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Abstract  

Many river ecosystems, especially those in arid and semi-arid, are experiencing severe 

stress due to the increasing demands on the ecosystem services they provide, coupled 

with anthropogenic catchment impacts and factors associated with climate change and 

weather extremes. The flow regime of the Mackenzie River was substantially modified 

since the construction of a water supply reservoir on its upper reach in 1887. Water is 

now regulated at several locations downstream of the reservoir, creating a substantially 

modified flow regime, impacting key environmental values of the river. The river 

receives an environmental flow allocation and the river channel is used to transfer water 

dedicated for consumptive use. Water Quality and algal monitoring formed the basis of 

models that were developed evaluate the ecological condition of this working river 

under base flow and before, during and after freshes that deliver water to users.  

Samples of diatoms, soft algae and measurements of water quality were analysed 

at ten sampling sites for three years (between February 2012 and November 2014) along 

the MacKenzie River in different seasons and under different flow regimes to 

understand the spatial and temporal variation in the relationship between algal 

communities and water quality, and so stream condition. Baseline information on algal 

communities and water quality was collected during base flow conditions, while 

experiments on the effect of water releases on algal communities were based on flow 

regime variations (manipulated flow regimes), specifically on the algae community 

structure, water quality and ecosystem function. These comprised cease to flow (0 

ML/day), low flows (10-15 ML/day), freshes (35-40 ML/day) and high flow 

(55ML/day) conditions. Physical and chemical characteristics of water, including pH, 

temperature, turbidity, electrical conductivity, dissolved oxygen, total nitrogen, 

phosphorus and cations and anions were measured. Biological properties of the algal 

periphyton communities, including dry mass, ash-free dry mass, chlorophyll-a 

concentration and species composition, were also measured. Furthermore, the DSIAR 

(Diatom Species Index for Australian Rivers) score was calculated to classify the 

condition of the waterway. 

The results showed the algal species composition changed under different flow 

regimes along the river. The sensitivity of diatoms to changes in water quality and flow 

rates deemed them useful indicators of river condition. The results indicated that flows 

tended to improve DSIAR scores and diatoms versus green algae and cyanobacteria 
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biomass measures in the mid and lower reaches. The biological properties of the algal 

periphyton communities, and the species composition, varied between sites under 

different flow regimes. The accumulation of dry mass (not ash-free) decreased 

downstream during freshes, however the accumulation of AFDM (ash-free dry mass) 

gradually increased downstream. The results showed that the concentration of 

chlorophyll-a decreased downstream under water release events. 

The Pearson’s correlation matrix revealed flow regimes had a significant 

influence on the water chemistry characteristics and biological properties. The principal 

component analysis (PCA) illustrated that upstream species of algae were associated 

with low pH and temperature and higher DO. In contrast downstream species were 

associated with higher turbidity, TSS, conductivity, TN, and TDS. The correspondence 

analysis (CA) and detrended correspondence analysis (DCA) showed a split between 

algal assemblages during water release events in comparison with before and after water 

release. The canonical correspondence analysis (CCA) identified five significant 

environmental variables including pH, TSS, Turbidity, TN and TP explaining algal 

assemblage and structure along the river.  

The collected data were used to develop ecological response models based on 

algae communities living under different flow regimes in the MacKenzie River. The 

algae-based models across a hydraulic gradient may be useful in water management 

efforts to find sustainable solutions in the river by balancing environmental and human 

values. The empirical data and models showed the lower reaches of the river to be in 

poor condition under low flows, but this condition improved under flows of 35 ML/day, 

as indicated by the reduction in green algae and cyanobacteria and improvement in 

DSIAR scores. The results are presented to tailor discharge and duration of the river 

flows by amalgamation of consumptive and environmental flows to improve the 

condition of the stream thereby supplementing the flows dedicated to environmental 

outcomes. Ultimately the findings can be used by management to configure 

consumptive flows to enhance the for ecological condition of the MacKenzie River. 
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Chapter 1: Introduction 

 

1.1 River management and ecological health  

Traditionally, the management of rivers and streams has focused on extracting water for 

consumptive use for agriculture, industry and urban water supply (Acreman and Dunbar 

2004). The main concern has been the amount of water available and the quality of 

water with respect to its suitability for anthropogenic use (Norris and Thoms 1999). 

More recentlt, water managers have realised that the protection of natural ecological 

processes in rivers and streams also helps to protect some of their utilisation value, as 

well as the ecosystem services they provide (Arthington and Pusey 2003, Richter et al. 

2003, Gordon et al. 2004, Kondolf et al. 2006). 

There is an increasing requirement to conserve and restore the ecological and 

biological health of rivers and their associated aquatic ecosystems which supported by 

international, national and regional legislation (Acreman and Dunbar 2004, Millennium 

Ecosystem Assessment 2005, Arthington 2012). To enable this, many organisations at 

the international (e.g. International Union for Conservation of Nature) and national level 

(e.g. Australian Land and Water Resources, Murray-Darling Basin Authority, 

Commonwealth Scientific and Industrial Research Organization (CSIRO), Australian 

Rivers Institute, The Murray-Darling Freshwater Research Centre, eWater Cooperative 

Research Centre) have developed methods for determining environmental flow 

requirements. Typically, these flow requirements specify a regime directed to support 

the structure and function of aquatic ecosystems within rivers. Current scientific 

understanding of hydrologic controls on riverine ecosystems, and evidence obtained 

from river studies, support the development of environmental flow standards at regional 

scales (Arthington et al. 2006, Poff et al. 2010, Pahl-Wostl et al. 2013). 
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Anthropogenic modification of waterways and human demands for freshwater are 

changing the condition of inland aquatic ecosystems worldwide.  However, there are 

many appropriate measures available within water allocation (water abstraction) 

protocols that may act to minimise environmental impacts and accommodate the flow 

requirements of key organisms and ecosystems (Poff et al. 2010, Arthington 2012). This 

approach requires water managers to optimise water availability between consumptive 

users and the environment. In fact, optimising water allocation procedures between 

consumptive users and the environment section increases the value of the water by 

enabling benefits to accrue to both sides of the usual contest for volume. In some cases, 

the water used for hydropower generation or cooling in an industrial plant can be 

returned to the river to enhance ecological condition (Acreman and Dunbar 2004). 

However, while the water quality is high enough to allow the water to be returned to the 

river without detrimental effects, some physical characteristics may have changed 

through the industrial process which may limit environmental benefit. Nevertheless, 

careful treatment of returned consumptive water can help serve the flow needs of stream 

ecosystems particularly where climate variability and resource demand have affected the 

natural flows.  

The challenge of maintaining and restoring healthy rivers lies in achieving a 

balance between environmental requirements and the broader social and economic 

elements which sustain productive industries and communities (Baron et al. 2003, 

Arthington et al. 2006, Arthington 2012, Boulton et al. 2014, Bunn 2016). There is no 

better contemporary example of the difficulty of this challenge than Murray-Darling 

Basin Plan (MDBA 2014a). The uptake of flow management recommendations by 

agencies and water managers, and their acceptance by regional communities, is 
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dependent on an understanding of the interdependencies among management actions, 

ecosystem health and community prosperity and well-being (Ryder et al. 2010). 

In Australia, the delivery of “environmental” water has been assisted by legally 

defining a share of the available water resource for the environment through State and 

Commonwealth legislation and associated legal instruments (DAWR 2015, DELWP 

2015). This has mostly resulted in recognised entitlements of water for the environment. 

However, environmental entitlements only form part of the overall water balance for 

most water supply systems and there remains other ways to improve and maintain 

aquatic ecosystem health. 

 

1.2 Environmental flows concept 

The concept of environmental flows was introduced more than a century ago by river 

scientists and water managers with the intent of supporting healthy river ecosystems 

(Tharme 2003, Acreman and Dunbar 2004, Poff et al. 2010). The original concept of 

environmental flows focused only on the level of water in rivers and streams (Acreman 

and Dunbar 2004). The International Union for Conservation of Nature (IUCN) state 

that: 

 

“An environmental flow is the water regime provided within a river, wetland or 

coastal zone to maintain ecosystems and their benefits where there are competing 

water uses and where flows are regulated. Environmental flows provide critical 

contributions to river health, economic development and poverty alleviation, they 

ensure the continued availability of the many benefits that healthy river and 

groundwater systems bring to society” (Dyson et al. 2003).  
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The concept is often discussed using a variety of terms, including: environmental flows 

(regime), in-stream flow, environmental allocation or ecological flow requirement 

(Gustard et al. 1987, Acreman and Dunbar 2004). An environmental flow describes a 

deliberate water release or naturally occurring flow that is intended to cover all 

environmental requirements so that, in this process, the quality of water is as important 

as the quantity (Boulton and Brock 1999, Arthington 2012).There has been considerable 

international focus (e.g. The Earth Summit in Rio de Janeiro in 1992, the second World 

Water Forum in The Hague in 2000, and the Johannesburg World Summit on 

Sustainable Development in 2002) on ecological conservation, including conservation 

of aquatic ecosystems (Acreman and Dunbar 2004). An environmental flow is 

considered to be a flow that is of adequate magnitude to meet ecological requirements 

and management objectives for a river (Acreman and Dunbar 2004, Poff et al. 2010, 

Arthington 2012, Pahl-Wostl et al. 2013). According to The Brisbane Declaration 

(2007), “Environmental flows describe the quantity, timing and quality of water flows 

required to sustain freshwater and estuarine ecosystems and human livelihoods and 

well-being that depend upon these ecosystems”.  

The Brisbane Declaration (2007) proposed improvements to the environmental 

legislation directed to ecosystem conservation and natural resource management and 

extended these agreements to the allocation of water to an ecosystem, alongside the 

rights demanded by people. International (e.g. IUCN) and national organisations (such 

as the Australian Land and Water Resources Audit) advocate for environmental flows in 

aquatic ecosystems as an important element in water resource management (Richter et 

al. 2003, Arthington et al. 2006). Overall, the stakeholders, water managers and river 

scientists try to improve the environmental flow standards at international by updating 

and applying new evidence. 
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1.2.1 A new opportunity for improving environmental flows  

Water resource managers have identified that the provision of an environmental flow is 

critical for the maintenance of a healthy working river and to the conservation of the 

ecological values of a river (Tharme 2003, Arthington 2012). The deliberate release of 

water into rivers has two components: the consumptive flow and the environmental 

flow.  

Consumptive water is provided for urban use, agriculture, fisheries, industry, 

commercial and recreational use and is usually allocated with little attention to the 

stream’s environmental needs.  Rivers and streams are often used to deliver, or transfer, 

water from storages to water users or to downstream storages. It is possible to alter the 

timing and route of this transfer to provide environmental benefit without adversely 

impacting water users (VEWH 2012).  

Although much attention has been directed towards the possibility of improving 

the environmental flows in some parts of the world (Acreman and Dunbar 2004, 

Arthington et al. 2006, Poff et al. 2010, Arthington 2012, Pahl-Wostl et al. 2013), 

research into understanding the structure and function of aquatic ecosystems for 

optimising and configuring consumptive flow has largely been neglected, as quantifying 

consumptive water needs is quite well advanced. Indeed, consumptive flows can provide 

an opportunity to improve and support environmental flows in regulated riverine 

ecosystems. The exploitation and extraction of water for consumptive users, combined 

with the anthropogenic alteration of natural flows, have influenced ecosystem function 

and processes, and so have affected many Australian rivers (Ryder and Boulton 2005, 

Davis et al. 2010, Powell et al. 2013) and also most of the rivers of the world (Richter et 

al. 2003, Poff et al. 2010, Poff and Zimmerman 2010, Brown and King 2012). 
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1.2.2 Challenges for healthy river  

The main challenge for river scientists and water managers is to keep rivers healthy 

whilst sustaining productive industries and communities. To achieve this, the in-stream 

flow recommendations used by water management agencies, and their acceptance by 

regional communities, is related to an understanding of the interdependencies of 

management actions and ecosystem health (Ryder et al. 2010, Bunn 2016). The 

environmental flow regime relates not only to the volume of flow through a river 

system, but also the pattern of those flows (e.g. water frequency, water speed and depth 

of water) (Arthington 2012). The concept of the environmental flow regime has been 

accompanied by an expectation, and prediction, that ecologists can provide 

environmental flows prescriptions that sustain and improve the condition of riverine 

ecosystems (Arthington et al. 2006).  

There is the potential for a range of environmental benefits to be obtained during 

large and small pulsed flows; the general form of consumptive water transfers is via a 

pulse flow (Watts et al. 2009b). Pulsed flows are water releases from structures, such as 

dams, reservoir and weirs, to affect water transfers between storages to meet certain 

demands and water supply requirements (Watts et al. 2009a). 

In order to optimise pulsed flows it is essential to monitor the response of the 

river’s condition (river health). Although there are many studies based on modelling, 

there is a lack of information about the benefits and advantages of the use of pulsed 

flows for environmental benefit. Indeed, many models have been developed across the 

world for the riverine ecosystems to address environmental flows (Krysanova and 

Arnold 2008, Powell et al. 2008, Watts et al. 2009a, Poff et al. 2010, Watts 2010, 

Hipsey et al. 2011, Yang 2011, Arthington 2012, de Little et al. 2012, Marsh et al. 2012, 
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Webb et al. 2012, Klaar et al. 2014, King et al. 2015, Horne et al. 2017) but the 

modelling of consumptive flows to making policy to return water from consumptive 

flows to the environmental allocation, without compromising the consumptive users 

values, is a new challenge for river scientists. 

 

1.3 Hydro-ecological principles and aquatic biodiversity   

Development of hydro-ecological principles and models help to better understand the 

ecological requirements (environmental flows) of riverine ecosystems. Bunn and 

Arthington (2002) developed a conceptual model with four hydro-ecological principles 

including a) flow regime is master variable in freshwater ecosystems which affects 

channel form, habitat, distribution and abundance of species, and diversity and species 

composition of aquatic communities,  b) flow regime has major impacts on life history 

patterns such as spawning and recruitment of the aquatic species, c) flow regime 

governs and maintains the lateral and longitudinal connectivity in channels which is 

very important for aquatic species, d) natural flow regime prevents of appearance of the 

exotic species in the system. In other words, flow regulation introduces exotic and 

invasive species to the system (Figure  1.1).  
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Figure  1.1: Conceptual model of four hydrological principles indicating how natural 

flow regime facets maintain aquatic biodiversity in riverine ecosystems. Source: Bunn 

and Arthington (2002). 

 

1.3.1 Climate change, anthropogenic modifications and ecosystem responses  

Anthropogenic caused climate variability and climate change are increasingly placing 

water resources and aquatic ecosystems under stress (Millennium Ecosystem 

Assessment 2005). This is particularly acute in regions where water season rainfall and 

runoff are likely to decline (e.g. mid-latitude and Mediterranean climate zones). These 

are regions of high anthropognic water use so anthropogenic climate change is likely to 

increase the stress on water resources and elevate the necessity to carefully manage the 

quality and volume of water that is available at any point in time (Bond et al. 2008, 

Dube et al. 2014).  
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The fundamental challenge of maintaining a healthy river, whilst sustaining 

productive catchment industries and communities through adaptive management 

techniques (Hillman and Brierley 2005), can only be addressed if ecosystem health and 

the potential impacts of management actions are understood prior to making 

recommendations to water agencies and other end users (Prato 2003, Webb et al. 2014). 

Geomorphological characteristics, ecological functions and biological processes 

of the aquatic ecosystems have been altered, largely in response to flow alterations, 

which is particularly obvious in downstream river reaches (e.g. introduction of exotic 

and invasive species, reduction of low tolerance endemic species, synchronisation of 

reproduction and life cycle, reduction of ecological habitats, and changes in physical 

shape of the rivers and floodplains) (Bunn and Arthington 2002, Dudgeon et al. 2006, 

Richter and Thomas 2007, Arthington 2012); such alterations and regulations of flow 

have had significant impacts on the natural flow regimes of riverine ecosystems (Petts 

1984, Poff et al. 1997, Murchie et al. 2008). The alteration and regulation of flow from 

reservoirs and dams, coupled with catchment water abstraction, causes severe stress in 

river ecosystems (Shafroth et al. 2010) and, as a result, can have a negative impact on 

water quality (reduced oxygen levels, and increases in temperature, suspended solid, 

organic matter and nutrients), biotic structure and function and the metabolism of rivers 

and streams (Bunn and Arthington 2002, Gordon et al. 2004). 

 

1.4 Justification of the study 

This thesis is focused on the influence of flow regimes on algal periphyton community 

(biofilm assemblages), water quality and ecosystem function. Such assessments are 

often neglected, but are helpful to the development of an operational framework to 

optimise the delivery of water, for both environmental and consumptive users, to 
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improve overall stream condition. The identification of key indicator taxa can provide 

evidence for the mechanisms underlying biophysical changes following water release 

events and allow for the design of an efficient, long-term monitoring program.  

Algal communities (including diatoms and soft algae) are ideal indicators for the 

purpose of understanding the impacts of environmental flows on riverine ecosystems 

because they reflect directly any physical, chemical and biological changes in a river 

and reveal changes associated with any flow conditions that result in changes in nutrient 

concentration, salinity and alkalinity (Prygiel and Coste 1993, Gell 1995, Kelly and 

Whitton 1998, Hill et al. 2000, Stevenson et al. 2010). Furthermore, the collection of 

algae is simple, inexpensive and environmentally friendly in comparison with the 

sampling of other organisms such as macro-invertebrates including snails and mussels, 

and vertebrates including fish, platypus, frogs, and so constitutes an easily repeated 

means of assessment (Lowe and Pan 1996, Hill et al. 2000, Stevenson 2014). 

Algal periphyton communities (micro-floral communities living attached to the 

surfaces of submerged substrates) are valuable indicators of ecological disturbance and 

response, and provide important complementary evidence of river health and water 

quality over a range of temporal scales. The term ‘periphyton or biofilms’ in limnology 

refers to microflora communities living attached to the surfaces of submerged substrates 

in rivers and lakes; it includes algae, bacteria, fungi and protozoa within a muco-

polysaccharide matrix. 

This research project is significant at both regional and national levels. Outputs 

from this research are directed towards providing waterway managers with evidence for 

the configuration of consumptive flows for environment benefits and further toward 

achieving a healthy working river. This information has the capacity to generate 

functional and informative models that can be used by water resource decision makers 
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to improve water transfer for environmental benefit in the MacKenzie River. The 

outcomes from this research can be applied to other rivers within the region, and in 

similar contexts across Australia and globally.  

At a regional level, this project is intended to generate operational guidelines for the 

local water agency, GWMWater, to optimise and configure consumptive flows through 

the MacKenzie River system for the purposes of augmenting environmental benefits. 

Further, it is anticipated that the outcomes from this project provide evidence of the 

response of algal communities to stream flow events generally and thereby inform the 

management of the broader Wimmera and Glenelg River systems, and aquatic systems 

across south-east Australia. 

 Nationally, this project is important in the way it examines the response of stream 

condition and aquatic biota to water release events (i.e. consumptive transfers), with the 

intent of determining how much water, and in what configuration, needs to be delivered 

to the environment to sustain a healthy working river. Further, the outcomes of this 

project form the evidence base for the development of ecological response models that 

will inform decision making processes directed at configuring flows in other rivers and 

streams in Australia, and internationally. 

 

1.5 Aims and research questions  

The main goal of this research is to develop ecological response models using 

freshwater algal assemblages to underpin a ‘healthy working river’ and to demonstrate 

the capacity for multiple benefits to accrue from allocations of scarce water resources. 

This constitutes using the whole water balance (all water releases) to benefit the 

environment when possible, and not just relying on the environmental entitlement to 

achieve positive environmental outcomes. In principle, this research is aimed at 
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developing a new approach to the allocation of water, from a contest over volume 

towards a cooperative approach providing multiple social, economic and environmental 

benefits from its allocation. 

The MacKenzie River in western Victoria has been chosen as the case study 

because this river has been substantially modified for an extended period, and has been 

shown to be degraded as a consequence of catchment and water resource development 

(Alluvium 2013). The flow regime of the river is tightly controlled by Grampians 

Wimmera Mallee Water as the water corporation who owns and operates the dams, 

weirs and other assets associated with the water supply system. There is great potential 

to use this system as a natural laboratory to explore the benefits of manipulating 

consumptive water releases. 

 

This research will address the following objectives in order to improve “operational” 

flows in this river system: 

 

(a) To investigate the current hydrological, limnological and environmental values 

(stream structure and function) related to the MacKenzie River; 

(b) To determine the impact of water release events/transfers on in-stream biological 

structure (algal periphyton, biological index); 

(c) to biomonitor the short-term and long-term responses to water release events using 

algal periphyton communities to understand ecosystem response to hydrologic 

disturbances; 

(d) to develop an ecosystem response model (algal-based model) to inform operational 

managers in order to provide a means to maximise the ecological benefit (diversity, 

productivity, stability) from water transfers;  
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(e) to understand the stream water quality and hydrological characteristics that influence 

the algal communities in the system; and 

(f) to use the results from this study, including the experimental programme and 

ecosystem response model, to develop operational guidelines that will enable the 

operator to enhance ecological benefit from its water transfers. 
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To understand how algal assemblages respond to water releases in the MacKenzie 

River and how this response can be transferred into models to tailor consumptive water 

delivery to provide ecological benefits. 

 

This will be achieved by answering the following questions: 

 

(1) How does flow, or change in flow regime, affects the aquatic ecosystem in this 

river? 

(2) What are the flow regime configurations that enhance stream ecosystem condition?  

(3) How can operators improve discharge and duration of consumptive water transfer 

regimes to maximise environment benefits to this river? 
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1.6 Thesis outline 

This thesis contains three main sections: the first section of the thesis is focused on a 

review of the literature on regulated riverine ecosystems and river flow assessments 

( Chapter 2). An overview of the ecology, geomorphology, hydrology, climatology, 

vegetation and other natural values in the Grampians region with emphasis on the 

MacKenzie River, a tributary of the Wimmera River, south-east Australia, ( Chapter 3), 

is then provided. This is followed by a detailed presentation of all methods and materials 

employed in this survey which include the strategy of sampling site selection, sample 

collection (water, soft algae and diatoms), and analysis of all samples under different 

flow regimes ( Chapter 4).  

The second section of thesis presents the results of these field surveys to document 

evidence for the influence of base flows and manipulated flows (freshes and high flows) 

on algal community structure along the MacKenzie River. This is followed by 

development of algae-based models intended to configure consumptive flows for 

ecological benefit in the MacKenzie River ( Chapter 5). 

In the third section of the thesis, the findings of this survey, and its comparison 

with other published records and operation protocols in configuring consumptive flows 

for ecological benefit (strategic rules, operation rules and specific rules) in the 

MacKenzie River, and their implementation in river management elsewhere, are 

discussed in  Chapter 6. The final chapter of the thesis focuses on conclusions, 

recommendations and future research challenges ( Chapter 7) which highlight the 

contribution and innovation of this study in river science and management. The 

recommendations of this work are directed to the recognition of knowledge gaps in 

terms of consumptive flow configuration for ecological benefits in riverine ecosystems. 
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Chapter 2: Regulated riverine ecosystems, river flow assessments and 

ecohydrology models: A review  

 

 

Chapter outline 

In this chapter, regulated riverine ecosystems and the various types of flow in such 

systems are reviewed. The review also focuses on the assessment of river condition 

using indicators species (such as algae) and the development of eco-hydrological models 

across Australia and globally. Finally, the opportunities and constraints of water 

resource development in the MacKenzie River, as a tributary of Wimmera River, are 

described.   

 

2.1 Regulated riverine ecosystems 
Rivers, streams, wetlands and floodplains are among the systems most heavily impacted 

by river regulation that has been imposed to ensure reliable provision of water resources 

for anthropogenic and environmental uses. As a result, most riverine ecosystems are 

heavily impacted by human activities without even considering the artificial control of 

waterways and their flows (Arthington 2012). The regulation of a river system is often 

related to the control of water volume in order to enhance water supply for consumptive 

users (Millennium Ecosystem Assessment 2005). Such control of flow is used to support 

human requirements such as water supply for urban usage, industry, agriculture, 

recreation, flood mitigation and hydro-power generation. Structures such as dams, weirs 

and channels have been built on rivers to ensure supply for water harvesting and to 

control water flow (WCD 2000, Lahiri-Dutt 2003). This regulation of river systems has 

played a central role in the intensification of resource use by modern human society by 

ensuring the supply of water to cities and industries, controlling the risk of flooding, 
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allowing for the expansion of food provision through irrigated agriculture, providing 

hydro-electrical energy and enhancing access to fisheries (WCD 2000, Anderson et al. 

