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Abstract 

Habitual exercise is unequivocally associated with decreased all-cause 

mortality and morbidity. Despite the strength of the association, a large part of the 

decreased risk is physiologically unaccounted for. Accumulating evidence 

indicates that leukocyte telomere length (LTL) may be one such explanatory 

mechanism. Telomeres are specialized deoxyribonucleic acid (DNA) sequences 

located at chromosomal ends where they protect the genomic DNA from enzymatic 

degradation. Excessive and/or premature telomere shortening in leukocytes is 

associated with a host of chronic diseases and impaired immune function. 

Observational associations exist between LTL and habitual physical 

activity/exercise in multiple cohorts. However, correlation does not imply causal 

story and the underpinning mechanisms behind the association are unclear. The 

current consensus is that long-term exercise-induced reductions in oxidative stress 

and inflammation mediate the association. The acute dynamics of telomere biology 

are poorly understood; however, a growing body of evidence suggests that 

telomeres may be amenable to acute modulation via expression of telomere-

associated genes and microRNAs. Accordingly, the overarching aim of this thesis 

was to characterize the acute effects of aerobic exercise on leukocyte telomere 

biology.  

Study One 

Telomere biology underpins effective immune function, chronicling replicative 

history and defining replicative potential. The various immune cell subsets exhibit 

disparate exercise responses and heterogeneous telomere lengths. Therefore, 

study one began by quantifying exercise-induced changes in immune cell subsets. 
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Study one had two key aims: (i) to characterise the exercise-induced immune 

response and (ii) to analyse and sort T cell subsets for subsequent gene 

expression analysis. Twenty-two participants undertook a 30 min bout of treadmill 

running at precisely 80% of peak volume of oxygen intake (V̇O2peak). Blood samples 

were taken pre-, immediately post- and 60 min post-exercise. Flow cytometry 

analysis identified significant post-exercise decreases in total CD3+ T cells 

(P<0.001) and CD4+ T cells (P<0.001). This was followed by a return to resting 

levels 60 min post-exercise in CD3+ T cells and above resting levels in CD4+ T 

cells (P<0.001). The novel post-exercise decrease in CD3+ T cells represents an 

inversion of the archetypal CD3+ exercise response. A significant decrease in 

CD8+ T cells occurred 60 min post-exercise (P<0.01). Relative proportions of 

CD4+ naïve T cells decreased 60 min post-exercise (P=0.05) whilst CD8+ naïve T 

cells decreased post-exercise (P<0.05) before returning to resting levels 60 min 

post-exercise.  In conclusion, 30 min of treadmill running at a constant 80% of 

V̇O2peak was sufficient to elicit novel changes CD3+ T cells and the relative 

proportions of specific T cell subsets. The diverse functions within immune subsets 

and their capacity to be modulated by exercise warrants a clearer understanding 

of the molecular consequences. Importantly, given the heterogeneity of telomere 

lengths within immune subsets, relative changes in subset proportions should be 

accounted for when reporting mean LTL. Whilst conventional wisdom posits that 

LTL determines the immune environment, exercise also alters the immune 

environment and therefore mean LTL.  

Study Two 

In study two, acute exercise-induced epigenetic modification was assessed in 

leukocytes and T cell subsets. Study one identified the acute changes in microRNA 
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(miRNA) in leukocytes and immune cell subsets. Given the heterogeneous 

functions and gene expression signatures of each subset, even transient changes 

in the relative proportions of these cells will likely elicit physiological changes. An 

initial genome wide microarray (n=10) identified 56 differentially regulated miRNAs 

in leukocytes in response to exercise. Subsequent in silico analyses predicted 

miRNA/mRNA interactions between the following: miR-181b and hTERT, miR-186 

and repressor/activator protein-1 (RAP1), RAD50 homolog (S. cerevisiae) 

(RAD50) and silent mating type information regulation 2 (SIRT6), miR-96 and 

RAP1, and miR-15a and TATA box binding protein (TBP).  

Subsequent quantitative polymerase chain reaction (qPCR) validations (n=18) 

identified significant upregulation between pre- and 60 min post-exercise in miR-

186 (P<0.001), miR-15a (P<0.001) and miR-96 (P<0.001). Significant upregulation 

also occurred between post- and 60 min post-exercise in miR-186 (P<0.01), miR-

15a (P<0.001), and miR-96 (P<0.01). Only miR-181b and miR-186 were detected 

in the sorted T cell subsets. 

 The findings of this study highlight the transcriptional responsiveness of 

leukocyte miRNAs to exercise. Four novel miRNAs with potential telomere biology 

involvement were identified. Additionally, the findings highlight discrepant miRNA 

expression profiles between whole leukocytes and T cell subsets, suggesting the 

composite signature is at least in part driven by other immune cell subsets.  

Study Three 

Study three characterized the expression of gene transcripts predicted to be 

targeted by miRNAs identified in study two.  Study two identified miRNAs with in 

silico binding potential for several telomere-associated genes. In study three, a 
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telomere extension array was initially used to identify exercise-induced changes in 

several telomere-associated genes including predicted miRNA targets: hTERT, 

SIRT6, RAP1 and RAD50.  Subsequent qPCR validations (n=17) confirmed 

significant 60 min post-exercise upregulation of hTERT (P=0.001) and SIRT6 

mRNA (P=0.017) but discounted any interaction with the potential binding miRNAs. 

Decreased RAP1 mRNA expression at 60 min post-exercise (P=0.002) was 

paralleled by concomitant increases in potential binding miRNAs (miR-186 and 

miR-96). This supports the notion of miRNA/mRNA interaction. A 60 min post-

exercise decrease in RAD50 mRNA coincided with increased expression of 

potential target miR-186 expression. The exercise-induced upregulation of hTERT 

mRNA was broadly confirmed in CD4+CD45RA+, CD4+CD45RO+ and 

CD8+CD45RA+ T cell pools.  

The novel findings of this study are the exercise-induced upregulation of 

hTERT and SIRT6 mRNA in leukocytes. hTERT plays critical roles in telomere 

biology and is the rate limiting component of telomerase activity. Additionally, this 

study validated the down-regulation of RAP1 mRNA paralleled by increases in 

miR-186 and miR-96. Importantly, the findings of this study suggest that some 

telomere-associated genes have an immediate, early transcriptional response. 

Study Four 

The final study of this thesis utilized next generation RNA sequencing to 

characterize acute changes in the exercise-induced leukocyte transcriptome in 

healthy males (n=10). The exercise transcriptome represents the sum of all mRNA, 

non-coding RNA, and small RNA molecules expressed in a specific tissue in 

response to exercise. A total of 182 transcripts were differentially regulated 

between Pre-Ex to Post-Ex and Post-Ex to 24 h Post-Ex (FDR<0.01). Amongst the 
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differentially regulated transcripts were members of the heat shock protein families 

(HSP90 and HSP70), which showed significant upregulation post-exercise before 

returning to resting levels within 24 hours. HSP90 and HSP70 both have 

established roles in telomere biology. A total of 12 non-coding RNAs were also 

differentially regulated across the three time points, including miR-23a and miR-

27a, both of which are associated with telomere biology. The results of this study 

both confirm and extend the results of the previous chapters by showing the 

exercise responsiveness of pro-telomere transcripts. The results show that 

exercise acutely elicits multiple pathways and that telomere maintenance may be 

one of them.  

In summary, the above studies indicate that telomere biology within the 

immune system is acutely labile. Aerobic exercise differentially regulates many 

microRNAs some of which have potential telomeric involvement. Additionally, 

several key telomere-associated genes respond to aerobic exercise within 60 min 

of exercise cessation. The acute upregulation of hTERT, the rate-limiting 

component of telomerase, may provide a mechanistic insight into the observed 

positive association between exercise and telomere length. Additionally, with 

mounting evidence of the critical role of epigenetic chromatin modifications in 

telomere length regulation, the identification of miRNAs with potential telomeric 

involvement may help improve the understanding of the role of epigenetics and 

telomere homeostasis.   
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1.1 Overview 

Aging and physical inactivity underpin two of the most significant and current 

health imperatives; cardiovascular disease (CVD) and obesity. The global 

population of persons aged 80 years or older is indexed to triple by 2050 (United-

Nations, 2015). Disease free years have not increased proportionately despite 

increases in total life expectancy, creating a compression of chronic disease 

burden in old age (Murray et al., 2015). Aging is a complex physiological construct 

of outward macroscopic effects underpinned by complex molecular processes. In 

addition to being a strong independent and non-modifiable risk factor for chronic 

disease (Dillin, Gottschling, & Nyström, 2014; Niccoli & Partridge, 2012; Reeve, 

Simcox, & Turnbull, 2014; Shane Anderson & Loeser, 2010), chronological age is 

a measure of risk factor exposure (Kannel & Vasan, 2009; Sniderman & Furberg, 

2008).  

Biological aging is a distinct construct referring to processes that proceed 

independently of chronological aging. These changes collectively reduce 

organismal viability and increase disease vulnerability. Telomeres are widely 

viewed as both biomarkers and instigators of biological age. Consensus on this 

point has arisen from widely demonstrated associations with exercise, disease, 

and longevity. Telomeres are repetitive tandem DNA sequences located at 

chromosomal terminals where they preserve genomic integrity. Progressively 

shortening with replicative age, telomeres simultaneously record cellular replicative 

history and impose a finite replicative lifespan.   

The complex network of molecular events that underpin aging phenotypes is 

the subject of considerable research focus. Two critical aging processes are 
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cellular senescence (Bhatia-Dey, Kanherkar, Stair, Makarev, & Csoka, 2016) and 

telomere attrition (Blackburn, Greider, & Szostak, 2006; von Zglinicki, Pilger, & 

Sitte, 2000).  Cellular senescence is the irreversible exhaustion of cellular 

replicative capacity that contributes to tissue aging and dysfunction. Telomere 

shortening and destabilization are central components of this replicative 

exhaustion.  

It has been proposed that human biology was forged during the period when 

humans were nomadic hunter gatherers (Trevathan, Smith, & McKenna, 1999). 

Genes that endowed survival benefit during this Late Paleolithic era have become 

antagonistically pleiotropic in the modern environment (Gerber & Crews, 1999). 

Two critical differences between the two epochs are nutritional excesses and 

physical inactivity. Physical inactivity is one of the 10 leading global mortality risk 

factors, accounting for approximately 3.2 million global deaths annually (Lim et al., 

2012). Physical inactivity affects multiple physiological systems and is known to 

increase the risk of colon cancer (Wolin, Yan, Colditz, & Lee, 2009), 

postmenopausal breast cancer (Monninkhof et al., 2007), type 2 diabetes 

(Tuomilehto et al., 2001), CVD (Nocon et al., 2008), depression (Paffenbarger, 

Lee, & Leung, 1994) and dementia (Rovio et al., 2005).  

Physical exercise represents an acute disruption to homeostasis that elicits 

a complex cascade of compensatory mechanisms at the systemic, cellular, and 

molecular level. Advances in molecular biology provide an unprecedented 

snapshot of the genetic and epigenetic influences on exercise-mediated 

phenotypes.  Genome-wide association studies (GWAS) have identified gene 

variants that influence the health benefits of exercise (Sarzynski, Ghosh, & 

Bouchard, 2016; Tanaka, Wang, & Pitsiladis, 2016). Bioinformatics and 
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computational analytical technologies have ushered in data-rich fields of 

physiology including genomics, epigenomics, metabolomics, and proteomics. 

Microarray, and more recently next generation ribonucleic acid sequencing (RNA-

seq) can provide a complete transcriptional footprint of exercise and help interpret 

the complex transcriptional networks.  

Epigenetics has emerged as a critical and complex field in exercise 

physiology, highlighting the intimate relationship between environment and 

phenotype.  Epigenetic modification refers to heritable alterations in gene function 

that occur without changes in nucleotide sequences (Bird, 2007). These changes 

can take the form of DNA methylation, histone modifications, and transcriptional 

regulation by small non-coding RNA molecules called microRNAs (miRNAs) (He & 

Hannon, 2004). Accumulating evidence indicates that exercise can alter the 

trajectory of biological aging and exert transgenerational influence on metabolic 

phenotypes and disease propensity (Barros & Offenbacher, 2009; Rodenhiser & 

Mann, 2006; van Dijk, Tellam, Morrison, Muhlhausler, & Molloy, 2015).  

Telomere biology appears sensitive to a host of both negative and positive 

stimuli and lifestyle interventions. A rapidly growing body of evidence attests to a 

positive association between habitual physical activity/exercise and telomere 

length in various tissue types. Such an association may provide a direct means to 

influence the biological age of the responsive tissues. It may also provide novel 

and exciting opportunities to enhance the understanding of telomere dynamics and 

potentially increase healthy years of life through inexpensive behavioural 

interventions such as exercise.  
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1.2 Physical Activity and All-Cause Mortality 

Physical activity (PA) and cardiorespiratory fitness (CRF) are stronger, 

independent predictors of CVD and all-cause mortality than smoking, 

hyperlipidaemia, hypertension, and diabetes (Blair et al., 1989; Gulati et al., 2005; 

Kokkinos, 2008; Mora et al., 2003; Myers et al., 2004; Myers et al., 2002; Sandvik 

et al., 1993). The landmark Harvard Alumni Study identified a 25-33% decrease in 

all-cause death rates (Paffenbarger, Hyde, Wing, & Hsieh, 1986), a 45% decrease 

in CVD risk, and a lifespan increase of 2.15 years in physically active individuals 

(Paffenbarger, Hyde, Wing, & Steinmetz, 1984).  A 2014 analysis of 55,137 adults 

identified a 30% and 45% lower adjusted risks of all-cause and cardiovascular 

mortality respectively, giving rise to a 3 year increase in life expectancy (Lee et al., 

2014). 

CRF demonstrates a stronger negative association with CVD events and a 

steeper dose response gradient than PA alone (Blair & Jackson, 2001; Myers et 

al., 2004; Williams, 2001). The seminal Aerobics Centre Longitudinal Study (ACLS) 

established that the most fit men and women had 43% and 53% lower all-cause 

mortality and 47% and 70% lower CVD mortality rate respectively (Blair et al., 

1989).  

There is incontrovertible evidence that PA and CRF decrease all-cause 

mortality (Blair, Cheng, & Scott Holder, 2001 2001; Blair, Kohl, & Barlow, 1993; 

Kampert, Blair, Barlow, & Kohl Iii, 1996; Kodama et al., 2009; Lakka et al., 1994; 

Myers et al., 2004; Park, Chung, Chang, & Kim, 2009; Sui et al., 2007; Villeneuve, 

Morrison, Craig, & Schaubel, 1998; Wei, Gibbons, Kampert, Nichaman, & Blair, 

2000). Despite the established benefits, the underpinning molecular mechanisms, 
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their targets, specificity, and time course are poorly understood. Additionally, the 

relatively modest exercise-induced changes seen in individual disease risk factors 

rarely scale with the comparatively large disease risk reduction (Mora, Cook, 

Buring, Ridker, & Lee, 2007).   

1.2.1 Established Physiological Mechanisms of Exercise 

Adaptation 

The molecular response to exercise consists of complex cell signalling 

pathways driven by specific primary and secondary messengers. The result is 

regulation of gene expression, increased production of requisite proteins, and 

ultimate modulation of phenotype (Williams & Neufer, 2011).  A given metabolic 

phenotype reflects the transient and cumulative perturbations to multiple discrete 

bouts of exercise (Thompson et al., 2001). Considerable heterogeneity exists 

between the respective time courses and half-lives of such acute perturbations. 

The following section provides a brief overview of the major physiological adaptive 

mechanisms. 

Cardio-metabolic Factors 

Regular exercise elicits a host of positive myocardial (Kemi & Wisløff, 2010) 

and vascular adaptations (Haram, Kemi, & Wisloff, 2008; Kojda & Hambrecht, 

2005). Habitual exercise training increases left ventricular (LV) end-diastolic 

diameter (Pelliccia, Culasso, Di Paolo, & Maron, 1999; Pelliccia , Maron , Spataro 

, Proschan , & Spirito 1991; Roeske, O'Rourke, Klein, Leopold, & Karliner, 1976), 

LV wall thickness (Pelliccia  et al., 1991; Roeske et al., 1976), and LV mass 

(Pelliccia  et al., 1991; Pressler et al., 2012). Exercise training also causes right 

ventricular enlargement (Scharf et al., 2010; Scharhag et al., 2002), reduced 
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arterial wall thickness, and increased lumen diameter (Green, Spence, Rowley, 

Thijssen, & Naylor, 2012; Mulvany, Hansen, & Aalkjaer, 1978).   

Flow-mediated shear stress-induced increase in the vasodilator vascular 

nitric oxide (NO) is a critical adaptation to aerobic exercise (Schuler, Adams, & 

Goto, 2013). Increased NO enhances blood pressure regulation (Cornelissen & 

Fagard, 2005; Cornelissen, Fagard, Coeckelberghs, & Vanhees, 2011; Pescatello 

et al., 2004), coronary blood flow (Hambrecht et al., 2000), endothelial function  

(DeSouza et al., 2000; Green, Maiorana, O'Driscoll, & Taylor, 2004; Moyna & 

Thompson, 2004; Walsh et al., 2003), and haemostatic function (Rauramaa et al., 

1986). Aerobic exercise also mobilizes endothelial progenitor cells and 

mesenchymal stem cells (Lenk, Uhlemann, Schuler, & Adams, 2011); potentially 

influencing vascular regulation and endothelial repair (Asahara et al., 1997; Huang 

& Li, 2008).  

Habitual cardiorespiratory exercise also reduces CVD biomarkers including 

systemic inflammation (Adamopoulos et al., 2001; Mora et al., 2007; Petersen & 

Pedersen, 2005), enhances glucose homeostasis and insulin sensitivity (Alcazar, 

Ho, & Goodyear, 2007; Harris, Hadden, Knowler, & Bennett, 1987) and improves 

lipoprotein profiles (Tambalis, Panagiotakos, Kavouras, & Sidossis, 2009).   

Skeletal Muscle Factors 

Skeletal muscle makes up 40-50% of the human body’s mass and plays 

critical roles in metabolism and exercise adaptation (Egan & Zierath, 2013; Izumiya 

et al., 2008; Lee et al., 2000). Skeletal muscle demonstrates extensive adaptive 

plasticity, undergoing biochemical, structural, and transcriptional changes in 

response to exercise (Egan & Zierath, 2013). The adaptive responses to exercise 
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are largely specific to the stimulus imparted. The peroxisome-proliferator-activated 

receptor gamma, coactivator 1 (PGC)-1α plays a critical role in signalling pathways 

activated by endurance exercise (Chan & Arany, 2014). PGC-1α and its family of 

transcriptional coactivators collectively regulate mitochondrial biogenesis and 

capillarity (Rowe et al., 2014). A single bout of endurance exercise has been shown 

to cause morphological and biochemical changes in skeletal muscle mitochondria 

(Picard et al., 2013). Habitual endurance training has been shown to increase 

mitochondrial density by approximately 40% (Montero et al., 2015). Endurance 

exercise also enhances skeletal muscle oxidative capacity (Booth & Baldwin, 2010) 

and anti-oxidant defence enzymes (Geng et al., 2010; Leick, Plomgaard, et al., 

2010). 

The conversion of mechanical signals into biochemical and molecular 

processes in skeletal muscle is known as mechanotransduction.  Mechanical 

stress is transferred to the extracellular matrix via focal adhesions.  Sufficient 

mechanical stress increases protein synthesis leading to mechanical load-induced 

hypertrophy; the reverse is true for skeletal muscle atrophy (Adams & Bamman, 

2012). Resistance training predominantly activates hypertrophy pathways via the 

critical protein synthesis regulator mammalian target of rapamycin complex 1 

(mTORC1).  

Skeletal muscle also secretes a complex cascade of growth factors, 

cytokines, and myokines following exercise (Bortoluzzi, Scannapieco, Cestaro, 

Danieli, & Schiaffino, 2006; Henningsen, Rigbolt, Blagoev, Pedersen, & 

Kratchmarova, 2010; Norheim et al., 2011; Roca-Rivada et al., 2012; Yoon et al., 

2009). This diverse family of secretory factors mediate anti-inflammatory pathways 

(Pedersen & Febbraio, 2008), modulate visceral fat deposition (Nielsen et al., 
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2008; Quinn & Anderson, 2011), improve fat oxidation (Plomgaard, Fischer, Ibfelt, 

Pedersen, & Van Hall, 2007; van Hall et al., 2003), improve glucose utilization 

(Fischer et al., 2004), and enhance signalling pathways (Pedersen & Febbraio, 

2008). 

Oxidative Stress Factors 

High intensity or long duration exercise enhances production of reactive 

oxygen species (ROS). Whilst ROS production is crucial for cellular communication 

and pathway activation, excessive ROS production overwhelms antioxidant 

defence capacity resulting in damage to lipids, nucleic acids, and proteins (Ray, 

Huang, & Tsuji, 2012). The accumulation of oxidative stress-induced DNA damage 

is causally linked with organismal aging and is a key factor in cellular dysfunction 

(Haigis & Yankner, 2010), neurodegeneration (Andersen, 2004; Shukla, Mishra, & 

Pant, 2011), atherosclerosis and diabetes (Paravicini & Touyz, 2006), and 

carcinogenesis (Trachootham, Alexandre, & Huang, 2009). In adaptive response, 

habitual exercise increases anti-oxidant defence systems (Ji, Gomez-Cabrera, & 

Vina, 2006; McArdle & Jackson, 2000; Radak, Chung, & Goto, 2005; Shin, Lee, 

Song, & Jun, 2008; Urso & Clarkson, 2003) and enhances oxidative damage repair 

systems (Radák et al., 2003; Sato, Nanri, Ohta, Kasai, & Ikeda, 2003). This 

decreases cellular and genomic damage caused by ROS.  

Immunological Factors 

Overview of the Immune System 

The immune system consists of leukocytes (also known as white blood cells) 

distributed over the innate and the adaptive immune systems. The innate immune 

system is the non-specific (antigen independent) frontline defence whilst the 

adaptive immune system is antigen specific, mounting highly specific responses 
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guided by antigen-specific memory (Simpson, 2013). Leukocytes are a complex 

immunological conglomeration consisting of variable frequencies of natural killer 

cells, monocytes, granulocytes, and T and B cell lymphocytes (table 1). The relative 

subset proportions are dynamic, rapidly changing in response to a wide range of 

stimuli.   

The lymphocyte subset is subdivided into T cells, B cells, and NK cells with 

each cell type identified by specific cell surface markers called clusters of 

differentiation (CD). T cells express the cell surface marker CD3 (CD3+) whilst B 

cells express CD19 but not CD3 (CD3-CD19+); NK cells express CD16 and CD56 

and are therefore designated as CD16+CD56+. The relative expression of these 

cell surface markers reflects their cytokine profile, telomere length, subsequent 

replicative capacity, and antigen specificity (Appay, van Lier, Sallusto, & Roederer, 

2008). 

T cells 

T cells are a diverse group of cells with wide ranging proliferative capacities, 

surface marker expressions, functions, and cytokine-secretion profiles (Simpson, 

2013). T cells are broadly categorised as either CD4+ helper T cells (TH) or CD8+ 

cytotoxic T cells (TC) (figure 1).  The CD4+ TH cells exhibit both the CD3 and CD4 

surface markers and facilitate immune responses by secreting an array of growth 

factors and cytokines. The primary function of CD8+ TC cells is to destroy virally 

infected cells via toxic granules containing potent digestive enzymes.  

T cells are phenotypically categorized according to their antigenic history. 

Circulating CD4+ and CD8+ T cells unexposed to foreign antigens are referred to 

as naïve and minimally express the cell surface marker CD45RA (Akbar, Terry, 
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Timms, Beverley, & Janossy, 1988). Prior to antigen exposure, naïve (CD45RA+) 

T cells circulate in a quiescent, non-proliferating state. T cells with previous antigen 

exposure are referred to as memory cells (CD45RO+) and express the cell surface 

marker CD45RO (Figure 1).  

The CD4+ T cell subset is further divided into type 1 (TH1) or type 2 (TH2) 

according to their cytokine profile (figure 1). Type 1 T cells produce interleukin-2 

(IL-2), interleukin-10 (IL-10), and interferon-γ (IFN-γ). Type 1 T cells elicit the cell-

mediated immune response (activation of macrophages and CD8+ cytotoxic T cell 

proliferation) that defends against bacterial and intracellular viral pathogens. Type 

2 T cells produce interleukin 4 (IL-4), interleukin 5 (IL-5), interleukin 6 (IL-6), 

interleukin 9 (IL-9), interleukin 13 (IL-13) and interleukin 25 (IL-25) (Walsh et al., 

2011). Type 2 T cells primarily activate and maintain the humoral immune response 

against extracellular bacteria or parasites. 

Habitually active individuals have more effective immune function than 

inactive individuals, independent of age (Kohut & Senchina, 2004; Simpson et al., 

2012). Moderate intensity exercise is associated with decreased circulating 

inflammatory cytokines (Pedersen & Bruunsgaard, 2003), improved vaccine 

responses (Kohut et al., 2004; Woods et al., 2009), enhanced immune cell 

phagocytic and cytotoxic activity (Nieman, Henson, et al., 1993; Woods et al., 1999; 

Yan et al., 2001), increased immune cell proliferation (Nieman, Henson, et al., 

1993; Shinkai et al., 1995), decreased numbers of clonally exhausted T-cells 

(Spielmann et al., 2011), and increased interleukin-2 (IL-2) production (Drela, 

Kozdron, & Szczypiorski, 2004).  
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Figure 1. T cell Subsets: CD3+ T cells are broadly divided into CD4+ 

helper T cells and CD8+ cytotoxic T cells. Each subset consists of 

CD45RA+ and CD45RO+ populations. Naïve CD4+ T cells 

differentiate into Type I (TH1) and Type II (TH2) cells. 
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Table 1. Lymphocyte distribution 

Subset Percentages Key Functions/Characteristics 

T cells (CD3+): 60-80% of lymphocytes  

   

TH (CD3+CD4+) 60-70% of T cells Helper T cells 

Antigen recognition and co-ordination of immune response via 

stimulation of T and B cell proliferation and differentiation 

   

TC (CD3+CD8+) 30-40% of T cells Cytotoxic T cells - destruction of various foreign targets and some 

tumour cells 

Suppression of the immune response 

   

Memory/recently 

activated T cells 

(CD3+CD45RO+) 

Variable – dependent 

upon health and age 

Divided into: 

Central memory T cells – mounts recall response to antigen, 

rapidly proliferating and differentiating into effector T cells 

Effector memory T cells – rapid production of effector 

cytokines upon antigenic challenge 
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Table 1. continued 

Subset Percentages Key Functions/Characteristics 
Naïve and inactivated T 

cells (CD3+CD45RA+) 

Variable – dependent 

upon health and age 

Reside in secondary lymphoid organs such as lymph nodes and 

spleen 

Express L-selectin (CD62L), CC chemokine receptor 7 (CCR7), 

and leukocyte function antigen-1 (the αLβ2 integrin LFA-1) 

   

B cells 
(CD19+CD20+CD22+) 

5-15% of lymphocytes Production and secretion of antigen-specific antibodies- antigen-

specific memory 

   

NK cells  
(CD3-CD16+CD56+) 

5-20% of lymphocytes Acute cytolytic activity against infected cells 

 

 

CD = clusters of differentiation; MHC = major histocompatibility complex; NK = natural killer; TH = helper T cell; TC = 

cytotoxic T cell. Adapted from (Gleeson & Bosch, 2013) 
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The immunological benefits of exercise exist along an inverted ‘U’ response. 

Extended bouts of sedentary behaviour increase morbidity and mortality rates 

(Arem, Moore, Patel, & et al., 2015; Kanneganti & Dixit, 2012; Kraus et al., 2015; 

Sedentary Behaviour Research, 2012). At the other extreme, long duration and/or 

prolonged high-intensity exercise training represents a point of diminished returns, 

decreased immune function, and increased inflammation (Bonini et al., 2015; 

Gleeson & Walsh, 2012; Meeusen et al., 2013; Turner et al., 2013; Turner, Bosch, 

& Aldred, 2011).  

The magnitude and direction of the exercise immune response is influenced 

by exercise type, intensity, duration, participant age, fitness level, and nutritional 

status (Woods, Vieira, & Keylock, 2006).   The resultant physiological mechanisms 

that modulate the immune response include body temperature changes, increased 

blood flow, changes in fluid balance, lymphocyte apoptosis (Nieman, 2007), altered 

glutamine metabolism (Parry-Billings et al., 1992; Parry-Billings, Leighton, 

Dimitriadis, Bond, & Newsholme, 1990), and changes in stress hormones (Nieman, 

2007; Ortega, 2003).  

1.2.2 Exercise and Molecular Mechanisms of Adaptation 

Exercise and Gene Expression 

Changes in physiological phenotypes are mediated by adaptive changes in 

the activity and abundance of key associated proteins (Neufer et al., 2015).  This 

in turn is a function of differential regulation of gene transcription, protein 

translation, and post-translational modifications.  Exercise transiently disrupts 

metabolic homeostasis, activating transcription factors which in turn bind to 

regulatory sequences within target gene promotor regions. This signals increased 
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messenger RNA (mRNA) expression. Exercise-induced phenotypic changes are 

due to the cumulative and overlapping effects of acute mRNA modulation (Neufer 

& Dohm, 1993; Perry et al., 2010).  

Exercise-induced increases in protein reflect a dynamic balance between 

the half-life of the protein, mRNA stability, and the transient change in gene 

expression between exercise bouts (Neufer et al., 2015). Proteins with a rapid 

turnover rate typically have low basal expression but increase significantly and 

acutely in response to exercise before rapidly returning to basal levels post-

exercise. Slow turnover proteins typically display higher basal expression and are 

only minimally influenced by an exercise bout; however, typically remain elevated 

between exercise bouts (Booth & Neufer, 2012).   

Genes can be temporally categorized as either primary response genes 

(PRGs), immediate-early gene (IEG) expression, delayed PRGs or secondary 

response genes (SRGs) (Bahrami & Drabløs, 2016). PRGs rapidly respond to 

cellular signals and are associated with a wide range of signalling pathways. Many 

PRGs encode transcription factors which in turn modulate secondary response 

genes (Winkles, 1997). PRGs can be further classified as either immediate early 

genes (IEGs) or delayed PRGs (Bahrami & Drabløs, 2016).  

Immediate Early Gene Expression 

Immediate early genes (IEGs) exhibit rapid and transient transcriptional 

responses shortly after stimulation (Simon, Fehrenbach, & Niess, 2006). The 

mRNA of IEGs is transcribed rapidly, even in the presence of protein synthesis 

inhibitors, indicating that the requisite proteins already exist within the cell 

(Herschman, 1991; Morgan & Curran, 1991). IEGs are shorter in length than most 
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other genes, measuring on average 19 kilobases (kb) versus 58 kb. They also 

possess fewer exons; however, they typically have more CpG islands and TATA 

boxes. IEGs also exhibit increased prevalence of specific transcription factor 

binding sites including nuclear factor kappa B (NF-κB), serum response factor 

(SRF) and cyclic AMP response element-binding protein (CREB) (Healy, Khan, & 

Davie, 2013). Expression of the critical immediate early FOS gene peaks 30-60 

min after stimulation, resolving to basal concentration after 90 min (Greenberg & 

Ziff, 1984). The nature and amplitude of IEG expression varies according to the 

intensity, type, and duration of the exercise stimulus. IEG expression is required to 

elicit protein neo-synthesis and the downstream activation of late-response genes 

(Watson & Clements, 1980). A role for microRNAs in the rapid post-stimulation 

downregulation of IEGs has recently been posited (Aitken et al., 2015; Avraham et 

al., 2010). 

Delayed primary response genes are similar to primary response genes in 

that many do not require de novo protein synthesis; however, their induction can 

be delayed and many exhibit different structure and function (Tullai et al., 2007). 

Secondary response genes are also responsive to signalling; however, they 

require de novo protein synthesis and therefore exhibit a slower transcriptional time 

course (Herschman, 1991; Serrat et al., 2014). 

FOS and JUN are two established IEGs which collectively influence cellular 

differentiation, proliferation, and survival (Healy et al., 2013; O'Donnell, Odrowaz, 

& Sharrocks, 2012). The post-exercise increases in leukocyte heat shock proteins 

(HSPs) is another example of an IEG response (Pirkkala, Nykanen, & Sistonen, 

2001). HSPs influence pro-inflammatory cytokine release, protection from DNA 

damage, and stimulation of innate and adaptive immune responses (Simon et al., 
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2006).  There are also numerous signalling pathways that regulate IEG protein 

expression via phosphorylation and activation, including RhoA-actiin, p38 MAPK, 

P13K, and ERK (Bahrami & Drabløs, 2016). 

Connolly et al. investigated the peripheral blood mononuclear cell (PBMC) 

gene expression immediately after, and 1 hour after a 30 min treadmill run at 80% 

of V̇O2max (Connolly et al., 2004). The 30 min exercise intervention was well suited 

to characterize IEG expression without potentially confounding expression of later 

responding genes. Additionally, most IEGs would have resolved to basal 

expression by the 1 hour post-exercise measurement. A total 311 genes were 

differentially regulated immediately after 30 min of exercise and 552 were 

differentially regulated 1 hour post-exercise.  

Exercise-induced gene expression has been investigated in a range of 

tissues including skeletal muscle (Febbraio & Koukoulas, 2000; Kraniou, Cameron-

Smith, Misso, Collier, & Hargreaves, 2000; Louis, Raue, Yang, Jemiolo, & Trappe, 

2007; Pilegaard, Ordway, Saltin, & Neufer, 2000; Pilegaard, Saltin, & Neufer, 2003; 

Tunstall et al., 2002), and white blood cells (Booth, Chakravarthy, & Spangenburg, 

2002; Büttner, Mosig, Lechtermann, Funke, & Mooren, 2007; Connolly et al., 2004; 

Nakamura et al., 2010; Radom-Aizik, Zaldivar, Leu, & Cooper, 2009; Radom-Aizik, 

Zaldivar, Leu, Galassetti, & Cooper, 2008; Whistler, Jones, Unger, & Vernon, 2005; 

Zieker et al., 2005). Exercise-induced modulation has been observed in genes 

associated with lipid and glucose metabolism (Arkinstall, Tunstall, Cameron-Smith, 

& Hawley, 2004; Christensen et al., 2013; Jeppesen et al., 2012), skeletal muscle 

growth and function (Holloway et al., 2009; Keller et al., 2011; McGee, Sparling, 

Olson, & Hargreaves, 2005; Pilegaard et al., 2003; Timmons et al., 2005), and 
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mitochondrial function (Leick, Lyngby, Wojtasewski, & Pilegaard, 2010; Tienen et 

al., 2012). 

Advances in transcriptomic technologies such as next generation RNA-seq 

allows for the characterization of all RNA transcripts produced by the genome 

(known as the transcriptome) in a specific cell type under a given set of conditions. 

Specific exercise-transcriptomic networks have been associated with aging (Raue 

et al., 2012), frailty (Hangelbroek et al., 2016), immune activation (Gordon et al., 

2012), aerobic training modes (Lundberg, Fernandez-Gonzalo, Tesch, Rullman, & 

Gustafsson, 2016), skeletal muscle remodelling (Neubauer et al., 2013) and 

metabolic responsiveness (Böhm et al., 2016). Whilst the exercise response has 

been widely studied in tissues with metabolic and biomechanical roles, 

comparatively little is known about the acute responses of tissues that are not 

primary targets of exercise such as immune cells (Neufer et al., 2015). 

Exercise and epigenetics  

Gene expression is subject to additional post-genomic or epigenetic 

regulatory processes. The term epigenetics broadly describes the transient 

modifications, occurring independently of nucleotide sequences that determine the 

extent of gene expression. Acute and chronic alterations in physiological 

environment, such as exercise, can induce changes in chromosomal regions and 

the subsequent expression of genes there within. The three major epigenetic 

mechanisms are: (i) methylation of DNA cytosine residues, (ii) histone post-

translational modifications (e.g. phosphorylation, methylation, acetylation), and (iii) 

transcriptional regulation by microRNAs (miRNAs) (Bernstein, Meissner, & Lander, 

2007; Goldberg, Allis, & Bernstein, 2007; Jenuwein & Allis, 2001).  
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Histone modification and DNA methylation determine the conformational 

state of the DNA as either opened (euchromatin) or closed (heterochromatin). The 

conformation determines access to the DNA for repair, transcription or replication. 

Histone post-translational modifications are largely reversible alterations on the 

lysine-rich tail region histones, particularly H3 and H4 histones. Acetyl groups are 

added to and removed from DNA by histone acetyltransferases (HATs) and histone 

deacetylases (HDACs) respectively, thereby regulating the level of transcriptional 

activation (McGee & Hargreaves, 2011; McKinsey, Zhang, & Olson, 2001). The 

methylation of DNA cytosine involves the addition of a methyl group at the 5ʹ 

position of the cytosine base (Irizarry et al., 2009; Jones & Baylin, 2007).  

1.2.3 MicroRNA 

MicroRNAs are short non-coding RNA molecules ~21 nucleotides (nt) in 

length (He & Hannon, 2004). They are found in skeletal muscle, circulating in 

plasma/serum, urine, milk, and saliva (Kosaka et al., 2010). Approximately 2000 

miR sequences have been identified in the human genome resulting in more than 

50,000 miR/mRNA interactions (Santulli, 2015). They play diverse roles in cell 

proliferation, differentiation, development, apoptosis, and metabolic pathways 

(Kozomara & Griffiths-Jones, 2013).  

MicroRNA Biogenesis 

MiRNAs can be transcribed from protein coding genes (intragenic) or non-

coding regions (intergenic) (Bartel, 2004). Mature miRNAs are produced from long 

primary miRNA transcripts (pri-miRNAs) transcribed from the genome by RNA 

polymerase II (figure 2). Pre-miRNAs can encode individual miRNAs 

(monocistronic) or multiple miRNAs (polycistronic) (Snyder, Ahmed, & Steel, 
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2009). The pri-miRNAs are processed by the RNAse III enzyme Drosha and its 

RNA-binding protein co-factor pasha DiGeorge Syndrome Critical Region 8 

(DGCR8, referred to as Pasha in invertebrates) into shorter hairpin structures (60-

100 bases) known as precursor miRNAs (pre-miRNAs) (Bartel, 2004). The pre-

miRNAs are transported into the cytoplasm by the Ran-GTP-dependent shuttle 

nuclear transport receptor Exportin-5 (XP05) and cleaved by the RNase III enzyme 

Dicer into miRNA: miRNA* duplexes. From this duplex, a mature miRNA of 

approximately 15-22 bases is incorporated into the argonaute protein within the 

RNA-induced silencing complex (RISC). One of the double strands of the mature 

miRNA is then selected on the basis of thermodynamic stability of the 5' end (Siomi 

& Siomi, 2009). This guide strand is integrated into the RISC complex providing a 

template to locate the complementary motifs in the 3' – UTR of the target mRNA 

(Fabian & Sonenberg, 2012; von Brandenstein, Richter, & Fries, 2012). The 

subsequent miR/mRNA interaction either inhibits translation of the target mRNA 

protein or promotes target mRNA degradation (Kallen, Ma, & Huang, 2012; Papait, 

Kunderfranco, Stirparo, Latronico, & Condorelli, 2013). The remaining ‘passenger’ 

miRNA (denoted by miRNA*) was initially considered transcriptionally inert 

however recent research suggests functional roles for miRNA* strands (Okamura 

et al., 2008; Yang et al., 2011).  

Gene Regulation by miRNA 

It is estimated that miRNAs control the transcriptional activity of ~50% of 

human protein-coding genes (Friedman, Farh, Burge, & Bartel, 2009). This is 

achieved via translational repression or total degradation of the target mRNA 

(Lytle, Yario, & Steitz, 2007).  MiRNAs regulate gene expression by sequence-

specific binding to the 3’UTR and occasionally within the 5ʹUTR of target mRNA 
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sequences (Lee et al., 2009; Lytle et al., 2007; Ørom, Nielsen, & Lund, 2008). The 

complementarity between the mature miRNA and the putative target determines 

the mechanism of miRNA-mediated gene silencing. Partial complementarity can 

elicit miRNA-mediated inhibition of mRNA translation (Huntzinger & Izaurralde, 

2011). The partial complementarity with mRNA and relative short length of the 

miRNA creates hundreds of potential mRNA targets (Bartel, 2009). Therefore, 

suppression of a single miRNA does not always affect the target protein. 

Additionally, each miRNA can utilize numerous binding sites within the same 

mRNA (Friedman et al., 2009). MiRNA-mediated gene regulation can also occur 

via target mRNA degradation whereby targets are deadenylated and de-capped by 

specific deadenylases and de-capping enzymes (Fabian & Sonenberg, 2012; 

Huntzinger & Izaurralde, 2011). The de-capped mRNAs and then degraded by 

cytoplasmic 5’-3’ exoribonuclease (Fabian & Sonenberg, 2012). 

MiRNAs can also play key roles in upregulation of mRNA translation (Henke 

et al., 2008; Vasudevan, Tong, & Steitz, 2007), signal transduction (Fabbri, Paone, 

Calore, Galli, & Croce, 2013; Fabbri et al., 2012; Lehmann et al., 2012), and 

silencing of transcriptional genes (Benhamed, Herbig, Ye, Dejean, & Bischof, 2012; 

Kim, Sætrom, Snøve, & Rossi, 2008). The quantitative effects on individual target 

protein expression are usually small, typically less than 2-fold (Baek et al., 2008). 

