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Abstract

Canonical duality theory (CDT) is a newly developed, potentially powerful method-

ological theory which can transfer general multi-scale nonconvex/discrete problems

in Rn to a unified convex dual problem in continuous space Rm with m ≤ n and

without a duality gap. The associated triality theory provides extremality criteria

for both global and local optimal solutions, which can be used to develop powerful

algorithms for solving general nonconvex variational problems.

This thesis, first, presents a detailed study of large deformation problems in 2-D

structural system. Based on the canonical duality theory, a canonical dual finite

element method is applied to find a global minimization to the general nonconvex

optimization problem using a new primal-dual semi-definite programming algorithm.

Applications are illustrated by numerical examples with different structural designs

and different external loads.

Next, a new methodology and algorithm for solving post buckling problems of a

large deformed elastic beam is investigated. The total potential energy of this beam

is a nonconvex functional, which can be used to model both pre- and post-buckling

phenomena. By using the canonical dual finite element method, a new primal-dual

semi-definite programming algorithm is presented, which can be used to obtain all

possible post-buckled solutions. In order to verify the triality theory, mixed meshes

of different dual stress interpolations are applied to obtain the closed dimensions

between discretized displacement and discretized stress. Applications are illustrated

by several numerical examples with different boundary conditions. We find that the

global minimum solution of the nonconvex potential leads to a stable configuration

of the buckled beam, the local maximum solution leads to the unbuckled state, and

both of these two solutions are numerically stable. However, the local minimum

solution leads to an unstable buckled state, which is very sensitive to the external

load, thickness of the beam, numerical precision, and the size of finite elements.

Finally, a mathematically rigorous and computationally powerful method for solv-

ing 3-D topology optimization problems is demonstrated. This method is based on
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CDT developed by Gao in nonconvex mechanics and global optimization. It shows

that the so-called NP-hard Knapsack problem in topology optimization can be solved

deterministically in polynomial-time via a canonical penalty-duality (CPD) method

to obtain precise global optimal 0-1 density distribution at each volume evolution.

The relation between this CPD method and Gao’s pure complementary energy prin-

ciple is revealed for the first time. A CPD algorithm is proposed for 3-D topology

optimization of linear elastic structures. Its novelty is demonstrated by benchmark

problems. Results show that without using any artificial technique, the CPD method

can provide mechanically sound optimal design, also it is much more powerful than

the well-known BESO and SIMP methods. Finally, computational complexity and

conceptual/mathematical mistakes in topology optimization modeling and popular

methods are explicitly addressed.
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Chapter 1

Introduction

At the beginning of the last century, duality theory and methods for nonconvex

problems were studied by engineers and scientists in mechanics. Traditional finite

element methods for solving nonconvex variational problems usually end up with a

nonconvex minimization problem in Rn. Due to the lack of global optimality criteria,

popular nonlinear programming methods developed from convex optimization can-

not be used to find global optimal solutions. It was discovered in [25] that for certain

external loads, both global and local minimum solutions to large deformed mechan-

ics problems are usually nonsmooth and cannot be captured by any Newton-type

methods. Therefore, most nonconvex optimization problems are considered NP-hard

(non-deterministic polynomial-time hard) in computer science. Unfortunately, these

well-known difficulties are not fully recognized in computational mechanics due to

the significant gap between engineering mechanics and global optimization. Canoni-

cal duality theory provides a potentially powerful methodology which can be used not

only for modeling complex systems within a unified framework, but also for solving

a large class of challenging problems in nonconvex, nonsmooth, and discrete systems

[32].

The canonical duality theory was developed by Gao from his original work with

Strang on nonconvex/nonsmooth variational/boundary value problems in finite de-

formation systems [13]. In order to recover the complementary energy principle

in nonconvex problems, they discovered the so-called complementary gap function,

which leads to a complementary-dual variational principle in finite deformation me-

chanics. They proved that the positivity of this gap function provides a global

optimality condition for nonconvex variational problems. It was realized by Gao

seven years later that the negativity of this gap function can be used to identify

the biggest local minimal and local maximal solutions. Therefore, a triality theory
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was first proposed in nonconvex mechanics by Gao in 1996 [16], and a pure comple-

mentary energy principle was obtained in 1999 [17]. This principle solved an open

problem in nonlinear elasticity [53], which can be used to obtain analytical solutions

to general large deformation problems [18, 33, 32]. Based on the canonical duality

theory, a canonical dual finite element method has been developed [14] with a suc-

cessful application for solving nonconvex mechanics problems in phase transitions

of solids [26]. A newly published book [41] provides a comprehensive review and

applications of the canonical duality theory in multidisciplinary fields of mathemat-

ical modeling, nonconvex analysis, global optimization, and computational science.

Generally speaking, the canonical duality theory is composed mainly of

1. a canonical dual transformation, which can be used to formulate perfect dual

problem without a duality gap;

2. a complementary-dual principle, which presents a unified analytic solution form

for general problems in continuous and discrete systems;

3. a triality theory, which can be used to identify both global and local extrema

and to develop effective algorithms for solving nonconvex optimization prob-

lems.

The study of the canonical duality theory is of interest to operations research,

applied mathematics communities and topology optimization.

1.1 Canonical Duality Theory in General Noncon-

vex Problems

The general nonconvex problem can be defined as (the primal problem (P) in short)

(P) : min
x∈Xa

{
Π(x) = W (x)− U(x)

}
, (1.1)

where W (x) is a general nonconvex function, U(x) is a linear Gâteaux differentiable

function, and Xa ⊂ Rn is a given feasible space.

2



1.1.1 Canonical dual transformation

The key idea of the canonical dual transformation is to recover the duality gap by

choosing Gâteaux differentiable geometrical operator

ξ = Λ(x) : Xa → Ea, (1.2)

which maps each x ∈ Xa into a so-called intermediate space Ea, such that the non-

convex function W (x) in the primal problem (P) can be written in the canonical

form

W (x) = V (Λ(x)). (1.3)

The real-valued function V (ξ) : Ea → R is a canonical function of the geometrical

measure ξ = Λ(x). By the canonical function definition, we have that the duality

relation

ζζζ = ∇V (ξ) : Ea → E∗a ,

is revertible [19, 41], where E∗a is the dual feasible space. Then, the conjugate function

V ∗ : E∗a → R can be uniquely defined by the Legendre transformation [19]

V ∗(ζζζ) = sta
{
〈ξ;ζζζ〉 − V (ξ)

∣∣ ∀ξ ∈ Ea}, (1.4)

where sta{ } denotes finding stationary points of the statement in { } and 〈ξ;ζζζ〉
is the canonical dual pair between ξ and its dual variable ζζζ. Thus, the following

canonical duality relations hold on Ea × E∗a

ζζζ = ∇V (ξ) ⇔ ξ = ∇V ∗(ζζζ) ⇔ V (ξ) + V ∗(ζζζ) = 〈ξ;ζζζ〉. (1.5)

By using the canonical transformation (1.3), the problem (P) can be given in the

following canonical problem

min
x∈Xa
{Π(x) = V (Λ(x))− U(x)}, (1.6)

By the chain rule and since Λ(x) is Gâteaux differentiable, we can obtain [13]

∇V (Λ(x)) = Λt(x)∇ξV (Λ(x)), (1.7)

where Λt(x) and ∇ξV (Λ(x)) are the Gâteaux derivatives of Λ(x) and V (with re-

spect to ξ = Λ(x)), respectively. The stationary condition ∇Π(x) = 0 leads to the

3



canonical equilibrium equation

Λ∗t (x) ∇ξV (Λ(x)) = ∇U(x), (1.8)

where Λ∗t (x), the adjoint operator of Λ(x), is written by

〈Λt(x)x;ζζζ〉 = 〈x,Λ∗t (x)ζζζ〉. (1.9)

In terms of the canonical duality pair 〈ξ, ζζζ〉, equation (1.8) can be written in the

tri-canonical forms

1. geometrical equation: ξ = Λ(x),

2. constitutive equation: ζζζ = ∇V (ξ),

3. balance equation: Λ∗t (x)ζζζ = ∇U(x).

The nonconvexity of Π(x) is mainly due to the geometrically nonlinear of problem

(1.6), i.e. the operator Λ(x) is nonlinear. Hence, Gao and Strang introduced the

following operator decomposition [13]

Λ(x) = Λt(x)x + Λc(x), (1.10)

in which the operator Λc(x) = Λ(x)− Λt(x)x is the complementary operator of Λt.

This decomposition plays an important role in the canonical duality theory, in which,

if U(x) is a linear function, the duality gap existing in classical Lagrangian duality

theory can be naturally recovered by the Gao-Strang complementary gap function

which is defined by

Gap(x, ζζζ) = −〈Λc(x);ζζζ〉 (1.11)

The following relations (1.12) summarize a fully nonlinear canonical system.

x ∈ Xa ⊂ X ←− 〈x , x∗〉 −→ X ∗ ⊃ X ∗a 3 x∗

Λt + Λc = Λ

y
xΛ∗t = (Λ− Λc)

∗

ξ ∈ Ea ⊂ E ←− 〈ξ ; ζζζ〉 −→ E∗ ⊃ E∗a 3 ζζζ

(1.12)

According to the canonical transformation (1.3), the nonconvex total potential

Π(x) can be converted to the following Gao-Strang total complementary energy

4



Ξ : Xa × E∗a → R [13]

Ξ(x, ζζζ) = 〈Λ(x);ζζζ〉 − V ∗(ζζζ)− U(x). (1.13)

The stationary condition ∇Ξ(x, ζζζ) = 0 leads to the following canonical equations

Λ(x) = ∇V ∗(ζζζ), (1.14)

Λ∗t (x) ζζζ = ∇U(x). (1.15)

Thus, by using the so-called Λ-canonical dual transformation [20]

UΛ(ζζζ) = sta{〈Λ(x);ζζζ〉 − U(x) | x ∈ Xa}, (1.16)

the canonical dual function of Π(x) can be well defined as

Πd(ζζζ) = sta{Ξ(x, ζζζ) | x ∈ Xa}
= UΛ(ζζζ)− V ∗(ζζζ). (1.17)

The following theorem details the stationary point and shows that there is no duality

gap between the nonconvex function Π(x) and its canonical dual Πd(ζζζ).

Theorem 1 (Gao’s Pure Complementary Principle [19] )

The function Πd(ζζζ) : E∗a → R, is canonically dual to Π(x) : Xa → R, in the sense

that if (x̄, ζ̄ζζ) is a stationary point of the complementary energy Ξ(x, ζζζ), then x̄ is a

stationary point of the total potential energy Π(x) on Xa, and ζ̄ζζ is a stationary point

of the canonical dual function Πd(ζζζ) on E∗a , and

Π(x̄) = Ξ(x̄, ζ̄ζζ) = Πd(ζ̄ζζ). (1.18)

1.1.2 Complementary-dual principle

Due to the fact that Λ(ε) is usually quadratic and by substituting U(x) = 〈x, f(ζζζ)〉
into (1.13), the total complementary function Ξ(x, ζζζ) can be rewritten as

Ξ(x, ζζζ) = Gap(x, ζζζ)− V ∗(ζζζ)− 〈x, f(ζζζ)〉, (1.19)
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where 〈. , .〉 denotes the bilinear form and Gap(x, ζζζ) is the complementary gap func-

tion which is defined in [13]

Gap(x, ζζζ) = 〈Λ(x);ζζζ〉 =
1

2
〈x,G(ζζζ)x〉, (1.20)

in which

G(ζζζ) = ∇2
xΞ(x, ζζζ),

is the Hessian matrix of Ξ(x, ζζζ). Then, by applying the canonical equilibrium equa-

tion ∇xΞ(x, ζζζ) = 0, we have the following stationary solution

x = G−1(ζζζ)f(ζζζ). (1.21)

By substituting (1.21) into (1.19), the canonical dual function Πd in (1.17) can be

reformulated as

Πd(ζζζ) = −G∗ap(ζζζ)− V ∗(ζζζ), (1.22)

where G∗ap(ζζζ) is the so-called pure complementary gap function defined in [13]

G∗ap(ζζζ) =
1

2
〈G−1(ζζζ)f(ζζζ), f(ζζζ)〉.

Thus, the stationary point x in (1.21) is the analytically primal stationary point of

Π(x), which is dependent on its canonical dual solution, as shown in the following

theorem.

Theorem 2 (Analytic Solution [19])

If ζ̄ζζ ∈ E∗a is a stationary point of Πd(ζζζ), then x̄ = G−1(ζ̄ζζ)f(ζ̄ζζ), is a stationary point

of Π(x) on Xa, and Π(x̄) = Πd(ζ̄ζζ).

1.1.3 Triality theory

The components of triality theory comprise a canonical min-max duality and two

pairs of double-min, double-max dualities, which can be used to identify both global

and local extrema. This theory implies an intrinsic duality pattern in complex sys-

tems and has been applied successfully to solve a wide class of challenging noncon-

vex/nonsmooth/discrete problems in multidisciplinary fields [22, 30]. The convexity

of the canonical function V : Ea → R needs to be assumed so that the extremality

conditions of the stationary solutions of the nonconvex problem can be investigated.

Let
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E∗+ = {ζζζ ∈ E∗a | G(ζζζ) � 0}, (1.23)

E∗− = {ζζζ ∈ E∗a | G(ζζζ) ≺ 0}, (1.24)

where the symbols “�” and “≺” represent the symmetric positive definite matrix

and symmetric negative definite matrix, respectively. So, for any given x ∈ Xa and

x 6= 0, the complementary gap function Gap(x, ζζζ) is positive if and only if ζζζ ∈ E∗+,

and it is negative if and only if ζζζ ∈ E∗−.

Theorem 3 (Triality theory [16, 19])

Suppose (x̄, ζ̄ζζ) is a stationary point of Ξ(x, ζζζ). If ζ̄ζζ ∈ E∗+, then x̄ is a global minimizer

of Π(x) on Xa if and only if ζ̄ζζ is a global maximizer of Πd(ζζζ) on E∗+, i.e.,

Π(x̄) = min
x∈Xa

Π(x) ⇔ max
ζζζ∈E∗+

Πd(ζζζ) = Πd(ζ̄ζζ). (1.25)

If ζ̄ζζ ∈ E∗−, then on a neighborhood Xo×E∗o ⊂ Xa×E∗a of (x̄, ζ̄ζζ), we have either x̄ is a

local maximizer of Π(x) on Xo if and only if ζ̄ζζ is a local maximizer of Πd(ζζζ) on E∗o ,

i.e.,

Π(x̄) = max
x∈Xo

Π(x) ⇔ max
ζζζ∈E∗o

Πd(ζζζ) = Πd(ζ̄ζζ), (1.26)

or (only if dim x̄ = dim ζ̄ζζ), x̄ is a local minimizer of Π(x) on Xo if and only if ζ̄ζζ is

a local minimizer of Πd(ζζζ) on E∗o , i.e.,

Π(x̄) = min
x∈Xo

Π(x) ⇔ min
ζζζ∈E∗o

Πd(ζζζ) = Πd(ζ̄ζζ). (1.27)

Identifying the global minimizer of the nonconvex total potential energy Π(x)

is equivalent to identifying the global maximizer of the canonical dual problem

{maxζζζ∈E∗+ Πd(ζζζ)} as shown in the statement (1.25), therefore, this statement is called

canonical min-max duality. This canonical dual problem is considered a concave

maximization problem that can be solved using well-developed convex optimization

methods. The weak form of the statement (1.25) was introduced by Gao and Strang

in 1989 [13].

Statements (1.26) and (1.27) are called the canonical double-max duality and the

canonical double-min duality, respectively. These two statements can be used to

identify the biggest local maximizer and local minimizer of the total potential en-

ergy, respectively. It has been proved that the statement (1.27) holds under certain

condition that the dimensions of x̄ and ζ̄ζζ are equal in order to get a strong canonical

double-min duality, whereas without this additional condition, the double-min dual-

ity holds weakly in subspaces of Xo×E∗o [31, 59, 60]. All these cases will be discussed
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in Chapter 3.

More detail on this theory with its extensive applications in global optimization

and nonconvex mechanics can be found in [19, 27, 32, 37].

1.1.4 Example for canonical duality concept

In this section, a very simple example illustrates the idea of canonical duality with

its numerical applications. Let us consider a nonconvex optimization problem in Rn

min
x∈Rn

Π(x) =
1

2
r1

(
1

2
|x|2 − r2

)2

− xT f , (1.28)

where r1 and r2 are given positive parameters. The stationary condition ∇Π(x) = 0

gives the following nonlinear algebraic equation system in Rn

r1(
1

2
|x|2 − r2)x = f . (1.29)

It is very difficult for traditional direct approaches to identify all the roots of problem

(1.28) and to determine which root is a global minimizer of Π(x). However, by using

the canonical dual transformation, this problem can easily be solved completely. Let

ξ = Λ(x) =
1

2
|x|2 ∈ R.

Then, the nonconvex function

W (x) =
1

2
r1(

1

2
|x|2 − r2)2,

can be written by quadratic canonical form

V (ξ) =
1

2
r1(ξ − r2)2.

Then, its Legendre conjugate is simply given by the following strictly convex quadratic

function [19]

V ∗(ζ) =
1

2
r1
−1ζ2 + r2ζ.

Thus, nonconvex total potential energy Π(x) can be converted to the following total

complementary function

Ξ(x, ζ) =
1

2
|x|2ζ − 1

2
r1
−1ζ2 − r2 ζ − xT f . (1.30)
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The stationary condition ∇xΞ(x) = 0 for a fixed ζ ∈ R leads to the canonical balance

equation

ζx− f = 0. (1.31)

This canonical balance equation gives the stationary point x

x = f/ζ, ζ 6= 0. (1.32)

Substituting this result into the total complementary function Ξ leads to the following

canonical dual function

Πd(ζ) = {Ξ(x, ζ)|∇xΞ(x, ζ) = 0}

= −fT f

2ζ
− 1

2
r1
−1ζ2 − r2ζ, ∀ζ 6= 0. (1.33)

Then, the stationary condition of this canonical dual function (∇Πd(ζ) = 0) gives

the canonical dual algebraic equation

(r1
−1ζ + r2)ζ2 =

1

2
fT f . (1.34)

According to the triality theory, the solutions of this cubic algebraic equation have

at most three real roots satisfying

ζ1 ≥ 0 ≥ ζ2 ≥ ζ3.

From equation (1.32), we have the equivalent stationary points of the nonconvex

total potential energy Π(x)

xi(ζi) = f/ζi, ∀ i = 1, 2, 3.

By the canonical min-max duality statement (1.25) of Theorem 3, the stationary

point x1(ζ1) is a global minimizer of Π(x) for ζ1 ∈ E∗+. From statements (1.26) and

(1.27), x3(ζ3) and x2(ζ2) refer to the local maximizer and local minimizer of Π(x),

for ζ3, ζ2 ∈ E∗−, respectively.

For further clarification, let n = 1, r1 = 1, r2 = 3 and f = 0.3. Figure 1.1

illustrates the graphs of both the primal function Π(x) and its canonical dual function

Πd(ζ) with their stationary points. Table 1.1 shows the details of all the solutions

to problem (1.28), in which x1 = 2.498036 is a global minimizer of Π(x), x3 =

−0.100168 is a local maximizer, and x2 = −2.397869 is a local minimizer.
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Figure 1.1: The primal function Π(x) with its canonical dual function Πd(ζ) with
f = 0.3

Table 1.1: All solutions of Π(x) via the triality theory with f = 0.3

Triality theory ζi State of ζi xi(ζi) State of xi(ζi) Πd(ζi) = Π(xi)

min-max (1.25),
i = 1

0.1201 global maximizer 2.4980 global minimizer -0.742200

min-min (1.27),
i = 2

-0.1251 local minimizer -2.3979 local minimizer 0.727187

max-max 1.26),
i = 3

-2.9950 local maximizer -0.1002 local maximizer 4.515012

By using the same parameters r1 and r2 but with smaller f = 0.05, the canonical

dual function Πd(ζ) will be a finite discontinuous concave function due to a gap

located on the interval (a, b) = (−0.020482, 0.020343) as shown in Figure 1.2. From

the canonical dual algebraic equation (1.34), we get

ζ3 + 3 ζ2 − 1

800
= 0. (1.35)

By solving this cubic algebraic equation and by using Theorem 3, we can get all the

solutions of the nonconvex function Π(x) as reported in Table 1.2, where x1 = 2.45778

is global minimizer, x2 = −2.441113 is local minimizer and x3 = −0.016667 is local

maximizer, which correspond to the roots of the canonical function Πd(ζ); ζ1 =

0.020343 (global maximizer), ζ2 = −0.020482 (local minimizer) and ζ3 = −2.999861

(local maximizer), respectively.
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Figure 1.2: The primal function Π(x) with its canonical dual function Πd(ζ) with
f = 0.05

Table 1.2: All solutions of Π(x) via the triality theory with f = 0.05

Triality theory ζi State of ζi xi(ζi) State of xi(ζi) Πd(ζi) = Π(xi)

min-max (1.25),
i = 1

0.0203 global maximizer 2.4578 global minimizer -0.122682

min-min (1.27),
i = 2

-0.0204 local minimizer -2.4411 local minimizer 0.122265

max-max 1.26),
i = 3

-2.9999 local maximizer -0.0167 local maximizer 4.500416

However, the interval (a, b) can be decreased when the value of f is reduced and

it vanishes at f = 0. In the case of f = 0, the graph of Πd(ζ) is a strictly concave,

which corresponds to a symmetric graph Π(x), with only one critical point (root

ζ3, local maximizer) and the other two roots ζ1 = ζ2 = 0 located on the boundary

of E∗+. These three roots correspond to a local maximizer (x3 = 0) and two global

minimizers x1,2 = ±
√

2r2, respectively, as shown in Figure 1.3.

Generally speaking, the canonical duality equation ζ = ∇V (ξ) is the so-called

the constitutive law. The one-to-one duality equation between each canonical dual

pair ensures the existence of the geometrical measure ξ = Λ(x) and the canonical

form of the functional. In this thesis, several numerical approaches are applied by

using the canonical dual transformation method for a large deformation problem.
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Figure 1.3: The primal function Π(x) with its canonical dual function Πd(ζ) with
f = 0

1.2 Overview of this thesis

The main goal of this thesis is to solve nonconvex mechanics and topology optimiza-

tion problems using the newly developed canonical duality theory and to expose its

role in establishing connections between nonconvex problems and global optimiza-

tion. This thesis is structured as follows:

In Chapter 2, a detailed study of a large deformation problems in 2-D structural

systems is introduced in order to find a global minimizer of this nonconvex problem.

Canonical duality theory provides a potentially useful methodology for solving this

challenging problem. In addition to the canonical duality theory, the mixed finite

element method is applied with two separate fields, displacement and dual stress

fields. Numerical applications are illustrated with different structural designs and

different external loads by using a new primal-dual semi-definite programming (PD-

SDP) algorithm.

In Chapter 3, we present a new methodology and algorithm for solving post

buckling problems of a large deformed elastic beam. The total potential energy of

this beam is a nonconvex functional. By using a canonical dual finite element method,

a new PD-SDP algorithm is presented, which can be used to obtain all possible post-

buckled solutions. Triality theory is verified by creating closed dimensions between

discretized displacement and discretized stress by designing mixed meshes of different

dual stress interpolations. Applications are illustrated by several numerical examples

with different boundary conditions.
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In Chapter 4, an evolutionary canonical penalty-duality (CPD) algorithm for

solving 3-D benchmark problems in topology optimization is demonstrated. This

method is based on the canonical duality theory in nonconvex mechanics and global

optimization. It shows that the so-called NP-hard integer programming in topology

optimization can be equivalently converted to a concave maximization problem in

continuous dual space, which can be solved deterministically via a convex perturba-

tion technique to obtain global optimal 0-1 density distribution without checkerboard

patterns. The relation between the canonical penalty-duality method and Gao’s pure

complementary energy principle is addressed. A comparison is made of two popu-

lar methods, bi-directional evolutionary structural optimization (BESO) and solid

isotropic material with penalization (SIMP). This chapter ends with a concluding

remark devoted to Mathematical mistakes in this popular methods which are explic-

itly addressed for the first time.

In Chapter 5, we summarize the contributions of this thesis. Some interesting

and open problems are also proposed related to our results using canonical duality

theory method.
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Chapter 2

Canonical Duality Theory in Large

Deformation Theory

The minimal nonconvex potential energy of a large deformation problem in nonlinear

elasticity can be formulated as follows

(P) : min
u∈U

Π(u) =

∫
Ω

(
W (∇u)− u.b

)
dΩ−

∫
Γt

u.t dΓ, (2.1)

where W (∇u) is a nonconvex stored energy, U is a kinematically admissible space

of deformations over a given design domain Ω ⊂ R3, in which, certain boundary

conditions and geometrical constraints are prescribed; u : Ω → U is a displacement

vector field, b = b(x) is a given body force vector, t = t(x) is a given surface traction

on the boundary Γt ⊂ ∂Ω, the dot-product u · t = uT t and u.b = uTb.

In mathematical programming and computational sciences, it is fundamentally

difficult to solve nonconvex minimization problems (P) by using a traditional convex-

ity methods. Therefore, this has always presented fundamental challenging problems

and so, is considered NP-hard in global optimization. The nonconvex minimiza-

tion problem (P) can be analyzed and solved by using canonical duality theory.

The key feature of this theory is that by using a certain canonical strain measure

E = Λ(u) , general nonconvex/nonsmooth potential variational problems can be

equivalently reformulated in finite deformation theory [17]. The finite deformation

operator Λ : Ua → Ea, which is defined from the kinetically admissible space Ua ⊂ U
to a closed convex set Ea, can be described as [19]

Λ(u) =
1

2
(FTF− I), (2.2)
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where I is the identity matrix and the deformation gradient F defined as

F = I +∇u. (2.3)

By substituting (2.3) into (2.2), the finite deformation operator can be written by

the following quadratic differential operator

E = Λ(u) =
1

2

[
∇u + (∇u)T + (∇u)T∇u

]
. (2.4)

The nonconvex stored energy function can be written as

W (∇u) = V (Λ(u)). (2.5)

The canonical dual stress can be uniquely defined by

S = ∇V (E) : Ea → E∗a , (2.6)

where E∗a is the range of the canonical duality mapping ∇V . A convex differentiable

real-valued function

V (E) =
1

2
E : H : E =

1

2
〈E,HE〉, (2.7)

is said to be canonical on its domain Ea if the duality relation (2.6) is invertible such

that the conjugate function V ∗(S) of the canonical function V (E) is defined uniquely

by the Legendre transformation [19]

V ∗(S) = {E : S− V (E) | S = ∇V (E)}, (2.8)

where E : S = ETS. Then, the following canonical duality relations hold on Ea × E∗a

S = ∇V (E) ⇔ E = ∇V ∗(S) ⇔ V (E) + V ∗(S) = E : S.