2006). However, the impact of these structures and the intensive use of water by people 

has negative consequences on the condition of riverine ecosystems globally, 

exacerbating issues associated with eutrophication, increased sediment transport, flow 

regime alteration and the proliferation of exotic species (Dudgeon et al. 2006, Palau 

2006). This physical alteration of rivers has increased globally through the ‘Great 

Intensification’ of the 20th century to service human demands in developed and 

developing countries (Murchie et al. 2008, González et al. 2010), and its impacts persist 

today. 

Over the last fifty years, thousands of dams have been constructed around the 

world (e.g. United States, Canada, Europe, Asia and Australia) to supply 

hydroelectricity for human use (Dynesius and Nilsson 1994, Anderson et al. 2006) that 

are documented.  There are approximately 57,000 large dams (dam wall higher than 15 

m), more than 800,000 small dams and countless weirs in over 140 countries across the 

world (Tharme 2003, Watts et al. 2009a, Rivers 2015). In Australia, it is estimated that 

there are more than 500 large dams and thousands of smaller structures (e.g. weir and 

lock) (ANCOLD 2008, Watts et al. 2009a). 

The relationship between the physical and chemical and biological changes along 

rivers is known as the River Continuum Concept (Vannote et al. 1980). The in-stream 

consequences of river regulation are diverse and include decreased flow regime 

variation, decreased annual flow amplitude, and changes to the physical patterns of the 

stream, temperature and other physical and chemical characteristics of the water 

(Stanford et al. 1996, Bunn and Arthington 2002). Further, structures impede the 

movement of organisms reducing the ecological connectivity between upstream and 
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downstream reaches of the river (longitudinal connectivity) and so the biological pattern 

of the river changes and the native biodiversity decreases as exotic species replace 

endemic species (Stanford et al. 1996, Bunn and Arthington 2002, Palau 2006). While 

catchment development increases the run-off rate in the system through the increase in 

the area of impervious surfaces, river impoundments tend to modify flow patterns that 

lead to reduction in river discharge (Murchie et al. 2008). This reduction in floods 

reduces the connectivity between the river and its floodplain (lateral connectivity).  

Overall, many riverine ecosystems are under severe stress due to the increasing 

demands on the ecosystem goods and services they provide (e.g. Colorado River (USA), 

Nile River (north-eastern Africa), Tigris-Euphrates River (Middle East), Indus River 

(south Asia), Yellow River (China) and Murray-Darling Basin (Australia)) coupled with 

anthropogenic catchment impacts and factors associated with climate change and 

increasing frequencies and magnitudes of weather extremes (Millennium Ecosystem 

Assessment 2005, Lake and Bond 2007). Due to increasing demands and uncertainty of 

supply, an increasing number of riverine systems, globally, are becoming more heavily 

regulated (Calow and Petts 1994, Lanza 1997, Downes et al. 2002, Arthington 2012). 

 

2.2 Flow components of riverine ecosystems 

Flow components are defined based on hydrological and ecological process with 

emphasis on the influence of the different parts of the flow on the ecosystem (DEPI 

2013). The components of flow are considered in association with key ecological 

characteristics of natural flow regimes including variation, duration, magnitude, 

frequency, timing and the rate of change (Richter et al. 1996, Poff et al. 1997, 

Arthington 2012). Each type of flow regime has its own ecological function and 
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hydrological conditions. There are six types of flow that constitute the full flow regime 

of a river (VEWH 2012), and these are discussed below. 

2.2.1 Cease to flow  
Cease to flow is when there is no measurable surface flow in the river or stream. This 

type of flow is a common, natural phenomenon in arid and semi-arid zones, as found in 

much of inland Australia (Boulton et al. 2000, Boulton et al. 2014). In mid-latitudes it 

usually occurs in summer and autumn when there is less effective rainfall. Cease to flow 

may also arise due to regulation, water abstraction and modification in rivers. Flow 

cessation, particularly in the lower parts of a river, is one the consequences of 

engineering activities in the upstream reaches (Manariotis and Yannopoulos 2004). 

During cease to flow, surface water in a river may be limited to isolated pools along the 

channel, impacting ecological function and hydrological processes and causing some 

aquatic and riparian biota to experience stress, and limiting connectivity, which can 

result in local species extinctions (Lloyd et al. 2012, DEPI 2013). Sub-surface flow may 

continue within the river channel and so hyporheic communities may be less affected.  

2.2.2 Low flows  
Within the context of the VEWH (2012) classification, low flows are base flows in a 

river which persists through the dry season of the year (Smakhtin 2001) or during 

prolonged dry weather (e.g. drought) (Bond et al. 2008, WMO 2015). Whilst water 

levels are very low, the water flowing through the channel allows pools that have 

developed to remain connected, allowing the  retention of ecological function and 

hydrological processes, and the maintenance of habitat, aquatic biota and riparian 

vegetation (Arthington et al. 2007, Robson et al. 2009, Lloyd et al. 2012). When 

artificially regulating flows, the maintenance of low flow is important for fish 

communities and their recruitment in the lower parts of rivers (Humphries 1995), as 
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well as playing a fundamental role in maintaining, preserving and structuring riverine 

ecosystems (Bunn and Arthington 2002, Thoms and Sheldon 2002, Poff et al. 2010). 

While low flows are more frequent in arid and semi-arid zones where there are various 

degrees of natural intermittency, their persistence remains critical for ecological 

function which is important to maintain flows to such a level that connectivity is 

retained (Kennard et al. 2010, Marsh et al. 2012). 

 

2.2.3 Freshes  
The stream condition and water quality during low flows may provide short duration 

peak flow events (Watts et al. 2009b). Pulsed flows or freshes are defined as water 

releases from structures such as dams, reservoir and weirs, to transfer volumes of water 

between storages to meet certain demands and water supply requirements (Watts et al. 

2009a). However, freshes can occur naturally in rivers and stream. These freshes, 

organised by water authorities, may continue for several days, and their design can be 

influenced by ecological processes or by season (Lloyd et al. 2012, DEPI 2013). The 

freshes may vary according to purpose, for example whether the flow event is designed 

for the maintenance or for the improvement of water quality, river health or condition in 

dry seasons, or for the mitigation of flood risks from overspill of the reservoirs in wet 

seasons (Watts et al. 2009a, DEPI 2013). Freshwater ecologists believe that freshes play 

key roles in enhancing the variability of natural flow regimes and improving riverine 

health in aquatic ecosystems (Poff and Allan 1995, Puckridge et al. 1998, DEPI 2013). 

 

2.2.4 High flows  
High flows are defined as those which result from intensive rainfall events, particularly 

during wet seasons when absorption capacity in the surrounding soils is low (DEPI 

2013). From a hydrological point of view, high flows can be described as a specific peak 
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discharge event with a particular frequency and duration (Gordon et al. 2004, DEPI 

2013). In mid-latitude zones the probability of peak flows is high during winter and 

spring seasons but may arise from particularly intensive rainfall events in summer. The 

high flow plays a significant role in hydrological processes and ecological function 

along the river by maintaining river habitats and creating new habitats for aquatic biota 

(Brizga and Finlayson 1999, Arthington 2012). Furthermore, a link has been 

acknowledged between high flows and fish breeding in rivers, as high flows play a key 

ecological role in enabling fish migration through the catchment (Humphries 1995). 

 

2.2.5 Bankfull flows  
Bankfull flows are flows that reach the top of the channel bank with little or no overflow 

to the floodplain. They are larger than high flow and they mostly occur during the wet 

seasons especially, in mid-latitude zones, during winter and spring. During bankfull 

conditions all river benches are inundated. From a geomorphic perspective, bankfull 

flows are important in shaping all branches and channels within a river catchment. 

These flows also play a key role in maintaining and preserving in-stream habitats 

(Stromberg et al. 2007, DEPI 2013). In particular they enable the formation of a more 

diverse array of in-stream habitats, which enhances the diversity of aquatic flora and 

fauna including macrophytes, algae, macroinvertebrates, fish and maintaining key 

species such as the platypus (WCMA 2015). In addition to this, a bankfull flow aids 

improvement of riparian vegetation condition because the major stream branches 

inundate (Robertson et al. 2001).  

 

2.2.6 Overbank flows  
Flows with greater discharge than bankfull flows breach banks and create overbank 

flows. These flows usually occur in wet seasons, and impact whole catchments, 



22 
 

particularly in downstream reaches and across the floodplain (Lloyd et al. 2012, DEPI 

2013). From an ecological point of view, overbank flows are important to improve 

stream condition, water quality and increasing the diversity of habitats for aquatic biota. 

These flows are also important for returning carbon to the stream ecosystem (Robertson 

et al. 2001).  Overbank flows have an array of ecological benefits (e.g. the watering of 

floodplain vegetation (Nielsen et al. 2000)) enabling the colonisation of 

macroinvertebrates (Mitchell and Richards 1992, Rosenberg and Resh 1993, Quinn et 

al. 2000) and lateral connections of river-floodplain systems (Thoms 2003)). It has been 

suggested overbank flows are critical factor for stream ecosystem function under the 

Flood Pulse Concept which identifies the supply nutrients to floodplain areasand the 

provision of carbon from the floodplain to the stream as critical for its metabolism and 

ecosystem function (Junk 1999).  

 

2.3 Environmental flow regimes 
Many terms such as environmental water allocations (EWAs), environmental flows (E-

flows), ecological and environmental water requirements (EEWRs), ecological water 

demands, in-stream flow and environmental water consumption are widely used by 

aquatic ecologists to refer to the flows that maintain and preserve ecological and 

biophysical characteristics of the rivers (Acreman and Dunbar 2004). Such a dynamic 

extends from headstream to downstream reaches, across main channels and branches, 

and into groundwater, across floodplains, and includes estuaries and coastal zones 

(Arthington 2012, Lloyd et al. 2012). The flow regime is a significant feature that 

directly influences the physical river environment (Gordon et al. 2004). Furthermore, 

any physical and chemical changes in streams owing to flow regimes will affect riverine 

ecosystems. Any deviation from the natural flow regime must be considered when 
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trying to understand water quality and the allocation of water for environmental benefits 

(Poff et al. 1997, Norris and Thoms 1999, Kennard et al. 2010). 

Understanding the influence of environmental flows through the measurement of 

the responses of aquatic flora and fauna is central to river management as many aquatic 

organisms (e.g. macro-invertebrates and algae) are sensitive to any changes to the 

ecosystem flow (Norris and Thoms 1999). Therefore, equitable and effective sharing of 

water, between consumptive users and the environment, is important. The main 

challenge for river scientists is to inform decision makers to balance the demands that 

arise from the socioeconomic and environmental values of the system (Poff et al. 2003, 

Arthington 2012, Bunn et al. 2014). For example, the necessity of environmental flows 

has increased significantly because of the incidence of drought, salinisation and the 

increased scarcity of water in southern Australia (Bond et al. 2008, Barton et al. 2011). 

Therefore, operational plans are essential for Australian rivers, and these seek a balance 

between water for consumptive and environmental uses (Arthington and Pusey 2003).  

The natural flow regimes in Australia have been classified to reflect 

environmental flows (Kennard et al. 2010). In Victoria (Australia), the Department of 

Environment, Land, Water and Planning (DELWP) has the responsibility of developing 

environmental flows policies across the Victorian catchments. The water resources are 

managed through a ‘whole of system’ approach with an entitlement and allocation 

framework that encompasses resources for both consumptive and environmental 

purposes. Entitlements are provided based on ‘resource sharing’ principles among all 

entitlement holders using an agreed set of rules (DELWP 2015).   
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2.3.1 Environmental flow assessment 
Dams and reservoirs to modify the main facets of stream flow regimes including flow 

magnitude, duration, timing, frequency and natural flow rate. These structures have had 

considerable impacts to stream chemical and physical conditions including water 

temperature (Todd et al. 2005), sediment transport  (Vörösmarty et al. 2003), nutrient 

flux (Turner et al. 2003) and salinity patterns (Rood and Mahoney 1990, Richter and 

Thomas 2007). As a result the biological processes, ecological functions and 

geomorphological characteristics of river ecosystems have changed greatly (Bunn and 

Arthington 2002, Richter and Thomas 2007, Arthington 2012). Many studies have 

shown that alterations in the riverine ecosystems across the world can affect ecological 

processes.  For example evidence has been presented for America (Sparks 1992, Richter 

et al. 1997, Richter et al. 2003, Poff et al. 2010); Europe (Dynesius and Nilsson 1994); 

Asia (Chen 1992, Postel 1995) and Australia (Walker et al. 1995, Arthington 2012, 

MDBA 2014b). 

Richter et al. (1997) introduced a new approach entitled “Range of Variability 

Approach” to define how much water is needed for a river. The Range of Variability 

Approach (RVA) employs aquatic ecology theory and river flow regime facets 

(magnitude, duration, frequency, timing and rate of change) to promote sustainable 

aquatic ecosystems (Richter et al. 1997). In this way ecosystem structure and processes 

can be changed by flow regulation and alteration (Ryder and Boulton 2005, Boulton et 

al. 2014). The ecological impact of flow regulation during the last few decades showed 

the important role of water allocation in conserving riverine ecosystems (Petts 2009).  

Arranging appropriate monitoring approaches and the selection of ecological 

indicators is a critical stage in environmental flow assessment and implementation 

(Arthington 2012, Lloyd et al. 2012). Until now, many models and frameworks have 

been suggested for environmental flow assessment worldwide. Recently, the 



25 
 

international freshwater science community has reached a consensus regarding this and, 

collectively, they advocate for the use of the approach of ecological limits of hydrologic 

alteration (ELOHA) (Poff et al. 2010), which is a monitoring approach within the 

ecosystem, ecological community, and organisms identified at family and species levels. 

The ELOHA framework helps decision makers and stakeholders to identify ecological 

and hydrological alterations during flow assessment.  The authors advocate that two 

aims should be achieved during monitoring. First, an accepted monitoring method 

should assess whether the recommended environmental flow rules are addressed during 

the monitoring process. Second, water management regulations and environmental flow 

rules should be optimised, in appropriate ways and methods, to obtain desired ecological 

and biogeochemical outcomes (Arthington 2012).  

These investigations aimed to support and improve the ecological condition of a 

system by applying environmental flows in riverine ecosystems. The ecological 

limitation of hydrologic alteration (ELOHA) has been designed by Poff et al. (2010) to 

develop regional environmental flows. The ELOHA framework comprises both 

scientific and social process towards river management strategies which can be 

addressed by hydrological and ecological models simultaneously (Figure  2.1). The 

ELOHA framework emphasises hydrologic modelling, ecological characteristics, 

current condition deviation, flow alteration, ecological response, uncertainty and 

adaptive management for each river type (Poff et al. 2010). The ELOHA framework is a 

good roadmap for ecologist and hydrologists to develop hydro-ecological models for 

updating and improving environmental flows (Poff et al. 2010, Klaar et al. 2014).   
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Figure  2.1: The scientific and social processes in ecological limits of hydrologic alteration (ELOHA) (redrawn from Poff et al. 2010). 
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2.4 Consumptive flows 
Consumptive water is water withdrawn from a river or reservoir for human purposes 

including urban usage, industrial and commercial needs, irrigation, agriculture 

(livestock), fisheries and recreation. The quantity of a river’s water volume that is 

evaporated, transpired, lost to leakage or in any other way removed from the river, is 

included under consumptive flows for the purposes of consumption (Hutson et al. 2004).  

Human demands for water are increasing worldwide due to population growth, 

while in some areas surface and groundwater use is an increasingly critical source of 

water owing to declining rainfall (Vörösmarty et al. 2000, Konikow and Kendy 2005). It 

is increasingly obvious, in catchments such as the Murray Darling Basin, that there is 

not sufficient water to supply all consumptive user demands and environmental 

requirements (MDBA 2014b) and, tensions between allocations to the environment and 

consumptive users are increasing. In order to cope with such a water demand crisis, 

appropriate guidelines are required to direct water allocations from freshwater river 

systems in the future (Mercer et al. 2007, MDBA 2014b). These guidelines need to be 

based on evidence provided by river scientists that assist water managers, policymakers 

and stakeholders in their decision making processes. There are various methods, such as 

‘best available science’ (Ryder et al. 2010), evidence-based practice (Webb et al. 

2010a), scenario-based (Acreman and Dunbar 2004) and objective-based approaches 

(Tharme 2003), to help water managers make water allocation decisions between 

consumptive users and environmental sectors. However, optimisation of water 

allocation amongst consumptive users remains a controversial topic as the driving factor 

that determines river ecosystem health and sustainability is the availability of water, 

and, as such, sustainable water management needs co-operation and balance between the 

social, economic and environmental values (Powell et al. 2013). 
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Returning water to the environment by optimising the balance between 

consumptive users and environment requirements in order to gain ecological benefits, 

without unduly impacting the consumptive supply, is a new challenge for river scientists 

and water managers (Nichols et al. 2013).  Although some efforts have been directed 

towards delivering consumptive flows to enhance environmental flows, the ecological 

benefits that may accrue from consumptive flows per se have largely been neglected 

(Arthington et al. 2006, Nichols et al. 2013, Powell et al. 2013). In fact, the neglect of 

this portion of the water holding poses a new challenge for river ecologists and 

engineers to develop eco-hydrological models which provide a precise rationale that 

covers benefits for both consumptive users and the environment (Powell et al. 2013). 

The new method should find appropriate ways to effectively ‘borrow or return’ some of 

the consumptive flow asset, without compromising the consumptive user’s values, to 

assist in efforts to improve the state of the river’s environment. 

 

2.5 Assessment of river and stream condition 
A large number of indices have been used for the evaluation of river condition. These 

indices generally classify river condition qualitatively (e.g. in categories ranging from 

poor to excellent) (Ladson et al. 1999, Hill et al. 2003, Gordon et al. 2004, Acreman and 

Ferguson 2010). In South Africa, in order to assess the river health and stream condition 

the Index of Stream Geomorphology has been developed by South African 

Government’s River Health Program where geomorphic variables are the main elements 

measured under the assumption that the morphology of a channel provides the physical 

frame for all aquatic biota in the river (Rowntree and Wadeson 1998, Gordon et al. 

2004). In Europe and North America the River Habitat Quality survey is used for 

assessments of river health and condition (Raven 1998). River geomorphological and 
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hydrological characteristics are often used for the evaluation of river health (Gordon et 

al. 2004) 

The Index of Stream Condition (ISC) was developed and tested in some parts of 

Australia (Ladson et al. 1999). The ISC uses a subjective ranking system based on a 

comparison between the current condition of a river and its known or modelled pristine 

condition and includes measured physical characteristics of the river. Indeed, in this 

index there are five main sub-indices that are evaluated by their own indicators: 

hydrology, physical form, streamside zone, water quality and aquatic life. These 

individual components are rated, summed and scaled so that each sub-index value is 

between 0 and 10, providing a basis for reporting the environmental condition of rivers 

to the community and government (Ladson et al. 1999, Gordon et al. 2004). The ISC is 

a valuable index that provides a measure of the condition of river reaches that is 

comparable between rivers, and between reaches, and unlike some rapid assessment 

methods (e.g. biotic indices), it includes basic hydrological, water quality and macro-

benthos data (Ladson et al. 1999, Gordon et al. 2004).  

2.5.1 Biological monitoring 
Many biological monitoring systems have been developed based on fish and benthic 

macro-invertebrates, macrophytes, riparian vegetation and algae (Rosenberg and Resh 

1993, Kelly and Whitton 1995, Norris and Morris 1995, Whitton and Kelly 1995, Harris 

and Silveira 1999, Munné et al. 2003, Gordon et al. 2004). In-stream biomonitoring can 

be undertaken using all these macro- and micro-organisms as biological indicators. 

However, benthic macro-invertebrates are used by a large number of scientists because 

they are sensitive to water degradation and river health and are easy to collect and 

identify (Rosenberg and Resh 1993, Reynoldson et al. 1997, Metzeling et al. 2006). 

Although benthic macro-invertebrates have many advantages in water quality 
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biomonitoring (e.g. easy to collect and identify) there are some issues in water bodies 

(e.g. eutrophication) where they show limited reaction or response (Kelly and Whitton 

1998, Atazadeh et al. 2007). Algae react directly to changes in nutrients whereas 

invertebrates generally respond indirectly – mostly through the influence of water 

quality on habitat. For this reason, some approaches to understanding river condition 

have been based on algal biofilm/diatom communities since they are sensitive to many 

physical, chemical and biological changes (Hill et al. 2000, Chessman et al. 2007, 

Stevenson et al. 2010). 

Biofilms are a major component of river food webs, and are central to stream 

nutrient and biogeochemical processes (Burns and Ryder 2001, Ryder et al. 2006, 

Stevenson 2014). Microalgae are the main food source for aquatic fauna (e.g. mayfly 

and snail) in freshwater ecosystems. Indeed, algae produce and synthesize organic 

matter (carbon) allow it to enter the food web from which it finally reaches higher 

trophic consumers (e.g. fish and waterbirds) (Bunn et al. 2006a, Guo et al. 2016a). In 

other words, algae are the essential part of food webs and biogeochemical cycling in 

freshwater ecosystems (Stevenson 2014).  It has been reported that epiphytic algae are 

an appropriate food source for stream invertebrates because freshwater algae have high 

concentrations of polyunsaturated fatty acids (Torres-Ruiz et al. 2007, Guo et al. 2016a, 

Guo et al. 2016b). It has also been revealed that, among the algal groups, diatoms and 

cryptophytes provide higher quality food for aquatic invertebrates because of long chain 

Omega-3 polyunsaturated fatty acids (Brett and Muller-Navarra 1997, Guo et al. 

2016b). However, the primary production of these key indicator species (indicators of 

river health) can be limited or decreased after release of water with high turbidity 

impacting on light availability (Bunn et al. 1999, Davies et al. 2008). In fact, turbidity, 
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shading, shear stress, and low nutrients are significant inhibitors for algal primary 

production within key indicator species in rivers. 

 Algae often respond to changes in environmental conditions, due to their 

sensitivity, before effects on higher organisms are detected (Kelly and Whitton 1995, 

Stevenson et al. 2010). Flow variation in rivers has been shown to affect biofilm 

structure (Ryder et al. 2006) and ecosystem processes (Ryder 2004, Ryder and Miller 

2005). Within the biofilm, diatom assemblages are highly responsive to shifts in water 

quality (Reid et al. 1995), so their identification can reveal ecological responses to flow-

driven changes in stream water quality. 

 

2.5.2 Biological indices 
Several features of the algal periphyton community,  including structure, diversity, 

similarity, evenness and dominance have been used in various biological indices (Ziglio 

et al. 2006). However, these biological indices have been criticised (Suter 1993) due to 

the reduction of data into a single value, which has affected the statistical behaviour of 

the indices. Nevertheless these indices are well developed and utilised in most countries 

(e.g. USA, UK, France, Spain, Australia and Canada). The legislation of most countries 

require that their agencies and companies (e.g. water companies and other associate 

companies) use biological indices for assessing water quality, stream condition and the 

impact of water abstraction in riverine ecosystems (Gordon et al. 2004). Biological 

monitoring is a valuable tool in water resources management, a current example being 

the European Water Framework Directive (established in 2000) to assess stream health 

across Europe. Therefore, biological indices are part of ecological assessment, useful in 

interpreting the results of monitoring by simplifying outcomes. 

 Biological indices can be used in conjunction with multivariate statistical 

analysis to understand the sensitivity of the aquatic biota and to determine what drivers 
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control their response (Downes et al. 2002, Gordon et al. 2004). There are a number of 

biological indices that are derived from multivariate analysis techniques such as 

RIVPACS (River Invertebrate Prediction And Classification Scheme) which was 

developed in the UK (Wright et al. 1993, Wright et al. 1998), and BEAST (BEnthic 

Assessment of SedimenT) developed in Canada (Reynoldson et al. 1997, Reynoldson et 

al. 2000), AusRivAS (Australian River Assessment System) (Coysh et al. 2000), and 

SIGNAL (Stream Invertebrate Grade Number Average Level) developed in Australia 

(Chessman et al. 1997). 

Multi-metric techniques (biotic integrity indices) are used as an alternative 

approach as they maintain an integrated balance in adaptive biological systems between 

elements (e.g. species, genus and assemblage) and processes (e.g. nutrient and energy 

dynamic, biotic interaction and meta-population process) in natural habitats (Karr 1996). 