Despite that, miRNAs promote transcriptional rigour by buffering against variations 

in gene expression and extrinsic noise such as variations caused by differences 

such as ribosome concentration or transcription factor, correcting splicing errors 

and spatial control of mRNA expression (Ebert & Sharp, 2012).   
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Figure 2. MicroRNA biogenesis: RNA polymerase II and specific transcription factors 

transcribe miRNA genes. The resultant long primary transcripts (pri-miRNA) are 

processed by the Drosha/DGCR8 complex into pre-miRNAs and exported by Exportin 5 

into the cytoplasm. The pre-miRNAs are processed by the Dicer/TRBP complex into a 

guide strand (miRNA) and a passenger strand (miRNA*). The mature miRNA is 

assembled into the RISC complex where it uses sequence complementarity to recognize 

target mRNAs. The RISC complex can modulate gene expression via inhibition of 

translation or destabilization of target mRNAs. Adapted from (Gurtan & Sharp, 2013). 
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Exercise and miRNA 

MiRNA expression plays important roles in acute exercise (Baggish et al., 

2011; Cui et al., 2015; Cui et al., 2016; Radom-Aizik, Zaldivar, Oliver, Galassetti, 

& Cooper, 2010; Russell et al., 2013; Safdar, Abadi, Akhtar, Hettinga, & 

Tarnopolsky, 2009) and chronic endurance exercise (Aoi et al., 2013; Nielsen et 

al., 2014; Nielsen et al., 2010). MiRNAs are critical mediators of exercise-induced 

adaptive processes  including  inflammation (Davidson-Moncada, Papavasiliou, & 

Tam, 2010), cardiac and skeletal muscle contraction and hypertrophy (Davidsen et 

al., 2011; Williams, Liu, Van Rooij, & Olson, 2009), mitochondrial metabolism 

(Chan et al., 2009; Dang, 2010), and angiogenesis (Zhang, 2010).  

Exercise-induced miRNA expression appears sensitive to exercise modality 

including resistance training (Davidsen et al., 2011; Mueller et al., 2011; Sawada 

et al., 2013), rowing (Baggish et al., 2011), running (Baggish et al., 2014; Clauss 

et al., 2016; de Gonzalo-Calvo et al., 2015; Gomes et al., 2014; Mooren, Viereck, 

Krüger, & Thum, 2014), walking (Banzet et al., 2013) treadmill exercise (Guescini 

et al., 2015; Tonevitsky et al., 2013), cycling (Aoi et al., 2013; Cui et al., 2015; Cui 

et al., 2016), and swimming (Fernandes et al., 2011; Melo et al., 2014). Specific 

miRNAs are altered by sustained aerobic exercise (miR-20a), acute exhaustive 

exercise (miR-21 and miR-221) or both (miR-146a and miR-222). Other miRNAs 

are largely unaffected by aerobic exercise (miR-133a, miR-210, miR-328) but 

respond to resistance training (miR-133) (Baggish et al., 2011). 

Exercise-induced miRNA expression also demonstrates specificity for tissue 

type and has been investigated in skeletal muscle (Allen et al., 2009; Aoi & 

Sakuma, 2014; Drummond, McCarthy, Fry, Esser, & Rasmussen, 2008; Güller & 

Russell, 2010; Jeng et al., 2009; Keller et al., 2011; McCarthy & Esser, 2007; 
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McCarthy, Esser, Peterson, & Dupont-Versteegden, 2009; Mueller et al., 2011; 

Nielsen et al., 2010; Ringholm et al., 2011; Safdar et al., 2009), plasma (Baggish 

et al., 2011; Boon & Vickers, 2013; Bye et al., 2013; Da Silva et al., 2012; Nielsen 

et al., 2014; Sawada et al., 2013; Uhlemann et al., 2014), and various immune cell 

populations (Radom-Aizik, Zaldivar, Haddad, & Cooper, 2013; Radom-Aizik et al., 

2010; Radom-Aizik et al., 2012; Radom-Aizik, Zaldivar Jr, Haddad, & Cooper, 

2014; Tonevitsky et al., 2013). 

Summary of Established Mechanisms 

There is substantive evidence that habitual exercise elicits a myriad of 

positive multi-system effects with few, if any, negative side effects. Evolving 

technology has identified complex molecular pathways via which exercise exerts 

its prophylactic and potentially regenerative effects on human systems. Habitual 

exercise upregulates hundreds of genes in skeletal muscle and other tissues and 

can simultaneously exert epigenetic influence over their expression.  

Whilst the immune system is not typically viewed as a first/primary target of 

the exercise stimulus, it has strong and multidirectional interactions with many 

other physiological systems. Immune cells can secrete and respond to cytokines, 

they have hormone receptors and can metabolise glucose and amino acids (Rosa 

Neto, Lira, de Mello, & Santos, 2011). Additionally, immune cells are dynamic and 

permeate every tissue in the body and can therefore influence and reflect the 

variant environments within the body. 

Telomeres, the focus of the second part of this review, are increasingly 

viewed as critical biomarkers and mediators in biological aging and disease. There 

is a growing body of observational evidence associating habitual PA with longer 
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leukocyte telomere length (LTL) (Cherkas et al., 2008; Du et al., 2012; Kim, Ko, 

Lee, Lim, & Bang, 2012; Ludlow et al., 2008; Mirabello et al., 2009). There are 

however, considerable inconsistencies regarding the effects of long-term exercise 

on telomere length (Bekaert et al., 2007; Denham, 2016; Farzaneh-Far, Lin, Epel, 

Lapham, et al., 2010; Garcia-Calzon et al., 2014; Kadi et al., 2008; Laye et al., 

2012; Mathur et al., 2013; Ponsot, Lexell, & Kadi, 2008; Rae et al., 2010; Song et 

al., 2010; Sun et al., 2012; Woo, Tang, & Leung, 2008). To unequivocally determine 

causation, physiological mechanisms must be characterized. 

The protective effect of habitual PA is almost twice that predicted by 

traditional risk factor reduction; leaving approximately 50% of the protective effect 

unexplained (Joyner & Green, 2009; Neufer et al., 2015). It is here that exercise-

induced telomere maintenance may offer an explanatory mechanism through 

influence on cellular senescence, preservation of immune function and reductions 

in inflammation.  

1.3 Telomeres 

Telomeres are specialized DNA sequences (5ʹ-TTAGGGn-3ʹ) located at 

chromosomal ends where they protect the gene-coding regions of DNA from 

enzymatic degradation (Blackburn, 2000). Telomeres progressively shorten by 30 

to 200 base pairs (bps) with each round of mitotic division due to a phenomenon 

called the end replication problem. The DNA polymerase, which synthesises in the 

5ʹ to 3ʹ direction, is unable to completely replicate the G-rich telomere ends due to 

the removal of the last 5ʹ RNA primer (Harley, Futcher, & Greider, 1990; Levy, 

Allsopp, Futcher, Greider, & Harley, 1992; Vaziri et al., 1993). Accordingly, 

telomeres progressively shorten to a threshold known as the Hayflick limit after 
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approximately 50 population doublings. Beyond this limit, critically shortened 

telomeres are identified as double strand breaks (DSBs) (Fagagna et al., 2003; 

Takai, Smogorzewska, & de Lange, 2003). The progressive erosion of telomere 

repeats imposes a replicative limit upon primary cells and simultaneously 

chronicles their replicative histories. By enforcing a replicative limit on cells, 

telomeres limit the proliferation and malignant transformation of cells that have 

sustained DNA damage. However, in instances of accelerated shortening, 

senescence cells can accumulate within various tissues resulting in dysfunction. 

Structure and Function 

Vertebrate telomeres contain a double stranded component bound by 

histone and non-histone protein complexes. A guanine-rich (G-rich), single strand 

overhang of 75-200 bps is located at the 3' end of both chromosome ends (Rhodes, 

Fairall, Simonsson, Court, & Chapman, 2002). The double stranded and single-

stranded components fold back upon themselves binding internally with telomere-

associated proteins forming two complex three dimensional loops, the D-loop and 

the T-loop (Griffith et al., 1999) (Figure 1).The D- and T-loops form a cap that: (i) 

prevents chromosomal ends from being misidentified as DSBs, (ii) protects gene-

coding regions of DNA from enzymatic degradation, and (iii) prevents 

chromosomal end to end fusion during DNA replication (Deng & Chang, 2007). 

The Shelterin Complex 

Telomeric DNA is arrayed upon a scaffold of six interacting telomere-

specific proteins known as the shelterin complex. Shelterin internally binds and 

protects telomeric DNA as subsequently regulates telomerase access to it (de 

Lange, 2005). Modifications in the composition and/or structure of this complex can 

significantly impact upon telomere length, structure, and function (Chan & 
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Blackburn, 2004; de Lange, 2005). The six key proteins are telomeric repeat 

binding factor 1 (TRF1), telomeric repeat binding factor 2 (TRF2), protection of 

telomere 1 (POT1), repressor/activator protein 1 (RAP1, also referred to as TERF2 

interacting protein - TERF2IP), adrenocortical dysplasia homolog (ACD, also 

referred to as TINT1/PTOP/PIP1) (TPP1), and TRF1-interacting nuclear factor 2 

(TIN2) (de Lange, 2005) (Figure 4).  

Telomere length is negatively regulated by TRF1, TRF2, and POT1 which 

modulate telomerase access to telomeric ends (Loayza & de Lange, 2003; Shore 

& Bianchi, 2009; Smith & de Lange, 2000; van Steensel & de Lange, 1997). TRF1 

and TRF2 interact directly with telomeric DNA to determine telomere conformation, 

telomerase access, and regulate telomere length (Court, Chapman, Fairall, & 

Rhodes, 2005; Sfeir & de Lange, 2012; Sfeir et al., 2009; Smogorzewska et al., 

2000).  POT1 prevents inappropriate recognition as DNA damage by binding to the 

single-stranded telomere overhang (Nandakumar & Cech, 2013). 

RAP1 is recruited to the telomere via TRF2 where it regulates telomere 

length (Li, Oestreich, & de Lange, 2000; O'Connor, Safari, Liu, Qin, & Songyang, 

2004). It achieves this by preventing non-homologous end joining (Sarthy, Bae, 

Scrafford, & Baumann, 2009), telomere fragility (Martínez et al., 2009; Sfeir et al., 

2009), and recombination (Martinez et al., 2010). RAP1 also plays a role in obesity 

protection via regulation of several key metabolic genes (Martínez et al., 2013). 

RAP1 also participates in cellular senescence regulation (Platt et al., 2013) and 

suppression of DNA damage responses (DDRs) (Palm & de Lange, 2008). 
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Figure 3. Vertebrate telomere structure: Telomeres terminate in a 75-200 nt single-

stranded G-rich overhang which invades the double-stranded DNA, forming the T-loop 

and D-loop.  Telomeric DNA is bound by the shelterin complex consisting of TRF1, 

TRF2, TIN2, RAP1, TPP1 and POT1. Adapted from (de Lange, 2005). 
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The CST Complex 

The CST complex is a multi-protein complex consisting of CTC1, STN1, and 

TEN1 (figure 5). Localized to the single-stranded telomeric overhang (Miyake et 

al., 2009), the CST complex is critical for regulation of chromosomal end-capping 

and telomere length (Chen, Redon, & Lingner, 2012; Lin & Zakian, 1996; Wellinger, 

2009). The critical pro-telomeric role is evidenced by the observation that CTC1 

and STN1 mutations result in Coats Plus syndrome and dyskeratosis congenita 

(Anderson et al., 2012; Keller et al., 2012; Polvi et al., 2012; Simon et al., 2016; 

Walne et al., 2013). Accordingly, suppression of CST components results in 

telomere loss and increased frequency of telomere fragility (Gu et al., 2012; Huang, 

Dai, & Chai, 2012; Stewart et al., 2012).The CST complex also plays a key role in 

late S/G2-specific synthesis of telomeric C-strands, known as C-strand fill in (Gu 

et al., 2012; Huang et al., 2012; Stewart et al., 2012; Wang, Stewart, et al., 2012). 

Additionally, CST also appears to influence telomerase access to telomeric DNA 

by competing with the POT1/TPP1 complex (Chen et al., 2012). 

Telomerase 

Highly proliferative cell populations (sperm cells, stem cells, basal epidermal 

cell, and lymphocytes) maintain telomere length via the enzyme telomerase 

(Blackburn et al., 1989; Greider & Blackburn, 1987). Telomerase is an RNA-

dependent DNA polymerase that reverse transcribes 6 bp telomeric repeats to the 

3ꞌ end of genomic DNA during replication (figure 6). This compensation slows but 

does not prevent eventual telomere erosion (Blackburn et al., 1989; Greider & 

Blackburn, 1987). Telomerase is highly expressed in human somatic cells during 

embryonic development but then suppressed in most cells within a few weeks of 

birth (Oeseburg, de Boer, van Gilst, & van der Harst, 2009).   
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Figure 4. The shelterin complex: TRF1 and TRF2 directly interact with the 

double-stranded telomeric DNA. TPP1 and POT1 are incorporated into telomere 

via protein-protein interactions. POT1 binds to the single-stranded G-tail. 

Adapted from (Ishikawa, 2013). 
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Telomerase Structure 

Telomerase consists minimally of two core components; a reverse 

transcriptase catalytic subunit (TERT) and an antisense RNA template (TER). 

Human TER (hTER) contains a complimentary sequence to telomeric DNA whilst 

human TERT (hTERT) is a catalytic reverse transcriptase. Whilst hTER expression 

is ubiquitous, transcriptional regulation of hTERT expression is the rate limiting 

component in telomerase activity (Cong, Wen, & Bacchetti, 1999; Horikawa, Cable, 

Afshari, & Barrett, 1999; Meyerson et al., 1997; Takakura et al., 1999). Expression 

of hTERT is sufficient to restore telomerase activity in telomerase-negative cells 

(Artandi et al., 2002; González-Suárez, Flores, & Blasco, 2002; González-Suárez 

et al., 2001; Qi et al., 2011; Stewart et al., 2002). Ectopic hTERT expression results 

in telomere elongation in endothelial cells, fibroblasts, and retinal pigment epithelial 

cells (Bodnar et al., 1998; Vaziri & Benchimol, 1998).   

In addition to hTERT and hTER, telomerase also consists of the accessory 

dyskerin complex comprised of Dyskerin Pseudouridine Synthase 1 (DKC1), NHP2 

ribonucleoprotein (NHP2), NOP10 Ribonucleoprotein (NOP10), and GAR1 

Ribonucleoprotein (GAR1 proteins) (figure 7) (Mitchell, Wood, & Collins, 1999; 

Podlevsky & Chen, 2012). 

Telomerase activity decreases with age but is upregulated in response to 

injury (Poss, Wilson, & Keating, 2002). A recent study demonstrated a significant 

increase in cardiomyocyte, endothelial cell, and fibroblast telomerase in injured 

murine heart tissue, positing a role for telomerase in tissue repair (Richardson et 

al., 2012). Inhibited or insufficient telomerase activity is associated with several 

telomere-mediated disorders including dyskeratosis congenita, idiopathic  



44 
 

 

 

 

 

 

Figure 5. The CST complex: The CST complex binds with TPP1 of the 

shelterin complex, competitively blocking telomerase access to the 3Ꞌ end of 

the telomeric DNA. Adapted from (Rice & Skordalakes, 2016). 
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pulmonary fibrosis, and aplastic anaemia (Armanios & Blackburn, 2012; 

Armanios et al., 2007; Kirwan & Dokal, 2009; Nelson & Bertuch, 2012; Vulliamy, 

Marrone, Dokal, & Mason, 2002). Telomerase deficiency also precedes pathology 

in quiescent tissues, including insulin resistance, cardiomyopathy, and lung and 

liver fibrosis (Basel-Vanagaite et al., 2008; Leri et al., 2003). 

Telomerase Regulation 

Telomerase regulation consists of multiple levels of molecular control 

including transcription, mRNA splicing, maturation and modifications of hTERT and 

hTER, subcellular localization, and translocation of each core component (Cong, 

Wright, & Shay, 2002; Cukusić, Skrobot Vidacek, Sopta, & Rubelj, 2008).  Various 

extra- and intracellular signals such as estrogen (Kyo et al., 1999), UV irradiation 

(Hande, Balajee, & Natarajan, 1997), and alpha interferon (Xu et al., 2000) are also 

known to regulate telomerase expression.  Increases in the number of genes 

encoding for hTERT and hTER have been observed, resulting in increased enzyme 

activity in some circumstances (Bryce, Morrison, Hoare, Muir, & Keith, 2000; 

Saretzki, Petersen, Petersen, Kölble, & von Zglinicki, 2002; Soder et al., 1997; 

Yokoi et al., 2003).   

Telomerase accesses telomeres via a negative feedback loop that 

preferences shorter telomeres. Longer telomeres integrate proportionally more 

shelterin making them less accessible to telomerase. Shorter telomeres are 

structurally more exposed and are therefore more likely to undergo telomerase-

mediated lengthening (Teixeira, Arneric, Sperisen, & Lingner, 2004). This negative 

feedback loop promotes a telomere length equilibrium point within cells. Despite 

that, mitotic senescence is elicited in vitro by one (or a few) short telomeres, not 

the average length (Gilson & Londoño-Vallejo, 2007). 
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Figure 6. Telomerase-mediated telomere lengthening: The RNA template 

(TERC) component of telomerase binds to the 3 overhang (A), complementary 

bases are added (B), the telomerase complex moves further along the newly 

added bases and re-attaches (C), and DNA polymerase extends an RNA primer 

to synthesize the complementary strand (D). 
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Figure 7. Telomerase structure: Human telomerase consists of the catalytic 

sub-unit hTERT, the RNA component (hTER), and accessory proteins DKC1, 

GAR1, NOP10, and NHP2. hTER binds directly to the telomeric G-rich 

overhang.  
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1.3.1 Telomere Dynamics 

Telomere length is routinely measured in circulating blood leukocytes, a 

high yielding source of quality DNA that is easily accessed for epidemiological 

purposes. Mean LTL is highly variable at birth and throughout adult life, even within 

the same age group (Akkad et al., 2006; Factor-Litvak et al., 2016; Jeanclos et al., 

2000; Nawrot, Staessen, Gardner, & Aviv, 2004; Vasan et al., 2008). Longest at 

birth, LTL rapidly shortens until adolescence and continues shortening (albeit at a 

slower rate) until old age (Sidorov, Kimura, Yashin, & Aviv, 2009).  

Heritability estimates for telomere length range from 30%-80% (Blackburn, 

Epel, & Lin, 2015; Broer et al., 2013). Monozygotic twins exhibit very similar 

telomere length whereas dizygotic twins differ significantly (Slagboom, Droog, & 

Boomsma, 1994). This observation posits a potential genetic basis for telomere 

length; however, only a small group of putative candidate loci have been 

investigated (Andrew et al., 2006; Vasa-Nicotera et al., 2005). Genome-wide 

association studies have identified loci associated with LTL on chromosomes 

18q12.2 and 3q26 (Levy et al., 2010; Mangino et al., 2012; Mangino et al., 2009); 

however, these findings only explain approximately 1.6% of LTL variation (Aviv, 

2012; Codd et al., 2010; Mangino et al., 2009). Gene or promoter polymorphisms 

associated with telomerase complex proteins (Cohen et al., 2007) or the shelterin 

complex (de Lange, 2005) have also been proposed as a genetic determinants.    

Telomere Attrition 

Telomere attrition rates vary between individuals (Steenstrup et al., 2013), 

and cell types (Son, Murray, Yanovski, Hodes, & Weng, 2000).  It is most 

pronounced from newborn to 4 years of age before gradually declining between 
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ages 4 to 39 years and remaining at a low and stable rate between the ages of 40 

to 95 years (Frenck, Blackburn, & Shannon, 1998; Rufer et al., 1999). Within the 

lymphocyte subset, telomeres shorten by 35 ± 8 bp-1.y-1 in CD4+ T cells,  26 ± 7 

bp-1.y-1  in CD8+ T cells and 19 ± 7 bp-1/y-1 in CD19+ B cells (Son et al., 2000). 

Given an average starting length of 10-15 kb, even a yearly loss of approximately 

50 bp should still sustain lymphocyte function well beyond 100 years of age. This 

supports the theory that the length of the shortest telomere, as opposed to the 

average telomere length, triggers cell cycle arrest, genomic instability, and 

senescence (Hemann, Strong, Hao, & Greider, 2001). 

Endogenous Factors  

The inter-individual variability in telomere length is partially due to differential 

exposure to deleterious instigators such as oxidative stress and inflammation (Aviv, 

2004; De Meyer, Rietzschel, De Buyzere, Van Criekinge, & Bekaert, 2008; 

Houben, Moonen, van Schooten, & Hageman, 2008; Oikawa & Kawanishi, 1999; 

von Zglinicki, 2002). Telomeric DNA is particularly susceptible to oxidative damage 

due to the telomeric G triplet (Hewitt et al., 2012; Oikawa & Kawanishi, 1999; Von 

Zglinicki, 2000, 2002). This damage is largely irreparable (Fumagalli et al., 2012); 

therefore telomeres chronicle the cumulative exposure to oxidative stress (Woo, 

Suen, & Tang, 2010).  

Chronic inflammation contributes to telomere shortening via induction of 

accelerated cell turnover, replicative senescence, induction of oxidative stress, and 

modulation of telomerase activity (Akiyama et al., 2004; Aviv, 2004; Jaiswal, 

LaRusso, Burgart, & Gores, 2000; Parish, Wu, & Effros, 2009; Xu et al., 2000).  

Shorter average telomere length may reflect an increased burden of senescent 
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cells which are known to create a pro-inflammatory phenotype (Coppé et al., 2008; 

Rodier et al., 2009). 

Environmental Factors 

Augmented inflammation and oxidative stress plausibly explain the inverse 

associations between telomere length and lifestyle factors such as smoking 

(Carnevali et al., 2003; Strandberg, Saijonmaa, Tilvis, Pitkälä, Strandberg, 

Miettinen, et al., 2011; Valdes et al., 2005), obesity (Strandberg, Saijonmaa, Tilvis, 

Pitkälä, Strandberg, Miettinen, et al., 2011; Valdes et al., 2005) , and alcohol intake 

(Comporti et al., 2010; Strandberg et al., 2012). Cumulative exposure to 

psychological stress throughout the lifespan has also been positively associated 

with increased oxidative stress and inflammation (Wolkowitz et al., 2011) and 

inversely associated with LTL (Epel et al., 2004; Kananen et al., 2010). Various 

psychological states are also associated with shortened telomeres (Lindqvist et al., 

2015; O’Donovan et al., 2009) including depressive symptoms (Schutte & Malouff, 

2015), schizophrenic symptoms (Polho, De-Paula, Cardillo, dos Santos, & Kerr, 

2015), and dispositional traits such as pessimism (O’Donovan et al., 2009).  Given 

the association between psychological stress and shortened telomeres, it is 

unsurprising that stress management techniques such as yoga and meditation are 

associated with increased telomerase expression in PBMCs (Schutte & Malouff, 

2014). 

Telomere Maintenance 

Whilst it is unclear whether or not exercise can physically lengthen 

telomeres, habitual exercise is associated with longer LTL (Cherkas et al., 2008). 

In addition to self-reported PA and exercise, objectively measured aerobic fitness 

is associated with longer LTL in healthy populations (LaRocca, Seals, & Pierce, 
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2010) and pathological states (Krauss et al., 2011). The role of PA, exercise, and 

aerobic fitness in telomere maintenance is discussed at length elsewhere in this 

chapter. 

Dietary factors such as increased marine ω-3 fatty acid intake (Farzaneh-

Far, Lin, Epel, Harris, et al., 2010), increased blood concentrations of vitamin E, 

25-hydroxyvitamin D , and vitamin C are associated with reduced LTL shortening 

(Richards et al., 2007; Xu et al., 2009). The underlying mechanisms are believed 

to be the modulation of oxidative stress (vitamins C and E) and inflammation 

(vitamin D) (Fyhrquist, Saijonmaa, & Strandberg, 2013). In a cohort of middle-aged 

men (aged 45-64 years), statin-mediated LDL-cholesterol reduction decreased the 

association between short LTL and increased CAD risk (Brouilette et al., 2007). 

Estrogen activates telomerase and therefore has a telomere-sparing effect (Kyo et 

al., 1999). This plausibly explains the longer telomeres observed in women. 

Telomeric repeat-containing RNA - TERRA 

Telomeres were traditionally considered transcriptionally silence; however, 

recent evidence indicates that sub-telomeric regions produce a class of long 

noncoding RNAs containing telomeric repeats called TERRA (Azzalin, 

Reichenbach, Khoriauli, Giulotto, & Lingner, 2007; Schoeftner & Blasco, 2010). 

TERRA molecules are transcribed from the sub-telomeric regions of chromosomes 

by RNA polymerase II (Azzalin et al., 2007; Schoeftner & Blasco, 2008, 2010). 

TERRA have been identified in several organisms and assist in telomere function 

and homeostasis via telomerase regulation, heterochromatin formation, and 

chromosomal capping (Cusanelli & Chartrand, 2015; Luke et al., 2008; Schoeftner 

& Blasco, 2008). TERRA associates with telomeres via several mechanisms 

including interactions with TRF1 and TRF2 (Deng et al., 2012). 
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TERRA molecules can also form RNA:DNA hybrid structures known as R-

loops by base-pairing with their template DNA strands (Arora et al., 2014; Balk et 

al., 2013; Pfeiffer & Lingner, 2012; Yu, Kao, & Lin, 2014).  The R-loops associated 

with G-rich sequences assist in gene expression (Ginno, Lott, Christensen, Korf, & 

Chédin, 2012) and transcription termination (Skourti-Stathaki, Proudfoot, & 

Gromak, 2011). Dysfunctional TERRA expression is associated with centromere 

instability, immunodeficiency, and the rare autosomal recessive immune disorder 

facial anomalies (ICF) syndrome (Xu et al., 1999). 

TERRA plays a unique role in telomeric length regulation. TERRA is typically 

inversely associated with telomere length via mechanisms such as inhibition of 

telomerase activity (Schoeftner & Blasco, 2008), increasing euchromatin formation, 

and decreasing heterochromatin formation (Deng, Norseen, Wiedmer, Riethman, 

& Lieberman, 2009). Paradoxically, TERRA is also associated with protection of 

the telomere ends via the interaction with TRF2 (Poulet et al., 2012; Wang, 

Smogorzewska, & de Lange, 2004). 

Telomeres and Cellular Senescence 

Cellular senescence typically manifests in three different contexts in 

humans: normal aging, age-related disease, and therapeutic interventions (Childs, 

Durik, Baker, & van Deursen, 2015). Senescence can be classified as telomere-

dependent (replicative senescence) or telomere-independent (stress-induced or 

cellular) senescence. Replicative senescence is the exhaustion of replicative 

capacity, characterized by telomere shortening (Fyhrquist et al., 2013). Stress-

induced senescence is independent of telomeric shortening; triggered by external 

stimuli such as irradiation, oxidative stress, and mitogenic oncogenes (Blasco, 

2005; Calado & Young, 2009).  
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A senescence response is typically triggered when the telomeric terminal 

restriction fragment (TRF) reaches a mean length of 4-7 kb (Campisi, 2001; Harley 

et al., 1990). At this critical threshold, the protective shelterin complex is disrupted 

and a DDR is triggered. This occurs via the phosphorylation of proteins H2A.X and 

NBS1 and kinases CHK1 and CHK2 by the phosphatidylinositol 3-kinase-like 

protein kinases ATM and ATR resulting in the downstream activation of p53 and 

p21 proteins (Rodier et al., 2009). If the DNA damage exceeds a repairable 

threshold, the cell undergoes apoptosis or senescence.  

Cellular senescence serves several key functions, namely it prevents 

ongoing cellular replication after oncogene activation or critical telomere erosion 

(Campisi, Kim, Lim, & Rubio, 2001; Wright & Shay, 2001). Senescence also assists 

in tissue healing by preventing excessive cell proliferation and fibrotic matrix 

deposition (Jun & Lau, 2010; Krizhanovsky et al., 2008). However, this is thought 

to decrease the regenerative capacity of tissues in later life leading to an 

accumulation of senescent cells. In addition to lost replicative capacity, senescent 

cells exhibit a senescence-associated secretory phenotype (SASP). The SASP 

impacts tissue integrity by secreting a host of active peptides inflammatory 

cytokines, intercellular adhesion molecules, growth factors, and monocyte 

attractants (Campisi, 2011; Erusalimsky & Kurz, 2005).  

Senescent cells also undergo changes in morphology, altered protein 

processing, metabolism, apoptosis resistance, nuclear structure, and gene 

expression (Bayreuther et al., 1988; Campisi, 2000; Narita et al., 2003; Sitte, 

Merker, von Zglinicki, & Grune, 2000; Von Zglinicki, 2000). Accumulating 

senescent cells contribute to proliferative and degenerative age-related changes 

by causing a chronic inflammation, remodelling, and tissue repair (Fyhrquist et al., 
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2013). Accordingly, senescent cells are associated with age-related diseases such 

as atherosclerosis (Minamino & Komuro, 2007), diabetes (Sone & Kagawa, 2005), 

and appear to influence mammalian lifespan (Choudhury et al., 2007; Rudolph et 

al., 1999; Tyner et al., 2002).  

Repeated antigenic challenges in vivo can cause telomere shortening and 

precipitate immune cell senescence. Critical telomere shortening in immune cells 

such as memory lymphocytes (CD45RO+) could negatively impact upon their 

ability to mount repeated immune responses (Reed et al., 2004). The accumulation 

of senescent immune cells can crowd the immune cell pool, restricting the 

development of new cells and impairing immune function (Pawelec, Adibzadeh, 

Pohla, & Schaudt, 1995).  

1.3.2 Telomeres and Telomerase in the Immune System  

Many human somatic cells lack detectable telomerase levels (Kim et al., 

1994); however, immune cells are unique in their capacity to upregulate telomerase 

expression thereby reducing telomere attrition during periods of clonal expansion 

(Weng, 2002; Weng, Levine, June, & Hodes, 1997). Telomerase expression and 

telomere maintenance are critical to this proliferative capacity. Cell-specific 

telomere shortening has been observed in CD4+, CD8+ T lymphocytes, B 

lymphocytes, monocytes, granulocytes, and NK cell subsets (Kaszubowska, 

2008). Telomere length has been rank-ordered as longest in B cells, followed by 

CD4+ and CD8+CD28+ T cells (similar lengths), and shortest in senescent 

CD8+CD28- T cells (Lin et al., 2010). 

 Accelerated telomere loss in lymphocytes contributes to the accelerated 

aging of the T cell pool and may predispose to autoimmune responses; potentially 
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explaining increased susceptibility to inflammatory diseases in the elderly 

(Kaszubowska, 2008). The loss of telomerase activity in senescent immune cells 

also parallels the loss of the major signalling molecule CD28, a hallmark of immune 

cell replicative senescence (Valenzuela & Effros, 2002). 

Despite the heritability of telomere length and the innumerable lifestyle 

factors that influence it, telomerase expression independently modulates immune 

cell telomere stability, shortening trajectory, and lifespan (Boccardi & Paolisso, 

2014). Telomerase expression is also heterogeneous within the immune system, 

being highest in B cells, followed by CD4+ T cells, CD8+CD28+ T cells and lowest 

in CD8+CD28- T cells (Lin et al., 2010).  This mirrors age-associated telomere 

shortening, which is slower in B cells than T cells (Son et al., 2000). The 

physiological significance of telomerase is evidenced by the fact that ectopic 

hTERT expression extends the replicative lifespan of CD4+ and CD8+ T cells 

(Dagarag, Evazyan, Rao, & Effros, 2004; Luiten, Pene, Yssel, & Spits, 2003; Roth 

et al., 2003; Rufer et al., 2001). 

Telomerase activity is very low or absent in unstimulated human T cells; 

however, activation induces high levels of telomerase activity but only a low to 

moderate increase in hTERT expression (Bodnar, Kim, Effros, & Chiu, 1996; 

Hiyama et al., 1995; Weng, Levine, June, & Hodes, 1996). In nonactivated CD4+ 

T cells, telomerase appears localized to the cytoplasm; however, hTERT protein is 

found in the nucleus of activated T cells (Liu, Hodes, & Weng, 2001). This 

activation-dependent nuclear localization of hTERT occurs in response to 

phosphorylation of hTERT via the PI3K/Akt pathway (Chung, Khadka, & Chung, 

2012; Kawagoe et al., 2003; Kimura et al., 2004). The nuclear localization of 

hTERT results in the higher telomerase activity observed in activated T cells (Liu 
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et al., 2001). The nucleus is the site of telomerase activity as it contains the 

critical molecular chaperones heat shock protein (Hsp) 90 and p23, both of 

which are required for telomerase assembly (Forsythe, Jarvis, Turner, Elmore, & 

Holt, 2001; Holt et al., 1999). Importantly, binding of the molecular chaperone 

Hsp70 and C terminus of Hsc70-interacting protein (CHIP) to hTERT 

inhibits the nuclear translocation of hTERT by dissociating p23 (Lee, Khadka, 

Baek, & Chung, 2010). 

Expression of hTERT is tightly regulated in human T cells by cytokines, 

intracellular or extracellular signalling and transcription factors (Barsov, 2011). 

IL-2 is a T cell growth factor that increases hTERT transcription in human T 

cells (Matsumura-Arioka, Ohtani, Hara, Iwanaga, & Nakamura, 2005) and 

post-translationally affects hTERT activity via the PI3K/Akt pathway (Kawauchi, 

Ihjima, & Yamada, 2005). IL-7 induces increased hTERT levels in naïve and 

memory T cells (Yang, An, & Weng, 2008), whilst IL-15 induces hTERT 

expression in memory CD8+ T cells via the Jak3 and PI3K signalling pathways (Li, 

Zhi, Wareski, & Weng, 2005). 

Upregulation of hTERT can also be facilitated by specific signal 

transduction pathways such as the NF-κB pathway or the PI3K/Akt pathway. 

Protein kinase C (PKC) within the NF-κB pathway is essential in hTERT 

upregulation and post-transcriptional control of its enzymatic activity within 

stimulated human T cells (Sheng, Chien, & Wang, 2003). Akt kinase enhances 

telomerase activity through the phosphorylation and subsequent nuclear 

translocation of hTERT (Kawagoe et al., 2003; Kimura et al., 2004). More recent 

work identified serine residue 227 as the Akt phosphorylation site (Chung et al., 

2012). 
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Transcription factors are thought to tightly regulate hTERT promoter activity. 

Nuclear factor of activated T cells (NFAT1) transcriptionally activates hTERT 

expression by binding to one of the NFAT1 binding sites within the hTERT promoter 

(Chebel et al., 2009). The hTERT promoter is also bound by Interferon regulatory 

factors (IRF)-4 and -8, resulting in transcriptional activation (Hrdličková, Nehyba, & 

Bose, 2009). 

1.3.3 Telomeres in Health and Disease  

Telomere Length and All-Cause Mortality 

The link between telomere length and all-cause mortality is complex and at 

times equivocal. Most studies linking telomere length and all-cause mortality use 

circulating leukocytes as a physiological proxy for the target tissue. The 

conclusions drawn are predicated upon a supposed correlation between LTL and 

the target tissue. Correlations have been identified between LTL and vascular 

tissue telomere length (Wilson et al., 2008), muscle, skin and fat (Daniali et al., 

2013) and synovial tissue (Friedrich et al., 2000). A more recent study found 

correlations with only two (intercostal skeletal muscle and liver) out of twelve 

human tissues assessed (Dlouha, Maluskova, Kralova Lesna, Lanska, & Hubacek, 

2014). Differences in telomere length between intra-individual tissue types were 

thought to reflect tissue-specific attrition rates (Takubo et al., 2002); however, a 

more recent study correlated age-dependent telomere shortening rates between 

leukocytes, skeletal muscle, skin and subcutaneous fat (Daniali et al., 2013). 

Age-adjusted inverse associations have been established between mean 

telomere length and all-cause mortality (Astrup et al., 2009; Bakaysa et al., 2007; 

Cawthon, Smith, O'Brien, Sivatchenko, & Kerber, 2003; Deelen et al., 2014; 
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Ehrlenbach et al., 2009; Fitzpatrick et al., 2011; Glei, Goldman, Weinstein, & 

Risques, 2014; Honig, Kang, Schupf, Lee, & Mayeux, 2012; Kim et al., 2012; Lee 

et al., 2012; Martin-Ruiz et al., 2006; Rehkopf et al., 2013; Rode, Nordestgaard, & 

Bojesen, 2015; Strandberg, Saijonmaa, Tilvis, Pitkälä, Strandberg, Miettinen, et al., 

2011; Weischer et al., 2012). However, other studies have failed to replicate the 

association (Arai et al., 2015; Bendix et al., 2014; Bischoff et al., 2006; Epel et al., 

2009; Fitzpatrick et al., 2007; Harris et al., 2006; Houben, Giltay, Rius-Ottenheim, 

Hageman, & Kromhout, 2010; Kimura et al., 2008; Martin-Ruiz, Gussekloo, van 

Heemst, von Zglinicki, & Westendorp, 2005; Njajou et al., 2009; Svensson et al., 

2014).  

Telomere Length and CVD  

A host of CVD risk factors have been observationally associated with 

shortened LTL including smoking (Valdes et al., 2005), diabetes (Sampson, 

Winterbone, Hughes, Dozio, & Hughes, 2006), hypercholesterolemia (Strandberg, 

Saijonmaa, Tilvis, Pitkälä, Strandberg, Salomaa, et al., 2011), hypertension 

(Benetos et al., 2001), obesity (Müezzinler, Zaineddin, & Brenner, 2014), physical 

inactivity (Cherkas et al., 2008), alcohol consumption (Strandberg et al., 2012), and 

psychological issues (Cherkas et al., 2006). However, several other studies have 

since failed to replicate the association with key CVD risk factors (Bekaert et al., 

2007; Bischoff et al., 2006; Fitzpatrick et al., 2007; Martin-Ruiz et al., 2005; Neuner 

et al., 2015). 

Shorter LTL was initially associated with coronary artery disease (CAD) in 

2001 (Samani, Boultby, Butler, Thompson, & Goodall, 2001); with similar CVD 

associations to follow (Brouilette, Singh, Thompson, Goodall, & Samani, 2003; 

Brouilette et al., 2007; Brouilette et al., 2008; Carty et al., 2015; D’Mello et al., 2015; 
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Ellehoj, Bendix, & Osler, 2016; Fitzpatrick et al., 2007; Haycock et al., 2014; 

Matthews et al., 2006; Willeit et al., 2010). However, three key studies have since 

failed to find any association between LTL and early atherosclerosis (De Meyer et 

al., 2009; Fernández-Alvira et al., 2016; Willeit et al., 2010). Furthermore, a recent 

study associated long, as opposed to short LTL with a nearly three-fold higher risk 

of developing myocardial infarction (Østhus, Lydersen, Dalen, Nauman, & Wisløff, 

2017). 

Further support for a plausible causal role for telomere shortening and CVD 

onset came from a series of genetic and observational prospective studies 

(Brouilette et al., 2007) (Broer et al., 2013; Hamad, Walter, & Rehkopf, 2016; 

Haycock et al., 2014; Madrid, Rode, Nordestgaard, & Bojesen, 2016). The West of 

Scotland Primary Prevention Study (WOSCOPS) showed that the lowest LTL 

tertile had a 44% increased CAD risk at a 5.5 year follow-up period (Brouilette et 

al., 2007). A recent genome wide association study identified seven single 

nucleotide polymorphisms (SNPs) associated with telomere length dysfunction, 

telomerase reduction, and replicative senescence (Blackburn et al., 2015). One 

such SNP is associated with decreased telomere length and increased CAD risk. 

One standard deviation decrease in telomere length was found to increase CAD 

risk by 21% (Codd et al., 2013).   

Despite an abundance of conflicting evidence, the broader scientific consensus 

is that shortened LTL represents an increased risk of CVD and likely reflects 

accelerated leukocyte turnover due to oxidative stress and inflammation. 
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Telomere Length and Cancer 

The relationship between telomere length and cancer is complex.   A 

detailed review of the role of telomeres in cancer is beyond the scope of this review; 

what follows is a brief overview. Telomere shortening, uncapping (loss of shelterin 

integrity) and subsequent senescence are believed to play an anticancer role 

(Artandi & DePinho, 2010). Several studies have associated long LTL with 

increased risk of several cancer types (Anic et al., 2013; Iles et al., 2014; Julin et 

al., 2015; Lynch et al., 2013; Machiela et al., 2015; Nan et al., 2011; Pellatt et al., 

2013; Qu et al., 2013; Sanchez-Espiridion et al., 2014; Seow et al., 2014). 

Paradoxically, shortened telomeres can potentiate cancer in some instances by 

fusing with other uncapped telomeres, thereby creating genome destabilizing 

fusion-bridge-breakage cycles (Artandi & DePinho, 2010). It is estimated that ~15% 

of human cancers maintain telomere length through one or more mechanisms 

referred to as Alternative Lengthening of Telomeres (ALT) (Novak, 2003). 

Telomerase activity is a critical component in malignant transformation with 85%–

90% of all malignant tumours being telomerase positive  (Kim et al., 1994; Shay & 

Bacchetti, 1997).  

A cluster of seven alleles associated with LTL homeostasis, TER, TERT, 

oligonucleotide/oligosaccharide-binding fold containing one gene (OBFC1), zinc 

finger protein 208 (ZNF208), regulator of telomere elongation helicase 1 (RTEL1), 

acylphosphatase 2 (ACYP2) and nuclear assembly factor 1 ribonucleoprotein 

(NAF1) are simultaneously associated with CAD (Codd et al., 2013) and cancer 

(Iles et al., 2014; Machiela et al., 2015). If the alleles result in comparatively long 

telomeres, the cancer risk is elevated, and the CAD risk is reduced; the reverse is 

also true. It has been proposed that the cancer protection conferred by short 
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telomeres represents an evolutionary trade-off resulting in decreased proliferative 

and regenerative capacity (Williams, 1957). Non-linear U-shaped relationships 

have been observed between telomere length and several cancer risk profiles 

(Wang et al., 2014). This may in part be explained by the destabilizing and 

potentially oncogenic effects of shortened telomeres and the increased replicative 

capacity and potential accumulation of abnormalities associated with longer 

telomere length (Cesare & Reddel, 2010; Wu et al., 2003). 

One proposed explanation for the discrepant associations is that telomere 

uncapping has an anti-cancer effect in the young but a potentially pro-cancer effect 

in the elderly (Yang, Song, & Johnson, 2016). Hypothetically, the more robust 

telomere dysfunction-based mechanism of the young would prevent tumorigenesis 

whilst the shortened, uncapped and depleted telomeres of the elderly may allow 

bypass of aberrant cells (Yang et al., 2016). 

