 99] 

  

 
Ethyl-tert-butyl 

ether  

_  (hFB)  (A549) 
 

(Calu-1) 

 

 [100, 101] 

 

 

 

Aromatics 
Benzene 

 

+    (hFB) + [6, 19, 20, 

93, 100, 

104, 105] 

 Toluene 
 

+ _ _ [20]  

 Styrene  

+ _ + [6, 19, 20, 

93, 100, 

104, 105] 

 Ethyl benzene 
 

+ _ _ [92, 104, 

109] 

 Propyl benzene 
 

+ _ + [20, 93, 

105] 

 
Trimethyl 

benzene isomers  

+ _ + [19, 20, 

93] 
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Class Compound Structure Breath In-vitro 

(Normal 

Cells) 

In-vitro 

(Cancer 

Cells) 

References 

 Xylene isomers 
 

+ _ _ [19] 

Heterocyclics Tetrahydro Furan 
 

_ _   (Calu-1) [101] 

 Pyrrole 
 

_ _    (A549) [100] 

Nitriles Acetonitrile  _ _  (Calu-1)  [101] 

 
All Compounds in breath are reported as present or not present in lung cancer patients breath. 
bCompounds in cell culture are either reported as increased or decreased arrows in quantity compared to medium controls or 

shown as “+” where reported without quantitation (cell lines indicated as hFB – Human fibroblasts, HBEpC – Human 

Bronchial Epithelial Cells) 

 

The remainder of the compounds common to breath and cell culture were alkenes, aldehydes and 

aromatic compounds, some of which are also associated with lipid peroxidation [34, 71]. Of the 22 

compounds found only in cell culture most were alcohols, ketones, esters and ethers (Table 1.3) 

suggesting that the VOCs produced by cancer cell culture are mostly oxidised breakdown products. 

Other analytical methods such as PTR-MS and SIFT-MS have also identified alcohols and aldehydes 

including isopropanol, formaldehyde and acetaldehyde in breath of lung cancer patients [8, 102]. 

The increased oxidation of alkanes to alcohols, esters and ketones in cell culture is perhaps, not 

unexpected when the environment in which cells are usually grown is considered. Most laboratories 

culture cells in air with 5% carbon dioxide, i.e. there is approximately 20% oxygen in the atmosphere 

surrounding the cells. This is in contrast to the in-vivo environment. 

Hypoxia  

Hypoxia in Cancer and Hypoxia-Inducible Factor 

Oxygen availability alters gene expression and metabolism in cells, hence raising the possibility that 

hypoxia will change the pattern of VOCs produced by the cancer cells. Tumours possess extensive 

regions of hypoxia relative to the corresponding normal tissue [110]. A number of adaptive responses 

are initiated during cellular hypoxic stress, including the activation of a group of transcription factors 

called Hypoxia Inducible Factors (HIFs). Hypoxia-Inducible Factor-1 (HIF-1) has been extensively 

studied as an endogenous hypoxia marker and its mechanism of accumulation under hypoxia is well 

understood [111, 112]. Another study emphasises the importance of hypoxia in tumours and in the 
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treatment of the disease [113]. HIF-1 regulates an increased production of VEGF [114]. VEGF induces 

neovascularisation but in tumours this happens in an irregular fashion and at a slower pace when 

compared to the proliferation rate of the tumour [115, 116]. This can result in poor blood supply and so 

further hypoxia.  

As described in Figure 1.1, in normoxia HIF-1 and HIF-1 subunits are constitutively expressed. 

While HIF-1 is rapidly degraded by the proteosomal system, the amount of HIF-1 remains constant. 

In hypoxia HIF-1 escapes degradation, binds with its partner HIF-1, and together they bind to a 

hypoxia-response element (HRE) in target genes in association with co-activators such as CBP/P300. 

This triggers the expression of multiple target genes that enable the tumour cells to adapt to and 

overcome the conditions of decreased oxygen by increasing oxygen transport, stimulating angiogenesis 

and regulating glucose uptake and metabolism [117]. 

 

Figure 1.1: Hif-1a in normoxia and hypoxia 

Activation of the hypoxia-inducible factor (HIF-1 transcription factor in normoxia and hypoxia. Figure 

adapted from Brahimi-Horn [118] 
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Tumour Energy Metabolism – Hypoxia  

Warburg Effect 

The induction of aerobic glycolysis is one of the strategic metabolic changes that meets the bio-energetic 

demands of the proliferating tumour [119]. Otto Warburg established that there is enhanced glycolysis 

in tumours despite the availability of oxygen, a phenomenon known as the “Warburg Effect” [120]. 

Also, he hypothesised that this phenomenon of “aerobic glycolysis” is due to dysfunctional 

mitochondria which may contribute to the malignant phenotype [121]. In recent years, it has been 

established that the activation of oncogenes or tumour suppressors may influence the switch from 

“cellular respiration” to “aerobic glycolysis” which in turn contributes to the Warburg effect [122-124].  

Non-transformed cells also convert glucose to pyruvate but then metabolise pyruvate through the 

tricarboxylic acid (TCA) cycle and mitochondrial oxidative phosphorylation (OXPHOS) as shown in 

Figure 1.2 [118]. The mitochondrial pathway requires oxygen and is much more efficient in ATP 

production than anaerobic metabolism; producing 38 versus 2 ATP molecules per molecule of glucose 

[118]. However, in an expanding tumour mass, characterised by low levels of oxygen and a high glucose 

consumption rate, anaerobic glycolysis can become the predominant pathway of ATP generation [125]. 

In addition to glycolysis, a recent study has shown that under hypoxia, autophagy is present and is also 

required to support ATP production [126]. 

Recent studies also show that increased mitochondrial reactive oxygen species (mROS) (explained in 

detail in section 4.2) may cause mutations in mitochondrial DNA (mtDNA) resulting in attenuation of 

mitochondrial function [124, 127]. 

A mechanistic link between apoptosis and metabolism has also been demonstrated by Iansante (2015) 

in human hepatocellular carcinoma (HCC). In their studies they show that PARP14 (poly (ADP-ribose) 

polymerase), an anti-apoptotic protein promotes aerobic glycolysis by regulating the activity of 

pyruvate kinase, a key regulator of the Warburg effect [128].  In summary, the activation of oncogenes 

or tumour suppressors along with the stabilisation of HIF can increase “aerobic glycolysis” through 

enhanced glycolytic flux and/or dysfunctional mitochondria. 
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Gene Expression – Hypoxia 

Under hypoxia, the metabolic switch from a respiratory phenotype to a glycolytic phenotype is achieved 

by HIF 1 induced up-regulation of glycolytic enzymes and down-regulation of mitochondrial oxidative 

metabolism [117, 129, 130]. Some of the genes which are activated under deprived oxygen conditions 

(HIF target genes) and involved in the process of enhanced glucose consumption are listed in Table 

1.4. When there is excess of glucose available, energy inefficient aerobic glycolysis is preferred over 

OXPHOS by the cells as glycolysis has the potential to produce ATP at a faster rate, providing the 

required energy to the rapidly growing tumour [131, 132]. Metabolic reprogramming thus serves two 

purposes, to rapidly provide ATP from glucose to supply energy to rapidly growing tumour cells, and 

to protect cells under low oxygen tension. 

Table 1.4: Target genes of HIF involved in glucose metabolism, cellular growth and proliferation under 

hypoxia. 

 

Glucose Transporter – GLUT1  

Glucose is an essential and critical carbon source for the biosynthesis of various macromolecules (lipids, 

proteins and nucleic acids) as well as providing an important substrate for ATP generation [141-143]. 

Gene Pathway involved Effect of Hypoxia 

GLUT1  

Glucose transporter 
Glucose metabolism 

Overexpressed in tumours 

[133] 

Pyruvate Kinase M2 (PKM2) 

Glycolytic enzyme 

Glucose metabolism and 

regulation of HIF1 

transcription 

Increased expression [134]  

Decreased expression [135, 

136] 

Lactate Dehydrogenase-A 

(LDHA)  
Glucose metabolism Increased expression [137] 

Pyruvate dehydrogenase 

kinase 1 (PDK1/PDHK1) 

Glucose metabolism 

(Switches metabolism of 

glucose from OXPHOS to 

aerobic glycolysis) 

Increased expression [138] 

Mammalian target of 

Rapamycin (mTOR) 

Cellular growth and 

proliferation 

Increased expression [139, 

140] 
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Glucose enters the cell through a family of membrane bound facilitated diffusion channels known as 

Glucose transporters or “GLUTs” [144]. Aberrant PI3K/AKT signalling induces the expression of high 

affinity glucose transporters GLUT1 and GLUT3 that are often found upregulated in tumours [133, 145-

148]. Transcriptional oncoproteins such as MYC along with HIF 1a induce and activate the expression 

of all the enzymes in the glycolytic pathway including glucose transporters [149-151].  

Pyruvate Kinase –M2 (PKM2) 

Pyruvate kinase M2, an isoform of the rate-limiting enzyme pyruvate kinase that catalyses the 

generation of pyruvate and ATP from phospho-enol pyruvate and ADP is involved in glycolytic energy 

production and plays a key role in metabolic adaptation under low oxygen tension [137, 152, 153]. 

PKM2 is also known to regulate the flux of carbons into both non-oxidative and oxidative branches of 

the pentose phosphate pathway, the former producing Rib-5-P which is a key intermediate in nucleotide 

biosynthesis [154, 155] and the latter producing NADPH for ROS detoxification [156-158]. Hence, 

PKM2 not only supports proliferation and tumour growth but also prepares the cancer cells to survive 

under oxidative stress. Furthermore, it has been established that PKM2 stimulates metabolic changes 

which favour proliferation, and is a key mediator and promoter of the Warburg effect [136, 159]. 

However, the biological impact of PKM2 in carcinogenesis and tumour growth is controversial [144].    

Pyruvate Dehydrogenase Kinase 1 (PDHK1/PDK1) 

Recent studies show that HIF1stabilization under hypoxia leads to the expression of Pyruvate 

Dehydrogenase Kinase 1(PDHK1) [138, 160], that phosphorylates and inhibits pyruvate 

dehydrogenase, limiting the conversion of pyruvate to acetyl - Co A and so shunting pyruvate away 

from entering Krebs cycle, resulting in a metabolic switch from OXPHOS to aerobic glycolysis [124] 

(see Figure 1.2). Consequently, PDHK1 induction decreases tricarboxylic acid (TCA) cycle activity so 

reducing oxygen consumption. 

Lactate Dehydrogenase A (LDHA) 

Lactate dehydrogenase A (LDHA) is an enzyme involved in conversion of pyruvate (generated from 

glucose) to lactate which is then secreted into the extracellular environment rather than oxidised to 

completion. By this conversion into Lactate, LDHA recovers the NAD+ required to maintain glycolysis 
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that is crucial to conserve tumour proliferation [161]. LDHA, in particular LDH5 tetramer is known to 

be overexpressed in lung cancer (NSCLC) under hypoxia [162].  

Mammalian Target of Rapamycin (mTOR) 

Mammalian target of Rapamycin (mTOR) is a kinase which is activated during cell stress conditions 

and integrates growth signals to enhance cell survival [144, 163, 164].  Protein translation, a vital 

process for tumour growth is enhanced through Akt-mediated mTOR activation [165-167]. It is 

constitutively expressed in advanced breast cancer [139, 140].  