By replacing W (∇u) in the total potential energy Π(u) by its canonical form 2.5,

the problem (2.1) can be rewritten in the following canonical form

(P) : min
u∈U

Π(u) =

∫
Ω

(
V (Λ(u))− u.b

)
dΩ−

∫
Γt

u.t dΓ, (2.9)

By the Fenchel-Young equality

V (Λ(u)) = E : S− V ∗(S) = Λ(u) : S− V ∗(S),
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we have the Gao-Strang total complementary energy Ξ : Ua × E∗a :→ R [13]

Ξ(u,S) =

∫
Ω

(
E : S− V ∗(S)− u.b

)
dΩ−

∫
Γt

u.t dΓ. (2.10)

Then, the pure complementary energy can be defined by the following canonical dual

transformation [17]

Πd(S) = {Ξ(u,S)| δuΞ(u,S) = 0}. (2.11)

Let

S+
a = {S ∈ E∗a | S(x) ≥ 0, ∀x ∈ Ω}.

The following theorem introduces a global optimal solution to the nonconvex mini-

mization problem (P).

Theorem 4 ([13])

If (ū, S̄) is a stationary point of Ξ(u,S) and V (E) is convex, then for S̄ ∈ S+
a , ū is

a global optimal solution to the problem (P) and

Π(ū) = min
u∈Ua

Π(u) = Ξ(ū, S̄) = min
u∈Ua

max
S∈S+a

Ξ(u,S) = max
S∈S+a

min
u∈Ua

Ξ(u,S). (2.12)

Proof. The following proof was given in Gao and Strang’s work [13].

Since the canonical energy V (E) is convex, we have

V (E)− V (Ē) ≥ (E− Ē)∇V (Ē) ∀ E, Ē ∈ Ea

Let Ē = Λ(ū), and S̄ = ∇V (Λ(ū)), this leads to

Π(u)− Π(ū) ≥
∫

Ω

[
S̄(Λ(u)− Λ(ū))

]
dΩ−

∫
Γt

(u− ū)tdΓ ∀ u ∈ Ua.

Suppose u = ū + δu. By the fact that the geometrical operator Λ(u) is a quadratic

operator, we have (see [13])

Λ(u) = Λ(ū + δu) = Λ(ū) + (∇δu)T (∇ū) + Λ(δu).

Therefore, if (ū, S̄) is a stationary point of Ξ(u,S) and S ∈ S+
a , we have

Π(u)− Π(ū) = Gap(δu, S̄) =

∫
Ω

S̄Λ(δu)dΩ ≥ 0 ∀ δu.
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This shows that ū is a global minimizer of the total potential energy Π(u) over Ua. 2

The so-called complementary gap function

Gap(u,S) =

∫
Ω

SΛ(u)dΩ,

is a positive for all u ∈ Ua if and only if S ∈ S+
a . Then we have,

Ξ(u, S̄) ≥ Ξ(ū, S̄) ≥ Ξ(ū,S) ∀ (u,S) ∈ Ua × S+
a .

This means, the total complementary energy Ξ(u,S) is a saddle functional on Ua×S+
a .

By applying canonical min-max duality, we obtain the equality relationship (2.12).

Theorem 4 shows that the gap function Gap(u, S̄) ≥ 0 achieves a global optimality

condition for the problem (P). This gap function has an important role in global

optimization (see [28]).

Theorem 5 (Pure complementary energy [19])

Suppose that (ū, S̄) is a stationary point of Ξ(u,S) and Gap(ū, S̄) ≥ 0. Then ū is

a global minimizer of Π(u) on Ua if and only if S̄ is a global maximizer of pure

complementary energy Πd(S̄), and

Π(ū) = Ξ(ū, S̄) = Πd(S̄). (2.13)

This theorem shows that the canonical min-max duality can be used to find global

minimizer of the nonconvex total potential energy Π(u) by solving the following

canonical dual problem

(Pd) : max{Πd(S)| S ∈ S+
a }. (2.14)

2.1 Applications for 2-D finite element method

Canonical dual finite element method was first proposed by Gao in 1996 [14]. This

section will apply this method for solving large deformed elastic structures. Let

us consider a two-dimensional elastic body in x-y directions which is subjected to

surface traction t as shown in Figure 2.1. To generate quadrilateral mesh inside

the body domain by using the finite element method, the whole design domain Ω

of problem (P) is meshed by dividing it into n rectangular finite elements
{

Ωe

}n

e=1
.

The domain is mapped into the local coordinate system ξ and η (see Figure 2.2),
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Figure 2.1: Geometry of the delaminated structure

then nodal coordinates are transformed back to the global coordinate system x and

y, respectively.

Figure 2.2: Four node isoparametric quadrilateral element-local coordinate

The mixed finite element method is proposed to solve the total complementary

energy problem (2.10). The spaces Ua and S+
a can be numerically discretized to the

finite-dimensional spaces Uha and Sh+ to determine the displacement field and dual

stress field, respectively. The displacement vector u and the dual stress vector S can

be proposed in separate fields. For the local coordinate system ξ and η, let p be

a nodal deflection vector that relates back to u, and q is a dual stress vector that

relates back to S. Let pe and qe represent the e-th element Ωe of p ∈ Rn and q ∈ Rm

respectively which can be described in the following forms (see Figure 2.3)

pTe = [u1 v1 u2 v2 u3 v3 u4 v4], (2.15)

qTe = [r1 s1 t1 r2 s2 t2 r3 s3 t3 r4 s4 t4], (2.16)

where n = 2d and m = 3d, and d represents the total number of mesh nodes.

The displacement field and coordinates are interpolated as a four-node isopara-

metric quadrilateral

N =

[
N1 0 N2 0 N3 0 N4 0

0 N1 0 N2 0 N3 0 N4

]
(2.17)
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Figure 2.3: The nodes of pe of the deflection vector p (left) and qe of the dual stress
vector q (right) of the e-th element Ωe

The explicit forms of the shape functions Ni, i = 1, ..., 4 can be defined for the

two-dimensional isoparametric quadrilateral elements as the following

N1 =
1

4
(1− ξ)(1− η),

N2 =
1

4
(1 + ξ)(1− η),

N3 =
1

4
(1 + ξ)(1 + η),

N4 =
1

4
(1− ξ)(1 + η).

In geometric interpolation, these shape functions can be used to generate the global

coordinates x and y and the displacement interpolation u and v

x =
4∑
i=1

Nixi, y =
4∑
i=1

Niyi. (2.18)

u =
4∑
i=1

Niui, v =
4∑
i=1

Nivi, (2.19)

Thus, the deformation field can be formulated by the interpolation matrix N as the

following

uhe = (u v) = N(ξ, η)pe, (2.20)

On the other hand, the stress field and coordinates are interpolated as a four-node

isoparametric quadrilateral

M =

 M1 0 0 M2 0 0 M3 0 0 M4 0 0

0 M1 0 0 M2 0 0 M3 0 0 M4 0

0 0 M1 0 0 M2 0 0 M3 0 0 M4

 . (2.21)
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The shape functions Mi, i = 1, ..., 4 can be derived by the same explicit forms of Ni

as in the following forms

M1 =
1

4
(1− ξ)(1− η),

M2 =
1

4
(1 + ξ)(1− η),

M3 =
1

4
(1 + ξ)(1 + η),

M4 =
1

4
(1− ξ)(1 + η).

Thus, the dual stress field is approximated as

She = M(ξ, η)qe. (2.22)

The Green strain tensor can be defined for the large deformation problem by the

following quadratic differential operator

E = EL + ENL, (2.23)

in which EL and ENL are the linear and nonlinear components of E, respectively:

EL =
1

2

[
∇u + (∇u)T

]
, (2.24)

ENL =
1

2

[
(∇u)T∇u

]
. (2.25)

The linear Green strain tensor EL can be expressed by the linear partial differential

vector

EL =


∂u
∂x
∂v
∂y

∂u
∂y

+ ∂v
∂x

 , (2.26)

and, the nonlinear Green strain tensor ENL can be expressed by the quadratic partial

differential vector

ENL =
1

2

 (∂u
∂x

)2 + ( ∂v
∂x

)2

(∂u
∂y

)2 + (∂v
∂y

)2

2(∂u
∂x

∂u
∂y

+ ∂v
∂x

∂v
∂y

)

 . (2.27)

Thus, the total elastic strain energy of the system can be stated as the following:∫
Ω

ETSdΩ =

∫
Ω

(
(EL)TS + (ENL)TS

)
dΩ. (2.28)
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Typically, the linear elasticity term in independent fields u and S takes the form∫
Ω

(EL)TS dΩ =

∫
Ω

(
B(ξ, η).p

)T(
M(ξ, η).q

)
dΩ

=

∫
Ω

pTBT (ξ, η)M(ξ, η)q dΩ

= pTQ q, (2.29)

where B(ξ, η) is the strain displacement matrix

B(ξ, η) =


∂N1

∂x
0 ∂N2

∂x
0 ∂N3

∂x
0 ∂N4

∂x
0

0 ∂N1

∂y
0 ∂N2

∂y
0 ∂N3

∂y
0 ∂N4

∂y
∂N1

∂y
∂N1

∂x
∂N2

∂y
∂N2

∂x
∂N3

∂y
∂N3

∂x
∂N4

∂y
∂N4

∂x

 ,
and the matrix Q is composed by assembling the following element matrices

Qe =

∫ 1

−1

∫ 1

−1

BT (ξ, η) M(ξ, η) |J|dξdη, (2.30)

where Qe ∈ R8 × R12 and |J| is a determinant of the Jacobian matrix J

J =

[
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

]
. (2.31)

By substituting x and y in (2.18) into (2.31), the Jacobian matrix can be converted

to the following discretized form

J =

[
NT
,ξ . x̄ NT

,ξ . ȳ

NT
,η . x̄ NT

,η . ȳ

]
, (2.32)

where

x̄T = [x1 x2 x3 x4] ,

and

ȳT = [y1 y2 y3 y4] ,

are the global coordinates of each rectangular element Ωe. N̄T
,ξ and N̄T

,η are the

derivatives of

N̄T = [N1 N2 N3 N4],

with respect to the local coordinates ξ and η, respectively, which can be written as
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the following forms

N̄T
,ξ =

[
∂N1

∂ξ

∂N2

∂ξ

∂N3

∂ξ

∂N4

∂ξ

]
=

1

4
[−(1− η) (1− η) (1 + η) − (1 + η)] , (2.33)

and

N̄T
,η =

[
∂N1

∂η

∂N2

∂η

∂N3

∂η

∂N4

∂η

]
=

1

4
[−(1− ξ) − (1 + ξ) (1 + ξ) (1− ξ)] . (2.34)

Thus, the Jacobian determinant |J| can be easily obtained in the following discretized

form

|J| = (N̄T
,ξ . x̄)( N̄T

,η . ȳ)− (N̄T
,η . x̄)( N̄T

,ξ . ȳ). (2.35)

For the large deformation behavior in nonlinear elasticity, the nonlinear strain

energy ENL in (2.27) can be reformulated as

ENL =
1

2
pT B̂(ξ, η) p, (2.36)

where the matrix B̂(ξ, η) ∈ R8×3×8 can be expressed in the following way

B̂T =
[
B̂1 B̂2 B̂3

]
,

in which B̂1, B̂2 and B̂3 are the matrices obtained by using the shape functions of

22



the displacement field:

B̂1 =



(N1,x)
2 0 N1,xN2,x 0 N1,xN3,x 0 N1,xN4,x 0

(N1,x)
2 0 N1,xN2,x 0 N1,xN3,x 0 N1,xN4,x

(N2,x)
2 0 N2,xN3,x 0 N2,xN4,x 0

(N2,x)
2 0 N2,xN3,x 0 N2,xN4,x

(N3,x)
2 0 N3,xN4,x 0

(N3,x)
2 0 N3,xN4,x

(N4,x)
2 0

Sym (N4,x)
2



, (2.37)

B̂2 =



(N1,y)
2 0 N1,yN2,y 0 N1,yN3,y 0 N1,yN4,y 0

(N1,y)
2 0 N1,yN2,y 0 N1,yN3,y 0 N1,yN4,y

(N2,y)
2 0 N2,yN3,y 0 N2,yN4,y 0

(N2,y)
2 0 N2,yN3,y 0 N2,yN4,y

(N3,y)
2 0 N3,yN4,y 0

(N3,y)
2 0 N3,yN4,y

(N4,y)
2 0

Sym (N4,y)
2



, (2.38)

and,
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B̂3 = 2



N1,xN1,y 0 N1,xN2,y 0 N1,xN3,y 0 N1,xN4,y 0

0 N1,xN1,y 0 N1,xN2,y 0 N1,xN3,y 0 N1,xN4,y

N2,xN1,y 0 N2,xN2,y 0 N2,xN3,y 0 N2,xN4,y 0

0 N2,xN1,y 0 N2,xN2,y 0 N2,xN3,y 0 N2,xN4,y

N3,xN1,y 0 N3,xN2,y N3,xN3,y 0 N3,xN4,y 0

0 N3,xN1,y 0 N3,xN2,y 0 N3,xN3,y 0 N3,xN4,y

N4,xN1,y 0 N4,xN2,y 0 N4,xN3,y 0 N4,xN4,y 0

0 N4,xN1,y 0 N4,xN2,y 0 N4,xN3,y 0 N4,xN4,y



,(2.39)

where, for any ith node the Ni,x and Ni,y represent ∂Ni
∂x

and ∂Ni
∂y

, respectively. Thus,

the derivative of the shape function Ni for the global coordinates x and y can be

written as [
∂Ni
∂x
∂Ni
∂y

]
=

[
∂Ni
∂ξ

∂ξ
∂x

+ ∂Ni
∂η

∂η
∂x

∂Ni
∂ξ

∂ξ
∂y

+ ∂Ni
∂η

∂η
∂y

]
(2.40)

=

[
∂ξ
∂x

∂η
∂x

∂ξ
∂y

∂η
∂y

][
∂Ni
∂ξ
∂Ni
∂η

]
. (2.41)

It is easy to see that the matrix in (2.41) represents the inverse Jacobian matrix

J−1 =

[
∂ξ
∂x

∂η
∂x

∂ξ
∂y

∂η
∂y

]
. (2.42)

The inverse Jacobian matrix can be also obtained by using (2.32) in order to compute
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the derivative of Ni for x and y as in the following discretized form[
∂Ni
∂x
∂Ni
∂y

]
= J−1

[
∂Ni
∂ξ
∂Ni
∂η

]

=

[
N̄T
,ξ . x̄ N̄T

,ξ . ȳ

N̄T
,η . x̄ N̄T

,η . ȳ

]−1 [
Ni,ξ

Ni,η

]

=
1

|J|

[ (
N̄T
,η ȳ
)
Ni,ξ −

(
N̄T
,ξ ȳ
)
Ni,η

−
(
N̄T
,η x̄
)
Ni,ξ +

(
N̄T
,ξ x̄
)
Ni,η

]
, (2.43)

where |J| is computed in (2.35). Thus, the nonlinear elasticity term in (2.28) can be

expressed in discretized form as the following∫
Ω

(ENL)T S dΩ =

∫
Ω

1

2

(
pT B̂T (ξ, η) p

) (
M(ξ, η) q

)
dΩ

=

∫
Ω

1

2
pT
(
B̂T (ξ, η)M(ξ, η) q

)
p dΩ

=
1

2
pT Ḡ(q) p, (2.44)

where Ḡ(q) is obtained by assembling the following matrices

Ge(q) =

∫ 1

−1

∫ 1

−1

B̂T M(ξ, η) q |J|dξdη, (2.45)

in which Ge(q) ∈ R8 ×R8. It is clear that, both B̂1 and B̂2 are symmetric matrices

whereas B̂3 is not symmetric, therefore, Ḡ(q) is also not symmetric. Due to the fact

that

pT Ḡ(q) p = pT
[

Ḡ(q) + ḠT (q)

2

]
p, (2.46)

the Ḡ(q) in equation (2.44) can be replaced by the following symmetric matrix

G(q) =

[
Ḡ(q) + ḠT (q)

2

]
. (2.47)

Thus, the nonlinear elasticity term can be rewritten as∫
Ω

ET
NL S dΩ =

1

2
pTG(q) p

= Gap(u(p),S(q)), (2.48)
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where Gap(u(p),S(q)) is so-called complementary gap function.

By the Legendre transformation, the canonical complementary energy in this

problem can be obtained by

V ∗(S) =
1

2
STH−1S, (2.49)

where the constitutive matrix H is defined for the plane stress by the following matrix

H =
E

1− µ2

 1 µ 0

µ 1 0

0 0 1−µ
2

 , (2.50)

in which E is the Young’s modulus and µ is the Poisson’s ratio. Then we have∫
Ω

V ∗(S)dΩ =

∫
Ω

1

2
STH−1SdΩ

=

∫
Ω

1

2
qTMT (ξ, η)H−1M(ξ, η)qdΩ

=
1

2
qTKq, (2.51)

where K is obtained by assembling the following matrices Ke ∈ R12 × R12

Ke =

∫ 1

−1

∫ 1

−1

MT (ξ, η)H−1M(ξ, η) |J|dξdη. (2.52)

A whole vector of the body force b, denoted by b̄, is defined by assembling vectors

be =

∫ 1

−1

∫ 1

−1

b.N(ξ, η) |J|dξdη.

Since the surface traction t is only along the body surface, we can use a linear shape

function to construct a whole vector of t, denoted by t̄, by assembling vectors

te =


∫ 1

−1
le
2

t Ñ(ξ̃) dξ̃ if x ∈ Γt

0 otherwise,

(2.53)

where ξ̃ = 2x
le
− 1 is the local coordinate, le = b − a is the length of the element

surface which is subjected by surface traction t over interval [a, b], and the linear
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shape function Ñ(ξ̃) is defined as

Ñ(ξ̃) =


Ñ1

0

Ñ2

0

 ,
where

Ñ1(ξ̃) =
1

2
(1− ξ̃),

and

Ñ2(ξ̃) =
1

2
(1 + ξ̃).

In the present work we focus on a horizontal uniformly distributed loading, in which

tT = (tx, ty) = (tx, 0), where tx and ty represent the x-direction and y-direction of

the surface traction t, respectively.

Thus, in terms of p and q and on the discretized feasible deformation space Uha ,

the Gao-Strang total potential energy can be written in the following discretized

canonical mixed form

Ξh(p,q) =
∑
e

(
1

2
pTe Ge(qe) pe −

1

2
qTe Ke qe − pTe τ e(qe)

)
=

1

2
pT G(q) p− 1

2
qT K q− pTτ (q), (2.54)

where,

τ (q) = f̄ + t̄−Q q.

Finally, with the positive definite matrix G(q), the problem (P) can be expressed

via Theorem 5 in the following discrete problem

max
q∈Rm

min
p∈Rn

Ξ(p,q) =
1

2
pTG(q) p− 1

2
qTKq− pTτ (q),

s.t. G(q) � 0. (2.55)

The critical condition δΞ(p,q) = 0, leads to the following canonical equilibrium

equations

G(q) p− τ (q) = 0, (2.56)
1

2
pT G,q(q) p−K q + Q p = 0, (2.57)
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where G,q(q) is the Hessian matrix of the discretized Gao-Strang gap function.

Theorem 6 ([14])

For any given finite-element discretization of problem (P), if:

• the complementary gap function Gap(u(p),S(q)) ≥ 0, ∀p ∈ Rn and q ∈ Rm,

and

• the following rank condition holds,

rank Gap = n < m, (2.58)

then problem (2.55) has at least one solution (p,q), and it has a unique solution if

the gap function is strictly positive.

By this theorem, if the gap function Gap possesses a right sign and the rank con-

dition (2.58) is true, then the sequence {pk,qk} will converge to the global minimal

solution (p,q) of the primal problem (P) ( see [14]). It is easy to see that the rank

condition (2.58) in problem (2.55) holds, due to the fact that the size of the configure

vector pe of p is less than the size of configure vector qe of q, as shown in (2.15) and

(2.16).

2.2 Semi-definite programming algorithm

Semi-definite programming (SDP) was the most exciting and active research area in

mathematical programming during the 1990s. SDP is a subfield of convex optimiza-

tion and is concerned with the optimization of a linear objective function over the

intersection of the cone of positive semidefinite matrices [43, 72].

In order to solve problem (2.55), it will be converted to an SDP problem which

can be efficiently solved by interior point methods. By the fact that Ξ(p,q) is a

saddle function on Uha × S+, where S+ = {q ∈ Rm | G(q) � 0}, we have

min
p∈Uha

Πh
p(p) = min

p∈Uha
max
q∈S+

Ξ(p,q) = max
q∈S+

min
p∈Uha

Ξ(p,q). (2.59)

in which rank(p) < rank(q). Thus, the problem (P) can be proposed as the following

problem

max
q∈Rm

min
p∈Rn

Ξ(p,q) =
1

2
pTG(q) p− 1

2
qTKq− pTτ (q),

s.t. G(q) � 0, (2.60)
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where the symbol “�” represents the symmetric positive semi-definite matrix. By

applying equilibrium equation (2.56) and for any given q ∈ S+, the solution to

minp∈Uha Ξ(p,q) leads to

p = p(q) = G−1(q) τ (q). (2.61)

Therefore, the stress field q can be found by the following problem

max
q

Ξ(p(q),q) = Θ(q)− 1

2
qT K q

s.t. G(q) � 0, (2.62)

where the function Θ(q) is defined by

Θ(q) =
1

2
pT (q)G(q) p(q)− pT (q)τ (q).

Clearly, by using the canonical min-max duality, if q∗ ∈ S+ is a global maximizer of

problem (3.45), then p∗ = p(q∗) must be a global minimizer of Πh
p(p). Furthermore,

problem (3.45) is equivalent to:

max
q,z

z s.t. G(q) � 0, z ≤ Θ(q)− 1

2
qT K q. (2.63)

By the fact that K � 0, the Schur complement lemma for the second inequality

constraint in (2.63) implies (see [72])[
2K−1 q

qT Θ(q)− z

]
� 0. (2.64)

Thus, problem (2.63) can be relaxed to the following SDP problem

max
q,z

z s.t. G(q) � 0,

[
2K−1 q

qT Θ(q)− z

]
� 0. (2.65)

The following algorithm for the primal-dual semidefinite programming (PD-SDP)

solves a large deformation problem for nonconvex minimization problems

PD-SDP Algorithm:

1. Initial primal solution p(0) and error allowance ε > 0 are given. Let the iteration

number k = 1.

2. Compute the dual solutions {q(k)} by applying the SDP solver for problem
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(2.65).

3. Compute the primal solution p(k) = G−1(q(k))τ (q).

4. Convergence test; if ‖p(k) − p(k−1)‖/‖p(k)‖ ≤ ε, stop with the optimal solution

p∗ = p(k). Otherwise, let k = k + 1 and go to step 2.

The SDP solver used in this algorithm is a popular software package named

SeDuMi.

2.3 Numerical solutions

The PD-SDP algorithm is implemented in two different types of structures as shown

in Figures 2.1 and 2.5 to conduct large deformation finite-element methods. In

the following examples, the elastic modulus and Poisson’s ratio are considered as

E = 25000 N/mm2 and µ = 0.15, respectively. Two different load cases are applied,

case-a and case-b, in which the load of the case-b is twice that of case-a, and body

force is neglected.

2.3.1 Regular rectangular structure

We present, in this section, a regular rectangular structure which is fixed at x = 0 and

free at the other sides, as shown in Figure 2.1. The length and width of this structure

are 2.8m and 0.4m, respectively. The mesh domain is made up of 28 elements with

40 nodes, i.e. d = 40. Figure 2.4 shows the results after undergoing a horizontal

uniformly distributed load on the right of the regular rectangular structure. The red

circles in this Figure represent to the original nodes of the structure while the black

dots represent to the place of these nodes after undergoing. We found that all the

eigenvalues of matrix G are positive in this example. Thus, matrix G is a positive

definite matrix, therefore, the solution to problem (2.55) is a unique solution (see

Theorem 6).

2.3.2 Rectangular structure with two semicircle gaps

A rectangular structure with two semicircle gaps is fixed at x = 0 and free at the other

sides, as shown in Figure 2.5. The length and width of this structure are 2.4m and

0.4m, respectively. The number of mesh elements is 48 and the number of nodes is d =

69. The result of the structure after undergoing a horizontal uniformly distributed
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Figure 2.4: Regular rectangular structure after undergoing a horizontal uniformly
distributed load

loading is shown in Figure 2.6. Once again, we found that all the eigenvalues of

matrix G are positive, therefore the solution of this example is unique.

Figure 2.5: Structure with two semicircle gaps
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Figure 2.6: Rectangular structure with two semicircle gaps after undergoing a hori-
zontal uniformly distributed load

2.4 Summary

This work presents a detailed study of a large deformation problem in 2-D structure.

It is a fundamentally difficult to find a global minimization of nonconvex problems,

and none of the classical numerical methods can be used to solve a large class of

problem (P). Canonical duality theory provides a potentially useful methodology for

solving this challenging nonconvex minimization problem (P). Beside the canonical

duality theory, the mixed finite element method is applied with two separate fields,

displacement and dual stress fields, in order to find the global minimizer of the

total potential energy problem. Numerical applications are illustrated with different

structural designs and different external loads. We found that the gap function Gap of

problem (2.55) is strictly positive, and therefore, Theorem 6 holds in our applications

with a unique solution.
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Chapter 3

Post-Buckling of a Large Deformed

Elastic Beam

It is known that the total potential energy for the post-buckling of large deformed

structures must be nonconvex to allow multiple local minimum solutions for all pos-

sible buckled status [15]. The canonical duality theory and its associated triality

theory provide extremality criteria for both global and local optimal solutions and

present a canonical dual finite element method for solving general nonconvex vari-

ational problems. Recently, it was discovered [8, 71] that by using Gao-Strang’s

complementary-dual principle and mixed finite element discretization, the noncon-

vex variational problem of a post-buckled nonlinear Gao beam can have at most

three smooth solutions: a global minimizer representing a stable buckled state, a lo-

cal maximizer for an unbuckled state, and a local minimizer for an unstable buckled

state.