The concept of biotic integrity has been developed for fish (Index of Biotic Integrity; 

IBI) in shallow rivers in the USA (Karr 1981).  According to Gordon et al. (2004), 

within the biotic integrity index minimal disturbance to the system has negligible impact 

on the biological integrity of the system. The most well-known biological indices based 

on biotic integrity are the: IBI (noted above); BIBI (Benthic Index for Biotic Integrity) 

based on macro-invertebrates (Kerans and Karr 1994); PIBI (Periphyton Index for 

Biotic Integrity) employing algal periphyton (Hill et al. 2000) and DSIAR (Diatom 

Species Index for Australian Rivers) using diatoms (Chessman et al. 2007).  

2.6 Role of algae in ecological assessment of rivers 
Algae play an important role in aquatic ecosystems as primary producers. They are also 

sensitive to changes in environmental conditions and respond to disturbance in riverine 

ecosystems (Dixit et al. 1992, McCormick and Cairns Jr 1994, Biggs et al. 1998, Smol 

and Cumming 2000, Potapova and Charles 2002, Ryder 2004, Stevenson et al. 2010, 
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Lacoursière et al. 2011, Stevenson 2014).  They have proven to be ideal candidates for 

monitoring the environmental conditions in aquatic ecosystems across the world 

(Sládecek 1973, Van Dam et al. 1994, Whitton and Kelly 1995, Lowe and Pan 1996, 

Kelly and Whitton 1998, Bartleson et al. 2005, Stevenson et al. 2010, Stevenson 2014). 

Algal community structure, biomass standing crop and species composition have 

been used to assess the ecological condition of rivers (Bothwell 1989, McCormick and 

Stevenson 1998). Furthermore algae are abundant and cosmopolitan in their distribution, 

can be sampled rapidly and have a wide range of structural (biomass, composition) and 

functional (metabolism) attributes (Burns and Ryder 2001, Victoria EPA 2003a). Flow 

variation in rivers has been shown to affect biofilm structure (Biggs and Hickey 1994, 

Biggs et al. 1998, Ryder et al. 2006) and ecosystem processes (Ryder and Miller 2005). 

Within the biofilm, diatom algal assemblages are highly responsive to shifts in water 

chemistry (Reid et al. 1995) and so their composition can reveal ecological responses to 

flow-driven changes in stream water quality. Using algae to assess ecological status can 

help to detect effects of human activities in riverine ecosystems (Stevenson 2014), and 

can be used to provide evidence for decision making in water resource management. 

Algae are the main primary producers in lotic and lentic freshwater ecosystems 

(Round 1970, Vannote et al. 1980, Stevenson et al. 1996, Allan and Castillo 2007) and 

play an important role in the food web because they are the main source of energy for 

first order consumers such as small herbivores (e.g. snails, invertebrates). The growth of 

algae is mainly related to the concentration of nutrients (particularly nitrogen and 

phosphorus) in the water column  and nutrients in the benthos (Stevenson et al. 1996, 

Rober et al. 2011), however several other factors affect algal growth such as hydrology 

and predation (Figure  2.2) (Biggs 1996, Stevenson et al. 1996, Law 2011). 
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Figure  2.2: Major factors which affect benthic algal growth in riverine ecosystems 
(redrawn from Law 2011)  
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According to (Steinman 1996), benthic algae can assemble in different forms including 

filamentous, stalked or colonial aggregates or in unicellular states (Figure  2.3). Benthic 

algal biomass is a good indicator of water quality and, therefore, river health (Raschke 

and Schultz 1987) and analyses of algal biomass for the evaluation of river health and 

anthropogenic modifications in riverine ecosystems is often employed (including the 

analysis of chlorophyll-a concentration, dry mass, ash-free dry mass , bio-volume and 

peak biomass) (Stevenson et al. 1996).  

 

 

 

Figure  2.3: Hypothetical representation of major growth forms of algal periphyton 

assemblages. Source: (Steinman 1996). 
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It has been suggested that flow regime, specifically stream velocity, correlates 

negatively with the concentration of chlorophyll-a (Biggs and Hickey 1994, Biggs 1996, 

Biggs et al. 1999). The concentration of chlorophyll-a has a tendency to increase 

downstream during constant flow. The influence of flow-related disturbance on biomass 

has also been identified by several researchers (Biggs and Hickey 1994, Biggs 1996, 

Biggs et al. 1999, Leland 2003, Riseng et al. 2004, Taylor et al. 2004). There are a 

number of factors that have been observed to decrease the algal biomass including: flow 

disturbance (velocity), substratum instability, suspended solids and grazers (e.g. 

invertebrates and fish); whilst nutrients, light and temperature are the main resources 

that promote algal biomass (Figure  2.4) (Biggs 1996).  

 

Figure  2.4: Factors that control the biomass and physical structure of algal periphyton 

in streams (redrawn from Biggs 1996). 



37 
 

Algal growth and community structure can be influenced by nutrients, light and grazing 

pressure (Rosemond et al. 1993, Biggs and Lowe 1994). Nutrients and light are top-

down controllers while grazers (e.g. fish and snails) are bottom-up controllers of algal 

biomass (McCormick 1996, Steinman 1996, Biggs et al. 1998).  Furthermore the algal 

community structure may be controlled by flow disturbance (e.g. velocity and 

turbulence) in lotic systems (Biggs and Smith 2002, Allan and Castillo 2007, Cullis et 

al. 2013). 

Other studies have shown algal colonisation and structure to be highly responsive 

to shifts in water quality and flow variation (Biggs and Hickey 1994, Robson 2000, 

Ryder et al. 2006, Allan and Castillo 2007, Robson et al. 2008, Chester and Robson 

2014). Flow regime has a significant influence on water quality (oxygen level, 

temperature, suspended solid, organic matters and other nutrients), biotic structure and 

function and the metabolism of rivers or streams (Bunn and Arthington 2002, Gordon et 

al. 2004). According to Baron et al. (2002), the structure and function of aquatic 

ecosystems was affected by several environmental factors including flow regimes, water 

quality, sediment and organic materials, nutrients and other chemicals elements, 

temperature and light (Figure  2.5).  

  



38 
 

 

 

Figure  2.5: Conceptual model of the environmental drivers which affect structure and 

function of aquatic ecosystem (redrawn from Baron et al. 2002) 
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Law (2011) compiled and discussed the list of environmental factors, including light, 

temperature, pH, grazers, nutrients (N, P and Si) and hydraulics, which affect the 

structure and function of benthic algae in riverine ecosystems. Figure  2.6 shows Law’s 

(2011) depiction of the influence of flow regimes and nutrients on algal community 

structure. Algal community structure, biomass standing crop and species composition 

decrease under fast flow and low nutrients. In contrast, algal biomass and community 

structure increase under slow flow and high concentration of nutrients.  

 

 

Figure  2.6: The impact of multiple factors (flow regimes and nutrients) on the algal 

periphyton community in riverine ecosystems (redrawn from Law 2011).  
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2.6.1 Algae as indicators for assessing stream condition 

Algae are primary producers that power food webs and biogeochemical cycling in 

aquatic ecosystems(Stevenson 2014). Therefore, algae are an important and critical part 

of riverine ecosystems. Algae are present in almost every aquatic environment including 

fresh, brackish, marine and hypersaline water (Bold and Wynne 1984). The scientific 

study of algae started more than a century ago but the widespread use of these micro-

organisms to assess the environmental condition in rivers and streams only began in the 

last century (Kolkwitz and Marsson 1908, Hustedt 1937, Sládecek 1973, Lowe 1974, 

Watanabe et al. 1986, Hill et al. 2000, Stevenson et al. 2010). While algae communities 

in rivers are often diverse and are rarely homogenous (Kelly et al. 1998, Kelly et al. 

2001), some researchers have attempted to define discrete “epilithon” (on rock), “ 

epidendron or epixylon” (on woody debris) “epiphyton” (on plants), “episammon” (on 

sand) , “epipelon” (on mud) and “epizoon” (on animals) communities (Lowe and 

Laliberte 1996, Kelly et al. 2001). 

A number of researchers have suggested that the floristic composition of algae in 

the benthos could be used for monitoring water quality, stream condition and 

eutrophication (Whitton and Kelly 1995, Kelly and Whitton 1998, Perona et al. 1998, 

Hill et al. 2000, Potapova and Charles 2007, Lebkuecher et al. 2015), however, some 

studies have put diatoms forward, largely because the diatom-based methods appear to 

be the most successful in bio-monitoring approaches (Kelly 1998, Stevenson et al. 

2010). There are also practical problems in that it is usually more difficult to sample and 

make quantitative estimates of other algal groups than it is for diatoms, and there is a 

lack of identification keys for common river algae, especially the green algae (Kelly and 

Whitton 1995). Nevertheless, it is useful that other groups are tested, in case these can 

be shown to provide information not easily gained from diatom-based measures. There 



41 
 

are a number of studies that have shown that cyanobacterial and green algae biomass 

and diversity could be used to monitor eutrophication (Kelly and Whitton 1998, Perona 

et al. 1998, Codd 2000, Ferreira et al. 2011), especially as these groups can become a 

nuisance, so their monitoring can directly inform management efforts. 

Diatoms not only have enormous ecological and environmental importance but 

they also play significant roles in biology, biotechnology, material science and 

engineering (Gordon et al. 2009). However, most emphasis is on their role in ecological 

assessment of aquatic systems related to water quality (Patrick 1973, Reid et al. 1995, 

Kwandrans et al. 1998, Atazadeh et al. 2007, Tan et al. 2014), eutrophication (Kelly and 

Whitton 1995, Potapova and Charles 2007), pollution (Wu and Kow 2002), urbanisation 

(Sonneman et al. 2001, Newall and Walsh 2005, John 2012), bioassessment (Barbour et 

al. 1999, John 2003, Chessman et al. 2007) and the general environmental condition of 

streams and rivers (Fore and Grafe 2002, Stevenson et al. 2010).  

Diatoms respond directly to physical, chemical and biological changes in rivers 

and streams because they are sensitive to many changes in aquatic ecosystems (Hill et 

al. 2000). Many species reproduce rapidly and respond sensitively to water quality 

changes. Means of assessing the water quality of streams using diatoms have been 

developed in North America (Lowe and Pan 1996, Lavoie et al. 2006), Europe (Kelly 

and Whitton 1995, Kelly 1998, Prygiel et al. 2002), Asia (Watanabe et al. 1986, Tan et 

al. 2015), South America (Gómez and Licursi 2001), Africa (Bate et al. 2004, Taylor et 

al. 2007b) and Australia (Chessman et al. 1999, Abal et al. 2006, Chessman et al. 2007, 

Oeding and Taffs 2017).  

Diatom-based biomonitoring has progressed significantly in Australia recently so 

that these studies not only focus on palaeolimnological studies of lakes for 

understanding past climate changes (Gell et al. 2005) but also focus on water quality 
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monitoring with the development of comprehensive, diatom-based indices for streams 

and rivers (John 1983, 1993, Philibert et al. 2006, Chessman et al. 2007). Monitoring of 

diatom assemblages has the potential to provide evidence of stream condition important 

in programs designed to optimise water use.The taxonomic composition of benthic 

diatom communities has been widely used for monitoring water quality (Lowe and Pan 

1996, Chessman et al. 2007). However, the majority of indices subsequently developed 

have used populations taken from substrates already growing at a site, with 

interpretations of the data based on the relative proportions of species present. Overall, a 

wide range of microalgae, including green algae, cyanobacteria and diatoms, are now 

being used to understand their ecological response to different flow regimes for the 

purpose of making decisions on the allocation of water to riverine ecosystems (Snow et 

al. 2000, Kotsedi et al. 2012).
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2.7 River health 
There are several specifications that can be used to define the health of a river. These 

include the physical structure of the channel, riparian condition, water chemistry, 

discharge and aquatic flora and fauna (Bunn et al. 1999, Karr 1999, Norris and Thoms 

1999, Boulton et al. 2014). Therefore, the ecological perspective is different when 

compared to legal and management perspectives. In fact, the ecological concept of river 

health is related to the condition of the river and this relates to the ecological 

requirements for any organism and micro-organism living in the river and the 

ecosystem’s ability to recover from the effect of all impacting stressors (Boulton 1999, 

Boulton and Brock 1999). Conversely, the perception of river health from a solicitor’s 

and water manager’s perspective mainly focusses on the use of the water for 

anthropogenic benefits including water supply for industry and agriculture, and urban 

usage (Figure  2.8). 

 

Figure  2.7: The concept of river health (redrawn from Boulton 1999) 
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Ecologists and water managers now agree that an environmental flow for a healthy 

working river must be considered from all aspects, including flow pattern, flow volume, 

flow connectivity, flow variability, water quality, water quantity and availability of 

water according to rainfall and consumption (Arthington 2012, Boulton et al. 2014). The 

rate of natural flow is central to sustaining a healthy working river so that if it is more 

than two-thirds of natural the probability of having a healthy working river is high and if 

the natural flow decreased to less than half natural, the probability of healthy working 

river is low (Jones et al. 2002). 

2.8 Water body classification and eco-hydrology models 
Historically water quality monitoring programs have focused on water chemistry criteria 

(Karr 1991). Today, they are more likely to focus not only on water chemistry but also 

on biological and hydrological characteristics as well. This is because it is essential to 

demonstrate the effect of pollutants on biota as the effect on water quality is also 

influenced by the nature of the receiving waters. Water in rivers can be classified, based 

on the biology, hydrology and quality, into different ecological categories of conditions 

such as bad, poor, moderate, good or high (Figure  2.7) (Acreman and Ferguson 2010): 
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Figure  2.8: Water body classification in rivers (redrawn from Acreman and Ferguson 

2010).   

 

In the past, modelling of flow regimes in riverine ecosystems (e.g. rivers, streams, 

reservoirs, lakes and floodplains) was based mostly on engineering and mathematical 

models (Grigg 1996, Palmer et al. 2005). In fact, water engineers have applied various 

models including hydraulic and hydrologic models for describing flow regime 

responses, reactions and repercussions in different circumstances.  The main aims in 

hydraulic modelling are the collection, regulation, measurement, control, storage, 

transfer and use of the water (Singh and Woolhiser 2002, Jelali and Kroll 2012, 

Roozbahani et al. 2015). The main purposes of hydrologic modelling are to describe the 

water’s properties such as its physical and chemical characteristics. Hydraulic and 

hydrologic modelling employs conceptual models, logical models, physical models, 

statistical models, stochastic models, process-based models, math models and 
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quantitative models (e.g. HEC-RAS model, SWAT model, REALM model, Multi-

objective optimisation models, Bayesian Network models, Artificial Neural Network, 

regression models) (Sorooshian and Dracup 1980, Gelhar 1986, Beck 1987, Beven 

1989, Wurbs 1993, Refsgaard and Knudsen 1996, Laflen et al. 1997, Arnold et al. 1998, 

Varis and Kuikka 1999, Maidment and Djokic 2000, Tokar and Markus 2000, Downes 

et al. 2002, Hicks and Peacock 2005, Knebl et al. 2005, Kavetski et al. 2006, Weerts and 

El Serafy 2006, Yang et al. 2007, Perera 2008, Yilmaz et al. 2008, Webb et al. 2010b, 

Yang 2011). Today, water scientists and freshwater ecologists are using different types 

of the ecological response model. 

a) Simple linear models: These models are being focused on relationship between flow 

regimes and biological properties to predict ecological outcomes from managed flow 

events (Driver et al. 2004). 

b) Generalised linear and nonlinear models: These models are being used to 

incorporate the greater complexity within the general modelling framework. This allows 

analyses to incorporate features and avoids pseudo-replication in linear and nonlinear 

relationships, non-Gaussian residuals or non-normal response data (Mac Nally 2000, 

2002, Arthington et al. 2007). The generalised linear and nonlinear models are applied 

to predict the relationship flow regimes and biological responses (Arthington 2012). 

c) Hierarchical models: These models are being used to predict environmental 

outcome under incomplete data collection. In fact, the hierarchical aspect allows data 

from different sampling time to be combined to increase inferential strength. These 

models are popular due to high cost of frequently sampling and monitoring in the 

riverine ecosystem (Webb et al. 2015).  

d) Functional linear models: These models are being used to predict relationship flow 

and ecological outcome spatially and temporally without need to quantify hydrologic 



47 
 

metrics. The results of the functional linear models are derived from mathematically 

functions (Stewart‐Koster et al. 2010). 

e) Machine learning approaches: machine learning is growing rapidly to generate 

accurate predictive models which help to solve problem in complex systems. Today, 

river scientist and water managers are using the machine learning approaches to identify 

and solve the complex issues in water management (Arthington et al. 2007). 

Although the allocation of water for consumptive users (industry, agriculture, 

fisheries, urban, recreational and domestic usage) is based mainly on these engineering 

and mathematical models, the use of ecological models incorporating biological indices 

has great potential for improving the way water supply systems are operated and how 

transfers are made between storages. River scientists and managers are now beginning 

to appreciate that an over reliance on engineering models has not brought 

comprehensive solutions in maintaining and restoring riverine ecosystems (Palmer et al. 

2005). Improving waterway condition based on ecological criteria is an ongoing 

challenge for ecologists and river scientists (Bunn et al. 2014). 

The optimisation of consumptive flows to provide environmental benefits 

however, without compromising the consumptive user’s values, is a new challenge for 

river scientists. One of the well-known eco-hydrology models is the Physical Habitat 

Simulation Model (PHABSIM) which simulates the relationship between stream flows 

and physical habitats, and so the rate of micro-habitat availability in flow modification 

(Gore et al. 1998, Booker and Dunbar 2004). 

The difference between eco-hydrological models and hydrological models is 

related to the employment of different responses in the community, at family, genus and 

species levels. In fact, eco-hydrology is an integrative science which borrows from 
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ecology, biology, biogeochemical geomorphology, hydrology and hydraulics to describe 

ecosystem functions and hydrological process in different circumstances. 

Under the working river approach, to ensure a river remains both healthy, and 

contributes to economic production, it is essential to reach a balance between 

environmental flows and consumptive flows. The environmental flow should be of 

adequate magnitude and variation to meet ecological requirements and management 

objectives for a river, accounting not only for the volume of flow through a river system 

but also a pattern of flow including quantity, timing of release and the quality of the 

released water (Arthington 2012) that serves the needs of the ecosystem. Whilst 

consumptive water is provided for urban, agricultural, industrial and recreational use, it 

is rarely accounted for in an assessment of environmental requirements (Powell et al. 

2013) despite rivers being used to deliver/transfer water from upstream storages to water 

users or downstream storages. Simple modification to the timing and route of this water 

transfer can provide a wealth of environmental benefits with minimal impact on end 

users (VEWH 2012). Yet the optimisation of the water allocation amongst consumptive 

users remains a controversial topic as the driving factor that determines river ecosystem 

health and sustainability is the availability of water, and, as such, truly sustainable water 

management needs co-operation and balance between the social, economic and 

environmental values (Powell et al. 2013). 
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Chapter 3: Study area and study site characteristics 

 

Chapter Outline 

In this chapter the environment, climate, vegetation, indigenous and European 

settlement history, stream flow patterns, water quality and water resources development 

in western Victoria, Australia is described. The last part of the chapter focuses on the 

MacKenzie River, a tributary of the Wimmera River located on the northern slopes of 

the Grampians Ranges in western Victoria.  

3.1 Australian environment and climate 
The average annual rainfall across Australia is < 500 mm. However rainfall is 

highly variable across much of Australia with much inter-annual variability; as such 

periods of drought and flooding are very common (AusBOM 2014). The climate of 

southeast Australia (including western Victoria) is driven by three main climatic modes 

including: the El Niño-Southern Oscillation (ENSO), the Southern Annular Mode 

(SAM) and the Indian Ocean Dipole (IOD) (Nicholls 1988, Power et al. 1999, Kiem et 

al. 2003, Kiem and Franks 2004, Gillett et al. 2006, Meyers et al. 2007, Murphy and 

Timbal 2008, Barr 2010, AusBOM 2014) (Figure  3.1). 
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Figure  3.1: The drivers of the climate variability across Australia Source: AusBOM 

(2014)  

 

ENSO plays a significant role in rainfall variability across eastern Australia (Nicholls 

1988, Meyers et al. 2007). the variability of ENSO is depicted as the Southern 

Oscillation Index (SOI) which is calculated by the sea-level pressure difference between 

Tahiti and Darwin (Barr 2010, AusBOM 2014). In the neutral state the south east trade 

winds bringing warm and humid air towards Australia and the western Pacific and it 

keeps the central Pacific Ocean slightly cool. El Niño relates to the negative phase of 

ENSO and is associated with warm ocean water in the central and east-central regions of 

the equatorial Pacific Ocean. The consequence of prolonged El Niño phases for eastern 

Australia are extended periods of severe drought (Wang and Hendon 2007). La Niña is 
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the positive phase of ENSO and refers to the extensive cool ocean water off the central 

and eastern tropical Pacific Ocean. La Niña conditions strengthen the south-east trade 

winds which drive and enhance wet conditions across the eastern and northern regions 

of Australia. A larger than usual number of tropical cyclones from November to April 

(the cyclone season) are associated with La Niña activity (AusBOM 2014). 

The Southern Annular Mode (SAM) is defined as a north-south movement of the 

westerly wind belt which is prevalent in the middle and high latitudes of the southern 

hemisphere (Marshall 2003).  SAM (or the Antarctic Oscillation) is one of the main 

rainfall drivers in southern Australia. During periods of a positive SAM, the strong 

westerly wind belt contracts towards Antarctica. Therefore, the wind pressures across 

southern Australia are weaker than normal restricting the penetration of cold and wet 

weather across southern Australia (Karpechko et al. 2009). It has been reported that the 

positive SAM was the main contributor to the Millennium Drought which occurred in 

Australia between 1997 and 2010 (AusBOM 2014). During a negative SAM, the strong 

westerly wind belt expands towards the equator and leads to an increase in rainfall and 

storms across southern Australia (Hendon et al. 2007, AusBOM 2014). The strength of 

the SAM has been established by employing a number of statistical methods (Marshall 

2003, Goodwin et al. 2004, Fogt and Bromwich 2006). 

The Indian Ocean Dipole (IOD) manifests as the difference in sea surface water 

temperature between the eastern and western regions of the Indian Ocean (Feng and 

Meyers 2003, Cai et al. 2009). The activities of the IOD affect the countries around the 

Indian Ocean Basin such as Australia, Indonesia and Papua New Guinea. The 

mechanism of the IOD is similar to ENSO and it has a significant role influencing 

rainfall variability across Australia (Saji and Yamagata 2003). During a positive phase 

sea-surface temperatures increase in the western Indian Ocean and winds blow from the 
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east causing Australia to experience less rainfall as a result of the prevailing offshore 

winds. During a negative phase of the IOD the sea surface temperature increases in the 

eastern Indian Ocean and the prevailing winds are from the west toward Australia 

bringing onshore winds and more rain across Australia (Feng and Meyers 2003, Saji and 

Yamagata 2003, AusBOM 2014). 

 

3.1.1 Climate change 
Australia is experiencing the impacts of climate change which is altering the intensity 

and frequency of ENSO (Hughes 2003, Downie 2006). It has been shown that the 

intensity of El Niño phases have increased whilst La Niña phases have subsequently 

decreased during the last century (Plummer et al. 1999, Hughes 2003). Since 1910, but 

particularly in the recent decades, the temperature has increased around 0.8°C globally 

(Figure  3.2) (Collins 2000, Hughes 2003, Suppiah et al. 2007, Coumou and Rahmstorf 

2012, AusBOM 2015). The climatic warming occurs in winter and spring, and has led 

to a night-time temperature increase of approximately 0.96°C (Suppiah et al. 2007).  

The average annual rainfall in Australia has fluctuated, with the highest falls 

occurring during 1973-75 (Figure  3.3) (Collins and Della-Marta 1999, Gergis et al. 