 

Figure 1.2: Metabolic Reprogramming in Hypoxia 

Activation of HIF1-/ activates pyruvate dehydrogenase kinase 1(PDK1), an inhibitor of pyruvate 

dehydrogenase (PDH) which leads to the shunting of pyruvate away from the TCA cycle and instead it is 

converted to Lactate. Figure adapted from Semenza et al. [168]. Hexokinase 1 and 2 (HK1, HK2), Aldolase A 

(ALDOA), Enolase 1 (ENO1), Glyceraldehyde-3-phosphate (GAPDH), Phosphofructokinase L (PFKL), 

Phosphoglycerate kinase 1(PGK1), Pyruvate Kinase M2 (PKM2), Lactate dehydrogenase A (LDHA), Acetyl-

CoA (AcCoA), BCL2 family of mitochondrial proteins (BNIP3, BNIP3L).  
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Reactive Oxygen Species 

Reactive Oxygen Species such as superoxide anion, hydrogen peroxide, hydroxyl radicals, singlet 

oxygen, and lipid peroxyl radicals are ubiquitous molecules derived from oxygen that have accepted 

extra electrons and have the capacity to oxidize other molecules [169]. The formation of free radicals 

or oxidants is a well-established physiological event in aerobic cells [170]. Most of these chemically 

reactive molecules are short-lived and react with surrounding molecules while the antioxidants are 

generated to remove these oxidising agents. An imbalance between oxidant and antioxidant defences 

causes oxidative stress. This may in turn provoke oxidation of polyunsaturated fatty acids in cellular 

membranes. Increased ROS levels are associated with several pathophysiological states, such as 

neurodegeneration, cancer, mutagenesis, cardiovascular diseases and aging [171-173]  

Sources of ROS  

ROS production is an important component of pathogen killing in phagosomes [174] and peroxisomes 

[175, 176]. In addition, there are three other important sources of ROS – mitochondria, endoplasmic 

reticulum (ER) and cell membranes. 

The process of generation of ROS begins when molecular oxygen (O2) is reduced to form the superoxide 

anion (radical form) (Figure 1.3) which can cause potential damage if left unchecked. Superoxide 

dismutase (SOD1 – cytosolic, SOD2 – mitochondria and SOD3 – extracellular) are a class of metallo 

proteins that catalyse the conversion of the radical form (superoxide anion molecules) into much less 

damaging non-radical forms such as hydrogen peroxide (H2O2) and water. This hydrogen peroxide 

combined with superoxide anion are precursors of hydroxyl radicals generated via the Fenton Reaction.  

Hydrogen peroxide diffuses easily across the cell membranes and is relatively stable. Several studies 

identified that H2O2 acts as a crucial signalling molecule involved in controlling various processes 

including apoptosis and cell proliferation [177] by inactivating phosphatases. To maintain redox 

homeostasis, hydrogen peroxide is scavenged by anti-oxidant enzymes such as catalases and glutathione 

peroxidases (GTPX).  Clearly the mitochondria are the major cellular sources of Reactive Oxygen 

species (ROS) as by-products of mitochondrial respiratory chain [178]. Also, it has been established 

that mitochondria derived ROS (mROS) are involved in oxygen sensing [179]. Another source of ROS 
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results from oxidative protein folding in Endoplasmic reticulum (ER), along with an isoform of 

NAD(P)H oxidase – NOX4, present on the ER that produces hydrogen peroxide from molecular oxygen 

via a two electron reduction [176, 180]. Other NADPH oxidases (NOX1-5) and Dual oxidases 

(DUOX1-2) localised to various cellular membranes form the third functional source of ROS either in 

the form of superoxide anion or hydrogen peroxide [181-185].  NOX is also known to promote elevated 

glycolytic activity by providing additional NAD+, [186]. Various endogenous sources of ROS and the 

role of hypoxia in production of ROS are illustrated in Figure 1.3.  

 

Figure 1.3: Sources of ROS 

Intracellular sources of ROS under oxidative stress and hypoxia on ROS production. Increased hypoxia 

(indicated as ) leads to aerobic glycolysis and decreased mitochondrial activity and there is decreased 

antioxidant defences (indicated as ) during oxidative stress. Stabilisation of HIF1a by ROS from the 

mitochondrial complex III of electron transport chain which leads to the induction of a series of signalling 

cascades that aid tumour cells to survive and proliferate. This figure was produced using Servier Medical Art. 

www.servier.com.  
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ROS and Hypoxia 

ROS is known to inhibit prolyl hydroxylases (PHDs) which promotes the ubiquitination of HIF1a 

through hydroxylation. Seminal studies by Brunelle et al. demonstrated that not only H2O2 but also 

increased oxidative stress is required for stabilisation and accumulation of HIF1a which then initiates 

transcriptional targets of hypoxia-response genes that are involved in metabolic reprogramming to 

promote survival during hypoxia [187, 188]. Several studies have established that ROS derived from 

mitochondria complex III play a key role in tumorigenesis by inducing hypoxia-mediated transcription 

[179, 185, 189-193]. Recent studies demonstrated that mitochondrial generated ROS (mROS) play an 

essential role in stabilising HIF-1a subunit using  cells (cells lacking mitochondrial DNA) which were 

incapable of stabilising HIF-1a under hypoxia [189, 194]. As  cells lost important components of 

electron transport chain (ETC) they fail to exhibit mitochondrial respiration and hence do not produce 

mROS [127, 189]. In summary, oxidative stress leads to increased production of ROS which in turn 

activates transcription factors HIF and post-translational mechanisms which then produce metabolic 

changes leading to biochemical responses such as cell proliferation and survival.    

Lipid Peroxidation 

Lipids are a group of compounds with important biological functions in the human body. They make 

up between 30 and 80% of biological membranes by mass. Lipid peroxidation (LPO) is an oxidative 

degradation of polyunsaturated fatty acids. Biological cell membranes are made up of polyunsaturated 

fatty acids (PUFAs) which are known to be important in several physiological cell functions including 

cell homeostasis [195]. Polyunsaturated fatty acids are susceptible to oxidative degradation as they 

contain multiple double bonds. Also, various medical disorders such as obesity, atherosclerosis and 

cancer are characterised by altered levels of PUFAs or of their metabolites [196].  

Process of Lipid Peroxidation 

The general mechanism of lipid peroxidation consists of three steps: initiation, propagation and 

termination [197].   
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Initiation: Lipid peroxidation is a chain reaction – initiated by the interaction of reactive oxygen species 

(ROS) such as hydroxyl radical (OH*) with a fatty acid (RH) to generate a lipid (fatty alkyl) radical 

[198-200]. 

Propagation: The lipid free radical (R*) reacts rapidly with molecular oxygen to form a much more 

unstable fatty peroxyl radical (ROO*) which can easily extract a hydrogen from adjacent fatty acid to 

form hydro peroxides and a new lipid free radical. 

Termination: The above chain reaction is terminated by the interaction of two radical species to form 

non-radical products.  

Oxidative degradation of bio-membranes can initiate a complex cascade of events resulting in the 

formation of toxic end products as shown in Figure 1.4. There is abundant evidence that these end 

products (radicals, lipid hydro peroxides, and reactive aldehyde derivatives) modify proteins both in-

vivo and in-vitro [203-207]. Of many end products, malondialdehyde (MDA) and 4-hydroxynonenal 

(4-HNE) are categorised to have mutagenic and carcinogenic potential [208-218]  

 

Figure 1.4: The process of lipid peroxidation  

(figure adapted from Cadenas E) [219] 
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Historically, ethane (end product of oxidation of -3 fatty acid) and pentane (end product of oxidation 

of -6 fatty acid) are known to be the markers of oxidative stress and have been used to assess the 

extent of lipid peroxidation in subjects by breath test [62].   

Altered Cell Metabolism – Effect on VOC Output 

Metabolic Reprogramming – VOC profile changes 

Metabolic reprogramming of cancer cells is a complex interplay of transcription factors including 

HIF1a, oncogenes and growth factors. This altered metabolism not only delivers the required conditions 

for cell survival but may also influence the output of VOCs which can either be investigated in-vitro 

(cell culture metabolomics) or in-vivo by breath analysis.  

To summarise: oxidative stress causes overproduction of ROS initiating potential oxidative degradation 

of bio-membranes, DNA damage and proteins which then results in altered cell metabolism that has an 

effect on VOCs emanating from the cells as described in Figure 1.5: 

1. Lipid Peroxidation – relatively unstable ROS react with membrane lipids causing irreversible 

damage by initiating a chain reaction (Figure 1.4) which results in the formation of toxic by-

products which are capable of modifying proteins. 

2. Formation of DNA adducts – activates transcription factors and post-translational mechanisms 

which lead to altered gene expression. Discrete cohorts of genes can be either up or down-

regulated in response to hypoxia.  

3. Protein oxidation may also lead to altered cell metabolism.  
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Figure 1.5: Influence of ROS on cell metabolism 

Downstream effects of ROS lead to altered cell metabolism resulting in changes of VOC profile.  

 



Page | 25  
 

 

Conclusion 

 

Differences in the VOCs found in breath and in the headspace of cancer cell lines can be attributed to 

many causes such as different sampling methodology, mass spectral techniques and statistical 

approaches. Here we propose that cell culture conditions also play a role, as it is known that hypoxia 

induces autophagy and increased lipid peroxidation. This could explain the presence of alkanes and 

methylated alkanes found in breath of the lung cancer patients. Little attention has so far been paid to 

the in vitro culture conditions used to grow cancer cells. The routinely used normoxic culture conditions 

are likely to produce more alcohols and other oxidised products rather than the methylated alkanes that 

are more abundant in breath. Hence, oxygen controlled culture conditions should model more closely 

the in-vivo situation. This approach may help in validating breath VOC markers for diagnosis, clarify 

further how these compounds are produced and perhaps lead to the identification of novel VOC markers 

of cancer. 

This thesis will investigate the role of hypoxia to mimic the tumour microenvironment in metabolic 

reprogramming in lung cancer cells in culture, which may have implications for identifying useful 

markers for early diagnosis in lung cancer patients. This will be investigated based on the following 

objectives: 

1. Gene Expression Analysis of Hypoxia Target Genes.  

To elucidate the role of hypoxia on gene expression and ascertain the ideal culture conditions 

to better mimic in-vivo conditions. To achieve this, the total RNA extracted from the cells 

cultured under an oxygen gradient (5%, 2% or 1% O2 plus 5% CO2) was compared with total 

RNA from its normoxic (21% O2 plus 5% CO2) counterpart. [KPD1]This study will focus on 

genes and enzymes involved in the glycolytic pathway to determine the metabolic switch from 

a respiratory to a glycolytic phenotype. 

2. Measurement of Lipid Peroxidation (LPO) and Reactive Oxygen Species (ROS) between the 

two physiological culture conditions  
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To measure the free-radical mediated damage and to assess the extent of oxidative stress in the 

cells cultured under low oxygen conditions (2% O2) that might help to establish the possible 

biochemical origins of the VOCs. 

3. Analysis and comparison of VOCs from cultured cells in-vitro in two different physiological 

conditions – Normoxia (21% O2) and Hypoxia (2% O2) to obtain a VOC profile unique to 

Cancer Cells cultured in hypoxia. An anticipated outcome of the hypoxic environment would 

therefore be increased oxidative stress and a large proportion of metabolites being produced as 

a consequence of lipid metabolism leading to production of alkanes and methylated alkanes, 

and reduced oxidative degradation.   

Hypoxic culture conditions more closely mimic the conditions of cancer cell growth in vivo. Since 

hypoxia influences cell metabolism, subsequently it may influence the VOCs produced by the cancer 

cells.  
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Introduction 

This chapter describes general materials and methods used for the completion of this thesis. Methods 

specific to particular results chapters are included within the relevant chapter. 

Adenocarcinomic Human Alveolar Basal Epithelial cells - A549 Cells  

A549 cells were used in all the cell culture experiments and were obtained from the European Collection 

of Authenticated Cell Cultures through Sigma Aldrich, Australia. A549 cells were originally derived 

from a 58-year-old Caucasian male and are commonly used in cancer metabolomics studies [1-4]. 