The main goal of this chapter is to develop a new canonical primal-dual algorithm

for solving the post-buckling problem with special attention to the local unstable

buckled configuration of a large deformed beam. The Gao-Strang total complemen-

tary energy associated with this model is a nonconvex functional and is reformulated

as a global optimization problem to study the post-buckling responses of the beams.

Based on the canonical duality theory and the associated triality theorem, a new

primal-dual semi-definite program (PD-SDP) algorithm is proposed for solving this

challenging problem to obtain all possible solutions. Applications are illustrated by

different boundary value problems. Moreover, to verify the triality theory on the

post-buckling problem of a large elastic deformation of beam, which is governed by

a fourth order nonlinear differential equation, mixed meshes of different dual stress

interpolations are used to obtain a closed dimensions between the discretized dis-
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placement and discretized stress (see Section 3.5). Numerical results show that the

proposed algorithm produces stable solutions for the global minimizer and local max-

imizer. However, the local minimizer is very sensitive to numerical discretization and

external loads.

3.1 Nonconvex problem and canonical duality the-

ory

Let us consider an elastic beam subjected to a vertical distributed lateral load q(x)

and compressive external axial force F at the right end as shown in Figure 3.1. Gao

Figure 3.1: Simply supported beam model - pre and post buckling analysis

discovered in 1996 [15] that the well-known von Karman nonlinear plate model in

one-dimension is equivalent to a linear differential equation and therefore, it cannot

be used to study post-buckling phenomena. The main reason for this “paradox”

is due to the fact that the stress in the lateral direction of a large deformed plate

was ignored by von Karman. Therefore, the von Karman equation works only for

thin-plates and cannot be used as a beam model. For a relatively thick beam such

that h/L ∼ w(x) ∈ O(1), the deformation in the lateral direction cannot be ignored.

Based on the finite deformation theory for Hooke’s material and the Euler-Bernoulli

hypothesis (i.e. straight lines normal to the mid-surface remain straight and normal

to the mid-surface after deformation), a nonlinear beam model was proposed by Gao

[15]:

EIw,xxxx − αEw2
,xw,xx + Eλw,xx − f(x) = 0, ∀x ∈ [0, L] (3.1)

where E is the elastic modulus of material, I = 2h3/3 is the second moment of

area of the beam’s cross-section, w is the transverse displacement field of the beam,

α = 3h(1 − µ2) > 0 with µ as the Poisson’s ratio, λ = (1 + µ)(1 − µ2)F/E > 0 is

34



an integral constant, f(x) = (1− µ2)q(x) depends mainly on the distributed lateral

load q(x), 2h and L represent the height and length of the beam, respectively. The

axial displacement u(x) is governed by the following differential equation [15]:

u,x = −1

2
(1 + µ)w2

,x −
λ

2h(1 + µ)
, (3.2)

which shows that if u(x) ∼ w,x(x) ∈ O(ε), then u,x(x) ∼ w,xx(x) ∈ O(ε2).

The total potential energy of this beam model is Π(w) : Ua → R defined by

Π(w) =

∫ L

0

(
1

2
EIw2

,xx +
1

12
Eαw4

,x −
1

2
Eλw2

,x − f(x) w

)
dx, (3.3)

where Ua is the kinematically admissible space, in which certain necessary boundary

conditions are given. Thus, for the given external loads f(x) and end load λ, the

primal variational problem is to find w̄ ∈ Ua such that

(P) : Π(w̄) = inf {Π(w)|w ∈ Ua}. (3.4)

It is easy to prove that the stationary condition δΠ(w) = 0 leads to the governing

equation (3.1).

If the nonlinear term in (3.1) is ignored and f = 0, then this nonlinear Gao beam

is degeneralized to the well-known Euler-Bernoulli beam equation1:

EIw,xxxx + λEw,xx = 0. (3.5)

It is known that this linear beam will be buckled if the axial load λ reaches the Euler

buckling load λcr defined by

λcr = inf
w∈Ua

∫ L
0
EIw2

,xxdx∫ L
0
Ew2

,xdx
. (3.6)

Clearly, in the pre-buckling state, i.e. before the axial load λ reaches the Euler

buckling load λcr, we have

ΠEB(w) =

∫ L

0

EIw2
,xxdx− λ

∫ L

0

Ew2
,xdx > 0 ∀w ∈ Ua, λ < λcr. (3.7)

1Strictly speaking, instead of λ, the axial load in the Euler-Bernoulli beam should be F =
λE/[(1 + µ)(1− µ2)].
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In this case, ΠEB(w) and Π(w) are strictly convex on Ua, therefore, both the Euler-

Bernoulli beam (3.5) and the nonlinear Gao beam (3.1) can have only one solution

(see Lemma 2.1. and Theorem 2.1 in [57]).

Dually, in the post-buckling state, i.e. λ > λcr, the total potential energy for the

Euler-Bernoulli beam is strictly concave and

inf {ΠEB(w)| w ∈ Ua, λ > λcr} = −∞,

which means that the Euler-Bernoulli beam is crushed. This shows that the Euler-

Bernoulli beam cannot be used for studying post-buckling problems. However, for

the nonlinear Gao beam, it was proved recently by Machalová and Netuka (see

Remark 2.2, [57]) that there exists a constant λGcr ≥ λcr such that the total potential

energy Π(w) is a nonconvex (double-well) functional if λ > λGcr, which allows at

most three critical points, i.e. the strong solutions to the nonlinear equation (3.1)

at each material point x ∈ [0, L]: two minimizers corresponding to the two possible

buckled states, one local maximizer corresponding to the possible unbuckled state

[24]. Clearly, these solutions are sensitive to both the axial load λ and the distributed

lateral force field f(x). By equation (3.2) we know that the axial deformation could

be relatively large, while the nonconvexity of the total potential shows that this

nonlinear beam model can be used for studying both pre and post-buckling problems

[8, 71]. Recently, the Gao beam model has been generalized for many real-world

applications in engineering and sciences [1, 2, 3, 49, 52, 55, 56, 58].

Although the nonlinear Gao beam can be used for modeling natural phenom-

ena, the nonconvexity of this beam model leads to some fundamental challenges in

mathematics and computational science. Generally speaking, traditional numerical

methods and nonlinear optimization techniques can be used only for solving convex

minimization problems. Due to the lack of a global optimality criterion to identify a

global minimizer at each iteration, most of nonconvex optimization problems cannot

be solved deterministically, therefore, they are considered to be NP-hard in global

optimization and computer science [28].

It was shown in [19] that by introducing a canonical strain measure

ε = Λ(w) =
1

2
w2
,x, (3.8)

and a convex canonical function

V (ε) =
1

3
Eαε2 − Eλε,
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the nonconvex (double-well) potential

W (w,x) =
1

12
Eαw4

,x −
1

2
Eλw2

,x

in Π can be written in the canonical form

W (w,x) = V (Λ(w)).

Thus, the canonical dual stress can be uniquely defined by

σ = ∂V (ε) =
2Eα

3
ε− Eλ. (3.9)

By the Legendre transformation we have the canonical complementary energy

V ∗(σ) = εσ − V (ε)

=
3

4Eα
(σ + Eλ)2. (3.10)

Thus, replacing W (w,x) with

V (Λ(w)) = Λ(w)σ − V ∗(σ),

the Gao-Strang total complementary energy Ξ : Ua × Sa → R [13] in nonlinear

elasticity can be defined as

Ξ(w, σ) =

∫ L

0

(
1

2
EIw2

,xx +
1

2
σw2

,x −
3

4Eα
(σ + Eλ)2 − f(x)w

)
dx

= G(w, σ)−
∫ L

0

(
V ∗(σ)− f(x)w

)
dx, (3.11)

where

Sa = {σ ∈ C[0, L]| σ(x) ≥ −λE ∀x ∈ [0, L]},

and

G(w, σ) =

∫ L

0

(
1

2
EIw2

,xx +
1

2
σw2

,x

)
dx (3.12)

is the generalized Gao-Strang complementary gap function [13].

Theorem 7 (Complementary-duality Principle [19])

For any given external loads f(x) and end load λ, the pair (w̄, σ̄) is a critical point

of Ξ(w, σ) if and only if w̄ is a critical point of Π(w) and Π(w̄) = Ξ(w̄, σ̄).
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Proof. The criticality condition δΞ(w̄, σ̄) = 0 leads to the following canonical equa-

tions:

EIw̄,xxxx − σ̄w̄,xx = f(x), (3.13)

1

2
w̄2
,x =

3

2Eα
(σ̄ + Eλ), (3.14)

which are equivalent to equation (3.1). The equality

Π(w̄) = Ξ(w̄, σ̄),

follows directly from the Fenchel-Young equality

V (Λ(w̄)) + V ∗(σ̄) = Λ(w̄)σ̄,

due to the convexity of the canonical function V (ε). 2

Theorem 8 (Triality Theory [19])

Let (w̄, σ̄) be a critical point of Ξ(w, σ).

If G(w̄, σ̄) ≥ 0, then w̄ is a global minimizer of Π(w) on Ua and

Π(w̄) = min
w∈Ua

Π(w) = min
w∈Ua

max
σ∈Sa

Ξ(w, σ). (3.15)

If G(w̄, σ̄) < 0, then on a neighborhood Uo × So of (w̄, σ̄), we have either

Π(w̄) = min
w∈Uo

Π(w) = min
w∈Uo

max
σ∈So

Ξ(w, σ) = Ξ(w̄, σ̄), (3.16)

or

Π(w̄) = max
w∈Uo

Π(w) = max
w∈Uo

max
σ∈So

Ξ(w, σ) = Ξ(w̄, σ̄). (3.17)

Proof. For the positive gap function, Ξ(w, σ) is a saddle functional and the total

potential Π(w) is convex on Ua [13]. In this case, statement (3.15) follows directly

from Gao and Strang’s theory for general large deformation problems [13], whereas

for the negative gap function, Ξ(w, σ) is a bi-concave functional. In this case, the

total potential Π(w) is nonconvex on Ua, which could have both local minimum and

local maximum solutions. Due to the fact that

max
σ∈So

Ξ(w, σ) = max
w∈Uo

Π(w),

statements (3.16) and (3.17) can be proved easily by the general triality theory [19].

2
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The triality theory was first discovered in the post-buckling analysis of the large

deformed beam theory [17]. Generalization to nonconvex/discrete optimization prob-

lems was given in 2000 [27]. Detailed information relating to this theory with its

extensive applications in global optimization and nonconvex mechanics can be found

in the monograph [19] and recent review articles [27, 32, 37].

3.2 Mixed finite element method

By using the finite element method, the domain of the beam is discretized into m

elements [0, L] =
⋃m
e=1 Ωe. In each element Ωe = [xe, xe+1], the deflection, rotating

angular and dual stress for node xe are marked as we, θe and σe, respectively, and

similar for node xe+1. Then, we have the nodal displacement vector we of the e-th

element

wTe = [we θe we+1 θe+1], (3.18)

and the nodal dual stress element σe

σTe = [σe σe+1]. (3.19)

In each element, we use mixed finite element interpolations for both w(x) and σ(x),

i.e. ∀x ∈ Ωe,

whe (x) = NT
w (x)we, (3.20)

and

σhe (x) = NT
σ (x)σe. (3.21)

Thus, the spaces Ua and Sa can be numerically discretized to finite-dimensional

spaces Uha and Sha , respectively. The shape functions are based on the piecewise-

cubic polynomial for w(x),

Nw =


1
4

(1− ξ)2 (2 + ξ)
Le
8

(1− ξ)2 (1 + ξ)
1
4

(1 + ξ)2 (2− ξ)
Le
8

(1 + ξ)2 (ξ − 1)

 , (3.22)

and piecewise-linear for σ(x),

Nσ =
1

2

[
(1− ξ)
(1 + ξ)

]
, (3.23)
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where ξ = 2x/Le − 1 with Le being the length of the e-th beam element. Thus, on

the discretized feasible deformation space Uha , the Gao-Strang total complementary

energy can be expressed in the following discretized form

Ξh(w,σ) =
m∑
e=1

(
1

2
wTe G

e(σe) we −
1

2
σTe Ke σe − λTe σe − fTe we − ce

)
=

1

2
wT G(σ) w − 1

2
σT K σ − λT σ − fT w − c, (3.24)

where w ∈ Uha ⊂ R2(m+1) and σ ∈ Sha ⊂ Rm+1 are the nodal deflection and dual

stress vectors, respectively. We let

Sha = {σ ∈ Rm+1| det G(σ) 6= 0}. (3.25)

The Hessian matrix of the gap function G(σ) ∈ R2(m+1) × R2(m+1) is obtained by

assembling the following symmetric matrices Ge(σe):

Ge(σe) =

∫
Ωe

(
EI N ′′w (N ′′w)T + (Nσ)T σe N

′
w (N ′w)T

)
dx

=

∫ 1

−1

Le
2

(
EI N ′′w (N ′′w)T + (Nσ)T σe N

′
w (N ′w)T

)
dξ

=
EILe

2

∫ 1

−1

N ′′w (N ′′w)Tdξ +
Le
2

∫ 1

−1

(Nσ)T σe N
′
w (N ′w)Tdξ

= Ge
1 +Ge

2(σe), (3.26)

where,

Ge
1 =

EILe
2

∫ 1

−1

N ′′w (N ′′w)Tdξ

=


12EI
L3
e

6EI
L2
e
−12EI

L3
e

6EI
L2
e

6EI
L2
e

4EI
Le

−6EI
L2
e

2EI
Le

−12EI
L3
e
−6EI

L2
e

12EI
L3
e
−6EI

L2
e

6EI
L2
e

2EI
Le

−6EI
L2
e

4EI
Le

 , (3.27)
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and Ge
2 is defined by the two stress ends σe and σe+1 of the beam element

Ge
2(σe) =

[
geij

]
4×4

=
Le
2

∫ 1

−1

(Nσ)T σe N ′w (N ′w)Tdξ (3.28a)

=


3(σe+σe+1)

5Le
σe+1

10
−ge11

σe

10

ge12 Le(
σe

10
+ σe+1

30
) −ge12 −Le(σe+σe+1)

60

−ge11 −ge12 ge11 −ge14

ge14 ge24 −ge14 Le(
σe

30
+ σe+1

10
)

 .
(3.28b)

The matrix K ∈ Rm+1 × Rm+1 is obtained by assembling the following positive-

definite matrices Ke

Ke =

∫
Ωe

(
3

2Eα
Nσ N

T
σ

)
dx (3.29a)

=

∫ 1

−1

(
3Le
4Eα

Nσ N
T
σ

)
dξ (3.29b)

=
Le
Eα

[
1
2

1
4

1
4

1
2

]
. (3.29c)

The vector λ = {λe} ∈ Rm+1 is defined by assembling the following λe

λe =

∫
Ωe

(
3

2α
λNσ

)
dx (3.30a)

=

∫ 1

−1

(
3Le
4α

λNσ

)
dξ (3.30b)

=
λLe
a

[
3
4
3
4

]
. (3.30c)

Also, f = {fe} ∈ R2(m+1) is defined by assembling the following fe

fe =

∫
Ωe

f
(
x
)
Nw dx =

∫ 1

−1

Le
2
f
(
ξ
)
Nwdξ , (3.31)
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and c =
m∑
e=1

ce ∈ R is defined as

ce =

∫
Ωe

(
3E

4α
λ2

)
dx =

∫ 1

−1

(
3ELe

8α
λ2

)
dξ

=
3

4α
ELeλ

2. (3.32)

By the critical condition δΞh(w,σ) = 0, canonical equations (3.13) and (3.14)

have the following discretized forms

G(σ) w − f = 0, (3.33)

1

2
wT H w −K σ − λ = 0, (3.34)

where H = G,σ(σ) stands for gradient of G(σ) with respect to the vector σ and

wTHw =



wTG,σ1(σ)w

wTG,σ2(σ)w

.

.

.

wTG,σm+1(σ)w


∈ Rm+1,

in which σT = [σ1,σ2, ...,σm+1].

For any given w ∈ Uha , we know that Ξ(w, ∗) : Sha → R is concave and the

discretized total potential energy can be obtained by

Πh
p(w) = max{Ξ(w,σ)| σ ∈ Sha}

= {Ξ(w,σ)| σ = K−1(
1

2
wT H w − λ)}. (3.35)

However, the convexity Ξ(∗,σ) : Uha → R will depend on σ ∈ Sha . The discretized

pure complementary energy Πh
d : Sha → R can be obtained by the following canonical

dual transformation

Πh
d(σ) = sta {Ξ(w,σ)| w ∈ Uha }

= {Ξ(w,σ)| w = G−1(σ)f}

= −1

2
fT G−1(σ) f − 1

2
σT K σ − λT σ − c (3.36)
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where sta {g(w)|w ∈ Uha } stands for finding the stationary value of g(w) on Uha .

Clearly, its convexity depends on G(σ). Let

S+
a = {σ ∈ Sha | G(σ) � 0}, (3.37)

S−a = {σ ∈ Sha | G(σ) ≺ 0}. (3.38)

Theorem 9 ([19])

Suppose (w̄, σ̄) is a stationary point of Ξh(w,σ), then Πh
p(w̄) = Ξh(w̄, σ̄) = Πh

d(σ̄).

Moreover, if σ̄ ∈ S+
a , then we have

Canonical Min-Max Duality:

Πh
p(w̄) = min

w∈Uha
Πh
p(w) ⇔ max

σ∈S+a
Πh
d(σ) = Πh

d(σ̄). (3.39)

If σ̄ ∈ S−a , then on a neighborhood Uo × So ⊂ Uha × S−a of (w̄, σ̄) we have

Canonical Double-max Duality:

Πh
p(w̄) = max

w∈Uo
Πh
p(w) ⇔ max

σ∈So
Πh
d(σ) = Πh

d(σ̄). (3.40)

Canonical Double-min Duality (if dimUha = dimSha ):

Πh
p(w̄) = min

w∈Uo
Πh
p(w) ⇔ min

σ∈So
Πh
d(σ) = Πh

d(σ̄). (3.41)

The canonical min-max duality can be used to find the global minimizer of the

nonconvex problem by using the canonical dual problem

(Pd) : max{Πh
d(σ)| σ ∈ S+

a }, (3.42)

which is a concave maximization problem and can be solved easily by well-developed

convex analysis and optimization techniques. The canonical double-max and double-

min duality statements can be used to find the biggest local maximizer and a local

minimizer of the nonconvex primal problem, respectively. It was proved in [7, 31,

60] that both canonical min-max and double-max duality statements hold strongly

regardless of the dimensions of Uha and Sha , while the canonical double-min duality

statement (3.41) holds weakly if dimUha 6= dimSha , but strongly if dimUha = dimSha .

All these cases are within our reach in Sections 3.4 and 3.5.
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3.3 Semi-definite programming algorithm

It is easy to understand that the nonconvex post-buckling problem could have mul-

tiple global minimizers for certain external loads, say q(x) = 0. In this case, we have

det G(σ) = 0 and Sha = ∅. In order to deal with this case, this section presents a SDP

(Semi-Definite Programming, see [43] and [72]) reformulation to solve the canonical

dual problem (3.42). The SDP algorithm is applied to obtain all post-buckled solu-

tions of a large deformed elastic beam.

By the fact that Ξ(w,σ) is a saddle function on Uha × S+
a , we have

min
w∈Uha

Πh
p(w) = min

w∈Uha
max
σ∈S+a

Ξ(w,σ) = max
σ∈S+a

min
w∈Uha

Ξ(w,σ). (3.43)

For any given σ ∈ S+
a , the solution to minw∈Uha Ξ(w,σ) leads to

w = w(σ) = G−1(σ)f (3.44)

Thus, the stress fields σ can be found by the following problem

max
σ

Ξ(w(σ),σ) =
1

2
w(σ)TG(σ)w(σ)− 1

2
σT K σ − λTσ − fTw(σ)− c

≡ max
σ

Πh
d(σ)

s.t. G(σ) � 0. (3.45)

By canonical min-max duality we know that if σ∗ ∈ S+
a is a global maximizer of prob-

lem (3.45), then w∗ = w(σ∗) should be a global minimizer of Πh
p(w). Furthermore,

the problem (3.45) is the same as:

max
σ,t

t s.t. G(σ) � 0, t ≤ φ(σ)− 1

2
σT K σ (3.46)

where

φ(σ) =
1

2
w(σ)TG(σ)w(σ)− λTσ − fTw(σ)− c.

By the fact that K � 0, the Schur complement lemma (see [72]) for the second

inequality constraint in (3.46) implies[
2K−1 σ

σT φ(σ)− t

]
� 0. (3.47)
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Thus, the problem (3.46) can be relaxed to the following SDP problem

max
σ,t

t s.t. G(σ) � 0,

[
2K−1 σ

σT φ(σ)− t

]
� 0. (3.48)

By the same way, the SDP relaxation for the canonical double-max duality state-

ment

max
w∈Uha

Πh
p(w) = max

w,σ
Ξ(w,σ) = max Πh

d(σ) s.t. σ ∈ S−a (3.49)

should be equivalent to

max
σ,t

t s.t. −G(σ) � 0,

[
2K−1 σ

σT φ(σ)− t

]
� 0, (3.50)

which leads to a local maximum solution to the post-buckling problem.

Now, let (w∗,σ∗) be a local minimizer of the canonical double-min problem

min
w

Πh
p(w) = min

w
max
σ

Ξ(w,σ) = min
σ

Πh
d(σ), s.t. σ ∈ S−a .

By equation (3.44), the local minimizer is equivalent to the following problem

min
σ
{Ξ(w(σ),σ) ≡ Πh

d(σ)} s.t. G(σ) ≺ 0. (3.51)

This problem is the same as:

minσ,t t

s.t. G(σ) ≺ 0,

t ≥ −1

2
fT G−1(σ) f − 1

2
σT K σ − λT σ − c. (3.52)

In order to apply the Schur complement lemma to the second inequality in (3.52),

we need to linearize the complementary energy

V ∗(σ) =
1

2
σT K σ.

By using equation (3.29a), the complementary energy V ∗(σ) can be expressed by
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using finite element mesh in the following discretized form

1

2
σTe Keσe =

1

2
σTe

[∫
Ωe

3

2Eα
NσN

T
σ dx

]
σe

=
3

4Eα

∫
Ωe

σTe Nσ(NT
σ σe)dx, (3.53)

then from (3.21), we get

1

2
σTe Keσe =

3

4Eα

∫
Ωe

σTe Nσσ
h
e dx. (3.54)

By substituting (3.8) into (3.9) and then substituting (3.9) into (3.54), we have

1

2
σTe Keσe =

3

4Eα

∫
Ωe

(NT
σ σe)

T

[
Eα

3
wTe N

′
w (N ′w)Twe − Eλ

]
dx

=
1

2
wTe

[∫
Ωe

1

2
NT
σ σe N

′
w (N ′w)Tdx

]
we −

1

2

[∫
Ωe

3λ

2α
NT
σ dx

]
σe.(3.55)

Finally from (3.30a), the discretized form of the complementary energy V ∗(σ) can

be rewritten as

1

2
σTe Keσe =

1

2
wTe M

e(σe) we −
1

2
λTe σe. (3.56)

In which, the matrix M e(σe) is defined as

M e(σe) =

∫
Ωe

1

2

(
(Nσ)T σe N

′
w (N ′w)T

)
dx

=

∫ 1

−1

Le
4

(
(Nσ)T σe N

′
w (N ′w)T

)
dξ

=


3

10Le
(σe + σe+1) 1

20
σe+1 −M e

1,1
1
20
σe

M e
12

Le
60

(3σe + σe+1) −M e
12

−Le
120

(σe + σe+1)

M e
13 M e

23 M e
11 −M e

14

M e
14 M e

24 M e
34

Le
60

(σe + 3σe+1)


=

1

2
Ge

2(σe) . (3.57)

Thus, by using linearization of the complementary energy, a reformulated pure com-
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plementary energy can be given as

Π̂d(σ,w) = −1

2
fT G−1(σ) f − 1

2
wT M(σ) w − 1

2
λT σ − c, (3.58)

in which the stiffness matrix M(σ) in the strain energy

V (w) =
1

2
wT M(σ) w = V ∗(σ),

can be obtained by assembling the symmetric matrices M e(σe). Then, by using

Π̂d(σ,w), problem (3.52) can be relaxed to

min
σ,t

t s.t. G(σ) ≺ 0,
1

2
fT G−1(σ) f + φ̂(σ,w) + t ≥ 0, (3.59)

where

φ̂(σ,w) =
1

2
wT M(σ) w +

1

2
λT σ + c.

The primal variable w in this problem can be computed by the dual solution σ in

the primal-dual iteration. Thus, by using the Schur complement lemma this problem

can be relaxed to the following SDP problem

min
σ,t

t s.t. −G(σ) � 0,

[
−2G(σ) f

fT φ̂(σ,w) + t

]
� 0, (3.60)

Clearly, if the stress σ∗ is a local minimizer on S−a of problem (3.60), the canonical

double-min duality shows that w∗ = w(σ∗) should be a local minimizer of Πh
p(w).

Consequently, the primal-dual semi-definite programming (PD-SDP) algorithm

for solving all possible post-buckling problems can be proposed as the following.

PD-SDP Algorithm:

1. Given initial primal solution w(0) and error allowance ε > 0, let k = 1 ;

2. Compute the dual solutions {σ(k)} by applying the SDP solver for problems

(3.48), (3.50) and (3.60), respectively.

3. Compute the primal solution w(k) = [G(σ(k))]−1f .

4. For check convergence; if ‖w(k) − w(k−1)‖/‖w(k)‖ ≤ ε, stop with the optimal

solution w∗ = w(k). Otherwise, let k = k + 1 and go to step 2.
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The SDP solver used in this algorithm is a popular software package named

SeDuMi, which is based on the interior point method [73].

3.4 Large deformation with piecewise-linear dual

stress interpolation

3.4.1 Numerical examples

We present in this section two different types of beams by using piecewise-linear dual

stress (PLS) interpolation, shown in (3.23). Geometrical data were kept fixed for all

computations; elastic modulus E = 1000Pa, Poisson’s ratio µ = 0.3 and beam length

L = 1m. The lateral load q(x) is assumed to be either a uniformly distributed load

such that f(x) = (1−µ2)q(x) = 0.1N/m or a concentrated force on the center of the

beam in which f(x) = 0.1N . A different number of elements with the same beam

length, different compressive load λ with different values of beam height are applied

in this section.

Figure 3.2: Types of beams - uniformly distributed load (left), concentrated force
(right)

3.4.1.1 Simply supported beam

A simply supported beam model is fixed in both directions at x = 0 and fixed only

in the y-direction at x = L, as shown in Figure 3.2-a, with the boundary conditions

w(0) = w′′(0) = w(L) = w′′(L) = 0.