2012, AusBOM 2015). Overall, climate change has influenced the annual temperature, 

the amount of precipitation, and the incidence of tropical cyclones across Australia 

(Hughes 2003, Knutson et al. 2010, AusBOM 2015).  
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Figure  3.2: Global annual mean temperature anomalies. Source: AusBOM (2015) 

 

  

Figure  3.3: Annual mean rainfall (mm) for Australia since 1900. The black line shows 
the 10-year moving average. Source: AusBOM (2015)  
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3.1.2 Australian freshwater ecosystems 
Australian freshwater ecosystems have distinctive ecological features, aquatic biota, 

energy flow and physicochemical features when compared to other inland waters across 

the world (Lake et al. 1985, Lake et al. 2000, Nielsen et al. 2003, Bond et al. 2008, Lake 

2011, Boulton et al. 2014). More than two thirds of Australia is arid or semi-arid and, 

and as a result, extensive areas can only support intermittent streams and shallow 

ephemeral lakes (Boulton and Brock 1999). The majority of rainfall (based on average 

annual totals) occurs in TAS, VIC, NSW, QLD, NT and northern WA. Therefore many 

Australian river systems have variable flows with low discharge rates (Lake et al. 1985, 

Boulton and Brock 1999).  In this dry environment, perennial freshwater ecosystems are 

restricted to the humid eastern, southern and tropical zones which elevate their 

importance for use by humans, wildlife and stock. Overall, there are three main 

freshwater systems in Australia, namely:  a) coastal systems; b) the Kati Thanda-Lake 

Eyre system; c) the Murray-Darling system (Figure  3.4). 

 

Figure  3.4: Three types of Australian freshwater inland systems (Murray-Darling 
system, Kati Thanda-Lake Eyre system and coastal system) 
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The Murray-Darling system is the most iconic and important freshwater system in 

Australia owing to its high level of development for irrigated agriculture. The two main 

basins, the Darling in the north and the Murray in the south and east, are together known 

as Murray-Darling Basin, one of the largest river basins in the world. The Murray-

Darling Basin spans approximately 1.056 million km2 and contains 440,000 rivers and 

streams and 30,000 wetlands (MDBA 2014b). The Basin extends over NSW, ACT, VIC 

and the southeast parts of QLD and SA. The rivers of the Murray-Darling Basin 

experience variable flows both seasonally and inter-annually resulting in the formation 

of a variety of river types including; ephemeral, semi-arid and permanent rivers (Brandis 

et al. 2009). Most rivers in the southern basin are highly regulated due the construction 

of many weirs and dams over the last 90 years (MDBA 2014b). 

Regulation and a high level of abstraction have combined with a highly variable 

climate and subdued topography to affect stream flows and the distribution of water 

across the basin. Therefore the hydrology, flow pattern, river forms, water quality 

characteristics, aquatic biota, physical processes, ecological attributes and ecosystem 

functions have changed across the basin (Gehrke et al. 1995, Maheshwari et al. 1995, 

Maier et al. 2001, Brandis et al. 2009, Kingsford 2011, Mosley et al. 2012). 

3.2 Western Victoria 
The western Victorian region is situated between 36-38°S latitude and 141-144°E 

longitude. It is bounded by the Wimmera-Mallee in the north, Goldfields in the east, 

Southern Ocean and Bass Strait in the south and South Australia to the west (Figure 

 3.5). The region of western Victoria can be divided into two geomorphic zones (upland 

and lowland) based on environmental features and ecological characteristics; the 

uplands of the Great Diving Range and the Grampians and Otway Ranges (Gell 1997, 

Barr 2010), and the lower lying Volcanic Plains. The Otway Ranges lie to the south of 
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the Plains and are among the most humid parts of the state. The Great Dividing Range 

lies along the eastern margin of Australia but runs east-west in Victoria essentially 

dividing the state into the southern plains and, to the north, the plains of the southern 

Murray-Darling Basin.  

The Grampians are an isolated range that is akin to a western extension of the 

Great Dividing Range. The highest peak within the Grampians Ranges, at 1167 m above 

the sea level, is Mount William (Clark 2010). The colonisation of western Victoria by 

Europeans  (c. 1850 CE) dramatically increased the human population resulting in 

extensive anthropogenic modification to the regional environment (Clarke 2002). 

 

 

Figure  3.5: Western Victoria is located between 36-38°S latitude and 141-144°E 

longitude. 

3.2.1 Geology, geomorphology and vegetation 
The geology of western Victoria is diverse and mainly composed of Cainozoic and 

Palaeozoic sedimentary rocks of marine origin, with areas of intrusive igneous rocks 
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(Lawrence 1975, Cayley and Taylor 1997, Birch 2003). The geology of western Victoria 

was formed by Tasmanides which includes Cambrian Delamerian and Lachlan as a 

result of deformation of Ordovician to Silurian mudstone (Figure  3.6) (Birch 2003, 

Lisitsin et al. 2013). Therefore, western Victoria (including Grampians) lies on a diverse 

range of Cambrian bedrock (Cayley and Taylor 1997). The rock materials mainly 

contain sedimentary (mostly quartz, sandstone and red siltstone) and igneous (granites 

and Rocklands Volcanic) forms called the Grampians Group (Cayley and Taylor 1997, 

Birch 2003). The volcanoes in southwest Victoria can be divided into four types 

including lava volcanos, maars, scoria volcanos and volcanic complexes (Joyce 1988, 

Barr 2010). In the uplands of the Wimmera the geology ranges from Cambrian 

metasediments and Devonian granites while it changes to younger tertiary strata in the 

Wimmera plains.  

Geomorphological studies have shown that western Victoria was created by 

tectonic forces and is, generally (including the uplands), much lower and is less rugged 

than eastern Victoria (Rosengren 1999). The uplands of western Victoria can be divided 

into three geomorphic units including: Dissected Uplands or Midlands, Prominent 

Ridges of the Grampians and Dissected tablelands or Dundas tablelands. The soil in 

western Victoria has different varieties, mostly sandy with moderate fertility which 

supports plant cover and vegetation  (Willatt and Pullar 1984, Enright et al. 1997). Plant 

cover, vegetation and forest in eastern Victoria is greater than western Victoria (Figure 

 3.7). 
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Figure  3.6: A simplified geology map of Western Victoria. Source: Lisitsin et al. 
(2013). 

 

 

 

Figure  3.7: Vegetation and plant cover of Victoria including western Victoria. Source: 

Agriculture Victoria (2013). 



59 
 

3.2.2 Climate and weather 
Generally the climate of western Victoria is similar to the Mediterranean: cool and wet 

in winter, and warm to hot in summer. However the rainfall in western Victoria varies 

from more than 1600 mm in the southwest and the Grampians to less than 300 mm in 

the northern plains (WCMA 2004a), resulting in the northwest being semi-arid, and the 

southeast being very humid, particularly in the Otway Ranges (House et al. 2002). The 

majority of this precipitation occurs during late autumn (April-May), winter (June-

August), and early spring (September). However rainfall also occurs in varying amounts 

during all other months of the year (Figure  3.8) (AusBOM 2014). The ENSO and IOD 

are prominent during summer and spring, and the SAM is very important during winter 

in Western Victoria. The ENSO brings warm and humid air to western Victoria under its 

natural phase. However, the negative phase of ENSO brings extended periods of severe 

drought particularly when it combines with a positive IOD. Conversely, the positive 

phase of the ENSO brings extensive cool ocean weather to western Victoria.  
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Figure  3.8: The rate of rainfall in the Grampians area from January 2012 to March 

2015. Source: AusBOM (2015). 

  

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

1-
Ja

n-
12

1-
M

ar
-1

2

1-
M

ay
-1

2

1-
Ju

l-1
2

1-
Se

p-
12

1-
N

ov
-1

2

1-
Ja

n-
13

1-
M

ar
-1

3

1-
M

ay
-1

3

1-
Ju

l-1
3

1-
Se

p-
13

1-
N

ov
-1

3

1-
Ja

n-
14

1-
M

ar
-1

4

1-
M

ay
-1

4

1-
Ju

l-1
4

1-
Se

p-
14

1-
N

ov
-1

4

1-
Ja

n-
15

1-
M

ar
-1

5

Ra
in

fa
ll 

(m
m

) 
Precipitation in Grampians  



61 
 

3.3 Wimmera catchment 
The Wimmera River is an inland flowing, intermittent river within a catchment area of 

23,500 km2 located in the Grampians region of western Victoria. Whilst it is situated in 

the Murray-Darling Basin its flow is limited by the dune fields of northwest Victoria 

and so its flow ends in terminal lakes (Alluvium 2013). The Wimmera River is one of 

the largest endoreic waterways in Victoria (SKM 2002b, WCMA 2004a, Alluvium 

2013). The river rises in the Mt Buangor State Park and the Pyrenees Ranges and flows 

through Crowlands, Glenorchy, Horsham, Dimboola, Jeparit and finally terminates at 

Lake Hindmarsh, although water can penetrate into Lake Albacutya and the Outlet 

Creek system after extended wet periods (e.g. 1973-1975) (Figure  3.9). The Wimmera 

River has several tributaries including the Mt Cole Creek, Six Mile Creek, Seven Mile 

Creek, Sheepwash Creek, Mt William Creek, Glenpatrick Creek and Heifer Station 

Creek; but the main tributaries are the MacKenzie River, Burnt Creek and Norton Creek 

(Anderson and Morison 1989, WCMA 2004a, Alluvium 2013). 

There are a number of channels, pipelines and waterways in the system which 

supply and deliver water to various consumptive users including: urban usage, 

irrigation, water storages, environmental and recreational needs. In the Wimmera-

Glenelg system there are a number of water storages including: Lake Wartook, Lake 

Lonsdale, Lake Bellfield, Lake Taylor and Lake Fyans (Wimmera system), and 

Rocklands and Moora Moora Reservoirs (Glenelg System). The engineered Wimmera-

Glenelg system is complex because of the water supply operation itself, the different 

sized water storages and the varying demands from customers and the environment for 

water delivery (VEWH 2015). The efficiency and flexibility of the system allows 

waterway managers to transfer water between reservoirs. Furthermore the facility of the 

system allows the off-stream storages to harvest water from channels and storages 

(Figure  3.10).  
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Figure  3.9: Wimmera River System (the map is adopted from WCMA website at: 

http://www.wcma.vic.gov.au/about-us/Region). 

 

 

http://www.wcma.vic.gov.au/about-us/Region
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Figure  3.10: Schematic diagram of the complex water supply in the Wimmera-Glenelg 

system. 
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3.3.1 Environmental condition 
The Wimmera River catchment supports a diverse range of vegetation. The upper areas 

of the Grampians ranges are covered by dense woodlands dominated by Eucalyptus 

species. In the lower parts of the catchment there are areas of open grassland with 

woodland communities of Buloke, Native Cypress Pine and eucalypt (WRCLPB 1997, 

SKM 2002b). Since European settlement, the Wimmera River has been substantially 

modified, because the catchment land, particularly the fertile plains, have been 

extensively developed for agriculture. The Wimmera River catchment is used for crop 

and livestock production such as wheat, legumes and sheep (Fischer 1999, SKM 2002b). 

This intense agricultural activity including irrigation, land clearing for farming and 

cropping, and more recently industrial activities such as the construction of the 

Wimmera Mallee pipeline project development, define the catchment as highly modified 

(60%) between 1994-2004 (Nathan and Lowe 2012). 

The upper parts of the Wimmera River have been regulated (SKM 2002b). Much 

of the length of the River has suffered from bank erosion caused by the clearing of plant 

cover and riparian vegetation (Anderson and Morison 1989). Furthermore, fluctuations 

in the natural flow regimes along the river and its tributaries encourage the transport of 

sediment from upstream to downstream, and the deposition of those sediments into the 

lower reaches (RWC 1991). The lower reaches of the Wimmera River flow through 

semi-arid regions resulting in water loss through evaporation, percolation and seepage 

(Anderson and Morison 1989, Alluvium 2013). The low-gradient of the catchment and 

water flow reduction restrict the River to a series of pools and small lakes in the mid and 

lower parts of the river, particularly in the drier months.  

The Wimmera River and its tributaries (including the MacKenzie River, Burnt 

Creek and Norton Creek) provide habitat for different species including waterbirds, fish, 

platypus, amphibians, snails, mussels and macro-invertebrates; a number of which are 
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listed as vulnerable or considered threatened in Australia (SKM 2002b). Twelve fish 

species have been reported from the Wimmera River of which six are endemic to south-

eastern Australia, including the River Blackfish (Gadopsis marmoratus) and Mountain 

Galaxias (Galaxias olidus) (DNRE 2000b, SKM 2002b). Four fish species, one frog 

species and many plant species in the Wimmera River system are considered threatened 

(DNRE 2000c, SKM 2002b, 2003). A number of other species in the catchment such as 

Platypus (Ornithorhynchus anatinus) and Water Rat (Hydromys chrysogaster) directly 

depend on the river environment for food and shelter. The aquatic ecosystem in the 

lower parts of the Wimmera River experiences stress due to poor water quality, largely 

as a result of increasing water salinity as the flow reaches the terminal lakes (SKM 

2002b). The terminal lakes of the Wimmera River (Lake Hindmarsh and Albacutya), 

when full, play a significant role in providing habitat for approximately 50 waterbird 

species such as the Great Egret (Ardea alba) and Freckled Duck (Stictonetta naevosa) 

both of which are listed as endangered in Victoria (DNRE 2000a).  Moreover Lakes 

Hindmarsh and Albacutya have unique and outstanding ecological characteristics such 

that Lake Albacutya is listed under the Ramsar Convention (SKM 2002b). 

3.3.1.1 Natural phenomena in the Grampians National Park 
One of the main natural phenomena in southeast Australia is bushfire. Bushfires 

(wildfires) often occur in dry conditions and dense vegetation when dry winds blow 

from central Australia to the southeast.  Some trees, particularly Eucalyptus, are prone 

to fire because their leaves contain highly flammable oils (Gill and Moore 1996). The 

Grampians National Park has dense vegetation which is composed mostly of 

Eucalyptus. Two strong bushfires occurred in the early months of 2006 and 2014 which 

affected the most of the Grampians National Park.  According to the Country Fire 

Authority (CFA), 55,000 hectares of the Grampians region was burnt in January 2014 
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(Figure  3.22). This greatly affected the vegetation of the MacKenzie River catchment 

such that the surrounds of Reach 1 and Reach 2 were burnt completely, with much of 

the canopy cover lost. The volume of large woody debris in the channel increased. It has 

been reported that bushfires play significant roles in structuring terrestrial plant 

communities and are a natural feature of Australian sclerophyll ecosystems (Whelan 

1995). However, the impacts of the bushfire on freshwater ecosystems are not well 

documented (Cowell et al. 2006). 

 

  

Figure  3.11: The extent of the bushfire in the Grampians National Park in early 2014 

(left image adopted from NASA) and the impact on the ground and along the 

MacKenzie River.  
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3.3.2 Hydrological alterations 
The Wimmera catchment hydrology has been modified on account of the development 

of an irrigation system (e.g. Wimmera-Mallee pipeline), abstraction for the supply of 

water to urban, domestic and stock users, and the establishment of the Wimmera Mallee 

Domestic and Stock Supply System (WMDSS). 

Grampians Wimmera Mallee Water (GWMWater) is the water agency responsible 

for the operation of the WMDSS which captures and distributes water in the Wimmera 

and Glenelg catchment regions. The WMDSS is a complex network of channels, pipes 

and storages which captures large portions of the water in the system. It has significant 

impacts on flow regime characteristics; decreasing the magnitude and frequency of the 

flow before reaching Lakes Hindmarsh and Albacutya (WCMA 2004a). 

The Wimmera River has been regulated since the construction of Wartook 

Reservoir in 1887. The  maximum annual flow of the river is 135,570 ML (Horsham 

station) (SKM 2002b). However the annual flow regime can change from no flow, as 

occurred during the El Niño of 1994; to 570,000 ML which occurred in the La Niña of 

1956 (DWRV 1989, SKM 2002b). The natural flow of the river has been substantially 

modified due to the construction of reservoirs, weirs and locks along the catchment 

which together underpin the WMDSS, supplying water for agriculture, urban and 

domestic use (Anderson and Morison 1989, SKM 2002b, WCMA 2004a, Alluvium 

2013).  

The establishment of the WMDSS has resulted in further development of the 

Wimmera River system, which consequently has affected the flow regime in the 

Wimmera Catchment. The WMDSS diverts water from the Wimmera, Glenelg, 

Wannon, Murray and Goulburn Rivers and features 12 storages and 18,000 km channels 

(Western 1994, Overman 1996, Western et al. 1997, SKM 2002b). The transfer of water 

and the system operation of the Wimmera River are very complex and the majority of 
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the diversions have been organised from the Glenorchy and Huddleston weirs. The flow 

regime changes substantially below the Huddleston Weir and this affects the hydrology 

of the lower parts of the river (SKM 2002b). 

The water quality of the Wimmera River varies downstream. Overall, the river 

water has high salinity and high nutrient concentrations, and low dissolved oxygen 

levels (Anderson and Morison 1989). The salinity of the water is high in both the 

upstream and downstream reaches but the salinity is less in the midstream due to the 

diluting effect of water entering from the WMDSS at the Glenorchy Weir (Anderson 

and Morison 1989, SKM 2002b). 

Additionally, the intrusion of saline groundwater into the lowland reaches in 

conjunction with decreasing volume of the water in the dry season, and high 

temperatures increases the salinity of the water, and saline pools can reach >50,000 

mg/L (Anderson and Morison 1989).  The concentrations of phosphorus and nitrogen 

are moderate to high particularly in the downstream reaches (Alluvium 2013), and are 

correlated with fluctuations in rainfall and flow regime (SKM 2003). Increased algal 

growth due to eutrophication which creates restrictions within the channel lead to bank 

erosion further impacting on the aquatic biota and habitats (Anderson and Morison 

1989, Craigie et al. 1999, SKM 2002b). The low concentration of dissolved oxygen is 

another major issue for the management of the Wimmera River. The depletion of 

dissolved oxygen in water to <3 mg/L is common along the river and deoxygenation 

occurs at depths greater than 2 m in the water column, especially below Huddleston 

Weir (Anderson and Morison 1989). It seems groundwater contributes to stratification 

which then contributes to the deoxygenation of the lower layer of the river. 
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3.4 The MacKenzie River 

The MacKenzie River, which drains the northern slopes of the Grampians Ranges in 

western Victoria, is one of the main tributaries of the Wimmera River (Figure  3.11a-c). 

The headwaters feed into Lake Wartook in the Grampians National Park, which has a 

maximum capacity of 29,360 ML. The river flows approximately 50 km from Wartook 

Reservoir before its confluence with the Wimmera River. The catchment lies to the 

south of the city of Horsham and covers an area of approximately 597 km2 (WCMA 

2004b).  

Water is released from Wartook Reservoir for multiple purposes; however, the 

water released is usually for consumptive use, and is directed through a network of 

distributary channels and associated structures at different locations along the system, 

including Mt Zero Channel and Distribution Heads. Flows vary from year to year 

depending on seasonal inflows, however typically between 7,000 ML and 10,000 ML is 

released each year from Lake Wartook into the upper MacKenzie River; of this volume 

one third of the released water was explicitly for environmental purposes. The 

remaining water was released to meet the consumptive demands and to transfer water to 

downstream reservoirs (GWMWater 2015). As a consequence of this anthropogenic 

modification, the MacKenzie River is classified as a highly modified river (GWMWC 

2012, GWMWater 2015), where consumptive flows will dominate the flow regime in 

some years (Figure  3.11d) 

The Wimmera Catchment Management Authority (WCMA) and GWMWater 

release water along the MacKenzie River to improve water quality, stream condition and 

river health especially in the downstream reaches (WCMA 2015). The upstream section 

(Reach 1) tends to receive water most days of the year due to releases to secure the 

requirements of water supply for the city of Horsham and its recreational and 
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conservation values, which is diverted into Mt Zero channel. Below this the middle and 

downstream sections (Reaches 2 and 3) receive a more intermittent supply. 

Wartook Reservoir and the Grampians National Park are highly recognised for 

their natural and recreational values. The Park supports a wide range of flora and fauna 

providing suitable conditions for riparian vegetation growth, and the existence of 

woodland and aquatic biota. However the region is vulnerable to natural bushfire 

particularly in the dry season. Although there are large changes in the hydrology down 

the river, there is little variation in the geomorphological features. The main 

geomorphologic changes relate to vegetation encroachment on the channel. Dense 

riparian vegetation exists along the MacKenzie River from the headwaters in the 

Grampians National Park to the lower reaches nearer to Horsham. The vegetation is 

mostly composed of species of Eucalyptus, Leptospermum and Acacia. This area 

represents a suitable habitat for native biota such as: kangaroos and bird species like the 

Eastern Yellow Robin, Superb Fairy-wren, White Cockatoo and Rufous Night-heron. 

Furthermore the MacKenzie River supports a great diversity of aquatic species, 

especially native fish. It also supports exotic fish species including trout, redfin, carp 

and mosquito fish (Anderson and Morison 1989). Moreover there still remains an 

important population of platypus in this river (WCMA 2004b, Alluvium 2013). In 

addition the MacKenzie River has great potential for eco-tourism since, among a range 

of natural attractions, it has examples of Aboriginal and European heritage and is a good 

place for camping at Zumsteins and MacKenzie Falls, and recreational fishing along the 

river.  
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 Figure  3.12: (a-c) Location of the ten sampling stations along the MacKenzie River system in the Wimmera catchment and (d) Schematic 

diagram showing the location of the three Reaches of the MacKenzie River within a complex water supply system
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3.4.1 Reach 1: Lake Wartook to ‘Dad and Dave’ Weir 
Reach 1 is located in the upstream section of the river below Lake Wartook (Figure 

3.11d) and includes the sampling stations of Wartook Outlet (S1), Smiths Mill (S2), 

MacKenzie Falls (S3) and Zumsteins (S4).The Wartook Outlet (S1) is located at 37° 

5'39.68"S, 142°26'1.21"E with an elevation around 442 m above sea level (asl) (Figure 

 3.12). The Wartook reservoir was built with concrete, boulders, rocks and stones. The 

Wartook Reservoir discharges into the MacKenzie River via the Lake Wartook outlet 

and the WCMA and GWMWater are responsible for controlling the operation of the 

flow regimes. The maximum capacity of the reservoir is 29,360 ML while it yields a 

long-term average of 25,565 ML (Barton et al. 2011). This area was affected by 

bushfires in 2006 and 2014 (see section 3.5 for more details). 

 

 

Figure  3.13: The Wartook Reservoir outlet (S1) one of main modified sites in the 
MacKenzie River  
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Smiths Mill (S2) is located at 37° 6'29.77"S, 142°25'28.75"E with an elevation around 

441 m asl (Figure  3.14). The river bank is in natural condition with abundant riparian 

and woodland vegetation.  

 

Figure  3.14: The Smiths Mill (S2) site with abundant riparian and woodland vegetation.  

 

The MacKenzie Falls (S3) site is located at 37° 6'38.59"S, 142°24'46.82"E with an 

elevation around 412 m asl (Figure  3.15). This site is in natural physical condition with 

abundant native riparian vegetation and woodland. The falls themselves have a natural 

landscape and draw many tourists for ecotourism and recreational activities. 

 

Figure  3.15: Site MacKenzie Falls (S3) photos with abundant native riparian vegetation 

and woodland. 
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Zumsteins (S4) is located at 37° 5'30.62"S, 142°23'6.32"E with an elevation around 243 

m asl (Figure  3.16). The site has healthy riparian vegetation which extends into the 

stream channel.  

 

 

Figure  3.16: The Zumsteins site (S4) the river flows through a gorge.    

 

 

 

3.4.2 Reach 2: Dad and Dave’ Weir to Distribution Heads 
Reach 2 is located in the mid-stream section of the MacKenzie River. It includes the 

diversion point ‘Dad ‘n’ Dave’ (S5), Mt Zero Channel, Ewan Vale (S6), Tatlock Bridge 

(S7) and Distribution Heads (S8). In Reach 2 a significant portion of the MacKenzie 

River is diverted into Mt Zero channel, which then flows to a Water Treatment Plant to 

increase the water quality to a level suitable for consumption for the inhabitants of 

Horsham. Water which is not diverted via the ‘Dad’n’Dave’ Weir to the Mt Zero 

Channel continues to flow down the river via Ewan Vale (S6) and Tatlock Bridge (S7). 

It is then circulated to Distribution Heads (S8) where water can be diverted via a number 

of weirs to other waterways (e.g. Burnt Creek). Reach 2 has a diverse array of 

vegetation associations such as Shrubby Woodland, Plains Grassy Woodland, Riparian 

Scrub, Plains Sedgy Woodland and Shallow Freshwater Marsh (Anderson and Morison 
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1989, WCMA 2004b) . This reach provides habitats suitable for aquatic biota such as 

River Blackfish, Eastern Pigmy Perch and Platypus. 