Cells were grown in HEPES buffered DMEM supplemented with 10% heat inactivated FBS (Gibco 

ThermoFisher Scientific, Australia), 1% penicillin (Gibco) and 1% streptomycin (Gibco). Cells were 

grown either in a standard incubator (Brunswick Galaxy 170S) at 37˚C with 5% CO2 balanced against 

air (21% oxygen, 74% nitrogen), herein referred to as normoxia, or in a hypoxic chamber (Brunswick 

Galaxy 48R) at 5% O2, 2%O2 or 1% O2 plus 5% CO2 balanced against nitrogen at 370C, herein referred 

to as hypoxia. Cell viability was monitored using trypan blue dye exclusion and a Countess cell counter 

(ThermoFisher Scientific, Melbourne, Australia) after each sampling to determine the number of viable 

cells. The cell viability was greater than 98% for all the experiments. 

VOC Analysis 

Sample Preparation for GCMS Analysis 

After growing to sub confluence, A549 cells were seeded at 10 million cells per 50 ml media in a 250 

ml glass conical flask with stirring to maintain cells in suspension. The flask was sealed with a Teflon 

stopper and glass insert through which a coated fused silica fibre could be introduced for the sampling 

of volatile compounds in the headspace above the cell suspension. Flasks were placed on a magnetic 

stirrer (HD Scientific, Sydney, Australia) and were incubated in normoxia (21% O2) and hypoxia (2% 

O2) for 24hrs. The VOCs extracted from the headspace of culture were compared against the VOCs 

extracted from the headspace of media without cells. To eliminate the environmental VOCs, the air 

from both the incubators was sampled and analysed. 
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GCMS Analysis 

Volatile substances in the samples were collected by solid-phase micro extraction (SPME) using 

commercially available 75µm Carboxen-PolydimethylSiloxane (CAR/PDMS) fibres (Supelco, Sigma 

Aldrich, Australia).  The samples were loaded manually using a SPME holder (Supelco) and released 

by thermal desorption onto the injection port of the GCMS. The fibres were conditioned prior to use for 

all the GCMS analyses following the protocol listed by the manufacturer. Additionally, the SPME 

cleanliness was assessed by performing blank run with and without the fibres before each experiment. 

VOC analyses were performed using a Shimadzu QP2010 Ultra gas chromatography mass spectrometry 

(GCMS) equipped with mass selective detector (single quad mass spectrometer) (Shimadzu Scientific 

Instruments, Oceania Pty Ltd.).  

A 25m x 0.32mm x 5µm PoraBond Q PLOT column was used (Pacific Laboratory Products, Blackburn, 

Australia) with an initial temperature of 90oC for 5 min followed by a temperature ramp of 5oC/min up 

to 250oC which was held for 4 min. The temperature was then increased at a rate of 5oC/min to 280oC 

and held for 3 min. The helium flow rate was 1.48 ml/min. Ionisation of separated compounds was 

performed by Electron Impact ionisation at 70 e.V. Total ion current (TIC) mode with full scan range 

of m/z=30 to m/z=600 was employed. The detected substances were identified by spectral match with 

NIST 2011 Spectral library (Stanton Scientific, Australia) and retention times obtained from the 

standards where these were available. 

Calibration Curve 

Preliminary calibration was performed using a specialty mix of alkanes with C2-C6 carbon skeleton at 

a concentration of 100 and 1000 PPM (Scotty Analysed Gases, Supelco Analytical, USA). After the 

qualitative analysis was performed to determine the VOCs unique to hypoxic conditions, a five-point 

linear calibration curve was obtained for compounds of interest using a custom mixture of standard 

compounds (AccuStandard Inc., Connecticut, USA), where available (n-pentane, 3-methyl hexane and 

2-nonanone) at concentrations of 10, 30, 100, 300 and 1000 ppm. The standard mixtures were collected 

using 75m CAR/PDMS by solid-phase micro extraction and were loaded using the auto sampler (AOC 

5000, Shimadzu Scientific Instruments) and released by thermal desorption onto the injection port of 
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the GCMS. For each compound the regression was linear from 10 to 300 ppm. LOD and LOQ were 

calculated from the linear regression using the formula LOD = 3 x SD/slope and LOQ = 10 x SD/slope 

where SD is the standard deviation of the Y-residuals. 

Gene Expression 

RNA Extraction 

Total RNA was extracted from stationary cultures of A549 cells using TRI-Reagent (Sigma Aldrich, 

Castle Hill, Australia) according to the manufacturer’s protocol. Cells were collected in TRI-Reagent 

and RNA was separated in chloroform by centrifugation at 12,000 RPM for 15-minutes at 40C. RNA 

was precipitated with isopropanol and incubation on ice for 10 minutes. Samples were then centrifuged 

at 10,000 RPM at 40C for 10 minutes. The resulting RNA pellet was washed twice in 75% ethanol 

before final resuspension in 25 l of RNAase free water. The quality and quantity of RNA was measured 

using a Nanodrop spectrophotometer (Thermo Scientific). All RNA samples used had a 260/280 quality 

ratio of 1.95-2.00. 

cDNA Synthesis 

cDNA was synthesised following the manufacturer’s instructions using a High Capacity cDNA 

synthesis kit (ThermoFisher Scientific, Australia). A 20 l reaction was prepared by adding a solution 

containing reaction buffer, random primers, free nucleotides and reverse transcriptase to a 2 g of total 

RNA and incubated according to the protocol in Table 2.1: cDNA synthesis temperature conditions. A 

final working concentration of 5 ng/l was obtained by diluting the completed reaction to 400 l in 

nuclease free water. The resulting cDNA obtained was stored at -20°C.  

Table 2.1: cDNA synthesis temperature conditions  

 Annealing Extension Inactivation Hold 

Temperature 25°C 37°C 85°C 4°C 

Time 10 minutes 120 minutes 5 minutes ∞ 

́ 
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Primer Design 

Primers were designed using the NCBI Primer Blast Tool and purchased from Bioneer Pacific (Kew 

Australia). All primers were analysed using BLAST to attain target gene specificity and avoid 

amplification of genomic DNA, with at least one primer in the set spanning an exon-exon junction. To 

ensure that all the PCR reactions could be run with the same annealing temperature, all the primers were 

designed to have a melting temperature close to 60°C.  

PCR Primer sequences: 

ACTB 5 ́ -CGCGAGAAGATGACCCAGAT-3 ́ 5 ́-GAGTCCATCACGATGCCAGT- 3 ́ 

EEF2 5́ -AGGCTGCCATGGGCATTAAA- 3́ 5́ -AGGCGTAGAACCGACCTTTG-3́ 

GLUT1 5 ́ -TGGCATCAACGCTGTCTTCT- 3 ́ 5 ́ -AGCCAATGGTGGCATACACA- 3 ́ 

LDHA 5 ́ -GGAACTGGATCGGTTGGTGT -3 ́ 5 ́ -AAGGGCTGCCATGTTGAAGA- 3 ́ 

mTOR 5 ́-AAGCCGCGCGAACCTC- 3 ́ 5 ́ -CTGGTTTCCTCATTCCGGCT – 3  ́

PDHK1 5 ́-CTCAGGACACCATCCGTTCA- 3 ́ 5 ́-

ACCATGTTCTTCTAGGCCTTTCAT-

3 ́ 

PKM2 5 ́ -ATGCAGCACCTGATAGCTCG- 3 ́ 5 ́ -AGGCTCGCACAAGTTCTTCA – 3  ́

 

Real-time PCR 

A RealPlex PCR detection system (Eppendorf, North Ryde, Australia) was used to perform quantitative 

PCR (qPCR) in triplicate on at least three independent RNA preparations.  Target cDNA levels were 

analysed in 10 µl reactions with SensiMix SYBR No-ROX (Bioline, Alexandria, Australia). qPCR was 

performed using 4 µl of cDNA template (20 ng) and primers at a concentration of 1 µM following the 

parameters as described below. 

PCR Cycle Parameters 

The thermal cycling conditions for activation were 2 minutes at 950C followed by 40 cycles of 15 

seconds at 950C for denaturation, 15 seconds at 590C for annealing and 10 seconds at 720C for extension.  
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Gene Expression Analysis 

The relative expression formula was used to analyse the real-time qPCR data. Eukaryotic elongation 

factor 2 (Eef2) or β-Actin (ACTB) were used as reference gene (REF) and the gene of interest (GOI) 

cycle threshold (Ct) was made relative to the REF gene using the following equation: 

CtGOI – CtREF = ΔCt 

Where CtGOI is the cycle threshold for the gene of interest, CtREF is the cycle threshold for the gene of 

reference. The ΔCt values were transformed to fold changes in expression using the relative 

expression equation:  

Relative Expression = 2-ΔCt 

To test for statistical significance, two-way ANOVA analysis with post-hoc Bon Ferroni test was 

performed on ΔCt values in the normoxic versus the hypoxic group as the least transformed relative 

data ΔCt, is the most appropriate value to analyse [5]. The threshold of statistical significance was set 

to < 0.05. The standard deviation of the relative expression of at least three independent replicates are 

shown as the error bars on gene expression graphs.  

Confocal Microscopy 

A Nikon Eclipse Ti-E confocal microscope with an attached 37°C chamber was used to perform live 

cell imaging. Cells were washed twice with PBS buffer and 1 ml of fresh warm media (without phenol 

red indicator) and then imaged.  25 mM HEPES buffer was included in the imaging media to buffer pH 

fluctuations brought on, by the change from 5% CO2 in the cell culture incubator to the conditions of 

microscope incubation chamber. To capture total cell fluorescence, cells were imaged using a 60X oil 

immersion objective over a 15 µm z-range with an image captured every 1 µm.  

Lipid Peroxidation Imaging 

A ratiometric fluorescent reporter for lipid peroxidation, Image-iT Lipid peroxidation kit 

(ThermoFisher Scientific, Australia), was used to measure free-radical damage in cells. Upon oxidation, 

the fluorescence emission peak shifts from ~590 nm (red) to ~510 nm (green).  A549 cells grown to 
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60% confluence were washed twice in PBS and loaded with 1µl of Lipid peroxidation sensor 

(ThermoFisher Scientific) in 1 ml DMEM medium with 10% FBS and without phenol red and incubated 

at 37°C for a total of 30 minutes. For a positive control, cells were incubated for 20 minutes with 100 

µM of cumene hydroperoxide to induce lipid peroxidation. Imaging of the treated cells was performed 

as described above. All experiments were performed on at least three independent samples. 

Fluorescent ROS Imaging 

Increased oxidative stress in live cells can be assessed by the measurement of ROS production using an 

Image-iT LIVE Green Reactive Oxygen Species Detection kit (Life Technologies) according to the 

manufacturer’s protocol. Cellular ROS was labelled with a final concentration of 25 µM carboxy-

H2DCFDA (5-(and-6)-carboxy-2 ́,7 ́- difluorodihydrofluorescein diacetate), a compound that fluoresces 

when oxidised (Excitation/ Emission: 492-495 nm/517-527 nm) along with 1 µM of Hoechst 33342 

was added in the final 5 minutes of incubation. Cells were washed twice with PBS before adding 1 ml 

of fresh warm media prior to imaging. A known inducer of ROS production, tert-butyl hydrogen 

peroxide (TBHP) was used for a positive control with a final working concentration of 100 µM and the 

cells were incubated for 60 minutes and imaged as described above. Cells were imaged using 60X 

objective with oil immersion and the experiment was repeated on at least three individual samples. 

Fluorescence Intensity Analysis 

1) Quantification of Lipid Peroxidation in A549 Cells.  

The extent of lipid peroxidation was measured using a ratiometric sensor where the fluorescence 

emission peak shifts from red (590nm) to green (510nm) when oxidised. The pixel density analysis 

was done on each individual cell using ND2 software, where the minimum ratio was kept at zero 

and maximum at two. Also, the background was removed by selecting a region without any visible 

fluorescence for all the groups. Bright spots on the acquired image, where pixel saturation was 

detected (using ND2 software) have been excluded by drawing regions of interest (ROIs).  

 

2) Quantification of ROS in A549 Cells. 
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Pixel density analysis of ROS production obtained from the confocal experiments was performed 

using ImageJ software (http://imagej.nih.gov/ij/index.html) on each individual cell for all the 

groups after background subtraction. 