Correlations between LTL and other tissue types coupled with chronic disease 

associations strongly imply a causal story. Whilst some protective benefit of LTL 

can be inferred from the numerous associations, the extent to which restoration of 

telomere length restores tissue capacity and reduces disease burden is largely 

unknown. The significance of telomere biology in maintaining immune function is 

well established; however, it is unclear whether positive adaptations in LTL would 

reflect or promote similar changes in other tissue types. Whether dysfunctional 

expression of shelterin genes, hTERT or telomerase activity are causal or 

consequential in diseased or aging states are critical and largely unanswered 

questions.  
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The Epigenetics of Telomere Homeostasis 

An accumulating body of evidence indicates that telomeric chromatin is 

subject to modifications. Murine studies show that telomeric and sub-telomeric 

chromatin exhibit histone modifications common to heterochromatin (García-Cao, 

O'Sullivan, Peters, Jenuwein, & Blasco, 2003; Gonzalo et al., 2005; Gonzalo et al., 

2006). Whilst mammalian telomere repeats lack the CpG sequences (the 

substrates for mammalian methyltransferases) needed for methylation, sub-

telomeric DNA can be methylated (Fraga et al., 2005; Tommerup, Dousmanis, & 

de Lange, 1994; van Overveld et al., 2003).  

Histone Modifications 

Histone and DNA modifications at pericentric heterochromatin result in 

chromosome segregation defects, potentially playing a role in tumour development 

(Peters et al., 2001). Telomeric DNA is subject to trimethylation of lysine 9 on 

histone 3 (H3K9) and of lysine 20 on histone 4 (H4K20) (Blasco, 2007). 

Heterochromatic disturbances appear to affect telomere length homeostasis by 

interacting with telomere regulators and/or by opening telomere configuration 

(Londoño-Vallejo, 2010). Cells exhibiting decreased levels of H3K9 trimethylation 

at telomeres also display abnormal telomere lengthening (García-Cao et al., 2003). 

Such heterochromatin disruption may alter telomere length via disruption of 

telomere-length regulators (Blasco, 2007). 

Sub-telomeric DNA Methylation 

Sub-telomeric DNA methylation appears to regulate telomere length 

independently of histone methylations (Blasco, 2007). Reductions in DNA 

methylation at sub-telomeric regions result in dramatically elongated telomeres 

(Gonzalo et al., 2006). Additionally, methylation of sub-telomeric DNA functions as 
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a repressor of homologous recombination at telomeres, plausibly regulating ALT 

(Blasco, 2007). No definitive link between sub-telomeric methylation and telomere 

binding proteins has been established. However, it remains a plausible hypothesis 

given altered expression of some telomere-binding proteins causes dysregulated 

telomere recombination (Blanco, Muñoz, Flores, Klatt, & Blasco, 2007; Wu et al., 

2006). 

Shelterin and Epigenetics 

The shelterin components are subject to posttranslational modifications that 

modulate their localization, binding capacity, and stability (Peuscher & Jacobs, 

2012; Walker & Zhu, 2012). If such posttranslational changes are present 

throughout mitosis or meiosis, they could be considered an epigenetic (heritable) 

change (Londoño-Vallejo, 2010). The best understood modifications are those 

occurring in TRF1 and TRF2, specifically the poly-ADP-ribosylation of TRF1 

(Rippmann, Damm, & Schnapp, 2002). The poly-ADP-ribosylation of TRF1 by 

tankyrase prevents the accumulation of TRF1 along the telomere length and 

subsequent blockade of telomerase access (Loayza & de Lange, 2003; Smith, 

Giriat, Schmitt, & de Lange, 1998). Phosphorylation of TRF2 is another observed 

posttranslational modification however comparatively little is known about the 

underpinning mechanisms (Tanaka et al., 2005). 

Little is known about exercise-induced changes in shelterin gene mRNA 

expression regulation, expression time course, and possible miRNA-mediated 

regulation. The association between regular physical activity and telomere length 

may in part be mediated by shelterin gene regulation, which itself may be partially 

subject to additional levels of regulation such as miRNA. A clearer understanding 

of the adaptive plasticity of shelterin and other telomeric genes is needed. Such an 
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understanding may lead to the development of therapeutic targets within telomere 

biology and may also inform exercise guidelines for healthy and pathological 

populations.  

MicroRNA-dependent Regulation of Telomere Homeostasis 

MicroRNAs represent a plausible regulator of telomere length and the list of 

putative candidates is steadily growing (table 2).  A potential role for miRNA in 

telomere homeostasis was first observed in a 2008 study that associated miR-138 

expression with telomerase activity in anaplastic thyroid carcinoma (ATC) (Mitomo 

et al., 2008). In silico analysis initially predicted hTERT as a regulatory target of 

miR-138 and a subsequent luciferase reporter assay in human embryonic kidney 

(HEK)-293 cells and measurement of hTERT protein confirmed the interaction. A 

potential role for miR-138 in post-transcriptional regulation has been proposed 

given that hTERT mRNA levels were not affected by miR-138 overexpression 

(Mitomo et al., 2008). Depletion of hTERT led to increased expression of miR-138 

in human malignant neuroblastoma cells (Chakrabarti, Banik, & Ray, 2013).  

A 2014 study identified 14 differentially specifically expressed miRNAs in 

gastric tumour tissue (Chen et al., 2014). Five of the fourteen miRNAs identified 

(miR-138, miR-491-5p, miR-1182, miR-1207-5p, and miR-126) reduced hTERT 

expression when their expression levels were restored via a miRNA mimic (Chen 

et al., 2014). In silico analyses and subsequent luciferase reporter assays 

confirmed let-7g*, miR-133a, miR-138-5p, and miR-491-5p as hTERT regulators 

(Hrdličková, Nehyba, Bargmann, & Bose, 2014).  

Overexpression of miR-150 in T- and B-cell lymphoma cell lines inhibited 

telomerase activity and promoted telomere shortening (Watanabe et al., 2011). 
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Subsequent experimentation identified that miR-150 may regulate lymphoma cell 

telomerase activity via direct impairment of Dyskerin expression and interference 

with the phosphorylation of AKT/PKB at Ser473/4 (Watanabe et al., 2011). Induced 

downregulation of the oncomiR miR-21 resulted in inhibited cell proliferation, 

apoptosis induction, reduced Signal Transducer and Activator of Transcription 3 

(STAT3) expression and phosphorylation, and decreased hTERT mRNA and 

protein (Wang, Sun, et al., 2012). Associations have also been established 

between miR-498 expression and telomerase expression in ovarian cancer cells 

(Kasiappan et al., 2012). A similar association exists between miR-143 and hTERT 

expression in human foreskin BJ fibroblasts (Bonifacio & Jarstfer, 2010). 

MicroRNA regulation also modulates cellular senescence (Liu, Wen, & Liu, 

2012). A recent study identified 33 differentially expressed miRNAs directly 

associated with telomere length (Slattery, Herrick, Pellatt, Wolff, & Mullany, 2016). 

The observed association was positive, with increased miRNA expression 

associated with longer telomeres. Additionally, a genetic variation of TERT 

(rs2736118) was associated with differential expression of 75 miRNAs between 

carcinoma and normal colonic mucosa (Slattery et al., 2016). Several genes 

associated with non-telomeric functions were regulated by the mRNA/miRNA 

interactions including the PTEN and PI3k/AKT signalling pathways (Slattery et al., 

2016). The direction of the mRNA/miRNA regulation appears bi-directional with a 

recent study demonstrating TERT-based positive regulation of miRNAs in human 

cells. The expression levels of mature miRNAs were downregulated following 

TERT suppression in THP-1 and HeLa cells (Lassmann et al., 2015). 



66 
 

1.3.4 Telomere Length and Exercise 

The widely touted relationship between PA and LTL is replete with inconsistencies. 

The positive association between PA and LTL has come from a range of cross-

sectional studies (Bendix et al., 2011; Cherkas et al., 2006; Cherkas et al., 2008; 

Denham et al., 2013; Du et al., 2012; Garland et al., 2014; Kim et al., 2012; Kingma, 

de Jonge, van der Harst, Ormel, & Rosmalen, 2012; Krauss et al., 2011; LaRocca 

et al., 2010; Loprinzi, 2015; Ludlow et al., 2008; Østhus et al., 2012; Puterman, Lin, 

Krauss, Blackburn, & Epel, 2015; Savela et al., 2012; Silva et al., 2016; Venturelli et 

al., 2014; Werner et al., 2009; Williams et al., 2017; Zhu, Wang, et al., 2011). A 

summary of human studies that significantly associated PA with telomere length is 

contained in table 3.  

Telomere length has been assessed in skeletal muscle cells and leukocytes in 

response to aerobic training, resistance training, and self-reported PA. The 

observed associations appear hormetic, with low and excessive levels of activity 

associated with shorter telomeres (Ludlow et al., 2008; Savela et al., 2012) and 

moderate levels more commonly associated with longer LTL (Kim et al., 2012).A 

2016 study of 6474 males and females positively associated running with LTL yet 

found no associations with other PA domains including aerobics, basketball, 

bicycling, dancing, running, stair climbing, swimming, walking, and weight-lifting 

(Loprinzi & Sng, 2016). The authors speculate the sustained weight-bearing status 

of running may preferentially activate signaling pathways, citing other studies that 

demonstrated associations in ultra-endurance runners (Denham et al., 2013). 
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Table 2. A summary of miRNAs with putative telomeric involvement. 

miRNAs Physiological Function Reference 

miR-138 Post-transcriptional regulation of hTERT in anaplastic thyroid cancer cell 

lines. 

 

(Mitomo et al., 2008) 

miR-138 Expression levels associated with hTERT in neuroblastoma. 

 

(Chakrabarti et al., 2013) 

miR-1207-5p 

miR-1266 

Differentially expressed in hTERT-positive gastric tumour compared to 

hTERT-negative tissues. Restoration of miRNA expression associated with 

decreased hTERT protein. 

 

(Chen et al., 2014) 

let-7g* 

miR-133a 

miR-138-5p 

miR-491-5p 

 

Inhibits telomerase activity in HeLa cells. They interact with the hTERT 

3ʹUTR in a luciferase reporter assay. 

(Hrdličková et al., 2014) 

RGM249 A potential miRNA precursor coding gene involved with hTERT expression 

in hepatocellular carcinoma. 

 

(Miura et al., 2009) 

miR-92 Positively correlated with telomerase activity in hepatocellular carcinoma. 

 

(Romilda et al., 2012) 
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Table 2. continued 

miRNAs Physiological Function Reference 

miR-150 Inhibits lymphoma cell telomerase activity via Dyskerin down-regulation.  

 

(Watanabe et al., 2011) 

miR-21 Regulates STAT3-dependent expression of hTERT in glioblastoma cells. 

 

(Wang, Sun, et al., 2012) 

miR-21 Reduces lifespan of human endothelial cells. (Dellago et al., 2013) 

 

miR-498 Regulates hTERT expression levels in ovarian cancer. 

 

(Kasiappan et al., 2012) 

miR-138 

miR-143 

let-7 

miR-17-92 

 

Differentially expressed in cancer cells undergoing GRN163-mediated 

telomere shortening. 

(Uziel et al., 2010) 

miR-633 

miR-638 

Upregulated in three different senescent states; quiescence, stress-

induced senescence and replicative senescence. 

 

(Maes, Sarojini, & Wang, 

2009) 

 

 

 



69 
 

Table 2. continued 

miRNAs Physiological Function Reference 

miR-143 

miR-146a 

miR-155 

miR-143 upregulated in senescent BJ fibroblasts; downregulated in late 

passage BJ fibroblasts expressing hTERT. Ectopic TERT expression elicits 

pro-inflammatory signalling, resulting in upregulation of miR-146a and miR-

155. 

 

(Bonifacio & Jarstfer, 2010) 

miR-296 Regulates telomerase reactivation during tumorigenesis via impairment of 

the p53-p21WAF1 pathway. 

 

(Yoon et al., 2011) 

miR-290 family Reduced expression in Dicer1-null mice cells leading to increased 

expression of Rbl-2, a transcriptional repressor of DNA methyltransferases. 

This in turn affects the status of sub-telomeric regions. 

 

(Benetti et al., 2008) 

miR-200 family Downregulated in normal kidney cells undergoing telomere-mediated 

chromosomal instability. 

 

(Castro-Vega et al., 2013) 

33 differentially 

expressed 

miRNAs 

Positively associated with telomere length. A TERT variant (rs2736118) 

was associated with differential expression of 75 miRNAs. PTEN and 

PI3k/AKT signalling pathways were regulated by mRNA/miRNA 

interactions. 

(Slattery et al., 2016) 
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Insufficient statistical power may explain the lack of association found in other 

studies employing running as the independent variable (Mathur et al., 2013; Rae 

et al., 2010). Self-reported PA was positively associated with LTL in a cohort of 

5823 men and women from the National Health and Nutrition Examination Survey 

(NHANES) (Tucker, 2017). Objectively measured cardiorespiratory fitness has also 

been positively associated with LTL in a cohort of obese women (Mason et al., 

2013) and older exercise-trained participants (LaRocca et al., 2010). 

The positive associations have been refuted by several observational and 

interventional studies (Bekaert et al., 2007; Cassidy et al., 2010; D’Mello et al., 

2015; Denham, 2016; Farzaneh-Far, Lin, Epel, Lapham, et al., 2010; Fujishiro, 

Diez-Roux, Landsbergis, Jenny, & Seeman, 2013; Garcia-Calzon et al., 2014; 

Hovatta et al., 2012; Kadi et al., 2008; Laye et al., 2012; Mason et al., 2013; Mathur 

et al., 2013; Ponsot et al., 2008; Rae et al., 2010; Shin et al., 2008; Song et al., 

2010; Sun et al., 2012; Svenson et al., 2011; Tiainen et al., 2012; Woo et al., 2008). 

A summary of human studies that found no significant association between PA and 

telomere length is contained in table 4. A rigorous 2015 systematic review and 

meta-analysis concluded that insufficient quality evidence exists to conclusively 

associate PA with LTL (Mundstock et al., 2015). Approximately 54% of studies 

reviewed found no relationship between PA and LTL; 41% found a positive 

association and 5% identified a curvilinear relationship (Mundstock et al., 2015). 

Most of the positive associations were weak to moderate with only two studies 

reporting strong associations (Denham et al., 2013; Kim et al., 2012). The analysis 

cited methodological issues such as weak correlations, assessment of varied 

tissue types, arbitrary cuff-off points, inadequate blinding of researchers, selective 

inclusion of other potentially confounding lifestyle factors and discrepant 
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measurement techniques as possible confounders (Mundstock et al., 2015). 

Discrepant modes of PA and the wide-spread use of self-reported PA with its 

inherent biases may also explain the lack of association in several of the studies. 

A similar review conducted in 2013 assessed the effect of exercise in animals and 

humans and identified three general association types: positive association, 

inverted ‘U’ response and no association (Ludlow, Ludlow, & Roth, 2013). 

A study of 2006 Chinese participants found no significant difference in LTL 

across quartiles of PA (Woo et al., 2008). Crucially, the author cited possible 

decreased role of PA in the seventh decade given potential selection bias of 

recruiting healthy elderly participants. A common criticism of studies failing to find 

associations with PA is the lack of statistical power; however, a range of studies 

with sample sizes ranging from 1942–5862 participants have failed to find an 

association between PA and LTL (Bekaert et al., 2007; Cassidy et al., 2010; Sun 

et al., 2012; Tiainen et al., 2012; Weischer, Bojesen, & Nordestgaard, 2014; Woo 

et al., 2008). In a cohort of 4576 Danish men and women, PA was not associated 

with LTL change over 10 years (Weischer et al., 2014). A study by Sun et al. (2012) 

found no association between PA and LTL in a cohort of 5862 middle-aged women; 

however, the addition of five low-risk factors (smoking status, PA, adiposity, alcohol 

use and diet) to the analysis established a significant association (Sun et al., 2012). 

Potential Mechanisms 

The consensus is that the positive association between PA and telomere 

length is mediated by reductions in chronic oxidative stress and inflammatory 

processes (Campos et al., 2014; Gomes, Silva, & de Oliveira, 2012; Nimmo, 

Leggate, Viana, & King, 2013). Increases in antioxidant gene expression (Gomez-

Cabrera, Domenech, & Viña, 2008), increased activity of DNA-repairing enzymes 
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(Radák et al., 2003), and decreased ROS (Bjork, Jenkins, Witkowski, & Hagberg, 

2012) have also been implicated as likely mediators of the response. Exercise-

induced changes in signalling mechanisms such as TERT, IGF-1, eNOS, and AKT 

associated with telomere biology have also been proposed (Ludlow et al., 2013; 

Ludlow & Roth, 2011; Werner et al., 2009; Werner et al., 2008). More recently, a 

single 45-min bout of cycle ergometry was shown to increase skeletal muscle 

TERRA in a small cohort (Diman et al., 2016).  

Physical Activity and the Shelterin Complex  

The shelterin complex appears to be sensitive to environmental stimuli such 

as exercise. Interventional animal studies have demonstrated exercise-induced 

regulation of shelterin components in skeletal muscle tissue (Ludlow et al., 2012; 

Werner et al., 2008). Increased expression of shelterin component mRNA and 

protein have been observed in well trained athletes when compared to controls 

(Denham, O'Brien, Prestes, Brown, & Charchar, 2016; Werner et al., 2009). Most 

human studies are limited by their observational design, which precludes 

conclusions about causality. 

Telomerase and Physical Activity 

The tacit assumption that longer telomeres reflect increased telomerase 

activity is not reliably supported by the evidence (Zalli et al., 2014). In a study of 

124 healthy individuals, telomerase activity progressively decreased in concert with 

telomere length from ages 4 to 39 years. However, 65% of individuals aged 40 

years or older exhibited low yet stable telomerase expression despite continued 

telomere shortening (Iwama et al., 1998).
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Table 3. A summary of studies showing a positive association between physical activity and telomere length. 

Reference Subjects (n) Tissue Measurement Key Findings 

(Puterman et al., 2010) Healthy post-

menopausal women 

(n=63); sedentary 

group, active group 

Leukocytes T/S qPCR Sedentary: one unit increase in the 

Perceived Stress Scale = 15-fold increase 

in odds of having short LTL (P<0.05). 

Active: Perceived stress unrelated to 

telomere length (P=0.45). 

(Cherkas et al., 2008) White twins 2401: 

females (n=2152), 

males (n=249) 

Leukocytes Southern blot 

TRF 

Leisure time PA positively associated with 

LTL (P<0.001). LTLs of the most active 

subjects were 200 nucleotides longer than 

least active (P=0.01). 

(Tucker, 2017) 5823 adult 

participants; males 

(n=2766), females 

(n=3057) 

Leukocytes T/S qPCR Relative PA (P<0.001) and absolute PA 

(P= 0.005) associated with longer LTL 

after adjustment for demographic 

variables. Prevalence of short telomeres 

associated with relative PA (P<0.001). 
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Table 3. continued 

Reference Subjects (n) Tissue Measurement Key Findings 

(Cherkas et al., 2006) 1552 Caucasian 

female twins: 

dizygotic twins 

(n=749), mono-

zygotic twins (n=27)  

Leukocytes Southern blot 

TRF 

PA positively associated with TRFL (P< 

0.005). Overall decreasing trend in TRFL 

with lower SES (P<0.024). Significant 

difference in TRFL between non-manual 

and manual workers (P<0.01). 

(Kim et al., 2012) Healthy, post-

menopausal women 

(n=44) 

Leukocytes T/S qPCR LTL significantly higher in habitual 

exercise group compared to sedentary 

group (P< 0.01). 

(Bendix et al., 2011) 274 pairs same sex 

twins: dizygotic pairs 

(n=153), mono-

zygotic pairs (n=121) 

Leukocytes Southern blot 

TRF 

LTL is positively associated with self-

reported physical ability in all pairs 

combined (P=0.006). Positive association 

between PA and LTL in all pairs (P=0.034). 
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Table 3. continued 

Reference Subjects (n) Tissue Measurement Key Findings 

(Denham et al., 2013) Male ultra-marathon 

runners (n=67), 

controls (n=63) 

Leukocytes T/S qPCR LTL 11% longer in ultra-marathon runners 

compared to controls (P<0.001). 

(Du et al., 2012) Nurse’s health study 

- 7813 females 

Leukocytes T/S qPCR Increased LTL in moderately and highly 

active women (P=0.02). Moderate or 

vigorous activity associated with longer 

LTL (P=0.02). 

(Garland et al., 2014) Post-menopausal 

women with Stage I–

III breast cancer 

(n=392) 

PBMCs Southern blot 

TRF 

No PA significantly associated with 

shorter LTL (P=0.03). 

(Kingma et al., 2012) 895 participants: 

males (n=419), 

females (n=476) 

Leukocytes T/S qPCR 
Low frequency PA an independent 

predictor of short LTL (P<0.001). 
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Table 3. continued 

Reference Subjects (n) Tissue Measurement Key Findings 

(Krauss et al., 2011) 944 CHD patients: 

low (n=299), mod 

(n=334), high 

(n=381) exercise 

capacity 

Leukocytes T/S qPCR 

LTL significantly longer in subjects with 

high exercise capacity (P<0.001). 

Association remained after adjustment for 

CVD severity and physical inactivity 

(P=0.005) 

(LaRocca et al., 2010) 57 participants: 

sedentary (n=5), 

young exercising 

(n=10), older 

sedentary (n=15), 

and older exercising 

(n=17) 

Leukocytes Southern blot 

TRF 

LTL of Older exerciser had longer LTL 

compared to controls (P<0.001). Older 

exerciser LTL not significantly different 

from young exercisers (P=0.12). LTL 

positively associated with V̇O2max 

(P<0.01). 
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Table 3. continued 

Reference Subjects (n) Tissue Measurement Key Findings 

(Loprinzi, 2015) 1764 adults: 51% 

males, 49% females, 

73% non-Hispanic 

whites  

Leukocytes T/S qPCR LTL longer in upper (P=0.04) and middle 

fitness tertiles (P=0.02) compared to 

lowest tertile. 

(Ludlow et al., 2008) 69 healthy 

participants: males 

(n=34), females 

(n=35)  

PBMCs T/S qPCR Significantly longer telomeres in second 

exercise energy expenditure quartile 

compared to first (P=0.001) and fourth 

(P=0.04) quartiles. 

(Østhus et al., 2012) 20 male participants: 

young athletes (n=5), 

young non-athletes 

(n=5), older athletes 

(n=5), older non-

athletes (n=5) 

Skeletal 

muscle 

T/S qPCR Longer telomeres in older athletes 

compared to older non-athletes (P=0.04). 

Young athletes not different to young non-

athletes (P=0.12). Strong correlation 

between V̇O2max and T/S ratio in athletes 

(P=0.02). 
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Table 3. continued 

Reference Subjects (n) Tissue Measurement Key Findings 

(Puterman et al., 2015) Post-menopausal 

women (n=239) 

Leukocytes T/S qPCR One SD below mean PA levels, major life 

stressors were associated with LTL 

shortening (P=0.01). One SD above mean 

PA level, major life stressors were not 

associated with LTL shortening (P=0.48). 

(Savela et al., 2012) 782 males: low PA 

(n=148), moderate 

PA (n=398), high PA 

(n=236) 

Leukocytes Southern blot 

TRF 

Inverted “U” response. Moderate PA 

positively associated with longest LTL 

(P=0.03). LTL the same in low and high PA 

groups. Moderate PA group had lowest 

proportion of short LTL (P=0.02). 
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Table 3. continued 

Reference Subjects (n) Tissue Measurement Key Findings 

(Silva et al., 2016) 46 participants: 

never (n=15), 

moderately (n=16), 

and intensively 

trained (n=15) 

PBMCs Flow-FISH T cell TL longer in moderately trained and 

intensively trained compared to never 

trained (P<0.05). Significantly longer 

telomeres in CD8+ T cells in IT group 

(P<0.05). 

(Venturelli et al., 2014) 36 participants: 

young (n=12), old 

mobile (n=12), old 

immobile (n=12) 

Skeletal 

muscle 

T/S qPCR Mean TL from leg muscle of the old 

immobile group significantly shorter than 

old mobile group (P<0.05), young group 

(P<0.05), arm muscle (P<0.05). 

(Werner et al., 2009) Young sedentary 

(n=26), athletes 

(n=32), middle-aged 

sedentary (n=21), 

athletes (n=25) 

Leukocytes FlowFISH and 

T/S qPCR 

Shorter telomeres in older sedentary 

controls (P<0.001). Age-dependent 

telomere loss attenuated in lymphocytes 

(P<0.001) and granulocytes (P<0.001) of 

older athletes. 
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Table 3. continued 

Reference Subjects (n) Tissue Measurement Key Findings 

(Zhu, Wang, et al., 

2011) 

667 adolescents, 

white males (n=169), 

white females 

(n=179), black males 

(n=155), black 

females (n=164) 

Leukocytes T/S qPCR Vigorous PA positively associated with 

telomere length (P=0.009) 

(Loprinzi & Sng, 2016) 6474 participants: 

49.6% males, 50.4% 

females 

Leukocytes T/S qPCR LTL positively associated with running 

(P=0.03) 

(Borghini et al., 2015) Endurance athletes 

(n=20), age- and 

gender-matched 

controls (n=42) 

Buccal cells T/S qPCR Baseline TL preserved in endurance 

athletes (P=0.003). Intermediate TL 

reduced in endurance athletes (P=0.002). 

Final time point TL reduced in endurance 

athletes (P<0.001). 
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Table 3. continued 

Reference Subjects (n) Tissue Measurement Key Findings 

(Latifovic, Peacock, 

Massey, & King, 2016) 

Healthy males and 

females (n=477) 

Leukocytes T/S qPCR Vigorous PA positively associated with 

LTL (P<0.01). 

(Saßenroth et al., 2015) 814 participants: 397 

males (n=397), 

females (n=417)  

Leukocytes T/S qPCR LTL longer in participants: currently 

exercising compared to inactive (P=0.013), 

engaged in intensive activity (P=0.011), 

participating in sport for 10 years prior to 

assessment (P=0.017). 

(Shadyab et al., 2017) Older aged white 

and African 

American women 

(n=1476) 

Leukocyte Southern blot 

TRF 

Longer LTL associated with highest PA 

(P=0.02), higher levels of moderate-to-

vigorous PA (P=0.04), and faster walking 

speed (P=0.03).  
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Table 3. continued 

Reference Subjects (n) Tissue Measurement Key Findings 

(Soares-Miranda et al., 

2015) 

Older adults (n=582) Leukocytes Southern blot 

TRF 

Longer LTL associated with walking 

distance (P=0.007), chair test performance 

(P=0.04). Change in chair test associated 

with less LTL shortening (P=0.04). 

(Williams et al., 2017) Healthy adults 

(n=4952) 

Leukocytes qPCR Longer LTL associated with aerobic fitness 

(P=0.03), trunk muscle endurance 

(P=0.02). 

CHD: coronary heart disease. CVD: cardiovascular disease. FlowFISH: fluorescence in situ hybridization combined with flow 

cytometry. TL: telomere length. LTL: leukocyte telomere length. PA: physical activity. PBMCs: Peripheral blood mononuclear 

cells. TRF: terminal restriction fragment analysis. TRFL: terminal restriction fragment length. T/S qPCR: the ratio of telomere 

PCR value to single-copy gene value derived from quantitative PCR. SD: standard deviation. SES: socio-economic status. 

V̇O2max: maximal volume of oxygen uptake. 
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Table 4. A summary of studies showing no association of physical activity with telomere length. 

Ref. Subjects (n) Tissue Measurement Key Findings 

(Bekaert et al., 2007) 2509 participants: 

males (n=1218), 

females (n=1291) 

Leukocytes Southern blot 

TRF 

Self-reported PA not associated with LTL 

(P=0.806). 

(Farzaneh-Far, Lin, 

Epel, Lapham, et al., 

2010) 

608 individuals with 

CAD: males (n=244), 

females (n=364) 

Leukocytes T/S qPCR PA did not independently modulate LTL 

(P=0.59). 

(Weischer et al., 2014) Male and female 

Danish participants 

(n=4576)  

Leukocytes T/S qPCR Change in LTL over 10 years not 

associated with PA (P=0.85) 

(Mirabello et al., 2009) Advanced prostate 

cancer (n=612), age-

matched controls 

(n=1049) 

Leukocytes T/S qPCR No association between PA and LTL 

(P=0.262). LTL positively associated with 

healthy lifestyle factors (e.g. diet, PA, 

smoking) (P=0.004). 
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Table 4. continued 

Ref. Subjects (n) Tissue Measurement Key Findings 

(Mathur et al., 2013) Marathon runners 

(n=17), sedentary 

controls (n=15) 

Lymphocytes/ 

granulocytes 

T/S qPCR No difference between marathon runner 

lymphocyte (P=0.6) and granulocyte TL 

(P=0.9) compared to controls. 

(Rae et al., 2010) Experienced runners 

(n=18), sedentary 

individuals (n=19) 

Skeletal 

muscle 

Southern blot 

TRF 

No difference in minimum TRF between 

groups (P=0.805). Minimum TRF inversely 

related to years of running (P=0.007) and 

time spent training (P=0.035). 

(Mason et al., 2013) 439 overweight 

women: dietary 

weight loss (n=118), 

aerobic exercise 

(n=117), diet/ 

exercise (n=117), 

control (n=87) 

Leukocytes T/S qPCR No significant difference in LTL in exercise 

group (P=0.51), diet and exercise group 

(P=0.14). Baseline LTL positively 

associated with VO2max (P=0.03). 
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Table 4. continued 

Ref. Subjects (n) Tissue Measurement Key Findings 

(Cassidy et al., 2010) Nurses’ Health 

Study: women 

(n=2284) 

Leukocyte T/S qPCR No association between LTL and PA 

(P=0.69). 

(Fujishiro et al., 2013) 981 individuals: 

males (n=467), 

females (n=514)  

Leukocytes T/S qPCR Work related PA not associated with LTL 

(P=0.933) 

(Garcia-Calzon et al., 

2014) 

Obese individuals 

(n=521) randomized 

into: 2 diet groups, 1 

low-fat control group 

Leukocytes T/S qPCR Self-reported PA not associated with 

telomere length (P=0.186). 

(Hovatta et al., 2012) Subjects with 

impaired glucose 

tolerance (n=190), 

controls (n=188)  

Leukocytes T/S qPCR No significant difference in LTL following 

multi-faceted lifestyle intervention at 4.5 

year follow up (P=0.76). 
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Table 4. continued 

Ref. Subjects (n) Tissue Measurement Key Findings 

(Kadi et al., 2008) 14 participants: 

powerlifters (n=7), 

controls (n=7) 

Skeletal 

muscle 

Southern blot 

TRF 

TL not significantly associated with 8 ± 3 

years of powerlifting experience (P=0.07). 

(Laine et al., 2015) 599 males:  

former athletes 

(n=392), controls 

(n=207) 

Leukocytes T/S qPCR No association between self-reported 

volume of leisure time PA and LTL in later 

life (P=0.845). 

(Ponsot et al., 2008) 42 participants: 

young males (n=10), 

young females (n=6), 

old males (n=13), old 

females (n=13) 

Skeletal 

muscle 

Southern blot 

TRF 

Tibialis anterior telomere length not 

significantly influenced by self-reported PA 

(P value not available). 
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Table 4. continued 

Ref. Subjects (n) Tissue Measurement Key Findings 

(Shin et al., 2008) 16 obese middle-

aged women: 

exercise group, 

control group 

Leukocytes T/S qPCR No significant change in LTL after 6 

months of aerobic training. 

(Song et al., 2010) 136 participants: 

males (n=50), 

females (n=86) 

Lymphocytes T/S qPCR Self-reported PA not associated with 

longer TL (P=0.46). 

(Sun et al., 2012) 5862 women Leukocytes T/S qPCR No association between PA and LTL. 

Presence of five low-risk healthy lifestyle 

factors associated with longer LTL 

(P=0.02). 

(Tiainen et al., 2012) 1942 male and 

female participants 

Leukocytes T/S qPCR PA not significantly associated with LTL in 

males or females (P value not available) 
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Table 4. continued 

Ref. Subjects (n) Tissue Measurement Key Findings 

(Woo et al., 2008) Male (n=976), 

female (n=1030) 

Leukocytes T/S qPCR No significant difference in TL across 

quartiles of self-reported PA (P=0.32) 

(Denham et al., 2016) Exercise trained 

(n=44), recreationally 

active controls (n=40) 

PBMCs T/S qPCR No significant difference in PBMC 

telomere length between exercising group 

and controls (P=0.72). 

(von Kanel, Bruwer, 

Hamer, de Ridder, & 

Malan, 2017) 

203 healthy 

participants; African 

(n=96), Caucasian 

(n=107) 

Leukocytes T/S qPCR Habitual PA not associated with LTL. 

CAD: coronary artery disease. LTL: leukocyte telomere length. PA: physical activity. PBMCs: peripheral blood mononuclear 

cells. TRF: terminal restriction fragment analysis. T/S qPCR: the ratio of telomere PCR value to single-copy gene value 

derived from quantitative PCR. V̇O2max: maximal volume of oxygen uptake.  
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Telomerase preferentially targets short telomeres (Britt-Compton, Capper, 

Rowson, & Baird, 2009), therefore acute increases in telomerase may actually be 

an attempt to stabilize critically shortened telomeres (Epel et al., 2006). This may 

explain the increased telomerase activity and shortened telomeres that accompany 

subclinical coronary atherosclerosis (Kroenke et al., 2012).  

A range of studies have assessed exercise-induced changes in telomerase 

expression in human and animal models (table 5). Mouse models have 

demonstrated exercise-induced telomerase increases (Ludlow et al., 2012; Werner 

et al., 2009; Werner et al., 2008; Wolf, Melnik, & Kempermann, 2011); however, 

human results are conflicting. In one study, PBMC telomerase expression did not 

differ between physical fitness categories (Ludlow et al., 2008). However, a later 

study demonstrated increased leukocyte telomerase in endurance-trained athletes 

compared to controls (Werner et al., 2009). A 3 month multifaceted intervention 

consisting of diet, exercise, and stress management techniques increased PBMC 

telomerase expression in males;  however, direct causation cannot be assigned to 

one specific modality (Ornish et al., 2008). Acute exercise studies have produced 

conflicting results, with some showing no change in leukocyte telomerase 

expression (Laye et al., 2012), and others showing increased PBMC telomerase 

expression after a single bout of treadmill running (Zietzer et al., 2016).  

Changes in telomerase expression have more consistently been associated 

with dietary interventions (Balcerczyk et al., 2014; Boccardi et al., 2013; Zhu et al., 

2012) and alternative lifestyle interventions (typically underpinned by some form of 

relaxation practice) (Daubenmier et al., 2012; Ho et al., 2012; Jacobs et al., 2011; 

Kumar, Yadav, Yadav, Tolahunase, & Dada, 2015; Lavretsky et al., 2013; 

Lengacher et al., 2014; Ornish et al., 2008). 
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1.3.5 Areas for Investigation  

Exercise, miRNAs, and Telomeres 

MicroRNAs post-transcriptionally modulate gene expression and mediate 

several exercise-induced adaptations (Chan et al., 2009; Davidsen et al., 2011; 

Davidson-Moncada et al., 2010; Williams et al., 2009; Zhang, 2010). Despite 

established roles in cellular aging and senescence pathways, little is known about 

the epigenetic role miRNAs play in telomere homeostasis. Additionally, the effect 

of exercise on telomere-associated genes and their potential regulation via 

miRNAs is unclear. Similarly, little is known about the immune cell subset-specific 

expression of miRNAs in response to exercise.  

Many of the reported miRNA-telomere associations have been established 

in cancer cell lines, wherein dysregulated telomere maintenance mechanisms may 

have corrupted the observed associations. There are far fewer established in vivo 

associations between miRNAs and telomere maintenance in healthy cells.  

The current study will further investigate the exercise-induced miRNA 

signature and potentially identify expression patterns of miRNAs with potential 

telomeric involvement. The widely observed associations between PA and LTL 

may be underpinned by upregulation of telomere genes; a phenomenon that may 

in part be regulated by miRNA epigenetic modulation.   

Exercise and Telomere-Associated Genes 

Despite the positive associations between PA and LTL, a clear understanding of 

how telomeres adapt to exercise is lacking. It is unknown if exercise-induced 

changes in shelterin activity are necessary and/or sufficient for changes in telomere 
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Table 5. A summary of studies investigating the association between physical activity and telomerase expression. 

Ref. Subjects (n) Tissue Measurement  Key Finding 

(Laye et al., 2012) Professional ultra-

marathon runners (44 

± 2 years): males 

(n=7), female (n=1)  

Leukocytes TRAPeze qPCR No change in leukocyte telomerase 

activity pre- to post-intervention 

(running 7 marathons in 7 days) 

(Ludlow et al., 2008) 69 participants 

(60.33±4.9 y):  

males (n=34), 

females (n=35)  

PBMCs Gel-based 

TRAP 

No significant difference in PBMC 

telomerase expression between 

different exercise level quartiles 

(P=0.84). 

(Ludlow et al., 2012) 30 AST/Ei J mice;  

exercising (n=15), 

sedentary (n=15)  

Mouse cardiac, 

skeletal and liver 

tissue. 

TRAPeze qPCR Significant difference between 

exercising skeletal muscle telomerase 

compared to sedentary mice after 12 

months (P=0.02). No significant 

difference in cardiac and liver tissue 

telomerase between groups. 
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Table 5. continued 

Ref. Subjects (n) Tissue  Measurement  Key Finding 

(Melk et al., 2014) Healthy middle-aged 

males (53 ± 6 years) 

(n=59) 

PBMC Not stated Significant increase in PBMC 

telomerase activity after 6-month 

intervention (P<0.001) 

(Ornish et al., 2008) Biopsy-diagnosed 

prostate cancer (62.2 

± 7.5 years): (n=30) 

PBMC Gel-based 

TRAP 

Significant increase in PBMC 

telomerase activity after 3-month 

intervention (P=0.031).  

(Radak et al., 2001) Rat  Liver and solid 

sarcoma cells 

PCR ELISA No significant change in telomerase 

activity in rat liver or sarcoma cells 

after 8 weeks of swimming exercise. 

 

(Werner et al., 2008) Male C57/B16 

(eNOS)-/- mice 

TERT-/- mice, strain-

matched controls 

 

Mouse TRAPeze qPCR Increased telomerase activity in 

myocardial cells after short-term (21 

days) and long-term (6 months) of 

voluntary wheel running (P=0.01) 
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Table 5. continued 

Ref. Subjects (n) Tissue  Measurement  Key Finding 

(Werner et al., 2009) Young: controls 

(n=26), athletes 

(n=32), middle-aged: 

controls (n=21), 

athletes (n=25) 

MNCs TRAPeze qPCR 2.5-fold increase in young athlete MNC 

telomerase (P<0.001) and 1.8-fold 

increase in middle-aged athletes 

compared to controls (P=0.006)  

(Wolf et al., 2011) 10, C57B1/6 mice 

(rodent model of 

schizophrenia)  

Brain neural 

precursor cells 

from C57B1/6 

mice 

TRAP-based 

ELISA kit 

Significant increase in murine neural 

precursor cell telomerase activity after 

10 days of wheel running (P<0.01) 

(Zietzer et al., 2016) Young participants 

(n=26), elderly 

patients (n=14) 

PMBCs TRAPeze qPCR Significant increase in PBMC 

telomerase activity after single 

treadmill exercise session (P≤0.05) 

ELISA: enzyme-linked immunosorbent assay. eNOS: endothelial nitric oxide synthase. MNCs: mononuclear cells. PA: physical 

activity. PBMCs: peripheral blood mononuclear cells. qPCR: quantitative (real-time) polymerase chain reaction. SE: standard 

error. TERT: telomerase reverse transcriptase catalytic subunit. TRAP: telomeric repeat amplification protocol. TRAPeze: 

telomeric repeat amplification protocol utilizing qPCR. V̇O2max: maximal volume of oxygen uptake.  
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length to occur. It is plausible that shelterin changes may be epiphenomena, 

occurring simultaneously yet independently of telomere length changes. The time 

course and duration of adaptive responses are also unclear. It is unclear which (if 

any) of the shelterin genes undergo IEG expression or mount a more delayed 

response to exercise in humans. Such IEG is commonplace within the immune 

system however any such role in telomere homeostasis is unsubstantiated. This 

may have important exercise programming implications, guiding exercise 

frequency recommendations to capitalize on the cumulative yet potentially 

transient alterations in shelterin function. 

The current study will assess the acute responsiveness of leukocyte 

shelterin genes to 30 min of aerobic exercise at 80% of V̇O2peak. Additionally, 

potentially regulatory miRNA will also be assessed. In doing so, the current study 

will improve the understanding of acute telomeric exercise adaptation within the 

immune system. 

1.4 Thesis Overview 

This thesis will examine the acute effects on intense cardiorespiratory 

exercise on immune cell distribution and telomere-associated genes, non-coding 

RNAs, and associated pathways. Cardiorespiratory exercise was chosen as the 

exercise intervention as most physical activity and mortality associations have 

utilized a measure of cardiorespiratory exercise. Additionally, most of the 

established associations between physical activity and LTL, and more than 50% of 

studies assessing physical activity and telomerase, utilized this exercise modality 

(see tables 3, 4 and 5 section 1.3.4). Many of the studies that utilized resistance 

training assessed skeletal muscle as the target tissue. Whilst skeletal muscle 
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satellite cells are undifferentiated myogenic precursors capable of replication (Kadi 

et al., 2005), adult skeletal muscle cells are multinucleated post-mitotic cells that 

do not divide and therefore do not impact upon telomere length.  

Firstly, the effect of 30 min of intense exercise on the relative proportions of 

circulating immune cells will be investigated. Secondly, the differential expression 

of miRNAs in response to intense exercise will be investigated. Thirdly, the 

exercise-induced abundance of telomeric gene mRNA will be investigated. Lastly, 

changes in the exercise-induced transcriptome will be measured to assess 

regulation of potential pro-telomere transcripts and/or pathways in leukocytes. 