The Dad ‘n’ Dave site (S5) and Mt Zero Channel are located at  37° 3'54.63"S, 

142°22'31.58"E with an elevation around 218 m asl (Figure  3.17). At Dad ‘n’ Dave 

(S5), the river bank supports a healthy riparian woodland which extends to the stream 

edge providing large, woody debris habitat. Mt Zero Channel (SMt) was constructed by 

GWMWater to supply water for Horsham city (Alluvium 2013). 

 

 

 

Figure  3.17: Site Dad ‘n’ Dave (S5) and Mt Zero Channel (SMt) photos with healthy 

riparian woodland which extends to the stream edge providing large, woody debris 

habitat 
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The Ewan Vale site (S6) is located at 37°02'02" S, 142°20'25" E with an elevation 

around 207 m asl (Figure  3.18). Typically the river flows very slowly in this stretch of 

river due to a lower gradient and the greater depth and width. Riparian vegetation 

encroaches to the channel where there is much woody debris. 

  

Figure  3.18: Site Ewan Vale (S6) photos with much woody debris 

 

The Tatlock Bridge (S7) site is located at 36°59'50" S, 142°19'04" E with an elevation 

around 197 m asl (Figure  3.19). The channel has a high cover of woody debris with 

emergent and submerged plants present. 

  

Figure  3.19: Site Tatlock Bridge (S7) photos with high cover of woody debris with 
emergent and submerged plants 
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Distribution Heads (S8) is located at 36°57'12.67"S, 142°16'31.71"E with an elevation 

of around 189 m asl (Figure  3.20). The channel is deep and wide and riparian vegetation 

extends into the channel and emergent and submerged plants are present. 

 

Figure  3.20: Site Distribution Heads (S8) photos with riparian vegetation extends into 
the channel and emergent and submerged plants 

 

3.4. 3 Reach 3: Distribution Heads to the Wimmera River 
Reach 3 is located in the downstream sections of MacKenzie River. It includes the sites 

of Graham’s Bridge (S9) and Wonwondah East (S10).  The hydrology of this reach has 

been substantially altered due to water diversions. The hydrologic alterations induced 

geomorphic changes including riparian vegetation encroachment which intercepts 

sediment being transported down the channel (SKM 2002b). As a result of sediment 

accumulation in the channel bed, weirs are in-filled reducing their capacity and leading 

them to dry out in summer. The vegetation associations in this reach include Shrubby 

Woodland, shallow Sands Woodland, Blackbox chenopod Woodland, Plains Grassy 

Woodland, Riparian Scrub, Plains Sedgy woodland and Shallow Freshwater Marsh 

(WCMA 2004b). This reach supports aquatic biota such as the River Blackfish and 

Eastern Pigmy Perch. In this reach most of the neighbouring land has been cleared and 

is used for agricultural activity including irrigation agriculture, pastoral farming and 
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cropping. In addition human activities, such as the harvesting of water under the 

Wimmera Mallee pipeline project, have been developed in this reach. 

Graham’s Bridge (S9) is located at 36°56'49.00"S, 142°14'7.00"E with an elevation 

around 177 m asl (Figure  3.21). Riparian vegetation extends into the channel which 

hosts much woody debris. 

 

Figure  3.21: The Graham’s Bridge site (S9) with extends into the channel which hosts 
much woody debris 

The Wonwondah (S10) site is located at 36°52'41.00"S, 142°11'26.00"E with an 

elevation around 160 m asl (Figure  3.22). At this location riparian vegetation extends 

into the channel and much woody debris is present. The channel tends to dry completely 

during the dry season. 

 

Figure  3.22: The Wonwondah site (S10) with riparian vegetation extends into the 
channel and much woody debris 
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3.5 Why the MacKenzie River? 
Over the last two decades ecological monitoring in the Wimmera catchment showed that 

flow regime and water quality are critical characteristics that affect the river’s health, 

particularly in its lower reaches (Anderson and Morison 1989, Westbury et al. 2007). 

One of the main priorities for the Wimmera Catchment Management Authority 

(WCMA) is to find a sustainable solution to mitigate the threats which are affecting the 

condition of the Wimmera River. For ecological risk assessment, predictive tools have 

been developed by the WCMA for managing environmental flow allocations in the 

Wimmera River (Chee et al. 2005, WCMA 2015). The allocations of water in the 

MacKenzie River system, (one of the main tributaries of the Wimmera River), fall 

within the Wimmera-Glenelg Bulk and Environmental Entitlements for which 

Grampians Wimmera Mallee Water (GWMWater) is the storage manager. Whilst 

coordinated use of entitlements is implied within their administrative arrangements, 

cooperation still proves difficult, particularly during times of water shortage when 

entitlement holders become focused on their individual requirements. Storage managers 

(GWMWater) have, however, a duty of care to the environment in the way they operate 

reservoir systems and manage water delivery to both consumptive and environmental 

entitlement holders. Biological indices can be useful tools for water resource managers 

in the assessment of river health and decision making with regards to water sharing 

amongst the consumptive users, in order to improve environment benefits and river 

health, whilst considering potential impacts on consumptive users. 

The water supply system in the Grampians was developed to deliver consumptive 

water for industry, agriculture and for domestic and stock consumption. Due to the 

recent drought-dominated regime in this area (south-east Australia), and the construction 

of the Wimmera-Mallee Pipeline, the share of water to users has changed significantly 

(Barton et al. 2011)and that available to the environment is limited. Therefore, in order 
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to gain best value from the volume available, the water supply system in the MacKenzie 

River needs to be optimised towards maximising environment benefits from a 

diminished volume of water. 

A generic water supply system is depicted in Figure  3.23. In this figure, all water 

in this water supply system is a part of an entitlement framework. In the entitlement 

framework a storage manager is appointed to operate the supply system. Areas shaded 

blue are recognised as environmental water and are managed to obtain environmental 

objectives. This represents a situation in which environmental flows science is mostly 

developed and directed. Those parts in red can significantly affect the environment, but 

they are not managed to maximise ecosystem response. 

This gap has been recognised by Department of Environment, Land, Water and 

Planning (formerly known as Department of Sustainability and Environment) (DELWP 

2015), but it has not yet been completely addressed. Contemporary water supply system 

operations are guided by policy objectives and, for the Wimmera-Glenelg system, where 

the current project has been tested on the basis of the following policies: 

- Duty of care to the environment (Statement of Obligations) (DELWP 2007). 

- To facilitate environmental outcomes (listed within the Storage Manager Instrument 

of Appointment) (DELWP 2015). 

- To manage consumptive flows for environmental outcomes as well (listed as a 

policy within the recent Western Region Sustainable Water Strategy) (DELWP 

2015). 
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Figure  3.23: Diagram showing a typical water supply system water balance. 

 

The management of water supply systems can often be constrained by a range of 

competing objectives. Figure  3.24 shows how two typical types of releases can be 

different in environmental flows and transfers. Transfers between storages are 

constrained by management objectives of maintaining efficiency, for transfers to be 

delivered in a timely manner, within operational constraints (for example, at flow rates 

that do not exceed valve or weir capacities). These management objectives may not be 

always compatible with facilitating environmental outcomes. 

 

Water Entitlement Framework

Storage Manager

Environmental 
Entitlements for 

Environmental Flows

Provide 
Passing Flows

System Spills
(water in excess of 
storage capacity)

1st Tier Water Balance
(Inflows to Water Supply 
System to Fill Reservoirs)

2nd Tier Water Balance
(Operation of System)

3rd Tier Water Balance
(Delivery of Water to 
Entitlement Holders) Bulk Entitlements for 

Consumptive Users

Transfers Between 
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Operating Losses 
(evaporation and 
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Figure  3.24: Diagram demonstrating the different planning criteria for the two major 

types of release in the MacKenzie River system.  

 

Annually, a total of 10,000 ML of water is released from Lake Wartook into the 

MacKenzie River. Of this volume, only about 4,000 ML (about one third) was released 

explicitly for environmental purposes. The remaining 6,000 ML (about two thirds) was 

released to meet consumptive demands and to transfer water to downstream reservoirs 

(personal communication; GWMWater). Routine water releases from Wartook 

Reservoir are up to 50 ML/day in summer and 15 ML/day in the winter. There can be 

occasional releases of up to 200 ML/day, or more, if the Reservoir is full and operators 

need to discharge excess water. Downstream, the Mt Zero channel has a capacity of 

about 30 ML/day.  These are significant water volumes and they pose the question 

Types of 
Release:

Lake Wartook

Taylors Lake

Environmental Flows
Planning Criteria:
1. Based on science from FLOWS methodology to 

meet environmental objectives for waterways.
2. Includes base flows, freshes and other flow 

components to meet objectives such as water 
quality, river connectivity for habitat, etc.

Transfers Between Reservoirs
Planning Criteria:
1. Efficiency (minimise losses).
2. Timely (correct volume at correct time).
3. Within operational constraints.
4. No impact on entitlement holders.
5. Facilitate environmental outcomes.



83 
 

“could this water be optimised to achieve positive environmental outcomes”? This 

comparison of volumes certainly demonstrates the potential for the MacKenzie River to 

be developed as a case study for a “healthy working river”. The timing and route of the 

transfer of the consumptive water could be explored to provide environmental benefit 

without impacting multiple water users (WCMA 2004b). This represents an opportunity 

to optimise these consumptive releases to achieve greater environmental benefits rather 

than relying on the smaller environmental releases alone. The use of consumptive water 

reduces the amount of extra environmental water needed to meet specific objectives. It 

seems that the 4,000ML (as environmental flow) may not be adequate to support all 

ecological requirements (Table  3.1 and Table  3.2). Therefore, the ecological 

requirements could be better served if the consumptive allocation was configured to also 

aid the environmental cause. In this project, the ecological requirements have been 

investigated to optimise flows, with the aim of addressing major environmental 

requirements. 
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Table  3.1: Environmental flow components for the MacKenzie River at Reach 1 and 2 
(WCMA 2015) 

 

 

  

Flow 
component  

Timing Magnitude  Climatic 
scenario 

Frequency Duration 

 
 
Cease to flow 

 
 
 
 
 
Dec-May 

 
 
 
 
 
0 ML/day 

 
Drought  
 

 
 
 
 
As 
infrequently 
as possible 

Less than 80 day in 
total 

Dry Less than 30 days in 
total 

Average 

Base flow 
 
 

Dec-May 2 ML/d 
Or natural 
 

All Continuous 
 

Continuous 

Jun- Nov 7  ML/d 
 

All Continuous Continuous 

 
Freshes 
 

Dec-May 5 ML/d Drought  3 per period 4-7 days 
 

Dry 4 per period 4-7 days 
 

Dec-May 50 ML/d Average  
 

2 per period 2-7 days 
 

Wet 3 per period 
 

2-7 days 
 

 
 
High flow 
 

Jun- Nov 55 ML/d Drought 5 per period 2 days 
Dry 5 per period 4 days 
Wet 5 per period 5 days 
Average 5 per period 7 days 

Jun-Nov 130 ML/d Drought 1 per period 1day 
Dry 3 per period 2days 
Wet 5 per period 3 days 
Average 5 per period 4 days 

 
Bankfull 
 
 

 
Any 

 
500 ML/d 

Average 1 per period 2 days 

Wet 1 per period 2 days 

 
Overbank 
 
 

 
Aug-Nov 

 
900 ML/day 

 
Wet 

 
1 per period 

 
1day 
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Table  3.2: Environmental flow components for the MacKenzie River at Reach 3 
(WCMA 2015) 
  

Flow 
component  

Timing Magnitude  Climatic 
scenario 

Frequency Duration 

 
 
 
 
Cease to flow 

 
 
 
 
 
Dec-May 

 
 
 
 
 
0 ML/day 

 
Drought  
 

 
 
 
 
As 
infrequently 
as possible 

Less than 80 day 
in total 

Dry Less than 30 
days in total 

Average 

 
Base flow 
 
 

 
Any 

10 ML/d 
or  
natural 
 

 
All 
 

 
Continuous 
 

 
Continuous 
 

 
 
 
 
 
 
 
Freshes 
 

 
 
 
Dec-May 

 
 
 
35ML/d 

Drought  3 per period 2-7 days 
 

Dry 3 per period 3-7 days 
 

Average 4 per period 3-7 days 
 

Wet 4 per period 3-7 days 
 

Jun-Nov 35 ML/d Drought   
 
5 per period 

2 days 
 

Dry 4 days 
Average 5 days 

 
Wet 7 days 

 
 
 
High flow 
 

 
 
 
Jun-Nov 
 

 
 
 
190 ML/d 
 

Average   
 
1 per period 

1 days 

Wet 2 days 

 
Bankfull 

 
Any 

 
500 ML/d 

 
Wet 

 
1 per period 

 
1 day 

 
Overbank 
 
 

 
Aug-Nov 

 
1000 ML/day 

 
Wet 

 
1 per period 

 
1day 
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Overall, the MacKenzie River (Figure  3.25) was chosen as a case study for the 

following key reasons: 

1. This River has been a substantially modified and regulated stream since the 

construction of the Wartook Reservoir by the Victorian Government in 1887; 

2. The River is suitable for an assessment of spatial and temporal variations in water 

quality and the effect of humans on the condition of rivers and streams; 

3. The MacKenzie River provides an appropriate field example for understanding of 

the amount of water that must be transferred to the environment to serve the 

ecological requirements to ensure a healthy working river; 

4. The MacKenzie River provides a good case study to improve water allocation 

practices to multiple social, economic and environment benefits; 

5. The operation of the field work and in situ experiments are well supported by the 

water manager, GWMWater (as a research and industry partner). 
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Figure  3.25: Schematic diagram showing the complex relationship of the MacKenzie 

River with the broader water supply system. 
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Chapter 4: Methods and Materials 

 

Chapter outline 

In this chapter the field techniques, laboratory methods, statistical analysis and model 

development approaches used to measure, evaluate and tailor the configuration of 

consumptive flows in the MacKenzie River are outlined. The first part of the chapter 

describes field techniques including the approach used to select study sites and sample 

collection methods (water, soft algae and diatoms) in different flow regimes along the 

river. The second part of the chapter describes the laboratory techniques used for water 

chemistry analysis, diatom and soft algae sample preparation, species identification and 

enumeration, and the measurement of biological properties such as biofilm dry mass, 

ash-free dry mass (AFDM), and chlorophyll-a concentration. The third part of the 

chapter describes the statistical methods which were used to analyse the water and 

biological data. The last part of the chapter explains the approach used to develop 

ecological models of the system. 

 

4.1 Field techniques 

4.1.1 Strategy for site selection 
The selection of sites along the river is critical as they needed to be representative of the 

physical condition (Barbour et al. 1999, Biggs and Kilroy 2000), chemical features 

(Barbour et al. 1999, Victoria EPA 2009) and  biological properties (Lowe and Laliberte 

1996, Barbour et al. 1999, Stevenson and Bahls 1999) of the reach. Ten sampling 

stations were established on the MacKenzie River to undertake response-to-flow 

analyses of water chemistry, biofilms, diatoms and ecosystem structure. The sampling 
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sites were also chosen to ensure the understanding of the impact of regulated flow 

regimes on the physical, chemical and biological environment downstream. 

4.1.2 Channel form and site records 
Site descriptions were carried out at each selected sampling site. This inventory 

comprised the physical character and algal periphyton following standard field 

inventory protocols (Barbour et al. 1999, Stevenson and Bahls 1999, Biggs and Kilroy 

2000). At least one reference photograph of the each site was taken during each visit. 

 

4.1.3 Sampling strategy 
As outlined in Chapter 3, the MacKenzie River was divided into three Reaches and ten 

sampling locations were established. Reach 1 includes sampling stations S1, S2, S3 and 

S4 (Lake Wartook to ‘Dad and Dave’ Weir); Reach 2 includes sampling stations S5, S6, 

S7 and S8 (‘Dad and Dave’ Weir to Distribution Heads) and Reach 3 includes sampling 

stations S9 and S10 (Distribution Heads to the Wimmera River) (see Figure 11 in 

Chapter 3). The upstream section (Reach 1) tends to receive water most days of the year 

due to the requirements of water supply for the city of Horsham and is highly appraised 

for its recreational and conservation values. The middle and downstream sections 

(Reaches 2 and 3) receive a more intermittent supply. Therefore, the lower part of the 

river (Reach 3) has the potential to change greatly over time. Overall, the purpose of the 

water release from Wartook reservoir into the MacKenzie River is predominantly for 

consumptive users (Alluvium 2013, GWMWater 2015). 

Samples were taken initially in different seasons (28 February 2012, 17 July 2012, 

9 November 2012 and 25 May 2013) to obtain baseline information of the spatial and 

temporal variations of the algae communities, water quality, aquatic biota and stream 

condition before the first water release event. After the baseline sampling, samples were 
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taken before, during and after three water release events (event 1: 18 October 2013, 21 

October 2013, 25 October 2013; event 2: 16 December 2013, 19 December 2013, 23 

December 2013, 3 January 2014, 16 April 2014; event 3: 29 October 2014, 1 November 

2014, 8 November 2014 and 22 November 2014) (Table  4.1). Data of the flow regimes 

from 2011-2015 were provided by the WCMA and GWMWater. 

 

Table  4.1: Sampling date under different flow regime and different seasons 

Event Sampling date Flow rate 

Baseline 28/02/2012 Base flow (10 ML/day) 

Cease to flow at site S10 

17/07/2012 Base flow (15 ML/day) 

9/11/2012 Base flow (15 ML/day) 

25/05/2013 Base flow (15 ML/day) 

Event 1 18/10/2013 Before Freshes (15 ML/day) 

21/10/2013 During Freshes (35 ML/day) 

25/10/2013 After Freshes  (15 ML/day) 

Event 2 16/12/2013 Before Freshes (15 ML/day) 

19/12/2013 During Freshes (40 ML/day) 

23/12/2013 After Freshes (15 ML/day) 

3/01/2014 After Freshes (15ML/day) 

16/04/2014 After freshes (15 ML/day) 

Event 3 29/10/2014 Before high flow (15 ML/day) 

1/11/2014 During High flow (55 ML/day) 

8/11/2014 After high flow (15 ML/day) 

22/11/2014 After high flow (15 ML/day) 
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4.1.4 Water sampling 
Water samples were first collected seasonally to obtain baseline data on water quality in 

the river. Then, water samples were collected under different flow regimes including 

low flows, freshes and high flows. Water samples were collected at points 

approximately 20 cm below the water surface using a 50 mL syringe. The samples were 

filtered (0.45 µm filters) and placed in acid-washed bottles (Figure  4.1) using standard 

methods (APHA 2007, Victoria EPA 2009). The collected samples were stored in a cool 

box until returned to the Federation University laboratory for chemical analysis. In situ 

measurements of temperature (TEMP, °C), pH, electrical conductivity (EC, µS cm-1), 

turbidity (NTU), oxidation reduction potential (ORP, mV), total dissolved solid (TDS, 

mg L-1) and dissolved oxygen (DO, mg L-1) were obtained using an Horiba multimeter 

calibrated to 25°C (Water checker U-52G).  

 

 

Figure  4.1: Collecting water samples from river using syringe and filters. 
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4.1.5 Algae sampling 
At each sampling station multiple samples were collected for analysis of algal biomass 

standing crop and species composition. In all cases, samples were taken from areas with 

low hydraulic stress (Figure  4.2). Shading and depth of the water body were also 

considered in taking samples; samples were collected in shallow water where there was 

no shading (Figure  4.3). 

 

 

Figure  4.2: Schematic diagram of a river showing areas of low stress and low stability 

Source: DARES (2003)   
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Figure  4.3: The areas of river suitable, and not suitable, for collecting periphyton 

samples 
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Algal periphyton communities can have great diversity, yet their structure and 

composition may vary depending on the nature of the substrate. Diatoms and soft algae 

colonise natural substrates such as cobbles, stones, mud, rock, woody debris, emergent 

and submerged plants, (Kelly et al. 1998, Stevenson and Bahls 1999, Taylor et al. 

2007a). Small boulders and pebbles were used for taking samples if cobbles were not 

available (Kelly et al. 1998).  

In the present study, algal periphyton samples were collected (three replicates) 

from emergent and submerged surfaces including cobbles, pebbles or rocks, woody 

debris, aquatic plants and mud at points within each of the established sampling sites 

where the water velocity was relatively low (0.1- 0.9 m/s) (Figure  4.4). The algal 

periphyton was scraped from an area of 20-30 cm2 of a substrate using a soft toothbrush. 

The sample was washed into a plastic tray with river water and the resulting algal 

suspension rinsed into a 250 mL collection bottle (Figure  4.5). Separate samples were 

collected for estimations of biomass and for the identification and counting of diatoms 

and soft algae. Six replicates were collected for estimation of dry mass, ash-free dry 

mass and chlorophyll-a (Nusch 1980, Lowe and LaLiberte 2006). The algal samples 

were preserved by adding two drops of Lugol’s iodine (2 g potassium Iodide, 1g 

resublimed Iodine , 10 mL glacial acetic acid and 300 mL distilled water) as a fixative 

(Wehr et al. 2015). 
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Figure  4.4: Stretches of MacKenzie River showing substrates suitable for collecting 

samples (cobbles, emergent and submerged plants). 

 

 

 

 

Figure  4.5: The author collecting algal periphyton samples from MacKenzie River 
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4.2 Laboratory techniques 
The techniques employed in the laboratory included water quality measurement, 

biomass analyses, diatom and soft algae slide preparation, the identification and 

enumeration of diatom and soft algae, and the calculation of ecological and biological 

indices. 

 

4.2.1 Water quality analysis 
Water quality measurements obtained in the laboratory, included total suspended solids 

(TSS, mg L-1), total oxidized nitrogen (TON, mg L-1) and total phosphorus (TP, mg L-1), 

total nitrogen (TN, mg L-1) ammonia (NH3, mg L-1), silica (SiO2, mg L-1) cations (Ca2+, 

Mg2+, mg L-1) and anions (Cl-, SO4
2- , mg L-1). Measurements were undertaken using 

Gallery Automated Photometric Analyser and Hach DR 2800 spectrophotometer (Figure 

 4.6) following standard methods (Victoria EPA 2003b, APHA 2007, Victoria EPA 

2009).  The method of expressing water quality that offers a simple, stable and 

reproducible unit of measure which responds to changes in the principal characteristics 

of water quality. The relationship among different environmental variables was 

examined. Then the results compared with The Australian and New Zealand 

Environment Conservation Council  (ANZECC and ARMCANZ 2000). Then, the 

information is then used to classify to excellent, good, medium, poor and bad 

(Chapman 1996, Barbour et al. 1999, Biggs and Kilroy 2000, APHA 2007, Victoria 
EPA 2009). 
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Figure  4.6: (a) Gallery Automated Photometric Analyser; (b) Hach DR 2800 

spectrophotometer 

 

4.2.2 Soft algae and diatom analysis 
Temporary slides were prepared for soft algae to identify the species composition and to 

enumerate algal groups. The relative abundance of the different algal groups (green 

algae, cyanobacteria, diatoms and other algae) was calculated by placing 1 mL of each 

sample into a Sedgwick-Rafter counting chamber. Cells were counted using a Nikon 

Eclipse 80i microscope at 100-400× magnification. 

For diatom species identification and enumeration, the samples were prepared 

following the method of Battarbee (1986). Samples were digested with 10% hydrogen 

peroxide in a beaker at 90°C on a hotplate for 2 hours, after which two drops of 10% 

hydrochloric acid were added. The beakers were filled with distilled water and left to 

settle overnight after which the supernatant was discarded. This process was repeated 

four times. Subsamples of 400 µl were air-dried on coverslips and mounted using 

Naphrax (Battarbee 1986). At least 300 diatom valves were identified and counted per 

slide using a Nikon Eclipse 80i microscope with differential interference contrast at 

1000× magnification (Figure  4.7a). 
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For scanning electron microscopy (SEM), the rinsed samples were resuspended in 

a solution of deionised water and household bleach (50:1) for 30 minutes and rinsed 

three times in distilled water. Diatom suspensions were dried directly on 22 mm 

aluminium stubs and gold coated with a Dynavac Xenosput sputter coater. Images of 

frustules were taken in a Philips XL30 field-emission scanning electron microscope 

(Figure  4.7b). 