  

http://imagej.nih.gov/ij/index.html
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Abstract 

Metabolic reprogramming is a hallmark of cancer. Hypoxia is known to induce similar adaptive changes 

in cell metabolism that include a switch from oxidative to glycolytic metabolism, which is mediated at 

the transcriptional level by HIF1. Metabolic adaptation to hypoxia is facilitated by the activation of 

genes involved in the glycolytic pathway by the HIF1 subunit HIF1a. Furthermore, mitochondrial 

function is reduced by HIF1 through upregulation of pyruvate dehydrogenase kinase 1 (PDHK1), which 

inactivates the key TCA cycle enzyme pyruvate dehydrogenase (PDH). This shunts pyruvate away from 

the TCA cycle and towards conversion to lactate by the hypoxia-inducible enzyme LDHA.  In this study, 

we reveal the effects of oxygen concentration on gene expression in A549 lung cancer cells. A 

quantitative RT-PCR analysis demonstrated a significant upregulation of the glucose transporter 

(GLUT1) and the key TCA regulatory gene PDHK1 in cells cultured under 2% and 1% O2. This study 

demonstrates that oxygen concentration in-vitro plays a fundamental role in regulating metabolic 

reprogramming in A549 cells through altering the expression of HIF1 target genes.  
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Introduction 

The biosynthetic pathways in cells are known to be altered to promote adaptation and improve survival 

under environmental stress. A good example is the adaptive response of cancer cells to hypoxia where 

the metabolic switch from oxidative phosphorylation (OXPHOS) to aerobic glycolysis is an important 

step in cell proliferation and survival.  In 1920, Otto Warburg discovered that tumours show increased 

glucose consumption and altered glucose metabolism despite the availability of oxygen, a phenomenon 

known as the “Warburg Effect” [1]. This principle is utilized in clinical settings, through uptake of 

isotope labelled deoxyglucose using PET (positron emission tomography) imaging, also known as 

FDG-PET, to image increased glucose uptake by tumours. 

Previous studies have established that HIF 1 is stabilised in hypoxia and is a “master regulator of oxygen 

homeostasis” [2, 3]. It also plays a crucial role in the pleiotropic response observed under hypoxia [4-

11]. HIF 1 not only activates the transcription of genes encoding proteins that mediate glycolysis, 

glucose entry etc., but in cancer it also promotes invasion and metastasis [11-15] (see Figure 1.2) 

In A549 cells, despite the low yields of ATP (only 2ATP), aerobic glycolysis is preferred over the TCA 

cycle (30 or more ATP), and is achieved by increasing both glucose up-take and its conversion to 

pyruvate. This is attained by increasing HIF-mediated expression of genes and enzymes involved in the 

glycolytic pathway including the glucose transporter, GLUT1 [16, 17]. The pyruvate is redirected away 

from OXPHOS and converted to lactate by increased HIF-mediated expression of two key enzymes – 

lactate dehydrogenase A (LDH-A) [18] and Pyruvate dehydrogenase kinase 1 (PDHK1) [2, 3, 19]. 

Another pathway which is modified by HIF is the mammalian target of rapamycin (mTOR). Hypoxia 

suppresses expression of mTOR to save on energy-consuming protein synthesis so enhancing cellular 

adaptation [7, 20-22]. The glucose metabolism is also controlled by the oncoprotein, MYC which 

stimulates the transcription of LDH-A, PDHK1 and Pyruvate kinase M2 (PKM2) [23-25] and increased 

expression of PKM2 is observed in many cancers including lung cancer [26, 27]. Hence, the Warburg 

effect is the result of activation of several pathways largely mediated by HIF1 and MYC.                                                                                                                                                                                                                                                                                                                                                                      

In the present study, we investigate the effect of low oxygen concentrations on gene expression of HIF 

1 target genes (PDHK1, mTOR, PKM2 and LDH-A) including the glucose transporter GLUT1 in A549 
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lung cancer cells. This was achieved by qPCR on A549 cells exposed to 1% O2, 2% O2 and 5% O2 

compared to standard cell culture conditions (21% O2). The results showed that significant gene 

expression changes were detected at 2% O2 and 1% O2 compared to controls. 

Methods and Materials 

Cell Culture  

The lung carcinoma cell line A549 was grown in DMEM with HEPES buffer media supplemented with 

10% heat inactivated FBS (Gibco), 1% penicillin (Gibco) and 1% streptomycin (Gibco) at 37˚C with 

5% CO2. The cells were exposed to Nitrogen balanced against air to give Oxygen concentrations of 1% 

O2, 2%O2 or 5% O2 plus 5% CO2 at 370C in a hypoxic chamber. Normoxia was air (approximately 21% 

O2, 74% Nitrogen) and 5% CO2 at 370C in a conventional incubator. Each experiment was performed 

with a Normoxic control. Cell viability was monitored after each sampling to ensure the presence of 

viable cells using a Countess cell counter (Life Technologies Pvt. Ltd, Australia.) which was measured 

to be greater than 98% for all the experiments.  

RNA Extraction and cDNA Synthesis 

Gene expression analysis was performed as described in Chapter 2: Methods and Materials (Section 

2.4) in this thesis. Briefly, total RNA was extracted from A549 cells using TRI-Reagent and the 

phenol/chloroform method. After cDNA synthesis gene expression was measured using specific 

primers and quantitative real-time PCR. Expression was compared to -Actin (ACTB) and Eukaryotic 

Elongation Factor (EEF2) as controls. 

Statistics 

Data from three independent biological replicates of the qPCR experiments were analysed for statistical 

significance by two-way ANOVA with Bon Ferroni post-hoc tests. Changes were considered 

statistically significant when the P value was ≤ 0.05.  All statistical analysis was performed on Ct 

values as the least transformed data. The standard deviation of the relative expression of at least three 

independent replicates are shown as the error bars on gene expression graphs.  
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Results 

Cellular exposure to hypoxia results in altered gene expression  

 

To elucidate the role of hypoxia on gene expression in A549 cells, expression levels of hypoxia-

associated genes in cells cultured under different oxygen conditions were investigated. The HIF 1 target 

genes analysed included the GLUT1 glucose transporter and genes involved in the glycolytic pathway 

(GLUT1, PDHK1, PKM2, mTOR and LDHA, see Chapter 1; Section 3.2, Table 1.4).  Data analysis 

using either control gene, ACTB or EEF2, gave similar results. The data shown in this results section 

were derived using the ACTB gene as the control (see Appendix I for EEF2 data

The glucose transporter GLUT1 was increased in expression level in A549 cells cultured under 1% and 

2% O2 compared to cells cultured under normoxic conditions (  
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Figure 3.1A, 1% O2 p = 0.04, 2% O2 p = 0.001). Cells cultured under 1% and 2% O2 showed between 

3 and 5 fold increased expression compared to normoxic controls. There was no statistically significant 

increase in GLUT1 expression in 5% O2. 

PDHK1 expression was also increased in A549 cells cultured under 1% O2 and 2% O2 (3-fold and 5-

fold increase compared to controls, P = 0.02 and 0.001 respectively,   
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Figure 3.1B). Expression levels of PDHK1 in cells cultured in 5% O2 were similar to normoxic cultures.  

There were no statistically significant changes observed in the levels of expression of Pyruvate Kinase 

M2 (PKM2), mammalian Target of Rapamycin (mTOR) or Lactate Dehydrogenase A (LDH-A) (  
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Figure 3.1C, D and E). Each of these genes had Ct values of 22.1, 23.8, 28.0 suggesting low expression 

in controls, which did not alter with changes in O2. 
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Figure 3.1: Relative mRNA expression of HIF1 target genes. 

A 

 

B 

 

C 

 

D 

 

E 

 

Figure Legend 

 

Figure 3.1: Relative mRNA expression of the 

hypoxia associated genes relative to the 

housekeeping gene, ACTB in A549 cells 

cultured under various oxygen concentrations 

compared to their controls. Relative 

expression of A. GLUT1, B. PDHK1, C. 

LDH-A, D. mTOR and E. PKM2 mRNA to 

ACTB. For each graph, the normoxic control 

for each low oxygen condition is shown 

(Norm-1, Norm-2 and Norm-5). Error bars 

indicate the SD from three independent 

biological samples. 

*P < 0.05, **P < 0.005. 
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Discussion  

Hypoxia results in metabolic reprogramming through HIF mediated changes in a substantial number of 

genes involved in metabolism [2, 19, 28-30]. Aerobic glycolysis in cancer cells is of particular interest 

as it plays a crucial role in cellular adaptation and cancer invasion and metastasis [11-15]. HIF 1 plays 

pivotal roles in the metabolic transformation from respiratory to glycolytic phenotype in three ways; 

first by increasing glycolytic flux from glucose to pyruvate through activation of upstream glucose 

transporters and glycolytic enzymes, second by inducing the expression of PDHK1 that inhibits the 

pyruvate from entering the TCA cycle and third by inducing the expression of LDHA which converts 

pyruvate to lactate [2, 31]. Cancer cells usually show the Warburg effect where glycolysis is the 

preferred pathway for glucose metabolism despite the availability of oxygen [32, 33]. 

Increased glucose uptake is facilitated by high levels of expression of the glucose transporter, GLUT1. 

In the cells cultured under hypoxia a significantly higher level of expression of GLUT1 was observed, 

which is consistent with increased uptake of glucose identified in other studies of A549 cells [34]. 

Furthermore, there was a difference in GLUT1 expression in cells cultured under differing levels of 

hypoxia with a 3-fold change in the cells under 1% O2 compared to a 5-fold change under 2% O2. 

Pyruvate dehydrogenase kinase 1 (PDHK1) regulates glucose metabolism through phosphorylation of 

the pyruvate dehydrogenase (PDH) complex leading to its inactivation. Several studies have reported 

an increased expression of PDHK1 in cancer cells including gastric and acute myeloid leukaemia [35, 

36]. The suppression of PDH by PDHK1 results in the reduction of mitochondrial respiration, thereby 

supporting the cellular adaptation to hypoxia. The activation of PDHK1 may be a strategic regulatory 

switch leading to the Warburg effect. The results of this study show overexpression of PDHK1 in cancer 

cells cultured under hypoxic conditions (1% O2 and 2% O2 only) compared to their normoxic controls. 

A significant 3-fold increase in the expression of PDHK1 was detected in cells exposed to 1% O2 and 

a significant 5-fold increase in cells exposed to 2% O2 compared to normoxic controls. This 

upregulation in hypoxia is consistent with other studies [2, 3].  

One interpretation of increased GLUT1 and PDHK1 in A549 cells grown in hypoxia is that A549 cells 

still utilise OXPHOS when cultured in normoxic (environmental air) conditions. Liu et al., using 
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NSCLC tissues and A549 cell lines, demonstrated a significant upregulation of PDHK1 and a pivotal 

role in metabolic reprogramming under hypoxia leading to what they referred to as “enhanced” Warburg 

effect [37]. Similarly, several studies have established that cancer cells in hypoxia show increased 

glycolysis or increased GLUT1 and PDHK1 expression, [2, 3, 38]. Furthermore, recent studies have 

established that the overexpression of PDHK1 attenuates mROS generation and protects cells from 

hypoxia-mediated apoptosis [2, 39-41]. These results suggest a continued role for mitochondrial 

OXPHOS in cancer cells alongside the increased preference for glycolysis as an energy source. In this 

context the increased GLUT1 and PDHK1 mRNA expression in hypoxia demonstrated here indicates a 

further shift towards glycolysis and away from OXPHOS in A549 cells.  

Although, an upregulated expression of PKM2, mTOR and LDHA has been indicated in the previous 

studies on various tumours (Chapter 1, Table 1.4), in A549 cells only PKM2 has been reported to be 

overexpressed. Interestingly, there were no statistically significant changes observed in the expression 

of the above stated genes in this study on A549 cells.  It is noteworthy that a recent study found that 

mTOR responds to reduced pH rather than hypoxia per se as previously believed [42]. The cells in this 

study were grown in HEPES buffered media to prevent acidification so this may explain no change in 

mTOR expression.  