Aims 

The overall aim of this thesis is to investigate the acute exercise-induced 

immunological and molecular adaptations that may underpin the observed 

relationship between habitual exercise and increased leukocyte telomere length. 

The specific aims of this thesis are to: 

1. Characterize the acute leukocyte and T cell response to 30 min of intense 

cardiorespiratory exercise. 

2. Characterize the acute effects of 30 min of intense cardiorespiratory 

exercise on the expression patterns of leukocyte miRNAs with potential 

involvement in telomere biology. 

3. Characterize the acute effects of 30 min of intense cardiorespiratory 

exercise on the expression of telomere-associated gene transcripts.  

4. To characterize the exercise-induced transcriptome in leukocytes to identify 

telomere-associated gene and/or pathway responsiveness. 
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Hypotheses 

The research here within is premised upon the broad hypothesis that the 

observed chronic alterations in immune cell telomere dynamics reflect the 

cumulative acute perturbations in either telomeric genes, telomere-associated 

miRNAs, and/or telomerase activity. The specific hypotheses are: 

1. An acute 30 min bout of continuously monitored, intense cardiorespiratory 

exercise will differentially regulate T cell subsets. Specifically, it is 

hypothesised that the strict maintenance of 80% of V̇O2peak throughout the 

30 min bout of running could alter the magnitude and time course of the 

routinely reported lymphocytosis and lymphopenia.  

2. A 30 min bout of treadmill running at 80% V̇O2peak will differentially regulate 

miRNAs in leukocytes and immune cell subsets. Specifically, aerobic 

exercise will differentially regulate miRNAs that potentially interact with 

telomere-associated transcripts.  

3. A 30 min bout of aerobic exercise at 80% of V̇O2peak will differentially 

regulate several telomere-associated such as those associated with 

telomerase function or shelterin structure.  

4. A 30 min bout of aerobic exercise will significantly influence the leukocyte 

transcriptome. Specifically, exercise will regulate several genes and non-

coding RNAs, as measured by next generation sequencing, which may have 

interactions with telomere biology. 

1.4.1 Significance 

Aging 

The global population of older persons (aged 60 years or older) is projected 

to more than double by 2050, reaching 2.1 billion. The oldest-old persons (aged 80 
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years or older) are projected to more than triple in population, reaching 434 million 

(United-Nations, 2015). Advancing age is associated with increased susceptibility 

to a range of chronic conditions such as infectious diseases, Alzheimer’s disease, 

CVD, cancer, and osteoporosis. This increased susceptibility is in part attributed to 

a dysregulated and dysfunctional immune system (De Martinis, Di Benedetto, 

Mengoli, & Ginaldi, 2006; Franceschi et al., 2007; Giunta et al., 2008; 

Malaguarnera, Cristaldi, & Malaguarnera, 2010; McElhaney & Effros, 2009; 

Weinberger, Herndler-Brandstetter, Schwanninger, Weiskopf, & Grubeck-

Loebenstein, 2008; Weiskopf, Weinberger, & Grubeck-Loebenstein, 2009).  

Telomeres are major determinants of biological age and are significantly 

influenced by lifestyle factors such as exercise (Zhang, Rane, et al., 2016). The 

trajectory of telomere shortening reflects cellular aging and is considered a marker 

of health status in the aging population (Samani & van der Harst, 2008). 

Leukocytes permeate every tissue and plausibly exert and simultaneously reflect 

a systemic exercise response. A better understanding of the homeostatic 

mechanisms regulating the telomere/telomerase system may inform exercise-

based interventions for specific populations with impaired telomere maintenance.  

Immune System 

Immunosenescence and dysregulation can contribute to an array of age-

related diseases (Blasko et al., 2004; Chinetti-Gbaguidi, Colin, & Staels, 2015; 

Dunn, Old, & Schreiber, 2004; Frostegård, 2013; Giunta et al., 2008; Kim, Emi, & 

Tanabe, 2007; Kolbus et al., 2013; Meng et al., 2016; Shi, Bot, & Kovanen, 2015; 

Yu, Park, Shin, & Lee, 2016; Zhang & Grizzle, 2003). The hallmark characteristic 

of a dysregulated immune system is telomere-dependent senescence. Cellular 
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senescence can influence immune function and mammalian lifespan (Choudhury 

et al., 2007; Rudolph et al., 1999; Tyner et al., 2002). 

Maintenance of telomere length and telomerase activity are critical for 

effective functioning of the immune system. Modulation of telomerase activity and 

telomere length can mitigate senescence and the associated phenotypes 

(Jaskelioff et al., 2011; Minamino et al., 2002; Oh, Kyo, & Laimins, 2001). This 

effect has been observed in circulating leukocytes and vascular cells (Werner et 

al., 2009). Habitual PA and/or exercise have been shown to positively influence 

many indices of the aging immune system (Chin et al., 2000; Drela et al., 2004; 

Gano et al., 2011; Grant et al., 2008; Kadoglou et al., 2007; Nicklas et al., 2008; 

Nieman & Henson, 1994; Petersen & Pedersen, 2005; Shinkai et al., 1995; 

Simpson, 2011; Simpson & Guy, 2009; Smith, Dykes, Douglas, Krishnaswamy, & 

Berk, 1999; Smith, Kennedy, & Fleshner, 2004; Spielmann et al., 2011). Crucially, 

the effects of exercise on immune cell aging exhibit a ‘U’ shaped response, 

suggesting a point of diminishing returns and possible maladaptation (Turner, 

2016). A better understanding of the factors contributing to this response may 

identify the physiological thresholds and mechanisms driving the hormetic 

response. This in turn may directly inform clinical exercise prescription for at-risk 

or pathological populations. 

Cardiovascular Disease 

Observational data show an inverse association between telomere length 

and CVD independent of conventional risk factors (Haycock et al., 2014). Despite 

the prevailing theory that LTL is a non-causal biomarker of atherosclerosis, recent 

studies provide considerable support for a causal role (Aviv, 2012; Codd et al., 

2013; Haycock et al., 2014). A recent meta-analysis identified that one standard 
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deviation decrease in LTL was associated with a 21%, 24%, and 37% increased 

risk of stroke, myocardial infarction, and type 2 diabetes mellitus respectively 

(D’Mello et al., 2015).  

Most telomere-modulating factors are also established CVD risk factors. 

Telomere-dependent senescence evokes a chronic state of oxidative stress, 

inflammation, increased expression of adhesion molecules, proteases, cytokines, 

and growth factors (Fyhrquist et al., 2013). This sequela can promote and 

propagate atherosclerotic processes and plaque instability (Yeh & Wang, 2016). 

Exercise-induced telomere homeostasis and epigenetic modifications may account 

for some of this unexplained protection against CVD afforded by habitual exercise. 

Summary 

Telomere length represents a central cog around which inflammation, 

cellular senescence, and biological aging are set in motion. Whilst a substantial 

body of knowledge exists regarding negative telomere instigators in health and 

disease, comparatively little is known about positive telomeric adaptations. In the 

face of equivocal correlational and associative findings, clarity must be sought at 

the mechanistic level. More accurate mapping of the immunological, epigenetic, 

and telomeric responses to exercise will enhance the understanding of the 

requisite systems and processes.  

Establishing an epigenetic and/or pro-telomeric adaptive signature to 

various modes of exercise may help determine optimal exercise combinations and 

personalized approaches for specific physiological outcomes. The findings of this 

thesis may enhance the understanding of telomere homeostasis in health and 

disease and improve the understanding of the telomeric adaptive response to PA.  
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Chapter 2 - The T Cell Response to Intense 

Cardiorespiratory Exercise 
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2.1 Abstract 

Introduction: Intense exercise results in transient changes in leukocyte 

numbers in a duration- and intensity-dependent manner. This phenomenon 

partially explains the improved health seen in the active and immune suppression 

exhibited by the overtrained. Importantly, the magnitude and duration of this effect 

appears to be intensity and duration dependent. Aims: The aim of this study is to 

characterize the T cell response to 30 min of intense cardiorespiratory exercise. 

Methods: Twenty-two healthy males (24.1 ± 1.55 years) undertook 30 min of 

treadmill running at 80% of V̇O2peak. Blood samples were taken before exercise, 

immediately post-exercise, and 60 min post-exercise. Isolated leukocytes were 

labelled with the monoclonal antibodies and flow cytometry was used to identify 

relative proportions of: CD3+, CD3+CD4+, CD4+CD45RA+, CD4+CD45RO+, 

CD3+CD8+, CD8+, CD8+CD45RA+ and CD8+CD45RO+ T cells. Results: 

Significant post-exercise decreases were observed in the percentage of total CD3+ 

T cells (P<0.001) and CD4+ T cells (P<0.001) followed by a return to resting levels 

60 min post-exercise in CD3+ T cells and above resting levels in CD4+ T cells 

(P<0.001). A significant decrease in CD8+ T cells occurred 60 min post-exercise 

(P<0.01). Relative proportions of CD4+ naïve T cells decreased 60 min post-

exercise (P=0.05) whilst CD8+ naïve T cells decreased post-exercise (P<0.05) 

before returning to resting levels 60 min post-exercise. Conclusion: Thirty min of 

treadmill running at a constant 80% of V̇O2peak was sufficient to elicit novels 

changes in the relative proportions of specific T cell subsets. 
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2.2 Introduction  

The Exercise Response 

Leukocytes permeate every tissue and plausibly exert and reflect a systemic 

exercise response. The total number of circulating leukocytes increases during 

acute exercise (leukocytosis) due to the ingress of lymphocytes, neutrophils, and 

monocytes. Lymphocyte numbers typically reduce (lymphocytopenia) following 

exercise (30-50% of pre-exercise levels) paralleled by a sustained increase in 

neutrophils (Gleeson, Nieman, & Pedersen, 2004). These changes are largely due 

to the transient redistribution of immune cells throughout the body. Prolonged bouts 

of endurance exercise (164 ± 23 min at 55% of V̇O2max) elicit more pronounced 

leukocytosis than shorter bouts of high-intensity exercise (37 ± 19 min at 80% of 

V̇O2max) (Robson, Blannin, Walsh, Castell, & Gleeson, 1999). Shorter bouts of 

intensive exercise can elicit a delayed leukocytosis, peaking a few hours after 

exercise (Karsten, Frank-Christoph, & Christian, 2016). For exercise bouts longer 

than 60 min, duration has a greater modulatory effect on leukocyte numbers whilst 

exercise intensity has a greater effect within shorter bouts of exercise (Simpson, 

2013).   

Lymphocytes 

Lymphocytes undergo a distinct biphasic response to acute exercise; 

increasing (lymphocytosis) during and immediately after exercise before rapidly 

decreasing (lymphocytopenia) below pre-exercise levels during recovery (Shek, 

Sabiston, Buguet, & Radomski, 1995). Despite some exercise-induced increase in 

leukocyte apoptosis (Kruger et al., 2009; Mooren, Blöming, Lechtermann, Lerch, & 

Völker, 2002), most of the change in lymphocyte numbers is attributed to cellular 

redistribution (Kruger & Mooren, 2007). The magnitude of this biphasic change is 
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proportional to the exercise intensity and to a lesser extent, duration (McCarthy & 

Dale, 1988; Shek et al., 1995).   

The transient state of lymphocytosis is primarily due to two distinct yet parallel 

physiological processes; (i) increased haemodynamic shear forces that flush 

immune cells from marginal pools to the periphery (Shephard, 2003), and (ii) 

stimulation of β2-adrenergic receptors expressed on cytotoxic T cells (Landmann, 

1992; Maisel, Harris, Rearden, & Michel, 1990; Murray et al., 1992). The two 

processes result in increased migration of CD3+ T cells, CD8+ T cells, CD16+ NK 

cells, CD19+ B cells, and CD56+ NK cells into the periphery.  

 CD4+ and CD8+ T cells 

T cells are acutely sensitive to exercise duration and intensity. A greater 

absolute number of CD4+ T cells are mobilized in response to an acute bout of 

exercise; however, the relative contribution (expressed as percentage change) is 

approximately 1.5-2.0 times greater in CD8+ T cells (Shek et al., 1995). The 

magnitude of exercise-induced egress is also three times greater in CD8+ T cells 

resulting in an immediate post-exercise reduction in the CD4:CD8+ T cell ratio 

(Simpson, 2013).  

CD45RA+ and CD45RO+ T cells 

Peripheral migration of T cells is also influenced by the stage of differentiation. 

Cells with greater antigenic history, tissue migratory, and effector functions are 

preferentially mobilized into the periphery in response to acute exercise (Simpson, 

2011). Additionally, effector memory and CD8+CD45RA+ effector-memory 

(EMRA) T cells are preferentially mobilized over central memory and naïve CD8+ 

T cells in response to 20 min of cycling in an intensity dependent manner (Campbell 
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et al., 2009). More recently, a 60 min bout of intense cycling resulted in an 

immediate increase in CD27-CD8+ T cells which fell below resting concentration 

60 min after the exercise bout (LaVoy, Bosch, Lowder, & Simpson, 2013).  The 

observation that older memory cells are preferentially trafficked to the periphery is 

supported by the observation of shorter telomere lengths in activated CD8+ T cells 

after a maximal bicycle test (Bruunsgaard et al., 1999). 

T cells and Telomeres 

The proliferative capacity of lymphocytes is central to an effective immune 

response, facilitating the en masse production of antigen specific effector T cells. 

Crucially this clonal expansion is finite and largely dependent upon the length of T 

cell telomere length. The progressive erosion simultaneously provides an index of 

replicative history and imposes a replicative limit (Allsopp et al., 1992). In a typical 

immune response, a single naïve cell can undergo 15-20 divisions, resulting in 

approximately one million identical progeny and subsequent loss of telomeric DNA 

(Weng, 2008).  

Critically shortened telomeres trigger cell cycle arrest and a subsequent state 

of senescence (Spaulding, Guo, & Effros, 1999). In this state, cells lose replicative 

capacity and undergo a host of morphological and functional changes (Effros, 

Dagarag, Spaulding, & Man, 2005). Increased proportions of these senescent T 

cells form part of an immune risk profile (IRP), a cluster of deleterious immune 

parameters known to predict mortality in the elderly (Ferguson, Wikby, Maxson, 

Olsson, & Johansson, 1995; Pawelec, Derhovanessian, Larbi, Strindhall, & Wikby, 

2009). Other IRP parameters include: inverted CD4:CD8 T cell ratio, impaired T 

cell proliferative responses, decreased interleukin-2 (IL-2) production, a high ratio 
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of late stage (CD27-/CD28-) to early stage (CD27+/CD28+) differentiated CD8+ T 

cells, and latent cytomegalovirus seropositivity.  

The constituent subsets of immune cells exhibit heterogeneous gene 

expression profiles (Palmer, Diehn, Alizadeh, & Brown, 2006), telomere length, 

telomerase activity (Lin et al., 2010), and telomere dynamics (Son et al., 2000). 

Microarray analysis has identified unique gene expression profiles in B cells 

(Ehrhardt et al., 2008), T cells (Wang, Windgassen, & Papoutsakis, 2008), dendritic 

cells (Lindstedt, Lundberg, & Borrebaeck, 2005), and monocytes (Zhao et al., 

2009).  Unique microRNA expression profiles are also exhibited in T cells (Neilson, 

Zheng, Burge, & Sharp, 2007; Wu, Neilson, et al., 2007), B cells (Basso et al., 

2009), NK cells (Bezman et al., 2010), and dendritic cells (Kuipers, Schnorfeil, & 

Brocker, 2010). Consequently, slight changes in the relative proportions of immune 

subsets, as seen during exercise, could significantly alter the composite LTL and 

gene expression signature. The highly variable telomere lengths and shortening 

trajectories suggest unique replicative histories and distinctly divergent futures.  It 

is therefore plausible that expression profiles of telomeric genes may also differ 

between immune cell subsets.  

Areas for Investigation 

Many similar studies have used low sample sizes, highly trained participants 

(Nieman et al., 1994), discrepant intervention durations (Nieman & Henson, 1994), 

and/or intensities (Shek et al., 1995). Additionally, many of the studies in the field 

of exercise immunology use exercise work rates equivalent to percentages of 

V̇O2peak or heart rate, such as treadmill velocity achieved at a given percentage of 

V̇O2peak. This is likely to result in inaccuracies in intensity reporting due to the 
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inconsistent linearity between the two indices. Other studies report exercise 

intensities at specific intensities yet fail to report how or if the intensity was 

monitored throughout.  The variable exercise intensity used across studies is of 

particular importance as the nature and magnitude of the exercise-induced immune 

response closely scales with the exercise intensity (Simpson, 2013). There is little 

known about the precise immune response to 30 min of treadmill running at a 

constant and accurately measured 80% of V̇O2peak. Although not measured directly 

in this study, the data will be used in a later assessment of exercise-induced 

changes in telomere-associated genes and pathways. Little is known about the 

acute mechanisms that may underpin the cross-sectional associations between PA 

and LTL. Given the heterogeneous telomere lengths and gene expression profiles 

of immune cell subsets, an accurate characterization of the immune response to 

exercise is a logical starting point. 

2.3 Aims 

The aims of this study were to: (i) characterize the acute T cell response to 30 

min of intense cardiorespiratory exercise in males and, (ii) sort CD4+ and CD8+ T 

cell subsets for the assessment of telomeric gene expression and subsequent 

comparison with leukocyte composite gene expression signatures. 

Hypothesis 

The hypothesis for this study is that a 30 min bout of precisely and continuously 

monitored aerobic exercise at 80% of V̇O2peak would differentially regulate T cell 

subsets.  
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2.4 Methods 

Ethics Statement 

All eligible participants read a plain language information statement outlining all 

aspects of the project in lay terminology. Informed consent documents explaining 

the purpose, potential risk and benefits of the project were then signed in the 

presence of a witness. The study, recruitment and consent procedures were 

approved by the Human Research Ethics Committee from Federation University 

Australia (HREC approval #: A10-119). 

Participants 

Twenty-two healthy, non-smoking males (mean age = 24.1 ± 1.5 years) were 

recruited to participate in this study (Table 6).  

Physiological Measures 

Resting blood pressure and pulse were taken using an Omron® HEM-7203 

automated blood pressure monitor (Table 6). Participants were seated comfortably 

for 10-15 min prior to measurements to minimize sympathetic distortion. Each 

measure was taken 2-3 times throughout the assessment and average values were 

obtained and used.  

Anthropometric Measurements 

Body mass was determined using standard, calibrated electronic scales; height 

was determined using a standard free-standing stadiometer (table 6). Waist and 

hip measurements were taken at standardized sites using a 2 m metal 

anthropometry tape measure. Waist measurements were taken at the narrowest 

point between the iliac crest and bottom ribs. Hip circumference was taken at the 

point of maximum posterior extension of the buttocks, as viewed laterally. 
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Determination of Fitness Standard 

Participants undertook a treadmill test with an incremental step protocol until 

exhaustion (ramp test to exhaustion, RTE) to determine the peak rate of oxygen 

consumption (V̇O2peak), measured as millilitres of oxygen per kilogram of body 

mass, per minute (mL.kg-1.min-1). V̇O2peak is the highest rate of oxygen consumption 

attained during a given test and is viewed as a surrogate marker for V̇O2max when 

definitive maximal values have not been achieved. 

Physiological testing was conducted using a Metalyser® metabolic system 

(Cortex Biophysic, Leipzig, Germany).  Inspiratory and expiratory air flow was 

measured by a mouth piece-mounted flow transducer which was calibrated using 

a 3 litre Hans Rudolph calibration syringe. Atmospheric pressure was determined 

using a digital barometer. The Metalyser® was initially calibrated using bottled 

commercial gas (O2:16%, CO2 :4%, balance in N2) and again using ambient air. 

The Metalyser® recorded and displayed oxygen consumption data at 10 second 

averages and transferred the data to a computer for analysis using Metasoft II® 

software. 

Prior to the test, participants were advised the following: 

• Wear comfortable clothing and athletic shoes. 

• Drink adequate fluids (water) during the 24 hour period before the test.  

• Refrain from eating, smoking, and drinking alcohol or caffeine for at least 3 

hours prior to the test.  

• Do not engage in strenuous physical activity the day before the test.  

• Get adequate sleep (6-8 h) the night before the test.  
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Table 6. Physical characteristics of the 22 male participants 

Characteristic Mean SD 

Age (years) 24.0 ± 7.3 

Height (cm) 180.7 ± 4.3 

Body Mass (kg) 78.5 ± 9.0 

BMI (kg/m2) 24.0 ± 2.5 

Waist (cm) 81.5 ± 5.6 

Hip (cm) 98.6 ± 5.1 

Waist:hip ratio  0.8 ± 0.03 

Systolic BP (mmHg) 130.8 ± 11.7 

Diastolic BP (mmHg) 72.0 ± 8.3 

Resting HR (b.min-1) 64.1 ± 11.6 

SD (standard deviation); BMI (body mass index); BP (blood 

pressure); HR (heart rate); mmHg (millimetres of mercury); 

b.min-1 (beats per minute). 
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Participants were fitted with a safety harness attached to an automatic 

shutdown switch to ensure immediate treadmill cessation if the participant 

stumbled. The test protocol started with a 5 min warm up period performed at 

10km.h-1 after which the speed increased by 1km.h-1 each minute. The speed of 

work-rate imposition was chosen to decrease the likelihood of premature 

mechanical fatigue before metabolic exhaustion was achieved. The treadmill 

remained at a constant 0% gradient throughout the test. Breath by breath gas 

exchange and heart rate were continually monitored throughout.  

The test was terminated upon participant volitional failure; however, all 

participants were vigorously encouraged to continue until an obvious a plateauing 

of O2 intake was achieved. All testing was conducted between 7:30am and 

10:30am to minimize potential circadian influence. A summary of exercise test data 

is contained in table 7. 

Exercise Intervention 

Participants were scheduled into an exercise intervention session a minimum 

of 5 days and no more than 7 days after the initial fitness test. This period was 

allowed to minimize the impact of any discomfort and inflammation resulting from 

the maximal treadmill test.  All participants provided prior written informed consent 

and appropriate first aid trained staff and first aid equipment were at hand 

throughout all stages of the testing process. Participants were asked to refrain from 

vigorous physical activity during the preceding 48 hours. All exercise interventions 

were conducted between 7:30am to 10:30am to minimize potential circadian 

influence. 

Participants arrived 10 min before their scheduled time and were seated quietly 

to ensure that baseline blood pressure and heart rate measures were not elevated. 
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A pre-exercise (Pre-Ex) 10 ml blood sample was taken from the median cubital 

vein using 10 ml K2E EDTA Vacutainer blood collection tubes with Eclipse® Blood 

Collection Needles and pre-attached holders (21G x 1-1/4”) (BD Biosciences, 

Australia) (figure 8). All blood samples were kept on ice until white blood cell 

isolation and storage. Participants remained seated for an additional 30 min to 

ensure no adverse reaction to the blood sample during which time participants 

were briefed on the treadmill safety protocol.  

Participants were then fitted with a heart rate monitor (Polar Electro®, 

Australia), safety harness and the respiratory mask head assembly. A 5 min warm-

up period was undertaken at 10km.h.-1 before commencing a 30 min continuous 

bout of treadmill running at 80% of previously determined V̇O2peak.  An exercise 

intensity of 80% of V̇O2peak was selected as it had been used in other similar studies 

and shown to elicit a vigorous cardiorespiratory and metabolic response (Connolly 

et al., 2004; Cooper, Barstow, Bergner, & Lee, 1989).  Other studies have 

demonstrated significant transcriptional responses to a 30 min bout of exercise at 

80% V̇O2peak (Radom-Aizik et al., 2008; Sakharov et al., 2012). Additionally, 

exercise-induced changes in T cell numbers are closely correlated with exercise 

intensity (McCarthy & Dale, 1988; Shek et al., 1995). A range of exercise 

immunology studies have elicited significant immune cell number responses using 

intensities of 80% of V̇O2peak and durations of 30-45 min (Nieman et al., 2003; 

Nieman, Miller, et al., 1993; Robson, Blannin, Walsh, Bishop, & Gleeson, 1999). 
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     Table 7. Treadmill ramp test exercise data. 

Characteristic Mean SD 

V̇O2peak (mL.kg-1.min-1) 49.3 ± 4.8 

V̇O2peak (L.min-1) 3.1 ± 0.5 

Maximal heart rate (b.min-1) 178 ± 8.9 

Maximum V’E (L.min-1) 125.9 ± 12.4 

Maximum METs 13.9 ± 1.5 

Maximum RER 1.2 ± 0.1 

Test duration (min:s) 12.5 ± 1.6 

Velocity at V̇O2peak (km.h-1) 17.1 ± 1.6 

Maximum velocity (km.h-1) 17.6 ± 1.7 

Ambient temp (°C) 16.8 ± 2.7 

Ambient pressure (mbar) 957.8 ± 8.7 

V̇O2peak (highest oxygen consumption achieved in test); b.min-1 (beats per 

minute); V’E (minute ventilation); METs (metabolic equivalents); RER 

(respiratory exchange ratio); mbar (millibar);  
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Figure 8. A schematic overview of study design. A baseline blood sample was taken 30 min before the onset of 

exercise. Participants then completed a 30 min bout of treadmill running at 80% of previously determined V̇O2peak. 

Additional blood samples were taken Post-Ex and 60 min Post-Ex. 
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Exercise intensity was calculated accordingly; V̇O2peak (mL.kg-1.min-1) x 0.8 = 

target intensity. Percentages of heart rate reserve (%HRR) or oxygen uptake 

reserve (%V̇O2R) were not used to prescribe exercise intensity due to the 

methodological limitations and instability of the purported relationship between the 

two values (da Cunha, Farinatti, & Midgley, 2011). Heart rate and breath-by-breath 

gas exchange were continually monitored over the 30 min period and slight 

changes in treadmill speed were made to maintain the correct intensity.    

Participants undertook a second blood test immediately after the exercise 

intervention (Post-Ex) before commencing a gentle walking cool down.   A third 

blood sample (60 min Post-EX) was taken 60 min after the exercise intervention. 

Participants were instructed to passively rest and refrain from   consuming caffeine, 

alcohol or nicotine in between the second and final blood tests.  Once filled, the 

EDTA treated vacutainers were immediately inverted several times to ensure 

adequate mixing. The mean time from blood draw to white blood cell isolation did 

not exceed 90 min. A summary of participant exercise intervention data is 

contained in Table 8. The mean percentage of V̇O2peak maintained throughout the 

30 min intervention was 80.8% (SD ± 7.1). The SD of ± 7.1 represents 7.1% and 

reflects the spread of mean exercise intensities over the 30 min intervention period. 

Despite adjustments to treadmill speed throughout the intervention, some 

participants’ V̇O2peak transiently spiked for short periods of time before settling back 

into the desired range. 
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Table 8. Thirty minute treadmill intervention exercise data. 

Characteristic Mean SD 

% of V̇O2peak during 30 min run 80.8 ± 7.1 

V̇O2peak (L.min-1) 3.1 ± 0.3 

Average heart rate (b.min-1) 163.7 ± 12.9 

Average V’E (L.min-1) 94.6 ± 14.3 

Average METs 11.3 ± 0.9 

Average RER 1.0 ± 0.1 

V̇O2peak (highest oxygen consumption achieved in test); b.min-

1 (beats per minute); V’E (minute ventilation); METs (metabolic 

equivalents); RER (respiratory exchange ratio).  
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Cell Preparation  

Whole blood samples were spun at 1000 x g (2250rpm) (4°C) for 15 min to 

separate the plasma and haematocrit sub-fractions. The isolated buffy coats were 

treated with red blood cell lysis buffer, spun at 300 x g for 10 min, and washed 

twice in sterile phosphate buffered saline (PBS). This technique isolated 

leukocytes, a heterogeneous mix of neutrophils, basophils, eosinophils, 

lymphocytes, and monocytes. The leukocytes were re-suspended in Iscove’s 

Modified Dulbecco’s Medium (IMDM) (Life Technologies®) containing 10% Fetal 

Bovine Serum (PBS/FBS) (Life Technologies®) and 200µl (10% of total end 

volume) of Dimethyl Sulfoxide (DMSO) (Sigma-Aldrich®). Samples were stored at 

-80°C for 24 hour before being transferred to liquid nitrogen storage until analysis.   

Labelling of Cell Surface Antigens 

Frozen cells were rapidly thawed and resuspended in 15 ml of IMDM + 10% 

PBS/FBS to dilute the DMSO, which is toxic to thawed cells. Cells were then spun 

at 300 x g for 10 min, the supernatant was removed, and the cells were 

resuspended in 15 ml of IMDM prior to analysis. The thawed cells were incubated 

for 30 min at 4°C with the following fluorochrome-conjugated monoclonal 

antibodies (mAbs): fluorescein (FITC)-conjugated anti-CD3, allophycocyanin 

(APC)-conjugated anti-CD8, phycoerythrin (PE)-conjugated anti-CD45RO, V450-

conjugated anti-CD4, and phycoerythrin cyanine dye Cy7 (PECy7)-conjugated 

anti-CD45RA (BD Biosciences®) (table 9). The fluorochrome-conjugated mAbs 

used in the antibody panel were a combination of single and tandem dyes. 

Fluorochromes are chemical labels that emit absorbed light at different 

wavelengths and are conjugated to specific monoclonal antibodies (mAbs).   



 

117 
 

 

 

    Table 9. Selected fluorochrome-conjugated mAbs and respective emission spectra. 

mAb Fluorochrome 
Laser excitation line 

(nm) 

Maximal excitation 

(nm) 

Maximal emission 

(nm) 

CD3 FITC 488 494 520 

CD45RO PE 488, 532, 561 496 578 

CD45RA PECy7 488, 532, 561 496 785 

CD8 APC 633, 635, 640 650 660 

CD4 V450 405 404 448 
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Each tube was resuspended in 200µl of PBS/FBS and 5µl of Propidium iodide 

(PI) prior to analysis to identify live cells.  Dead cells in suspension can confound 

results by generating nonspecific antibody binding and/or inappropriate 

assimilation of fluorescent probes.  The membrane of a viable cell is impermeable; 

however, PI can infiltrate a damaged cell and bind to double stranded DNA.  PI can 

be excited at of 488nm and emits at a wavelength of 617nm, making it compatible 

with fluorochromes such as PE and FITC. 

Titrations 

Titrations were performed to determine the most effective mAb concentration 

to achieve clear, disparate signals from both positive and negative cell populations.  

Excessive mAb concentration can contribute to background fluorescence and 

misinterpretation of data. Effective working concentrations had been determined 

for CD45RO-PE, CD45RA-PECy7, CD8-APC, and CD4-V450 prior to the 

experiments. A titration was conducted for CD3-FITC as this fluorochrome-

conjugated mAb combination had not been used before. The final working volumes 

of each mAb in the antibody panel are summarized in table 10. 

Single Antibody Stain Compensations 

The broad spectral range of many fluorochrome emissions may result in 

spectral overlap into the detection threshold of another detector. This is known as 

spectral spill over or overlap and can be mitigated by spectral compensation. This 

is performed by subtracting a percentage of fluorescence present in the primary 

detector from the secondary detector; leaving the desired signal in the primary 

detector only. Pre-acquisition electronic compensations were conducted using 

single antibody stains.  
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Table 10. Working volumes of each mAb used in the antibody panel 

mAb Volume (µl) in a 120 µl reaction   

CD3-FITC 10 µl 

CD45RO-PE 10 µl 

CD45RA-PECy7 2.5 µl 

CD8-APC 5 µl 

CD4-V450 2.5 µl 
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Unstained samples 

The excitation sources used in flow cytometry can create auto-fluorescence by 

exciting cellular components such as flavins and nicotinamide adenine dinucleotide 

phosphate (NADPH).  The extent of auto-fluorescence can also be influenced by 

cell type and physiological condition (Monici, 2005).  Fully processed, unstained 

tubes for each sample of interest were analysed with the same settings used for 

the stained samples. Auto-fluorescence was then compared to values obtained 

from standardised calibration beads. 

Fluorescence minus one 

Florescence minus one (FMO) controls were also conducted as part of the 

compensation process. FMO controls contain every stain in the panel except the 

one of interest and are used to accurately identify gating boundaries. By omitting 

the stain of interest from the panel, the difference between intrinsic auto-

fluorescence and bound fluorochrome fluorescence can be determined. This 

allows accurate determination of positive and negative cells within a particular 

subset (Tung et al., 2007).  A summary of each FMO control used appears in table 

11. 

Flow Cytometry 

Flow cytometry was performed using a FACSARIA™ II Flow Cytometer (BD 

Biosciences®), utilizing a red laser emitting at 633-nm, a blue laser emitting at 488-

nm, and a violet laser emitting at 405-nm. The flow cytometer was configured with 

three detector arrays; an octagon and two trigons. The octagon array houses six 

photomultiplier tubes (PMTs) to detect light from the 488-nm blue laser and each 

trigon houses two PMTs to detect light from the red (633-nm) and violet (405-nm) 

lasers respectively (Table 12). 
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Table 11. Florescence minus one controls used in the pre-acquisition 
compensation. 

Tube FITC V450 APC PEcy7 PE 

Full stain CD3 CD4 CD8 CD45RA CD45RO 

FMO 1  CD4 CD8 CD45RA CD45RO 

FMO 2 CD3  CD8 CD45RA CD45RO 

FMO 3 CD3 CD4  CD45RA CD45RO 

FMO 4 CD3 CD4 CD8  CD45RO 

FMO 5 CD3 CD4 CD8 CD45RA  
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Table 12. The optical configuration of the FACSARIA™ II Flow cytometer. 

Detector array PMT LP Mirror BP Filter Intended Fluorochrome 

Octagon  

(488-nm blue laser) 

A 735 780/60 PE-CyTM7 

B 655 695/40 

675/20 

PerCP-Cy5.5TM or PI 

PerCP, PE-Cy5 

C 610 616/23 PE-Texas Red® 

D 556 585/42 PE or PI 

E 502 530/30 FITC, GFP, Alexa 488 

F - 488/10 Side scatter (SSC) 

 
Trigon  

(405-nm violet laser) 

A 502 530/30 Alexa Fluor® 430/Am 

Cyan 

B - 450/40 Cascade Blue®, Pacific 

BlueTM, DAPI, Hoechst, 

Alexa Fluor® 405 

 
Trigon  

(633-nm red laser) 

A 735 780/60 APC-Cy7, APC-H7 

B - 660/20 APC 
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Identification of T Cell Subsets 

Total CD3+ cells were electronically gated based on forward scatter (FSC-

A)/side scatter (SSC-A) distribution and gated into subsets according to antigen 

expression (figure 9). Singlets were then electronically gated based on (FSC-A) 

and forward scatter height (FSC-H), and then SSC-A and side scatter height (SSC-

H). The two singlet gates reduced the likelihood of including cells stuck vertically 

or horizontally together. Live lymphocytes were gated according to their expression 

of PI against FSC-A. The CD3+ T cell population was identified by FSC-A against 

FITC expression and then further separated into CD4+ and CD8+ subsets based 

on positive antigen expression of V450 and APC respectively.  

The CD45RA+CD45RO- (naïve) and CD45RA-CD45RO+ (memory) subsets 

were broadly identified by differential CD45RA and CD45RO expression.  Cells 

exclusively gated on positive expression of CD45RA will encompass naïve and 

CD45RA+ effector memory phenotypes in both CD4+ and CD8+ subsets. Similarly, 

exclusively gating on positive expression of CD45RO will encompass central 

memory and effector memory phenotypes (Sallusto, Geginat, & Lanzavecchia, 

2004). All borderline populations were routinely back-gated to confirm their 

phenotype. Sorted cells were sorted into PBS and stored at -80°C until analysis. 

Data Collection and Analysis  

Cell numbers were collected in linear mode and fluorescent signals were 

collected in logarithmic mode. A minimum of 10, 000 events per sample were 

collected for analysis. All flow cytometry analysis was performed using FlowJo® 

flow cytometry analysis software. 
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Figure 9. Flow cytometry gating strategy: T cells were gated on distribution against: SSC-A and FSC-A (A). Singlet gates 

(B), and (C).  Negative expression of PI against FSC-A (D). FITC fluorescence against FSC-A (E). Fluorescent expression of 

V450 and APC respectively (F). The CD45RA+CD45RO- and CD45RA-CD45RO+ subsets were gated according to their 

fluorescent expression of PECy7 and PE (G). 
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Statistical Analysis 

All results are expressed as means ± standard error of the mean (SEM). 

Shapiro-Wilk normality tests were conducted on all data sets. Normally distributed 

(parametric) data were assessed using a repeated measures ANOVA. Post hoc 

pairwise comparisons with Bonferroni correction were also used to determine the 

significantly different time points. Non-normally distributed (non-parametric) data 

were assessed using a non-parametric Friedman’s repeated measures ANOVA. 

Pairwise comparisons were performed where appropriate using a non-parametric 

Wilcoxon test. Statistical significance was set at P<0.05. All statistical analysis was 

performed using SPSS® (version 17). 

2.5 Results 

Immune response to exercise 

A summary of exercise-induced subset changes appears in table 13. Values 

are presented as percentages of parent subsets. 

Live cells (total leukocytes) 

Normality checks (Shapiro-Wilk) determined the data was approximately normally 

distributed. Mauchly’s test indicated the assumption of sphericity was met (χ2(2) = 

5.86, P=0.05). A repeated measures ANOVA showed that mean relative leukocyte 

frequency differed significantly between time points [F (2, 42) = 10.36, P<0.001].  

Post hoc pairwise comparisons using the Bonferroni correction revealed the 

significant effect of time between Pre-Ex and 60 min Post-Ex time points (P<0.001) 

(figure 10). 
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Table 13. A summary of exercise-induced changes in lymphocyte frequencies. 

T cell Subset Pre-Ex Post-Ex 60 min Post-Ex 

% of live cells (total leukocytes) 68.7 ± 2.4 64.5 ± 3.1 58.5 ± 2.5 

CD3+ % of live cells 58 ± 2.3 50 ± 2.3 58.5 ± 2.5 

CD4+ % of total CD3+  43.7 ± 2.8 36.7 ± 2.9 48.2 ± 2.5 

CD4+CD45RA+CD45RO- % of total CD4+ 50.5 ± 2.8 49.5 ± 2.6 46.8 ± 2.5 

CD4+CD45RA-CD45RO+ % of total CD4+ 36.2 ± 3.3 35.2 ± 2.9 38.4 ± 3.3 

CD8+ % of total CD3+ 41.9 ± 2.7 44.8 ± 2.9 39.9 ± 2.4 

CD8+CD45RA+CD45RO- % of total CD8+ 56.3 ± 2.8 52.1 ± 2.6 55.6 ± 2.4 

CD8+CD45RA-CD45RO+ % of total CD8+ 24.1 ± 2.3 26 ± 2.3 24.9 ± 2.3 

CD4+/CD8+ ratio 1.2 ± 0.1 0.9 ± 0.1 1.4 ± 0.1 

± standard deviation 



 

127 
 

CD3+ T cells 

The data was determined to be normally distributed and the assumption of 

sphericity was met, sphericity met χ2(2) = 2.76, P=0.25. A repeated measures 

ANOVA determined that mean relative frequency of CD3+ T cells differed 

significantly between time points [F (2, 42) = 12.95, P<0.001].   Post hoc pairwise 

comparisons revealed a significant effect of time between Pre-Ex and 60 min Post-

Ex (P=0.001), and Post-Ex and 60 min Post-Ex time points (P=0.002) (figure 10). 

CD4+ T cells 

Normally distributed data (sphericity met, χ2(2) = 0.135, P=0.94) was assessed 

using a repeated measures ANOVA. A significant effect of time on the relative 

frequency of CD4+ T cells (expressed as a percentage of CD3+ T cells) was 

observed across time points [F (2, 42) = 34.4, P<0.001].  Post hoc pairwise 

comparisons revealed a significant effect of time between Pre-Ex and Post-Ex 

(P<0.001), Pre-Ex and 60 min Post-Ex (P=0.010), and Post-Ex and 60 min Post-

Ex time points (P<0.001) (figure 10). The relative frequency of CD4+CD45RA+ T 

cells (expressed as a percentage of CD4+ T cells) also demonstrated a significant 

effect of time across time points [F (2, 42) = 4.48, P=0.017]. Post hoc pairwise 

comparisons identified significant differences in means between Pre-Ex and 60 min 

Post-Ex time points (P=0.05). There were no significant changes in the relative 

percentage of CD4+CD45RO+ T cells across time points (P=0.06) (figure 11). 
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Figure 10. Exercise-induced changes in leukocyte and T cell populations: 

Leukocyte and T cell populations were measured at each time point and 

expressed as relative percentages (n = 22). The relative change in subset 

percentages were assessed in total live leukocytes (A), CD3+ T cells (B) CD4+ 

T cells (C) and CD8+ T cells (D). Error bars indicate SEM. † indicates P=0.05, * 

indicates P<0.05, ** indicates P<0.01 and *** indicates P<0.001. 
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CD8+ T cells 

The normally distributed data (sphericity met, χ2(2) = 1.18, P=0.56) was 

assessed using a repeated measures ANOVA. There was a significant effect of 

time on the relative frequency of CD8+ T cells (expressed as a percentage of CD3+ 

T cells) [F (2, 42) = 10.30, P<0.001]. A post hoc pairwise comparison identified a 

significant difference in means between Post-Ex and 60 min Post-Ex time points 

(P=0.001). The relative frequency of CD8+ T cells underwent a non-significant 

increase between Pre-Ex to Post-Ex time points (P=0.06) (figure 10). The relative 

frequency of CD8+CD45RA+ T cells demonstrated a significant effect of time 

across time points [F (2, 42) = 4.56, P=0.016]. A significant difference in means 

was identified between Post-Ex and 60 min Post-Ex time points (P=0.030). There 

was no significant change in the relative percentage of CD8+CD45RO+ T cells 

(figure 11) 

2.6 Discussion 

The major finding of this study was that 30 min of treadmill running at a 

consistent 80% of V̇O2peak elicited a Post-Ex percentage decrease in CD3+ T cells. 