 Both soft algae and diatoms were identified in the laboratory using global and 

regional algal identification keys (Foged et al. 1976, Foged 1978, 1979, John 1983, 

Krammer and Lange-Bertalot 1986, 1988, Krammer and Lange-Bertalot 1991a, 

Krammer and Lange-Bertalot 1991b, Vyverman 1991, Lange-Bertalot and Moser 1994, 

Hodgson et al. 1997a, Biggs and Kilroy 2000, Camburn and Charles 2000, Krammer 

2000, Ling and Tyler 2000, Sonneman et al. 2000, John et al. 2002). Cells were 

identified to species level, or where this was not possible, to the lowest taxonomic level 

possible. 
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Figure  4.7: (a) Nikon Eclipse 80i light microscope connected to camera and monitor; 

(b) Philips XL30 field-emission scanning electron microscope 
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4.2.3 Analysis of biomass 
Samples for the determination of dry mass (DM) were oven-dried for 24 hours at 60°C 

and weighed. Samples were then combusted at 525°C in a muffle furnace for four hours, 

and reweighed. Ash-free dry mass (AFDM) was estimated as the difference in the mass 

before and after combustion and expressed as mg.cm-2 of the original substratum 

(Steinman et al. 1996, Biggs and Kilroy 2000, Lavoie et al. 2004): 

 

 

DM =
(𝑊1 −𝑊2)

𝐴
 

Where: 

DM= dry mass 

W1= dried algae on filter (mg) 

W2= filter weight (mg) 

A= area of substrate (cm2) 

 

AFDM =
(𝑊1 −𝑊2) −𝑊3

𝐴
 

Where: 

AFDM= ash-free dry mass 

W1= dried algae on filter (mg) 

W2= filter weight (mg) 

W3= material on filter (mg) after combustion 

A= area of substrate (cm2). 
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4.2.4 Analysis of chlorophyll-a 
For chlorophyll-a analysis, the samples were transferred into tubes containing 10 ml of 

95% ethanol  (Nusch 1980, Snow et al. 2000). The samples were stored overnight in a 

freezer and then allowed to return to room temperature. The absorbance of the 

supernatant at 665 nm was determined before and after adding two drops of 0.1N HCl 

using a Shimadzu UV 1800 spectrophotometer. The chlorophyll-a concentration was 

determined using the Hilmer’s equation (Hilmer 1990) that had been derived from the 

Nusch’s equation (Nusch 1980). 

 

Chlorophyll a (mg.m-2) = (Eb665 – Ea665) × 29.6 × (𝑉
𝐴
) × 1000 

Where: 

E b665 = absorbance at 665 nm before acidification 

Ea 665 = absorbance at 665 nm after acidification 

A = area of the sample (mm
2
) 

V = volume of solvent used for the extraction (mL) 

29.6 = constant calculated from the maximum acid ratio (1.7) and the specific 

absorption coefficient of chlorophyll a in ethanol (82 g.L-1.cm-1) 

1000 = correction factor (µg.mm-2 to mg.m-2) 
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4.2.5 Diatom Species Index for Australian Rivers (DSIAR) 
The ecological condition of MacKenzie River was evaluated using the DSIAR as a local 

diatom index (Chessman et al. 2007). DSIAR was developed using data from south east 

mainland Australia including ACT, VIC, NSW, SA and QLD for stream condition 

survey. Sensitivity Values (SV) in this index evaluate the tolerance of each species to 

anthropogenic stress (e.g. industry, agriculture, urban and any other manipulation in the 

catchment). The SV of all species are used to calculate numerical scores for each sample 

in the dataset, weighted by the proportional abundance of the each species. 

 

DSIAR = � 𝑆𝑉𝑠
𝑛

𝑖
× 𝑅𝐴 

 

Where: 

DSIAR= Diatom Species Index for Australian Rivers 

SVs= Sensitivity values 

RA= Relative abundance 

 

High DSIAR scores signify a flora which is ‘less impacted’ by anthropogenic 

modification of the aquatic ecosystem. In contrast, low scores are interpreted as 

indicating a greater anthropogenic stress (Chessman et al. 2007). The sensitivity values 

of species to anthropogenic stressors in the MacKenzie River were used to calculate 

algae-based index scores for each sample in the datasets.  
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4.3 Statistical techniques 
Approaches directed at analysing ecological data have been discussed extensively over 

the last two decades (Gerritsen 1995, Norris 1995, Van den Brink and Ter Braak 1998, 

De'ath and Fabricius 2000, Lepš and Šmilauer 2003, Clark 2007, Goslee and Urban 

2007). One of the main aims of data analysis in freshwater ecology is the development 

of tools to inform decisions for water resource management and operations (Barbour et 

al. 1999). Data can also be used to develop indices suited to biological monitoring (Karr 

1987, Barbour et al. 1999). For example, multivariate and multi-metric approaches 

(multivariate statistical approaches) have been developed by river scientists and 

waterway agencies to help in river assessment (Norris and Georges 1993, Wright et al. 

1993, Barbour et al. 1999). 

In the present study, the statistical techniques employed for data analysis consisted 

of data screening to determine the need to transform data, and the application of 

techniques comprising Pearson’s correlation coefficient, principal component analysis 

(PCA), correspondence analysis (CA), detrended correspondence analysis (DCA) and 

canonical correspondence analysis (CCA). Ultimately, forward selections were used to 

find the most significant variables of water quality and algal response under different 

flow regimes for input into an ecological response model.   

The statistical analyses were undertaken in SPSS Statistics 20 (SPSS 2011), 

CANOCO software for Windows 4.5 (ter Braak and Šmilauer 2002, Lepš and Šmilauer 

2003), C2 software (Juggins 2003), SigmaPlot 12.0, and Microsoft Excel 2010. SPSS 

was used to calculate the Pearson’s correlation matrix and standard deviations in the 

dataset. CANOCO was used to assess algae assemblage patterns under different flow 

regimes using PCA, CA, DCA, CCA and forward selection (Figure  4.8).  
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In this study, three different ecological models were developed including 

statistical scatter models, quantitative regression models and conceptual models, based 

on algal responses to different flow regimes. 

 

 

 

Figure  4.8: Main steps for data analysis, ordinations and modelling  
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4.3.1 Data screening and data transformations  
Datasets of water chemistry, biological properties and species composition were 

assembled from analyses spanning three years of field survey and laboratory analysis. 

Therefore, the dataset comprised values from biological analysis (DM, AFDM and Chl-

a), diatoms and soft algae enumeration, the DSIAR calculation, water quality 

measurements, rainfall, and daily flow regime information from the local agency.  

During data analysis screening was undertaken to understand the data distribution 

(i.e. normal vs non-normal) to ensure that the species composition data met the 

assumptions of parametric (e.g. linear regression) statistical tests. In addition to this, the 

water quality data were in different units (e.g. mg L-1, µS cm-1). This required the 

majority of the data to be transformed in order to ‘normalise’ the data to (1) ensure the 

data met the assumptions of the statistical techniques (e.g. diatom data) or (2) ensure the 

data were directly comparable by removing the artefact of unit of measurement (e.g. 

water quality data). The data were either log transformed or square-root transformed to 

create a normal distribution.  

 

4.3.2 Pearson’s correlation 

The Pearson correlation matrix is a statistical procedure which investigates the 

relationship between two variables (Taylor 1990, Zar 2012). In the present study, the 

Pearson’s correlation was examined to determine the level of significance (p<0.05) in 

the relationships between two variables. Pearson r correlation is a bi-variable measure of 

the association between two variables. A positive co-efficient between two variables 

indicates that there is a direct relationship and a negative co-efficient indicates an 

indirect relationship (Wright 1934). The following factors were analysed to generate a 

Pearson’s correlation matrix under different flow regimes: hydrological, including flow 
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regime; water quality and biological characteristics; pH; conductivity (Cond.); turbidity 

(Turb.); total phosphorus (TP); total nitrogen (TN); silica (Si); cations (Ca2+, Mg2+); 

anions (Cl-, SO4
2- ); Chlorophyll-a (Chl-a); dry mass (DM); ash-free dry mass (AFDM) 

and DSIAR. 

 

4.3.3 Principal component analysis 

Principal component analysis (PCA) is a statistical method which illustrates the 

covariance of the variables. It allows for the identification of the principal directions 

(gradients) of the variations in the data in order to find the patterns in ecological datasets 

(Jackson 1993, Jolliffe 2002). Furthermore, PCA (indirect analyses) is an unconstrained 

linear response model used to explore relationships between species and environmental 

variables. After transformation, the data was used to generate a PCA ordination for the 

diatom and soft algae community patterns under low flow conditions, freshes and high 

flows using CANOCO (ter Braak and Šmilauer 2002, Lepš and Šmilauer 2003). If the 

gradient of axis 1 (the strongest axis) was recorded as <2 (this number was obtained by 

a DCA, see section 4.3.5), then a linear ordination was deemed an appropriate analysis. 

However, in some cases a correspondence analysis (CA) was applied to explore the 

weighted average of species (Table  4.2).  
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Table  4.2: Ordination techniques for statistical analysis  

 Linear response model Unimodal response model 

Unconstrained  Principal components analysis (PCA) Correspondence analysis (CA), 

Constrained  Detrended correspondence analysis 

(DCA), 

 

Canonical correspondence 

analysis (CCA),  

forward selection 

 

 

 

 

 

4.3.4 Correspondence analysis 
Correspondence analysis (CA) is a statistical method which is used to find the 

association of species and samples. CA is an indirect gradient analysis utilising the 

unconstrained weighted averaging method (Lepš and Šmilauer 2003) and is applied to 

data that have a unimodal distribution. The CA test was applied using transformed data 

to find the association of the algal community structure under different flow regimes.  

Often, CA may cause an arch in the data. This is caused by nonlinearity of distributions 

along gradients, and obscures the interpretation of the data, whereupon a detrended 

correspondence analysis is often applied.  

4.3.5 Detrended correspondence analysis 
Detrended correspondence analysis (DCA) was applied to species (unimodal) data that 

exhibited an arch when analysed using the computationally simple CA (Hill and Gauch 

1980). This often occurred where the axis 1 gradient was >2. In addition, the 

interpretation of the DCA is easier than other techniques because the main axes are 
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aligned to the biological gradients (Lepš and Šmilauer 2003, Palmer 2016). In the 

present study, the DCA was performed on the algal dataset using CANOCO (ter Braak 

and Šmilauer 2002, Lepš and Šmilauer 2003) to determine species assemblage patterns 

and the length of the species gradient.  

 

4.3.6 Canonical correspondence analysis 
Canonical correspondence analysis (CCA) was used to understand direct correlations 

between algal assemblages and productivity, and the environmental variables under 

different flow regimes. This technique was also used to investigate the relationship 

between the community and the environmental variables (ter Braak and Verdonschot 

1995, ter Braak and Šmilauer 2002, Anderson and Willis 2003, Zare-Chahouki 2012, 

Paliy and Shankar 2016, Palmer 2016).  

Forward selection was then used in the CCA to find the most significant 

environmental variables that influenced flow, water quality and algal community 

structure. 

  

4.3.7 Forward selection 
Forward selection is a constrained and unimodal response model that is used to estimate 

the amount of the proportion of variance that can be explained in the response data (e.g. 

diatoms) by each predictor variable (e.g. water chemistry parameter) (Douglas and Smol 

1995, ter Braak and Verdonschot 1995, Ryves et al. 2002).  Forward selection is used to 

select significant environmental variables,and so find a minimal subset of 

environmental variables to model a multivariate community structure. In the present 

study, after examination of the CCA for hydrological, water chemistry and biological 

data, forward selection was used to develop the models among flow regime, water 
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quality and algal community structure to find the strongest and most significant 

environmental variables in the system. Patterns of algal communities and environmental 

variables (water chemistry) under different flow regimes were investigated by using 

unconstrained and constrained ordination analyses in CANOCO 4.5 (ter Braak and 

Šmilauer 2002). The CCA was performed on the full dataset using a Monte Carlo 

permutation test (n= 999 unrestricted permutations). Forward selection, using a 

Bonferroni adjustment, identified a subset of significant variables (p <0.05).  

 

4.4 Modelling  

4.4.1 Regression models 

Generally, regression models are used to predict a response from a subset of significant 

variables (or drivers) and are a powerful tool in the hind casting of past, and forecasting 

of future scenarios. Regression models are used to reduce and simplify complicated 

datasets to make them more understandable and manageable (Mac Nally 2000). In 

addition, such models describe the relationship between environmental variables and 

species in ecology and environmental science (De'Ath 2002), allowing an unknown 

response (dependent variable) to be determined from a set of predictor (independent) 

variables.  

Regression models were developed based on the algal responses under different 

flow regimes. The models were used to examine algal relative abundance, biomass, 

species composition, and DSIAR within a wide hydrological gradient along the river. 

The mean values and standard error of data for each parameter were calculated and used 

to produce a regression model using SigmaPlot 12.0 software. Furthermore, regression 

models were used to predict algal biomass and water quality under different flow 

regimes. 
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4.4.2 Conceptual model 
The ecological response models were configured to assess the influence of flow regimes 

on water quality, algal biomass, chlorophyll-a concentration and species composition. 

This information has been used to evaluate river health and thereby assist the storage 

manager in configuring consumptive flows down the MacKenzie River to provide 

greater ecological benefit. The models were based on the relationship between algae 

responses to differences in flow regime. The conceptual models were created using 

water quality data, algal biomass, chlorophyll-a concentration, species composition, 

flow regimes and the ecosystem function in the MacKenzie River. Moreover, different 

types of flow regime including cease to flow, low flows, freshes, high flows, bankfull 

flows and overbank flows were used to classify the water body along the river by 

evaluating water quality and biological properties. The flow components can improve 

the water quality and biological properties of the river and, combined with a biological 

index, assist the development of ecological response models.  

 

In summary, statistical scatter models, quantitative regression models and conceptual 

models were applied to derive consumptive flows and sustainable water allocations for 

environmental benefits. Therefore, operational protocols, recommendations and 

strategic rules were suggested in three different reaches along the MacKenzie River. 

The conceptual models were delineated based on the relationship between ecological 

models, flow regimes and river health. The conceptual ecosystem response model based 

on the functional relationships between stream hydrology, water quality, biology and 

ecosystem function, has been developed as a tool to assist in the future configuration of 

flows in the MacKenzie River.  
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Chapter 5: Results 

 

Chapter outline  

The measured responses of water quality and algae under different seasons and different 

flow regimes are presented here. Firstly, variations in flow and water quality in the 

MacKenzie River are presented. Secondly, the response of algae in different seasons 

(under existing baseline flows) is presented and described in terms of biomass and 

species composition, community structure, and ecosystem function. Then, analyses of 

the response of the algae to manipulated flow regimes (before, during and after water 

release events) are described.  

 

5.1 Flow regime variations in the MacKenzie River 

The MacKenzie River is subject to a seasonal climate and so the lower sections have 

limited flow in the dry season rendering it discontinuous. River flows vary downstream 

temporally and are greatly influenced by the use of the river channel for the transfer of 

water for consumptive users, including the supply of water to Horsham city, and the 

Wimmera Mallee domestic and stock supply system. Water discharge data at Wartook 

Reservoir and the head gauge of the MacKenzie River show that water levels vary 

seasonally, particularly over the last few years. The lowest and highest volume of the 

reservoir/discharge from Wartook was reported in 2009 and 2011 respectively (Figure 

 5.1).   
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Figure  5.1: Water heights of Wartook Reservoir measured at the head gauge since 2009 

 

Often, the flow of the MacKenzie River is controlled by water authorities. The base 

flow regime for the MacKenzie River is 10-15 ML/day which includes consumptive and 

environmental flows. Occasionally, every two or three months for three days, the flow 

is increased to 35-40 ML/day to meet environmental flow requirements. The upstream 

section (Reach 1) of the River tends to receive water most days of the year (Figure  5.2) 

due to the requirement of providing a regular water supply to the city of Horsham. Flow 

regimes in Reach 2 are affected by diversions of the MacKenzie River to Mt Zero 

Channel at the ‘Dad and Dave’ off take point and so Reach 2 receives a more 

intermittent supply (Figure  5.3). Due to infiltration and evaporation, flows tend to be 

lower downstream (Figure  5.4) increasing the risk to poor water quality.  
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Figure  5.2: Flow releases from Lake Wartook outlet (Reach 1) into the MacKenzie 

River. Measured at the Wartook outlet (S1) from January 2012 to March 2015.   
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Figure  5.3: Streamflow fluctuations at Reach 2 of the MacKenzie River measured at 

Dad ‘n’ Dave (S5) from January 2012 to March 2015 

 

 

Figure  5.4: Streamflow fluctuations at Reach 3 of the MacKenzie River measured at 

Distribution Heads (S8) from January 2012 to March 2015. 

0

10

20

30

40

50

60

1-
Ja

n-
12

1-
M

ar
-1

2

1-
M

ay
-1

2

1-
Ju

l-1
2

1-
Se

p-
12

1-
N

ov
-1

2

1-
Ja

n-
13

1-
M

ar
-1

3

1-
M

ay
-1

3

1-
Ju

l-1
3

1-
Se

p-
13

1-
N

ov
-1

3

1-
Ja

n-
14

1-
M

ar
-1

4

1-
M

ay
-1

4

1-
Ju

l-1
4

1-
Se

p-
14

1-
N

ov
-1

4

1-
Ja

n-
15

1-
M

ar
-1

5

M
L/

da
y 

Reach 2 Water release events 

0

10

20

30

40

50

60

1-
Ja

n-
12

1-
M

ar
-1

2

1-
M

ay
-1

2

1-
Ju

l-1
2

1-
Se

p-
12

1-
N

ov
-1

2

1-
Ja

n-
13

1-
M

ar
-1

3

1-
M

ay
-1

3

1-
Ju

l-1
3

1-
Se

p-
13

1-
N

ov
-1

3

1-
Ja

n-
14

1-
M

ar
-1

4

1-
M

ay
-1

4

1-
Ju

l-1
4

1-
Se

p-
14

1-
N

ov
-1

4

1-
Ja

n-
15

1-
M

ar
-1

5

M
L/

da
y 

Reach 3 Water release events 



115 
 

5.2 Seasonal changes of water quality  

The water quality results show the pH gradually increases down-stream in different 

seasons. It was observed that the up-stream sites (S1-S4) have lower conductivity and 

lower nutrient concentrations (TN, TP, TON, ORP) compared to downstream (Table 

 5.1; Table  5.2; Table  5.3; Table  5.4). Furthermore, the concentrations of cations (Mg+2, 

Ca+2) and anions (SO-4, Cl-1) increased down-stream. The changes in water quality 

observed during water release events were such that the water quality downstream was 

almost comparable to that upstream. Nevertheless, the results show some similarities 

and dissimilarities occurred in water quality characteristics along the river. For 

examples pH was more acidic in November 2012 (Table  5.3). In addition, temperature, 

Oxidation Reduction potential, Total Dissolved Solid, Total Oxidative Nitrogen, total 

phosphorus and total nitrogen were different in different seasons. However, some of the 

water quality characteristics such as cations and anions were relatively similar in 

different seasons. Whilst the water quality does vary during different seasons, the main 

changes in water quality are observed during the water release events. Therefore, flow 

regimes are known to have a significant influence on water quality (oxygen level, 

temperature, suspended solid, organic matters and other nutrients), biotic structure and 

function and the metabolism of rivers and streams.  
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Table  5.1: Physical and chemical water quality characteristics at the sampling stations 

on the MacKenzie River in February 2012  

(Temp = temperature, ORP= Oxidation Reduction potential, TDS= Total Dissolved 

Solid, TON= Total Oxidative Nitrogen). 

 

  

 Unit S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 

pH - 6.5 6.3 6.6 6.8 7.2 7.3 7.2 7.5 7.2 dry 

Temp. ºC 18.9 18.7 17.8 17.6 19.8 18.2 19.0 21.2 22.2 dry 

Cond. µS cm-1 75 78 79 76 80 82 82 85 88 dry 

Turb. NTU 8.2 9.3 8 9 8.5 12 15 16 15 dry 

Depth m 0.5 0.6 0.5 0.6 0.8 1.5 1.2 1.1 1.2 dry 

ORP mV 222 250 256 261 281 258 279 284 261 dry 

DO mg L-1 8.3 98.8 9.8 8.4 9.2 8.8 7.8 8.5 7.3 dry 

TDS mg L-1 45 48 43 55 65 55 71 71 71 dry 

TSS mg L-1 5 6.3 7.4 8 7 8.2 7.3 7.8 8.2 dry 

TN mg L-1 0.2 0.2 0.2 0.2 0.3 0.3 0.4 0.5 0.7 dry 

TP mg L-1 0.05 0.05 0.06 0.05 0.07 0.05 0.08 0.08 0.08 dry 

Mg2+ mg L-1 1.3 1.7 2 2.2 2.8 2.5 3.2 3.3 3.3 dry 

NH3 mg L-1 0.1 0.1 0.08 0.09 0.07 0.09 0.07 0.08 0.07 dry 

SO4-2 mg L-1 0.22 0.36 0.46 0.48 0.55 0.54 0.63 0.55 0.45 dry 

Ca+2 mg L-1 1.6 1.8 2.2 3.3 3..2 3.3 3.1 3.2 3.4 dry 

SiO2 mg L-1 0.24 0.35 0.23 0.25 0.39 0.45 0.55 0.66 0.68 dry 

TON mg L-1 0..5 0.08 0.07 0.07 0.05 0.07 0.08 0.08 0.08 dry 

Cl-1 mg L-1 27 25 25 28 33 32 38 38 34 dry 
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Table  5.2: Physical and chemical water quality characteristics at the sampling stations 

on the MacKenzie River in July 2012   

(Temp = temperature, ORP= Oxidation Reduction potential, TDS= Total Dissolved 
Solid, TON= Total Oxidative Nitrogen).   

 Unit S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 

pH - 6.5 6.8 6.7 6.6 6.9 7.2 7.4 7.3 7.4 7.5 

Temp. ºC 14 13 12 15 16 15 15 15 13 14 

Cond. µS cm-1 70 75 78 71 75 140 150 120 110 150 

Turb. NTU 10 92 12 11 14 12 15 16 15 15 

Depth m 0.5 0.6 0.5 0.6 0.8 1.4 1.5 1.8 1.8 1.5 

ORP mV 222 250 256 261 281 258 279 284 261 260 

DO mg L-1 8.3 98.8 9.8 8.4 9.2 8.8 7.8 8.5 7.3 7.5 

TDS mg L-1 45 48 48 55 65 55 71 71 71 75 

TSS mg L-1 5.6 6.3 7.4 8 7 8.2 7.3 7.8 8.2 8.3 

TN mg L-1 0.2 0.2 0.2 0.3 0.3 0.55 0.4 0.5 0.7 0.8 

TP mg L-1 0.05 0.05 0.06 0.05 0.07 0.05 0.08 0.08 0.08 0.09 

Mg2+ mg L-1 1.3 1.7 2 2.2 2.8 2.5 3.2 3.3 3.3 3.8 

NH3 mg L-1 0.2 0.1 0.08 0.07 0.06 0.07 0.07 0.08 0.07 0.08 

SO4-2 mg L-1 0.22 0.36 0.46 0.48 0.55 0.5 0.63 0.62 0.45 0.45 

Ca+2 mg L-1 1.6 1.8 2.2 3.3 3.1 3.3 3.1 3.2 3.4 0.36 

SiO2 mg L-1 0.22 0.22 0.46 0.25 0.39 0.45 0.55 0.66 0.68 0.65 

TON mg L-1 0.04 0.08 0.07 0.07 0.05 0.07 0.08 0.08 0.08 0.08 

Cl-1 mg L-1 21 18 29 23 41 36 38 38 34 36 
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Table  5.3: Physical and chemical water quality characteristics at the sampling stations 

on the MacKenzie River in November 2012  

(Temp = temperature, ORP= Oxidation Reduction potential, TDS= Total Dissolved 

Solid, TON= Total Oxidative Nitrogen). 