There were no significant gene expression changes observed in the cells exposed to 5% O2 in-vitro 

possibly due to the fact that 5% of oxygen is close to physiological normoxic conditions.  The pO2 in 

the muscle cells in vivo is close to 5% O2 [43], whereas in cancer cells the diffusion of oxygen is far 

less than in healthy tissues due to the high rate of cell proliferation in cancer which results in chaotic 

vasculature giving rise to hypoxic regions (Section 3.1, Chapter 1 of this thesis). The diffusion limit of 

oxygen within tissues has been measured to be 150m [44-47]. This means that once a tumour grows 

to greater than 300 m diameter or approximately 15-20 cells across, the cells in the centre experience 

hypoxic conditions. The findings reported here are consistent with previous studies, where synchronised 

activation of glucose absorption and metabolic reprogramming occurs in cancer cells and has been 

identified as a potential therapeutic target [48].  



Page | 72  
 

Conclusion 

The understanding of how hypoxia effects gene expression and hence tumour progression and survival 

has attracted substantial interest. There are many in-vitro studies analysing gene expression in cancer 

cells. To ensure such studies are physiologically relevant, there is a need to identify the ideal culture 

conditions that best mimic in-vivo conditions.  From the above findings, cells cultured under 2% O2 

have increased GLUT1 and PDHK1 expression and possible reprogramming of glucose metabolism. 

Hence in order to mimic the in-vivo conditions found in tumours in cell culture models, it is preferable 

that the percentage of oxygen should be maintained at less than 5%. 
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Abstract 

The activity of reactive oxygen species (ROS) in cancer cells under low oxygen conditions is well 

established but the damage it causes still remains unclear. Lipid peroxidation (LPO) is a complicated 

process that involves the formation and propagation of lipid radicals that cause structural damage and 

produce a variety of cytotoxic metabolites. These metabolites modify proteins both in-vivo and in-vitro, 

and can influence cell metabolism. This led to our hypothesis that hypoxic cultures have altered lipid 

peroxidation and ROS production. Here we investigated whether hypoxia stimulates free-radical 

mediated damage to lipids. To achieve this, LPO and ROS were measured in A549 cells using 

fluorescent reporter dyes and confocal microscopy. Importantly, the peroxidation-sensitive change in 

fluorescence of BODIPY® 581/591 C11 at red (590 nm) relative to that at green (510 nm) facilitated 

ratio-metric assessment of LPO in cells.  An increase in LPO was observed in the cells cultured under 

low oxygen conditions. However, there was a slight decrease in the production of ROS in hypoxic 

cultures. In conclusion, hypoxia stimulates LPO free-radicals and attenuates ROS radicals in A549 cells, 

the combined effect of which may serve to equip the cells to adapt to and proliferate under low oxygen 

conditions. 
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Introduction 

Lipid peroxidation is the oxidative degradation of cellular lipids that are rich in polyunsaturated fatty 

acids (PUFAs) by reactive oxygen species. Oxidative modification of PUFAs affects cell membrane 

properties and signal transduction pathways [1, 2] and is implicated in various pathological processes 

such as atherosclerosis, cancer, diabetes, acute lung injury [3-7] as well as the neurodegenerative 

disorders including Alzheimer’s and Parkinson’s disease [8-10]. 

Hypoxia is associated with increased lipid peroxidation products in animal tissues (for review see [11]) 

and several other studies have reported increased levels of MDA (malondialdehyde), a known 

biomarker of lipid peroxidation, in human breast cancer and lung cancer [12-15]. 

Free radicals are generated as a by-product of cellular respiration (mitochondrial respiratory chain) [16] 

and other endogenous sources (see Section 4.1, Chapter 1 of this thesis). Due to their instability and 

chemical reactivity, they readily react with the cellular membranes which are rich in lipids producing 

alkyl radical. Once the alkyl radical is generated the cascade of lipid peroxidation follows (see Section 

5.1, Chapter 1) causing oxidative damage to the cells under oxidative stress. Anti-oxidant enzymes such 

as catalases and glutathione peroxidases scavenge ROS to protect cells from cytotoxic effects.  

Additionally, the pentose phosphate pathway, generates ribose 5-phosphate and nicotinamide adenine 

dinucleotide phosphate (NADPH) which are vital to defend the cells from ROS [17-19].  

It has been established that in many cancer cells, hypoxia induces the expression of an isoform of 

glycogen phosphorylase (PYGL) that alters glycogen metabolism leading to the generation of glycolytic 

intermediates and NADPH, a key ROS scavenger [17, 20-22]. Furthermore, other studies have 

demonstrated that over-expression of uncoupling protein 2 (UCP2) (protein that is expressed in the 

inner membrane of the mitochondria) inhibits ROS-mediated apoptosis under hypoxia in cancer cells 

[23-27]. 

The aim of this study was to determine whether hypoxia alters ROS and lipid peroxidation in A549 

lung cancer cells. Changes in free-radical mediated oxidative damage in cancer cells under low oxygen 

conditions could aid in establishing a biochemical origin of VOCs produced in lung cancer. 
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Methods 

Cell culture 

 

A549 cells were cultured in DMEM supplemented with 10% foetal bovine serum, 1% 

penicillin/streptomycin and HEPES buffer (Life Technologies) with 5% carbon dioxide in both 

normoxic (atmospheric oxygen) and hypoxic (2% O2) conditions. Cells were seeded into imaging 

dishes (Mattek Corporation, Ashland, MA) for confocal microscopy. Imaging was performed as 

described in Section 2.5, Chapter 2 –Materials and Methods. 

Detection and Analysis of Lipid Peroxidation in A549 cells  

 

The cells were stained with BODIPY® 581/591 C11 at a final concentration of 10 M and fluorescence 

imaging was performed using 590 nm and 510 nm emission filters using a Nikon Eclipse Ti-E confocal 

microscope as described in Section 2.5.1 (Chapter 2 –Materials and Methods of this thesis). In order to 

minimise pixel saturation, initial calibration on cells with the indicator and an inducer of lipid 

peroxidation was performed and excitation emission intensities adjusted accordingly. The lipid 

peroxidation was determined by quantitating the pixel density at 510 and 590 nm emission on each cell 

and calculating the ratio of the emission fluorescence intensities (510nm/590 nm). This was achieved 

by setting up an automatic calculation of ratios using ND2 software for all the groups. All experiments 

were repeated at least three times and the results shown are from one typical experiment.  

To determine co-localisation of Lipid Peroxidation and detect any Structural Changes of 

Mitochondria in A549 cells under hypoxia. 

A549 cells cultured under hypoxia (2% O2) and Normoxia (21% O2) were incubated for 30 minutes 

with 200nM MitoTracker (mitochondria probe) to label the mitochondria and 10M Lipid Peroxidation 

Sensor. To see if the LPO was co-localised to mitochondria data for both the channels was extracted as 

red (Far Red) and green (FITC) and the images overlayed using ImageJ software.  

Detection and Analysis of ROS in A549 cells 

Cellular ROS was detected and measured by staining the A549 cells with H2DCFDA at a final 

concentration of 25 M for 30 minutes. Hoechst 33342 was added five minutes prior to analysis to 
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identify nuclei (blue) as described in detail in Section 2.5.2 (Chapter 2: Materials and Methods). In 

order to correct for auto fluorescence, initial calibration on cells without the ROS indicator dye was 

performed. After confocal imaging, pixel density was calculated on individual cells from both channels 

(blue and green) for all groups. The integrated optical density (IOD) for all the cells per field of view 

was quantified using ImageJ software and averaged for each image. Three biological replicates were 

performed and the data expressed as the mean and standard deviation of the biological replicates. 

Statistical significance was by Students t-test.  

Results 

A549 cells cultured under hypoxic conditions show increased Lipid Peroxidation 

The effect of hypoxia on peroxidation of unsaturated lipids in A549 cells was assessed. Cells cultured 

under low oxygen conditions had a visible increase in green fluorescence (510 nm) and decrease in red 

fluorescence (590 nm), indicative of lipid peroxidation compared to the cells cultured under normoxic 

conditions. Accordingly, the ratiometric analysis demonstrated a high ratio confirming a higher level of 

constitutive lipid peroxidation in hypoxic cultures compared to normoxic cultures of A549 cells ( 
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Hypoxic cultures show an increase in lipid peroxidation compared to normoxic cultures. Lipid 

peroxidation in live cells was assessed by confocal fluorescence microscopy and the pixel density of 

each cell was measured. A549 cells were incubated for 30 minutes with 10M Lipid Peroxidation 

Sensor (a ratio metric dye). Scale bar, 50m. A high ratio (dark blue/green) indicates high levels of 

lipid peroxidation and a low ratio (light blue/magenta) indicates no lipid peroxidation (colour legend 

on the far right in the pictures). (A) Positive Control where lipid peroxidation was induced by treating 

the cells with Cumene Hydroperoxide. (B) Under basal conditions, normoxic cultures show no 

peroxidation whereas hypoxic cultures show constitutive lipid peroxidation (C). (D) Scatter plot of 

normalised pixel frequency against the ratio of fluorescence at 510 nm/590 nm (green/red) indicates 

a higher pixel density at the low ratio (peak at 0.1) in normoxic cultures compared to hypoxic cultures 

(peak at 0.5) and the positive control (peak at 1.0). 

 
 

 B-C). This was confirmed by plotting the frequency of pixels at each 510/590 ratio for normoxic and 

hypoxic cultured cells and positive control cells with induced lipid peroxidation ( 
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the cells with Cumene Hydroperoxide. (B) Under basal conditions, normoxic cultures show no 

peroxidation whereas hypoxic cultures show constitutive lipid peroxidation (C). (D) Scatter plot of 

normalised pixel frequency against the ratio of fluorescence at 510 nm/590 nm (green/red) indicates 

a higher pixel density at the low ratio (peak at 0.1) in normoxic cultures compared to hypoxic cultures 

(peak at 0.5) and the positive control (peak at 1.0). 

 
 

D). A high frequency of pixels was observed at low 510/590 nm ratios (peak at 0.1) for the cells cultured 

under normoxic conditions which was in contrast to hypoxic cultures, where a high frequency of pixels 

was observed at higher ratios (peak at 0.5) while a positive control with lipid peroxidation induced with 

cumene hydroperoxide showed a high frequency of pixels with a peak 510/590 nm ratio of 1.0.  
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Sensor (a ratio metric dye). Scale bar, 50m. A high ratio (dark blue/green) indicates high levels of 
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peroxidation whereas hypoxic cultures show constitutive lipid peroxidation (C). (D) Scatter plot of 

normalised pixel frequency against the ratio of fluorescence at 510 nm/590 nm (green/red) indicates 

a higher pixel density at the low ratio (peak at 0.1) in normoxic cultures compared to hypoxic cultures 

(peak at 0.5) and the positive control (peak at 1.0). 
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Co-localisation of LPO and effect of hypoxia on Structural changes of Mitochondria 

Increased LPO partially overlapped with mitochondria but was also apparent in other cell 

compartments.  Visual inspection of the images of cells labelled with Mitotracker Deep Red, shows that 

there were no significant changes in the structure of mitochondria under hypoxia (Figure 4.1). 

Figure 4.1: Co-localisation of Lipid peroxidation using mitotracker and structure of mitochondria 

under hypoxia 

 

Imaging of mitochondria and co-localisation of lipid peroxidation was determined by confocal 

microscopy. Scale bar, 50m. A549 cells cultured under hypoxia (2% O2) and Normoxia (21% O2) 

were incubated for 30 minutes with 200nM MitoTracker (mitochondria probe) and 10M Lipid 

Peroxidation Sensor. (A) Positive Control where lipid peroxidation was induced by treating the cells 

with Cumene Hydroperoxide. (B) Cells cultured under normoxia (21% O2).  (C) Cells cultured under 

hypoxia (2% O2). No changes were observed in the structure of mitochondria and the merged images 

showed lipid peroxidation in punctuate structures throughout the cell with incomplete co-localisation 

with mitochondria. 
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Hypoxic cultures of A549 cells show decrease in cellular ROS compared to Normoxic 

cultures. 