The exercise-induced decrease in CD3+ cell numbers reverted to Pre-Ex 

concentration within 1 hour of exercise cessation. This finding runs orthogonal to 

the archetypal CD3+ T cell exercise response. What follows is a discussion of 

plausible hypotheses that may account for the novel results obtained. Whilst the 

current study was not designed to test explanatory mechanisms, it is likely that the 

results reflect the cumulative influence of more than one mechanism. 
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Figure 11. Exercise-induced changes in CD45RA+ and CD45RO+ T cell 

populations: Relative changes in CD45RA+ and CD45RO+ phenotypes were 

assessed in CD4+ T cells (A) and CD8+ T cells (B) respectively. Error bars 

indicate SEM. † indicates P=0.05, * indicates P<0.05. 
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The concomitant Post-Ex decrease in CD3+ and CD3+CD4+ T cells are likely 

linked. The CD3+ T cell population encompasses all lymphocytes expressing the 

cell maker CD3+ (CD4+ and CD8+ T cells). A significant decrease in CD3+CD4+ 

T cells would be reflected in total CD3+ T cells numbers. Despite the significant 

decrease in CD3+ T cells from Pre- to Post-EX, the CD3+CD8+ subset underwent 

a post-exercise increase (non-significant). Similarly, despite the significant Post- to 

60 min Post-Ex increase in CD3+ T cells, the CD3+CD8+ subset significantly 

decreased at the same time point. This strongly implies that the CD3+CD4+ T cell 

subset underpinned the exercise-induced changes in CD3+ T cells. 

Discrepant reporting conventions can obscure the broader consensus on 

exercise-induced changes in immune cells. Many research articles express cell 

changes as the number of cells per given unit of blood (litre); cells x 109.l-1 (Nieman, 

1994; Robson, Blannin, Walsh, Castell, et al., 1999). Others express changes in a 

subordinate cell subset as a percentage of a parent subset, e.g. CD4+ T cells 

expressed as a percentage of all CD3+ T cells (Anane et al., 2009; Bruunsgaard & 

Pedersen, 2000; Haq, al-Hussein, Lee, & al-Sedairy, 1993; Steensberg et al., 

2001). Some studies represent cell changes at multiple time-points as a 

percentage of the basal concentration (McCarthy et al., 1991). These subtle 

differences can at first glance provide confusing conclusions. Expressed in 

absolute terms (cells x 109.l-1), CD4+ T cell numbers often increase immediately 

post-exercise (Nieman et al., 1994). However, when expressed as a percentage of 

all CD3+ lymphocytes (a parent subset that is itself in exercise-induced flux), CD4+ 

T cells demonstrate a post-exercise decrease. The specific reporting method is 

often chosen to highlight a given aspect of the results i.e. changes in a specific cell 

type or changes in the distribution of one population relative to another. The results 
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in this thesis are reported as percentages of a parent subset to highlight the 

significant changes in cell proportions relative to each other. 

The counter-intuitive CD3+ T cell profile in the present study may have been 

due to the high exercise intensity used, given that changes in T cells closely 

correlate with exercise intensity (McCarthy & Dale, 1988; Shek et al., 1995). A 

similar post-exercise decrease in the percentage of CD3+ T cells was 

demonstrated in marathon runners; however, mean participant exercise intensities 

were not available (Haq et al., 1993). In the present study, the intensity of the 30 

min exercise bout was continuously monitored via heart rate and expired gas 

analysis. This allowed the treadmill speed to effectively be titrated to continuously 

elicit the correct intensity. 

 A constant exercise work rate performed for periods of 15 min or greater will 

typically elicit a gradual increase in heart rate and oxygen consumption. This is due 

to decreases in blood volume, cutaneous redistribution of blood, the subsequent 

reduction in stroke volume, and compensatory increase in heart rate. The 

continuous analysis of expired gas in the present study also allowed for a maximum 

time spent at 80% of V̇O2peak and minimized potential lag time associated with a 

consistent workload.  

The relative frequency of CD4+ T cells (expressed as a percentage of total 

CD3+ T cells) demonstrated an immediate Post-Ex decrease followed by a 60 min 

Post-Ex increase beyond resting concentration.   This finding broadly concurs with 

previous studies (Nielsen, Secher, Kappel, & Pedersen, 1998; Nieman, 1994). The 

CD4+ biphasic response may be due to a reflexive extravasation of highly 
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differentiated CD4+ T cells such as Th1 and Th2 cells, Th17 cells, follicular helper 

(Tfh) cells, and induced regulatory T (iTreg) cells (Zhou, Chong, & Littman, 2009).  

Changes in CD8+ T cells were also biphasic, increasing immediately post-

exercise before returning to resting concentration. This concurs with the 

heightened exercise response typically observed in CD8+ T cells (Nielsen et al., 

1998; Nieman, 1994). The CD8+ T cell subset exhibits high β2-adrenergic receptor 

density which regulates migration into peripheral blood by facilitating cellular 

detachment from vascular endothelium (Anane et al., 2009; Benschop, Nijkamp, 

Ballieux, & Heijnen, 1994; Dimitrov, Lange, & Born, 2010). Whilst not statistically 

significant, the CD8+ T cell subset in the present study increased from Pre- to Post-

Ex. This mild lymphocytosis may be attributed to preferential catecholamine-

induced migration to the periphery.  Exercise-induced lymphocytosis is transient 

and is typically followed by a reflexive egress of the same lymphocyte subsets. 

This extravasation, often greater in magnitude than the initial increase, causes a 

temporary state of lymphocytopenia (Simpson et al., 2010; Simpson et al., 2007). 

The CD8+ T cell subset in the present study demonstrated a similar reflexive 

egress that was observed at 60 min Post-Ex.  

Exercise preferentially redistributes memory T cells (CD45RO+) into the 

periphery (Gabriel, Schmitt, Urhausen, & Kindermann, 1993; Gannon, Rhind, 

Shek, & Shephard, 2002; Lancaster et al., 2005); however, the present study only 

identified changes within the naïve subset.  Elderly individuals have increased 

proportions of memory (CD45RO+) T cells and decreased proportion of naïve 

(CD45RA+) T cells in CD4+ and CD8+ subsets (De Paoli, Battistin, & Santini, 1988; 

Pilarski, Yacyshyn, Jensen, Pruski, & Pabst, 1991; Utsuyama et al., 1992). The 

lack of significant CD45RO+ T cell modulation in the present study may be due to 
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the relatively low mean age of the participants (24.1 ± 1.6 years) and the likely low 

basal number of CD45RO+ T cells. Another factor may have been the selective 

use CD45RA as the sole identifier of naïve T cell status. Expression of CD45RA is 

a necessary but not sufficient characteristic of naïve T cells. Whilst still viewed as 

a legitimate marker of naïve T cell status, CD45RA can be re-expressed on a 

subset of effector-memory T cells with significant replicative history (Sallusto, 

Lenig, Förster, Lipp, & Lanzavecchia, 1999). Combinatorial staining with CD45RA, 

CCR7 and CD62L would have provided finer discriminatory analysis of the naïve 

subset (Sallusto et al., 2004).  Cells gated on expression of CD45RA+ alone will 

likely encompassed naïve and CD45RA+ effector memory phenotypes in both 

CD4+ and CD8+ subsets; potentially distorting naïve subset changes. Similarly, 

gating on expression of CD45RO as a marker of memory phenotype, likely 

captured central memory and effector memory phenotypes.  

The CD3+ response in the present study may have been influenced by 

catecholaminergic signalling. Animal and human studies have demonstrated that 

plasma epinephrine and cortisol suppress IFN-γ and IL-2 producing type 1 T cells 

(Elenkov & Chrousos, 1999; Franchimont et al., 2000). Plasma epinephrine and 

cortisol increase during and immediately after exercise due to activation of the 

hypothalamic-pituitary-adrenal axis (HPA) and sympathetic nervous system (SNS) 

activation (Galbo, 1983).  Steensberg et al. (2001) observed an increase in plasma 

epinephrine (significant) and cortisol (non-significant) after 30 min of treadmill 

running at 75% of V̇O2max. Although not measured in the present study, it is 

plausible that post-exercise cortisol and epinephrine concentrations were elevated 

and influenced immediate post-exercise T cell numbers via suppression of specific 

type 1 T cell subsets. 
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The effect of participant training status on leukocyte migration is unclear. 

Exercise-induced changes in peripheral lymphocyte percentages are not 

correlated with fitness standard (Kendall, Hoffman-Goetz, Houston, MacNeil, & 

Arumugam, 1990; Moyna et al., 1996). However, exercise-induced increases in 

absolute numbers of CD4+ T cells, CD8+ T cells, and NK cells have been observed 

in lower fitness standards (Kendall et al., 1990). Additionally, a six week aerobic 

training intervention blunted the effect of acute exercise on lymphocyte mobilisation 

(Soppi, Varjo, Eskola, & Laitinen, 1982).  This blunting effect was caused by 

reduced β2-adrenergic receptor sensitivity and density (Butler, O'Brien, O'Malley, 

& Kelly, 1982) and a reduction in glucocorticoid receptor sensitivity (Duclos, 

Gouarne, & Bonnemaison, 2003).  The mean V̇O2peak in the present study (49.3 ± 

4.8 mL.kg-1.min-1) falls in the upper limit of the good cardiorespiratory fitness 

classification (46-50 mL.kg-1.min-1) (Cooper Institute for Aerobics, 2005). This 

V̇O2peak value suggests a significant exercise history in the present cohort and may 

provide a plausible explanation for the absent post-exercise lymphocytosis. 

The infection history or antigenic exposure of T cells also appears to modulate 

the migratory response to acute exercise. CD4+ and CD8+ T cells with previous 

antigen exposure express killer cell lectin-like receptor G1 (KLRG1) are more 

responsive to an acute bout of exercise than antigen naïve T cells (KLRG1-) 

(Simpson et al., 2008; Simpson et al., 2007). Moreover, KLRG1+/CD8+ T cells 

migrate in and out of the periphery two to three times greater than KLRG1-/CD8+ 

T cells (Simpson et al., 2008; Simpson et al., 2007). This preferential 

responsiveness of CD8+ T cells may have contributed to the non-significant Post-

Ex increase and significant 60 min Post-Ex increase in the present study. The cell 

staining panel used in the present study lacked the discriminatory fidelity to 
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differentiate between KLRG1+ and KLRG1- negative cells; therefore, the CD8+ T 

cell population identified likely included both KLRG1+/CD8+ and KLRG1-/CD8+ T 

cells.  

Latent infection with cytomegalovirus (CMV), a type of persistent and 

ubiquitous β-herpes virus has a significant confounding effect on lymphocyte 

responses to acute exercise (Bigley et al., 2012; Campbell et al., 2009).The CMV 

sero-prevalance rate in Australian males aged 20-24 years is 50% (Seale et al., 

2006). It is therefore entirely plausible that some participants in the present study 

were seropositive for CMV. Financial and logistical constraints precluded the 

individual testing for CMV. Potential participants were excluded if they had been 

diagnosed with glandular fever, chronic fatigue syndrome or other viral infections 

lasting longer than 3 months.  Given the asymptomatic nature of CMV infection, it 

is still possible that some participants were unknowingly seropositive and therefore 

confounded the lymphocyte response in the CD3+/CD8+ T cell subset.  

Immune cells are also subject to circadian influence, with circulating T cell 

numbers reduced by 40% during circadian nadir compared to circadian peak 

numbers (Born, Lange, Hansen, Molle, & Fehm, 1997; Dimitrov, Lange, Nohroudi, 

& Born, 2007). Circadian influence on the immune system is mediated by the 

hypothalamic-pituitary-adrenal axis and sympathetic nervous system, and the 

respective changes in plasma cortisol and catecholamine concentrations (Abo, 

Kawate, Itoh, & Kumagai, 1981; Ottaway & Husband, 1994). Plasma 

concentrations of catecholamines and cortisol are at their lowest at night, rising to 

maximal concentrations at and during the beginning of the day (Born et al., 1997; 

Dodt, Breckling, Derad, Fehm, & Born, 1997). 



 

137 
 

Cortisol decreases circulating T cell numbers, redistributing them to the bone 

marrow (Fauci, 1975) whilst catecholamines such as epinephrine recruit T cells to 

the circulation by reducing cellular adhesive properties (Benschop, Rodriguez-

Feuerhahn, & Schedlowski, 1996). Naïve, central memory, and effector memory T 

cells are negatively correlated with plasma cortisol concentrations, peaking during 

the night time when cortisol levels are lowest (Dimitrov et al., 2009). Effector CD8+ 

T cells are preferentially sensitive to catecholamine influence and cell numbers 

peak during daytime when catecholamine concentrations are highest (Dimitrov et 

al., 2009). The present study did not measure plasma cortisol or catecholamine 

concentrations; however, all testing was conducted between 7:30 am to 10:30 am 

to reduce the potential effect of circadian fluctuations. 

The inverted CD3+ T cell response observed in the present study may be 

partially explained by exercise-induced lymphopenia resulting from two distinct 

processes; (i) redistribution of lymphocytes into various tissues and organs (Kruger 

& Mooren, 2007) and/or (ii) lymphocyte apoptosis (Mars, Govender, Weston, 

Naicker, & Chuturgoon, 1998; Mooren et al., 2002). These physiological processes 

appear to run concurrently and are sensitive to exercise mode and intensity (Hsu 

et al., 2002; Mooren et al., 2002).   

Initially regarded as a maladaptive response precipitating immunosuppression 

in athletes, exercise-induced apoptosis appears to serve a positive function. 

Exercise preferentially mobilizes senescent lymphocytes into peripheral blood, 

potentially making space for emerging naïve cells (Simpson, 2011). In addition to 

aerobic exercise, long-term Tai Chi exercise has been shown to increase 

lymphocyte apoptosis and proliferation (Goon, Noor Aini, Musalmah, Yasmin 
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Anum, & Wan Ngah, 2008). To this end, exercise appears to serve a dual role in 

immune cell death and production (Kruger & Mooren, 2014). 

Several theories have been proffered to explain exercise-induced lymphocyte 

apoptosis. Among them is cell surface receptor theory. Intensive treadmill running, 

intensive resistance training, and marathon running upregulate expression of CD95 

receptors and CD95 ligands (Kruger et al., 2009; Mooren et al., 2002; Mooren, 

Lechtermann, & Volker, 2004). Exercise appears to induce a preferential shift to 

lymphocyte subpopulations characterised by a higher density of CD95 surface 

receptors (Mooren et al., 2002). Such a shift could theoretically predispose the re-

distributed T cells to increased apoptosis. 

Exercise-induced reactive oxygen species (ROS) is believed to partially 

mediate exercise-induced apoptosis. Convincing evidence of causal involvement 

has come from studies that have inhibited thymocyte and lymphocyte apoptosis via 

administration of antioxidants (Lin et al., 1999; Quadrilatero & Hoffman-Goetz, 

2004). Repeated exposure to exercise leads to a protective  upregulation of 

antioxidant enzymes (Fehrenbach & Northoff, 2001). The decreased apoptosis 

seen in fitter individuals may be due to increased antioxidant defences (Kruger & 

Mooren, 2014; Mooren et al., 2004; Peake et al., 2005). 

Glucocorticoids (GCs) are a varied class of steroid hormones with distinct 

immunomodulatory functions and induce apoptosis in macrophages, monocytes, 

and T cells via binding to intracellular glucocorticoid receptors (Distelhorst, 2002; 

Tuckermann, Kleiman, McPherson, & Reichardt, 2005). As plasma cortisol 

concentrations were not measured in the present study, it is possible that during- 
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and post-exercise cortisol concentrations may have influenced lymphocyte 

apoptosis.  

Intense exercise increases total numbers and relative percentages of apoptotic 

circulating lymphocytes (Kruger et al., 2009; Mooren et al., 2002). Lymphocyte 

apoptosis increases beyond an exercise intensity threshold of 40-60% V̇O2max 

(Mooren et al., 2012). Increased apoptosis has been observed after triathlon 

(Levada-Pires et al., 2009), intensive treadmill running (Mooren et al., 2004), 

intensive cycle ergometer (Steensberg, Morrow, Toft, Bruunsgaard, & Pedersen, 

2002), marathon running (Mooren et al., 2002; Mooren et al., 2004), and ultra-

marathon (Atamaniuk et al., 2008).  The prevailing hypothesis is that apoptosis 

mediators increase in an intensity and duration specific manner (Navalta, Sedlock, 

& Park, 2007; Steensberg et al., 2002).  The intensity of the exercise intervention 

used in the present study (80% of V̇O2peak) may have increased lymphocyte and 

therefore T cell apoptosis.  

Lymphocyte apoptosis is also sensitive to individual training status (Mooren et 

al., 2004; Peake et al., 2005), occurring to a greater extent in lesser trained 

individuals (Mooren et al., 2004). Mooren et al. (2004) divided their cohort into 

highly-trained (66.6 ± 8.0 mL.kg-1.min-1) and low-trained (50.1 ± 3 mL.kg-1.min-1) 

subgroups. Given that a mean V̇O2peak of 50.1 ± 3 mL.kg-1.min-1 was associated 

with increased apoptosis by Mooren et al, it is physiologically plausible that the 

present study cohort (49.3 ± 4.8 mL.kg-1.min-1) experienced a similar increased 

apoptotic response. This may partially account for the inverted CD3+ T cell 

response observed in the present study. 
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The total immune cell pool can best be viewed as a malleable landscape, with 

the constituent cell types represented by changing peaks and troughs that have 

corresponding functional consequences. Any measure of LTL, telomerase 

expression, and/or telomere-associated gene expression represents the 

heterogeneous contributions of the constituent subpopulations.   

Any observed increase in LTL is either due to actual telomerase-mediated 

elongation or apparent or pseudo-lengthening due to the redistribution of 

heterogeneous cells into the periphery (Epel, 2012). To better understand the 

mechanisms underpinning both actual lengthening and apparent lengthening, an 

enhanced understanding of exercise-induced cell population redistribution is 

required. Whilst no cell population functions in isolation in vivo, specific cell 

populations differentially influence mean LTL and telomerase expression. Such 

subpopulation-specific variances reflect the proliferative demands and replicative 

histories of the constituent cells. Significant differences in telomere length exist 

within the lymphocyte population; B cells have longest mean telomere length, 

followed in descending order of length, by CD4+, CD8+CD28+, CD8+CD28- T cells 

(Lin et al., 2010). PBMC telomere length is weakly correlated with B cells (r = 0.35) 

and CD4+ T cells (r = 0.25); whilst a stronger association exists for CD8+ T cells; 

CD8+CD28+ T cells (r = 0.63) and CD8+CD28- (r = 0.40) (Lin et al., 2010). 

 Telomerase expression intuitively follows a similar pattern of variability with 

PBMCs expressing the highest level of enzyme activity, followed in descending 

order of enzymatic activity by B cells, CD4+ T cells, CD8+CD28+ T cells, and 

CD8+CD28- T cells (Lin et al., 2010). The inter-subset heterogeneity in telomere 

lengths and telomerase expression means that any perturbation in immune cell 

demography could acutely influence proliferative capacity and apoptosis 
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resistance. Importantly, these functions are subject to age-related downregulation 

contributing to decreased immune competence seen in later life, collectively 

referred to as immunosenescence (Pawelec, 2014). 

The results of the present study indicate that acute bouts of exercise conducted 

at 80% of V̇O2peak create a transient extravasation of CD3+ T cells in healthy young 

males. Given the telomere length and telomerase expression exhibited by this 

subset, acute exercise may transiently lead to apparent post-exercise telomere 

shortening and telomerase down regulation. In the 60 min post-exercise period, 

the total CD3+ population returned to basal levels whilst the CD3+CD4+ T cells 

exceeded basal levels. Whilst the precise time course and duration of this super-

compensatory increase is unknown, it may in part explain the increased telomere 

length and telomerase expression cross-sectionally observed in habitually active 

individuals.  

Limitations  

This study does have some limitations. As previously mentioned the use of 

CD45RA as the sole identifier of the naïve phenotype may falsely exclude some 

naïve phenotypes whilst incorrectly including others.  In addition to CD45RA being 

a necessary but not sufficient marker of naïve status, I cannot exclude the 

possibility that unknown portion of the CD45RA+ T cells were a specific subset of 

effector-memory T cells re-expressing the CD45RA marker. 

The design of this study precluded the testing of potentially explanatory 

mechanisms such as catecholaminergic signalling, increased reactive oxygen 

species, and lymphocyte apoptosis. Studies with greater discriminatory fidelity are 

needed to directly capture such mechanisms.  
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The inevitably large degree of inter-individual variances in both total immune 

cell and specific immune cell subset numbers may have affected the number of 

significant differences found between measurement time points. Additionally, the 

relatively low sample size cannot be discounted as a contributing factor to the 

inverted post-exercise profile observed in some subsets. 

2.7 Conclusion  

T cells are the corner stone of the adaptive immune response and appear to 

be exquisitely sensitive to exercise intensity and duration. This study identified a 

novel exercise-induced change in T cell distributions. Several plausible 

mechanisms were proposed for the novel findings, including: exercise intensity, 

immune cell migration, catecholaminergic signalling, participant training status, 

circadian influence, and lymphocyte apoptosis.  

The findings of this study support the tenet that exercise acutely alters the 

immune landscape by redistributing specific immune cell subpopulations into the 

periphery. The capacity of exercise to acutely induce changes in the immune 

landscape may result in a range of immunological epiphenomena including 

increases in mean LTL, telomerase expression, proliferative capacity, apoptosis 

resistance, and immune function. In the context of habitual exercise participation, 

these changes may become cumulative, overlapping to form chronic alterations. In 

doing so, exercise may provide a relatively cheap and easy means of partially 

reversing or slowing the trajectory of age-associated changes in immune function.  

The findings of this study have important ramifications for the design of future 

studies, specifically: (i) acutely redistributed cell populations should be accounted 

for when measuring acute changes in telomere homeostasis, (ii) the timing of blood 
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sampling in interventional studies is influential, and (iii) vague and approximate 

estimations of exercise intensity may not sufficiently elicit the appropriate nuanced 

immune response. In a clinical context, acute and transient immunological changes 

may cumulatively overlap in highly active or over-trained individuals creating 

windows of immune compromise. Whilst exercise-induced changes in T cell 

demographics provide an overview of the immune response, subset specific gene 

expression analysis could reveal the molecular consequences of these changes. 

In turn this may provide an insight into the functioning of specific immune cell 

subsets and their individual contributions to composite LTL and gene expression 

patterns. 
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Chapter 3 - The Acute MicroRNA Response to 

Intense Cardiorespiratory Exercise 
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3.1 Abstract 

Introduction: Telomeres are specialized nucleoprotein structures that protect 

chromosomal ends from degradation. These structures progressively shorten 

during cellular division and can signal replicative senescence below a critical 

length. Habitual physical activity is associated with longer leukocyte telomere 

length; however, this does not imply causal story and the mechanisms are unclear. 

Research findings are now highlighting the critical roles of epigenetic modification 

in telomere length homeostasis. Despite this, little is known about the role of 

miRNA-mediated regulation of pro-telomeric genes. Aims: The acute exercise-

induced response of miRNAs was investigated in 18 healthy males (mean age = 

23.4 ± 7.1 years). Methods: Participants undertook 30 min of treadmill running at 

80% of V̇O2peak; the highest value of oxygen of uptake achieved in a maximal test. 

Blood samples were taken before exercise, immediately post-exercise and 60 min 

post-exercise. RNA from leukocytes was submitted to miRNA arrays and results 

were individually validated using quantitative real-time PCR. Results: Fifty-six 

miRNAs were differentially regulated post-exercise (FDR<0.05). In silico analysis 

identified four miRNAs (miR-186, miR-181, miR-15a and miR-96) with potential 

interaction with telomere gene transcripts. Significant post-exercise upregulation 

was observed in miR-186, miR-96, and miR-15a (P<0.001). Conclusion: These 

results may provide a mechanistic insight into the epigenetic maintenance of 

immune cell telomere length.  
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3.2 Introduction 

Physical activity (PA) is irrefutably associated with decreased cardiovascular 

and all-cause morbidity and mortality (Blair et al., 2001 2001; Blair et al., 1993; 

Kampert et al., 1996; Kodama et al., 2009; Lakka et al., 1994; Myers et al., 2004; 

Park et al., 2009; Sui et al., 2007; Villeneuve et al., 1998; Wei et al., 2000). Chronic  

phenotypic adaptations to exercise manifest across physiological systems 

including skeletal muscle hypertrophy (McDonagh & Davies, 1984), vascular 

angiogenesis (Laufs et al., 2004), myocardial remodelling (Sipola, Heikkinen, 

Laaksonen, & Kettunen, 2009), glucose metabolism (Sato, Nagasaki, Nakai, & 

Fushimi, 2003), and immune function (Nieman, 1994).  

Differential gene expression underpins phenotypic adaptations; however, an 

expanding understanding of epigenetics reveals levels of regulation beyond 

canonical gene expression. Epigenetic modifications refer to changes in the DNA 

or chromatin structure that can influence gene transcription independent of the 

primary sequence (Bird, 2007). Such epigenetic modifications include histone 

methylation and acetylation, DNA methylation, and regulation of microRNAs 

(miRNAs) (Ntanasis-Stathopoulos, Tzanninis, Philippou, & Koutsilieris, 2013). 

MicroRNAs are a class of short (20-25 nucleotides), non-coding RNA molecules 

that post-transcriptionally regulate gene expression and RNA silencing by binding 

to the 3’ or 5’ untranslated regions (UTR) of messenger RNA (mRNA) (Bentwich et 

al., 2005).  

Leukocyte miRNAs and Exercise 

The expression profiles of miRNAs are sensitive to external stimuli such as 

exercise. Acute exercise-induced miRNA expression profiles have been observed 
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in several immune cell subsets (Radom-Aizik et al., 2013; Radom-Aizik et al., 2010; 

Radom-Aizik et al., 2012; Radom-Aizik et al., 2014; Tonevitsky et al., 2013) (Table 

1). Post-exercise analysis of neutrophils identified 38 differentially regulated 

miRNAs influencing genes involved in several inflammatory response pathways 

including Jak-STAT signalling, ubiquitin-mediated proteolysis, and Hedgehog 

signalling pathways (Radom-Aizik et al., 2010). Exercise has also been shown to 

differentially regulate 23 miRNAs in natural killer cells (NK cells) influencing 

pathways associated with cell communication (adherens junction and focal 

adhesion) and cancer (p53 signalling, glioma, melanoma, and prostate cancer) 

(Radom-Aizik et al., 2013).  

Analysis of PBMC miRNA revealed 34 significantly regulated miRNAs 

influencing genes associated with 12 signalling pathways (Radom-Aizik et al., 

2013; Radom-Aizik et al., 2010; Radom-Aizik et al., 2012). These included MAPK 

signalling and TGF-β signalling (Radom-Aizik et al., 2012) which in turn regulate  

pro- and anti-inflammatory cytokine regulation (Hoene & Weigert, 2010; Kjær et al., 

2009; Matsakas & Patel, 2009)(Hoene & Weigert, 2010; Kjær et al., 2009; 

Matsakas & Patel, 2009), lymphocyte activation and differentiation (Oh-hora, 

2009), cell communication (Bopp, Radsak, Schmitt, & Schild, 2010), and cancer 

(Walsh et al., 2011). Analysis of exercise-induced monocyte miRNA expression 

identified 19 acutely regulated miRNAs, ten of which were associated with 

inflammatory processes (Radom-Aizik et al., 2014). Additional analysis identified 

involvement of Jak-STAT, p53 signalling, and endocytosis pathways. 

 Tonevitsky and colleagues implemented a 30 minute treadmill test at 80% of 

V̇O2max and assessed leukocyte miRNA and mRNA expression pre-, immediately-

post, 30 min post-, and 60 min post-exercise (Tonevitsky et al., 2013). Four 
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differentially expressed miRNAs and their respective targets were identified; miR-

21 targeting TGFBR3, PDGFD, and PPM1L; miR-24-2 targeting MYC and KCNJ2; 

miR-27a targeting ST3GAL6 and miR-181a targeting ROPN1L and SLC37A3. 

Several of the target genes were associated with apoptosis, membrane traffic, 

transcription regulation and immune function. Some of the miRNA-mRNA 

networks, specifically miR-24-2-5p-MYC and miR-21-5p-TGFBR3 are associated 

with cancer development and progression (Lippi, Danese, & Sanchis-Gomar, 

2016). Ten weeks of cardiac rehabilitation increased leukocyte expression of miR-

92a and miR-92b and decreased expression of two predicted targets NDUFA1 

(respiratory electron transport) and CASP3 (apoptosis and cell survival) 

respectively (Taurino et al., 2010).  A recent study identified increased whole blood 

miR-1, miR-486, and miR-494 expression in endurance-trained athletes compared 

to healthy controls. Furthermore, miR-1, miR-486, and miR-494 were all 

downregulated in 19 healthy males after a single bout of maximal aerobic exercise 

(Denham & Prestes, 2016).  

Exercise, Telomeres, and MicroRNAs 

Epigenetic modifications such as chromatin modification (García-Cao et al., 

2003; Gonzalo et al., 2005; Gonzalo et al., 2006) and histone modification (Blasco, 

2007; García-Cao et al., 2003) are known to play critical roles in telomere 

homeostasis and hTERT/telomerase regulation (Gigek et al., 2009; Iliopoulos, 

Satra, Drakaki, Poultsides, & Tsezou, 2009; Wang, Hu, & Zhu, 2010). Despite that, 

comparatively little is known about miRNA-mediated epigenetic regulation of 

telomeres and telomeric genes.  Telomeric repeat factor 1 (TRF1) is translationally 

repressed by miR-155 resulting in chromosome alterations and telomere fragility 

(Dinami et al., 2014). Mir-155 is involved in skeletal muscle regeneration following 
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injury balances pro-inflammatory M1 macrophages and anti-inflammatory M2 

macrophages during skeletal muscle regeneration (Nie et al., 2016). Direct 

evidence of the role of miR-155 in leukocytes or the in vivo effect on telomere 

homeostasis is lacking.  MiR-498 is known to target the 3ʹ UTR of hTERT mRNA 

(Kasiappan et al., 2012); however, little is known about the exercise 

responsiveness of miR-498 in leukocytes.  Mouse models have also demonstrated 

exercise-induced modulation of miR-138 (Miao et al., 2015), a miRNA previously 

associated with hTERT regulation in neuroblastoma and anaplastic thyroid cancer 

cells (Chakrabarti et al., 2013; Mitomo et al., 2008). A review of putative miRNA 

involvement in telomere homeostasis appears in Chapter 1 – Introduction.  

The association between habitual PA and LTL is widely accepted despite a 

lack of mechanistic clarity. The broader scientific consensus is that the association 

is largely mediated by exercise-induced reductions in oxidative stress and 

inflammation. Unambiguous evidence that telomeres and their requisite 

components are directly amenable to exercise is lacking. Several miRNAs have 

been associated with specific telomere components; however, their phenotypic 

impact is unclear. Furthermore, the responsiveness of potential pro-telomere 

miRNAs to exercise is unknown. The established links between PA and miRNA 

regulation, and PA and LTL may plausibly converge upon exercise-induced miRNA 

regulation of telomeric genes.   
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Table 14. Reported expression profiles of human immune cell miRNAs after aerobic exercise. 

Reference 
 

Tissue  Exercise Type MiRNA Upregulated MiRNA Downregulated 
(Dias et al., 

2015) 

hsa-miR-let-7f-1 

hsa-miR-21 

 

hsa-miR-29c 

hsa-miR-223 

hsa-miR-let-7f-

1 

hsa-miR-21 

 

hsa-miR-29c 

hsa-miR-223 

PBMCs Chronic exercise training 

(running, 3x/wk., 60-min, 

18 wks.) 

(Denham & 

Prestes, 

2016) 

*hsa-miR-1 

*hsa-miR-486 

 

*hsa-miR-494 †hsa-miR-1 
†hsa-miR-486 

 

†has-miR-494 Whole 

blood 

*Elevated in endurance 

athletes. † Decreased 

immediately post-maximal 

aerobic exercise. 

(Radom-

Aizik et al., 

2010) 

hsa-miR-125a 

hsa-miR-145 

hsa-miR-181b 

hsa-miR-193a 

hsa-miR-197 

hsa-miR-212 

hsa-miR-520d 

hsa-miR-629 

hsa-miR-638 

 

hsa-miR-223 

hsa-miR-340 

hsa-miR-365 

hsa-miR-485 

hsa-miR-505 

hsa-miR-939 

hsa-miR-940 

hsa-miR-1225 

hsa-miR-1238 

hsa-let-7i 

hsa-miR-16 

hsa-miR-17 

hsa-miR-18a 

hsa-miR-18b 

hsa-miR-20a 

hsa-miR-107 

hsa-miR-126 

hsa-miR-130a 

hsa-miR-130b 

hsa-miR-20b 

hsa-miR-22 

hsa-miR-93 

hsa-miR-96 

hsa-miR-106a 

hsa-miR-185 

hsa-miR-194 

hsa-miR-363 

hsa-miR-660 

hsa-miR-151 

Neutrophils Acute exercise bout: (cycle 

ergometer, 10 x 2-min 

bouts, 1-min rest interval 

between bouts – 76% 

V̇O2peak) 
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Table 14. continued 

Reference 
 

Tissue Exercise Type MiRNA Upregulated MiRNA Downregulated 
(Radom-

Aizik et al., 

2012) 

hsa-miR-7 

hsa-miR-15a 

hsa-miR-21 

hsa-miR-26b 

hsa-miR-132 

hsa-miR-140 

hsa-miR-181a 

 

hsa-miR-181b 

hsa-miR-181c 

hsa-miR-338 

hsa-miR-363 

hsa-miR-939 

hsa-miR-940 

hsa-miR-1225 

hsa-let-7e 

hsa-miR-23b 

hsa-miR-31 

hsa-miR-99a 

hsa-miR-125a 

hsa-miR-125b 

hsa-miR-126 

hsa-miR-130a 

hsa-miR-145 

 

hsa-miR-151 

hsa-miR-199a 

hsa-miR-199b 

hsa-miR-221 

hsa-miR-320 

hsa-miR-451 

hsa-miR-486 

hsa-miR-584 

hsa-miR-652 

PBMCs Acute exercise bout: (cycle 

ergometer, 10 x 2-min 

bouts, 1-min rest interval 

between bouts – 76% 

V̇O2peak) 

(Radom-

Aizik et al., 

2013) 

hsa-miR-7 

hsa-miR-29a 

hsa-miR-29b 

hsa-miR-29c 

hsa-miR-30e 

 

hsa-miR-142 

hsa-miR-192 

hsa-miR-338 

hsa-miR-363 

hsa-miR-590 

hsa-let-7e 

hsa-miR-126 

hsa-miR-130a 

hsa-miR-151 

hsa-miR-199a 

 

hsa-miR-221 

hsa-miR-223 

hsa-miR-326 

hsa-miR-328 

hsa-miR-652 

NK cells Acute exercise bout: (cycle 

ergometer, 10 x 2-min 

bouts, 1-min rest interval 

between each bout, 77% 

V̇O2peak) 
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Table 14. continued 

Reference 
 

Tissue  Exercise Type 
MiRNA Upregulated MiRNA Downregulated 

(Radom-

Aizik et al., 

2014) 

hsa-miR-15a 

hsa-miR-29b 

hsa-miR-29c 

hsa-miR-30e 

hsa-miR-140 

hsa-miR-324 

 

hsa-miR-338 

hsa-miR-362 

hsa-miR-532 

hsa-miR-660 

hsa-miR-1202 

hsa-miR-1305 

hsa-miR-23b 

hsa-miR-130a 

hsa-miR-151 

 

hsa-miR-199a 

hsa-miR-221 

Monocytes Acute exercise bout: (10 x 

2-min bouts of cycle 

ergometer exercise, 82% 

V̇O2max) 

(Taurino et 

al., 2010) 

hsa-miR-92a 

hsa-miR-92b 
- - - Whole 

blood 

Cardiac rehab program 

(60 min, 2/wk., 10 wks.) 

(Tonevitsky 

et al., 2013) 

hsa-miR-21-5p 

hsa-miR-24-2-

5p 

has-miR-27a-

5p 

hsa-miR-181a-

5p 

- - Whole 

blood 

Acute exercise bout: 30-

min treadmill run at 80% 

V̇O2peak 
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3.3 Aims  

The overarching aim of this study was to investigate potential mechanisms 

underpinning the positive association between PA and LTL. The specific aims were 

to investigate the acute effects of 30 min of intense cardiorespiratory exercise on 

the expression patterns of leukocyte miRNAs with potential involvement in 

telomere biology. 

Hypothesis 

The hypothesis for this study is that 30 min of treadmill running at 80% V̇O2peak 

will differentially regulate miRNAs in leukocytes and immune cell subsets. 

Specifically, aerobic exercise will differentially regulate miRNAs that potentially 

interact with pro-telomere transcripts. 

3.4 Methods 

Ethics Statement 

All eligible participants read a plain language information statement outlining all 

aspects of the project in lay terminology. Informed consent documents explaining 

the purpose, potential risk and benefits of the project were then signed in the 

presence of a witness. The study, recruitment and consent procedures were 

approved by the Human Research Ethics Committee from Federation University 

Australia (HREC approval #: A10-119). 

Participants 

A subset of 18 healthy, non-smoking males (mean age = 23.4 ± 7.1 years) 

were selected from the initial cohort of 22 (see chapter 2). General health and 

lifestyle information was also obtained via a questionnaire.  
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Physiological Measurements 

Participant physiological measurements were taken in accordance with the 

methodology laid out in chapter 2. A summary of the participant physiological and 

exercise intervention data is contained in table 15. 

Determination of Fitness Standard 

Participants undertook a treadmill-based peak oxygen uptake (V̇O2peak) test 

using a Metalyser® metabolic system (Cortex Biophysic, Leipzig, Germany). The 

specifics of the protocol and associated cardiopulmonary exercise testing (CPET) 

data are contained in chapter 2. 

Exercise protocol 

Participants then undertook a 30 min bout of continuous treadmill running at 

80% of previously determined V̇O2peak. Blood samples were taken pre-exercise 

(Pre-Ex), post-exercise (Post-Ex) and 60 min post-exercise (60 min Post-Ex). All 

CPET data and specific blood sampling procedures are contained in chapter 2. 

Preparation of cells 

The preparation and staining of leukocytes and all associated flow cytometry 

procedures are explained in detail in chapter 2. 

RNA extraction 

Total RNA for miRNA microarrays was extracted using TRIzol® (Life 

Technologies) according manufacturer’s instructions. All RNA samples were 

quantified by spectrophotometry using a Nanodrop™ (Thermo Fisher). 

miRNA expression microarrays 

Agilent Human miRNA Microarrays (Release 19.0 – Agilent Technologies) 

were performed on Pre-Ex, Post-Ex, and 60 min Post-Ex samples from a subset of 



 

155 
 

10 male participants matched for age, BMI, and V̇O2peak. A subset of n=10 was 

chosen from the initial subset of 18 largely due to the high cost of analysis. The 

microarrays were performed at the Ramaciotti Centre for Gene Function Analysis 

(University of New South Wales, Sydney, Australia), as previously described 

(Marques et al., 2011). The data set obtained has been deposited in the NCBI 

Gene Expression Omnibus database according to the Minimum Information About 

a Microarray Experiment (MIAME) guidelines (Brazma et al., 2001) with series 

accession number GSE45041.  

miRNA target gene prediction 

Differentially expressed miRNAs were further analysed for potential binding to 

telomere gene transcripts using TargetScan (Release 6.2) and microRNA.org 

(August 2010 release). 

miRNA target gene prediction 

TaqMan® assays (Life Technologies) were used to validate the target miRNAs 

in 18 male participants at the Pre-Ex and Post-Ex time-points in accordance with 

the miRNA expression arrays (table 16). The target miRNAs were also assessed 

in the same 18 males at the 60-min Post-Ex time-point. Total RNA (250 ng) was 

reverse transcribed for primers using Taqman® MicroRNA Reverse Transcription 

kit (Life Technologies) according to manufacturer’s instructions. All reactions were 

performed in duplicate in a Viia™7 Real-Time PCR System (Applied Biosystems) 

using the following cycling conditions: 1 cycle of 95°C for 5 min, followed by 40 

cycles of 95°C for 10 s, 60°C for 20 s. All reactions were normalized to the average 

of miRNA controls RNU44 and RNU48; both of which have been used extensively 

as endogenous controls in exercise and immunological studies (Radom-Aizik et 

al., 2013; Radom-Aizik et al., 2010; Radom-Aizik et al., 2012).  
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Table 15. Physiological characteristics and exercise intervention  

data of the 18 male participants.  

Characteristic Mean SEM 

Age (years) 23.4 ± 7.1 

Height (cm) 181.9 ± 5.6 

Body Mass (kg) 80.9 ± 9.5 

BMI (kg/m2) 24.4 ± 2.2 

Waist:hip ratio  0.8 ± 0.03 

V̇O2peak (mL.kg-1.min-1) 49.7 ± 4.4 

% V̇O2peak during 30 min run 80.01 ± 6.83 

SEM: (standard error of mean); BMI: (body mass index); 

V̇O2peak: (highest oxygen consumption achieved in test) 
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Table 16. Quantitative real-time PCR TaqMan® microRNA assays 

miRNA Assay identification # 

RNU44 (control) 001094 

RNU48 (control) 001006 

miR-181b 001098 

miR-186 000486 

miR-96 000434 

miR-15a 000389 
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Pooled T cell Subpopulations 

To differentiate transcriptionally responsive subsets, CD45RA+ and CD45RO+ 

subsets in CD4+ and CD8+ T cells were assessed at each time point. A total of 

100ng of total RNA was pooled from each cell population at each time point from 

the 22 male participants recruited in chapter 2. The full n=22 were used in the 

pooled T cell samples compared to n=18 for the miRNA target gene validations 

due to limited RNA yield from four participants. As only a small RNA input was 

required from each participant for the pooled samples compared to the larger input 

for individual analyses, more participants were included. The smaller than 

expected RNA yield from the sorted cell subpopulations precluded large numbers 

of individual samples. Sample pooling identifies the transcriptional characteristics 

of specific cell populations as opposed to individuals and reduces the effects of 

biological variation. Whilst this technique restricts the scope of stringent statistical 

analysis, it does provide a transcriptional profile that can be compared to unsorted 

leukocytes. Reverse transcription and qPCR reactions were both performed 

according to previously outlined protocols. 