 Unit S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 

pH - 6.2 6.3 6.4 6.5 6.6 7.1 6.9 7.2 7.6 7.4 

Temp. ºC 18 18 19 20 22 21 18 21 21 23 

Cond. µS cm-1 80 85 85 86 97 114 115 150 145 163 

Turb. NTU 8 11 15 12 14 17 15 15 19 18 

Depth m 0.8 0.6 0.8 1.1 1.2 1.5 1.1 1.0 1.2 0.8 

ORP mV 202 203 214 225 235 280 269 299 280 287 

DO mg L-1 8 8.2 9.2 10.2 9.8 8.2 7.7 8.2 7.8 8.1 

TDS mg L-1 42 55 42 66 59 68 81 82 85 87 

TSS mg L-1 5.2 5.6 5.4 7.1 8.2 7.2 8.2 8.8 8.9 7.9 

TN mg L-1 0.1 0.3 0.2 0.3 0.5 0.6 0.4 0.60 0.8 0.9 

TP mg L-1 0.04 0.05 0.06 0.05 0.06 0.06 0.06 0.08 0.07 0.1 

Mg2+ mg L-1 1.8 2.2 2.3 2.6 4.4 3.4 5.5 5.1 5.3 5.4 

NH3 mg L-1 0.1 0.1 0.1 0.08 0.08 0.07 0.08 0.09 0.09 0.08 

SO4-2 mg L-1 0.23 0.25 0.33 0.3 0.45 0.66 0.8 0.7 0.6 0.8 

Ca+2 mg L-1 1.2 1.2 1.3 2.2 1.3 3.3 5.2 3.3 3.3 4.8 

SiO2 mg L-1 0.1 0.2 0.3 0.4 0.5 0.4 0.6 0.8 0.7 0.9 

TON mg L-1 0.06 0.06 0.04 0.05 0.05 0.4 0.08 0.09 0.1 0.1 

Cl-1 mg L-1 22 23 28 35 37 42 45 46 42 44 



119 
 

Table  5.4: Physical and chemical water quality characteristics at the sampling stations 

on the MacKenzie River in June 2013  

 

(Temp = temperature, ORP= Oxidation Reduction potential, TDS= Total Dissolved 

Solid, TON= Total Oxidative Nitrogen). 

  

 Unit S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 

pH - 6.8 6.7 6.6 6.9 7.2 7.3 7.2 7.3 7.2 7.7 

Temp. ºC 13 12 15 16 15 18.2 19.8 18.2 19.0 22 

Cond. µS cm-1 75 78 71 75 140 82 80 82 82 85 

Turb. NTU 92 12 11 14 12 12 8.5 12 15 21 

Depth m 0.6 0.5 0.6 0.8 1.4 1.5 0.8 1.5 1.2 1.9 

ORP mV 250 256 261 281 258 258 281 258 279 285 

DO mg L-1 98.8 9.8 8.4 9.2 8.8 8.8 9.2 8.8 7.8 6.9 

TDS mg L-1 48 48 55 65 55 55 65 55 71 72 

TSS mg L-1 6.3 7.4 8 7 8.2 8.2 7 8.2 7.3 7.6 

TN mg L-1 0.2 0.2 0.3 0.3 0.55 0.3 0.3 0.3 0.4 .45 

TP mg L-1 0.05 0.06 0.05 0.07 0.05 0.05 0.07 0.05 0.08 0.09 

Mg2+ mg L-1 1.7 2 2.2 2.8 2.5 2.5 2.8 2.5 3.2 4.8 

NH3 mg L-1 0.1 0.08 0.07 0.06 0.07 0.09 0.07 0.09 0.07 0.09 

SO4-2 mg L-1 0.36 0.46 0.48 0.55 0.5 0.54 0.55 0.54 0.63 0.84 

Ca+2 mg L-1 1.8 2.2 3.3 3.1 3.3 3.3 3..2 3.3 3.1 3.9 

SiO2 mg L-1 0.22 0.46 0.25 0.39 0.45 0.45 0.39 0.45 0.55 0.65 

TON mg L-1 0.08 0.07 0.07 0.05 0.07 0.07 0.05 0.07 0.08 0.1 

Cl-1 mg L-1 18 29 23 41 36 32 33 32 38 49 
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5.2.1Average annual water chemistry in the MacKenzie River 
There were downstream trends in most of the physical and chemical water parameters 

measured during the different flow regimes. Typically, the pH gradually increased 

(became more alkaline) downstream (Figure  5.5a). The upstream sites (S1-S4) also had 

lower conductivity compared to those further downstream (Figure  5.5b). Turbidity 

increased greatly downstream (Figure  5.5c) and the concentration of dissolved oxygen 

(DO) changed along the river where low concentrations were observed mid-stream due 

to standing water in the middle of the river (Figure  5.5d). Total suspended solid (TSS) 

values also increased in the lower parts of the river particularly during water release 

events (Figure  5.5e). The concentrations of nutrients (TN and TP) also increased 

downstream (Figure  5.5f-g).  The concentrations of cations (Mg+2, Ca+2) and anions 

(SO4-2, Cl-1) also increased downstream (Table  5.1) consistent with an increase in total 

salinity and the concentration of Oxidation Reduction Potential (ORP), Total Dissolved 

Solid (TDS) and Total Oxidative Nitrogen (TON). In contrast, the concentration of 

ammonia decreased from upstream to downstream (Figure  5.5h).   
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Figure  5.5: Physical and chemical characteristics of water at the sampling stations (S1-

S10) along the MacKenzie River: (a) pH; (b) Electrical Conductivity; (c) Turbidity; (d) 

Dissolved Oxygen; (e) Total Suspended Solid; (f) Total Phosphorus; (g) Total Nitrogen; 

(h) Ammonia. Data indicate means ± SD   
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Table  5.5: Average annual physical and chemical water quality characteristics at the sampling stations on the MacKenzie River from February 

2012 to Nov 2014 (Temp = temperature, ORP= Oxidation Reduction potential, TDS= Total Dissolved Solid, TON= Total Oxidative Nitrogen). 

Data indicate means ± SD. 

 

 Unit S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 

Temp ºC 14±7 16±6 16±7 16±8 17±6 18±4 19±8 19±6 19±7 19±6 

Depth m 0.6±0.2 0.6±0.2 0.6±0.3 0.7±0.4 0.6±0.3 1±0.5 0.8±0.4 1±0.3 0.5±0.2 0.8±0.5 

ORP mV 212±22 222±32 223±35 258±41 245±42 255±64 255±58 244±51 299±75 298±74 

TDS mg L-1 22±11 35±15 41±22 68±31 71±23 86±32 91±33 98±38 106±41 111±35 

Mg2+ mg L-1 1.1±0.5 1.8±0.8 2.2±0.9 2±0.8 3±0.5 3±0.5 3±1 4±1.2 4±1.2 4.1±1.3 

SO4-2 mg L-1 0.55±0.08 0.51±0.1 0.52±0.1 0.55±0.1 0.61±0.1 0.44±0.09 0.64±0.1 0.63±0.08 0.55±0.09 0.45±0.1 

Ca+2 mg L-1 1.5±0.5 2.1±0.6 2.5±0.5 3±0.6 3.2±0.5 3.2±0.6 3.6±0.2 3.4±0.5 3.5±0.5 3.9±0.6 

SiO2 mg L-1 0.22±0.05 0.28±0.06 0.36±0.09 0.38±0.06 0.49±0.08 0.65±0.05 0.75±0.04 0.79±0.09 0.78±0.08 0.88±0.09 

TON mg L-1 0.07±0.01 0.08±0.02 0.07±0.01 0.06±.02 0.08±0.02 0.07±0.03 0.07±0.01 0.08±0.04 0.1±0.05 0.1±0.05 

Cl-1 mg L-1 19±8 22±8 23±4 28±8 29±7 30±10 30±6 29±8 33±8 40±10 
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The changes in water quality observed during water release events were such that the water 

quality downstream was relatively similar to that upstream. Nevertheless, the results show this 

phenomenon (similarity of the water quality between upstream and downstream reaches) is 

only temporary in nature and antecedent conditions return within a few days of water release. 

Whilst the water quality does vary during different seasons, the main changes in water quality 

are observed during the water release events (Table  5.2). 

 

Table  5.6: Physical and chemical water quality characteristics during water release events at 

the sampling stations on the MacKenzie River (Temp. = temperature, Cond. = conductivity, 

Turb.= Turbidity, ORP= Oxidation Reduction potential, DO = Dissolved Oxygen, TDS= Total 

Dissolved Solid, TSS: Total Suspended Solid, TN= Total Nitrogen, TON= Total Oxidative 

Nitrogen).  

 Unit S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 

pH - 6.7 6.7 6.7 6.8 6.8 6.8 6.7 6.5 6.6 6.7 

Temp. ºC 16.2 16.5 16.3 16.2 17.4 17.2 17.5 17.2 18.1 17.9 

Cond. µS cm-1 75 76 79 76 79 82 82 85 88 86 

Turb. NTU 8.5 9.3 8.2 10 8.5 12 15.2 16 14.2 14.5 

Depth m 0.8 0.8 0.7 1.2 1.3 1.5 1.6 1.7 1.2 1.3 

ORP mV 250 251 256 264 261 258 269 274 261 271 

DO mg L-1 8.5 9.2 9.8 8.4 9.2 7.2 7.8 8.5 7.8 8.2 

TDS mg L-1 45 46 42 55 65 64 71 75 71 85 

TSS mg L-1 6 6.2 7.4 6.6 7 8.2 7.3 6.8 8.2 7.1 

TN mg L-1 0.2 0.2 0.3 0.2 0.3 0.3 0.4 0.5 0.7 0.8 

TP mg L-1 0.05 0.05 0.06 0.07 0.07 0.07 0.08 0.08 0.08 0.08 

Mg2+ mg L-1 1.2 1.7 2 2.2 2.1 2.5 2.6 3.3 3.3 3.3 

NH3 mg L-1 0.1 0.1 0.09 0.09 0.08 0.09 0.07 0.08 0.07 0.09 

SO4-2 mg L-1 0.45 0.52 0.46 0.48 0.55 0.54 0.62 0.55 0.42 0.56 

Ca+2 mg L-1 1.6 1.8 2.2 3.3 3..2 3.3 3.1 3.2 3.4 3.6 

SiO2 mg L-1 0.0.24 0.25 0.23 0.25 0.39 0.51 0.55 0.66 0.62 0.77 

TON mg L-1 0.06 0.08 0.07 0.08 0.05 0.07 0.06 0.08 0.08 0.08 

Cl-1 mg L-1 22 25 23 25 31 32 33 28 29 28 
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5.3 Algal response under base flow (10-15 ML/day) 
This investigation showed that during base flow the algal flora of the MacKenzie River 

was composed of typical acidic taxa, especially in the upper reaches, while more 

alkaline taxa were recorded in lower reaches. In this study, 126 diatom species (43 

genera), 44 green algae species (23 genera), 24 cyanobacteria (10 genera), and 9 other 

algae (6 genera) were recorded from samples collected during base flow conditions. The 

diatom community (species composition) was the most abundant and dominated the 

river samples, displaying high diversity in the upstream sites while the relative 

proportions of green algae and cyanobacteria increased in the mid and downstream 

reaches.  

The most common algal species in the upstream reaches (S1-S5) were diatoms 

(based on relative abundance ) including: diatoms - Brachysira brebissonii, Eunotia 

bilunaris, Frustulia rhomboides, Gomphonema affine, Melosira arentii, Navicula 

heimansioides, Tabellaria flocculosa; green algae - Stigeoclonium flagelliferum, 

Ulothrix flacca; and cyanobacteria - Tolypothrix tenuis. In the downstream reaches (S6-

S10), the most common algal species were: diatoms - Eunotia serpentina, Nitzschia 

capitellata, Planothidium frequentissimum, Surirella angusta; green algae - 

Oedogonium undulatum; and Charophytes - Chara sp., Nitella cristata and Schizothrix 

arenaria (Table  5.3).  



126 
 

Table  5.7: Taxonomic composition of algae by genus and number of taxa present in 
each genus, in the MacKenzie River  
 
Bacillariophyta Taxa No. Chlorophyta Taxa No. Cyanophyta Taxa No. Other groups Taxa No. 

Achnanthes 2 Ankistrodesmus 1 Anabaena 2 Cryptomonas 1 

Achnanthidium 1 Bambusina 1 Chroococcus 1 Ceratium 2 

Asterionella 1 Bulbochaete 1 Lyngbya 3 Dinobryon 2 

Aulacosira 2 Chara 2 Merismopedia 1 Euglena 1 

Brachysira 6 Chlorella 1 Nodularia 1 Gymnodinium 1 

Brevisira 1 Cladophora 1 Nostoc 1 Peridinium 2 

Caloneis 2 Closterium 3 Oscillatoria 5   

Cocconeis 1 Cosmarium 4 Phormidium 2   

Craticula 1 Euastrum 3 Schizothrix 1   

Cyclostephanos 1 Gonium 1 Tolypothrix 1   

Cyclotella 2 Micrasterias 1 Nostoc 1   

Cymbella 3 Monoraphidium 1 Oscillatoria 5   

Cymbopleura 4 Nitella 2     

Diatoma 3 Oedogonium 2     

Diplonies 1 Oocystis 2     

Discostella 1 Pediastrum 2     

Encyonema 2 Rhizoclonium 1     

Epithemia 1 Scenedesmus 6     

Eunotia 16 Spirogyra 1     

Envekadea 1 Staurodesmus 1     

Fragilaria 4 Staurastrum 5   

Frustulia 5 Stigeoclonium 1     

Gomphonema 7 Ulothrix 1     

Gyrosigma 2       

Hantzschia 1       

Luticola 1       

Melosira 1       

Navicula 8       

Neidium 4       

Nitzschia 5       

Pinnularia 9       

Planothidium 1       

Psammothidium 2       

Pseudostaurosira 1       

Rhopalodia 1       

Sellaphora 1       

Stauroforma 1       

Stauroneis 7       

Staurosira 1       

Stenopterobia 3       

Surirella 3       

Synedra 3       

Tabellaria 3       

Total 126  44  24  9 
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5.3.1 Diatom variations under base flow (10-15ML/day) 
Diatom species composition varied from upstream to downstream and between seasons. 

The summer (February 2012) samples presented in Figure  5.6 showed F. rhomboidia, 

G. affine, N. radiosa, T. flocculosa to be common in the upstream reaches, however, the 

relative abundance of those diatoms decreased downstream. In contrast, those most 

strongly associated with downstream reaches were Eunotia serpentina, Planothidium 

abundans, Rhopalodia brebissonii and Surirella elegans. 

 

Figure  5.6: Results of diatom analysis along the MacKenzie River sampling stations in 

Feburary 2012 (>4% in any one sample, sorted by weighted-averaging [ascending]). 

Station 10 was dry at the time of sampling. 
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In contrast, the winter (July 2012) samples showed the upstream sites supported F. 

rhomboides, G. affine, G. gracile, N. heimansioides, N. radiosa and T. flocculosa while 

the downstream sites supported assemblages including N. capitellata, N. clausii, M. 

circulare and .  curvula (Figure  5.7). 

 

Figure  5.7:  Results of diatom analysis along the MacKenzie River sampling stations in 

July 2012 (>4% in any one sample, sorted by weighted-averaging [ascending]).  

 

  



129 
 

The results of the spring survey (November 2012) showed the algal community to be 

similar to those in summer. The most common diatom taxa collected in the upstream 

(S1-S5) samples were T. flocculosa, G. affine, N. radiosa and Melosira arentii while in 

the downstream reaches the most common species were  Eunotia serpentina, 

Psammothidium abundans, Psammothidium confusum, N. capitellata and Surirella 

angusta (Figure  5.8). 

 

 
Figure  5.8: Results of diatom analysis along the MacKenzie River sampling stations in 

November 2012 (>4% in any one sample, sorted by weighted-averaging [ascending]).  
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The results of the diatom comunity structure in the following winter, in June 2013, 

showed the most common diatom species in upstream sites (S1-SX) are T. flocculosa, 

G. affine, N. radiosa, while in the downstream section (SX-S10) the most common 

species were Achnanthidium minutissimum, N. clausii and Psammothidium confusum 

(Figure  5.9) 

 

 

Figure  5.9: Results of diatom analysis along the MacKenzie River sampling stations in 

June 2013 (>4% in any one sample, sorted by weighted-averaging [ascending]).  
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5.3.2 Soft algae variations under base flow (10-15 ML/day) 
The soft algal species composition differed along the MacKenzie River and between 

seasons. The soft algae were classified into three different groups comprising 

Chlorophyta (green algae), Cynobacteria (blue-green algae) and other algae 

(Chrysophyta, Charophyta and Euglenophyta) (Table 5.3). The results showed that the 

algal asssemblages differed between sites, and from upstream to downstream. The 

unicelluar species were mostly found in the upstream sites while the downstream sites 

(S6-S10) supported both unicellular and filamentous algae.  

Soft algae species composition was different from upstream to downstream and 

between the seasons. The summer results (February 2012) showed  Chlorella vulgaris, 

Closterium sp., Dinobryon sertularia, Oocytis parva, Pediastrum angulosum and 

Peridinium lomnickii, were the most common of the soft algae in the upstream sites 

whilst C. vulgaris, Cosmarium sportella, O. parva, P. angulosum and Stigeoclonium 

flagelliferum were common in the midstream sections. In contrast, filamentous algae 

like Lyngbya sp. and Schizothrix sp. were more often present dowstream (Figure  5.10). 

The winter results (July 2012) showed upstream sites of the river had more 

unicelluar soft algae including Ceratium cornutum, C. vulgaris, Closterium sp., D. 

sertularia, Peridinium lomnickii, P. angulosum and O. parva while filamentous soft 

algae species that were found to be more abundant in the downstream sites included C. 

glomerata, Lyngbya sp., Oedogonium undulatum, Oedogonium monile and Schizothrix 

sp. (Figure  5.11). 
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Figure  5.10: Taxonomic composition of soft algae in MacKenzie River 

(presence/absence data) stations in Feburary 2012 (Station 10 was dry at the time of 

sampling). 

 

 

Figure  5.11: Taxonomic composition of soft algae along MacKenzie River 

(presence/absence data) in July 2012. 
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The results of November 2012 showed C. cornutum, C. depressum, O. parva and 

Rhizoclonium sp. were more commonly found in upstream sites while Lyngbya sp. and 

Schizothrix sp. were present in downstream (S8-10) (Figure  5.12). 

 

 

 
Figure  5.12: Taxonomic composition of soft algae along the MacKenzie River 

(presence / absence data) in November 2012. 
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The results of June 2013 showed that unicellular soft algae dominated upstream 

sampling sites while filamentous algae dominated the downstream sites (S8-10) (Figure 

 5.13). 

 

 
Figure  5.13:  Taxonomic composition of soft algae along the MacKenzie River 

(presence / absence data) in June 2013. 

 

 

 

 

5.3.3 Relative abundance of the algal groups under base flow (10-15 ML/day) 
Base flow sampling results showed that relative abundances of the algal groups varied 

by stream reach and also by season. Relative abundance of diatoms was highest in the 

upstream sites while filamentous green algae were more abundant downstream. The 

taxonomic composition of the algae varied among reaches along the river. In February 

2012, diatoms represented the highest proportion of algal cells (~48%) upstream (S1 

and S2) but decreased gradually from the midstream (~30%) to the lower reaches 
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(~20%). In contrast, the relative abundance of green algae increased from 

approximately 20% in upstream sites to 40% in downstream sites, while the relative 

abundance of cyanobacteria increased slightly from 15% upstream to 20% downstream. 

The other algae (Chrysophyta, Charophyta and Euglenophyta) varied slightly between 

sites (Figure  5.14a). 

The algal group assemblages in the July 2012 samples (Figure  5.14b) showed that 

the relative abundance of diatoms, green algae, and cyanobacteria were approximately 

35%, 30% and 25% respectively in the upstream sites (S1-S3). The relative abundances 

of diatoms and green algae were slightly lower in the midstream sites with both 

approximating 25%, whereas cyanobacteria and ‘other algae such as Chrysophyta’ 

increased slightly to 35% and 15% respectively. In the downstream sites in July the 

relative abundance of the diatoms slightly increased (~30%) while that of the 

cyanobacteria decreased (~20%). The other algae groups also increased slightly in 

relative abundances downstream, but they were not dominant in the MacKenzie system.  

The relative abundances of the algal groups again changed downstream 

seasonally, and in November 2012 (spring) (Figure  5.14c) diatoms were more abundant 

in the upstream sites while green algae and cyanobacteria were more abundant in 

downstream sites. The relative abundance of the cells of diatom, green algae, and 

cyanobacteria and other algae were 42%, 23%, 22% and 13% respectively in the 

upstream sites, changing to 25%, 30%, 25% and 20% respectively downstream. 

Together, the soft algal groups (especially filamentous and colonial algae) increased 

markedly in mid and downstream reaches in spring and summer whilst diatoms had a 

higher relative abundance in upstream sites in the same seasons. 

The results of the June 2013 sampling (Figure  5.14d) showed diatoms and 

cyanobacteria to be the most abundant algal groups in the upstream reaches of the 



136 
 

MacKenzie River, with diatom abundance decreasing downstream. The relative 

abundance of diatoms, green algae, cyanobacteria and other algae groups was 

approximately 35%, 24%, 26% and 15% respectively in the upstream sites whilst 

downstream their relative abundances were 30%, 35%, 18% and 17% respectively.  

      

 

    
 
Figure  5.14: Percent of total cells of the algal communities in the MacKenzie River: (a) 

February 2012;  (b) July 2012; (c) November 2012; (d) June 2013. (Station 10 was dry 

in February 2012). 
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5.3.4 Biological properties of algae under base flow (15 ML/day) 
The results of the analyses of biomass vary significantly between sampling sites and 

events. The dry mass and ash-free dry mass (AFDM) showed values varied downstream 

in February 2012. The value of dry mass in the upstream, midstream and downstream 

reaches in the February 2012 samples was 7mg.cm-2, 5mg.cm-2, and 4mg.cm-2 

respectively. The river was dry in February 2012 at the most downstream site (S10) and 

so dry mass samples could not be taken for S10 in February 2012 (Figure  5.15a)  

In July 2012, the accumulation of dry mass and AFDM also were the highest in 

the uppermost site (S1) but had sharply decreased by S2. At S3 the dry mass and ADFM 

results were higher than S2, but gradually deceased further towards the mid and lower 

parts of the river (Figure  5.15b). In contrast, there was a trend of dry mass and ADFM 

results decreasing with distance downstream in November 2012 (Figure  5.15c).  There 

was no clear trend for the dry mass and AFDM results in June 2013 (Figure  5.15d).  
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Figure  5.15:  The concentration of chlorophyll-a at each of the sampling stations along 

the MacKenzie River; (a) February 2012;  (b) July 2012; (c) November 2012; (d) June 

2013. Data indicate means ± SD. (Station 10 was dry in February 2012). 
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The upstream and downstream values for chlorophyll-a concentrations in February 

2012 ranged from approximately 90 mg.m-2 (highest value in S2) and 60 mg.m-2 (mid 

and lower of the river) with no real pattern evident (Figure  5.16a). The results from July 

2012 showed that chlorophyll-a concentration gradually decreased downstream. The 

highest chlorophyll-a concentration was greatest upstream with approximately 60 

mg.m-2 recorded at S1, with the concentration gradually decreasing through mid and 

downstream reaches correlated negatively with turbidity (Figure  5.16b).  In contrast, the 

concentration of chlorophyll-a increased markedly downstream in November 2012 

(Figure  5.16c), ranging from approximately 35 mg.m-2 in the upstream sites increasing 

to 80 mg.m-2. Overall, it seems the algal productivity is greater in spring, especially in 

the lower parts of the river. The chlorophyll-a concentrations for June 2013 (Figure 

 5.16d) showed an unusual pattern of gradual increases (S2 to S5; S6 to S10), with 

substantial drops at downstream sites (S1 to S2; S5 to S6). 
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Figure  5.16:  The concentration of chlorophyll-a at each of the sampling stations along 

the MacKenzie River; (a) February 2012;  (b) July 2012; (c) November 2012; (d) June 

2013. Data indicate means ± SD. (Station 10 was dry in February 2012). 
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5.4 Algal response under manipulated flow regimes (Freshes and high flow)  

Algae and water quality were monitored under different water release regimes to 

determine their response to river flow and so its effect on river health.  

Algal community structure was documented in terms of the major algal groups and then 

biological properties of the algal periphyton communities were measured before, during 

and after water release events (1 week before water release, 3 days during water release 

and three weeks after water release (3 times). 

 
 

5.4.1 Algal community structure before, during and after Freshes (35-40 ML/day) 

Algal species composition varied between sites under freshes (35-40 ML/day). The 

algal composition shifted downstream after water release events. Diatoms were the most 

abundant group (50% of cells) upstream (Site 1 and 2 in Reach 1) before the water 

release whilst green algae were most abundant downstream (55% of cells at Site 10 in 

Reach 3). The proportion of green algae and cyanobacteria tended to be greater 

downstream before the water release, whereas diatoms had lower relative abundance 

downstream (to 10% at site S10).  However, cyanobacteria and other algae were 

relatively more abundant (25% and 15% respectively) in some mid-stream sites (Reach 

2) (Figure  5.17a). 