The effect of hypoxia on total ROS was assessed using carboxy-H2DCFDA by confocal imaging. The 

cells cultured under normoxic conditions had a greater green fluorescence emission compared to 

hypoxic cultures as shown in   
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Figure 4.2 B and C. The integrated density of pixels slightly decreased in hypoxic cultures indicating 

decline in peroxide radicals (  
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Figure 4.2 D). As there was auto fluorescence observed in the cells treated with nuclei stain (Hoechst 

33342) only, it was treated as negative control and included in the analysis. 
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Figure 4.2: ROS production in A549 cells 

 

D 

 

 

Generation of ROS in live cells was assessed by confocal fluorescence 

microscopy. Scale bar, 50m. A549 cells cultured under hypoxia (2% O2) and 

Normoxia (21% O2) were stained with a fluorescent ROS indicator (green). (A) 

Positive control where the ROS production was induced by incubating the cells 

for 1hour with 100M of tert-butyl hydroperoxide (TBHP) before staining and 

imaging. (B) Cells cultured under normoxic conditions. (C) Cells cultured under 

hypoxic conditions. All the groups were also labelled with 1M of Hoechst (blue) 

to identify cell nuclei. (D) The average pixel intensity (IOD) of all cells in the 

green channel was measured. Error bars indicate standard deviation of the mean 

IOD for three biological replicates (n=3). The difference in ROS fluorescence 

between normoxia and hypoxia was significant (P<0.05, Students t-test).  
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Discussion 

Many studies in the past decade have demonstrated increased lipid peroxidation products from cancer 

cells and tissues in oxidative stress [28-34]. It is also well established that the tumour micro-

environment causes oxidative stress resulting in cell cytotoxicity and that cellular anti-oxidant defences 

are increased as a means of protection [35, 36].  

In this study there was an apparent decrease in total ROS in hypoxic cultures compared to the normoxic 

cultures, which is consistent with the reduction of ROS in hypoxia found previously [37, 38]. In 

particular Kim et al. demonstrated in a human lymphoma cell line that under hypoxia ROS was 

attenuated by the overexpression of PDHK1 – a HIF-1 target gene [37] and we found PDHK1 to be 

increased in expression in A549 cells in hypoxia (Chapter 3 of this thesis). PDHK1 inactivates pyruvate 

dehydrogenase, so increased PDHK1 activity therefore deprives the tricarboxylic acid (TCA) cycle of 

Acetyl-CoA and instead promotes the conversion of pyruvate to lactate. This further suggests that in 

our studies, A549 cells have intact mitochondria and hence hypoxia will induce a metabolic shift of 

pyruvate away from the TCA cycle.  

Cancer cells exhibit metabolic alterations of several critical nutrients and substrates, including 

metabolic reprogramming of both glucose and glutamine [39]. There is sufficient evidence that 

increased lipid production and beta-oxidation of fatty acids may be a vital secondary energy source – 

essential for cancer cell survival [40-46]. Studies by Metallo et al. using isotopic labelled glutamine 

demonstrated that several mammalian cancer cells (including A549 cells) cultured under hypoxia 

alternatively produce Acetyl Co-A via reductive carboxylation of glutamine-derived alpha-

ketoglutarate (-KG) (de-novo lipogenesis) in the cytosol [47, 48].  

Lipid peroxidation is a chain reaction initiated by the interaction of ROS to generate hydroxyl radical 

which in turn abstracts hydrogen atoms from unsaturated lipids to produce lipid hydroperoxides [49-

52]. A substantial increase in the oxidation of lipids was observed in hypoxia indicating that lipid 

hydroperoxide free-radical mediated damage was operative. Interestingly, there was no lipid 

peroxidation in normoxic cultures, despite the slight increase in total ROS, which seems inconsistent. 
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This may be due to the substantial availability of lipids (from lipogenesis) in the cells cultured in 

hypoxia which might lead to the initiation of the chain reaction (an autocatalytic cycle) that will 

propagate until the free radical chain is terminated (which could be challenging to control). Also, the 

presence of ROS under normoxic conditions may be due to the lesser amounts of active anti-oxidant 

defences and ROS scavengers such as NADPH but this requires further investigation.  

Conclusion 

Hypoxia regulates ROS to enhance cell survival and to protect the cell from apoptosis. Lipid 

peroxidation is significantly increased in hypoxic cultures demonstrating the presence of oxidative 

degradation caused by free-radicals. Hence, hypoxic culture conditions are likely to alter cell 

metabolism and possibly VOC output from cells. 
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Abstract 

Lung cancer is often diagnosed at an advanced stage when prognosis is poor. A non-invasive diagnostic 

test suitable for population screening is needed to enable early diagnosis and improved patient survival. 

Volatile organic compounds (VOCs) in exhaled breath have potential as diagnostics however 

confirmation of the metabolic origins and disease specificity of candidate markers is required. Cell 

culture metabolomics can identify disease biomarkers and their origins. To date VOC profiles from in 

vitro cultured cancer cells show little similarity to breath profiles from cancer patients. One reason for 

this maybe that in vivo, cancer cells experience hypoxia whereas in vitro cells are generally cultured in 

normoxic conditions. Since hypoxia is known to influence cell metabolism we hypothesize that cancer 

cells cultured under hypoxic conditions will produce VOCs more typical of those found in cancer 

breath. We present data from A549 lung cancer cells cultured in suspension under standard normoxic 

(21% oxygen) or hypoxic (2% oxygen) conditions. VOCs were collected using solid phase micro-

extraction, analysed by Gas Chromatography-Mass Spectrometry and identified using the NIST11 mass 

spectral library. Environmental and system contaminants were identified by analysing incubator air 

(both normoxic and hypoxic) and media-only controls and these compounds were removed from the 

analysis. Comparison of endogenous VOCs produced by A549 cells under hypoxic and normoxic 

conditions showed twelve VOCs unique to cells grown under hypoxic conditions including four 

methylated alkanes and four alkenes. These classes of compounds have been commonly reported on 

cancer breath. A further four VOCs including two methylated alcohols were unique to cells grown in 

normoxic conditions, and two ketones were common to both. This data suggests that hypoxic culture 

conditions influence VOC production and is consistent with our hypothesis that hypoxia produces VOC 

profiles more similar to the breath of lung cancer patients. These results hold promise for the discovery 

of new and the validation of current VOC markers of lung cancer.  
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Introduction 

Lung cancer is the most frequently diagnosed cancer and the leading cause of cancer related deaths 

worldwide [1]. The five-year survival rate for lung cancer is generally poor as the symptoms become 

apparent only once the disease is well advanced. Better patient outcomes can be achieved with early 

diagnosis of this disease. Breath analysis appears to be the most propitious approach to detect and 

identify biomarkers related to a specific ailment, many volatile organic compounds (VOCs) have been 

analysed to identify new biomarkers of lung cancer [2-28].  

Many compounds on breath have been proposed as potential markers of lung cancer [29, 30] but their 

clinical relevance is still unclear [28]. Validation of the disease relevance of new breath biomarkers will 

be assisted by an understanding of the metabolic origins of the marker. However, there is currently 

limited knowledge about the metabolic origins and biochemical pathways that produce breath 

biomarkers. In-vitro studies provide an opportunity to identify disease biomarkers and their origins, 

however, there are only slight resemblances between the VOC profiles from in-vitro studies compared 

to lung cancer breath. Of the 68 VOCs detected on lung cancer breath and in the headspace of cancer 

cells in culture, only 16 VOCs are common to both [31-35] 

Recent studies have established that in-vivo cancer cells experience hypoxia as a consequence of oxygen 

diffusion limits in the tissues, which has been measured to be around 150 m [36, 37] resulting in 

altered cell metabolism [38, 39]. This raises the possibility that cells cultured under controlled low 

oxygen conditions will produce a pattern of VOCs that may aid in mapping biochemical origins of 

breath VOCs (Thesis Chapter 1, Section 3). The present study fills a gap in the literature by better 

mimicking the in-vivo conditions and provides new insights into the effects of culture conditions on the 

VOC profile produced by lung cancer cells. 

To investigate our hypothesis that cancer cells cultured under hypoxic conditions will produce VOCs 

more typical of those found in cancer breath, we first established an experimental in-vitro model where 

the oxygen conditions could be regulated and the VOCs effectively extracted and compared with those 

VOCs extracted from uncontrolled oxygen conditions (air). This model is based on the observations 

that hypoxia, a common hallmark of all cancers, causes metabolic alterations and may provide a 
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metabolic switch from oxidative phosphorylation to aerobic glycolysis and a concomitant increase in 

lipid peroxidation (see chapter 4). 

Methods 

Sample Preparation 

After growing to sub confluence in plastic culture flasks (Interpath Services, Melbourne, Australia) 

A549 cells were seeded at 10 million cells per 50 ml into a conical flask fitted with a Teflon stopper 

with a glass insert, through which a coated fused silica fibre could be introduced for the extraction of 

volatiles. The flask was placed on a magnetic stirrer (HD Scientific, Australia) and exposed to normoxia 

(21% O2) and hypoxia (2% O2) at 370C for 24hrs. The VOCs extracted from headspace of cells were 

compared against the VOCs extracted from the headspace of media without cells (controls). The air 

from both incubators was tested to identify system and environmental contaminants. 

GCMS Analyses 

The methodology used is discussed in detailed in Chapter 2, Section 2.3.2 of this Thesis. Both automatic 

and manual peak integration were executed for all the TICs and the compounds were identified by 

spectral match with NIST 2011 spectral library and only those with greater than 95% spectral match 

were considered positive. Overlapping unresolved peaks were not included in the analysis. Compound 

identity was further confirmed by retention times and the mass spectral pattern of neat standards where 

available (n-pentane, 3-methyl hexane and 2-nonanone). The retention times were internally consistent 

for each VOC and with standards where these were available. Preliminary calibration was performed 

using 100 and 1000 ppm speciality mix of alkanes with C2-C6 carbon skeleton to ensure that the detector 

was linear. Furthermore, to determine and confirm the candidate compounds of interest, standard curves 

were performed using a mixture of n-pentane, 3-methyl hexane and 2-nonanone (Accustandard) at 

concentrations of 10,30,100, 300 and 1000 ppm. For each compound the regression was linear from 10 

to 300 ppm. LOD and LOQ were calculated from the linear regression using the formula LOD = 3 x 

SD/slope and LOQ = 10 x SD/slope where SD is the standard deviation of the Y-residuals. The standard 

mixtures were collected using 75 m CAR/PDMS fibre by solid-phase micro extraction and were 

loaded using the auto sampler (Shimadzu Scientific Instruments) and released by thermal desorption 
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onto the injection port of the GCMS. Due to unavailability of standards, the other compounds of interest 

were identified by ion-extraction method using GCMS software and the fragments and their ratios were 

defined using NIST spectral library. The experiment was repeated on at least three independent samples 

with control and environmental air sampled from both the incubators for each experiment.   

Results 

Hypoxia produces unique VOC profiles  

Comparison of endogenous VOCs produced by A549 cells under hypoxic and normoxic conditions 

showed twelve VOCs unique to cells grown under hypoxic conditions as shown in Table 5.1. Data 

shown are for three independent experiments, indicated as Replicate 1, 2 and 3 (Rep1, 2 and 3). 