Statistical Analysis 

MiRNA microarray samples were between-array normalized using the quantile 

method in Partek Genomics Suite (version 6.6). Differentially expressed miRNAs 

were identified using a paired t-test and a false discovery rate (FDR)<0.05. 

Normally distributed qPCR data was assessed using a repeated measures 

ANOVA; significance was further assessed using paired t-tests with Bonferroni 

correction. Non-normally distributed qPCR data was assessed using a non-

parametric Friedman’s repeated measures ANOVA; where appropriate, a non-

parametric pairwise comparison was performed (Wilcoxon Signed-Rank test). 
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Statistical significance was set at P<0.05. All statistical analysis was performed 

using SPSS® (version 17). 

3.5 Results 

The acute effect of cardiorespiratory exercise on genome wide miRNA 
expression 

Fifty-six miRNAs were significantly differentially regulated in ten healthy males 

after 30 min of intense cardiorespiratory exercise (Table 17).   

miRNA target gene prediction 

Four miRNAs: miR-181b, miR-186, miR-15a, and miR-96 were selected for 

individual qPCR validations based on predicted in silico interactions (table 18). The 

predicted following miRNA/mRNA interactions were: miR-181b and hTERT, miR-

186 and RAP1, RAD50 and SIRT6, miR-96 and RAP1, and miR-15a and TATA 

box binding protein (TBP). 

qPCR Validations of selected miRNAs 

Due to the non-normal distribution of the miRNA data, Friedman tests were 

conducted to assess differences in mean miRNA expression (figure 12). Post hoc 

analysis using Wilcoxon signed-rank tests were performed using a Bonferroni 

correction. There was no statistically significant difference in miR-181b expression 

across the time points (χ2(2) = 1.44, P=0.486). There was a significant effect of 

time for miR-186 expression across time points (χ2(2) = 19.44, P<0.001). Post hoc 

analysis identified a significant difference in means between Pre-Ex and 60 min 

Post-Ex time points (Z = -3.72, P<0.001), and Post-Ex and 60 min Post-Ex time 

points (Z = -2.68, P=0.007). There was a significant effect of time for miR-15a 

across time points (χ2(2) = 28.44, P<0.001), with significant differences in means  



 

160 
 

Table 17. Significantly regulated miRNAs in Pre-Ex and Post-Ex samples detected 

via genome-wide microarray (Agilent Human miRNA Microarray, Release 19.0). 

Probeset ID 
Fold 

Change 
FDR† Probeset ID 

Fold 

Change 
FDR† 

hsa-miR-1270 -11.45 0.03 hsa-miR-320a -1.20 0.03 

hsa-miR-96 -1.99 0.03 hsa-miR-320b -1.19 0.03 

hsa-miR-675* -1.53 0.03 hsa-miR-139-3p -1.19 0.03 

hsa-miR-574-3p -1.47 0.03 hsa-miR-320e -1.18 0.03 

hsa-miR-576-5p -1.47 0.04 hsa-miR-4323 -1.17 0.03 

hsa-miR-934 -1.43 0.03 hsa-miR-320d -1.16 0.03 

hsa-let-7d* -1.41 0.04 hsa-miR-146a -1.11 0.03 

hsa-miR-2115 -1.39 0.03 hsa-miR-186 1.16 0.04 

hsa-miR-193b -1.38 0.03 hsa-miR-15a 1.17 0.03 

hsa-miR-636 -1.35 0.03 hsv2-miR-H6 1.18 0.03 

hsa-miR-1229 -1.35 0.03 hsa-miR-28-5p 1.21 0.04 

hsa-miR-129* -1.35 0.03 hsa-miR-4322 1.26 0.03 

hsa-miR-129-3p -1.34 0.03 hsa-miR-3648 1.27 0.04 

hsa-miR-877* -1.34 0.03 hsa-miR-23a* 1.33 0.04 

hsa-miR-1227 -1.32 0.03 hsa-miR-181b 1.36 0.04 

hsa-miR-125b -1.31 0.03 hsa-miR-454* 1.42 0.03 

hsv2-miR-H20 -1.31 0.04 hsa-miR-363 1.46 0.03 

kshv-miR-K12-8* -1.30 0.03 hsa-miR-583 1.66 0.03 

hsa-miR-933 -1.29 0.03 kshv-miR-K12-6-5p 1.66 0.03 

hsv2-miR-H7-3p -1.29 0.03 hsa-miR-518c* 1.67 0.04 
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Table 17. continued 

Probeset ID 
Fold 

Change 
FDR† Probeset ID 

Fold 

Change 
FDR† 

hsa-miR-3613-3p -1.27 0.03 hsa-miR-1276 1.73 0.04 

hsa-miR-3940 -1.26 0.04 hsa-miR-200b* 1.86 0.04 

hsa-miR-378 -1.25 0.03 hsa-miR-3677 1.98 0.04 

hsa-miR-1225-3p -1.25 0.04 hsa-miR-1250 2.02 0.04 

hsa-miR-92a -1.22 0.04 hsa-miR-873 2.19 0.03 

hsa-let-7f-1* -1.22 0.04 hsa-miR-4316 2.37 0.03 

hsv1-miR-H1* -1.21 0.03 hsa-miR-764 3.26 0.03 

hsa-miR-550a* -1.21 0.04 hsa-miR-3146 4.35 0.03 

The miRNA prefix ‘hsa’ denotes human origin, ‘hsv’ denotes herpes simplex virus, 

and ‘kshv’ denotes Kaposi’s sarcoma-associated herpes virus. † FDR: false 

discovery rate. 
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Table 18. Selected miRNAs and their potential mRNA interactions. 

miRNA Potential gene target 
Gene 

symbol 
Prediction database 

miR-181b Telomerase reverse 

transcriptase 

hTERT microRNA.org (release 

August 2010) 

miR-186 RAD50 homolog RAD50 microRNA.org (release 

August 2010) 

 Repressor/activator protein 1 RAP1 TargetScan (release 

6.2) 

 Sirtuin-6 SIRT6 microRNA.org (release 

August 2010) 

miR-96 Repressor/activator protein 1 RAP1 microRNA.org (release 

August 2010) 

miR-15a TATA-box binding-protein  TBP microRNA.org (release 

August 2010) 
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between Pre-Ex and Post-Ex (Z = -2.77, P=0.006), Pre-Ex and 60 min Post-Ex (Z 

= -3.72, P<0.001), and Post-Ex and 60 min Post-Ex time points (Z = -3.55, 

P<0.001). 

There was also a significant effect of time for miR-96a across time points (χ2(2) = 

16.93, P<0.001). Post hoc analysis identified significant differences in mean 

expression between Pre-Ex and 60 min Post-Ex time points (Z = -2.99, P=0.003) 

and Post-Ex and 60 min Post-Ex time points (Z = -2.84, P=0.004) (figure 12). 

The effect of exercise on T cell subset miRNA expression 

Only miR-181b and miR-186 were detected in the sorted T cell subsets. The 

expression profile of miR-181b demonstrated a biphasic Post-Ex down regulation 

in CD4+CD45RA+ T cells and a marginal Post-Ex increase in CD8+CD45RA+ T 

cells (figure 13). There was no appreciable regulation in miR-181b in 

CD4+CD45RO+ T cells whilst CD8+CD45RO+ T cells exhibited a stepwise 

increase. MiR-186 expression increased 60 min Post-Ex in CD4+CD45RA+ T cells 

and CD8+CD45RO+ T cells showed a stepwise increase in expression.   

3.6 Discussion 

The findings of this study demonstrate that exercise acutely regulates leukocyte 

miRNAs with potential epigenetic influence on telomere homeostasis. Exercise-

induced regulation of pro-telomeric miRNAs may in part mechanistically contribute 

to the observed association between PA and LTL. This is a significant finding given 

the purported link between accelerated telomere shortening and chronic diseases 

(Calado & Young, 2009). Telomere homeostasis underpins the function of highly 

replicative cells such as immune cells (Weng, 2008), with accelerated shortening  
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A B 

  

C D 

  

Figure 12. Differential regulation of selected miRNAs in unsorted 

leukocytes: Relative expression of each target miRNA was assessed at Pre-Ex, 

Post-Ex, and 60 min Post-Ex (n=18). Whilst only a (non-significant) strong trend 

was observed for miR-181b (A), significant changes in regulation were observed 

for miR-186 (B), miR-15a (C), and miR-96 (D). All data is expressed relative to 

an average of RNU44 and RNU48. Error bars indicate SEM. * indicates P<0.05 

and ** indicates P<0.01, and *** indicates P<0.001. 
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A B 

  

C D 

  

Figure 13. Differential regulation of selected miRNAs in sorted T cell subset 

pools (n = 22): Each miRNA was assessed in T cell subset pools. miR-181b was 

expressed in CD4+ (A) and CD8+ T cells (B). miR-186 was also expressed in 

CD4+ (C) and CD8+ T cells (D). 
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leading to replicative senescence. The SASP acquired by senescent cells 

propagates chronic inflammation, age-related disease, carcinogenesis, and 

metastasis formation (Rodier & Campisi, 2011). 

MiRNAs serve key regulatory roles in cellular senescence (Feliciano, Sánchez-

Sendra, Kondoh, & LLeonart, 2011; Lafferty-Whyte, Cairney, Jamieson, Oien, & 

Keith, 2009), influencing major senescent pathways including p53/p21Cip1 and 

p16INK4A-pRB tumour suppressor pathways (Borgdorff et al., 2010; Gómez-Cabello 

et al., 2013; Overhoff et al., 2014; Ugalde et al., 2011; Yamakuchi, Ferlito, & 

Lowenstein, 2008). MiRNA dysregulation is associated with a host of diseases 

independently of telomere homeostasis, including CVD (Jovanović, Živković, 

Jovanović, Djurić, & Stanković, 2014; Menghini, Stöhr, & Federici, 2014), cancer 

(Iorio et al., 2005; Peng et al., 2011), viral diseases (Huang et al., 2007; Li et al., 

2010; Randall et al., 2007), immune-related diseases (Karolina et al., 2011; Keller 

et al., 2009), and neurodegenerative conditions (Martins et al., 2011; Nunez-

Iglesias, Liu, Morgan, Finch, & Zhou, 2010). 

The current study provides a unique snap shot of 56 exercise-induced 

leukocyte miRNAs. In silico analyses predicted miRNA/mRNA interactions 

between: miR-181b and hTERT, miR186 and RAP1, RAD50 and SIRT6, miR-96 

and RAP1, and miR-15a and TATA box binding protein (TBP).  

Although not achieving statistical significant across three timepoints, miR-181b 

trended towards increased abundance immediately post-exercise (P<0.05), before 

trending down to a level marginally higher than pre-exercise. The 60 min post-

exercise decrease in miR-181b paralleled an increase in one of its putative targets 

(hTERT); however, the two events were not significantly associated.  Importantly, 
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the magnitude of miRNA expression needed to elicit detectable decreases in target 

mRNA is unknown; however, it is likely to be small (Baek et al., 2008). Research 

continues to shed light on the complex and often divergent roles played by the miR-

181 family (mir-181a, -181b, -181c, and -181d). The up regulation of miR-181 plays 

a critical role in the anti-inflammatory effect elicited by exercise and suppresses 

the inflammatory response within dendritic cells induced by low-density lipoprotein 

(Wu et al., 2012). The miR-181 family targets genes within the cytoplasm and 

mitochondria of the cardiovascular system (Das et al., 2017). Specifically, miR-

181b plays a significant role in vascular stiffness (Hori et al., 2017), vascular 

inflammation and atherosclerosis (Sun, He, et al., 2014), and diabetic 

cardiomyopathy (Copier, Leon, Fernandez, Contador, & Calligaris, 2017). 

Exercise-induced upregulation of the miR-181 family within leukocytes has 

previously been demonstrated (Radom-Aizik et al., 2010; Radom-Aizik et al., 

2012).  

Exercise-induced upregulation of leukocyte miR-186 was observed at 60 min 

post-exercise compared to pre-exercise (P<0.001) and immediately post-exercise 

(P<0.01). The differential expression of miR-186 has been associated with various 

forms of cancer and their progression (He, Ping, & Wen, 2017; Niu et al., 2017; 

Sun, Jiao, Chen, Liu, & Zhao, 2015; Sun, Hu, Xiong, & Mi, 2014; Zhang, Wang, et 

al., 2016). Cardiomyocyte-enriched miR-186 has been associated with 

atherosclerosis progression (Boštjančič, Zidar, & Glavač, 2009; Das & Halushka, 

2015; Min & Chan, 2015), cardiac injury, and myocardial infarction (Zeller et al., 

2014).   

In a recent study, overexpression of miR-186 via a miR-186 mimic increased 

macrophage lipid concentration (Yao et al., 2016). Additionally, inhibition of miR-
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186 increased expression of the pro-inflammatory cytokine cystathionine-γ-lyase 

(CSE) in macrophages (Yao et al., 2016). Despite this, little is known about the role 

of miR-186 in leukocytes and its acute responsiveness to exercise. Whilst 

speculative, the exercise-induced upregulation of leukocyte miR-186 observed in 

the present study may be an acute attempt to mitigate inflammation within immune 

cell subsets.  To the author’s knowledge, the present study is the first to propose a 

potential pro-telomeric function for miR-186. Given that the 60 min post-exercise 

expression profile of miR-186 mirrored a decrease in one of its putative targets 

(RAP1), a role in acute telomere homeostasis is plausible.  

The role of RAP1 in telomere homeostasis and the potential significance of its 

regulation are addressed in detail within chapter 4.  Briefly, RAP1 is part of the 

shelterin complex and is recruited to telomeres via interaction with TRF2 (also 

known as TERF2)(Li et al., 2000). The resultant complex formed with TRF2 is 

essential to prevent the homologous recombination-mediated deletions and 

fusions of telomeres (Rai, Chen, Lei, & Chang, 2016). Despite discrepant findings, 

RAP1 is widely considered a negative regulator of telomere length (O'Connor et 

al., 2004). Additional roles for RAP1 include prevention of non-homologous end 

joining (Sarthy et al., 2009) and homology-directed repair (Sfeir, Kabir, van 

Overbeek, Celli, & de Lange, 2010), protection from obesity via regulation of 

metabolic genes (Martínez et al., 2013), and regulation of senescence (Platt et al., 

2013).  

Exercise-induced upregulation of leukocyte miR-96 was also observed at 60 

min post-exercise compared to pre-exercise (P<0.01) and immediately post-

exercise (P<0.01). In silico analysis also predicted RAP1 as a regulatory target of 

miR-96. Established interactions exist between miR-96 and FOXO1 mRNA 
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(Guttilla & White, 2009; La Rocca et al., 2009; Li et al., 2011; Myatt et al., 2010). 

Age-associated increased expression profiles of miR-96 and miR-145 have been 

proposed as potential contributors to the concomitant age-related decrease in IGF-

1R and FOXO1 mRNAs (Budzinska et al., 2016). The age-associated decrease in 

IGF-1R and FOXO1 is thought to contribute to altered natural killer cell function, 

altered antibody production, and dysregulated production of pro- and anti-

inflammatory agents. These factors are individually and collectively associated with 

age-related diseases (Franceschi & Campisi, 2014; Puzianowska-Kuźnicka et al., 

2016). Mir-96 has also been implicated in several oncogenic processes including 

a likely onco-miR role via suppression of CDKN1A protein expression in bladder 

cancer cells (Wu et al., 2015). Increased expression of miR-96 promotes cell 

proliferation, migration, and invasion via targeting of PTPN9 in breast cancer (Hong 

et al., 2016), and post-transcriptional suppression of Anaplastic Lymphoma Kinase 

(ALK) expression (Vishwamitra et al., 2012). 

T cell subset analysis identified more dynamic regulation of miR-181b and miR-

186 in CD4+CD45RA+ T cells compared to CD4+CD45RO+ T cells. The reverse 

was true within the CD8+ T cell subset with higher and more differential expression 

observed in CD8+CD45RA+ T cells. Whilst the reasons for such differential 

expression are unclear, T cell subset-specific expression profiles of miRNAs have 

previously been reported throughout differentiation (Grigoryev et al., 2011; Rossi 

et al., 2011) and in response to exercise (Radom-Aizik et al., 2012). 

The interactions between miRNAs and mRNA targets are complex. Significant 

functional redundancy means that a single miRNA can target hundreds of mRNAs. 

It is possible that miRNAs not identified via in silico analysis in the present study 

still exerted transcriptional influence on telomeric genes via seemingly unrelated 
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pathways such as inflammation and/or oxidative stress. Additional validation 

experiments would be required to confirm the legitimacy of the miRNA/mRNA 

interactions proposed in this study. Additionally, the direction of the miRNA/mRNA 

interaction within a telomere context is currently unclear. Chromosomal instability 

resulting from telomere shortening alters the cellular miRNA expression profile 

(Castro-Vega et al., 2013). Comparison between cells with normal and shortened 

telomeres identified 47 differentially expressed miRNAs (Uziel et al., 2015).  

Mature miRNAs can remain viable for several hours to days after 

transcriptional shutdown or depletion of by miRNA processing enzymes (Baccarini 

et al., 2011; Gantier et al., 2011; Lee et al., 2003; Van Rooij & Olson, 2007). 

Consequently, miRNAs were initially considered to be inherently stable molecules; 

however, a complex picture of miRNA regulation and turnover is emerging. Several 

miRNAs demonstrate dynamic expression patterns throughout development, 

including rapid downregulation (Avril-Sassen et al., 2009; Kato, de Lencastre, 

Pincus, & Slack, 2009; Okamura et al., 2008; Wang et al., 2011). Additionally, 

various mature miRNAs demonstrate stage- or tissue-specific expression 

independent of their precursor pri- and pre-miRNAs (Lee et al., 2008; Martinez et 

al., 2008). There is also evidence that highly complementary targets can induce 

miRNA instability and degradation in animals (Ameres et al., 2010; Xie et al., 2012); 

however, the biological consequences of this are currently unclear.  

MiRNA turnover may also be influenced by miRNA-degrading enzymes 

(collectively referred to as miRNases) including XRN1 (Bail et al., 2010), RRP41 

(Bail et al., 2010), and PNPaseold-35 (Das et al., 2010). Selective loss of Eri1 was 

found to impair murine natural killer cell development, function, and maturation as 
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well as significantly increase several miRNAs in natural killer cells and T-cells 

(Thomas et al., 2012).  

Limitations 

There are some limitations to this study. Without a priori knowledge of the 

precise time course of miRNA expression, it is possible that the measurement time 

course used may have missed the greatest magnitude of change. Additionally, the 

study did not differentiate between the potential pro-telomeric functions and 

unrelated functions of the genes and miRNAs of interest.  The low sample yield 

from sorted T cell populations necessitated pooling into cell/time point specific 

pools for analysis. Whilst this provided interesting, subpopulation-wide overviews, 

it precluded additional individual validations and robust statistical analysis.  

The present study used computational prediction followed by candidate gene 

mRNA validation to propose putative miRNA/mRNA interactions. However; to 

more accurately confirm the legitimacy of the proposed miRNA/mRNA 

interactions, additional luciferase reporter assay and gain/loss of function 

experiments would be required. Downstream target gene protein detection using 

Western blotting was not performed in the present study; therefore, conclusions 

about mRNA stability and subsequent functional protein synthesis cannot be 

made. The functional outcomes of miRNA-mediated protein changes can be 

further assessed via the use of miRNA knockout/overexpression models as well 

as modified antisense oligonucleotides known as antimiRs. Whilst the present 

study was not designed to answer such questions, the addition of complex gain 

or loss of function studies in cultured cells would have provided definitive proof of 

miRNA/mRNA interaction. 
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Another consideration is that analysis of whole leukocytes may obscure 

population-specific miRNA expression profiles via exercise-induced changes in 

cellular subset proportions (Tonevitsky et al., 2013). White blood cells represent a 

heterogeneous conglomeration of lymphocytes, monocytes, natural killer cells and 

granulocytes of varying proportions. The relative contribution of the other cellular 

subsets to the composite miRNA signature is unknown. Work by Radom-Aizik 

(2012) has demonstrated the discrete exercise-induced miRNA expression profiles 

between neutrophils and PBMCs. Despite best attempts to minimize the time 

between blood draw and miRNA extraction, it is possible that miRNA expression 

profiles were altered post-draw due to turnover or degradation. 

3.7 Conclusion 

In conclusion this study has shown that 30 min of cardiorespiratory exercise is 

sufficient to elicit the differential regulation of 56 microRNAs in leukocytes. The 

regulated miRNAs included miR-186 and miR-96 which have potential 

transcriptional influence on telomeric genes, specifically RAP1. These results add 

to the developing understanding of epigenetic regulation of telomeres and may 

provide a mechanistic insight into the observed association between PA and 

telomere length.  

An enhanced understanding of exercise-induced miRNA expression and the 

subsequent phenotypic effects may inform exercise guidelines (i.e. intensity, 

duration, and modality) for specific populations. A clearer understanding of 

exercise-induced miRNAs may also provide viable biomarkers via which to assess 

individual beneficial and/or detrimental exercise responses. This in turn may allow 

more targeted use of exercise as a first line treatment in conditions characterized 
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by aberrant miRNA regulation. Despite the growing body of evidence showing the 

exercise-responsiveness of miRNAs, the specific phenotypic effects on specific 

tissues (e.g. leukocytes) are poorly understood. Future studies should work to 

further establish the origin, target tissues, associated networks, and phenotypic 

implications of exercise-induced miRNAs. 
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Chapter 4 - The Acute Response of Telomere-

Associated Genes to Intense Cardiorespiratory 
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4.1 Abstract 

Telomeres are specialized nucleoprotein structures that protect chromosomal 

ends from degradation. These structures progressively shorten during cellular 

division and can signal replicative senescence below a critical length. Immune cell 

telomere length is associated with a host of chronic diseases and underpins the 

function of the adaptive immune system. Habitual physical activity is associated 

with longer leukocyte telomere length; however, this does not imply causal story 

and the mechanisms are unclear. Potential hypotheses include the regulation of 

telomere-associated genes and/or microRNAs (miRNAs). The acute exercise-

induced response of telomere-associated genes was investigated in 17 healthy 

males (mean age = 23.8 ± 8.17 years). Participants undertook 30 min of treadmill 

running at 80% of V̇O2peak; the highest value of oxygen of uptake achieved in a 

maximal test. Blood samples were taken before exercise (Pre-Ex), immediately 

post-exercise (Post-Ex) and 60 min post-exercise (60 min Post-Ex). Total RNA 

from leukocytes was submitted to a telomere extension mRNA array. Results were 

individually validated in leukocytes and sorted T cell subsets using quantitative 

real-time PCR. Human telomerase reverse transcriptase (hTERT) mRNA 

(P=0.001) and sirtuin-6 (SIRT6) mRNA (P<0.05) expression were upregulated in 

leukocytes after exercise. Repressor/activator protein 1 (RAP1) mRNA was 

upregulated post-exercise (P=0.001) returning to below-basal concentration 60 

min post-exercise (P=0.002). RAD50 mRNA was significantly downregulated 60 

min post-exercise (P=0.05). Intense cardiorespiratory exercise was sufficient to 

differentially regulate key telomere-associated genes in leukocytes. These results 

may provide a mechanistic insight into telomere homeostasis and improved 

immune function and physical health.  
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4.2 Introduction 

There is mounting evidence of an association between habitual PA and longer 

LTL (Bendix et al., 2011; Cherkas et al., 2006; Cherkas et al., 2008; Denham et al., 

2013; Du et al., 2012; Garland et al., 2014; Kim et al., 2012; Kingma et al., 2012; 

Krauss et al., 2011; LaRocca et al., 2010; Loprinzi, 2015; Ludlow et al., 2008; 

Østhus et al., 2012; Puterman et al., 2015; Savela et al., 2012; Silva et al., 2016; 

Venturelli et al., 2014; Werner et al., 2009; Zhu, Belcher, & van der Harst, 2011).  

This association with PA is disputed by a similar number of observational and 

interventional studies (Bekaert et al., 2007; Cassidy et al., 2010; Denham et al., 

2016; Farzaneh-Far, Lin, Epel, Lapham, et al., 2010; Fujishiro et al., 2013; Garcia-

Calzon et al., 2014; Hovatta et al., 2012; Kadi et al., 2008; Laine et al., 2015; Laye 

et al., 2012; Mason et al., 2013; Mathur et al., 2013; Ponsot et al., 2008; Rae et al., 

2010; Shin et al., 2008; Song et al., 2010; Sun et al., 2012; Svenson et al., 2011; 

Tiainen et al., 2012; Woo et al., 2008).  A clear understanding of the physiological 

mechanisms underpinning the putative association is lacking.  

Telomeres bookend linear chromosomes protecting them false recognition as 

DNA damage and enzymatic degradation. The human telomere complex consists 

of three distinct yet inextricably linked functional components; the telomeric DNA, 

the telomerase complex, and the shelterin complex. It is also directly and indirectly 

influenced by numerous signalling pathways (Ludlow et al., 2013). Suppression or 

insult to any individual component or pathway can negatively influence telomere 

homeostasis. The corollary follows that upregulation (potentially exercise-induced) 

or attenuation of age-associated decrease in any negative components or 

pathways may positively influence telomere homeostasis. The influence of lifestyle-

mediated epigenetic changes upon the telomere trajectory is only just beginning to 
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be understood. At present, the broad consensus is that exercise-induced 

amelioration of oxidative stress and inflammation likely underpins the association 

between PA and LTL. Accumulating evidence suggests that the association 

between PA and LTL may represent a confluence of several pro-telomeric 

adaptations. 

Exercise and the Shelterin Complex 

Mouse models have demonstrated exercise-induced plasticity of various 

shelterin components. CardiacTRF2 mRNA and protein increased after 21 days of 

voluntary running (Werner et al., 2008), whilst skeletal muscle TRF1 mRNA 

increased after 44 weeks of voluntary running (Ludlow et al., 2012). Recently, acute 

exercise upregulated mouse cardiac TRF1 and TRF2 mRNA and protein, 

increased expression of DNA-repair genes Ku70 and Ku80, and increased 

mitogen-activated protein kinase (MAPK) signalling (Ludlow, Gratidão, Ludlow, 

Spangenburg, & Roth, 2017).  

Human studies have identified increased mononuclear cell (MNC) TRF2 

mRNA and protein in young and middle-aged athletes compared to controls 

(Werner et al., 2009). Increased leukocyte TPP1 mRNA expression was observed 

in chronically trained athletes compared to controls (Denham et al., 2016).  Athletes 

who performed seven marathons in one week demonstrated upregulated DDR 

enzymes Ku70 and Ku80 in addition to increased TRF1, TRF2, and Pot-1 mRNA 

expression. This occurred without concomitant changes in telomere length or 

telomerase activity (Laye et al., 2012). A significant 60 min post-exercise increases 

in PBMC TRF2 mRNA were seen in older men after a 30 min bout of high-intensity 

cycling; expression levels of did not change in the young cohort (Cluckey, Nieto, 

Rodoni, & Traustadóttir, 2017).  
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Exercise and hTERT Regulation 

Despite accumulating evidence of exercise-induced shelterin regulation, there 

is comparatively little evidence of exercise-induced hTERT regulation. Preliminary 

evidence has come from mouse models showing increases in telomerase and 

TERT protein after 21 days of voluntary running (Werner et al., 2008). Human 

athletes who performed seven marathons in a week did not exhibit significantly 

increase hTERT mRNA levels despite increased expression of shelterin 

components (Laye et al., 2012). Zietzer and colleagues demonstrated increased 

PBMC telomerase activity after a 30 min treadmill run at 65% of predicted maximal 

heart rate despite no increase in hTERT mRNA (Zietzer et al., 2016). It is worth 

noting that hTERT mRNA was only assessed in a subset of the exercising cohort 

(n=5) and was likely underpowered to detect meaningful change. In a recent 

observational study, chronically trained athletes exhibited increased expression of 

hTERT mRNA when compared to healthy controls (Denham et al., 2016).   

A cohort of 11 young (5 men, 6 women) and 8 older participant (4 men, 4 

women) undertook a 30 min bout of high-intensity cycling with blood samples taken 

at 30, 60, and 90 min post-exercise (Cluckey et al., 2017). The entire cohort 

demonstrated post-exercise increases in hTERT mRNA; however, the increases 

were greater in the young cohort. Expression levels of TRF2 mRNA did not change 

in the young cohort but did increase in the old cohort at 60 min post-exercise. A 

significant effect for gender was seen across the entire cohort, regardless of age, 

with men demonstrating greater hTERT and TRF2 responses compared to women 

(Cluckey et al., 2017). Such discordant findings may be due to variant exercise 

modes and intensities, sampling timeframes, and/or small sample sizes used in the 

various studies.   
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Exercise and DNA Damage Repair 

Telomeric DNA is particularly susceptible to a range of insults including 

replication fork stalling  (León-Ortiz, Svendsen, & Boulton, 2014; Martínez & 

Blasco, 2015), bulky lesion formation due to UV exposure (Douki & Cadet, 2001), 

base damage, and single strand breaks (Petersen, Saretzki, & Zglinicki, 1998). 

Accordingly, telomere homeostasis is supported by a host of DDR proteins such 

as Mre11/Rad50/Nsb1 (MRN complex) (Williams, Williams, & Tainer, 2007; Zhu, 

Küster, Mann, Petrini, & Lange, 2000), Ku70 and Ku80 (Hsu, Gilley, Blackburn, & 

Chen, 1999), replication protein A1 (RPA1) (Wold, 1997; Zou, Liu, Wu, & Shell, 

2006), and RecQ helicases (Multani & Chang, 2007; Opresko, 2008). Habitual 

exercise enhances DDR capacity in animal models (Nakamoto et al., 2007; Radak 

et al., 2002; Schneider, Willis, & Parkhouse, 1995; Werner et al., 2009). Despite 

often being inferred by decreased oxidative stress and DNA damage in the 

physically active, comparatively little  evidence of exercise-enhanced DDR protein 

exists (Cash et al., 2014).  

Exercise and Sirtuins 

Sirtuin 6 (SIRT6) is a mammalian homologue of yeast silent information 

regulator two (Sir2). In addition to DNA repair, SIRT6 regulates lifespan via key 

aging processes such as metabolism and telomere maintenance (Mao et al., 2011; 

Masri, 2015; Toiber et al., 2013; Xu et al., 2015).  SIRT6 appears to play a 

multifaceted role in telomere maintenance including modulation of telomeric 

chromatin (Michishita et al., 2008; Michishita et al., 2009), maintenance of telomere 

position effect (TPE) (Tennen, Bua, Wright, & Chua, 2011), and replicative stress-

induced interaction with TRF2 (Rizzo et al., 2017). Exercise attenuates the age-

associated increase in skeletal muscle SIRT6 in aged rats (Koltai et al., 2010); 
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however little is known about the exercise responsiveness of SIRT6 within the 

human immune system. 

4.3 Aims 

The aim of this study was to investigate potential mechanisms underpinning 

the positive association between PA and LTL. The specific aims were to investigate 

the acute effects of 30 min of intense cardiorespiratory exercise on the expression 

of telomere-associated gene transcripts involved in leukocyte telomere regulation.  

Hypothesis 

The hypothesis for this study is that 30 min of aerobic exercise at 80% of 

V̇O2peak will differentially regulate several genes associated with telomere biology 

i.e. those associated with telomerase function or shelterin structure. 

4.4 Methods 

Ethics Statement 

All eligible participants read a plain language information statement outlining all 

aspects of the project in lay terminology. Informed consent documents explaining 

the purpose, potential risk and benefits of the project were then signed in the 

presence of a witness. The study, recruitment and consent procedures were 

approved by the Human Research Ethics Committee from Federation University 

Australia (HREC approval #: A10-119). 

 

Participant Information 

A subset of 17 healthy, non-smoking males (mean age = 23.8 ± 8.2 years) was 

selected from the initial cohort of 22 (see chapter 2). All participants provided 
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written, informed consent prior to participation. General health and lifestyle 

information was also obtained via a questionnaire.  

Physiological Measurements 

Participant physiological measurements were taken in accordance with the 

methodology laid out in chapter 2. A summary of the participant physiological and 

exercise intervention data is contained in table 19. 

Determination of Fitness Standard 

Participants undertook a treadmill-based peak oxygen uptake (V̇O2peak) test 

using a Metalyser® metabolic system (Cortex Biophysic, Leipzig, Germany). The 

specifics of the protocol and associated CPET data are contained in chapter 2. 

Exercise protocol 

Participants then undertook a 30 min bout of continuous treadmill running at 

80% of previously determined V̇O2peak. Blood samples were taken Pre-Ex, Post-Ex 

and 60 min Post-Ex. All CPET data and specific blood sampling procedures are 

contained in chapter 2. 

Preparation of cells 

The preparation and staining of T cells and all associated flow cytometry 

procedures are explained in detail in chapter 2. 

RNA extraction 

Total RNA for the TaqMan® Array Human – telomere Extension by Telomerase 

(Life Technologies) and individual gene validations was extracted using TRIzol® 

(Life Technologies) according manufacturer’s instructions. All RNA samples were 

quantified by spectrophotometry using a Nanodrop™ (Thermo Fisher). 
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Table 19. Physiological characteristics and exercise intervention data from the 17 

male participants. 

Characteristic Mean SEM 

Age (years) 23.8 ± 8.2 

Height (cm) 182.1 ± 5.77 

Body Mass (kg) 78.6 ± 10.8 

BMI (kg/m2) 23.7 ± 2.7 

Waist:hip ratio  0.8 ± 0.03 

V̇O2peak (mL.kg-1.min-1) 50.03 ± 5.10 

% of V̇O2peak during 30 min run 80.26 ± 7.93 

SEM (standard error of mean); BMI (body mass index); V̇O2peak (highest 

oxygen consumption achieved in test) 
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Global expression of telomere extension genes 

To assess the acute effects of exercise on a wide range of telomeric genes, 

pooled leukocyte RNA from each time point was analysed using a TaqMan® Array 

Human - Telomere Extension by Telomerase (Life Technologies). Each plate 

contained 28 assays specific to telomere extension by telomerase associated 

genes and four assays to candidate endogenous control genes; all reactions were 

performed in triplicate in a Viia™7 Real-Time PCR System (Applied Biosystems) 

using the following cycling conditions: 1 cycle of 50°C for 2 min, 1 cycle of 95°C for 

20 s, 40 cycles of 95°C for 3 s, 60°C for 30 s. Genes were selected for individual 

sample validation based on fold difference between the three time-points.  

Validation of candidate telomere genes 

Individual validations of expression levels of target genes were assessed at 

three time points via qPCR. Total RNA was reverse transcribed using the Applied 

Biosystems High Capacity Reverse Transcription Kit (Life Technologies). The 

qPCR reactions were performed for hTERT, SIRT6, RAD50, and RAP1 in a Viia7™ 

PCR System (Life Technologies) using the following cycling conditions: 1 cycle of 

95°C for 10 min, 40 cycles of 95°C for 15 s, 58°C for 15 s, and 72°C for 15 s. Details 

of qPCR primers are listed in Tables 20 and 21. Target genes were normalized to 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and analysed using the 

∆∆Ct method (Livak & Schmittgen, 2001). 

Statistical Analysis 

All qPCR data was assessed using either Friedman repeated measures for 

non-parametric data or repeated measures ANOVA with appropriate post hoc 

analysis. Statistical significance was set at P<0.05. All statistical analysis was 

performed using SPSS® (version 17). 
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Table 20. Quantitative real-time PCR primers or assays and associated conditions 

Gene Primer Sequence 

Concentration 

(nM) 

GAPDH 
Fwd 5’ CTTTTGCGTCGCCAGCCGAG 3’ 

Rev 5’ GCGCCCAATACGACCAAATCCG 3’ 
200 

TERT 
Fwd 5’ TACGGCGACATGGAGAACAAG 3’ 

Rev 5’ GGGCATAGCTGAGGAAGGTTT 3’ 
500 

SIRT6 
Fwd 5’ CCACCAAGCACGACCGCCAT 3’ 

Rev 5’ CGCCCTCTCCAGCACACGG 3’ 
200 

Fwd 5’ (forward primer sequence), Rev 3’ (reverse primer sequence), nM 

(nanomole) 
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Table 21. Quantitative real-time PCR TaqMan® gene expression assays 

Gene symbol GenBank Accession # Assay Identification # 

RAD50 NM_005732.3 Hs00990023_m1 

RAP1 NM_018975.3 Hs00430292_m1 

GAPDH NM_002046.3 Hs02758991_g1 

Fwd 5’ (forward primer sequence), Rev 3’ (reverse primer sequence) 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.ncbi.nlm.nih.gov/nuccore/NM_005732.3
http://www.ncbi.nlm.nih.gov/nuccore/NM_018975.3
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4.5 Results 

Global expression of telomere extension genes in pooled samples 

Fold changes in relative expression appear in table 22. The TaqMan® Human 

Telomere Extension array was only performed once due to limited sample; 

therefore, results are limited to fold change without corresponding measures of 

statistical significance. In response to acute exercise, 16 of the 28 telomeric genes 

were upregulated from Pre-Ex to Post-Ex and 15 from Pre-Ex to 60 min Post-Ex. 

A total of 10 genes trended towards downregulation between Pre-Ex to Post-Ex 

and 13 trended towards downregulation from Pre-Ex to 60 min Post-Ex. 

Validation of gene expression in individual subjects 

hTERT 

Expression levels of hTERT mRNA were assessed by qPCR based on the fold 

change observed in the TaqMan® Human Telomere Extension array and it’s 

established role in telomere homeostasis. Results demonstrated non-normal 

distribution and were therefore assessed using a Friedman test. A significant effect 

of time for hTERT mRNA expression was observed across time points (χ2(2) = 

11.36, P=0.003). Post hoc analysis using Wilcoxon Signed Ranks Test with 

Bonferroni correction identified significant upregulation between Pre-Ex and 60 min 

Post-Ex time points (Z = -3.21, P=0.001) and Post-Ex and 60 min Post-Ex time 

points (Z = -2.50, P=0.12) (figure 14). 

To determine if a particular T cell subset was driving the observed changes, 

population specific pools were assessed over the three time points. The stepwise 

upregulation trend was broadly confirmed in CD4+CD45RA+, CD4+CD45RO+, 

and CD8+CD45RA+ T cell subsets (figure 14). 
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Table 22. Differential regulation obtained using the TaqMan® Telomere extension array.  

 
Fold Change 

Gene Symbol Pre-Ex to Post-Ex Pre-Ex to 60-min Post Post-Ex to 60-min Post-Ex 

ACTB 1.00 1.15 1.15 

B2M 1.10 -1.27 -1.40 

RPLPO -1.03 -2.09 -2.04 

HMBS -1.08 1.07 1.15 

TBP 1.04 -1.39 -1.44 

PGK1 1.00 1.10 1.10 

UBC -1.05 -1.03 1.02 

PPIA 1.01 -1.46 -1.48 

TFRC 1.03 -1.13 -1.16 

HNRNPA1 1.17 1.31 1.12 

HNRNPA2B1 1.26 1.50 1.19 

HNRNPAB 1.13 1.06 -1.07 
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Table 22. continued 

 Fold Change 

Gene Symbol Pre-Ex to Post-Ex Pre-Ex to 60-min Post Post-Ex to 60-min Post-Ex 

HNRNPC 1.07 1.05 -1.02 

HNRNPD -1.26 -1.19 1.06 

HNRNPF 1.18 -1.12 -1.33 

MRE11A 1.13 1.14 1.01 

NBN -1.03 1.07 1.10 

POT1 -1.08 -1.12 -1.04 

RAD50 1.05 -1.17 -1.23 

TERF1 -1.37 1.38 1.90 

TERF2 -1.19 1.19 1.41 

RAP1 1.02 -1.41 -1.43 

TERT -1.14 1.93 2.20 

TINF2 1.24 1.31 1.06 
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Table 22. continued 

 Fold Change 

Gene Symbol Pre-Ex to Post-Ex Pre-Ex to 60-min Post Post-Ex to 60-min Post-Ex 

TNKS 1.02 1.52 1.49 

TNKS2 1.11 1.31 1.18 

XRCC5 1.13 -1.09 -1.24 

XRCC6 -1.02 -1.02 1.00 

All gene expression data is expressed relative to the average of four endogenous controls: 18S, GAPDH, 

HPRT1, and GUSB. The TaqMan® Human Telomere Extension array was only performed once due to limited 

sample. Results are limited to fold change without corresponding statistics 
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 Figure 14. Differential regulation of hTERT mRNA expression: hTERT 

mRNA expression was assessed in unsorted leukocytes (n = 17) (A), 

CD4+CD45RA+ and CD4+CD45RO+ T cells (pool of n = 22) (B), and 

CD8+CD45RA+ T cells (pool of n = 22) (C). Gene expression data is 

expressed relative to endogenous reference gene (GAPDH). * indicates 

P<0.05, ** indicates P<0.01. 
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SIRT6 

SIRT6 mRNA (not featured on the TaqMan® Human Telomere Extension 

array) was assessed as this gene plays a role in telomeric chromatin maintenance 

(Michishita et al., 2008). A Friedman test identified a significant effect of time for 

SIRT6 mRNA expression across time points (χ2(2) = 8.4, P=0.015). Post hoc 

analysis identified significant upregulation between Pre-Ex and 60 min Post-Ex 

time points (Z = -2.38, P=0.017) and Post-Ex and 60 min Post-Ex time points (Z = 

-2.38, P=0.017). SIRT6 was down-regulated Post-Ex in CD4+CD45RA+, 

CD8+CD45RA+ and CD4+CD45RO+ T cells (Figure 15). 

RAP1 

A repeated measures ANOVA revealed a significant effect of time for RAP1 

mRNA expression across time points [F (2, 24) = 15.48, P<0.001]. Post hoc 

pairwise comparisons using the Bonferroni correction revealed significant 

upregulation between Pre-Ex and Post-Ex time points (P=0.001) and down 

regulation between Post-Ex and 60 min Post-Ex time points (P=0.002). RAP1 

mRNA expression demonstrated a stepwise decrease from Pre-Ex to 60 min Post-

Ex in CD4+CD45RA+ and CD8+CD45RA+ T cells (Figure 16). 