If the beam height is 0.1 (i.e. h = 0.05m), the critical load is λcr = 0.00097m2 (see

equation (3.6)). For a different number of beam elements, the approximate deflections

of this beam with λ = 0.01m2>λcr under a uniformly distributed load are illustrated

in Figure 3.3. In the graphs, red represents the global minimum, green represents the
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Figure 3.3: Simply supported beam under a uniformly distributed load with λ =
0.01m2 (h = 0.05m)

local maximum and blue represents the local minimum of Π(w). Figure 3.3 shows

that the two post-buckled configurations, global minimum and local maximum, look

alike with all of the different number of beam elements. In contrast to the local

minimum, few differences appear in the local unstable buckled configuration. The

curve charts with 40, 50 and 60 elements seem very similar and more stable than the

curve charts that contain 10, 20 and 30 elements. Once again, Figure 3.4 shows that,

with a different number of elements at λ = 0.015m2>λcr, slight differences appear

on the local minimum curves.

Figure 3.4: Simply supported beam under a uniformly distributed load with λ =
0.015m2 (h = 0.05m)
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The local minimum solutions with a different number of beam elements at a

compressive load λ = 0.005m2>λcr look alike, as shown in Figure 3.5. The Gao-

Strang gap function for all post-buckled solutions was computed under a uniformly

distributed load for a different number of elements with λ = 0.01m2 as reported in

Table 3.1.

Figure 3.5: Simply supported beam under a uniformly distributed load with λ =
0.005m2 (h = 0.05m)

We focus on 40 elements with the same beam length for all the following examples

in this section. The deflections of the simply supported beam under a concentrated

force with different compressive loads λ > λcr are illustrated in Figure 3.6. At

h = 0.1m, the critical load of the simply supported beam is λcr = 0.0078m2. The

deflections of this beam under a uniformly distributed load and a concentrated force

are summarized in Figures 3.7 and 3.8, respectively. The Gao-Strang gap function

for all three post-buckled solutions was computed under a uniformly distributed load

and a concentrated force as reported in Tables 3.2 and 3.3, respectively.

Figure 3.6: Simply supported beam under a concentrated force (h = 0.05m)
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Figure 3.7: Simply supported beam under a uniformly distributed load (h = 0.1m)

Figure 3.8: Simply supported beam with a concentrated force (h = 0.1m)

Table 3.1: Gao-Strang gap function for simply supported beam with different numbers of elements

Compressive No elements Gap function under a uniformly distributed load

load m Global Min Local Min Local Max

20 7.63568e-09 -2.15332e-09 -4.16926e-07
λ = 0.01 40 1.45323e-09 -8.56515e-10 -1.04182e-07

60 6.10785e-10 -4.93895e-10 -4.62995e-08

3.4.1.2 Doubly/Clamped beam

A clamped beam or doubly/clamped beam model is clamped at both ends as shown

in Figure 3.2-b. The boundary conditions are defined as

w(0) = w′(0) = w(L) = w′(L) = 0.

The Euler buckling load of this beam with h = 0.05m is λcr = 0.0041m2. A different

number of beam elements are applied with the same conditions and λ = 0.009m2.
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Table 3.2: Gao-Strang gap function for simply supported beam under a uniformly distributed load

Compressive Gap function under a uniformly distributed load

Beam height loads “λ” Global Min Local Min Local Max

0.005 1.38767e-09 -3.90449e-10 -1.04182e-07
h = 0.05 0.01 1.45323e-09 -8.56515e-10 -1.04182e-07

0.015 1.51964e-09 -1.01164e-09 -1.04182e-07
0.0085 1.66885e-10 -1.48050e-10 -1.30228e-08

h = 0.1 0.01 1.67195e-10 -1.50613e-10 -1.30228e-08
0.015 1.68227e-10 -1.55455e-10 -1.30228e-08

Table 3.3: Gao-Strang gap function for simply supported beam under a concentrated load

Compressive Gap function under a concentrated load

Beam height loads “λ” Global Min Local Min Local Max

0.005 2.72407e-12 -9.56982e-13 -1.89005e-10
h = 0.05 0.01 2.84230e-12 -1.78093e-12 -1.89005e-10

0.015 2.96381e-12 -2.05556e-12 -1.89005e-10
0.0085 3.28941e-13 -2.95470e-13 -2.36257-11

h = 0.1 0.01 3.29501e-13 -3.00014e-13 -2.36257e-11
0.015 3.31372e-13 -3.08597e-13 -2.36257e-11

We found that the results looked alike for all three post-buckled solutions as shown

in Figure 3.9. The results of the deflections under a uniformly distributed load and

a concentrated force for different axial loads λ>λcr with m = 40 are illustrated in

Figures 3.10 and 3.11, respectively.

Figure 3.9: Clamped beam under a uniformly distributed load with λ = 0.009m2

(h = 0.05m)
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Figure 3.10: Clamped beam under a uniformly distributed load (h = 0.05m)

Figure 3.11: Clamped beam under a concentrated force (h = 0.05m)

The Gao-Strang gap function for all three post-buckled solutions with different

axial loads and beam heights, was computed under a uniformly distributed load and

a concentrated force as reported in Tables 3.4 and 3.5, respectively.

Table 3.4: Gao-Strang gap function for doubly/clamped beam under a uniformly distributed load

Compressive Gap function under a uniformly distributed load

Beam height loads “λ” Global Min Local Min Local Max

0.0085 2.09541e-08 -2.01747e-08 -1.04101e-07
h = 0.05 0.009 2.09619e-08 -2.02106e-08 -1.04101e-07

0.01 2.09768e-08 -2.02717e-08 -1.04101e-07
0.014 2.10396e-08 -2.04287e-08 -1.04101e-07
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Table 3.5: Gao-Strang gap function for doubly/clamped beam under a concentrated load

Compressive Gap function under a concentrated load

Beam height loads “λ” Global Min Local Min Local Max

0.005 1.08569e-11 -9.01280e-12 -1.88954e-10
h = 0.05 0.0085 1.09445e-11 -9.72096e-12 -1.88954e-10

0.01 1.09801e-11 -9.87268e-12 -1.88954e-10

3.5 Large deformation with different dual stress

interpolations

According to the triality theory (see Theorem 8) and Theorem 9, canonical double-

min duality statement (3.41) holds strongly if dimUha = dimSha . This condition is

not verified when we apply PLS mesh, i.e. piecewise-linear stress mesh, on the dual

stress field because dimUha = 2(m+1) 6= m+1 = dimSha (see (3.18) and (3.19)). So,

piecewise-quadratic stress (PQS) mesh is more convenient than PLS to verify this

theory to obtain the closed dimensions for discretized displacement w ∈ R2(m+1) and

discretized stress σ ∈ R2m+1 (where σ ∈ Rm+1 with PLS). These two dimensions are

still not equal, however, it is possible to make them equal if we use mixed different

dual stress interpolations on the elements of the same beam. So, in addition to the

PLS mesh and PQS mesh, some mixed meshes of dual stress interpolations are used

in this section in order to improve the local unstable buckled configuration solution

for a large deformed beam.

Figure 3.12: Different dual stress interpolations for the beam element

Hence, the formulas for the shape functions of the dual stress field, which are based

on the PLS (δ = 1), PQS (δ = 2) and piecewise-cubic stresses (PCS, δ = 3), can be

expressed as

Nσ|δ=1 =
1

2

[
1− ξ
1 + ξ

]
,
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Nσ|δ=2 =
1

2

 ξ2 − ξ
1− ξ2

ξ2 + ξ

 ,

Nσ|δ=3 =
1

16


−1 + ξ + 9ξ2 − 9ξ3

9− 27ξ − 9ξ2 + 27ξ3

9 + 27ξ − 9ξ2 − 27ξ3

−1− ξ + 9ξ2 + 9ξ3

 ,
where δ refers to the number of straight lines inside element e, as shown in Figure

3.12. According to the different dual stress interpolations and different values of

δ = 1, 2, 3, the symmetric matrix G2
e(σe) in equation (3.28a) of the gap function

G(σ) ∈ R2(m+1) × R2(m+1) can be formulated as

G2
e(σe)

∣∣
δ=1

=


3(σe+σe+1)

5Le
σe+1

10
−ge11

σe

10

ge12 Le(
σe

10
+ σe+1

30
) −ge12 −Le(σe+σe+1)

60

−ge11 −ge12 ge11 −ge14

ge14 ge24 −ge14 Le(
σe

30
+ σe+1

10
)

 ,

G2
e(σe)

∣∣
δ=2

=


3(σe+σe+1)+18σα

35Le

2(σα−σe)
35

+ 3σe+1

70
−ge11

2(σα−σe+1)
35

+ 3σe

70

ge12 Le(
σe

14
+ σe+1

210
+ σα

35
) −ge12 Le(

−(σe+σe+1)
84

− σα

210
)

−ge11 −ge12 ge11 −ge14

ge14 ge24 −ge14 Le(
σe

210
+ σe+1

14
+ σα

35
)

 ,
and,

G2
e(σe)

∣∣
δ=3

=


3(σe+σe+1)+81(σα+σβ)

140Le
σe+1+45σβ−9σe−9σα

280
−ge11

σe+45σα−9σe+1−9σβ

280

ge12
Le(105σe+11σe+1+27(3σα+σβ))

1680
−ge12

−Le(19(σe+1+σe)+9(σα+σβ))
1680

−ge11 −ge12 ge11 −ge14

ge14 ge24 −ge14
Le(105σe+1+11σe+27(3σβ+σα))

1680

 ,
in which σ ∈ Rδm+1. Also, the positive-definite matrix Ke in equation (3.29a) of

the stiffness matrix K ∈ Rδm+1 × Rδm+1 can be written as

Ke

∣∣
δ=1

=
Le

4Eα

[
2 1

1 2

]
,
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Ke

∣∣
δ=2

=
Le

20Eα

 4 1 −1

1 4 1

−1 1 4

 ,
and,

Ke

∣∣
δ=3

=
Le

Eα


4
35

99
1120

− 9
280
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1120
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1120
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140

99
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4
35

 .
Finally, vector λe in equation (3.30a) of λ ∈ Rδm+1 can be defined as

λe
∣∣
δ=1

=
3λLe
4α

[
1

1

]
,

λe
∣∣
δ=2

=
λLe

4α

 1

2

1

 ,
and,

λe
∣∣
δ=3

=
3λLe

16α


1

3

3

1

 .
According to the boundary conditions of the beam and by designing suitable mixed

meshes of different dual stress interpolations, the PD-SDP algorithm in section 3.3

can be used to solve all possible post-buckling problems (3.48), (3.50) and (3.60), in

which

M e(σe)
∣∣
δ

=
1

2
Ge

2(σe)
∣∣
δ
, ∀ δ = 1, 2, 3.

3.5.1 Numerical examples with mixed meshes

We present three different types of beams which are controlled by different boundary

conditions. Some geometrical data are kept fixed for all computations; E = 1000Pa,

v = 0.3, L = 1m, h = 0.05m with an odd number of beam elements m = 51.

The lateral load q(x) is assumed to be either a uniformly distributed load such that

f(x) = (1−µ2)q(x) = 0.08N/m or a concentrated force on the center of the beam in

which f(x) = 0.08N . Different compressive load λ are considered in our applications.
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3.5.1.1 Simply supported beam

According to the boundary conditions of simply supported beams (see Figure 3.2-

a), two elements of discretized displacement w = {we} ∈ R2(m+1) should be zero,

therefore, the remaining non-zero elements of vector w are (2m). We used three

types of dual stress interpolations to construct a mixed mesh of dual stress fields in

order to obtain dimUha = dimSha . The PQS is applied for (m − 3) beam elements

and the PCS is used for only one element on the centre of the beam, while PLS

is applied for two elements which are neighboring to the central beam element as

shown in “Mesh-1” in Figure 3.13. So, we have dim(σ) = dim(w) = 2m, and this

dimension equals 102 for m = 51. The approximate deflections with λ>λcr under

both uniformly distributed load and concentrated force are shown in Figures 3.14

and 3.15, respectively.

Figure 3.13: Mesh-1: Mixed dual stress interpolations of beam elements

Figure 3.14: Post-buckling solutions of simply supported beam under uniformly distributed
load

3.5.1.2 Doubly/Clamped beam

The boundary conditions of a doubly/clamped beam (see (3.2-c)) force the first

two and the last two elements of discretized displacement w to be zero. Thus, the

remaining non-zero elements of the displacement vector are (2m− 2). The selected

mixed mesh of the dual stress field contains (m − 3) of PQS, while PLS can be
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Figure 3.15: Post-buckling solutions of simply supported beam under a concentrated force

applied on the three remaining elements of the clamped beam as shown in “Mesh-2”

in Figure 3.16. For m = 51, dim(σ) = dim(w) = 100. The approximate deflections

for λ>λcr under a uniformly distributed load and concentrated force are summarized

in Figures 3.17 and 3.18, respectively.

Figure 3.16: Mesh-2: Mixed dual stress interpolations of beam elements

Figure 3.17: Post-buckling configurations of clamped beam under uniformly distributed
load
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Figure 3.18: Post-buckling configurations of clamped beam under a concentrated force

3.5.1.3 Clamped/Simply supported beam

A clamped/simply supported beam is clamped at x = 0 and fixed in both directions

at x = L as shown in Figure 3.19. According to the boundary conditions

w(0) = w′(0) = w(L) = w′′(L) = 0,

three elements of discretized displacement w should be zero. So, the remaining non-

zero elements of w are (2m−1). The “ Mesh-3 ” is designed by applying two different

dual stress interpolations. (m− 3) of beam elements are applied by the PQS, while

PLS is applied for two elements which surround the central beam element, as shown

in Figure 3.20. Thus, for m = 51, the dim(σ) = dim(w) = 101. The critical load of

this beam is λcr = 0.0034m2 (see equation (3.6)). The approximate deflections under

a uniformly distributed load and concentrated force are summarized in Figures 3.21

and 3.22, respectively.

Figure 3.19: Clamped/simply supported beam - uniformly distributed load (left), con-
centrated force (right)
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Figure 3.20: Mesh-3: Mixed dual stress interpolations of beam elements

Figure 3.21: Post-buckling configurations of clamped/simply supported beam under uni-
formly distributed load

Figure 3.22: Post-buckling configurations of clamped/simply supported beam under a con-

centrated force

3.6 Summary

We have presented a canonical dual finite element method for the post-buckling

analysis of a large deformed elastic beam which is governed by a fourth order non-

linear differential equation which was introduced by Gao in 1996. The nonconvexity

of the total potential energy Π(w) is necessary for the post-buckling phenomenon,

but it leads to a fundamental difficulty for traditional numerical methods and al-

gorithms. Based on the canonical duality theory and mixed finite element method,
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a new primal-dual semi-definite program (PD-SDP) algorithm is proposed, which

can be used to solve this challenging nonconvex variational problem to obtain all

possible post-buckled solutions. According to the triality theory, the dimensions of

the discretized displacement vector and dual stress vector were made equal in some

examples by designing suitable mixed meshes of different dual stress interpolations

depending on the boundary conditions of the beam. Extensive applications are il-

lustrated for the post-buckled beam with different boundary conditions and external

loads. The Gao-Strang gap function is computed for all post-buckled solutions. It

is interesting to note that for local and global minima, the value of this gap func-

tion is affected by both the number of beam elements and axial loads, but for local

maxima, its value is affected mainly by the number of elements. Our results show

that the number of post-buckling solutions depends mainly on the external loads.

For a given nontrivial q(x), the nonlinear beam can have at most three post-buckled

solutions if λ ≥ λcr. Both the global minimizer and local maximizer solutions are

very stable. However, the local minimal solution is very sensitive not only to the

artificial parameters, such as the size of the finite elements, but also to the natural

conditions such as the external loads and boundary conditions.
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Chapter 4

Three-Dimensional Topology

Optimization

Topology optimization is a mathematical method that optimizes a material struc-

ture within a given design space in order to satisfy a given set of loads, boundary

conditions, geometry of the design domain, and the amount of material to be used in

the final design. The amount of available material is typically distributed into fully

solid material and void elements based on the results of the optimization within the

structural design domain. Topology optimization is also a powerful tool for optimal

design in the multidisciplinary fields of optics, electronics, structural, bio and nano-

mechanics. Mathematically speaking, this tool is based on a finite element method

such that the coupled variational problems in computational mechanics can be for-

mulated as certain mixed integer nonlinear prograning (MINLP) problems [39]. Due

to the integer constraint, traditional theory and methods in continuous optimiza-

tion cannot be applied for solving topology optimization problems. Therefore, most

MINLP problems are considered to be NP-hard in global optimization and computer

science [41].

The key feature of the canonical duality theory (CDT) is that by using cer-

tain canonical strain measures, general nonconvex/nonsmooth potential variational

problems can be equivalently reformulated as a pure (stress-based only) complemen-

tary energy variational principle [17]. It was discovered by Gao in 2007 that by

simply using a canonical measure ε(x) = x(x − 1) = 0, the 0-1 integer constraint

x ∈ {0, 1} in general nonconvex minimization problems can be equivalently con-

verted to a unified concave maximization problem in continuous space, which can be

solved deterministically to obtain a global optimal solution in polynomial time [23].

Therefore, this pure complementary energy principle plays a fundamental role not
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only in computational nonlinear mechanics, but also in discrete optimization [27, 29].

Most recently, Gao proved that the topology optimization should be formulated as

a bi-level mixed integer nonlinear programming problem (BL-MINLP) [39, 38]. The

upper-level optimization of this BL-MINLP is actually equivalent to the well-known

Knapsack problem, which can be solved analytically by the CDT [38]. The review

articles [27, 28] and the newly published book [41] provide comprehensive reviews

and applications of the canonical duality theory in multidisciplinary fields of math-

ematical modeling, engineering mechanics, nonconvex analysis, global optimization,

and computational science.

The main goal of this chapter is to apply the canonical duality theory for solv-

ing 3-dimensional benchmark problems in topology optimization. In Section 4.2, we

first review Gao’s recent work on why topology optimization should be formulated

as a bi-level mixed integer nonlinear programming problem. A basic mathemati-

cal mistake in topology optimization modeling is explicitly addressed. A canonical

penalty-duality method for solving this Knapsack problem is presented in Section

4.3, which is actually the so-called β-perturbation method first proposed in global

optimization [29] and recently in topology optimization [39]. Section 4.4 reveals for

the first time the unified relation between this canonical penalty-duality method in

integer programming and Gao’s pure complementary energy principle in nonlinear

elasticity. Section 4.5 provides 3-D finite element interpolation and Section 4.6 pro-

vides the associated canonical penalty-duality (CPD) algorithm. The volume evolu-

tionary method and computational complexity of this CPD algorithm are discussed.

Applications to 3-D benchmark problems are provided in Section 4.7.

4.1 Popular methods in topology optimization

During the past forty years, many approximate methods have been developed for

solving topology optimization problems, including the homogenization method [4, 6],

density-based method [5], the solid isotropic material with penalization (SIMP) [85,

65, 67], level set approximation [62, 68], evolutionary structural optimization (ESO)

[81, 82] and bi-directional evolutionary structural optimization (BESO) [64, 44, 63].

Currently, popular commercial software products used in topology optimization are

based on SIMP and ESO/BESO methods [54, 47, 84, 77]. However, these approxi-

mate methods cannot mathematically guarantee the global convergence. Also, they

usually suffer from having different intrinsic disadvantages, such as slow convergence,

the gray scale elements and checkerboards patterns, etc [10, 74, 78].
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The popular methods, SIMP and BESO, are applied in our work in Section 4.7

in order to compare them with the current method (CPD).

4.1.1 SIMP method

The SIMP method was originally provided by Bendsφe in 1989 [5], then it was

developed independently by Rozvany et al. in 1991 [65]. The process begins with a

partially density in all of the elements in the finite element domain. Many iterations

are performed to redistribute the dense regions in order to minimize the overall

compliance of the output structure. The minimum compliance optimization problem

using the SIMP method can be expressed as [46]

(Psimp) : min C = fTu

s.t. K(ρ)u = f ,

ρTv = Vc,

0 < ρe ≤ 1, ρ = {ρe}, (4.1)

where C is the mean compliance, f and u are the applied load and displacement

vectors, respectively, Vc > 0 is the desired volume bound, and K(ρ) is the global

stiffness matrix which can be defined as

K(ρ) =
n∑
e=1

ρpeKe, (4.2)

where Ke is the elemental stiffness matrix of the solid element and p > 0 is a given

penalization parameter. This penalization parameter must be carefully selected to

ensure more realistic solutions for the stiffness of every element in the structure to

avoid results containing regions of intermediate density (i.e. the penalization param-

eter forces the final solution towards more 0-1 solutions). The most conventional

penalization parameter which was selected based on the researchers experience is

p = 3. However, most elements in the design domain still remain in gray scale, due

to the fact that the design variables ρ = {ρe} are only approximate to 0 or 1. The

sensitivity of the target function C is deduced to be [46]

∂C

∂ρe
= −p ρp−1

e uTe Keue. (4.3)
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Several different methods can be used to solve minimum compliance problem (Psimp),

such as the optimality criteria methods (OC) [85, 66], the method of moving asymp-

totes (MMA) [69] and some others. Sigmund presented the following sensitivity filter

scheme by modifying elemental sensitivities during every iteration [75, 77] to ensure

that the optimal design is mesh independent and checkerboard free,

∂C

∂ρe
=

1

max(α, ρe)
∑n

i=1 Hei

n∑
i=1

Heiρi
∂C

∂ρi
, (4.4)

where α is a small number to avoid division by zero and Hei is the mesh-independent

weight factor given as

Hei = rmin − rei, {rei ≤ rmin}, (4.5)

where rmin is the filter radius and rei is the distance between the centres of elements

e and i, in which, weight factor Hei is zero outside the circular filter area as shown

in Figure 4.1.

Figure 4.1: Nodes located inside the circular sub-domain Ωe for eth element in the
filter scheme in the SIMP method

By introducing material penalization in equation (4.2), the minimum compliance

problem (Psimp) becomes nonconvex. Thus, it is possible to obtain a local optimum

with gray configuration. Rozvany et al. [66] and Sigmund1998 [74] found in their

examples that a local optimum may be avoided by applying the continuation method.

However, global optimization is unsure even using the continuation method [70] .

Sigmund [75] and Sigmund and Torquato [76] introduced in their study a different

continuation strategy using a mesh-independency filter. They suggested using a large

value for filter radius rmin to ensure a convex solution at the beginning, and then

decreasing it gradually until the solution ends up with a 0/1 design.

65



4.1.2 BESO method

The BESO method was addressed by Yang et al. in 1999 [83] for stiffness opti-

mization. They estimated the sensitivity numbers of the void elements through a

linear extrapolation of the displacement field after the finite element method. The

BESO method allows for not only the removal of solid elements from the structure

to eliminate the lowest sensitivity numbers, but also the addition of void elements

with the highest sensitivity numbers to the regions until the volume constraint and

a convergence criterion are satisfied. The number of removed and added elements

in each iteration is controlled by the unrelated parameters, rejection ratio and in-

clusion ratio, respectively. Querin et al. [63] used BESO for a full stress design

by applying the von Mises stress criterion, where the elements that have the lowest

von Mises stresses are removed and their number in each iteration is determined by

the rejection ratio parameter. While the void elements near the highest von Mises

stress regions are changed to solid elements and their number is determined by the

inclusion ratio parameter. Huang and Xie initially presented a hard-kill scheme in

2007 [44], where the elements are completely removed to create cavities. Then, they

introduced further improvements to their BESO algorithm by providing the so-called

soft-kill approach to solve compliance problems in the interpolation scheme in 2009

[45, 46]. The removal of an element is realized by switching the relative density from

1 to the lowest value of density ρ instead of a complete deletion.

The minimum compliance optimization problem in the BESO method can be

stated as [44, 46]

(Pbeso) : min C =
1

2
fTu

s.t. K(ρ)u = f ,

ρTv = Vc,

ρ ∈ {0, 1}. (4.6)

The sensitivity of the target function C is given by [46]

∂C

∂ρe
= −1

2
p ρp−1

e uTe Keue. (4.7)

It was found that the most conventional penalization parameter is p = 3 as in SIMP.

Problem (Pbeso) has been used for the topology optimization of a continuum structure

[6], but differs from the one used in BESO methods. In general, BESO methods have

difficulty dealing with problem (Pbeso). For example, if the volume is kept constant
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to satisfy the volume constraint ρTv = Vc, the target function may not converge.

The soft-kill BESO makes the algorithm stably convergent towards a solution for

minimum compliance problem (Pbeso).

A mesh-independency filter is activated all over the mesh by averaging the elemen-

tal sensitivity number with its neighbouring elements. The sensitivity filter scheme

is similar to that introduced by Sigmund and Peterson [74]. To add elements with

the highest sensitivity numbers into the design domain, a sensitivity filter scheme is

applied to acquire the sensitivity number for the void elements and to smooth the

sensitivity number in the prescribed design domain, therefore, BESO is considered a

heuristics-based method. For more detail see [46].

Generally speaking, the BESO methods can produce exactly 0-1 solutions, while

the SIMP suffers from some key limitations due to the fact that most SIMP solutions

are in gray scale which have to be filtered or interpreted physically, a global optimum

cannot be guaranteed and checkerboard patterns are problematic. The BESO usually

starts from the full design and decreases the volume of the structure iteratively until

the prescribed target volume is satisfied. It can produce an analytically exact integer

solution without any hard-kill heuristics to obtain a verified global optimal solution.

However, removing a small number of design elements may significantly change the

performance of the overall structure, particularly in relation to nonlinear problems

or in the case of complex constraints [78].

4.2 Mathematical problems for 3-D topology op-

timization

The minimum total potential energy principle provides a theoretical foundation for all

mathematical problems in computational solid mechanics. For general 3-D nonlinear

elasticity, the total potential energy has the following standard form [39], (see also

(2.1))

Π(u, ρ) =

∫
Ω

(
W (∇u)ρ+ u · bρ

)
dΩ−

∫
Γt

u · tdΓ, (4.8)

where the stored energy density W (F) is an objective function (see Remark 3) of

the deformation gradient F = ∇u. In topology optimization, the mass density

ρ : Ω→ {0, 1} is the design variable, which takes ρ(x) = 1 at a solid material point

x ∈ Ω, while ρ(x) = 0 at a void point x ∈ Ω. Additionally, it must satisfy the
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so-called Knapsack condition: ∫
Ω

ρ(x)dΩ ≤ Vc, (4.9)

where Vc > 0 is a desired volume bound.