Environmental and system contaminants were identified using media-only controls and were 

disregarded from the analysis (as listed in Appendix II). Pentane was observed along with four 

methylated alkanes – 3-methyl hexane, 3 - ethyl pentane, 2,3,4 - trimethyl decane and 3,6 - dimethyl 

undecane (Table 5.1). For 3-methyl hexane trace quantities close to the LOD (approximately 17 ppm) 

and below LOQ (<56 ppm) were detected in hypoxic A549 cultures. For 2 –nonanone, two replicates 

were below LOQ (<117 ppm), and the third was above LOQ with 127 ppm detected. Another four 

volatile compounds were identified as alkenes, namely 3,3-dimethyl-1-hexene, 2,5-dimethyl-2-hexene, 

3-methyl-2-heptene and 7-methyl-1-undecene. Finally, there were three other VOCs: an alcohol 3-

Penten-1-ol, (Z), a ketone identified as 2-Nonanone and a cycloalkane identified as 1,5-diethyl-2,3-

dimethyl cyclohexane. 

A further four VOCs including two methylated alcohols were unique to cells grown in normoxic 

conditions. There was minimal overlap of VOCs between normoxic and hypoxic conditions with two 

ketones identified, which were 1-Hepten-6-one and 2- methyl-3-Octanone. 

Of the VOCs identified from the headspace of cultures, seventy-nine VOCs were identified as 

environmental or system contaminants. Of them, fifty-nine VOCs, were found in the headspace of 

control cultures (media without cells). The remaining twenty VOCs were found either in the headspace 

of controls or incubator air and identified as environmental contaminants (see Appendix II of this 

Thesis).  
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Table 5.1: VOCs produced by Hypoxic cultures only 

Class Compound  
Retention 

time  CAS No. Structure  Rep 1 Rep 2 Rep 3 

Alkanes n-Pentane 
13.21 

109-66-0 
 754845 70144 400440 

Methylated 

Alkanes 

Hexane, 3-

methyl- 

24.17 
589-34-4   2029387 1043960 2125286 

  Pentane, 3-ethyl- 
27.29 

617-78-7 
  736698 293839 885762 

  
Decane, 2,3,4-

trimethyl- 

38.05 
62238-15-7   17928675 12982075 32579041 

  
Undecane, 3,6-

dimethyl- 

40.77 
17301-28-9 

  4481110 8071465 4982126 

Alkenes 
1-hexene, 3,3-

dimethyl- 

27.06 
3404-77-1   644980 318836 900285 

  
2-hexene, 2,5-

dimethyl- 

28.16 
3404-78-2 

 

642914 294658 691998 

  
2-heptene, 3-

methyl-  

28.3 
3404-75-9 

 

2090555  -  1626000 

  
1-undecene, 7-

methyl- 

38.23 
74630-42-5 

 

1654215 1340093 3134859 

Alcohol 3-penten-1-ol, (Z) 
23.37 

764-38-5 
 2417804 853465 2279754 

Ketone 2-nonanone 
38.97 

821-55-6   1474386 2615736 4812724 

Cyclo alkane 

1,5-diethyl-2,3-

dimethyl 

cyclohexane 

40.4 

74663-66-4   8030218 3352667 5728835 

Table of areas of VOCs only found in the headspace of A549 cells cultured under hypoxia (2% O2).  Data shown 

are representative of three independent experiments (n = 3) indicated as Rep 1, Rep 2, Rep 3 in the table.  
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Discussion  

In-vitro studies versus Breath Analysis 

This study identified substantial differences between the VOC profiles from A549 cells cultured under 

normoxic and hypoxic conditions. The cells cultured under hypoxic conditions in particular produced a 

unique VOC profile consisting of 12 compounds that were not identified in normoxic cultures. These 

were mostly branched hydrocarbons along with a smaller number of alkenes, ketones, alcohols and a 

cycloalkane.  

n-Pentane and branched hydrocarbons are of particular interest.  

Firstly, pentane has been implicated as a volatile product of peroxidation of n-6 PUFAs [40-42], hence 

considered as an endogenous compound.  Pentane has been related to oxidative stress and bronchial 

asthma [43-46]. Recent studies by Kischkel et al. analysed the VOCs from cancer patients undergoing 

lung resection and demonstrated a significant decrease in exhaled concentrations of pentane after 

surgery [47]. This is a significant finding as this compound was only found in the headspace of cells 

cultured under hypoxia but not in the cells cultured under normoxia.  

Another significant finding is that the compounds belonging to the class of branched hydrocarbons were 

observed – 3-methyl hexane, 3 - ethyl pentane, 2,3,4 - trimethyl decane and 3,6 - dimethyl undecane. 

Of these compounds, 3-methyl hexane has been found associated with chronic liver disease [48], 

cholangiocarcinoma [49], and in lung cancer breath [43, 44]. Several of the VOCs from the hypoxic 

cultures have previously been reported as end-products of lipid peroxidation triggered by reactive 

oxygen species (ROS) and oxidative stress [50-52]. These results further support the idea that increased 

lipid peroxidation associated with hypoxia contributes to distinct VOC breath profiles in those with 

cancer and possibly other chronic conditions. Oxidative stress is a known fundamental mechanism 

associated with cancer growth and survival and the data shown here supports a role for hypoxia in 

promoting conditions favourable for lipid peroxidation and the release of methylated alkanes and 

alkenes.  

VOCs from cells cultured under controlled oxygen conditions versus VOCs from cells 

cultured using traditional culture conditions   
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Breath analysis has attracted attention in recent years and there are many studies that have detected and 

identified a variety of VOCs as potential biomarkers of cancer. A recent study by Kischkel et al. calls 

for the need for more rigorous standardized methods of sampling, analysis and data processing 

including the effects of environmental contaminants [28]. This was further supported by a review of the 

volatiles from the healthy human body by de Lacy Costello et al., that identified 872 metabolites related 

to smoking, food consumption and medication in breath [53]. Also, it emphasises the fact that the 

compounds are typically present not only in cancer patients but also in healthy controls and that the 

clinical relevance is yet to be established for any candidate VOCs reported so far. 

There were seventy-nine compounds identified as environmental and system contaminants in this study 

and these were present in all three independent experiments. Not considering these compounds in the 

analysis presented here was the most rigorous approach to avoiding reporting false positive compounds 

that do not derive from the lung cancer cells. It is noteworthy that a total of seventeen VOCs previously 

reported in the literature as produced by A549 cells were found as environmental and/or system 

contaminants in this study (Table 5.2). This is consistent with the need for minimising system 

contamination and the use of rigorous controls in in vitro studies of cancer metabolomics. 
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Table 5.2: Environmental and system contaminants 

Compounds are indicated in different coloured fonts to represent different groups as follows: Black = 

environmental and system contaminants in this study, Red = compounds found in this study in both controls 

and cells from both normoxic and hypoxic culture conditions but not incubator air, Blue = compounds that 

were found in this study only in controls from both the culture conditions and Green = compounds that were 

found in this study only in controls from normoxic conditions.  

Differences in sampling methods and analyses will lead to different VOCs as system contaminants. 

Furthermore, some system contaminants may also be derived independently from endogenous origins. 

For example, ethanol, an alcohol that has been reported as produced by the tumour tissues, released by 

the A549 cell lines and exhaled by cancer patients [31] also can originate from food, beverages and is 

produced by gut bacteria such as E coli [54, 56] and it is also used as a disinfectant for aseptic technique 

in many cell culture laboratories. Also, aromatic hydrocarbons such as Benzene, o-Xylene, p-Xylene, 

Styrene and Ethylbenzene are known by-products of gasoline, air pollutants and related to cigarette 

smoking [57-62], and ketones such as 2-butanone and 2-heptanone are reported to be produced by lactic 

No. Compound CAS No References 

1 Ethanol 64-17-5 [31, 54, 55] 

2 n-Butanal 123-72-8 [55] 

3 n-Pentanal 110-62-3 [55] 

4 2,4-Dimethyl-1-heptene 19549-87-2 [31, 54] 

5 Benzene 71-43-2 [55] 

6 o-Xylene 95-47-6 [57] 

7 p-Xylene 106-42-3 [55] 

8 Styrene 100-42-5 [55] 

9 Ethylbenzene 100-41-4 [55] 

10 Acetone 67-64-1 [31] 

11 2-Butanone 78-93-3 [55] 

12 Ethyl acetate 141-78-6 [55] 

13 2-methyl-1-pentene 763-29-1 [31, 54, 55] 

14 2-Ethyl Acrolein 922-63-4 [31] 

15 3-methyl butanal 590-86-3 [31, 54] 

16 n-Octane 111-65-9 [31, 54, 55] 

17 n-Heptane 142-82-5 [55] 
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acid bacteria [63]. The approach employed here whereby all system contaminants were eliminated from 

further study may have eliminated some VOCs that are relevant to disease, but it also ensures that the 

VOCs reported are in fact produced by the A549 cells, which may increase their utility as diagnostics. 

This study demonstrates that culture conditions influence the VOC profile of A549. Controlled oxygen 

conditions in particular appear to be necessary to alter the cell metabolism to produce VOCs similar to 

those found on breath.      

Conclusion 

The results of this study indicate that the culture conditions play a vital role on the VOC profile and 

controlled oxygen conditions are required to better mimic the in-vivo tumour environment. 

Additionally, two of the compounds expressed in hypoxic culture, n-Pentane and 3-methyl hexane, were 

previously reported to be present on breath of lung cancer patients. This approach may help in creation 

of a panel of compounds which could be useful as biomarkers of lung cancer.  
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Overview 

The initial hypothesis examined in this thesis is that hypoxia mediates changes in gene expression and 

altered cell metabolism in cancer cells which alters the VOCs produced, and may assist in identifying 

potential markers of the disease. This was tested with three studies. The first investigated the role of 

hypoxia on gene expression, identifying the ideal culture conditions to better mimic in-vivo conditions 

and where the metabolic switch from respiratory phenotype to glycolytic phenotype occurs. The second 

study examined free-radical production and lipid peroxidation in the hypoxic cultures, which may assist 

in identifying the possible biochemical origins of the VOCs. The third study assessed whether hypoxic 

cultures produced a distinctive VOC profile with the presence of an increased number of alkanes and 

methylated alkanes. 

Hypoxia mediates the metabolic switch from respiratory phenotype to glycolytic 

phenotype. 

The ideal oxygen percentage to culture the cells was determined Gene expression changes was analysed 

by qPCR on A549 cells cultured under various oxygen concentrations (1% O2, 2% O2 and 5% O2) 

compared to standard cell culture conditions (21% O2). This study showed statistically significant gene 

expression changes in the cells cultured under 2% O2 and 1% O2 and no significant changes were 

observed in the cells cultured under 5% O2. Also, hypoxia caused increased PDHK1 and GLUT1 

expression demonstrating a further shift towards glycolysis and away from OXHOS. These findings are 

consistent with other studies [1-3].  

Hypoxia increases Lipid Peroxidation    

The first stage of this study investigated the effect of hypoxia on auto-oxidation of lipids including co-

localisation of peroxidation and the structure of mitochondria in A549 cells. It was hypothesised that 

hypoxia would result in an increase in oxidative degradation of lipids mainly localised to mitochondria. 

However, the data obtained shows that there is a significant increase in lipid peroxidation in hypoxic 

cultures that does not correspond to just mitochondria. Additionally, there were no visual significant 

changes in the structure of mitochondria in hypoxic cultures. This data is consistent with A549 cells 

having functional mitochondria in hypoxia. 
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Furthermore, the second stage of this study investigated the generation of ROS in A549 cells under 

hypoxia. The data obtained shows decreased ROS in hypoxic cultures of A549 compared to normoxic 

controls which is consistent with the reduction of ROS in hypoxia found previously by two other studies 

[1, 2]. In particular, the former study demonstrated that hypoxia ROS is attenuated by the 

overexpression of PDHK1 – a HIF target gene [1] and we found PDHK1 to be increased in expression 

in hypoxic cultures of A549. Additionally, there is evidence that there is altered lipid metabolism in 

various cancers in-vitro which may be a vital secondary energy source [4-8]. Wise et al. demonstrated 

altered citrate production in hypoxic cultures of glioblastoma cells [9]. Reduced ROS in hypoxic 

cultures may be due to the increase antioxidant defences or ROS scavengers such as NADPH that are 

produced to enhance cell survival. However, this needs further elucidation.    