RAD50 

A repeated measures ANOVA revealed a significant effect of time for RAD50 

mRNA expression across time points [F (2, 28) = 4.19, P=0.026]. Post hoc pairwise 

comparisons with Bonferroni correction revealed significant downregulation 

between Post-Ex and 60 min Post-Ex time points (P=0.05).  A stepwise decrease 

from Pre-Ex to 60 min Post-Ex was observed in CD4+CD45RA+ and 

CD8+CD45RA+ T cells (Figure 17). 
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Figure 15. Differential regulation of SIRT6 mRNA expression: Unsorted 

leukocytes (n = 17) (A), CD4+CD45RA+ and CD4+CD45RO+ T cells (pool of n 

= 22) (B), and CD8+CD45RA+ and CD8+CD45RO+ T cells (pool of n = 22) (C). 

Gene expression data is expressed relative to endogenous reference gene 

(GAPDH). * indicates P<0.05. 

 



 

193 
 

 A 

 

 B 

 
 C 

 

Figure 16. Differential regulation of RAP1 mRNA expression: Relative 

expression in leukocytes (n = 16) (A), in CD4+CD45RA+ and CD4+CD45RO+ T 

cell pools (n = 22) (B), and in CD8+CD45RA+ and CD8+CD45RO+ T cells pools 

(n = 22) (C). Gene expression data is expressed relative to endogenous 

reference gene (GAPDH). ** indicates P<0.01. 
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Figure 17. Differential regulation of RAD50 mRNA expression: Relative 

expression in leukocytes (n = 16) (A), in CD4+CD45RA+ and CD4+CD45RO+ T 

cell pools (n = 22) (B), and in CD8+CD45RA+ and CD8+CD45RO+ T cells pools 

relative expression (n = 22) (C). Gene expression data is expressed relative to 

endogenous reference gene (GAPDH). † indicates P=0.05  
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4.6 Discussion 

Here I report for the first time that acute exercise leads to the transcriptional 

regulation of several key telomere-associated genes in leukocytes. These findings 

may provide an important mechanistic link between PA and telomere biology. An 

enhanced understanding of telomere homeostasis is critical given the strong 

association between telomere shortening and chronic diseases (Calado & Young, 

2009). Telomere homeostasis underpins the function of several adaptive immune 

cell subsets (Weng, 2008), which in turn play critical roles in age-related diseases 

(Weiskopf et al., 2009), atherosclerosis (Hansson & Hermansson, 2011), and 

metabolic diseases (Osborn & Olefsky, 2012).   

To the author’s knowledge, this was the first study to report the upregulation of 

hTERT mRNA after acute aerobic exercise in leukocytes and T cell subsets.  Other 

research groups have since made similar investigations producing disparate 

results (Cluckey et al., 2017; Laye et al., 2012; Zietzer et al., 2016). Transcription 

of hTERT is highly regulated and is considered the primary step in telomerase 

regulation (Aisner, Wright, & Shay, 2002). The positive correlations between 

hTERT mRNA and telomerase activity confirm this mutual inclusiveness (Cong et 

al., 1999; Li, Wu, Liang, & Wu, 2003; Yi, Tesmer, Savre-Train, Shay, & Wright, 

1999). Despite established telomere length heritability estimates of 0.70 (Broer et 

al., 2013), telomerase activity, and by implication hTERT expression, significantly 

influence telomere shortening trajectory and lifespan potential (Boccardi & 

Paolisso, 2014). Immune cells are unique in their capacity to upregulate 

telomerase expression and thereby reduce telomere attrition during periods of 

clonal expansion. Ectopic expression of hTERT in CD4+ and CD8+ T cells extends 
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their replicative lifespan and enhances their resistance to oxidative stress and 

apoptosis (Dagarag et al., 2004; Luiten et al., 2003; Rufer et al., 2001).  

DNA methylation, histone methylation, histone acetylation, and non-coding 

RNAs are all known epigenetic modifiers of hTERT expression  (Lewis & Tollefsbol, 

2016). Despite a current lack of evidence in lymphocytes,  hTERT is known to 

serves several extra-telomeric functions critical for metabolic and mitochondrial 

homeostasis in human mammary epithelial cells (Stampfer et al., 2001), human 

fibroblasts (Lindvall et al., 2003) , murine cells (Geserick, Tejera, Gonzalez-Suarez, 

Klatt, & Blasco, 2006)  and cardiovascular cells (Ahmed et al., 2008; Haendeler et 

al., 2009; Santos, Meyer, Skorvaga, Annab, & Van Houten, 2004; Santos, Meyer, 

& Van Houten, 2006). hTERT appears to play a role in protecting mitochondrial 

DNA from oxidative damage (Ahmed et al., 2008). In conditions of oxidative stress, 

nuclear export of hTERT and subsequent increase in mitochondrial hTERT 

expression have been observed, suggesting a possible on-demand redeployment 

(Zurek, Altschmied, Kohlgrüber, Ale-Agha, & Haendeler, 2016).  

hTERT may also regulate glucose utilization pathways (Shaheen, 

Grammatopoulos, Müller, Zammit, & Lehnert, 2014). Inhibition of hTERT reduces 

glucose uptake whilst overexpression increases it (Shaheen et al., 2014). hTERT 

has also been shown to interact with glucose transporter proteins (GLUT) 1, 3, and 

12 through insulin insensitive pathways and independent of PI3K and mechanistic 

target of rapamycin (mTOR) (Shaheen et al., 2014).   

The discrepant results in the literature may be due to confounding lifestyle 

factors, variable blood collection timelines, and/or differing exercise intervention 

intensity or duration. Collection timelines are critical given that the half-life of 
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hTERT mRNA is approximately 24 hours (Chai et al., 2011). Exercise intensity is 

an important variable as it closely scales with the post-exercise inflammatory 

response (Nieman et al., 2012); an association driven in part by nuclear factor 

kappa B (NF- κB). A highly conserved NF- κB response element is located with the 

hTERT promotor. Inflammatory stimuli results in rapid recruitment of NF- κB to the 

site and subsequent hTERT transcription (Gizard et al., 2011). Additionally, the 

magnitude of the immune response and subsequent redistribution of immune cell 

subsets closely scales with exercise intensity (Simpson, 2013). The resultant 

immune pool composition in turn determines mean telomere length and telomerase 

activity (Lin et al., 2010).  

The current study is unique in that it used an acute measurement timeline; 

providing a snapshot of transcriptional changes immediately after and 60 min after 

exercise. Whilst pro-telomeric functions can plausibly be inferred by increased 

hTERT mRNA, the present study is not methodologically equipped to detect extra-

telomeric functions. The observed increases in leukocyte hTERT mRNA may be 

due to similar proinflammatory signalling as seen in macrophages (Gizard et al., 

2011). Alternatively, the interaction between glucose transporter proteins and 

hTERT may explain the observed upregulation. Whilst the present study 

investigated the role of potential pro-telomeric miRNAs, it did not investigate the 

potential impact of DNA and histone methylation or histone acetylation; any or all 

of which may have affected hTERT mRNA expression.  

An enhanced understanding of hTERT expression is important. In addition to 

underpinning the effective functioning of the adaptive immune system, hTERT 

regulation plays a key role in the pathogenesis of many cancers. Despite cancer 

cells exhibiting shorter telomeres than normal somatic cells, telomerase and 
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hTERT are upregulated in approximately 90% of all human cancers (Lewis & 

Tollefsbol, 2016). 

To the author’s knowledge, the present study is the first to identify a post-

exercise increase in human leukocyte SIRT6 mRNA expression.  SIRT6 is a 

chromatin binding protein existing predominantly in the nucleus (Haigis & Sinclair, 

2010). During exercise, internal stimuli such as mitochondriogenesis, lactate 

threshold shift, altered substrate utilization, oxygen consumption, and fibre-type 

transition impose significant functional and structural perturbations (Pucci et al., 

2013).  

Sirtuins have been proposed as critical regulators of exercise-induced changes 

and most demonstrate some degree of acute exercise responsiveness (Pucci et 

al., 2013; Suwa & Sakuma, 2013; Villanova et al., 2013). SIRT1 enhances PGC-

1α activity and increased SIRT1 activity is present in rat skeletal muscle following 

endurance training (Koltai et al., 2010). SIRT3 also increases in response to 

endurance training in human skeletal muscle (Lanza et al., 2008). Exhaustive 

exercise has been shown to increase human PBMC expression of SIRT1, and 

decrease SIRT3, and SIRT4 mRNA expression (Marfe et al., 2010).  

SIRT6 plays several key roles in telomere maintenance. Functioning as a NAD+ 

dependent histone H3 lysine 9 (H3K9) deacetylase, SIRT6 binds directly to 

telomeric chromatin and influences its structure and accessibility by deacetylating 

H3K9 and H3K56 (Michishita et al., 2008; Michishita et al., 2009). Experimental 

knockdown of SIRT6 results in telomere abnormalities, telomere sequence loss, 

chromosomal end-to-end-fusions, genomic instability, and premature cellular 

senescence (Baur, Zou, Shay, & Wright, 2001). These pathologies are like those 
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characterised by Werner syndrome (Cheng, Muftuoglu, & Bohr, 2007; Michishita 

et al., 2008; Multani & Chang, 2007). During replicative stress, SIRT6 directly binds 

to shelterin component TRF2 in a DNA independent manner (Rizzo et al., 2017). 

SIRT6 also maintains telomere position effect (TPE) in human cells, dynamically 

regulating the silencing of a telomere-proximal transgene and repressing an 

endogenous telomere-proximal gene (Tennen et al., 2011).  

SIRT6 also plays an important role in DNA repair mechanisms by modulating 

base excision repair (BER) (Mostoslavsky et al., 2006) and stimulating double 

strand break (DSB) repair (Kaidi, Weinert, Choudhary, & Jackson, 2010; McCord 

et al., 2009; Toiber et al., 2013). DSBs are repaired via one of two methods; 

homologous recombination (HR) and non-homologous end joining (NHEJ), both of 

which are stimulated by SIRT6 in response to oxidative stress (Mao et al., 2011). 

SIRT6 is recruited to DNA breaks via the phosphorylation by JNK on Serine 10 

which in turn stimulates SIRT6 mono-ADP ribosylation of PARP1 and subsequent 

PARP1 recruitment to DNA breaks (Van Meter et al., 2016).  

In addition to its telomeric functions, SIRT6 is implicated in a wide array of 

extra-telomeric roles including enhanced mitochondrial respiration (Mauro et al., 

2011), transcriptional regulation of gene expression (Kawahara et al., 2009), 

regulation of cellular reprogramming in aging (Sharma et al., 2013), and positive 

regulation of pro-inflammatory cytokines (Van Gool et al., 2009).  SIRT6 also plays 

key roles in various elements of systemic metabolism including glucose 

metabolism (Mostoslavsky et al., 2006; Xiao et al., 2010; Zhong & Mostoslavsky, 

2010). Overexpression of SIRT6 in high-fat or high-calorie fed mice protects 

against insulin insensitivity, defective glucose tolerance, and glucose-stimulated 

insulin secretion (Anderson et al., 2015; Kanfi et al., 2010). SIRT6 also regulates 
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lipid metabolism via repression of fatty-acid uptake and triglyceride synthesis, 

regulation of LDL cholesterol, and increased β-oxidation of fatty-acids (Elhanati et 

al., 2013; Kanfi et al., 2010; Kim et al., 2010; Tao, Xiong, DePinho, Deng, & Dong, 

2013). 

The increased production of ROS and/or pro-inflammatory cytokines resulting 

from exercise may in part explain the observed increase in SIRT6 mRNA 

expression. The current study did not assess SIRT6-mediated chromatin 

modifications or enhanced DNA repair proteins. Given that many of the DNA repair 

functions of SIRT6 are initiated by oxidative stress, it is plausible that post-exercise 

mRNA upregulation reflects DNA repair functions. 

DNA repair protein RAD50 is encoded by the RAD50 gene and associates with 

meiotic recombination 11 (MRE11) and Nijmegen breakage syndrome protein 

(NBS1) to form the MRN complex.  The MRN complex is a conserved 

multifunctional DNA DSB repair factor involved in the three requisite facets of DSB 

repair; namely damage detection, appropriate cell cycle responses to the damage, 

and capacity to catalyse lesion repair (Lamarche, Orazio, & Weitzman, 2010). The 

MRN complex also positively regulates telomerase-dependent telomere elongation 

via an interaction with TRF1 and ataxia telangiectasia mutated (ATM) DNA (Wu, 

Xiao, & Zhu, 2007). The complex formed by RAD50 and MRE11 is thought to help 

stabilize telomere t-loop formation (Zhong et al., 2007).  

The 60 min Post-Ex decrease in RAD50 mRNA appears counterintuitive. 

Possible hypotheses include transiently compromised stability of the shelterin 

complex and suppression of DNA damage signalling at the telomere by the heavily 

fortified shelterin complex (Fumagalli et al., 2012). Telomeric DNA is preferentially 
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damaged by oxidative stress (von Zglinicki, 2002); however, the conformation of 

the shelterin complex and T-loop may preclude access to sites of DNA damage. 

Chapter 3 of this thesis identified RAD50 mRNA as a potential binding target for 

miR-186. The 60 min Post-Ex decrease in RAD50 mRNA expression paralleled an 

increase in miR-186 expression. Given the repressive action of miRNAs on their 

targets, this may also account for the decrease in RAD50 mRNA abundance. 

RAP1 is a highly conserved telomere-interacting protein forming part of the 

shelterin complex. Equivocal results have identified human RAP1 as both a 

negative regulator (O'Connor et al., 2004) and a positive regulator of telomere 

length (Li et al., 2000). RAP1 forms a multifunctional complex with TRF2, 

subsequently suppressing homology-directed repair of chromosome ends (Kabir, 

Sfeir, & de Lange, 2010) and NHEJ (Bae & Baumann, 2007). The RAP1-TRF2 

complex represses PARP1 and SLX4 localization to telomeres thereby preventing 

telomere resection, telomere loss, and formation of telomere-free chromosome 

ends (Rai et al., 2016). The RAP1-TRF2 complex is therefore considered a key 

telomere regulatory factor. Additional roles for RAP1 include prevention of non-

homologous end joining (Sarthy et al., 2009) and homology-directed repair (Sfeir 

et al., 2010), protection from obesity via regulation of metabolic genes (Martínez et 

al., 2013), and regulation of senescence (Platt et al., 2013).  

The immediate post-exercise increase in RAP1 mRNA may represent an 

immediate damage control or DDR mechanism. There is no immediately intuitive 

reason for the 60-min Post-Ex down regulation of leukocyte RAP1 mRNA as little 

is known about its transcriptional time course. It is plausible the intensity of the 

exercise was sufficient to transiently de-stabilize the shelterin complex. Intense 

aerobic exercise is known to generate increased lymphocyte ROS (Wang & Huang, 
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2005) and telomeric DNA is preferentially damaged by oxidative stress (von 

Zglinicki, 2002). The observational associations between habitual exercise and 

telomere length may be due to chronic anti-oxidant enhancement resulting from 

acute increases in oxidative stress. Alternatively, RAP1 mRNA may exhibit a 

biphasic response with concentrations reflexively increasing again outside the time 

course assessed in this study.  

Mass spectrometry and affinity purification identified an association between 

RAD50 and the RAP1-TRF2 complex (O'Connor et al., 2004). The post-exercise 

expression profiles of RAD50 and RAP1 mRNAs in the present study were both 

upregulated immediately post-exercise before returning to near resting 

concentrations 60 min post-exercise. The expression profiles of RAD50 and RAP1 

mRNAs were also very similar in CD4+CD45RA+ and CD8+CD45RA+ T cells. 

This study is not without limitations. Determining the optimal time frame to 

measure gene expression presents a challenge as little is known about the 

transcriptional timeline or half-life of telomere-associated gene transcripts. 

Additionally, the telomere-associated and extra-telomeric roles of the genes were 

not differentiated between in this study. The low sample yield from sorted T cell 

populations necessitated pooling into cell/time point specific pools for analysis. 

Whilst this provided interesting, subpopulation-wide overviews, it precluded 

additional individual validations and robust statistical analysis. The analysis was 

conducted in leukocytes and T cell subsets; analysis of other leukocyte subsets 

such as B cells may have provided a more complete picture of telomere 

homeostasis within the immune system.  
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4.7 Conclusion 

In conclusion, 30 min of vigorous cardiorespiratory exercise differentially 

regulated the telomere-associated genes hTERT, SIRT6, RAP1, and RAD50. This 

information provides potentially mechanistic insights into the observed relationship 

between telomere homeostasis and PA.  This is in turn may inform optimal exercise 

prescription that elicits pro-telomeric adaptations.  

Understanding the environmental stimuli that elicit pro-telomeric gene 

responses and the epigenetic modifications that can influence them are essential 

steps in understanding the role of telomeres in health and disease. Whilst telomere 

dynamics have traditionally been portrayed as the slow shifting sands of cellular 

physiology, the results of this study indicate that leukocyte telomere homeostasis 

may be acutely responsive to physiological stressors. Such acute plasticity in pro-

telomeric factors likely represents a double-edged sword, with telomeric factors 

similarly adaptive to negative instigators. 

There likely exists an exercise dosage (intensity, duration, frequency or all) that 

represents a point of diminishing returns with regards to cellular stress. Beyond 

such a theoretical point, telomere stability could be compromised potentially 

leading to pathological cellular adaptations. Broadly establishing this point may be 

beneficial for healthy and pathological populations.  

 

 

 

 



 

204 
 

 

 

 

 

 

 

Chapter 5 – Acute Genome-Wide Transcriptional 

Changes in Response to Exercise 
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5.1 Abstract 

Introduction: Telomeres are specialized nucleoprotein structures that protect 

chromosomal ends from degradation. Telomeres progressively shorten during 

cellular division and can induce replicative senescence below a critical length. 

Habitual physical activity is associated with longer leukocyte telomere and 

reductions in chronic oxidative stress and inflammation are widely accepted 

explanations for this association. Chapters 3 and 4 of this thesis demonstrate 

acute, exercise-induced regulation of individual telomere-associated genes and 

miRNAs with potential telomere interaction. Aims: To use next generation RNA 

sequencing to characterize exercise-induced changes in leukocyte transcriptome 

with a specific focus on telomere-associated genes and/or pathways over a 24 hour 

post-exercise period. Methods: Ten healthy males (27.3 ± 7.9 years) undertook 

30 min of treadmill running at 80% of V̇O2peak; the highest value of oxygen of uptake 

achieved in a maximal test. Blood samples were taken before exercise, 

immediately post-exercise, and 24 hour post-exercise. Transcriptomic changes 

were studied using Next Generation RNA sequencing. Results: One hundred and 

eight-two transcripts were differentially expressed immediately post-exercise and 

24 hour post-exercise (FDR<0.01). Several of the regulated transcripts have 

established roles in telomere biology. In silico analysis identified two miRNAs (miR-

23a and miR-27a) that potentially target telomere gene transcripts. Conclusion: 

These results may provide an insight into the acute exercise-induced regulation of 

pro-telomeric components within human leukocytes.  This in turn may contribute to 

the mechanistic understanding of the association between leukocyte telomere 

length and physical activity. 
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5.2 Introduction 

The human transcriptome is the sum of all mRNA, non-coding RNA, and small 

RNA molecules expressed in a specific tissue under a given condition or time 

course. Characterization of the transcriptome is critical in that it represents the 

physiological nexus between environmental stimulus and resultant phenotype. The 

study of transcriptomics aims to elucidate gene transcriptional structure including 

splicing patterns, post-transcriptional modifications, start sites, and 5' and 3' ends 

(Wang, Gerstein, & Snyder, 2009). RNA transcription is subject to several possible 

levels of modulation including alternative polyadenylation (Di Giammartino, 

Nishida, & Manley, 2011; Lutz, 2008) , alternative splicing (Cooper, Wan, & 

Dreyfuss, 2009; Maniatis & Tasic, 2002), alternative transcription initiation 

(Davuluri, Suzuki, Sugano, Plass, & Huang, 2008; Moore & Proudfoot, 2009), RNA 

editing (Gott & Emeson, 2000; Knoop, 2011), post-transcriptional modifications 

(Karijolich & Yu, 2011; Martin & Keller, 2007; Rottman, Bokar, Narayan, 

Shambaugh, & Ludwiczak, 1994), and RNA interference (Huntzinger & Izaurralde, 

2011; Lee et al., 2009; Lytle et al., 2007; Ørom et al., 2008).  

RNA sequencing (RNA-seq) uses Next Generation deep sequencing 

technology to: (i) characterise the structures of all transcribed genes including their 

5' and 3' ends and their splice junctions (Denoeud et al., 2008; Wilhelm et al., 2008; 

Yassour et al., 2009), (ii) quantify transcript expression (Marioni, Mason, Mane, 

Stephens, & Gilad, 2008; Mortazavi, Williams, McCue, Schaeffer, & Wold, 2008), 

and (iii) quantify the extent of alternative splicing (Guttman et al., 2010; Pan, Shai, 

Lee, Frey, & Blencowe, 2008; Sultan et al., 2008; Trapnell et al., 2010; Wang, 

Sandberg, et al., 2008). The digital nature of RNA-Seq affords an almost unlimited 

dynamic range of detection and provides higher resolution of differentially 
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expressed genes and a lower detection limit than its microarray predecessor 

(Zhao, Fung-Leung, Bittner, Ngo, & Liu, 2014). Whilst microarrays can reliably 

detect a 2-fold change in transcript expression, RNA-Seq can accurately detect a 

1.25-fold change (Mantione et al., 2014). Given that longer transcripts allow more 

fragments for sequencing, RNA-seq demonstrates an inherent bias towards longer 

transcripts (Oshlack & Wakefield, 2009; Young, Wakefield, Smyth, & Oshlack, 

2010).  

The progressive molecular characterization of exercise adaptation will 

eventually culminate in a comprehensive exercise responsome (Neufer et al., 

2015). In one of the seminal studies in exercise-induced gene regulation, Connolly 

et al used microarray analysis to characterize expression profiles in PBMCs pre-

exercise (Pre), immediately post-exercise (End-Ex) and 1 hour post-exercise 

(recovery) after a 30 min run at 80% of V̇O2max (Connolly et al., 2004). The authors 

identified 311 differentially regulated genes from Pre- to End-Ex, 552 genes 

between End-Ex to Recovery, and 293 genes from Pre- to Recovery. The regulated 

genes were related to stress response, inflammatory response, growth factors, and 

transcription. The predominantly stress and inflammatory genes upregulated Pre- 

to End-Ex had returned to baseline levels by Recovery whilst anti-inflammatory 

genes were upregulated between End-Ex and Recovery.  A range of other studies 

have since contributed to the understanding of exercise-induced gene expression 

(Büttner et al., 2007; Gjevestad, Holven, & Ulven, 2015; Nakamura et al., 2010; 

Palmer et al., 2006; Radom-Aizik et al., 2009; Radom-Aizik et al., 2008).  

Habitual PA is widely associated with longer mean LTL  (Bendix et al., 2011; 

Cherkas et al., 2006; Cherkas et al., 2008; Denham et al., 2013; Du et al., 2012; 

Garland et al., 2014; Kim et al., 2012; Kingma et al., 2012; Krauss et al., 2011; 
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LaRocca et al., 2010; Loprinzi, 2015; Ludlow et al., 2008; Østhus et al., 2012; 

Puterman et al., 2015; Savela et al., 2012; Silva et al., 2016; Venturelli et al., 2014; 

Werner et al., 2009; Zhu, Wang, et al., 2011). The dominant explanatory framework 

for the PA/telomere length association is the lifestyle-induced amelioration of 

chronic oxidative stress and inflammation. The acute responsiveness of telomere 

biology to physiological stress is important for the potential management of 

conditions characterised by accelerated telomere shortening. Just as important are 

the situations in which chronic oxidative stress or inflammatory burden are less 

amenable to modulation due to an underlying medical cause. Appropriately dosed 

exercise may be effective in positively influencing telomere-associated genes and 

pathways. 

Importantly, chronic oxidative stress and inflammation can be both causal and 

consequential to accelerated telomere shortening. Excessive telomere shortening 

and the resultant inflammatory SASP can perpetuate telomere shortening via ROS 

positive feedback loops (Acosta et al., 2013; Correia-Melo, Hewitt, & Passos, 2014; 

Kuilman & Peeper, 2009; Passos et al., 2010; Passos & von Zglinicki, 2005; Wiley 

et al., 2016).   Exercise-mediated telomere regulation may provide a means of 

interceding the recursive pathophysiological processes. 

A small number of human studies have investigated the effect of acute and 

long-term exercise on telomere-associated genes such as those of the shelterin 

complex (Denham et al., 2016; Uhlemann et al., 2014; Werner et al., 2009) and 

telomerase enzyme (Cluckey et al., 2017; Denham et al., 2016). Most have been 

observational in design or used highly discrepant exercise interventions.  



 

209 
 

At the time of writing, only one other study has utilized RNA-seq technology to 

identify telomere-associated non-coding RNAs (Fujita, Yuno, Okuzaki, Ohki, & 

Fujii, 2015). The authors identified a host of RNAs associated with telomeres 

including: telomerase components (Ter and Rmrp), telomeric RNAs (TERRAs), 

small Cajal body-specific RNAs (scaRNAs) (Scarna6, Scarna10, Scarna13, 

Scarna2), H/ACA small nucleolar RNAs (snoRNAs) (Snora23, Snora74a, 

Snora73b, Snora73a), C/D snoRNAs (Snord17, Snord15a, Snord118) and long 

non-coding RNAs (lncRNA) (Neat1). Whilst providing a valuable insight into 

telomere regulation, the study contained no exercise intervention and therefore the 

results cannot be generalised to an exercise context. 

The influence of lifestyle factors; such as PA, on telomere homeostasis is 

replete with observational findings and correlations. The underpinning molecular 

mechanisms must be identified to establish causation. A growing body of evidence, 

both observational and interventional, demonstrates exercise-induced regulation 

of shelterin and other telomere-associated genes (Cluckey et al., 2017; Denham et 

al., 2016; Laye et al., 2012; Werner et al., 2009). Whilst providing valuable insights, 

many of these studies have investigated small numbers of genes in relative 

isolation. RNA-seq provides a transcriptome-wide insight into exercise-induced 

regulation of transcripts, providing a deeper, more accurate characterization of 

involved pathways and networks.  

Immune cells permeate every tissue in the body and can illicit far reaching 

physiological effects as evidenced in many chronic inflammatory diseases (Neufer 

et al., 2015). The responsiveness of many inflammatory diseases to PA strongly 

implies significant physiological plasticity within immune cells (Walsh et al., 2011). 

The replicative and functional lifespan of immune cells is inextricably linked to 
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telomere length and telomerase expression (Roth et al., 2003; Weng, Levine, June, 

& Hodes, 1995); however, the molecular processes underpinning these two factors 

within the context of exercise adaptation are poorly understood. As a systemic 

physiological stressor influencing innumerable pathways, PA can function as a lens 

through which these networks can be better understood. A key component of 

characterizing the molecular mechanisms of PA is understanding the cell types, 

structures, and networks impacted.    

5.3 Aims 

The aim of this study was to characterize the exercise-induced transcriptome 

in leukocytes to identify the responsiveness of telomere-associated genes and/or 

pathways. This would potentially further the understanding of mechanisms 

underlying the widely reported positive association between PA levels and LTL. 

The specific aims of this study were:  

1. To characterize the magnitude of exercise-induced differential expression 

of telomere-associated genes and non-coding RNAs within leukocytes. 

2. To characterize the exercise-induced transcriptional time course of pro-

telomere genes in leukocytes. 

3. To conduct an enrichment analysis on differentially expressed gene sets to 

identify represented gene ontology terms. 

Hypothesis 

The hypothesis for this study is that 30 min of aerobic exercise will differentially 

regulate several genes and non-coding RNAs which may have interactions with 

telomere biology. 
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5.4 Methods 

Ethics Statement 

All eligible participants read a plain language information statement outlining all 

aspects of the project in lay terminology. Informed consent documents explaining 

the purpose, potential risk and benefits of the project were then signed in the 

presence of a witness. The study, recruitment and consent procedures were 

approved by the Human Research Ethics Committee (HREC) from Federation 

University Australia (HREC approval # A13-082). 

Participants 

Ten healthy, non-smoking males (27.3 ± 7.9 years) were recruited to 

participate in this study.  

Physiological Measurements 

Participant physiological measurements were taken in accordance with the 

methodology laid out in chapter 2. A summary of the participant physiological data 

is contained in table 23. 

Determination of Fitness Standard 

Participants undertook a treadmill-based peak oxygen uptake (V̇O2peak) test 

using a Metalyser® metabolic system (Cortex Biophysic, Leipzig, Germany). The 

specifics of the protocol and associated CPET data are contained in chapter 2.  

Exercise protocol 

Participants then undertook a 30 min bout of continuous treadmill running at 

80% of previously determined V̇O2peak. Blood samples were taken before (Pre-Ex), 

immediately after (Post-Ex), and 24 hours post-exercise (24 h Post-Ex) (figure 18). 

All CPET data and specific blood sampling procedures were outlined in chapter 2. 
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  Table 23. Physiological characteristics of the 10 male participants 

Characteristic Mean SD 

Age (years) 27.3 ± 7.9 

Height (cm) 180.0 ± 0.1 

Body Mass (kg) 74.4 ± 11.2 

BMI (kg/m2) 22.8 ± 2.0 

Waist:hip ratio  0.8 ± 0.03 

V̇O2peak (mL.kg-1.min-1) 56.2 ± 6.4 

SD (standard deviation); BMI (body mass index); V̇O2peak 

(highest oxygen consumption achieved in test) 
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RNA extraction 

Total RNA was extracted using mirVanaTM miRNA Isolation Kit (Life 

TechnologiesTM). Briefly, 1 mL of whole blood was lysed and the resulting pellet 

was processed using the column-based extraction in accordance with 

manufacturer’s instructions. All RNA samples were quantified using a Qubit 

Fluorometer (ThermoFisher Scientific®). 

RNA-seq - Library Preparation 

The RNA library preparation was completed using the TruSeq Stranded Total 

RNA Sample Preparation Guide (Illumina®) in accordance with manufacturer’s 

instructions. This kit was chosen as it has been widely published and it specifically 

depletes ribosomal RNA (rRNA) via biotinylated, target-specific oligos combined 

with Ribo-Zero rRNA removal beads. The RNA-seq analysis was performed by 

NovoGene Bioinformatics Technology® – Hong Kong.  

A graphical overview of the library preparation appears in figure 19. Briefly, 

500ng of sample RNA was inputted and the pool of the desired RNA targets (mRNA 

in this case) was enriched by selection of polyadenylated molecules using 

magnetic beads. The larger RNA molecules were then fragmented into shorter 

strands of approximately 200 to 500 bps. The fragmented RNA strands were then 

primed with random hexamers and reverse transcribed into first strand cDNA using 

random primers and reverse transcriptase. The resulting cDNA strand contained a 

hairpin loop at the 3' end which served as a primer for the second strand synthesis. 

The library of double-stranded cDNA fragments was then phosphorylated and A-

tailed in preparation for the ligation of specific adaptors with imbedded barcode 

indexes. The library of indexed reads was then amplified via PCR in preparation 

for clustering and sequencing.  
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Figure 18. A schematic overview of participant blood sampling and exercise 

intervention. A baseline blood sample was taken 30 min before the onset of exercise. 

Participants then completed a 30 min bout of treadmill running at 80% of previously 

determined V̇O2peak. Additional blood samples were taken Post-Ex and 24 h Post-Ex. 
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Figure 19. Overview of RNA-seq library construction. Enriched mRNA is 

fragmented before first and second strand cDNA synthesis is conducted. 

Adapters and indexes are ligated before PCR amplification is performed.  
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Sequencing 

An analysis of mRNA, miRNA, lncRNA, and snoRNA abundance was 

performed on the indexed library using the HiSeq 150bp paired end reads 

(NovoGene Bioinformatics Technology® - Hong Kong). 

Functional Analysis 

Functional analysis of differentially expressed genes was conducted using the 

Database for Annotation, Visualization and Integrated Discovery (DAVID, version 

6.8). The functional analysis was conducted on three different gene sets; (i) genes 

uniquely differentially expressed between Pre-Ex and Post-Ex time points, (ii) 

genes differentially expressed between Post-Ex and 24 h Post-Ex time points, and 

(iii) genes differentially expressed across both time points. Subsequent pathway 

analysis was performed to identify enriched upstream regulators, disease or 

biological functions, and biological pathways. 

In Silico Binding Predictions 

Reads were aligned and annotated using NCBI's latest human genome 

(GRCh38) with Rsubread version 1.28.1. Differentially expressed miRNAs were 

analysed for potential interaction with pro-telomeric elements using: TargetScan, 

microRNA.org, miRTarBase, RNA22-HAS, PicTar, Diana-Microtot, MirDB, and 

Target Miner. 

Statistical Analysis 

The libraries were then filtered, normalised, and paired-samples ANOVA 

carried out using edgeR (version 3.20.9.). The paired-samples ANOVA accounted 

for individual differences in gene expression at baseline. The ANOVA allowed 

investigation of differential expression across Pre-Ex, Post-Ex, and 24 h Post-Ex 
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time points simultaneously. All reported P values were adjusted to control the false 

discovery rate (FDR) ≤ 0.01 to reduce the likelihood of false positives. All analyses 

were adjusted for age, height, BMI, waist-hip ratio, hip circumference, blood 

pressure, and V̇O2peak. 

Production of Heat Maps 

The gene expression heat map representing the 182 differentially expressed 

genes across all time points (figure 21) was produced using the heatmap.2 function 

in gplots version 3.0.1 (R package). The values used were counts-per-million 

(CPM) gene expression values (adjusted by library size), which were scaled before 

plotting. The second heat map depicting interactions between non-coding RNAs 

and coding genes (figure 22) was produced using the clustered image map (CIM) 

function in mixOmics (R package). This function performed a canonical correlation 

analysis. Counts-per-million were scaled before being plotted. 

Production of Circular Plot 

Circular plots were generated using RCircos (version 1.2.0), as part of the R 

package. 

5.5 Results 

Differential Expression Analysis 

All three time points were included for each participant except for one 24 h 

Post-Ex sample that did not pass quality control. Transcripts with a significant log2 

fold change (logFC) (FDR ≤ 0.01) were reported as differentially expressed. A total 

of 182 genes were differentially expressed across Pre-Ex, Post-Ex, and 24 h Post-

Ex time points (figure 20). A subset of 89 genes were uniquely expressed between 
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Pre-Ex to Post-Ex time points and 276 between Post-Ex to 24 h Post-Ex 

(FDR≤0.01). 

Functional Analysis 

A total of 178 of the 182 differentially expressed genes (FDR≤0.01) were 

matched via pathway analysis in DAVID (version 6.8). Six gene ontology (GO) 

terms were significantly enriched (FDR≤0.01) (table 24). The three most enriched 

terms were; stress response (FDR<0.001), chaperone protein (FDR<0.001), and 

inflammatory response (FDR<0.001).  

Heat Map Analysis 

Figure 21 depicts the 182 differentially regulated genes across all time points. 

Specific genes are represented in columns and individual participant time point 

samples are represented in each row. Red colouration depicts upregulation and 

blue depicts downregulation of the specific gene. The outer dendrograms cluster 

the genes according to similarity of differential expression. The heat map displays 

the clustering of genes/samples and highlights temporal similarities in differential 

expression. Figure 21 also highlights the considerable inter-individual variation in 

differentially expressed genes. An obvious clustering of differentially expressed 

genes around the Post-Ex time point and a significant reversal in expression by 24 

h Post-Ex can be seen. 
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Figure 20. Overlapping gene expression between Pre-Ex to Post-Ex and 

Post-Ex to 24 h Post Ex time points. A subset of 89 genes were uniquely 

expressed between Pre-Ex to Post-Ex time points and 276 between Post-Ex to 

24 h Post-Ex. A total of 182 genes were differentially regulated across both 

Pre-Ex to Post-Ex and Post-Ex to 24 h Post-Ex time points (FDR≤0.01).  
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Table 24. Significantly enriched gene ontology (GO) terms. 

Enriched GO Term Listed Genes FDR 

Stress response HSPH1, HSP90AA1, DUSP1, HSPE1, HSPA1A, HSPA1B, DNAJB1, DNAJB4, 

PPP1R15A, AHSA1, HSPA8 0.000 

Chaperone TCP1, HSP90AA1, FKBP4, HSPA1A, HSPA1B, DNAJC30, DNAJA1, HSPE1, 

DNAJB1, DNAJB4, AHSA1, HSPA8, DNAJB6 0.000 

Inflammatory response PTGER2, IL18RAP, ANXA1, CHST2, CCL4, CD180, FOS, TNFAIP6, KLRG1, 

CXCR4, CCR2, RIPK2, VNN1, NFE2L2, TNFAIP3, THEMIS2, F2R 0.000 

Unfolded protein binding TCP1, HSP90AA1, DNAJA1, HSPE1, HSPA1A, HSPA1B, DNAJB1, DNAJB4, 

DNAJB6, HSPA8 0.000 

Response to unfolded protein HSPH1, HSP90AA1, DNAJA1, HSPE1, DNAJB1, DNAJB4, HSPA8 0.004 

Regulation of cellular response 

to heat HSPH1, HSP90AA1, FKBP4, HSPA1A, HSPA1B, DNAJB1, DNAJB6, HSPA8 0.010 
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Figure 21. A heat map of 182 differentially expressed genes across Pre-Ex, Post-Ex, and 24 h Post-Ex time 

points. Columns represent data from specific genes; each row represents an individual participant time point sample. 

The outermost dendrogram cluster the genes according to similarity in expression changes. The plotted values 

represent scaled counts-per-million (CPM) gene expression values (adjusted by library size).  
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Stress Response Genes 

Gene ontology analysis using DAVID (version 6.8) identified 11 of the 

differentially regulated genes (FDR≤0.01) to be associated with stress response 

pathways (table 25). Most of the differentially regulated genes belonged to the heat 

shock protein (HSP) family. HSP70 family representatives HSPA1A (FDR<0.001), 

HSPA8 (FDR<0.001), and HSPA1B (FDR<0.001) were differentially expressed 

(figure 22). Within the HSP90 family, HSP90AA1 (FDR<0.001), HSPE1 

(FDR<0.001) and HSP90AB1 (FDR=0.027, not significant at ≤0.01 level) were 

differentially expressed (figure 23). Most of the significantly regulated genes 

demonstrated Pre-Ex to Post-Ex upregulation followed by Post-Ex to 24 h Post-Ex 

downregulation. 

Chaperone Genes 

Thirteen of the differentially regulated genes (FDR≤0.01) were associated with 

chaperone pathways (table 26). Many of these genes were duplicated in the stress 

response gene list, showing a similar Pre-Ex to Post-Ex upregulation followed by 

downregulation Post-Ex to 24 h Post-Ex. 

Genes involved with inflammation 

Seventeen genes were associated with inflammatory processes (FDR≤0.01) 

(table 27). Most of the differentially regulated genes demonstrated Pre-Ex to Post-

Ex upregulation and subsequent Post-Ex to 24 h Post-Ex downregulation. 
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 Table 25. Differentially regulated stress response genes. Log2 Fold Change (FC)  

Gene 

Symbol 
Gene Name 

Pre-Ex to 

Post-Ex 

Post-Ex to 

24 h Post-Ex 

Pre-Ex to 24 h 

Post-Ex 
FDR 

HSPH1 Heat shock protein family H (Hsp110) member 1 0.7 -0.7 0.0 0.000 

HSP90AA1 Heat shock protein 90 alpha family class A member 1  0.4 -0.6 -0.2 0.005 

DUSP1 Dual specificity phosphatase 1 0.9 -0.9 0.0 0.000 

HSPE1 Heat shock protein family E (Hsp10) member 1  0.4 -0.6 -0.2 0.004 

HSPA1A Heat shock protein family A (Hsp70) member 1A  0.7 -0.6 0.0 0.000 

HSPA1B Heat shock protein family A (Hsp70) member 1B 0.9 -0.9 0.0 0.000 

DNAJB1 DnaJ heat shock protein family (Hsp40) member B1 0.9 -0.9 0.0 0.000 

DNAJB4 DnaJ heat shock protein family (Hsp40) member B4  0.5 -0.6 0.0 0.005 

PPP1R15A Protein phosphatase 1 regulatory subunit 15A  0.7 -0.6 0.1 0.002 

AHSA1 Activator of HSP90 ATPase activity 1  0.3 -0.4 -0.1 0.001 

HSPA8 Heat shock protein family A (Hsp70) member 8  0.5 -0.4 0.0 0.000 
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Table 26. Differentially regulated chaperone genes. Log2 Fold Change (FC)  

Gene 

Symbol 
Gene Name 

Pre-Ex to 

Post-Ex 

Post-Ex to 

24 h Post-Ex 

Pre-Ex to 24 h 

Post-Ex 
FDR 

TCP1 T-complex 1 0.2 -0.3 0.0 0.006 

HSP90AA1 Heat shock protein 90 alpha family class A member 1  0.4 -0.6 -0.2 0.005 

FKBP4 FK506 binding protein 4  0.4 -0.4 -0.1 0.000 

HSPA1A Heat shock protein family A (Hsp70) member 1A  0.7 -0.6 0.0 0.000 

HSPA1B Heat shock protein family A (Hsp70) member 1B 0.9 -0.9 0.0 0.000 

DNAJC30 DnaJ heat shock protein family (Hsp40) member C30  -0.4 0.5 0.1 0.007 

DNAJA1 DnaJ heat shock protein family (Hsp40) member A1 0.6 -0.7 -0.1 0.000 

HSPE1 Heat shock protein family E (Hsp10) member 1  0.4 -0.6 -0.2 0.004 

DNAJB1 DnaJ heat shock protein family (Hsp40) member B1 0.9 -0.9 0.0 0.000 

DNAJB4 DnaJ heat shock protein family (Hsp40) member B4  0.5 -0.6 0.0 0.005 

AHSA1 Activator of HSP90 ATPase activity 1  0.3 -0.4 -0.1 0.001 

HSPA8 Heat shock protein family A (Hsp70) member 8  0.5 -0.4 0.0 0.000 

DNAJB6 DnaJ heat shock protein family (Hsp40) member B6 0.2 -0.2 0.0 0.003 
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Table 27. Differentially regulated genes involved in inflammation. Log2 Fold Change (FC)  

Gene 

Symbol 
Gene Name 

Pre-Ex to 

Post-Ex 

Post-Ex to 

24 h Post-Ex 

Pre-Ex to 24 h 

Post-Ex 
FDR 

PTGER2 Prostaglandin E receptor 2 0.3 -0.3 -0.1 0.004 

IL18RAP Interleukin 18 receptor accessory protein 0.4 -0.6 -0.2 0.000 

ANXA1 Annexin A1 0.5 -0.6 -0.1 0.000 

CHST2 Carbohydrate sulfotransferase 2 0.4 -0.6 -0.1 0.010 

CCL4 C-C motif chemokine ligand 4  0.7 -0.9 -0.2 0.000 

CD180 CD180 molecule -0.5 0.7 0.2 0.000 

FOS Fos proto-oncogene, AP-1 transcription factor subunit  1.4 -1.3 0.1 0.001 

TNFAIP6 TNF alpha induced protein 6  0.3 -0.5 -0.2 0.007 

KLRG1 Killer cell lectin like receptor G1  0.3 -0.4 -0.1 0.002 
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Table 27. continued Log2 Fold Change (FC)  

Gene 

Symbol 
Gene Name 

Pre-Ex to 

Post-Ex 

Post-Ex to 24 h 

Post-Ex 

Pre-Ex to 24 h 

Post-Ex 
FDR 

CXCR4 C-X-C motif chemokine receptor 4  0.3 -0.3 -0.1 0.007 

CCR2 C-C motif chemokine receptor 2  -0.3 0.4 0.1 0.007 

RIPK2 Receptor interacting serine/threonine kinase 2  0.2 -0.3 -0.1 0.007 

VNN1 Vanin 1  0.2 -0.3 -0.1 0.007 

NFE2L2 Nuclear factor, erythroid 2 like 2  0.2 -0.3 -0.1 0.004 

TNFAIP3 TNF alpha induced protein 3 0.5 -0.6 -0.1 0.000 

THEMIS2 Thymocyte selection associated family member 2  0.2 -0.3 0.0 0.008 

F2R Coagulation factor II thrombin receptor  0.4 -0.6 -0.1 0.008 
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Figure 22. Differential regulation of selected HSP70 representatives in 

unsorted leukocytes: Differential transcript expression occurred in leukocytes 

(n=10) Pre-Ex to Post-Ex and Post-Ex to 24 h Post-Ex for HSPA1A mRNA (A), 

HSPA1B mRNA (B), and HSPA8 mRNA (C). ** indicates FDR<0.01. 
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A. 