By using the finite element method, the whole design domain Ω is meshed with

finite elements by dividing them into n disjointed finite elements {Ωe}. In each ele-

ment, the unknown variables can be numerically written as u(x) = N(x)ue, ρ(x) =

ρe ∈ {0, 1} ∀x ∈ Ωe, where N(x) is a given interpolation matrix, and ue is a nodal

displacement vector. Let Ua ⊂ Rm be a kinetically admissible space, in which certain

deformation conditions are given, ve represents the volume of the e-th element Ωe,

and v = {ve} ∈ Rn. Then the admissible design space can be discretized as a discrete

set

Za =

{
ρ = {ρe} ∈ Rn

∣∣ ρe ∈ {0, 1} ∀e = 1, . . . , n, ρTv =
n∑
e=1

ρeve ≤ Vc

}
(4.10)

and on Ua×Za, the total potential energy functional can be numerically reformulated

as a real-valued function

Πh(u,ρ) = C(ρ,u)− uT f , (4.11)

where

C(ρ,u) = ρTc(u),

in which

c(u) =

{∫
Ωe

[W (∇N(x)ue)− bTN(x)ue]dΩ

}
∈ Rn, (4.12)

and

f =

{∫
Γet

N(x)T t(x)dΓ

}
∈ Rm.

By the facts that the topology optimization is a combination of both variational

analysis on a continuous space Ua and optimal design on a discrete space Za, it cannot

be simply formulated in a traditional variational form. Instead, a general problem

of topology optimization should be proposed as a bi-level programming [38]:

(Pbl) : min{Φ(ρ,u)| ρ ∈ Za, u ∈ Ua}, (4.13)

s.t. u ∈ arg min
v∈Ua

Πh(v,ρ), (4.14)
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where Φ(ρ,u) represents the upper-level cost function, ρ ∈ Za is the upper-level

variable. Simillarly, Πh(u,ρ) represents the lower-level cost function and u ∈ Ua
is the lower-level variable. The cost function Φ(ρ,u) depends on both particular

problems and numerical methods. It can be Φ(ρp,u) = fTu− c(u)Tρp for any given

parameter p ≥ 1, or simply Φ(ρ,u) = −ρTc(u).

Since the topology optimization is a design-analysis process, it is reasonable to

use the alternative iteration method [38] for solving the challenging topology opti-

mization problem (Pbl), i.e.

(i) for a given design variable ρk−1 ∈ Za, solving the lower-level optimization

(4.14) for

uk = arg min{Πh(u,ρk−1)| u ∈ Ua} (4.15)

(ii) for the given cu = c(uk), solve the upper-level optimization problem (4.13)

for

ρk = arg min {Φ(ρ,uk) | ρ ∈ Za} . (4.16)

The upper-level problem (4.16) is actually equivalent to the well-known Knapsack

problem in its most simple (linear) form:

(Pu) : min{Pu(ρ) = −cTuρ | ρTv ≤ Vc, ρ ∈ {0, 1}n}, (4.17)

which makes a perfect sense in topology optimization, i.e. of all elements {Ωe}, one

should keep those stored more strain energy. Knapsack problems appear extensively

in the multidisciplinary fields of operations research, decision science, and engineer-

ing design problems. Due to the integer constraint, even this most simple linear

Knapsack problem is listed as one of Karp’s 21 NP-complete problems [50]. How-

ever, by using the canonical duality theory, this challenging problem can be solved

easily to obtain global optimal solution.

For linear elastic structures without the body force, the stored energy C is a

quadratic function of u:

C(ρ,u) =
1

2
uTK(ρ)u, (4.18)

where K(ρ) = {ρeKe} ∈ Rn×n is the overall stiffness matrix, obtained by assem-

bling the sub-matrix ρeKe for each element Ωe. For any given ρ ∈ Za, the dis-

placement variable can be obtained analytically by solving the linear equilibrium

equation K(ρ)u = f . Thus, the topology optimization for linear elastic structures
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can be simply formulated as

(Ple) : min

{
fTu− 1

2
uTK(ρ)u | K(ρ)u = f , u ∈ Ua, ρ ∈ %a

}
. (4.19)

4.3 Canonical dual solution to the Knapsack prob-

lem

The canonical duality theory for solving general integer programming problems was

first proposed by Gao in 2007 [23]. Applications to topology optimization were given

recently in [39, 38]. In this work, we present this theory in a different way, i.e. instead

of the canonical measure in Rn+1, we introduce a canonical measure in Rn:

εεε = Λ(ρ) = ρ ◦ ρ− ρ ∈ Rn (4.20)

and the associated super-potential

Ψ(εεε) =

{
0 if εεε ∈ Rn

− := {εεε ∈ Rn| εεε ≤ 0}
+∞ otherwise,

(4.21)

such that the integer constraint in the Knapsack problem (Pu) can be relaxed by the

following canonical form

min
{

Πu(ρ) = Ψ(Λ(ρ))− cTuρ
∣∣ ρTv ≤ Vc ρ ∈ Rn

}
. (4.22)

This is a nonsmooth minimization problem in Rn with only one linear inequality

constraint. The classical Lagrangian for this inequality constrained problem is

L(ρ, τ) = Ψ(Λ(ρ))− cTuρ+ τ(ρTv − Vc), (4.23)

and the canonical minimization problem (4.22) is equivalent to the following min-max

problem:

min
ρ∈Rn

max
τ∈R

L(ρ, τ) s.t. τ ≥ 0. (4.24)

According to the Karush-Kuhn-Tucker theory in inequality constrained optimization,

the Lagrange multiplier τ should satisfy the following KKT conditions:

ς(ρTv − Vc) = 0, ς ≥ 0, ρTv − Vc ≤ 0. (4.25)
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The first equality ς(ρTv − Vc) = 0 is the so-called complementarity condition. It is

well-known that to solve the complementarity problems is not an easy task, even for

linear complementarity problems [48]. Also, the Lagrange multiplier has to satisfy the

constraint qualification ς ≥ 0. Therefore, the classical Lagrange multiplier theory

can be essentially used for linear equality constrained optimization problems [51].

This is one of the main reasons why the canonical duality theory was developed.

By the fact that the super-potential Ψ(εεε) is a convex, lower-semi continuous

function (l.s.c), its sub-differential is a positive cone Rn
+ [19]:

∂Ψ(εεε) =

{
{σ} ∈ Rn

+ if εεε ≤ 0 ∈ Rn
−

∅ otherwise.
(4.26)

Using Fenchel transformation, the conjugate function of Ψ(εεε) can be uniquely defined

as (see [19])

Ψ](σ) = sup
εεε∈Rn
{εεεTσ −Ψ(εεε)} =

{
0 if σ ∈ Rn

+,

+∞ otherwise,
(4.27)

which can be viewed as a super complementary energy [12]. By the theory of convex

analysis, we have the following canonical duality relations [23]:

Ψ(εεε) + Ψ](σ) = εεεTσ ⇔ σ ∈ ∂Ψ(εεε) ⇔ εεε ∈ ∂Ψ](σ). (4.28)

By the Fenchel-Young equality

Ψ(εεε) = εεεTσ −Ψ](σ),

the Lagrangian L(ρ, τ) can be written in the following form

Ξ(ρ,σ, ς) = Gap(ρ,σ)− ρTσ −Ψ](σ)− ρTcu + ς(ρTv − Vc). (4.29)

This is the Gao-Strang total complementary function for the Knapsack problem, in

which

Gap(ρ,σ) = σT (ρ ◦ ρ)

is the so-called complementary gap function. Clearly, if σ ∈ Rn
+, this gap function is

convex and

Gap(ρ,σ) ≥ 0 ∀ρ ∈ Rn.
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Let

S+
a = {ζζζ = {σ, ς} ∈ Rn+1| σ > 0 ∈ Rn, ς ≥ 0}. (4.30)

Then on Sa, we have

Ξ(ρ, ζζζ) = σT (ρ ◦ ρ− ρ)− ρTcu + ς(ρTv − Vc) (4.31)

and for any given ζζζ ∈ S+
a , the canonical dual function can be obtained by

P d
u (ζζζ) = min

ρ∈Rn
Ξ(ρ, ζζζ) = −1

4
τ Tu (ζζζ)G(σ)−1τ u(ζζζ)− ςVc, (4.32)

where

G(σ) = Diag(σ), τ u = σ + cu − ςv.

This canonical dual function is the so-called pure complementary energy in nonlinear

elasticity, first proposed by Gao in 1999 [17], where τ u and σ correspond to the first

and second Piola-Kirchhoff stresses, respectively. Thus, the canonical dual problem

of the Knapsack problem can be proposed in the following

(Pdu) : max
{
P d
u (ζζζ)| ζζζ ∈ S+

a

}
. (4.33)

Theorem 10 (Canonical Dual Solution for Knapsack Problem [39])

For any given uk ∈ Ua and Vc > 0, if ζ̄ζζ = (σ̄, τ̄) ∈ S+
a is a solution to (Pdu), then

ρ̄ =
1

2
G(σ̄)−1τ u(ζ̄ζζ) (4.34)

is a global minimum solution to the Knapsack problem (Pu) and

Pu(ρ̄) = min
ρ∈Rn

Pu(ρ) = Ξ(ρ̄, ζ̄ζζ) = max
ζζζ∈S+a

P d
u (ζζζ) = P d

u (ζ̄ζζ). (4.35)

Proof. The following proof was given by Gao recently in [39].

By the convexity of the super-potential Ψ(εεε), we have Ψ∗∗(εεε) = Ψ(εεε). Thus,

L(ρ, τ) = sup
σ∈Rn

Ξ(ρ,σ, τ) ∀ρ ∈ Rn, τ ∈ R. (4.36)

It is easy to show that for any given ρ ∈ Rn, τ ∈ R, the supremum condition is

governed by Λ(ρ) ∈ ∂Ψ∗(σ). By the canonical duality relations given in (4.28), we
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have the equivalent relations:

Λ(ρ)Tσ = σT (ρ ◦ ρ− ρ) = 0 ⇔ σ ∈ Rn
+ ⇔ Λ(ρ) = (ρ ◦ ρ− ρ) ∈ Rn

−. (4.37)

This is exactly equivalent to the KKT conditions of the canonical problem for the

inequality condition Λ(ρ) ∈ Rn
−. Thus, if ζ̄ζζ ∈ S+

a is a KKT solution to (Pdu), then

σ̄ > 0 and the complementarity condition in (4.37 ) leads to

ρ̄ ◦ ρ̄− ρ̄ = 0,

i.e. ρ̄ ∈ {0, 1}n. It is easy to prove that for a given ζ̄ζζ, equality (4.34) is exactly the

criticality condition

∇ρΞ(ρ̄, ζ̄ζζ) = 0.

Therefore, vector ρ̄ ∈ {0, 1}n defined by (4.34) is a solution to the Knapsack problem

(Pu). According to Gao and Strang [13] the total complementary function Ξ(ρ, ζζζ) is

a saddle function on Rn × S+
a , then

min
ρ∈Rn

Pu(ρ) = min
ρ∈Rn

max
ζζζ∈S+a

Ξ(ρ, ζζζ) = max
ζζζ∈S+a

min
ρ∈Rn

Ξ(ρ, ζζζ) = max
ζζζ∈S+a

P d
u (ζζζ). (4.38)

The complementary-dual equality (4.35) can be proved by the canonical duality re-

lations. 2

This theorem shows that the so-called NP-hard Knapsack problem is canonically

dual to a concave maximization problem (Pdu) in continuous space, which is much

easier than the 0-1 programming problem (Pu) in discrete space. Whence the canon-

ical dual solution ζ̄ζζ is obtained, the solution to the Knapsack problem can be given

analytically by (4.34).

4.4 Pure Complementary Energy Principle and

Perturbed Solution

Based on Theorem 10, a perturbed solution for the Knapsack problem was recently

proposed in [39, 38]. This section demonstrates the relation between this solution

with the pure complementary energy principle in nonlinear elasticity discovered by

Gao in 1997-1999 [16, 17].

73



In terms of the deformation

χ = u + x,

the total potential energy variational principle for general large deformation problems

can also be written in the following form

(Pχ) : inf
χ∈Xa

Π(χ) =

∫
Ω

[W (∇χ)− χ · b]ρdΩ−
∫

Γt

χ · tdΓ, (4.39)

where Xa is a kinetically admissible deformation space, in which, the boundary con-

dition χ(x) = 0 is given on Γχ. It is well-known that the stored energy W (F) is

usually a nonconvex function of the deformation gradient

F = ∇χ = ∇u + I,

in order to model complicated phenomena, such as phase transitions and post-

buckling. By the fact that W (F) must be an objective function [61], there exists

a real-valued function Ψ(C) such that (see [9])

W (F) = Ψ(FTF).

For most reasonable materials (say the St. Venant-Kirchhoff material [34]), the

function Ψ(C) is a usually convex function of the Cauchy strain measure C = FTF

such that its complementary energy density can be uniquely defined by the Legendre

transformation

Ψ∗(S) = { tr(C · S)−Ψ(C)| S = ∇Ψ(C)}. (4.40)

Therefore, a pure complementary energy variational principle was obtained by Gao

in 1999 [17, 19]:

Theorem 11 (Pure Complementary Energy Principle for Nonlinear Elasticity [17])

For any given external force field b(x) in Ω and t(x) on Γt, if τ(x) is a statically

admissible stress field, i.e.

τ ∈ Ta :=
{
τ (x) : Ω→ R3×3| − ∇ · τ = b ∀x ∈ Ω, n · τ = t ∀x ∈ Γt

}
, (4.41)

and S̄ is a critical point of the pure complementary energy

Πd(S) = −
∫

Ω

[
1

4
tr(τ · S−1 · τ ) + Ψ∗(S)

]
ρ dΩ, (4.42)
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then the deformation field χ̄(x) defined by

χ̄(x) =
1

2

∫ x

x0

τ · S̄−1dx (4.43)

along any path from x0 ∈ Γχ to x ∈ Ω is a critical point of the total potential energy

Π(χ) and Π(χ̄) = Πd(S̄). Moreover, if S̄(x) � 0 ∀x ∈ Ω, then χ̄ is a global

minimizer of Π(χ).

It is easy to prove that the criticality condition δΠd
χ(S) = 0 is governed by the

so-called canonical dual algebraic equation [19]:

4S · [∇Ψ∗(S)] · S = τ T · τ . (4.44)

For certain materials, this algebraic equation can be solved analytically to obtain

all possible solutions [25]. Particularly, for the St Venant-Kirchhoff material, this

tensor equation could have at most 27 solutions at each material point x, but only

one positive-definite

S(x) � 0 ∀x ∈ Ω, (4.45)

which leads to the global minimum solution χ̄(x) [34]. The pure complementary

energy principle solved a well-known open problem in large deformation mechanics

and is known as the Gao principle in the literature (see [53]). This principle plays

an important role not only in large deformation theory and nonconvex variational

analysis, but also in global optimization and computational science. Indeed, Theorem

10 is simply an application of this principle if we consider the quadratic operator εεε(ρ)

as the Cauchy strain measure C(χ), then the canonical dual σ ∈ ∂Ψ(εεε) corresponds

to the second Piola-Kirchhoff stress

S = ∇Ψ(C), (4.46)

while τ u corresponds to the first Piola-Kirchhoff stress τ . By the fact that Ψ](σ) is

nonsmooth, the associated canonical dual algebraic equation (4.44) should be gov-

erned by the KKT conditions (4.37). In order to solve this problem, a β-perturbation

method was proposed in 2010 for solving general integer programming problems [29]

and recently for solving the topology optimization problems [39].

According to the canonical duality theory for mathematical modeling [38], the in-

teger constraint ρ ∈ {0, 1}n in the Knapsack problem (Pu) is a constitutive condition,
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while

ρ · v ≤ Vc,

is a geometrical constraint. Thus, by using the so-called pan-penalty functions

W (ρ) =

{
0 if ρ ∈ {0, 1}n

+∞ otherwise,
F (ρ) =

{
cu · ρ if ρ · v ≤ Vc

−∞ otherwise,
(4.47)

the Knapsack problem (Pu) can be equivalently written in Gao-Strang’s uncon-

strained form [13]:

min {W (ρ)− F (ρ)| ρ ∈ Rn} . (4.48)

By introducing a penalty parameter β > 0 and a Lagrange multiplier τ ≥ 0, these

two pan-penalty functions can have the following relaxations:

Wβ(ρ) = β‖ρ ◦ ρ− ρ‖2, Fτ (ρ) = cu · ρ− τ(ρ · v − Vc). (4.49)

It is easy to prove that

W (ρ) = lim
β→∞

Wβ(ρ), F (ρ) = min
τ≥0

Fτ (ρ) ∀ρ ∈ Rn. (4.50)

Thus, the Knapsack problem can be relaxed by the so-called penalty-duality ap-

proach:

min
ρ∈Rn

max
τ≥0
{Lβ(ρ, τ) = Wβ(ρ)− cu · ρ+ τ(ρ · v − Vc)} . (4.51)

Since the penalty functionWβ(ρ) is nonconvex, by using the canonical transformation

Wβ(ρ) = Ψβ(Λ(ρ)),

we have

Ψβ(εεε) = β‖εεε‖2,

which is a convex quadratic function. Its Legendre conjugate is simply

Ψ∗β(σ) =
1

4
β−1‖σ‖2.

Thus, the Gao and Strang total complementary optimization problem for the penalty-
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duality approach (4.51) can be given by [39]:

min
ρ∈Rn

max
ζζζ∈S+a

{
Ξβ(ρ, ζζζ) = (ρ ◦ ρ− ρ) · σ − 1

4
β−1‖σ‖2 − cu · ρ+ τ(ρ · v − Vc)

}
.

(4.52)

For any given β > 0 and ζζζ = {σ, ς} ∈ S+
a , a canonical penalty-duality (CPD)

function can be obtained as

P d
β (ζζζ) = min

ρ∈Rn
Ξβ(ρ, ζζζ) = P d

u (σ, ς)− 1

4
β−1‖σ‖2, (4.53)

which is exactly the so-called β-perturbed canonical dual function presented in [39,

38]. It was proved by Theorem 7 in [29] that there exists a βc > 0 such that for any

given β ≥ βc, both the CPD problem

(Pdβ) : max{P d
β (ζζζ)| ζζζ ∈ S+

a } (4.54)

and the problem (Pdu) have the same solution set. Since Ψ∗β(σ) is a quadratic func-

tion, the corresponding canonical dual algebraic equation (4.44) is a coupled cubic

algebraic system

2β−1σ3
e + σ2

e = (τve − ce)2, e = 1, . . . , n, (4.55)

n∑
e=1

1

2

ve
σe

(σe − veτ + ce)− Vc = 0. (4.56)

It was proved in [19, 23] that for any given β > 0, τ ≥ 0 and cu = {ce(ue)} such that

θe = τve − ce(ue) 6= 0, e = 1, . . . , n,

the canonical dual algebraic equation (4.55) has a unique positive real solution

σe =
1

12
β[−1 + φe(τ) + φce(τ)] > 0, e = 1, . . . , n (4.57)

where

φe(ς) = η−1/3
[
2θ2

e − η + 2i
√
θ2
e(η − θ2

e)
]1/3

, η =
β2

27
,

and φce is the complex conjugate of φe, i.e. φeφ
c
e = 1. Thus, a canonical penalty-

duality algorithm has been proposed recently for solving general topology optimiza-

tion problems [39, 38].
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4.5 3-D finite element interpolation

For three-dimensional linear elastic structures, we simply use cubic 8-node hexa-

hedral elements {Ωe}, where each element contains 24 degrees of freedom corre-

sponding to the displacements in x-y-z directions (each node has three degrees of

freedom), as shown in Figure 4.2. Thus, the displacement interpolation matrix is

Figure 4.2: The hexahedron element - eight nodes

N = [N1 N2 ... N8] and

Ni =

 Ni 0 0

0 Ni 0

0 0 Ni

 . (4.58)

The shape functions Ni = Ni(ξ1, ξ2, ξ3), i = 1, ...8 are derived by

N1 =
1

8
(1− ξ1)(1− ξ2)(1− ξ3), N2 =

1

8
(1 + ξ1)(1− ξ2)(1− ξ3),

N3 =
1

8
(1 + ξ1)(1 + ξ2)(1− ξ3), N4 =

1

8
(1− ξ1)(1 + ξ2)(1− ξ3),

N5 =
1

8
(1− ξ1)(1− ξ2)(1 + ξ3), N6 =

1

8
(1 + ξ1)(1− ξ2)(1 + ξ3),

N7 =
1

8
(1 + ξ1)(1 + ξ2)(1 + ξ3), N8 =

1

8
(1− ξ1)(1 + ξ2)(1 + ξ3),

in which ξ1, ξ2 and ξ3 are the natural coordinates of the ith node. The nodal dis-

placement vector ue is given by

uTe = [ue1 ue2 ... ue8] ,

where uei = (xei , y
e
i , z

e
i ) ∈ R3, i = 1, ..., 8 are the displacement components at node i.

The components Bi of strain-displacement matrix B = [B1 B2 ... B8], which relates
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to strain ε and nodal displacement ue (ε = Bue), are defined as

Bi =



∂Ni
∂x

0 0

0 ∂Ni
∂y

0

0 0 ∂Ni
∂z

∂Ni
∂y

∂Ni
∂x

0
∂Ni
∂z

0 ∂Ni
∂x

0 ∂Ni
∂z

∂Ni
∂y


. (4.59)

Hooke’s law for isotropic materials in constitutive matrix form is given by

H =
E

(1 + ν)(1− 2ν)



1− ν ν ν 0 0 0

ν 1− ν ν 0 0 0

ν ν 1− ν 0 0 0

0 0 0 1−2ν
2

0 0

0 0 0 0 1−2ν
2

0

0 0 0 0 0 1−2ν
2


, (4.60)

where E is the Young’s modulus and ν is the Poisson’s ratio of the isotropic material.

The stiffness matrix of the structure in the CPD algorithm is given by

K(ρ) =
n∑
e=1

(Emin + (E − Emin)ρe)Ke, (4.61)

where Emin must be small enough (usually let Emin = 10−9) to avoid singularity in

computation and Ke is defined as

Ke =

∫ 1

−1

∫ 1

−1

∫ 1

−1

BTHB dξ1dξ2dξ3. (4.62)

Substituting the strain-displacement matrix B and (4.60) into (4.62), the 24 × 24

element stiffness matrix Ke for the eight-node quadrilateral element can be stated as

Ke =
1

(ν + 1)(1− 2ν)


K1 K2 K3 K4

KT
2 K5 K6 KT

3

KT
3 K6 K5 KT

2

K4 K3 K2 K1

 , (4.63)
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where

K1 =



k1 k2 k2 k3 k5 k5

k1 k2 k4 k6 k7

k1 k4 k7 k6

k1 k8 k8

k1 k2

sym k1


, K2 =



k9 k8 k12 k6 k4 k7

k8 k9 k12 k5 k3 k5

k10 k10 k13 k7 k4 k6

k6 k5 k11 k9 k2 k10

k4 k3 k5 k2 k9 k12

k11 k4 k6 k12 k10 k13


,

K3 =



k6 k7 k4 k9 k12 k8

k7 k6 k4 k10 k13 k10

k5 k5 k3 k8 k12 k9

k9 k10 k2 k6 k11 k5

k12 k13 k10 k11 k6 k4

k2 k12 k9 k4 k5 k3


, K4 =



k14 k11 k11 k13 k10 k10

k14 k11 k12 k9 k8

k14 k12 k8 k9

k14 k7 k7

k14 k11

sym k14


,

K5 =



k1 k2 k8 k3 k5 k4

k1 k8 k4 k6 k11

k1 k5 k11 k6

k1 k8 k2

k1 k8

sym k1


, K6 =



k14 k11 k7 k13 k10 k12

k14 k7 k12 k9 k2

k14 k10 k2 k9

k14 k7 k11

k14 k7

sym k14


,

and the kj, j = 1, ..., 14, can be formulated as

k1 = −(3ν − 2)/9, k2 = 1/24,

k3 = −1/18, k4 = −(4ν − 1)/24,

k5 = (4ν − 1)/24, k6 = 1/36,

k7 = 1/48, k8 = −1/24,

k9 = (6ν − 5)/72, k10 = −(4ν − 1)/48,

k11 = −1/48, k12 = (4ν − 1)/48,

k13 = (3ν − 1)/36, k14 = (3ν − 2)/36.
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4.6 A CPD Algorithm for Topology Optimization

Based on the canonical duality theory, an evolutionary CPD algorithm1 for solving

the topology optimization problem [39] can be presented in the following.

Canonical Penalty-Duality Algorithm for Topology Optimization (CPD):

1. Initialization:

Choose a suitable initial volume reduction rate µ < 1.

Let ρ0 = {1} ∈ Rn.

Given an initial value τ 0 > 0.

Given an initial volume Vγ = µV0.

Given a perturbation parameter β > 10, error allowances ω1 and ω2, in which

ω1 is a termination criterion.

Let γ = 0

2. Compute

u0 = K−1(ρ0)f(ρ0), c0 = c(u0) = u0TK(ρ0)u0.

3. Let k = 1 .

4. Compute ζζζk = {σk, τ k} by

σke =
1

6
β[−1 + φe(τ

k−1) + φce(τ
k−1)], e = 1, . . . , n.

τ k =

∑n
e=1 νe(1 + cγe/σ

k
e )− 2Vγ∑n

e=1 ν
2
e/σ

k
e

.

5. If

∆ = |P d
u (σk, τ k)− P d

u (σk−1, τ k−1)| > ω1, (4.64)

then let k = k + 1, go to Step 4. Otherwise, continue.

6. Compute ργ+1 = {ργ+1
e } and uγ+1 by

ργ+1
e =

1

2
[1− (τ kve − cγe )/σke ], e = 1, . . . , n.

1This algorithm was called the CDT algorithm in [39]. Since a new CDT algorithm without
β perturbation has been developed, this algorithm based on the canonical penalty-duality method
should be called CPD algorithm.
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uγ+1 = K(ργ+1)−1f(ργ+1).