Hypoxia causes altered cell metabolism which may influence the VOCs produced by the 

cancer cells. 

The third and final study demonstrated the influence of hypoxia on the VOC profile in A549 cells. Since 

altered cell metabolism was observed under hypoxia, we hypothesised that hypoxic cultures will 

produce VOCs more typical of those found in cancer breath. The data obtained shows a unique VOC 

profile of hypoxic cultures with 12 VOCs produced only by A549 cells in hypoxic conditions. These 

consisted mostly of branched hydrocarbons along with a smaller number of alkenes, ketones, alcohols 

and a cycloalkane.  Of these, n-pentane and branched hydrocarbons are of particular interest as n-

pentane has been identified as a volatile product of peroxidation of n-6 PUFAS [10-12]. Additionally, 

it was found in breath of patients with bronchial asthma [13] and breath of lung cancer patients [14, 15]. 

This finding further supports the outcome of the second study of this thesis that there is increased LPO 

under hypoxic conditions.  

Detection of the branched hydrocarbons (3-methyl hexane, 2,3,4 - trimethyl decane, 3-ethylpentane and 

3,6 - dimethyl undecane) in only hypoxic cultures was an important finding. Of them, 3-methyl hexane 

has been detected on cancer breath [14] and found significantly increased in the breath of children with 

chronic liver disease [16]. Also, it was found in the headspace of bile of patients with 

Cholangiocarcinoma [17].  
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It has been suggested by Vaupel et al. that the Warburg effect requires modification, that cancer cell 

metabolism is heterogeneous, and that the tumour microenvironment influences oxygen availability and 

that this contributes to glycolysis to lactate in tumours [18]. The data presented here are consistent with 

the view that A549 have intact mitochondria (Chapter 5 of this thesis), that hypoxia causes increased 

anaerobic metabolism associated with increased PDHK1 and GLUT1 expression (therefore HIF 1 

activation), which results in a shift in cell metabolism as shown by changes in the VOCs being produced.  

To identify the candidate VOCs obtained from cancer metabolomics studies as biomarkers, they have 

to be validated by breath analysis of the patients with cancer and healthy controls. To test whether or 

not the unique VOCs produced by the hypoxic cultures are present on lung cancer breath, an interim 

study involving the collection of breath from patients diagnosed with lung cancer and healthy controls 

(age and sex matched) is in progress. Breath is collected in 100 ml glass sampling tube and VOCs 

harvested and detected as described in this thesis. This project was approved by the Federation 

University Human Ethics Committee with the project number A15-180.  

The preliminary results of this study (Myers MA, personal communication) are shown here (Table 6.1) 

with five cancer patients and five healthy controls matched for age and sex. Consistent with a previous 

study (Phillips et al.) 3-methyl hexane [14] was observed in the breath of two cancer patients, and 2,3-

butanedione [19] was found on breath of four cancer patients. Both these compounds were not detected 

in the breath of healthy controls, while n-Pentane was detected in breath of one cancer patient and one 

healthy control. While the breath study outlined here is in its early stages and the sample size is currently 

insufficient for conclusions to be drawn, it does confirm that 3-methyl hexane can be detected on breath 

from lung cancer patients, so providing support for the use of in vitro cell culture under low oxygen for 

the discovery of potential biomarkers.  
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Diagnosis Mean 

Age 

(Years) 

Age 

range 

(Years) 

Gender Number (n) 3-methyl 

hexane 

n-

pentane 

2,3-

butanedione 

Lung cancer 64.4 43 to 85 3M 2F 5 2 1 4 

Healthy 

control 

59.8 44 to 85 3M 2F 5 0 1 0 

Table 6.1: Preliminary results of the interim study 

VOCs found on the breath of the patients diagnosed with lung cancer vs healthy controls (M – Male and F – 

Female). 

 

Conclusions 

This thesis demonstrates the role of hypoxia in the regulation of the cell metabolism and VOC 

production in A549 cells. This data is consistent with our hypothesis that hypoxic cultures of A549 cells 

produce a unique VOC profile characteristic of cancer cells as they closely mimic the conditions of 

cancer cell growth in vivo. The relevance of this work to cancer diagnosis is outlined in Figure 6.1, 

which describes how micro physiological conditions in tumours could lead to altered cancer cell 

metabolism and VOC breath profiles. 
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Figure 6.1: Influence of hypoxia on VOC output 

Micro-physiological conditions effect cell metabolism and may influence the VOCs 

produced in the breath, which may be useful for identifying markers for early diagnosis in 

lung cancer patients. 
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Future Directions 

Cancer cell metabolomics in hypoxic conditions provides a great opportunity to test hypotheses around 

VOC profiles from different cancers and biochemical factors that may influence their production. Also, 

the cell culture metabolomics approach can be extended to other cancer cell lines such as liver cancer 

(HepG2), breast cancer (MCF7) to produce unique VOC profiles. This might provide more insight to 

the biochemical origins of VOCs. Another area for further exploration is antioxidant defence in cancer 

cells. It is hypothesised that under hypoxia, the antioxidant defences may be increased in cancer cells 

to protect the cell from cytotoxic effects of ROS and to aid cell survival and proliferation. This could 

be elucidated further by the treatment of A549 cells with inhibitors of SOD and/or NOX and measuring 

levels of ROS activity. Also, the above approach could help in clarification of the role of mitochondria 

in ROS production and the subcellular origins of VOCs. Furthermore, the breath of the cancer patients 

can be collected before and after the surgery (for example lung resection) or other treatment and 

analysed which may perhaps be useful to test the link between the cancer burden and its influence on 

VOC output, specifically related to LPO products, which could be implicated in disease prognosis. 

Cell culture metabolomics under low oxygen may be exploited to discover biomarkers for the design 

of screening tests for early diagnosis of diseases such as Ischemia, Chronic Obstructive Pulmonary 

Disorder (COPD) and Diabetes. Technological advances are today making breath analysis as a point of 

care diagnostic possible. Identifying the most specific and useful disease markers should be aided by 

such insights in to how these VOCs are produced. These tests in the future will be a non-invasive method 

for cancer diagnosis and monitoring of disease progression.   
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Appendix I 

 

A  B 

 

C 

 

D 

 

E 

 

 Figure Legend 
 

Figure 1: mRNA expression of the 

hypoxia associated genes relative to the 

housekeeping gene, EEF2 in A549 cells 

cultured under various oxygen 

concentrations compared to their 

controls. Relative expression of 

GLUT1, PDHK1, LDH-A, mTOR and 

PKM2 mRNA to EEF2 (A-E). Error 

bars indicate the SD from three 

independent biological samples.  

*P < 0.05, **P < 0.005. 
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Appendix II 

ENVIRONMENTAL AND SYSTEM CONTAMINANTS 
CLASS NO. COMPOUNDS CAS. NO. 

ALKANES (ACYCLIC, 

METHYLATED AND 

SUBSTITUTED) 

1 n-Hexane 110-54-3 

2 Tetradecane 629-59-4 

  3 Octane, 4-methyl- 2216-34-4 

  4 Decane, 3,6-dimethyl- 17312-53-7 

  5 Decane, 1-iodo- 2050-77-3 

  6 Undecane 1120-21-4 

  7 Dodecane, 2-methyl- 1560-97-0 

  8 Dodecane, 4,6-dimethyl- 61141-72-8 

  9 Pentadecane, 7-methyl-  6165-40-8 

  10 Tetracontane, 3,5,24-trimethyl- 55162-61-3 

  11 Hexacosane 630-01-3 

  12 1-Chloroeicosane 42217-02-7 

 13 Heptane, 4-methyl- 589-53-7 

 14 Pentane, 2,3,4-trimethyl- 565-75-3 

 15 Trichloromethane  67-66-3 

 16 Octane  111-65-9 

 17 n-Heptane 142-82-5 

 18 Heptane, 2,5,5-trimethyl- 1189-99-7 

 19 Pentadecane 629-62-9 

ALKENES       

  20 2-Heptene  592-77-8 

  21 2-Octene, (Z)-  7642-04-8  

  22 2,4-Dimethyl-1-heptene 19549-87-2 

 23 1-Pentene, 2-methyl- 763-29-1 

 24 2-Octene 111-67-1 

 25 Cyclohexene 110-83-8 

 26 3-Octene, (Z)- 14850-22-7 

 27 1-Octene, 3,7-dimethyl- 4/01/4894 

ALCOHOLS        

  28 Ethanol 64-17-5 

  29 1-Butanol  71-36-3 

  30 

1-Hexanol, 5-methyl-2-(1-

methylethyl)- 2051-33-4 

  31 3-Heptanol 589-82-2 

  32 Cyclohexanol 108-93-0 

  33 1-Dodecanol, 2-hexyl- 110225-00-8 

 34 2-Nonen-1-ol 22104-79-6 

ALDEHYDES       

  35 Acetaldehyde 75-07-0 

  36 Butanal 123-72-8 

  37 Pentanal 110-62-3 

  38 Hexanal 66-25-1 

  39 Octanal 124-13-0 

 40 Butanal, 3-methyl- 590-86-3 

 41 2-Ethylacrolein  922-63-4 

KETONES      

  42 Acetone 67-64-1 

  43 2-Butanone 78-93-3 



Page | 130  
 

ENVIRONMENTAL AND SYSTEM CONTAMINANTS 
CLASS NO. COMPOUNDS CAS. NO. 

  44 2-Hexanone 591-78-6 

  45 3-Heptanone 106-35-4 

  46 2-Heptanone 110-43-0 

  47 2-Octanone 111-13-7 

  48 Methyl Isobutyl Ketone 108-10-1 

  49 2,3-Butanedione 431-03-8 

 50 4-Octanone 589-63-9 
AROMATICS 

COMPOUNDS      

  51 Benzene 71-43-2 

  52 Toluene 108-88-3 

  53 Ethylbenzene 100-41-4 

  54 Benzene, 1-ethyl-3-methyl- 620-14-4 

  55 Benzene, 1-ethyl-4-methyl- 622-96-8 

  56 Benzene, 1-ethyl-2-methyl- 611-14-3 

  57 Mesitylene 108-67-8 

  58 

Benzene, 1,3-bis(1,1-

dimethylethyl)- 1014-60-4 

  59 Benzene, 1,4-diethyl- 105-05-5 

  60 o-Cymene 527-84-4 

  61 p-Cymene 99-87-6 

  62 Styrene 100-42-5 

  63 o-Xylene 95-47-6 

  64 Phenol 108-95-2 

  65 Acetophenone 98-86-2 

  66 Benzaldehyde 100-52-7 
HETEROCYCLIC 

COMPOUNDS       

  67 2,4-Dimethylfuran 3710-43-8 

  68 

Tricyclo[3.1.0.0(2,4)]hex-3-ene-3-

carbonitrile NA 

  69 Hexanamide, N-methallyl- NA 

  70 Benzofuran 271-89-6 

  71 Cyclotrisiloxane, hexamethyl-  541-05-9 

ESTERS       

  72 

2-Furancarboxylic acid, 2-

tetrahydrofurylmethyl ester NA 

  73 

Sulfurous acid, cyclohexylmethyl 

hexadecyl ester NA 

  74 

Trifluoroacetic acid,n-tridecyl 

ester NA 

  75 Ethyl Acetate 141-78-6 

 76 

Formic acid, cis-4-

methylcyclohexyl ester NA 
CYCLIC 

COMPOUNDS    

 77 

Cyclohexane, 1-ethyl-1,3-

dimethyl-, cis-  NA 

 78 Bicyclo[4.2.0]octa-1,3,5-triene   694-87-1 

OTHERS    

 79 Hydroperoxide, pentyl 74-80-6 
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Appendix III 

 

VOCs from A549 cells under Normoxia  

VOCs from A549 cells under Hypoxia 