 
B. 

 
Figure 23. Differential regulation of selected HSP90 representatives: Transcript 

expression was assessed in leukocytes (n=10). Significant differential expression 

was observed from Pre-Ex to Post-Ex and from Post-Ex to 24 h Post-Ex for 

HSP90AA1 mRNA (A) and HSP90AB1 mRNA (B). * indicates FDR<0.05 and ** 

indicates FDR<0.01. 
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Non-coding RNAs 

A total of 12 non-coding RNAs were detected in the RNA-seq data (table 28). 

Network analysis identified considerable interaction between the 12 non-coding RNAs 

and the differentially expressed protein-coding genes (figure 24). The heat map in 

figure 24 depicts the interactions between the 12 differentially expressed non-coding 

RNAs and differentially expressed coding-genes. The specific coding-genes are 

represented in columns and the non-coding genes are represented in rows. The outer 

dendrograms cluster the genes according to similarity in differential expression. The 

heat map identifies considerable interaction between non-coding RNAs (SNORD14D, 

LOC102723741, LOC643072, RP11-293M10.5, ZFAS1, LOC284454, miR-23a, and 

miR-27a) and a large subset of differentially expressed coding-genes. The above 

mentioned non-coding RNAs share a very similar interaction profile with the coding-

genes (figure 24). 

In silico analysis identified miR-23a and miR-27a as having potential interaction 

with telomere-associated genes (table 29). Expression of miR-23a increased 2.6-fold 

Pre-Ex to Post-Ex and decreased 3-fold Post-Ex to 24 h Post-Ex (FDR<0.001) (figure 

25). Expression of miR-27a increased 2.1-fold Pre-Ex to Post-Ex and decreased 3-

fold Post-Ex to 24 h Post-Ex (FDR=0.004) in 10 healthy males. 

Circular Plot Analysis 

The circular plots in figures 26 and 27 depict the interactions between miR-23a, 

miR-27a, and the differentially regulated coding-genes. The links between the miRNA 

(in red) and the genes represent interactions. All genes are ordered by chromosome 

number noted on the outside of the circular plot. The outermost concentric histogram 
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ring displays the log2 fold change in gene expression between Pre-Ex and Post-Ex 

time points (red bars indicate upregulation, blue indicates downregulation).  

Both miR-23a (figure 26) and miR-27a (figure 27) interact with the same 46 

differentially expressed coding-genes. An obvious clustering of upregulated genes can 

be seen in the Pre-Ex and Post-Ex histogram ring whilst the Post-Ex to 24 h Post-Ex 

histogram ring shows a commensurate downregulation during the 24 hours after 

exercise. 

5.6 Discussion 

In the present study, next generation RNA-seq was used to identify acute 

exercise-responsive leukocyte RNA transcripts with potential telomeric involvement. 

To the author’s knowledge, there are no published studies that have attempted this.  

No significant differential expression of primary telomeric genes (hTERT, hTER or 

shelterin components) was observed within the assessed time course.  Several genes 

associated with stress, inflammatory, and chaperone responses (namely heat shock 

proteins) were differentially regulated. It is now established that heat shock proteins 

(HSPs) play a significant role in telomere biology (Forsythe et al., 2001; Holt et al., 

1999; Hunt et al., 2004; Pandita, 2005; Toogun , DeZwaan, & Freeman, 2008). 

Additionally, 12 non-coding RNAs were differentially expressed, two of which were 

predicted to have putative telomeric involvement. The exercise-induced regulation of 

these transcripts may represent an acute telomeric response to exercise. 
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Table 28. Differentially regulated non-coding RNAs. Log2 Fold Change (FC)  

miR Symbol miR Name Chromosome 
Pre-Ex to 

Post-Ex 

Post-Ex to 

24h Post-Ex 

Pre-Ex to 24h 

Post-Ex 
FDR 

STAG3L3 Stromal antigen 3-like 3 

(pseudogene) 7 -0.3 0.4 0.1 0.008 

LOC100132815 Importin 5 pseudogene 1  19 -0.3 0.3 0.0 0.008 

LOC100506036 Uncharacterised 2 -0.5 0.8 0.3 0.007 

LOC100288123 Uncharacterized 19 -0.3 0.6 0.3 0.006 

SNORD14D Small nucleolar RNA, 

C/D box 14D  11 0.7 -0.6 0.1 0.001 

LOC102723741 Uncharacterised 5 0.4 -0.6 -0.2 0.002 

LOC643072 Uncharacterized 2 0.4 -0.4 0.0 0.005 
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Table 28. continued Log2 Fold Change (FC)  

miR Symbol miR Name Chromosome 
Pre-Ex to 

Post-Ex 

Post-Ex to 

24h Post-Ex 

Pre-Ex to 24h 

Post-Ex 
FDR 

RP11-293M10.5 Long intergenic non-

protein coding RNA 1220  14 0.8 -0.8 0.0 0.007 

ZFAS1 ZNFX1 antisense RNA 1  20 0.3 -0.4 -0.1 0.004 

MIR23A MicroRNA 23a 19 1.4 -1.6 -0.2 0.000 

MIR27A MicroRNA 27a 19 1.1 -1.6 -0.5 0.004 

LOC284454 Uncharacterised 19 1.2 -1.4 -0.2 0.000 
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Figure 24. A heat map representing 12 non-coding RNAs and their interactions with 

differentially expressed coding-genes. Columns represent specific genes and rows represent 

specific non-coding RNAs. Expressed values represent counts-per-million (CPM) which were scaled 

before being plotted. The outermost dendrogram clusters genes according to similarity in expression 

changes. 
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Table 29. In silico binding predictions and target transcripts for miR-23a and miR-27a. 

miRNA Potential gene target Target mRNA symbol Prediction database 

miR-23a Telomeric repeat-binding factor 2 TRF2 TargetScan (version 7.1) 

microRNA.org (2010 release) 

miRTarBase (version 7.0) 

RNA22-HSA (version 2.0) 

 Telomeric repeat binding factor 2, interacting protein TERF2IP TargetScan (version 7.1) 

 Regulator of telomere elongation helicase RTEL1 TargetScan (version 7.1) 

 Protection of telomere POT1 TargetScan (version 7.1) 

    
miR-27a Telomeric repeat-binding factor 2, interacting protein TERF2IP miRTarBase (version 7.0) 

 Protection of telomere POT1 TargetScan (version 7.1) 

 PIN2/TERF1 interacting, telomerase inhibitor 1 PINX1 TargetScan (version 7.1) 
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Figure 25. Differential regulation of miRNAs in unsorted leukocytes: 

Transcript expression was assessed in leukocytes (n=10). Significant 

differential expression was observed from Pre-Ex to Post-Ex and from Post-Ex 

to 24 h Post-Ex for miR-23a (A) and miR-27a (B). * indicates FDR<0.05, and 

*** indicates FDR<0.01. 
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Figure 26. A circular plot representing the interactions between miR-23a 

and 46 differentially expressed protein-coding genes. Links between miR-

23a and genes represent interactions. The outermost concentric histogram ring 

displays the log2 fold change in gene expression between Pre-Ex and Post-Ex 

time points (red bars indicate upregulation, blue indicates downregulation). The 

innermost histogram ring displays the log2 fold change in gene expression 

between Post-Ex and 24 h Post-Ex time points.  
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Figure 27. A circular plot representing the interactions between miR-27a 

and 46 differentially expressed protein-coding genes. Links between miR-

27a and genes represent interactions. The outermost concentric histogram ring 

displays the log2 fold change in gene expression between Pre-Ex and Post-Ex 

time points (red bars indicate upregulation, blue indicates downregulation). The 

innermost histogram ring displays the log2 fold change in gene expression 

between Post-Ex and 24 h Post-Ex time points. 
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Most of the significantly regulated transcripts were upregulated between Pre-

Ex and Post-Ex and downregulated to resting levels between Post-Ex and 24 h 

Post-Ex. These findings are broadly concurrent with earlier microarray studies that 

demonstrated acute upregulation of stress and inflammatory genes and a return to 

baseline within 1 hour of cessation (Büttner et al., 2007; Connolly et al., 2004). 

Acute exercise typically initiates a sequela of inflammatory events specific to the 

mode, duration and intensity of the exercise bout.  High intensity exercise 

transiently modulates the production of metabolic enzymes, interleukins, HSPs and 

metabolic enzymes (Buchheit & Laursen, 2013; Gjevestad et al., 2015; Rutkowski, 

Pancewicz, Skrzydlewska, & Hermanowska-Szpakowicz, 2005; Szołtysek, Janus, 

& Widłak, 2011). 

  
The stress response is an adaptive protective mechanism that strives to 

achieve allostasis in response to environmental stimuli such as oxidative damage, 

hypoxia, and heat shock (Kültz, 2005). A principal component of the stress 

response is the modulation of HSPs. Increases in intramuscular temperature 

activate expression of HSPs (Fehrenbach & Niess, 1999; Fehrenbach & Northoff, 

2001). The ubiquitous family of HSPs facilitate polypeptide chain folding, protein 

transport, assembly of multi-protein complexes, and the prevention of protein 

aggregation (Hartl, 1996; Saibil, 2013). HSPs are also critical for cell structure 

maintenance; exerting influence over the formation and function of cytoskeleton 

elements (Liang & MacRae, 1997). The HSP family also plays diverse and critical 

roles within the immune system including pro-inflammatory cytokine release, 

protection from DNA damage, direct activation of NK cells, and stimulation of both 

adaptive and innate immune responses (Simon et al., 2006).  



 

239 
 

Significant exercise-induced expression of HSPA1A, HSPA1B, and HSPA8 

mRNA was observed in the present study. Exercise-induced elevation of HSP70 

family is known to be intensity dependent (Milne & Noble, 2002). The HSPA1A 

isoform is highly responsive to cellular stress and can be triggered by a host of 

exercise-induced cellular stressors including oxidative stress/free radical 

formation, hypoxia/ischemia, increased calcium concentration, temperature 

alterations, glucose depletion, and altered pH (Kregel, 2002).  A single bout of 

exercise has been shown to acutely upregulate HSP70 mRNA in skeletal muscle 

(Febbraio & Koukoulas, 2000; Khassaf et al., 2001; Puntschart, Vogt, Widmer, 

Hoppeler, & Billeter, 1996). 

The HSP70 family has been implicated in genomic instability and telomere 

biology. Cells with inactivated Hsp70 protein demonstrate spontaneous 

chromosomal aberrations and telomere instability in mouse bone marrow cells and 

embryonic cells (Hunt et al., 2004). Additionally, Hsp70 interacts with the catalytic 

unit of telomerase (TERT) (Forsythe et al., 2001). Inactivation of HspA1A affects 

telomerase activity and telomere length in a near identical fashion to TERT 

inactivation (Hunt et al., 2004). Whilst upregulation of TERT mRNA was not 

detected in this study, it was detected via qPCR immediately post- and 60 min post-

exercise in chapter 4 of this thesis. The discrepant findings may be due to the 

different time courses and/or measurement techniques used. Additionally, the 

smaller sample size may have underpowered the present study.  

It is biologically plausible that the acute exercise-responsiveness of HSPA1A, 

HSPA8, and HSPA1B mRNA may represent a transient pro-telomeric response. 

The increased expression may represent increased demand for Hsp70 protein to 

maintain genomic stability in an environment of acute metabolic and oxidative 
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stress. Given the sensitivity of telomeric DNA to oxidative damage, the observed 

increase in HSP mRNA may represent an attempt to fortify telomeric DNA against 

increases in ROS. The HSP response is sensitive to ROS (Dimauro, Mercatelli, & 

Caporossi, 2016) and upregulation of Hsp70 is known to form part of the adaptive 

response to oxidative stress (Milne & Noble, 2002; Puntschart et al., 1996; Salo, 

Donovan, & Davies, 1991; Skidmore, Gutierrez, V. Guerriero, & Kregel, 1995; 

Suzuki et al., 2006). The ROS-induced HSP response has been observed in 

leukocytes after half marathon and marathon running (Fehrenbach et al., 2000), 

treadmill running (Niess et al., 2002; Simar, Malatesta, Badiou, Dupuy, & Caillaud, 

2007; Simar et al., 2004), and cycle ergometry (Brunelli et al., 2012; Lengacher et 

al., 2014). Whilst oxidative stress was not measured in the present study, it is 

plausible that the Post-Ex increase in HSPs may have been due to exercise-

induced ROS.  

The HSP increase may also reflect HSP70’s putative role in telomerase 

stabilization. Hsp70 and telomerase are both expressed constitutively in 

autonomous cells yet only transiently in non-autonomous cells (Barker et al., 2002). 

Whilst Hsp70 is not rate-limiting for telomerase activity, it appears to be required 

for stability of the telomerase complex (Pandita, 2005). Exercise-induced 

mobilization of lymphocytes with shorter telomeres (Bruunsgaard et al., 1999) and 

senescent phenotypes (Simpson et al., 2010; Simpson et al., 2007) into the 

periphery may be accompanied by a concomitant increase in genome stabilizing 

HSP70 transcripts and proteins. 

A similar expression profile was observed in heat shock protein 90 (HSP90) 

family representatives HSP90AA1 and HSP90AB1 (FDR = 0.027 – HSP90AB1 not 

significant at FDR ≤ 0.01). Hsp90 is a highly conserved eukaryotic protein that 
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mediates a host of cellular processes including hormone signalling, cell cycle 

control, cell survival, and cellular stress response (Borkovich, Farrelly, Finkelstein, 

Taulien, & Lindquist, 1989; Richter, Haslbeck, & Buchner, 2010; Wandinger, 

Richter, & Buchner, 2008; Young, Moarefi, & Hartl, 2001; Zhao et al., 2005). 

Molecular chaperones Hsp70, Hsp90, and p23 facilitate protein-DNA dynamics 

within processes such as RNA transcription, DNA repair, and DNA replication 

(Hager, McNally, & Misteli, 2009; Konieczny & Zylicz, 1999; Richter, Hendershot, 

& Freeman, 2007).  

The Hsp90/telomere connection was initially established after the observation 

that chaperones Hsp90, Hsp40, Hsp-organising protein (HOP), and p23 directly 

associated with the holoenzyme telomerase (Forsythe et al., 2001; Holt et al., 

1999). The putative connection was reinforced by the observation that 

pharmacological inhibition of Hsp90 shortened telomeres by approximately 2.2kb 

over a 2-month period (Compton, Elmore, Haydu, Jackson-Cook, & Holt, 2006). 

Additionally, impairment of Hsp90 was shown to decrease telomerase activity 

(Toogun  et al., 2008).  

It was initially thought that the Hsp90 machinery aided assemblage of the 

reverse transcriptase telomerase subunits and RNA template (Forsythe et al., 

2001; Holt et al., 1999). More recent findings suggest that Hsp90 facilitates DNA 

binding via telomerase (Keppler, Grady, & Jarstfer, 2006; Toogun  et al., 2008). 

HSP90 is required for in vitro and in vivo telomerase assembly (Holt et al., 1999); 

deactivation of Hsp90 results in a decrease in hTERT expression (Kim & Jobin, 

2005). Paradoxically, both overexpression and impairment of Hsp90 can elicit 

decreases in telomeric DNA length (Grandin, Damon, & Charbonneau, 2001; 

Toogun  et al., 2008).  HSP90 has also been shown to associate with the hTERT 
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promoter complex, enhancing promoter activity and hTERT expression in 

telomerase positive oral cancer cell lines (Kim, Kim, et al., 2008). 

It has been proposed that the HSP90 network modulates the DNA-bound state 

of telomeric proteins thereby facilitating a shift between functional states (DeZwaan 

& Freeman, 2010). Telomere homeostasis is a dynamic process requiring 

transition between different conformations, appropriate shelterin assemblage, and 

telomerase repositioning during DNA extension (DeZwaan & Freeman, 2008). 

Within yeast, Hsp82 (the alias for yeast Hsp90) displaces bound proteins, primarily 

cell division cycle 13 (Cdc13), at the 3ʹ DNA end effectively establishing an 

extendable state. This in turn allows telomerase access to telomeric DNA and 

subsequent extension (DeZwaan, Toogun, Echtenkamp, & Freeman, 2009). 

Hsp82 also appears to mitigate competitive binding at the single-stranded G-rich 

DNA binding proteins (DeZwaan & Freeman, 2008; DeZwaan et al., 2009). Such 

competitive binding could prevent DNA extension by telomerase. 

The Pre-Ex to Post-Ex increase in HSP90AA1 and HSP90AB1 mRNAs in the 

present study may reflect an acute change in telomeric conformational state. This 

change may allow telomerase, DNA repair enzymes, pro-telomeric proteins or 

associated helicases access to the telomeric DNA. Alternatively, the increased 

transcript expression of HSP90AA1 and HSP90AB1 may be due to an exercise-

induced shift in the relative distribution of immune cell subsets. As previously 

stated, exercise acutely redistributes leukocytes with shortened telomeres 

(Bruunsgaard et al., 1999) and senescent phenotypes (Simpson et al., 2010; 

Simpson et al., 2007) into the periphery.  Cells containing shorter telomeres may 

express higher levels of HSP90AA1 and HSP90AB1 mRNAs given that telomerase 
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preferentially lengthens the shortest telomeres each cell cycle (Teixeira et al., 

2004).   

The understanding of epigenetic modifications in telomere regulation is in its 

infancy. At present there are only a small number of putative associations between 

miRNAs and telomere biology (Bonifacio & Jarstfer, 2010; Chakrabarti et al., 2013; 

Chen et al., 2014; Hrdličková et al., 2014; Kasiappan et al., 2012; Lassmann et al., 

2015; Mitomo et al., 2008; Slattery et al., 2016; Wang, Sun, et al., 2012; Watanabe 

et al., 2011). There is however, a growing body of evidence indicating a role for 

miR-23a in telomere regulation via an interaction with the 3' untranslated region (3' 

UTR) of telomeric repeat binding factor 2 (TRF2) (Luo et al., 2015). This interaction 

reduces telomere-bound Trf2 and increases telomere dysfunction-induced foci 

(Luo et al., 2015). Trf2 is a double-stranded DNA binding protein that forms part of 

the shelterin complex and is essential for telomere end protection and T-loop 

formation (Griffith, Bianchi, & de Lange, 1998; Takai et al., 2003; van Steensel, 

Smogorzewska, & de Lange, 1998). Trf2 also prevents telomeric DNA being falsely 

recognized as double-strand breaks via repression of ataxia-telangiectasia-

mutated (ATM) signalling (Denchi & de Lange, 2007; Karlseder, Broccoli, Dai, 

Hardy, & de Lange, 1999).  

In vitro findings demonstrate that miR-23a increases oxidative stress-induced 

apoptosis and subsequently induces cell senescence in retinal pigment epithelium 

cells (Li et al., 2016). Inhibition of TRF2 elicits telomere dysfunction and 

subsequently promotes cellular senescence in human fibroblast cells (Takai, 

Hooper, Blackwood, Gandhi, & de Lange, 2010). More recent findings indicate that 

miR-23a also strongly predicts cardiovascular events, particularly coronary 
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atherosclerosis, via TRF2 downregulation (Satoh et al., 2017). These results 

strongly imply a role for miR-23a in telomere homeostasis and cellular senescence. 

Exercise-induced upregulation of miR-23a has been observed in mouse 

skeletal muscle after resistance exercise (Wang et al., 2017) and down regulation 

in human skeletal muscle after both resistance exercise (D'Souza et al., 2017; 

Ringholm et al., 2011) and aerobic exercise (Russell et al., 2013).  At present, no 

published studies have reported significant regulation of miR-23a in human 

leukocytes in response to aerobic exercise.  

In the present study, miR-23a increased 2.6-fold Post-Ex before decreasing 3-

fold over the following 24 hours. Whilst the present study was not designed to 

characterize the physiological rationale for differential miR-23a expression, a 

plausible (yet speculative) model presents itself. Trf1 and Trf2 protein are both 

considered negative regulators of telomere length (Smogorzewska et al., 2000). 

The interaction involves Trf2 in the formation of telomeric T-loops (Stansel, de 

Lange, & Griffith, 2001), the lariat-like structures formed when the 3ʹ single-

stranded telomeric overhand folds back upon itself invading the duplex component 

of the telomeric tract. The t loop segregates the telomeric end, protecting it from 

DNA repair enzymes and cellular checkpoint proteins (Griffith et al., 1999). It is 

widely believed that telomerase requires an accessible 3ʹ overhang to bind to and 

extend telomeric DNA (Lee & Blackburn, 1993; Lingner & Cech, 1996; Wang & 

Blackburn, 1997), and is therefore unable to act upon the telomere in its closed 

conformation. Increased expression of miR-23a may be a critical trigger in 

changing the conformational state of the telomere. The down regulation of Trf2 

may allow access to DNA repair mechanisms in the case of oxidative damage or 

telomerase-mediated extension. No differential regulation of TRF2 mRNA was 
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detected in the present study. It is worth noting the transcriptional time course of 

TRF2 mRNA may differ from that of miR-23a and therefore may not have been 

detected within the time points assessed.  

The increased Post-Ex expression of miR-23a may have also been due to the 

exercise-induced modulation of immune cell subsets. It is conceivable that miR-

23a is more highly expressed in leukocytes with shorter telomeres. Therefore, the 

exercise-induced migration of leukocytes with shortened telomeres and senescent 

phenotypes may explain the increase.  

In silico predictions indicate a potential interaction between miR-27a and 

PIN2/TERF1 interacting telomerase Inhibitor (PINX1), a significant telomerase 

inhibitor (Zhou & Lu, 2001). PinX1 has the unique ability to directly interact with 

Tert and inhibit telomerase catalytic activity (Soohoo et al., 2011). Overexpression 

of PinX1 in human cancer cells inhibits tumorigenicity, elicits crisis and shortens 

telomeres (Soohoo et al., 2011). Despite a trend toward a Post-Ex increase in miR-

27a, there was no significant differential regulation of PINX1 mRNA in the present 

study. This may simply be due to miR-27a being functionally irrelevant to PINX1 

mRNA in this context. MiR-27a has numerous putative mRNA targets involved in 

disparate pathways that may not have been activated by the exercise stimulus. 

Additionally, the expression time course of PINX1 mRNA may not have been 

detected in the present study. 

Limitations 

The present study has limitations. The relatively small sample (n=10), reflects 

the current cost of analysis. Whilst the cost has decreased over the last few years, 

it was still outside the project budget to assess a larger sample.  
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Studies using time course analysis face the challenge of establishing the 

optimal time course. Without a priori knowledge of the expression time course and 

transcript half-lives, it is possible that the greatest magnitude of change was missed 

in the present study. Whilst the time course used was effective at capturing early 

gene expression, it is possible that intermediate- and late-responding gene 

expression was missed. Further research utilizing multiple time points (e.g. 1 hour, 

2 hours, 4 hours, 6 hours and 8 hour) will assist in determining expression kinetics. 

As discussed in earlier chapters, the leukocytes collected for analysis are a 

heterogeneous mixture of cell sub-sets (e.g. lymphocytes, natural killer cells and 

granulocytes). The relative contributions of each subset to the transcriptional 

signature cannot be determined in the present study. Additionally, exercise-

induced changes in immune cell subsets have not been accounted for in the 

present study. 

Without extensive gain/loss of function studies with cultured cell lines, 

differentiating between potential pro-telomeric and extra-telomeric functions of the 

key transcripts is not possible. Genes such as the HSP family serve several cellular 

functions ranging from the acute stress response through to genomic stability. 

Another limitation to the study is that RNA-seq data was not validated. 

Validation of RNA-seq data is still widely performed, largely at the behest of journal 

reviewers. In many cases it is a largely perfunctory practice, stemming more from 

tradition than clinical necessity. The typical means of validation is qPCR owing to 

its relative convenience, sensitivity and dynamic range (SEQC/MAQC-III 

Consortium, 2014). Quantitative PCR is not without its limitations; in addition to GC 

bias (Aird et al., 2011), the specifics of protocol calibration and primer selection 
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present a challenge that can significantly influence the outcome (VanGuilder, 

Vrana, & Freeman, 2008). Additionally, the different PCR based assays can 

produce significantly different measurements, prompting the Sequencing Quality 

Control (SEQC) project to reject qPCR’s designation as the gold standard for 

validation (SEQC/MAQC-III Consortium, 2014). The customary practice of 

conducting qPCR validations on fresh aliquots from the same samples used in the 

RNA-seq merely validates the technology, not the differentially expressed 

transcripts (Allison, Cui, Page, & Sabripour, 2006; Fang & Cui, 2011). To validate 

RNA-seq experimental conclusions, different replicates from the same population 

should be validated (Allison et al., 2006). 

There are many publications with qPCR validation of microarray data with 

established correlations and several good reviews outlining the precise technical 

requirement of effective validation (Allison et al., 2006; Rockett & Hellmann, 2004). 

Published validation studies show high consistency between RNA-seq and qPCR 

data (Core, Waterfall, & Lis, 2008; Feng et al., 2010; Nagalakshmi et al., 2008). 

Measures of relative expression have also been shown to correlate well across 

RNA-seq, qPCR, and microarrays (SEQC/MAQC-III Consortium, 2014). 

The over-arching aim of the study was to characterize the overall pattern of 

differentially expressed genes and conduct functional and network analysis, not to 

conduct functional assays on specific genes. The intention was to capture 

exercise-responsive pathways and then use existing literature to support a 

potential role in telomere biology.   
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5.7 Conclusion 

In conclusion, 30 min of intense aerobic exercise was sufficient to differentially 

regulate 182 transcripts over a 24 hour post-exercise period. The most heavily 

regulated pathways were those associated with inflammation, stress response, and 

chaperone proteins. In addition to their canonical exercise adaptive roles, several 

of the differentially expressed genes, particularly the HSP70 and HSP90 families, 

have established pro-telomeric roles. Twelve non-coding RNAs were differentially 

expressed, one of which (miR-23a) has a bone fide role in telomere biology. 

Several of the differentially expressed genes appear to influence telomere biology 

either by interacting with telomerase or by modulating telomere conformation, 

thereby influencing telomerase access to telomeric DNA. 

RNA-seq can provide a whole transcriptome view of the exercise response 

may reveal disparate and/or contiguous pathways involved in telomere biology in 

a way that isolated, or reductionist approaches may not. This in turn may inform 

the current understanding of the observed positive association between habitual 

PA and LTL. 
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Chapter 6 - Conclusions and Summary 
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The aim of this thesis was to characterize the acute effects of aerobic exercise 

on immune cell redistribution and telomere biology. The studies here within utilized 

methodologies from the fields of exercise physiology, immunology, and molecular 

biology to assess acutely regulated indices involved with telomere biology.  

 Telomere biology sits astride the paired paradoxes of accelerated aging and 

longevity, health and cancer. Accordingly, an enhanced understanding of telomere 

homeostasis holds significant clinical utility in fields as diverse as gerontology, 

immunology, oncology, and exercise physiology. Telomere biology is central to 

cellular aging, simultaneously chronicling replicative history and dictating 

remaining replicative capacity. Telomere biology is at the core of most molecular 

aging pathways including cellular senescence, stem cell exhaustion, genomic 

instability, mitochondrial dysfunction, and epigenetic alterations. A body of 

evidence indicates a positive relationship between habitual PA and LTL; however, 

much of the current evidence is correlational and observational in nature.  

By way of a broad summary (figure 28), 30 min of aerobic exercise regulated 

T cell subsets and several miRNAs with potential (and established) interaction with 

telomere-associated gene transcripts. Exercise also directly upregulated the key 

telomerase component hTERT and the telomere-associated SIRT6. Several 

components of the HSP family with established interactions with telomere biology 

(hTERT regulation, telomere stability, and telomerase assemblage) were 

differentially regulated by exercise. The above findings collectively suggest that 

despite telomere biology typically being viewed as a chronic biomarker, it is acutely 

amenable to physiological stresses. 
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Figure 28. A diagrammatic summary of the findings from this thesis and their potential 

interaction with telomere biology: ↑ ↓ indicates upregulation at Post-Ex, downregulation at 24 h 

Post-Ex; ↑ indicates upregulation at 60 min at Post-Ex. Solid arrows and orange boxes indicate 

elements tested in this thesis; dashed arrows and green boxes indicate speculative interactions or 

established relationships not directly tested in this thesis.  
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  In the first study (chapter two), the acute immune response to exercise was 

characterized using flow cytometry. Specifically, the acute T cell response to a 30 

min bout of treadmill running at 80% of V̇O2max was assessed in a cohort of males. 

Immune cell subsets were sorted for downstream gene and microRNA analysis. 

The immune response to exercise closely reflects the exercise intensity, duration, 

and type. Accordingly, the system can either positively or negatively adapt to the 

stimulus.   

The novel finding of this study was that 30 min of treadmill running at a constant 

80% of V̇O2peak was sufficient to elicit novel changes in the relative proportions of 

specific T cell subsets. In the present study, the typical immediate post-exercise 

increase in T cell numbers was inverted; decreasing in number before reverting to 

resting levels within 1 hour of exercise cessation.  Potential reasons for the novel 

findings include the high intensity of the exercise intervention (80% of V̇O2peak), 

catecholaminergic signalling, cortisol secretion, participant fitness standard, tissue 

and organ redistribution of lymphocytes, and lymphocyte apoptosis. 

Much of the existing literature on the immune response to aerobic exercise 

utilizes highly variable exercise interventions. Several studies measure 

participants’ responses after competitive events such as marathons whilst others 

use estimated V̇O2max or a treadmill speed equivalent to a given intensity. Such 

interventions allow considerable variability in the exercise intensity and likely 

influence the magnitude of the immune response. In the present study, V̇O2peak was 

assessed and expired gas analysis was used to maintain a continuous intensity of 

80% of established V̇O2peak.  
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The findings of this study have implications for telomere biology as each of the 

differentially regulated subsets are known to exhibit unique telomere lengths, 

telomerase expression, and cytokine profile. There is also evidence that many 

genes are expressed in a subset-specific manner. The timing of participant blood 

sampling will influence the representation of constituent cells and will likely 

influence subsequent conclusions regarding telomere-associated indices. Given 

the diverse functions and physiologies of immune cell subsets, the findings of this 

study underscore the importance of accounting for the relative changes in subsets 

when analysing composite transcriptional signatures. An enhanced understanding 

of subset specific responses to exercise may inform clinical exercise guidelines for 

specific populations such as those with immune-suppression. 

Future research will need to characterize the physiological consequences of 

transient immune cell redistribution. In the field of telomere biology, the effect of 

immune cell redistribution on telomere-associated factors such as gene 

expression, epigenetic regulation, and telomerase activity will need to be explored 

further.  

Study two (chapter three) investigated exercise-induced miRNAs within 

leukocytes and subsequently investigated those with potential involvement in 

telomere biology. A genome-wide microarray, in silico prediction software, and 

subsequent qPCR validations were used to characterize the exercise-induced 

leukocyte miRNA expression profile. MiRNA expression is sensitive to exercise 

and is viewed as a critical mediator of exercise adaptations, showing expression 

specificity for tissue type, exercise modality, and intensity.  

A total of 56 miRNAs were significantly differentially regulated between Pre-Ex 

and Post-Ex time points. Four miRNA/mRNA interactions with potential 
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involvement in telomere biology were further investigated with qPCR. MiR-186 and 

miR-96 were identified as having potential interaction with the shelterin component 

RAP1. RAP1 plays a critical role in telomere biology and can function as both a 

negative and positive regulator of telomere length via an interaction with TRF2. 

Additionally, the findings highlight discrepant miRNA expression profiles between 

unsorted leukocytes and sorted T cell subsets, suggesting the composite signature 

is in part driven by other immune cell subsets. 

The roles of histone modifications and sub-telomeric DNA methylation are 

comparatively well established in telomere biology; however, the direct influence 

of miRNAs is an area of active and ongoing investigation. Whilst several miRNAs 

have been associated with telomeres in specific cancer cell lines, little is known 

about exercise-induced expression in healthy immune cell subsets. The findings of 

this study provide novel evidence of exercise-induced miRNA expression with 

potential involvement in telomere biology. 

In addition to adding to the knowledge base on exercise-mediated miRNA 

expression, the results of this study add to the developing understanding of 

epigenetic regulation of telomere biology. This in turn may provide a mechanistic 

insight into the observed association between PA and LTL. The results from this 

study suggest that exercise-induced miRNA may play an acute role in telomere 

biology.  The widely held consensus is that the relationship between PA and LTL 

is mediated by chronic adaptations; however, the results from this study suggest 

acute regulatory factors.  

Telomere biology and miRNA regulation jointly converge upon multiple 

physiological aging processes including DNA damage, stem cell exhaustion, 
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cellular senescence, and telomere shortening.  An enhanced understanding of 

exercise-induced miRNA expression and the subsequent phenotypic effects may 

inform exercise guidelines for specific populations. A clearer understanding of 

exercise-induced miRNAs, specifically those associated with telomere biology, 

may provide viable biomarkers via which to assess exercise adaptive responses. 

This in turn may allow more targeted use of exercise as a first line treatment in 

conditions characterized by aberrant miRNA and/or telomere regulation. 

Future research needs to establish the origin, target tissues, associated 

networks, and phenotypic implications of exercise-induced miRNAs. Gain- and 

loss-of-function experiments are needed to characterize the direct phenotypic 

effects of putative pro-telomere miRNA expression and repression on specific 

tissues. The expression time course, transcriptional half-life, and degradation rate 

of exercise-induced miRNAs also need to be more clearly characterized to better 

inform optimal stimulus imposition. The precise direction of the miRNA/mRNA 

relationship must also be established. Whilst conventional wisdom posits that 

mRNA expression is influenced by miRNA repression, recent research has shown 

that modulation of a target transcript can itself determine miRNA expression levels.  

Having identified the transcriptional plasticity of selected miRNAs, the aims of 

study three (chapter four) were to directly validate the predicted miRNA-mRNA 

targets and assess the exercise-induced regulation of other pro-telomeric gene 

transcripts. An initial telomere extension mRNA array identified exercise-induced 

changes in several pro-telomeric genes including predicted miRNA targets: 

hTERT, SIRT6, RAP1, and RAD50.  Subsequent validations revealed significantly 

decreased RAP1 mRNA paralleled by concomitant increases in potential binding 

miRNAs (miR-186 and miR-96).  
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Another novel finding of this study was the exercise-induced upregulation of 

hTERT and SIRT6 mRNA expression in leukocytes. The post-exercise increase in 

hTERT mRNA expression is of considerable significance to the field of telomere 

biology. In addition to being the rate limiting component of telomerase, hTERT 

plays several extra-telomeric functions. Telomere dynamics are often considered 

the slow shifting sands of cellular physiology, chronicling replication and DNA 

damage over extended periods of time. The finding that several key pro-telomere 

genes are acutely transcribed significantly informs the current understanding of 

telomere dynamics. The difference between mere amelioration of negative 

telomere factors and the actual enhancement of positive telomere factors is subtle 

yet important.  The ability to accurately prescribe exercise to enhance telomere 

homeostasis in clinical populations characterized by accelerated telomere 

shortening may have significant clinical utility.   

The results of this study suggest that several pro-telomere genes exhibit IEG 

behaviour. IEGs have important and established roles within the immune system, 

most of which centres around activation of immune cells such as T and B cells. 

Exercise-based studies may help to characterize acutely labile signature gene sets 

or pathways associated with telomere biology. This in turn may assist the 

understanding of potential telomeric therapeutic targeting.  

Future research will need to determine not only the expression time course of 

exercise-induced telomere genes but the mRNA stability and subsequent 

translation into functional proteins. Characterization of associated signalling 

pathways and their respective time courses i.e. transient or sustained, should also 

be the focus of future telomere research. 
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The aim of study four (chapter five) was to characterize the exercise-induced 

transcriptome in leukocytes and to identify any telomere-associated genes and/or 

associated pathways. This study assessed expression changes before, 

immediately after, and 24 hours after exercise. Next generation RNA-seq was used 

to capture both protein-coding and non-coding RNAs. Subsequent pathway 

enrichment analysis was conducted on differentially expressed gene sets. 

Thirty minutes of aerobic exercise at 80% of V̇O2peak differentially regulated 182 

transcripts in leukocytes over a 24 hour post-exercise time course. Inflammatory, 

stress, and chaperone protein pathways were significantly regulated immediately 

post-exercise highlighting the multi-faceted IEG response to exercise. The results 

of this study identified significant regulation of the HSP70 and HSP90 families, both 

of which have established exercise adaptive and pro-telomere roles. Several of the 

differentially regulated genes influence telomere biology either via modulation of 

telomere conformation or by directly interacting with telomerase. The study also 

identified 12 non-coding RNAs including miR-23a and miR-27a, both of which have 

established roles in telomere biology. The results of this study confirm and extend 

the preliminary findings from chapter four that some telomere-associated genes 

and miRNAs demonstrate IEG transcriptional behaviour.   

The entire transcriptome view provided by next generation RNA-seq may 

reveal key exercise-induced telomere pathways. The identification of contiguous 

and/or disparate telomere pathways will not only enhance the understanding of the 

relationship between PA and telomere length, it will extend the potential therapeutic 

capacity of telomere biology. Future research efforts are likely to centre around 

complex bioinformatics. The data output provided by RNA-seq is substantial and 
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can be subjected to multiple levels of pathway, network, and functional analysis 

that can identify complex coding and non-coding transcript interactions. 

Telomeres hold significant promise as both a biomarker of cellular stress 

exposure and as a therapeutic target. In time, telomere and telomerase research 

will make truly significant contributions to human health and disease management. 

However, a clearer understanding of the underpinning mechanisms is needed to 

move from the current correlations to causation. The precise association between 

PA and LTL is currently unclear and investigations into plausible mechanisms have 

returned promising yet inconsistent findings. The novel findings from this thesis 

suggest possible IEG transcriptional behaviour from several key telomere-

associated genes, potential miRNAs, and pathways. In addition to being an 

empowering public health message, such acute influence over genomic stability 

may provide tantalizing future therapeutic targets. 

 The extent to which LTL can be meaningfully lengthened, not merely offset 

from the age-associated shortening trajectory, is still largely unknown. If exercise-

induced telomere lengthening can be clearly and consistently demonstrated in a 

healthy, young population, it must then be assessed in aged and diseased cohorts. 

It must then be determined if positive changes in telomere length reflect differential 

regulation of pro-telomeric genes or simply the amelioration of negative telomere 

instigators. 

The possibility that LTL is a physiological epiphenomenon cannot be excluded. 

Telomere length may be more of a cellular description than explanation, with 

changes in length reflecting but not directly influenced by the primary mechanism. 

Future research must longitudinally monitor phenotypic consequences of telomere 
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modulation to determine the direction of the causal arrow. Determining whether an 

individual can move from the lowest to the highest quartile of LTL through lifestyle 

interventions such as exercise remains an open and essential question. The 

effective use of mediation analysis models would also help to reveal whether 

changes in telomere length can occur independently of factors like oxidative stress 

and inflammation.  

If an exercise/telomere-protective effect can be unequivocally established, 

determining the optimal exercise dose will be an important next step. The far-

reaching physiological effects of exercise demonstrate a degree of overall risk 

factor and all-cause mortality reduction greater than many pharmacological agents. 

Exercise programming variables such as modality, intensity, and duration are 

analogous to drug type, concentration, and dosage. Accordingly, there will be 

optimal doses, ineffectively low doses, and potentially dangerous overdoses that 

negatively impact upon telomere length. For this reason alone, a clearer 

understanding of the molecular effects of exercise is warranted.  
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