7. If |ργ+1 − ργ| ≤ ω2 and Vγ ≤ Vc , then stop. Otherwise, continue.

8. Let Vγ+1 = µVγ, τ
0 = τ k, and γ = γ + 1, go to step 3.

Remark 1 (Volume Reduction Method and Computational Complexity)

This Remark was written by Prof. David Gao. By Theorem 10, we know that for any

given desired volume Vc > 0, the optimal solution ρ̄ can be analytically obtained by

(4.34) in terms of its canonical dual solution in continuous space. By the fact that the

topology optimization problem (Pbl) is a coupled nonconvex minimization, numerical

optimization depends sensitively on the the initial volume V0. If µc = Vc/V0 � 1, any

given iteration method could lead to unreasonable numerical solutions. In order to

resolve this problem, a volume decreasing control parameter µ ∈ (µc, 1) was introduced

in [39] to produce a volume sequence

Vγ = µVγ−1, (γ = 1, . . . , γc),

such that Vγc = Vc and for any given Vγ ∈ [Vc, V0], the problem (Pbl) is replaced by

(Pbl)γ : min

{
fTu− Cp(ρ,u) | ρ ∈ {0, 1}n, vTρ ≤ Vγ

}
, (4.65)

s.t. u(ρ) = arg min{Πh(v,ρ)| v ∈ Ua}. (4.66)

The initial values for solving this γ-th problem are Vγ−1,uγ−1, ργ−1. Theoretically

speaking, for any given sequence {Vγ} we should have

(Pbl) = lim
γ→γc

(Pbl)γ. (4.67)

Numerically, a different volume sequence {Vγ} may produce totally different struc-

tural topology as long as the alternative iteration is used. This is intrinsic difficulty

for all coupled bi-level optimal design problems.

The original idea of this sequential volume decreasing technique is from an evo-

lutionary method for solving optimal shape design problems (see Chapter 7, [19]). It

was realized recently that the same idea was used in the ESO and BESO methods.

But these two methods are not polynomial-time algorithm. By the facts that there are

only two loops in the CPD algorithm, i.e. the γ-loop and the k-loop, and the canoni-

cal dual solution is analytically given in the k-loop, the main computing is the m×m
matrix inversion in the γ-loop. The complexity for the Gauss-Jordan elimination is
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O(m3). Therefore, the CPD is a polynomial-time algorithm.

4.7 Applications to 3-D benchmark problems

In order to demonstrate the novelty of the CPD algorithm for solving 3-D topology

optimization problems, our numerical results are compared with the two popular

methods, BESO and SIMP. The algorithm for the soft-kill BESO was applied accord-

ing to [47]. A modified SIMP algorithm was used according to [54]. The parameters

used in BESO and SIMP are: the minimum radius rmin = 1.5, the evolutionary rate

er = 0.05 and the penalization power p = 3. Young’s modulus and Poisson’s ratio

of the material are taken as E = 1 and ν = 0.3, respectively. The initial value for τ

used in CPD is τ 0 = 1. We take the design domain V0 = 1, the initial design variable

ρ0 = {1} for both CPD and BESO algorithms. All computations are performed by a

computer with a Processor Intel Core I7-4790, CPU 3.60GHz and memory 16.0 GB.

4.7.1 Cantilever beam problems

For this benchmark problem, we present results based on three types of mesh resolu-

tions with two types of loading conditions. All the Matlab codes, CPD, BESO and

SIMP, for the cantilever beam problems are given in Appendix A.

4.7.1.1 Uniformly distributed load with 60× 20× 4 meshes.

First, let us consider a cantilever beam with a uniformly distributed load at the

right end as illustrated in Figure 4.3. The target volume and termination criterion

Figure 4.3: Cantilever beam with uniformly distributed load in the right end

for CPD, BESO and SIMP are selected as Vc = 0.3 and ω1 = 10−6, respectively. For

both CPD and BESO methods, we take the volume evolution rate µ = 0.89, and the
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perturbation parameter for CPD is β = 4000. The results are reported in Table 4.12.

Table 4.1: Structures produced by CPD, BESO and SIMP for cantilever beam (60× 20× 4)

Method Details Structure

CPD
C = 1973.028

It. = 23

Time= 27.1204

BESO
C = 1771.3694

It. = 154

Time= 2392.9594

SIMP
C = 2416.6333

It. = 200

Time= 98.7545

Figure 4.4 shows the convergence of compliances produced by all the three meth-

ods. It can be seen that the SIMP provides an upper bound approach since this

method is based on the minimization of the compliance, i.e. the problem (P ). This

problem violates the minimum total potential energy principle, the SIMP converges

in a strange way, i.e. the structures produced by the SIMP at the beginning are bro-

2The so-called compliance in this section is actually a doubled strain energy, i.e. c = 2C(ρ,u)
as used in [54].
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ken until It. = 15 (see Figure 4.4), which is physically unreasonable. Dually, both

the CPD and BESO provide lower bound approaches. It is reasonable to believe

that the main idea of the BESO is similar to the Knapsack problem, i.e. at each

volume iteration, to eliminate elements which stored less strain energy by simply

using a comparison method. By the fact that the same volume evolutionary rate µ

is adopted, the results obtained by the CPD and BESO are very close to each other

(see also Figure 4.5). However, the CPD is almost 100 times faster than the BESO

method since the BESO is not a polynomial-time algorithm.

Figure 4.4: Convergence of the compliances produced by CPD, BESO and SIMP

Figure 4.5: Comparison of volume variations for CPD, BESO and SIMP

The optimal structures produced by the CPD with ω1 = 10−16 and with different

values of µ and β are summarized in Table 4.2. Also, the target compliances during

the iterations for all CPD examples are reported in Figure 4.6 with different values

of µ and β. The results show that the CPD algorithm sensitively depends on the
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volume evolution parameter µ, but not the penalty parameter β. A comparison of the

volume evolutions of CPD and BESO is given in Figure 4.7, which shows as expected

that the BESO method also sensitively depends on the volume evolutionary rate µ.

For a fixed β = 4000, the convergence of the CPD is more stable and faster than the

BESO. The C-Iteration curve for BESO jumps for every given µ, which could be the

so-called “chaotic convergence curves” addressed by G. I. N. Rozvany in [67].

Figure 4.6: Convergence tests for CPD method at different values of µ and β

4.7.1.2 Uniformly distributed load with 120× 50× 8 mesh resolution

Now let us consider the same loaded beam as shown in Figure 4.3 but with a finer

mesh resolution of 120 × 50 × 8. In this example the target volume fraction and

termination criterion for all procedures are assumed to be Vc = 0.3 and ω1 = 10−6,

respectively. The initial volume reduction rate for both CPD and BESO is µ = 0.935.

The perturbation parameter for CPD is β = 7000. The optimal topologies produced

by the CPD, BESO and SIMP methods are reported in Table 4.3. It can be seen

that the CPD is about five times faster than the SIMP and almost 100 times faster

than the BESO method.

If we choose ω1 = 0.001, the computing times (iterations) for CPD, BESO and

SIMP are 0.97 (24), 24.67 (44) and 4.3 (1000) hours, respectively. Actually, the SIMP

failed to reach the given precision. If we increase ω1 = 0.01, the SIMP takes 3.14

hours with 742 iterations to satisfy the given precision. Our numerical results show

that the CPD method can produce very good results with much less computing time.

For a given very small ω1 = 10−16, Table 4.4 shows the effects of the parameters of

µ, β and Vc on the computing time of the CPD method.
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Figure 4.7: Convergence test for CPD and BESO with different µ.

4.7.1.3 Beam with a central load and 40× 20× 20 meshes

In this example, the beam is subjected to a central load at its right end (see Figure

4.8). We let Vc = 0.095, ω1 = 0.001, β = 7000 and µ = 0.888. The topology

Figure 4.8: Design domain for a cantilever beam with a central load in the right end

optimized structures produced by CPD, SIMP and BESO methods are summarized

in Table 4.5. Compared with the SIMP method, we can see that by using only 20%

of the computing time, the CPD can produce a global optimal solution, which is

better than that produced by the BESO, but with only 8% of computing time. We
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Table 4.2: Optimal structures produced by CPD with different values of µ and β

Details Structure Details Structure

µ = 0.88
β = 4000
C = 2182.78

It. =22

Time=29.44

µ = 0.89
β = 90000
C = 1973.02

It. =23

Time=30.69

µ = 0.9
β = 4000
C = 1920.68

It. =23

Time=30.87

µ = 0.92
β = 90000
C = 1832.59

It. =23

Time=33.73

should point out that for the given ω1 = 0.001, the SIMP method failed to converge

in 1000 iterations (the so-called “change” ∆ = 0.0061 > ω1).

4.7.2 MBB beam

The second benchmark problem is the 3-D Messerschmitt-B̈olkow-Blohm (MBB)

beam. Two examples with different loading and boundary conditions are given.

4.7.2.1 Example 1

The MBB beam design for this example is illustrated in Figure 4.9. In this example,

we use 40 × 20 × 20 mesh resolution, Vc = 0.1 and ω1 = 0.001. The initial volume

reduction rate and perturbation parameter are µ = 0.89 and β = 5000, respectively.

Table 4.6 summarizes the optimal topologies by using CPD, BESO and SIMP

methods. Compared with the BESO method, it can again be seen that the CPD

produces a mechanically sound structure and takes only 12.6% of the computing time.

Also, the SIMP method failed to converge for this example and the result presented

in Table 4.6 is only the output of the 1000th iteration when ∆ = 0.039 > ω1.
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Table 4.3: Topology optimization for a cantilever beam (120× 50× 8)

Method Details Structure

CPD
C = 1644.0886

It. =24

Time=3611.23

BESO
C = 1605.1102

It. =200

Time=342751.96

SIMP
C = 1835.4106

It. =1000

Time=15041.06

4.7.2.2 Example 2

In this example, the MBB beam is supported horizontally on its four bottom corners

under a central load, as shown in Figure 4.10. The mesh resolution is 60× 10× 10,

the target volume is Vc = 0.155. The initial volume reduction rate and perturbation

parameter are defined as µ = 0.943 and β = 7250, respectively.
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Table 4.4: Effects of µ, β and Vc to the final results by CPD method (ω1 = 10−16)

µ = 0.935, β = 3000
Vc = 0.3, C = 1632.959
It. =25, Time=3022.029

µ = 0.935, β = 7000
Vc = 0.18, C = 2669.980
It. =34, Time=5040.6647

µ = 0.98, β = 7000
Vc = 0.3, C = 1635.922
It. =25, Time=3531.3235

µ = 0.98, β = 7000
Vc = 0.18, C = 2892.914
It. =35, Time=4853.3776

Figure 4.9: MBB beam with uniformly distributed central load

The topology optimized structures produced by the CPD, BESO and SIMP with

ω1 = 10−5 are reported in Table 4.7. Once again, it can be seen that without using

any artificial techniques, the CPD produces a mechanically sound integer density
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Table 4.5: Topologies of the cantilever beam with a central load on the right end

CPD: C = 20.564, It. =45, Time=959.7215

BESO: C = 20.1533, It. =53, Time=11461.128

SIMP: C = 25.7285, It. =1000, Time=4788.4762

distribution but the computing time is only 3.3% of that used by the BESO.

91



Table 4.6: Results for a 3-D MBB beam with a uniformly distributed load

CPD: C = 7662.5989, It.=46, Time=1249.1267

BESO: C = 7745.955, It. =55, Time=9899.0921

SIMP: C = 12434.8629, It. =1000, Time=5801.0065

4.7.3 Cantilever beam with a given hole

In real-world applications, the desired structures are usually subjected to certain

design constraints such that some elements are required to be either solid or void.

Now let us consider a cantilever beam with a given hole, as illustrated in Figure 4.11.

We use mesh resolution 70 × 30 × 6 and parameters Vc = 0.5, β = 7000, µ = 0.94

and ω1 = 0.001.

The optimal topologies produced by CPD, BESO, and SIMP are summarized in
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Figure 4.10: 3-D MBB beam with a central load

Figure 4.11: Design domain for a cantilever beam with a given hole

Table 4.8. The results show clearly that the CPD method is significantly faster than

both BESO and SIMP. Again, the SIMP failed to converge in 1000 iterations and

the “Change” ∆ = 0.011 > ω1 at the last iteration.

4.7.4 3-D wheel problem

The 3-D wheel design problem is constrained by a planar joint on the corners with

a downward point load in the center of the bottom, as shown in Figure 4.12. The

mesh resolution for this problem is 40× 20× 40. The target volume is Vc = 0.2 and

the parameters used are β = 150, µ = 0.94 and ω1 = 10−5. The optimal topologies

produced by CPD, BESO and SIMP are reported in Table 4.9. It can be seen that

the CPD takes only about 18% and 32% of the computing time of BESO and SIMP,

respectively. Once again, the SIMP failed to converge in 1000 iterations and the

“Change” ∆ = 0.0006 > ω1 at the last iteration.

For a given very small termination criterion ω1 = 10−16 and for mesh resolution

30×20×30, Table 4.10 shows thr effects of the parameters µ and Vc on the topology

optimized results of CPD. Clearly, for a fixed µ = 0.88, If we decrease the target

volume fraction Vc, the number of iterations increases and many solid elements dis-

appear, as shown in the first two columns of Table 4.10. It can also be seen that, if

the same target volume fraction Vc = 0.1 is adopted, a slight difference appears on
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Table 4.7: Structures for 3-D MBB beam with a central load

Method Details Structure

CPD

C = 19.5313

It. = 37

Time=48.2646

BESO
C = 20.1132

It. =57

Time=1458.488

SIMP

C = 41.4099

It. =95

Time=366.4988
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Table 4.8: Topology optimized structures for a cantilever beam with a given hole

CPD: C = 910.0918, It.. =14, Time=74.61

BESO: C = 916.3248, It. =21, Time=1669.5059

SIMP: C = 997.1556, It. =1000, Time=1932.7697

the 3-D wheel design when the parameter µ is changed from 0.88 to 0.92. The results

show that, the latest value of µ makes the body more solid as shown in the last two

columns of Table 4.10, that means the global optimal solution of CPD algorithm

depends sensitively on the evolutionary rate µ ∈ [µc, 1).
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Figure 4.12: 3-D wheel problem

Table 4.9: Topology optimized results for a 3-D wheel problem (40 × 20 × 40) for CPD (left),
BESO (middle), and SIMP (right)

C = 3.6164, It. =32
Time=6716.1433

C = 3.6135, It. =66
Time=37417.5089

C = 3.7943, It. =1000
Time=20574.8348

4.8 Summary

We have presented a novel canonical penalty-duality (CPD) method for solving chal-

lenging topology optimization problems. The relation between the CPD method

for solving 0-1 integer programming problems and the pure complementary energy

principle in nonlinear elasticity is revealed for the first time. Applications are demon-

strated by 3-D linear elastic structural topology optimization problems. By the fact

that the integer density distribution is obtained analytically, it should be considered

as the global optimal solution at each volume iteration. Generally speaking, the

so-called compliance produced by the CPD is higher than those by BESO for most

of the tested problems except for the MBB beam and the cantilever beam with a

given hole. A possible reason for this is that certain artificial techniques such as the

so-called soft-kill, filter and sensitivity are used by the BESO method. The follow-
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Table 4.10: Topology optimized results for CPD for the 3-D wheel problem (30 × 20 × 30) with
two different views

µ = 0.88, Vc = 0.06
C = 5.7296, It. =55

Time=2324.0445

µ = 0.88, Vc = 0.1
C = 4.2936, It. =44

Time=1888.6451

µ = 0.92, Vc = 0.1
C = 4.3048, It. =45

Time=1823.7826

ing remarks are important for understanding these popular methods and conceptual

mistakes in topology optimization.

Remark 2 (On Penalty-Duality, SIMP, and BESO Methods)

This Remark was written by Prof. David Gao. It is well-known that the Lagrange

multiplier method can be used essentially for solving convex problem with equality con-

straints. The Lagrange multiplier must be a solution to the Lagrangian dual problem

(see the Lagrange Multiplier’s Law in [19], page 36). For an inequality constraint,

the Lagrange multiplier must satisfy the KKT conditions. The penalty method can be

used for solving problems with both equality and inequality constraints, but the itera-

tion method must be used. By the fact that the penalty parameter is hard to control

during the iterations and in principle, needs to be large enough for the penalty func-

tion to be truly effective, which on the other hand, may cause numerical instabilities,

the penalty method was becoming disreputable after the augmented Lagrange multi-

plier method was proposed in 1970 and 1980s. The augmented Lagrange multiplier

method is simply the combination of the Lagrange multiplier method and the penalty

method, which has been actively studied for more than 40 years. But this method can

be used mainly for solving linearly constrained problems since any simple nonlinear
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constraint could lead to a nonconvex minimization problem [51].

For example, let us consider the Knapsack problem (Pu). As we know by using

the canonical measure

Λ(ρ) = ρ ◦ ρ− ρ,

the 0-1 integer constraint ρ ∈ {0, 1}n can be equivalently written in equality

ρ ◦ ρ− ρ = 0.

Even for this most simple quadratic nonlinear equality constraint, its penalty function

Wβ = β‖ρ ◦ ρ− ρ‖2,

is a nonconvex function. In order to solve this nonconvex optimization problem, the

canonical duality theory has to be used as discussed in Section 4.4. The idea for

this penalty-duality method was originally from Gao’s PhD thesis [11]. By Theorem

10, the canonical dual variable σ is exactly the Lagrange multiplier to the canonical

equality constraint

εεε = Λ(ρ) = ρ ◦ ρ− ρ = 0,

the penalty parameter β is theoretically not necessary for the canonical duality ap-

proach. But, by this parameter, the canonical dual solution can be analytically and

uniquely obtained. By Theorem 7 in [29], there exists a βc > 0 such that for any given

β ≥ βc, this analytical solution solves the canonical dual problem (Pdu), therefore, pa-

rameter β is not arbitrary and no iteration is needed for solving the β-perturbed

canonical dual problem (Pdβ).

The SIMP problem (Psimp) in (4.1) can be formulated as a box constrained mini-

mization problem:

(Psp) : min

{
1

2
uTK(ρp)u | K(ρp)u = f , u ∈ Ua, ρ ∈ Zb

}
, (4.68)

and

Zb = {ρ ∈ Rn| ρTv ≤ Vc, ρ ∈ (0, 1]n}.

By the fact that ρp = ρ ∀p ∈ R, ∀ρ ∈ {0, 1}n, the problem (Psp) is obtained from

(Ps) by artificially replacing the integer constraint ρ ∈ {0, 1}n in Za with the box

constraint ρ ∈ (0, 1]n. Therefore, the SIMP is not a mathematically correct penalty

method for solving the integer constrained problem (Ps) and p is not a correct penalty
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parameter. The alternative iteration cannot be used for solving (Psp) and the target

function must be written in term of ρ only, i.e.

Pc(ρ
p) =

1

2
fT [K(ρp)]−1f ,

which is not a coercive function and, for any given p > 1, its extrema are usually

located on the boundary of Zb (see [38]). Therefore, unless some artificial techniques

are adopted, any mathematically correct approximations to (Psp) cannot produce rea-

sonable solutions to either (Pc) or (Ps). Indeed, from all the examples presented

above, the SIMP produces only gray-scaled topology, and from Figure 4.4 we can see

clearly that during the first 15 iterations, the structures produced by SIMP are bro-

ken, which are both mathematically and physically unacceptable. Also, the so-called

magic number p = 3 works only for certain homogeneous material/structures. For

general composite structures, the global min of Pc(ρ
3) cannot be integers [38].

The BESO problem (Pbeso) in (4.6), as formulated in [44] is posed in the form of

minimization of mean compliance, i.e. problem (P ). Since the alternative iteration

is adopted by BESO, this alternative iteration leads to an anti-Knapsack problem, the

BESO should theoretically produce only a trivial solution at each volume evolution.

However, a comparison method is used to determine whether an element needs to be

added to or removed from the structure, which is actually a direct method for solving

the Knapsack problem (Pu). This is the reason why the numerical results obtained by

BESO are similar to that by CPD. But, the direct method is not a polynomial-time

algorithm. Due to the combinatorial complexity, this popular method is computation-

ally expensive and be used only for small sized problems. This is the very reason

that the Knapsack problem was considered as NP-complete for all existing direct ap-

proaches.

Remark 3 (On Compliance, Objectivity, and Modeling in Engineering Optimization)

This Remark was written by Prof. David Gao. By Wikipedia (see https: // en.

wikipedia. org/ wiki/ Stiffness ), the concept of “compliance” in mechanical sci-

ence is defined as the inverse of stiffness, i.e. if the stiffness of an elastic bar is k,

then the compliance should be c = 1/k, which is also called the flexibility. In 3-D

linear elasticity, the stiffness is the Hooke tensor K, which is associated with the

strain energy

W (εεε) =
1

2
εεε : K : εεε,
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while the compliance is C = K−1, which is associated with the complementary energy

W ∗(σ) =
1

2
σ : K−1 : σ.

However, in the topology optimization literature, the linear function

F (u) = uT f ,

is called the compliance. Mathematically speaking, the inner product uT f is a scalar,

while the compliance C is a matrix; physically, the scaler-valued function F (u) rep-

resents the external (or input) energy, while the compliance matrix C depends on

the material of structure, which is related to the internal energy W ∗(σ). Therefore,

they are two very different concepts, and erroneously using these interchangeably

could lead to serious confusions in multidisciplinary research3 Also, the well-defined

stiffness and compliance are mainly for linear elasticity. For nonlinear elasticity or

plasticity, the strain energy is nonlinear and the complementary energy cannot be

explicitly defined. For nonconvex W (εεε), the complementary energy is not unique. In

these cases, even if stiffness can be defined by the Hessian matrix K(εεε) = ∇2W (εεε),

the compliance C cannot be well-defined since K(εεε) could be singular even for the

so-called G-quasiconvex materials [40].

Objectivity is a central concept in our daily life, related to reality and truth. Ac-

cording to Wikipedia, objectivity in philosophy means the state or quality of being true

even outside a subject’s individual biases, interpretations, feelings, and imaginings4.

In science, objectivity is often attributed to the property of scientific measurement,

as the accuracy of a measurement can be tested independently from the individual

scientist who first reports it5. In continuum mechanics, it is well-known that a real-

valued function W (εεε) is called objective if and only if W (εεε) = W (Rεεε) for any given

rotation tensor R ∈ SO(3), i.e. W (εεε) must be an invariant under rigid rotation, (see

[9], and Chapter 6 [19]). The duality relation εεε∗ = ∇W (εεε) is called the constitutive

law, which is independent of any particularly given problem. Clearly, any linear func-

tion is not objective. The objectivity lays a foundation for mathematical modeling.

In order to emphasize its importance, the objectivity is also called the principle of

3 The strain energy is also called the compliance in topology optimization and (Pc) is a correct
model for topology optimization. The general problem (Pbl) was originally formulated as a minimum
total potential energy so that using f = K(ρ)ū, min{Πh(ū,ρ)| ρ ∈ Za} = min{− 1

2c(u)ρT | ρ ∈ Za}
is a Knapsack problem [39].

4https://en.wikipedia.org/wiki/Objectivity_(philosophy)
5 https://en.wikipedia.org/wiki/Objectivity_(science)
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frame-indifference in continuum physics [80].

Unfortunately, this fundamentally important concept has been mistakenly used

in the optimization literature with other functions, such as the target, cost, energy,

and utility functions, etc6. As a result, the general optimization problem has been

proposed as

min f(x), s.t. g(x) ≤ 0, (4.69)

and the arbitrarily given f(x) is called the objective function7, which is also allowed

to be a linear function. Clearly, this general problem is artificial. Without detailed

information on the functions f(x) and g(x), it is impossible to have a powerful the-

ory and method for solving this artificially given problem. It turns out that many

nonconvex/nonsmooth optimization problems are considered to be NP-hard.

In linguistics, a grammatically correct sentence should be composed by at least

three components: subject, object and a predicate. Based on this rule and the canon-

ical duality principle [19], a unified mathematical problem for multi-scale complex

systems was proposed by Gao in [35]:

(Pg) : min{Π(u) = W (Du)− F (u)| u ∈ Uc}, (4.70)

where W (εεε) : Ea → R is an objective function such that the internal duality relation

εεε∗ = ∇W (εεε),

is governed by the constitutive law, its domain Ea contains only physical constraints

(such as the incompressibility and plastic yield conditions [12]), which depends on

mathematical modeling; F (u) : Ua → R is a subjective function such that the external

duality relation

u∗ = ∇F (u) = f ,

is a given input (or source), its domain Ua contains only geometrical constraints

(such as boundary and initial conditions), which depends on each given problem;

D : Ua → Ea is a linear operator which links the two spaces Ua and Ea with different

physical scales; the feasible space is defined by Uc = {u ∈ Ua| Du ∈ Ea}. The

predicate in (Pg) is the operator “−” and the difference Π(u) is called the target

function in general problems. The object and subject are in balance only at the

6 http://en.wikipedia.org/wiki/Mathematical_optimization
7This terminology is used mainly in English literature. The function f(x) is correctly called the

target function in Chinese and Japanese literature.
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optimal states.

The unified form (Pg) covers general constrained nonconvex/nonsmooth/discrete

variational and optimization problems in multi-scale complex systems [41, 26]. Since

the input f does not depend on the output u, the subjective function F (u) must be

linear. Dually, the objective function W (εεε) must be nonlinear such that there exists

an objective measure ξ = Λ(u) and a convex function Ψ(ξ), hence the canonical

transformation W (Du) = Ψ(Λ(u)) holds for most real-world systems. This is the

reason why the canonical duality theory was naturally developed and can be used to

solve general challenging problems in multidisciplinary fields. However, since objec-

tivity has been misused in the optimization community, this theory was mistakenly

challenged by M.D. Voisei and C. Zălinescu (cf. [41]). By oppositely choosing lin-

ear functions for W (εεε) and nonlinear functions for F (u), they produced a list of

“count-examples” and concluded: “a correction of this theory is impossible without

falling into trivial”. The conceptual mistakes in their challenges revealed at least two

important truths:

1. there exists a huge gap between optimization and mechanics;

2. incorrectly using the well-defined concepts can lead to absurd arguments.

Interested readers are recommended to read recent paper [36] for further discussion.

For continuous systems, the necessary optimality condition for the general prob-

lem (Pg) leads to an abstract equilibrium equation

D∗∂εεεW (Du) = f . (4.71)

It is linear if the objective function W (εεε) is a quadratic. This abstract equation

includes almost all the well-known equilibrium problems in textbooks from partial dif-

ferential equations in mathematical physics to algebraic systems in numerical analysis

and optimization [79]. In mathematical economics, if the output u ∈ Ua ⊂ Rn rep-

resents the product of a manufacturing company, the input f can be considered as

the market price of u, then the subjective function F (u) = uT f in this example is

the total income of the company. The products are produced by workers εεε = Du and

D ∈ Rm×n is a cooperation matrix. The workers are paid by salary εεε∗ = ∇W (εεε) and

the objective function W (εεε) is the total cost. Thus, the optimization problem (Pg)
is to minimize the total loss Π(u) under certain given constraints in Uc. A compre-

hensive review on modeling, problems and NP-hardness in multi-scale optimization

is given in [42].
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In summary, the theoretical results presented in this chapter show that the canon-

ical duality theory is indeed an important methodological theory not only for solving

the most challenging topology optimization problems, but also for correctly under-

standing and modeling multi-scale problems in complex systems. The numerical

results verified that the CPD method can produce a mechanically sound optimal

topology, and it is much more powerful than the popular SIMP and BESO methods.

Specific conclusions are as follows:

1. The mathematical model for general topology optimization should be formu-

lated as a bi-level mixed integer nonlinear programming problem (Pbl). This

model works for both linearly and nonlinearly deformed elasto-plastic struc-

tures.

2. The alternative iteration is allowed for solving (Pbl), which leads to a Knapsack

problem for linear elastic structures. The CPD is a polynomial-time algorithm,

which can solve (Pbl) to obtain a global optimal solution at each volume iter-

ation.

3. The pure complementary energy principle is a special application of the canon-

ical duality theory in nonlinear elasticity. This principle plays an important

role not only in nonconvex analysis and computational mechanics, but also in

topology optimization, especially for large deformed structures.

4. Unless a magic method is proposed, the volume evolution is necessary for solv-

ing (Pbl) if µc = Vc/V0 � 1. But the global optimal solution depends sensitively

on the evolutionary rate µ ∈ [µc, 1).

5. The compliance minimization problem (P ) should be written in the form of

(Pc) instead of the minimum strain energy form (Ps). The problem (Pc) is

actually a single-level reduction of (Pbl) for linear elasticity. An alternative

iteration for solving (Ps) leads to an anti-Knapsack problem.

6. The SIMP method is not a mathematically correct penalty method for solv-

ing either (P ) or (Pc). Even if the magic number p = 3 works for certain

material/structures, this method cannot produce correct integer solutions.

7. Although the BESO algorithm is posed in the form of minimization of mean

compliance, it is actually a direct method for solving a Knapsack problem at

each volume reduction. For small-scale problems, BESO can produce reason-

able results much better than SIMP. But it is time consuming for large-scale
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topology optimization problems since the direct method is not a polynomial-

time algorithm.
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Chapter 5

Conclusions and future work

5.1 Conclusions

A detailed study of a large deformation problem in 2-D structure is presented. The

extremality condition is a fundamentally difficult problem in nonconvex mechanics

and global optimization, therefore, none of the traditional convexity methods can be

used for solving a large class of nonconvex minimization problems in finite deforma-

tion theory. Canonical duality theory provides a potentially useful methodology for

solving this challenging problem. Besides the canonical duality theory, the mixed

finite element method is applied in two separate fields, displacement and dual stress

fields, in order to compute the global minimizer of the total potential energy problem.

Numerical applications are illustrated with different structural designs and different

external loads. We found that the gap function of the present problem is strictly

positive, and therefore, our results are the unique solutions.

Moreover, the canonical dual finite element method for the post-buckling analysis

of a large deformation elastic beam which is governed by a fourth order non-linear

differential equation is introduced. The Gao-Strang total complementary energy

associated with this model is a nonconvex functional. Combining the Gao-Strang

total complementary energy and the proposed formula of pure complementary energy

with the triality theory, a canonical duality algorithm is investigated. A new primal-

dual semi-definite program algorithm is applied to solve this challenging nonconvex

variational problem and to obtain all possible post-buckled solutions. The triality

theory is verified by using different types of dual stress interpolations to get the

closed dimensions between the discretized displacement and discretized stress. The

numerical results show that the global minimum of the total potential energy is a
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stable buckled configuration, while the local extrema present unstable deformation

states and the solutions to unstable buckled states are very sensitive not only to the

artificial parameters, such as the size of the finite elements, but also to the natural

conditions, such as the external loads and boundary conditions.

Finally, we presented a novel canonical penalty-duality (CPD) method to solve

the challenging 3-dimensional benchmark problems in topology optimization. The

relation between the CPD method for solving 0-1 integer programming problems

and the pure complementary energy principle in nonlinear elasticity is discussed.

Our theoretical results show that the pure complementary energy principle plays

an important role, not only for large deformation theory and nonconvex variational

analysis, but also in solving challenging problems in computational mechanics and

mixed integer nonlinear programming. Applications are demonstrated by 3-D linear

elastic structural topology optimization problems and show that the CPD can pro-

vide mechanically sound optimal design with much less computing time and fewer

iterations compared with the most widely used topology optimization procedures,

SIMP and BESO. Moreover, the CPD method has a convergent solution even if the

termination criterion is very small. Additionally, mathematical mistakes and com-

putational complexity in topology optimization modeling and popular methods are

discussed in detail for the first time.

5.2 Future work

The canonical duality theory is particularly useful for studying nonconvex, nons-

mooth, nonconservative large deformed dynamical systems [21]. Therefore, future

work includes investigating the CPD method for solving general topology optimiza-

tion problems of large deformed elasto-plastic structures subjected to dynamical

loads. The main open problems include the optimal parameter µ in order to en-

sure a fast convergence rate with optimal results, the existence and uniqueness of

the global optimization solution for a given design domain Vc. The computations of

the powerful CDT method can be applied not only to structural designs but also in

other fields of the sciences. The author would like to investigate the possible appli-

cations of this method, including heat conduction and reduction problems which can

be easily applied in 3-D design domain due to the fact that the number of degrees

freedom per node is only one rather than three as in structural designs. Another

interesting problem for future study relates to finding analytical solutions for the

elasto-plasticity of beams by applying the canonical duality theory.
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Appendix A

Matlab codes for solving 3D

topology optimization problems

According to the Section 4.7.1 in Chapter 4, we present three MATLAB codes for

CPD, BESO and SIMP methods in order to compare the results of the present

method CPD with the results of the popular methods, BESO and SIMP. These codes

are for a cantilever beam problem which is subjected to a uniformly distributed load

in the right end, as shown in examples 4.7.1.1 and 4.7.1.2.

We can also easily obtain the codes for the other structures that are described

in the other examples of Section 4.7, by changing some lines in the present codes in

accordance with their boundary conditions and loading conditions. Some elements

are required to be either solid or void depending on their design, such as in a cantilever

beam with a given hole, as in Section 4.7.3.

A.1 Matlab Code for the CPD method

We present in this section a Matlab code “CPD3D” for solving 3D topology optimization

problems. It is created based on the canonical penalty-duality (CPD) algorithm which is

explained in Section 4.6. The CPD3D code is developed according to the Matlab CDT

code for 2D structures which was presented by Prof. M. Li [39]. The CPD algorithm is

specified by lines 75-97. The main program is called by the following Matlab input line

CPD3D(nelx,nely,nelz,volfrac,mu,beta),

where “nelx”, “nely” and “nelz” represent the number of elements along x, y, and z di-

rections, “volfrac” is the target volume fraction, “mu” is the volume evolution rate and

“beta” is the perturbation parameter.
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1 % Canonical Penalty−Dual i ty Algorithm f o r 3D Topology

Optimizat ion . . By Ela f J . Al i (2017) , Federat ion Un ive r s i ty

Aus t ra l i a

2 f unc t i on CPD3D( nelx , nely , ne lz , v o l f r a c ,mu, beta )

3 FigHandle = f i g u r e ( ’ Po s i t i on ’ , [ 600 , 90 , 800 , 3 5 0 ] ) ;

4 t i c ; % stopwatch t imer

5 % USER−DEFINED LOOP PARAMETERS

6 maxloop = 200 ; % Maximum number o f i t e r a t i o n s

7 t o l x = 1e−16; % Terminarion c r i t e r i o n

8 d i s p l a y f l a g = 0 ; % Display s t r u c t u r e f l a g

9 % USER−DEFINED MATERIAL PROPERTIES

10 E0 = 1 ; % Young ’ s modulus o f s o l i d mate r i a l

11 Emin = 1e−9; % Young ’ s modulus o f void− l i k e mate r i a l

12 nu = 0 . 3 ; % Poisson ’ s r a t i o

13 tau =1;

14 Err=2e−16;

15 er= 0 . 0 5 ;

16 % USER−DEFINED LOAD DOFs

17 [ i l , j l , k l ] = meshgrid ( nelx , 0 , 0 : n e l z ) ; % Coordinates

18 l oadn id = k l ∗( ne lx +1)∗( ne ly +1)+i l ∗( ne ly +1)+(ne ly+1− j l ) ;%Node IDs

19 l oaddo f = 3∗ l oadn id ( : ) − 1 ; %DOFs

20 % USER−DEFINED SUPPORT FIXED DOFs

21 [ i i f , j f , k f ] = meshgrid ( 0 , 0 : nely , 0 : n e l z ) ; % Coordinates

22 f i x e d n i d = kf ∗( ne lx +1)∗( ne ly +1)+ i i f ∗( ne ly +1)+(ne ly+1− j f ) ; %Node

IDs

23 f i x e d d o f = [3∗ f i x e d n i d ( : ) ; 3∗ f i x e d n i d ( : ) −1; 3∗ f i x e d n i d ( : ) −2];%

DOFs

24 % PREPARE FINITE ELEMENT ANALYSIS

25 ne l e = ne lx ∗ ne ly ∗ ne l z ;

26 ndof = 3∗( ne lx +1)∗( ne ly +1)∗( ne l z +1) ;

27 F = spar s e ( loaddof ,1 ,−1 , ndof , 1 ) ;

28 U = ze ro s ( ndof , 1 ) ;

29 f r e e d o f s = s e t d i f f ( 1 : ndof , f i x e d d o f ) ;

30 KE = lk H8 (nu) ;

31 nodegrd = reshape ( 1 : ( ne ly +1)∗( ne lx +1) , ne ly +1, ne lx +1) ;

32 nodeids = reshape ( nodegrd ( 1 : end−1 ,1: end−1) , ne ly ∗nelx , 1 ) ;

33 nodeidz = 0 : ( ne ly +1)∗( ne lx +1) : ( ne lz −1)∗( ne ly +1)∗( ne lx +1) ;

34 nodeids = repmat ( nodeids , s i z e ( nodeidz ) )+repmat ( nodeidz , s i z e (

nodeids ) ) ;
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35 edofVec = 3∗ nodeids ( : ) +1;

36 edofMat = repmat ( edofVec , 1 , 2 4 )+ repmat ( [ 0 1 2 3∗ ne ly + [ 3 4 5 0 1

2 ] −3 −2 −1 . . .

37 3∗( ne ly +1)∗( ne lx +1)+[0 1 2 3∗ ne ly + [ 3 4 5 0 1 2 ] −3 −2 −1] ] ,

ne le , 1 ) ;

38 iK = reshape ( kron ( edofMat , ones (24 ,1 ) ) ’ ,24∗24∗ nele , 1 ) ;

39 jK = reshape ( kron ( edofMat , ones (1 , 24 ) ) ’ ,24∗24∗ nele , 1 ) ;

40 % INITIALIZE ITERATION

41 loop = 0 ;

42 change = 1 ;

43 a = ones ( nely , nelx , ne l z ) ;

44 xPhys = ones ( nely , nelx , n e l z ) ;

45 whi le change > t o l x && loop < maxloop

46 loop = loop + 1 ;

47 mu = max( v o l f r a c ,mu∗(1− er ) ) ;

48 % FE−ANALYSIS

49 sK = reshape (KE( : ) ∗(Emin+(E0−Emin) ∗xPhys ( : ) ’ ) ,24∗24∗ nele , 1 )

;

50 K = spar se ( iK , jK , sK) ;

51 % K = (K+K’ ) /2 ;

52 U( f r e e d o f s , : ) = K( f r e e d o f s , f r e e d o f s ) \F( f r e e d o f s , : ) ;

53 % OBJECTIVE FUNCTION AND SENSITIVITY ANALYSIS

54 ce = reshape (sum ( (U( edofMat ) ∗KE) .∗U( edofMat ) ,2 ) , [ nely , nelx ,

n e l z ] ) ;

55 c = sum(sum(sum ( ( Emin+(E0−Emin) ∗xPhys ) .∗ ce ) ) ) ;

56 % DUAL METHOD

57 CM=xPhys∗E0 .∗ ce ;

58 [ rho new , tau ]=CPDAlgorithm (CM, a ,mu, Err , tau , beta ) ;

59 change = max( abs ( rho new ( : )−xPhys ( : ) ) ) ;

60 xPhys = rho new ;

61 % PRINT RESULTS

62 f p r i n t f ( ’ I t . :%5 i Obj . :%11 .4 f Vol . :%7 .3 f ch . :%7 .3 f \n ’ , loop ,

c , mean( xPhys ( : ) ) , change ) ;

63 % PLOT DENSITIES

64 i f d i s p l a y f l a g , c l f ; d i sp lay 3D ( xPhys ) ; end

65 c l f ; d i sp lay 3D ( xPhys ) ;

66 end

67 Time=toc ;

68 c l f ; d i sp lay 3D ( xPhys ) ;
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69 t i t l e ( [ ’CPD3D ’ , ’ v . f .= ’ , num2str ( ( v o l f r a c ) ) , ’ \mu=’ , num2str ( (mu) )

, . . .

70 ’ \beta=’ , num2str ( beta ) , ’ nx=’ , num2str ( ne lx ) , ’ ny=’ , num2str ( ne ly

) , . . .

71 ’ nz=’ , num2str ( abs ( ne l z ) ) , ’ c=’ , num2str ( c ) , ’ I t .= ’ , num2str (

loop ) , . . .

72 ’ Time=’ , num2str (Time) , ’ t o l x= ’ , num2str ( t o l x ) ] ) ;

73 end

74 % === Canonical Penalty−Dual i ty Algorithm ===

75 f unc t i on [ rho , tau ]=CPDAlgorithm (CM, a ,mu, Err , tau , beta )

76 [ nely , nelx , ne l z ]= s i z e (CM) ;

77 NE=nelx ∗ ne ly ∗ ne l z ;

78 vp=mu∗NE;

79 pd0=1000;

80 dpd=1000;

81 k=0;

82 whi le dpd>Err

83 k=k+1;

84 eta=beta ˆ2/27 ;

85 theta=(tau∗a − CM) . ˆ 2 ;

86 phi=eta ˆ(−1/3) ∗(2∗ theta−eta +2∗( theta . ∗ ( theta−eta ) ) . ˆ 0 . 5 )

. ˆ ( 1 / 3 ) ;

87 sg =1/6∗beta∗(−1+2∗ r e a l ( phi ) ) ;

88 tau= (sum(sum(sum( a .∗(1+CM. / sg ) ) ) )−2∗vp ) /sum(sum(sum( a . ˆ 2 . /

sg ) ) ) ;

89 mc=sg+CM−tau∗a ;

90 dc =0.5∗( sg .∗ sg ) / beta ;

91 pd=sum(sum(sum(0 .25∗mc. ˆ 2 . / sg+dc ) ) )−tau∗vp ;

92 dpd=abs (pd−pd0 ) ;

93 pd0=pd ;

94 end

95 rho =1/2∗(1−( tau∗a−CM) . / sg ) ; % compute the dens i ty

96 rho=r e a l ( ( rho >0.01) ) ;

97 end

98 % === GENERATE ELEMENT STIFFNESS MATRIX ===

99 f unc t i on [KE] = lk H8 (nu)

100 A = [32 6 −8 6 −6 4 3 −6 −10 3 −3 −3 −4 −8;

101 −48 0 0 −24 24 0 0 0 12 −12 0 12 12 1 2 ] ;

102 k = 1/144∗A’ ∗ [ 1 ; nu ] ;
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103 K1 = [ k (1 ) k (2 ) k (2 ) k (3 ) k (5 ) k (5 ) ;

104 k (2 ) k (1 ) k (2 ) k (4 ) k (6 ) k (7 ) ;

105 k (2 ) k (2 ) k (1 ) k (4 ) k (7 ) k (6 ) ;

106 k (3 ) k (4 ) k (4 ) k (1 ) k (8 ) k (8 ) ;

107 k (5 ) k (6 ) k (7 ) k (8 ) k (1 ) k (2 ) ;

108 k (5 ) k (7 ) k (6 ) k (8 ) k (2 ) k (1 ) ] ;

109 K2 = [ k (9 ) k (8 ) k (12) k (6 ) k (4 ) k (7 ) ;

110 k (8 ) k (9 ) k (12) k (5 ) k (3 ) k (5 ) ;

111 k (10) k (10) k (13) k (7 ) k (4 ) k (6 ) ;

112 k (6 ) k (5 ) k (11) k (9 ) k (2 ) k (10) ;

113 k (4 ) k (3 ) k (5 ) k (2 ) k (9 ) k (12)

114 k (11) k (4 ) k (6 ) k (12) k (10) k (13) ] ;

115 K3 = [ k (6 ) k (7 ) k (4 ) k (9 ) k (12) k (8 ) ;

116 k (7 ) k (6 ) k (4 ) k (10) k (13) k (10) ;

117 k (5 ) k (5 ) k (3 ) k (8 ) k (12) k (9 ) ;

118 k (9 ) k (10) k (2 ) k (6 ) k (11) k (5 ) ;

119 k (12) k (13) k (10) k (11) k (6 ) k (4 ) ;

120 k (2 ) k (12) k (9 ) k (4 ) k (5 ) k (3 ) ] ;

121 K4 = [ k (14) k (11) k (11) k (13) k (10) k (10) ;

122 k (11) k (14) k (11) k (12) k (9 ) k (8 ) ;

123 k (11) k (11) k (14) k (12) k (8 ) k (9 ) ;

124 k (13) k (12) k (12) k (14) k (7 ) k (7 ) ;

125 k (10) k (9 ) k (8 ) k (7 ) k (14) k (11) ;

126 k (10) k (8 ) k (9 ) k (7 ) k (11) k (14) ] ;

127 K5 = [ k (1 ) k (2 ) k (8 ) k (3 ) k (5 ) k (4 ) ;

128 k (2 ) k (1 ) k (8 ) k (4 ) k (6 ) k (11) ;

129 k (8 ) k (8 ) k (1 ) k (5 ) k (11) k (6 ) ;

130 k (3 ) k (4 ) k (5 ) k (1 ) k (8 ) k (2 ) ;

131 k (5 ) k (6 ) k (11) k (8 ) k (1 ) k (8 ) ;

132 k (4 ) k (11) k (6 ) k (2 ) k (8 ) k (1 ) ] ;

133 K6 = [ k (14) k (11) k (7 ) k (13) k (10) k (12) ;

134 k (11) k (14) k (7 ) k (12) k (9 ) k (2 ) ;

135 k (7 ) k (7 ) k (14) k (10) k (2 ) k (9 ) ;

136 k (13) k (12) k (10) k (14) k (7 ) k (11) ;

137 k (10) k (9 ) k (2 ) k (7 ) k (14) k (7 ) ;

138 k (12) k (2 ) k (9 ) k (11) k (7 ) k (14) ] ;

139 KE = 1/(( nu+1)∗(1−2∗nu) ) ∗ . . .

140 [ K1 K2 K3 K4 ;

141 K2’ K5 K6 K3 ’ ;
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142 K3’ K6 K5’ K2 ’ ;

143 K4 K3 K2 K1 ’ ] ;

144 end

145 % === DISPLAY 3D TOPOLOGY (ISO−VIEW) ===

146 f unc t i on disp lay 3D ( rho )

147 [ nely , nelx , ne l z ] = s i z e ( rho ) ;

148 hx = 1 ; hy = 1 ; hz = 1 ; % User−de f ined un i t element s i z e

149 f a c e = [ 1 2 3 4 ; 2 6 7 3 ; 4 3 7 8 ; 1 5 8 4 ; 1 2 6 5 ; 5 6 7 8 ] ;

150 s e t ( gcf , ’Name ’ , ’ ISO d i s p l ay ’ , ’ NumberTitle ’ , ’ o f f ’ ) ;

151 f o r k = 1 : ne l z

152 z = (k−1)∗hz ;

153 f o r i = 1 : ne lx

154 x = ( i −1)∗hx ;

155 f o r j = 1 : ne ly

156 y = nely ∗hy − ( j−1)∗hy ;

157 i f ( rho ( j , i , k ) > 0 . 5 ) %User−de f ined d i s p l a y dens i ty

th r e sho ld

158 ver t = [ x y z ; x y−hx z ; x+hx y−hx z ; x+hx y z ; x

y z+hx ; x y−hx z+hx ; x+hx y−hx z+hx ; x+hx y z+hx

] ;

159 ver t ( : , [ 2 3 ] ) = ver t ( : , [ 3 2 ] ) ; ve r t ( : , 2 , : ) = −
ver t ( : , 2 , : ) ;

160 patch ( ’ Faces ’ , face , ’ V e r t i c e s ’ , vert , ’ FaceColor ’ ,

[ 0 . 0 , 0 . 4 ∗ ( rho ( j , i , k ) ) , 0 . 8 ] ) ;

161 hold on ;

162 end

163 end

164 end

165 end

166 a x i s equal ; a x i s t i g h t ; a x i s o f f ; box on ; view ( [ 3 0 , 3 0 ] ) ; pause (1 e

−6) ;

167 end

A.2 Matlab Code for the BESO method

We present in this section a Matlab code “BESO3D” for solving 3D topology optimization

problems by using the soft-kill BESO method. This code is based on [47].
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1 % == This code was wr i t t en by Ela f J Al i (2017) , accord ing to the

paper : ( Matlab implementation o f 3D topology opt imiza t i on

us ing BESO, by Huang , R. , and Huang , X. , 2011) .

2 % The so f t−k i l l BESO algorithm− Cant i l eve r beam problem

3 f unc t i on BESO3D( nelx , nely , ne lz , v o l f r a c , er ,mu, rmin )

4 t i c ;

5 FigHandle = f i g u r e ( ’ Po s i t i on ’ , [ 600 , 90 , 800 , 3 5 0 ] ) ;

6 maxloop=200;

7 E0 = 1 ; % Young ’ s modulus o f s o l i d mate r i a l

8 Emin = 1e−9; % Young ’ s modulus o f void− l i k e mate r i a l

9 t o l x = 1e−6 ; % Terminarion c r i t e r i o n

10 % INITIALIZE

11 xPhys = ones ( nelx , nely , n e l z ) ;

12 vo l=mu;

13 loop = 0 ; change = 1 . ; penal = 3 . ;

14 d i s p l a y f l a g = 0 ;

15 % START iTH ITERATION

16 whi le change > t o l x && loop < maxloop

17 loop = loop + 1 ;

18 vo l = max( vo l ∗(1− er ) , v o l f r a c ) ;

19 i f loop >1; o lddc = dc ; end

20 % FE−ANALYSIS

21 [U]=FE( nelx , nely , ne lz , xPhys , penal ) ;

22 % OBJECTIVE FUNCTION AND SENSITIVITY ANALYSIS

23 [KE] = lk ;

24 c ( loop ) = 0 . ;

25 f o r e l z = 1 : ne l z

26 f o r e l y = 1 : ne ly

27 f o r e l x = 1 : ne lx

28 n1 = ( ne lx +1)∗( ne l z +1)∗( e ly −1)+(elx −1)∗( ne l z +1) +e l z ;

29 n2 = ( ne lx +1)∗( ne l z +1)∗( e ly −1)+( e l x ) ∗( ne l z +1)+e l z ;

30 n4 = ( ne lx +1)∗( ne l z +1)∗( e l y )+(elx −1)∗( ne l z +1)+e l z ;

31 n3 = ( ne lx +1)∗( ne l z +1)∗( e l y )+( e l x ) ∗( ne l z +1)+e l z ;

32 Ue = U ( [ . . .

33 3∗n1−2; 3∗n1−1; 3∗n1 ; . . .

34 3∗n2−2; 3∗n2−1; 3∗n2 ; . . .

35 3∗n3−2; 3∗n3−1; 3∗n3 ; . . .

36 3∗n4−2; 3∗n4−1; 3∗n4 ; . . .

37 3∗n1+1; 3∗n1+2; 3∗n1 + 3 ; . . .
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38 3∗n2+1; 3∗n2+2; 3∗n2 + 3 ; . . .

39 3∗n3+1; 3∗n3+2; 3∗n3 + 3 ; . . .

40 3∗n4+1; 3∗n4+2; 3∗n4 +3] ,1) ;

41

42 c ( loop )=c ( loop )+ xPhys ( e lx , e ly , e l z ) ˆ penal ∗(E0−Emin) ∗Ue ’∗
KE∗Ue ;

43 dc ( e lx , e ly , e l z )=xPhys ( e lx , e ly , e l z ) ˆ( penal−1)∗(E0−Emin) ∗
Ue ’∗KE∗Ue ;

44 end

45 end

46 end

47 % FILTERING OF SENSITIVITIES

48 [ dc ] = check ( nelx , nely , ne lz , rmin , dc ) ;

49 % STABLIZATION OF EVOLUTIONARY PROCESS

50 i f loop > 1 ; dc = ( dc+olddc ) / 2 . ; end

51 % BESO DESIGN UPDATE

52 [ xPhys ] = ADDDEL( nelx , nely , ne lz , vol , dc , xPhys ) ;

53 % PRINT RESULTS

54 i f loop>10

55 change=abs (sum( c ( loop −9: loop−5) )−sum( c ( loop −4: loop ) ) ) /sum( c ( loop

−4: loop ) ) ;

56 end

57 f p r i n t f ( ’ I t . :%5 i Obj . :%11 .4 f Vol . :%7 .3 f ch . :%7 .3 f \n ’ , loop , c ( loop

) ,mean( xPhys ( : ) ) , change ) ;

58 i f d i s p l a y f l a g , c l f ; d i sp lay 3D ( xPhys ) ; end

59 c l f ; d i sp lay 3D ( xPhys )

60 end

61 Time=toc ;

62 c l f ; d i sp lay 3D ( xPhys ) ;

63

64 t i t l e ( [ ’BESO ’ , ’ v . f .= ’ , num2str ( ( v o l f r a c ) ) , . . .

65 ’ nx= ’ , num2str ( ne lx ) , ’ ny= ’ , num2str ( ne ly ) , . . .

66 ’ nz= ’ , num2str ( abs ( ne l z ) ) , ’ \mu= ’ , num2str (mu) , . . .

67 ’ c=’ , num2str ( c ( loop ) ) , ’ I t .= ’ , num2str ( loop ) , . . .

68 ’ Time= ’ , num2str (Time) , ’ t o l x= ’ , num2str ( t o l x ) ] ) ;

69 end

70 % === OPTIMALITY CRITERIA UPDATE ===

71 f unc t i on [ xPhys]=ADDDEL( nelx , nely , ne lz , vo l f r a , dc , xPhys )

72 l 1 = min (min ( min ( dc ) ) ) ; l 2 = max(max(max( dc ) ) ) ;
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73 whi le ( ( l2−l 1 ) / l 2 > 1 .0 e−5)

74 th = ( l 1+l 2 ) / 2 . 0 ;

75 xPhys = max( 0 . 0 0 1 , s i gn ( dc−th ) ) ;

76 i f sum(sum(sum( xPhys ) ) )−v o l f r a ∗( ne lx ∗ ne ly ∗ ne l z ) > 0

77 l 1 = th ;

78 e l s e

79 l 2 = th ;

80 end

81 end

82 end

83 % === MESH−INDEPENDENCY FILTER ===

84 f unc t i on [ dc f ]= check ( nelx , nely , ne lz , rmin , dc )

85 dc f=ze ro s ( nelx , nely , n e l z ) ;

86 f o r i = 1 : ne lx

87 f o r j = 1 : ne ly

88 f o r n = 1 : ne l z

89 sum=0.0;

90 f o r k = max( i−f l o o r ( rmin ) ,1 ) : min ( i+f l o o r ( rmin ) , ne lx )

91 f o r l = max( j−f l o o r ( rmin ) ,1 ) : min ( j+f l o o r ( rmin ) ,

ne ly )

92 f o r m = max(n−f l o o r ( rmin ) ,1 ) : min (n+f l o o r ( rmin

) , n e l z )

93 f a c = rmin−s q r t ( ( i−k ) ˆ2+( j−l ) ˆ2+(n−m) ˆ2) ;

94 sum = sum+max(0 , f a c ) ;

95 dc f ( i , j , n ) = dc f ( i , j , n ) + max(0 , f a c ) ∗dc (k ,

l ,m) ;

96 end

97 end

98 end

99 dc f ( i , j , n ) = dc f ( i , j , n ) /sum ;

100 end

101 end

102 end

103 end

104 % === FE−ANALYSIS ===

105 f unc t i on [U]=FE( nelx , nely , ne lz , xPhys , penal )

106 [KE] = lk ;

107 a=3∗( ne lx +1)∗( ne ly +1)∗( ne l z +1) ;

108 K = spar se ( a , a ) ;
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109 F = spar s e ( a , 1 ) ;

110 U = ze ro s ( a , 1 ) ;

111 f o r e l z = 1 : ne l z

112 f o r e l y = 1 : ne ly

113 f o r e l x = 1 : ne lx

114 n1 = ( ne lx +1)∗( ne l z +1)∗( e ly −1)+(elx −1)∗( ne l z +1) +e l z ;

115 n2 = ( ne lx +1)∗( ne l z +1)∗( e ly −1)+( e l x ) ∗( ne l z +1)+e l z ;

116 n4 = ( ne lx +1)∗( ne l z +1)∗( e l y )+(elx −1)∗( ne l z +1)+e l z ;

117 n3 = ( ne lx +1)∗( ne l z +1)∗( e l y )+( e l x ) ∗( ne l z +1)+e l z ;

118 edof = [ . . .

119 3∗n1−2; 3∗n1−1; 3∗n1 ; . . .

120 3∗n2−2; 3∗n2−1; 3∗n2 ; . . .

121 3∗n3−2; 3∗n3−1; 3∗n3 ; . . .

122 3∗n4−2; 3∗n4−1; 3∗n4 ; . . .

123 3∗n1+1; 3∗n1+2; 3∗n1 + 3 ; . . .

124 3∗n2+1; 3∗n2+2; 3∗n2 + 3 ; . . .

125 3∗n3+1; 3∗n3+2; 3∗n3 + 3 ; . . .

126 3∗n4+1; 3∗n4+2; 3∗n4 +3] ;

127

128 K( edof , edo f ) = K( edof , edo f ) + xPhys ( e lx , e ly , e l z ) ˆ penal ∗KE;

129 end

130 end

131 end

132 % DEFINE LOADS AND SUPPORTS

133 % USER−DEFINED LOAD DOFs

134 [ i l , j l , k l ]= meshgrid ( nelx , 0 , 0 : n e l z ) ;

135 l oadn id= j l ∗( ne lx +1)∗( ne l z +1)+i l ∗( ne l z +1)+( ne l z+1−k l ) ;%Node IDs

136 l oaddo f= 3∗ l oadn id ( : ) − 1 ; % DOFs

137 % USER−DEFINED SUPPORT FIXED DOFs

138 [ i i f , j f , k f ] = meshgrid ( 0 , 0 : nely , 0 : n e l z ) ;

139 f i x e d n i d= j f ∗( ne lx +1)∗( ne l z +1)+ i i f ∗( ne l z +1)+( ne l z+1−kf ) ;

140 f i x e d d o f= [3∗ f i x e d n i d ( : ) ; 3∗ f i x e d n i d ( : ) −1;3∗ f i x e d n i d ( : ) −2];

141 % PREPARE FINITE ELEMENT ANALYSIS

142 ndof = 3∗( ne lx +1)∗( ne l z +1)∗( ne ly +1) ;

143 F = spar s e ( loaddof ,1 ,−1 , ndof , 1 ) ;

144 U = ze ro s ( ndof , 1 ) ;

145 f r e e d o f s = s e t d i f f ( 1 : ndof , f i x e d d o f ) ;

146 % SOLVING

147 U( f r e e d o f s , : ) = K( f r e e d o f s , f r e e d o f s ) \ F( f r e e d o f s , : ) ;

125



148 U( f ixeddo f , : )= 0 ;

149 end

150 % === ELEMENT STIFFNESS MATRIX ===

151 f unc t i on [KE] = lk

152 nu = 0 . 3 ;

153 A = [32 6 −8 6 −6 4 3 −6 −10 3 −3 −3 −4 −8;

154 −48 0 0 −24 24 0 0 0 12 −12 0 12 12 1 2 ] ;

155 k = 1/144∗A’ ∗ [ 1 ; nu ] ;

156 K1 = [ k (1 ) k (2 ) k (2 ) k (3 ) k (5 ) k (5 ) ;

157 k (2 ) k (1 ) k (2 ) k (4 ) k (6 ) k (7 ) ;

158 k (2 ) k (2 ) k (1 ) k (4 ) k (7 ) k (6 ) ;

159 k (3 ) k (4 ) k (4 ) k (1 ) k (8 ) k (8 ) ;

160 k (5 ) k (6 ) k (7 ) k (8 ) k (1 ) k (2 ) ;

161 k (5 ) k (7 ) k (6 ) k (8 ) k (2 ) k (1 ) ] ;

162 K2 = [ k (9 ) k (8 ) k (12) k (6 ) k (4 ) k (7 ) ;

163 k (8 ) k (9 ) k (12) k (5 ) k (3 ) k (5 ) ;

164 k (10) k (10) k (13) k (7 ) k (4 ) k (6 ) ;

165 k (6 ) k (5 ) k (11) k (9 ) k (2 ) k (10) ;

166 k (4 ) k (3 ) k (5 ) k (2 ) k (9 ) k (12)

167 k (11) k (4 ) k (6 ) k (12) k (10) k (13) ] ;

168 K3 = [ k (6 ) k (7 ) k (4 ) k (9 ) k (12) k (8 ) ;

169 k (7 ) k (6 ) k (4 ) k (10) k (13) k (10) ;

170 k (5 ) k (5 ) k (3 ) k (8 ) k (12) k (9 ) ;

171 k (9 ) k (10) k (2 ) k (6 ) k (11) k (5 ) ;

172 k (12) k (13) k (10) k (11) k (6 ) k (4 ) ;

173 k (2 ) k (12) k (9 ) k (4 ) k (5 ) k (3 ) ] ;

174 K4 = [ k (14) k (11) k (11) k (13) k (10) k (10) ;

175 k (11) k (14) k (11) k (12) k (9 ) k (8 ) ;

176 k (11) k (11) k (14) k (12) k (8 ) k (9 ) ;

177 k (13) k (12) k (12) k (14) k (7 ) k (7 ) ;

178 k (10) k (9 ) k (8 ) k (7 ) k (14) k (11) ;

179 k (10) k (8 ) k (9 ) k (7 ) k (11) k (14) ] ;

180 K5 = [ k (1 ) k (2 ) k (8 ) k (3 ) k (5 ) k (4 ) ;

181 k (2 ) k (1 ) k (8 ) k (4 ) k (6 ) k (11) ;

182 k (8 ) k (8 ) k (1 ) k (5 ) k (11) k (6 ) ;

183 k (3 ) k (4 ) k (5 ) k (1 ) k (8 ) k (2 ) ;

184 k (5 ) k (6 ) k (11) k (8 ) k (1 ) k (8 ) ;

185 k (4 ) k (11) k (6 ) k (2 ) k (8 ) k (1 ) ] ;

186 K6 = [ k (14) k (11) k (7 ) k (13) k (10) k (12) ;
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187 k (11) k (14) k (7 ) k (12) k (9 ) k (2 ) ;

188 k (7 ) k (7 ) k (14) k (10) k (2 ) k (9 ) ;

189 k (13) k (12) k (10) k (14) k (7 ) k (11) ;

190 k (10) k (9 ) k (2 ) k (7 ) k (14) k (7 ) ;

191 k (12) k (2 ) k (9 ) k (11) k (7 ) k (14) ] ;

192 KE = 1/(( nu+1)∗(1−2∗nu) ) ∗ . . .

193 [ K1 K2 K3 K4 ;

194 K2’ K5 K6 K3 ’ ;

195 K3’ K6 K5’ K2 ’ ;

196 K4 K3 K2 K1 ’ ] ;

197 end

198 % === DISPLAY 3D TOPOLOGY (ISO−VIEW) ===

199 f unc t i on disp lay 3D ( rho )

200 [ nelx , nely , ne l z ] = s i z e ( rho ) ;

201 hx = 1 ; hy = 1 ; hz = 1 ;

202 f a c e = [ 1 2 3 4 ; 2 6 7 3 ; 4 3 7 8 ; 1 5 8 4 ; 1 2 6 5 ; 5 6 7 8 ] ;

203 s e t ( gcf , ’Name ’ , ’ ISO d i s p l ay ’ , ’ NumberTitle ’ , ’ o f f ’ ) ;

204 f o r k = 1 : ne ly

205 z = (k−1)∗hz ;

206 f o r i = 1 : ne l z

207 y = ( i −1)∗hy ;

208 f o r j = 1 : ne lx

209 x = ( j−1)∗hx −ne lx ∗hx ;

210 i f ( rho ( j , k , i ) ==1)

211 ver t = [ x y z ; x−hy y z ; x−hy y+hy z ; x y+hy z

; x y z+hy ; x−hy y z+hy ; x−hy y+hy z+hy ; x y+

hy z+hy ] ;

212 patch ( ’ Faces ’ , face , ’ V e r t i c e s ’ , vert , ’ FaceColor ’

, [ 0 . 2 , 0 . 8 ∗ ( rho ( j , k , i ) ) , 0 . 8 ] ) ;

213 hold on ;

214 end

215 end

216 end

217 end

218 a x i s equal ; a x i s t i g h t ; a x i s o f f ; box on ; view ( [ 3 0 , 3 0 ] ) ; pause (1 e

−6) ;

219 end
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A.3 Matlab Code for the SIMP method

This section presents the Matlab top3d code for solving 3D topology optimization problems

by using SIMP method. This code was written by K Liu and A Tovar in 2013 [54].

1 % === This code was wr i t t en by K Liu and A Tovar (AN 169 LINE 3D

TOPOLOGY OPITMIZATION CODE, 2013)

2 % SIMP method − Cant i l eve r beam problem

3 f unc t i on top3d ( nelx , nely , ne lz , v o l f r a c , penal , rmin )

4 t i c ;

5 FigHandle = f i g u r e ( ’ Po s i t i on ’ , [ 600 , 90 , 800 , 3 5 0 ] ) ;

6 % USER−DEFINED LOOP PARAMETERS

7 maxloop = 200 ; % Maximum number o f i t e r a t i o n s

8 t o l x = 1e−6; % Terminarion c r i t e r i o n

9 d i s p l a y f l a g = 0 ; % Display s t r u c t u r e f l a g

10 % USER−DEFINED MATERIAL PROPERTIES

11 E0 = 1 ; % Young ’ s modulus o f s o l i d mate r i a l

12 Emin = 1e−9; % Young ’ s modulus o f void− l i k e mate r i a l

13 nu = 0 . 3 ; % Poisson ’ s r a t i o

14 % USER−DEFINED LOAD DOFs

15 [ i l , j l , k l ]= meshgrid ( nelx , 0 , 0 : n e l z ) ;

16 l oadn id= k l ∗( ne lx +1)∗( ne ly +1)+i l ∗( ne ly +1)+(ne ly+1− j l ) ; % Node IDs

17 l oaddo f= 3∗ l oadn id ( : ) − 1 ; % DOFs

18 % USER−DEFINED SUPPORT FIXED DOFs

19 [ i i f , j f , k f ] = meshgrid ( 0 , 0 : nely , 0 : n e l z ) ; % Coordinates

20 f i x e d n i d= kf ∗( ne lx +1)∗( ne ly +1)+ i i f ∗( ne ly +1)+(ne ly+1− j f ) ; % Node

IDs

21 f i x e d d o f= [3∗ f i x e d n i d ( : ) ; 3∗ f i x e d n i d ( : ) −1;3∗ f i x e d n i d ( : ) −2];% DOFs

22 % PREPARE FINITE ELEMENT ANALYSIS

23 ne l e = ne lx ∗ ne ly ∗ ne l z ;

24 ndof = 3∗( ne lx +1)∗( ne ly +1)∗( ne l z +1) ;

25 F = spar s e ( loaddof ,1 ,−1 , ndof , 1 ) ;

26 U = ze ro s ( ndof , 1 ) ;

27 f r e e d o f s = s e t d i f f ( 1 : ndof , f i x e d d o f ) ;

28 KE = lk H8 (nu) ;

29 nodegrd= reshape ( 1 : ( ne ly +1)∗( ne lx +1) , ne ly +1, ne lx +1) ;

30 nodeids= reshape ( nodegrd ( 1 : end−1 ,1: end−1) , ne ly ∗nelx , 1 ) ;

31 nodeidz= 0 : ( ne ly +1)∗( ne lx +1) : ( ne lz −1)∗( ne ly +1)∗( ne lx +1) ;

32 nodeids= repmat ( nodeids , s i z e ( nodeidz ) )+repmat ( nodeidz , s i z e (

nodeids ) ) ;
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33 edofVec= 3∗ nodeids ( : ) +1;

34 edofMat= repmat ( edofVec , 1 , 2 4 )+ repmat ( [ 0 1 2 3∗ ne ly + [ 3 4 5 0 1

2 ] −3 −2 −1 . . .

35 3∗( ne ly +1)∗( ne lx +1)+[0 1 2 3∗ ne ly + [ 3 4 5 0 1 2 ] −3 −2 −1] ] ,

ne le , 1 ) ;

36 iK = reshape ( kron ( edofMat , ones (24 ,1 ) ) ’ ,24∗24∗ nele , 1 ) ;

37 jK = reshape ( kron ( edofMat , ones (1 , 24 ) ) ’ ,24∗24∗ nele , 1 ) ;

38 % PREPARE FILTER

39 iH = ones ( ne l e ∗ (2∗ ( c e i l ( rmin )−1)+1) ˆ2 ,1) ;

40 jH = ones ( s i z e ( iH ) ) ;

41 sH = ze ro s ( s i z e ( iH ) ) ;

42 k = 0 ;

43 f o r k1 = 1 : ne l z

44 f o r i 1 = 1 : ne lx

45 f o r j 1 = 1 : ne ly

46 e1 = ( k1−1)∗ ne lx ∗ ne ly + ( i1 −1)∗ ne ly+j1 ;

47 f o r k2 = max( k1−( c e i l ( rmin )−1) ,1 ) : min ( k1+( c e i l ( rmin )

−1) , n e l z )

48 f o r i 2 = max( i1−( c e i l ( rmin )−1) ,1 ) : min ( i 1 +( c e i l (

rmin )−1) , ne lx )

49 f o r j 2 = max( j1−( c e i l ( rmin )−1) ,1 ) : min ( j1 +(

c e i l ( rmin )−1) , ne ly )

50 e2 = ( k2−1)∗ ne lx ∗ ne ly + ( i2 −1)∗ ne ly+j2 ;

51 k = k+1;

52 iH ( k ) = e1 ;

53 jH ( k ) = e2 ;

54 sH( k ) = max(0 , rmin−s q r t ( ( i1−i 2 ) ˆ2+( j1−j 2 )

ˆ2+(k1−k2 ) ˆ2) ) ;

55 end

56 end

57 end

58 end

59 end

60 end

61 H = spar s e ( iH , jH , sH) ;

62 Hs = sum(H, 2 ) ;

63 % INITIALIZE ITERATION

64 x = repmat ( v o l f r a c , [ nely , nelx , ne l z ] ) ;

65 xPhys = x ;
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66 loop = 0 ;

67 change = 1 ;

68 % START ITERATION

69 whi le change > t o l x && loop < maxloop

70 loop = loop +1;

71 % FE−ANALYSIS

72 sK=reshape (KE( : ) ∗(Emin+xPhys ( : ) ’ . ˆ penal ∗(E0−Emin) ) ,24∗24∗ nele

, 1 ) ;

73 K =spar se ( iK , jK , sK) ; K = (K+K’ ) /2 ;

74 U( f r e e d o f s , : ) = K( f r e e d o f s , f r e e d o f s ) \F( f r e e d o f s , : ) ;

75 % OBJECTIVE FUNCTION AND SENSITIVITY ANALYSIS

76 ce = reshape (sum ( (U( edofMat ) ∗KE) .∗U( edofMat ) ,2 ) , [ nely , nelx ,

n e l z ] ) ;

77 c = sum(sum(sum ( ( Emin+xPhys . ˆ penal ∗(E0−Emin) ) .∗ ce ) ) ) ;

78 dc = −penal ∗(E0−Emin) ∗xPhys . ˆ ( penal−1) .∗ ce ;

79 dv = ones ( nely , nelx , ne l z ) ;

80 % FILTERING AND MODIFICATION OF SENSITIVITIES

81 dc ( : ) = H∗( dc ( : ) . / Hs) ;

82 dv ( : ) = H∗( dv ( : ) . / Hs) ;

83 % OPTIMALITY CRITERIA UPDATE

84 l 1 = 0 ; l 2 = 1e9 ; move = 0 . 2 ;

85 whi le ( l2−l 1 ) /( l 1+l 2 ) > 1e−3

86 lmid =0.5∗( l 2+l 1 ) ;

87 xnew=max(0 ,max(x−move , min (1 , min ( x+move , x .∗ s q r t (−dc . / dv/

lmid ) ) ) ) ) ;

88 xPhys ( : ) =(H∗xnew ( : ) ) . / Hs ;

89 i f sum( xPhys ( : ) )> v o l f r a c ∗nele , l 1 = lmid ; e l s e l 2 = lmid ;

end

90 end

91 change = max( abs (xnew ( : )−x ( : ) ) ) ;

92 x = xnew ;

93 % PRINT RESULTS

94 f p r i n t f ( ’ I t . :%5 i Obj . :%11 .4 f Vol . :%7 .3 f ch . :%7 .3 f \n ’ , loop , c

, mean( xPhys ( : ) ) , change ) ;

95 % PLOT DENSITIES

96 i f d i s p l a y f l a g , c l f ; d i sp lay 3D ( xPhys ) ; end

97 c l f ; d i sp lay 3D ( xPhys ) ;

98 end

99 Time=toc ;
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100 c l f ; d i sp lay 3D ( xPhys ) ;

101 t i t l e ( [ ’SIMP3D ’ , ’ . . v o l f r a c= ’ , num2str ( ( v o l f r a c ) ) , . . .

102 ’ ne lx= ’ , num2str ( ne lx ) , ’ ne ly= ’ , num2str ( abs ( ne ly ) ) , . . .

103 ’ n e l z= ’ , num2str ( abs ( ne l z ) ) , ’ . . c= ’ , num2str ( c ) , . . .

104 ’ . . I t .= ’ , num2str ( loop ) , ’ . . Time= ’ , num2str (Time) , . . .

105 ’ t o l x= ’ , num2str ( t o l x ) ] ) ;

106 end

107 % === GENERATE ELEMENT STIFFNESS MATRIX ===

108 f unc t i on [KE] = lk H8 (nu)

109 A = [32 6 −8 6 −6 4 3 −6 −10 3 −3 −3 −4 −8;

110 −48 0 0 −24 24 0 0 0 12 −12 0 12 12 1 2 ] ;

111 k = 1/144∗A’ ∗ [ 1 ; nu ] ;

112 K1 = [ k (1 ) k (2 ) k (2 ) k (3 ) k (5 ) k (5 ) ;

113 k (2 ) k (1 ) k (2 ) k (4 ) k (6 ) k (7 ) ;

114 k (2 ) k (2 ) k (1 ) k (4 ) k (7 ) k (6 ) ;

115 k (3 ) k (4 ) k (4 ) k (1 ) k (8 ) k (8 ) ;

116 k (5 ) k (6 ) k (7 ) k (8 ) k (1 ) k (2 ) ;

117 k (5 ) k (7 ) k (6 ) k (8 ) k (2 ) k (1 ) ] ;

118 K2 = [ k (9 ) k (8 ) k (12) k (6 ) k (4 ) k (7 ) ;

119 k (8 ) k (9 ) k (12) k (5 ) k (3 ) k (5 ) ;

120 k (10) k (10) k (13) k (7 ) k (4 ) k (6 ) ;

121 k (6 ) k (5 ) k (11) k (9 ) k (2 ) k (10) ;

122 k (4 ) k (3 ) k (5 ) k (2 ) k (9 ) k (12)

123 k (11) k (4 ) k (6 ) k (12) k (10) k (13) ] ;

124 K3 = [ k (6 ) k (7 ) k (4 ) k (9 ) k (12) k (8 ) ;

125 k (7 ) k (6 ) k (4 ) k (10) k (13) k (10) ;

126 k (5 ) k (5 ) k (3 ) k (8 ) k (12) k (9 ) ;

127 k (9 ) k (10) k (2 ) k (6 ) k (11) k (5 ) ;

128 k (12) k (13) k (10) k (11) k (6 ) k (4 ) ;

129 k (2 ) k (12) k (9 ) k (4 ) k (5 ) k (3 ) ] ;

130 K4 = [ k (14) k (11) k (11) k (13) k (10) k (10) ;

131 k (11) k (14) k (11) k (12) k (9 ) k (8 ) ;

132 k (11) k (11) k (14) k (12) k (8 ) k (9 ) ;

133 k (13) k (12) k (12) k (14) k (7 ) k (7 ) ;

134 k (10) k (9 ) k (8 ) k (7 ) k (14) k (11) ;

135 k (10) k (8 ) k (9 ) k (7 ) k (11) k (14) ] ;

136 K5 = [ k (1 ) k (2 ) k (8 ) k (3 ) k (5 ) k (4 ) ;

137 k (2 ) k (1 ) k (8 ) k (4 ) k (6 ) k (11) ;

138 k (8 ) k (8 ) k (1 ) k (5 ) k (11) k (6 ) ;
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139 k (3 ) k (4 ) k (5 ) k (1 ) k (8 ) k (2 ) ;

140 k (5 ) k (6 ) k (11) k (8 ) k (1 ) k (8 ) ;

141 k (4 ) k (11) k (6 ) k (2 ) k (8 ) k (1 ) ] ;

142 K6 = [ k (14) k (11) k (7 ) k (13) k (10) k (12) ;

143 k (11) k (14) k (7 ) k (12) k (9 ) k (2 ) ;

144 k (7 ) k (7 ) k (14) k (10) k (2 ) k (9 ) ;

145 k (13) k (12) k (10) k (14) k (7 ) k (11) ;

146 k (10) k (9 ) k (2 ) k (7 ) k (14) k (7 ) ;

147 k (12) k (2 ) k (9 ) k (11) k (7 ) k (14) ] ;

148 KE = 1/(( nu+1)∗(1−2∗nu) ) ∗ . . .

149 [ K1 K2 K3 K4 ;

150 K2’ K5 K6 K3 ’ ;

151 K3’ K6 K5’ K2 ’ ;

152 K4 K3 K2 K1 ’ ] ;

153 end

154 % === DISPLAY 3D TOPOLOGY (ISO−VIEW) ===

155 f unc t i on disp lay 3D ( rho )

156 [ nely , nelx , ne l z ] = s i z e ( rho ) ;

157 hx = 1 ; hy = 1 ; hz = 1 ; % User−de f ined un i t element s i z e

158 f a c e = [ 1 2 3 4 ; 2 6 7 3 ; 4 3 7 8 ; 1 5 8 4 ; 1 2 6 5 ; 5 6 7 8 ] ;

159 s e t ( gcf , ’Name ’ , ’ ISO d i s p l ay ’ , ’ NumberTitle ’ , ’ o f f ’ ) ;

160 f o r k = 1 : ne l z

161 z = (k−1)∗hz ;

162 f o r i = 1 : ne lx

163 x = ( i −1)∗hx ;

164 f o r j = 1 : ne ly

165 y = nely ∗hy −( j−1)∗hy ;

166 i f ( rho ( j , i , k ) >0.5)%User−de f ined d i s p l a y dens i ty

th r e sho ld

167 ver t = [ x y z ; x y−hx z ; x+hx y−hx z ; x+hx y z ; . . .

168 x y z+hx ; x y−hx z+hx ; x+hx y−hx z+hx ; x+hx y z+hx

] ;

169 ver t ( : , [ 2 3 ] )=ver t ( : , [ 3 2 ] ) ; ve r t ( : , 2 , : )= −ver t

( : , 2 , : ) ;

170 patch ( ’ Faces ’ , face , ’ V e r t i c e s ’ , vert , ’ FaceColor ’

, [0 .2+0.8∗(1− rho ( j , i , k ) ) ,0.2+0.8∗(1− rho ( j , i , k ) )

,0.2+0.8∗(1− rho ( j , i , k ) ) ] ) ;

171 hold on ;

172 end
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173 end

174 end

175 end

176 a x i s equal ; a x i s t i g h t ; a x i s o f f ; box on ; view ( [ 3 0 , 3 0 ] ) ; pause (1 e−6) ;

177 end
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