There were substantial changes in algal communities during and after water 

release events. Diatom cell relative (40%) abundance increased during and after freshes, 

whilst green algae decreased (23%) downstream. In other words, the proportion of green 

algae during and after freshes were less abundant towards the downstream sites, 

therefore the algal taxonomic composition became more uniform across the reaches 

following a release event. For example, blooms of green algae, typical of base flow 

conditions in downstream reaches, were reduced by the freshes (Figure  5.17b-c).  
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Figure  5.17: Relative abundance of total cells of algae in sampling sites along the 

MacKenzie River; (a) before Freshes (15 ML/day); (b) during Freshes (35-40 ML/day); 

(c) after Freshes (15ML/day). 
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5.4.2 Algal community structure before, during and after high flow (55 ML/day) 

Diatoms were common in upstream sites (45%), while green algae (33%), cyanobacteria 

(12%) and chrysophyta (10%) were less abundant before high flow (Figure  5.18a). 

However this pattern in the algae community structure changed gradually downstream. 

In the midstream (Reach 2), the percentage of diatoms, green algae and cyanobacteria 

were similar. In contrast to the upstream sites green algae were more abundant from 

sites 7 to 10.  

Diatoms had higher relative abundances downstream (sites 5 to 10) during the 

high flow (approximately 40%) and after the high flow (approximately 35%). In 

contrast, green algae and cyanobacteria relative abundances decreased downstream 

(approximately 30% and 20% respectively). The results showed that high flows had a 

major influence on algae communities. The abundance of cyanobacteria and 

Chrysophyta increased from upstream to downstream during base flow and before high 

flow, whilst their composition was relatively uniform spatially during and after high 

flow. Overall the algal taxonomic composition became more uniform along the 

MacKenzie River during and after the high flow (Figure  5.18b-c).   
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Figure  5.18:  Relative abundance of cells of algae from sampling sites along the 

MacKenzie River; (a) before high flow (15 ML/day); (b) during high flow (55 

ML/day); (c) after high flow (15ML/day). 
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5.5 Diatom variations under manipulated flow regimes  
 

5.5.1 Diatom variations under Freshes (35-40 ML/day) 
The diatom species composition after freshes at upstream sites was different to those at 

downstream sites. The most common diatom taxa found at the upstream sites before 

freshes were Brevisira arentii, F.rhomboides, G. affine, N. radiosa, N. iridis, T. 

flocculosa whilst at downstream sites the common diatoms found were Encyonema 

minuta, Eunotia bigibba, E. serpentina, N. capitellata and S. delicatissima (Figure 

 5.19a).  

These community structures changed during and after Freshes. The most abundant 

diatoms in the upstream reach during and after the water release were Brachysira 

brebissonii, B. arentii, E. minor, G. affine, N. heimansioides, S. .exiguiformis and T. 

flocculosa whilst those sampled from the downstream reach were E. serpentina, N. 

capitellata, N. clausii, and S. curvula (Figure  5.19b-c).  
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Figure  5.19: Relative abundance of diatom taxa  along the MacKenzie River in 

December 2013; (a) before Freshes (15 ML/day); (b) during Freshes (35-40ML/day); 

(c) after Freshes (15ML/day). 
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5.5.2 Diatom variations under high flows (55 ML/day) 
The diatom species composition showed change along the river prior to the release of 

high flows (Figure  5.20a), with T. flocculosa, G. affine and N. radiosa being the most 

abundant species. F. rhomboides, M. arentii, N. iridis and N. dissipata were also 

relatively abundant in the upstream sites. Most of these species displayed a strong 

affinity for the upper half of the sites, with little or no representation in sites 6 to 10. 

The most common diatom species downstream were E. serpentina, T. fenestrata and, to 

a lesser extent, S. delicatissima (Figure  5.20a).  

Although T. flocculosa was again the most abundant species during and after the 

high flows (Figure 5.20b-c), the general distribution showed a far more evenly spread 

pattern.   In contrast, the diatom species composition during high flow and after were A. 

subexigua, E.sorex, Eunotia bilunaris, G. affine and G.gracile (Figure  5.20b-c). 
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Figure  5.20: Relative abundance of selected diatom taxa along the MacKenzie River in 

November 2014 (a) before high flows (15 ML/day); (b) during high flows (55 ML/day); 

(c) after high flows (15ML/day). 
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5.6 Algal biomass under manipulated flow regimes 

5.6.1 Algal biomass under Freshes (35-40 ML/day) 

The accumulation of dry mass, AFDM and chlorophyll-a concentration were measured 

before, during and after freshes. The accumulation of dry mass was typically greater in 

the downstream sites for each flow scenario and was always lower during and after 

freshes (35-40ML/day) (Figure  5.21a). These values were at their lowest midstream 

after water release events. The accumulation of AFDM also typically increased from 

upstream to downstream before, during and after freshes (Figure  5.21b). However, 

AFDM increased at all sites during and after freshes, a notable difference observed 

when compared with the dry mass results. 

Changes in chlorophyll-a concentration under freshes demonstrated a general 

increase from upstream to downstream. In other words, the concentration of 

chlorophyll-a increased from upstream to downstream before freshes whilst it decreased 

during freshes along the river. The concentration of chlorophyll-a increased slightly 

after freshes along the river (Figure  5.21c).  
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Figure  5.21: Accumulation of algal biomass before Freshes (15 ML/day), during 

Freshes (35-40ML/day) and after Freshes (15ML/day) at each of the sampling station 

along the MacKenzie River; (a) Dry mass; (b) AFDM; (c) Chlorophyll-a. Data indicate 

means ± SD. 
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5.6.2 Algal biomass under high flows (55 ML/day) 

Before the high flows (55ML/day) were released, dry mass generally increased from the 

upstream to the downstream sites with the highest value of dry mass (6.5 mg.cm-2) 

found at site 9; under the same conditions however, there was more fluctuation evident 

at midstream and downstream sites in the values of the dry mass. Dry mass decreased 

dramatically during high flows and partially recovered after the high flows (Figure 

 5.22a). Overall the accumulation of dry mass decreased during high flow conditions 

within the system.  

The accumulation of AFDM increased in upstream and midstream and subsequent 

decreased in downstream sites before high flows while during high flows the AFDM 

decreased at site 1, remained unchanged at sites 2 and 3 and increased at the other sites. 

After the high flows, AFDM values were almost the same as during high flows (Figure 

 5.22b).  

The chlorophyll-a concentration fluctuated downstream (before, during and after 

high flows); chlorophyll-a concentration increased before water release (high flows) but 

decreased substantially during high flows and then partially increased again afterwards 

but still did not reach the same concentrations as before the releases (Figure  5.22c).   
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Figure  5.22:  Accumulation of algal biomass before high flows (15 ML/day), during 

high flows (55ML/day) and after high flows (15ML/day) at each of the sampling station 

along the MacKenzie River; (a) Dry mass; (b) AFDM; (c) Chlorophyll-a. Data indicate 

means ± SD. 
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5.7 DSIAR  
The Diatom Species Index for Australian Rivers (DSIAR) was calculated to classify the 

condition of the waterway. The results showed sites S1 to S4 to be in good condition 

with a DSIAR score above 60 under all flow regimes. During baseflow conditions, sites 

S5 to S8 were in moderate condition with DSIAR scores between 41-60 and 

downstream sites ranged from moderate to poor condition (Table  5.4). The DSIAR 

scores varied more in Reaches 2 and 3 compared to those upstream (Reach 1). Overall 

the upstream sites had the highest scores (least impacted), with DSIAR scores 

decreasing downstream. The lowest site (S10) typically returned the lowest, or near 

lowest, DSIAR score.  However, during and after water release events (freshes and high 

flows) the DSIAR score increased downstream to scores reflective of good and 

moderate conditions, albeit temporarily (Table  5.4).  
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Table  5.8: The Results of modified Diatom Species Index for Australian Rivers 

(DSIAR) at sampling sites along the MacKenzie River in different flow regimes. The 

scores were used to classify the waterway as bad (0-20), poor (21-40), moderate (41-

60), good (61-80) and high (81-100). 

 

  

  

Reach 1 2 3 

         Site 
Date S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 

Base flow (10 ML/day) 28/02/12 78 75 71 68 56 49 49 48 35 - 

Base flow (15 ML/day) 17/07/12 77 72 72 66 58 48 42 48 42 38 

Base flow (15 ML/day) 9/11/12 78 65 76 68 59 48 43 47 49 41 

Base flow (15 ML/day) 25/05/13 75 72 75 67 55 49 45 49 47 48 

During freshes (35 ML/d) 21/10/13 82 78 78 66 65 65 61 62 65 62 

After freshes (15 ML/d) 25/10/13 81 75 79 69 66 65 61 63 66 65 

Before freshes (15 ML/d) 16/12/13 76 74 72 71 55 42 46 48 37 38 

During freshes (40 ML/d) 19/12/13 86 75 78 75 64 66 69 63 66 62 

After freshes (15 ML/d) 23/12/13 78 75 72 72 57 56 55 55 59 52 

After freshes (15 ML/d) 3/01/14 79 75 78 71 59 57 55 45 41 39 

After freshes (15 ML/d) 16/04/14 74 71 68 62 61 49 45 41 41 39 

Before high flow (15 ML/d) 29/10/14 71 72 73 74 55 42 46 48 37 38 

During high flow (55 ML/d) 1/11/14 82 75 78 75 71 68 69 65 66 67 

After high flow (15 ML/d) 08/11/14 78 75 72 72 67 66 65 61 59 52 

After high flow (15 ML/d) 22/11/14 79 75 68 68 59 57 55 65 45 37 
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5.8 Data analysis and interpretation 
The species and water quality data were transformed to reduce skewness and to, as far 

as possible, ensure normal distribution of the data sets. The untransformed species 

composition data do not meet an assumption of parametric (e.g. linear regression) 

statistical tests because they were distributed in an abnormal shape. Furthermore, the 

water quality data units were completely different (e.g. mg L-1, µS cm-1). Therefore, it 

was essential to transform data into a format of log or square-root to normalise them and 

make them comparable. Therefore, both water chemistry data and species data were log 

and/or square-root transformed before analysis.  

Pearson’s correlation matrix and constrained and unconstrained ordinations (PCA, 

CA, DCA, CCA and forward selection) were performed on data relating to water quality 

measurements, biological properties and species composition to evaluate the influence 

of the different flow regimes on algal communities.   

 

5.8.1 Pearson’s correlation 

The Pearson’s correlation matrix of the environmental data showed significant 

relationships (p < 0.05) between the water quality measures of pH, conductivity, total 

nitrogen, turbidity, phosphorus, and other characteristics under different flow regimes. 

The water quality measurements showed Wartook Reservoir, as an anthropogenic 

modification, may affect most physical and chemical characteristics of the river 

including water pH, electrical conductivity, turbidity and total suspended solids values 

along the river. This can be concluded from a comparison of base flow and water 

release events. The water quality characteristics were analysed to derive a Pearson’s 

correlation matrix under different flow regimes (Table  5.5).   

Generally, on the basis of high correlations between key variables, the lowland 

sites are deeper, more alkaline, and have higher concentrations of nutrients and salts. 
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Specifically, the statistical results showed that the flow regime has significant 

relationships with most of the water quality and biological characteristics including pH 

(r = 0.487), temperature (r= 0.455), conductivity (r = 0.318), turbidity (r = 0.586), ORP 

(r = 0.487), DO (r = 0.465), TDS (r = 0.702), TSS (r = 0.586), Mg (r = 0.528), silica (r 

= 0.416), TN (r = 0.488), TON (r = 0.425), TP (r = 0489), dry mass (r = 0.427) and 

chlorophyll-a (r = 0.356). Furthermore, the results showed that physical, chemical and 

biological characteristics correlated significantly with each other. For example, 

temperature and pH are highly correlated (r = 0.994) highlighting that warmer, lowland 

sites tend to be more alkaline (Table  5.5). 
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Table  5.9: Pearson’s correlation matrix of the water chemistry and biological properties in the MacKenzie River (*Significant correlation at the 0.05 level). 

(Temp. = temperature, Cond. = conductivity, Turb. = Turbidity, ORP= Oxidation Reduction potential, DO = Dissolved Oxygen, TDS= Total Dissolved Solid, 

TSS=Total Suspended Solid, TN= Total Nitrogen, Total phosphorus, TON= Total Oxidative Nitrogen, DM= Dry mass, AFDM= Ash-free dry mass, Chl-a = 

Chlorophyll-a

 Flow pH Temp Cond. Turb. Depth ORP DO TDS TSS Cl Mg Ca SO4 SiO2 TN NH3 TON TP DM AFDM Chl-a 

Flow 1                      

pH .487* 1                     

Temp .455* .994* 1                    

Cond. .318* .773* .733* 1                   

Turb .586* .460 .410 .829* 1                  

Depth .375 .793* .821* .370 -.096 1                 

ORP .659* .950* .936* .883* .625* .683* 1                

DO .465* .907* .940* .487 .165 .872* .822* 1               

TDS .702* .954* .933 .777* .552 .685* .961* .853* 1              

TSS .569* .393 .417 .628* .464 .199 .499* .279 .306 1             

Cl .322 .943* .927* .702* .436 .717* .851* .824* .880* .372 1            

Mg .528* .979* .981* .786* .536 .747* .970* .908* .961* .466 .913* 1           

Ca .318 .960* .947* .867* .603* .704* .945* .796* .897* .525 .924* .957* 1          

SO4 .315 .756* .781* .565 .125 .747* .683* .740* .584 .378 .657 .687* .715* 1         

SiO2 .416* .596* .602 .716* .810* .188 .734* .510 .659* .615 .574 .727* .686* .284 1        

TN .488* .713* .668* .823* .760* .191 .764* .483 .762* .448 .737* .716* .718* .442 .701* 1       

NH3 -.358 .452 .495 .001 -.481 .754* .306 .633* .325 .015 .344 .365 .303 .639* -.197 -.075 1      

TON .425* .357 .408 -.044 -.336 .708* .283 .584 .256 -.128 .286 .341 .281 .586 .044 -.187 .673* 1     

TP .489* .680* .680* .748* .511 .369 .642* .483 .531 .795 .716* .661* .764* .631 .537 .696* .148 -.105 1    

DM -.427* .667* .644* .432 .136 .554 .599 .622 .639* .066 .699* .599 .602 .600 .278 .531 .600 .495 .343 1   

AFDM .233 .808* .820* .498 .108 .772* .739* .837* .734* .267 .752* .766 .733* .783 .377 .474 .771 .630 .470 .908* 1  

Chl-a -.356* .802* .779* .509 .096 .772* .704* .741* .756* .045 .777* .702* .671* 748* .156 .567 .533 .425 .415 .676* .702* 1 
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5.8.2 Principal Component Analysis (PCA) 

Principal components analysis (PCA) is an indirect and unconstrained ordination 

technique which identifies the relationship between predictor and response variables. It 

allows for the identification of the principal directions (gradients) of the variations in 

the data in order to explore patterns in ecological datasets. Furthermore, PCA identifies 

relationships between environmental variables and species in a dataset. The PCA carried 

out for diatoms under base flow (10-15 ML/day) conditions showed that axis 1 

accounted for 23.9% of the variation in the dataset and axis 2 for 21.4% of the variation 

in the dataset (Table  5.6). From the data plot, perhaps as a result of antecedent rainfall, 

the diatom community changed in July 2012 while the February 2012, November 2012 

and June 2013 the species compositions were more similar. The projection of 

environmental variables showed that the most important variables that correlated with 

the species data were TP, turbidity, TSS, Si, TN and temperature. The PCA results 

showed that upstream species, such as F. rhomboidia, G. affine, N. radiosa and T. 

flocculosa were mostly associated with low temperature, low TP, high DO, and low pH 

while the downstream species, such as E. serpentina, P. abundans, R. brebissoni and S. 

elegans were mostly associated with high TN, turbidity, silica and TSS (Figure  5.23a). 

Furthermore, the results revealed TP and temperature correlated negatively with the first 

axis while turbidity, TSS and TN had a positive correlation with the second axis. 

 The PCA test performed on soft algae revealed that axis 1 accounted for 26.2% of 

the variation and axis 2 accounted for 10.0% of the variation in the data set. The 

eigenvalues of the PCA were 0.251 and 0.120 for axes 1and 2 respectively (Table  5.6). 

The results revealed that the most important variables influencing soft algae were 

turbidity, conductivity, TN, TDS, pH, DO and temperature. Moreover, data plots 

showed the ecological pattern of soft algae under base flow in different seasons and 
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showed that the abundance upstream species Closterium sp., D. sertularia, O. parva,  P. 

angulosum and P. lomnickii were positively correlated with DO and conductivity. 

Conversly, downstream species C. sportella, O. parva, P. angulosum, S. flagelliferum 

Lyngbya sp. and Schizothrix sp. were positively correlated with TDS, temperature and 

pH (Figure  5.23b). The results for species composition of soft algae in July 2012 under 

base flow (10- 15 ML/day) showed different patterns in comparison with other seasons.   
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Figure  5.23: Principal Correspondence Analysis (PCA) under 15 ML/day along the 

MacKenzie River: (a) Diatoms response; (b) Soft algae response. 
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The PCA analysis carried out before freshes, during freshes (35-40 ML/day) and after freshes 

revealed diatom species composition changes during freshes along the river. The eigenvalues 

of the PCA were 0.220 and 0.215, for axes 1and 2 respectively (Table  5.6). The PCA 

indicated that during and after freshes the upstream species, such as B. brebissonii, B. arentii, 

E.minor, G. affine, N. heimansioides, S. exiguiformis and T. flocculosa, were associated with 

high DO (Figure  5.24a). In contrast, downstream species, such as E. serpentina, N. 

capitellata, N. clausii, and S. curvula, were associated with high turbidity, TSS, conductivity, 

TN, Si, pH, and TDS (Figure  5.24a). The analysis revealed the variation was 22.0% for axis 1 

and 21.5% for axis 2. The results showed that the most important variables were TN, TDS, 

temperature, TSS, turbidity, pH and conductivity. Furthermore, the results revealed TP and 

temperature and DO had a negative correlation with turbidity, conductivity and TSS on the 

second axis. 

The eigenvalues of the soft algae were 0.188 and 0.142 for axes 1 and 2 respectively 

(Table  5.6). The analysis indicated the variation was 22.3% for axis 1 and 15.6% for axis 2. 

PCA explored the ecological relations between the soft algae and environmental variables 

under water release events (35-40 ML/day) and it revealed that species composition patterns 

change during freshes. The results showed that the most important variables influencing soft 

algae were TP, conductivity, pH, TSS and turbidity. The PCA results showed that upstream 

species such as S. opoliensis var. caudatus and S. elegans were associated with high DO, low 

TP and low TDS whilst downstream species (e.g. P. autumale, C. tumidulum and O. irrigua) 

had positive relationships with TSS, turbidity, pH, conductivity (Figure  5.24b). 
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Figure  5.24:  Principal Correspondence Analysis (PCA) under 35 ML/day along the 

MacKenzie River: (a) Diatoms response; (b) Soft algae response. 
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PCA was performed on data collected before high flows, during high flows (55 ML/day) and 

after high flows to illustrate the relationship between species and environmental variables. 

The results showed diatom species composition patterns were different before, during and 

after high flows. The analysis revealed that axis 1 explained 21.5% of the variation in the 

diatom data and axis 2 17.6%. The data visualisation showed that the most important 

variables were TP, pH, Si, TDS, TN and temperature. The PCA showed G. affine, F. 

rhomboides, N. heimansioides, N. radiosa and T. flocculosa were associated with high DO, 

low pH, and low TP while downstream species such as E. serpentina and S. delicatissima 

were associated with higher Si, TDS, turbidity and temperature (Figure  5.25a). The 

eigenvalues of the PCA were 0.215 and 0.176, for axes 1 and 2 respectively (Table  5.6). In 

addition, the results revealed DO had a negative correlation with temperature, TDS and 

turbidity. The analysis showed that soft algae also change under high flows where 

eigenvalues were 0.180 and 0.165, for axes 1 and 2 respectively (Table  5.6). PCA results 

showed species composition and biomass of soft algae were mostly associated with TSS, 

turbidity, pH, and conductivity under high flows (Figure  5.25b). 
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Figure  5.25:  Principal Correspondence Analysis (PCA) under 55 ML/day along the 

MacKenzie River: (a) Diatoms response; (b) Soft algae response. 
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The PCA analysis carried out on the diatom data set under all flow regimes (different flow 

regimes in different seasons) revealed diatom species composition changes along the river 

mostly in association with turbidity, TSS, pH, Si and conductivity. The eigenvalues of the 

PCA were 0.162 and 0.117, for axes 1and 2 respectively (Table  5.6). The PCA revealed 

species such as B. brebissonii, E.minor, G. affine, N. heimansioides, S. exiguiformis and T. 

flocculosa were associated with low pH, temperature, and conductivity but high DO, whilst 

downstream species such as E.  serpentina, N. capitellata, N. clausii, and S. curvula were 

associated with high turbidity, TSS, TN, and TDS (Figure  5.26a). The analysis revealed 

16.2% of variation for axis 1 and 11.7% of variation for axis 2 (Table  5.6). 

The PCA performed on the data set of soft algae under all flow regimes (different flow 

regimes in different seasons) revealed soft algae changes along the river were mostly 

associated with turbidity, TSS, TN and TP. The analysis indicated 14.8.3% of variation for 

axis 1 and 13.1% of variation for axis 2. The PCA results showed that upstream species such 

as S. acuminatus, Euastrum sp. and S. armatus were associated with high DO, and low TP 

and TDS, whilst downstream species A. flos-aquae, M. subclavatum, O. pusila were 

associated with high TSS, turbidity, pH, and conductivity (Figure  5.26b). The eigenvalues of 

the soft algae were 0.148 and 0.131 for axes 1 and 2 respectively (Table  5.6). 
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Figure  5.26: Principal Correspondence Analysis (PCA) altogether in different seasons under 
baseline flows and under different treatment flow regimes along the MacKenzie River:  (a) 
Diatoms response; (b) Soft algae response.  
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Table  5.10: Comparison of PCA eigenvalues and cumulative percentage variance under different 

flow regimes 

 
 
 

 Diatoms Soft algae 

Axis 1  Axis 2 Axis1  Axis 2 

10-15 ML/d Eigenvalues 0.239 0.214 0.251 0.120 

Cumulative % variance 23.9 21.4 26.2 10.0 

35-40 ML/d Eigenvalues 0.220 0.215 0.188 0.142 

Cumulative % variance 22.0 21.5 22.3 15.6 

55 ML/d Eigenvalues 0.215 0.176 0.180 0.165 

Cumulative % variance 22.7 20.0 25.5 9.2 

altogether Eigenvalues 0.162 0.117 0.148 0.131 

Cumulative % variance 16.2 11.7 14.8 13.1 
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5.8.3 Correspondence Analysis (CA) and Detrended Correspondence Analysis (DCA) 

In order to reveal associations between species and samples, correspondence analysis (CA) 

was carried out on data set. The CA was applied using transformed data to find the 

association of the algal community structure under different flow regimes. The CA test 

revealed the non-linearity of species within the unconstrained condition. Exploration of the 

diatom and soft algae assemblage data used the computationally simple, unconstrained 

ordination technique of CA. Nonetheless, the CA sometimes suffers from two problems 

including the arch effect and edge effect (compression of the gradient ends) due to unimodal 

species response curves. The DCA was also used to determine the gradient length and 

identify patterns of species and samples. Furthermore, the DCA reveals the nature of the 

diatom and soft algae species composition variation between flows and also between seasons.  

The CA test carried out for diatom species collected under 10-15 ML/day found that 

there were two strong gradients in the datasets, with both axes 1 and 2 explaining a large 

portion of the variance in the diatom and algal community data.  In the diatom data there was 

a clear split between the assemblages observed during water releases and those observed at 

10-15 ML/day. The CA of diatom species accounted for 24.1% of the species variation on 

axis 1 while 19.6% of the variation was accounted for on axis 2 (Figure  5.27a). The 

eigenvalues of the CA were 0.163 and 0.132, for axes 1 and 2 respectively (Table  5.7). The 

DCA was displayed under base flow (10-15 ML/day) and showed the gradient length to 

exceed 2 and that eigenvalues were 0.163 and 0.111 for axes1 and 2 respectively (Table  5.8). 

The results revealed 24.1% of the variance was explained by axis 1 and 16.5 % by axis 2 

(Figure  5.27b). The data analyses revealed the results of indirect gradient analysis (CA) and 

direct gradient analysis (DCA) were almost the same. The results indicated the diatom 

species assemblages in July 2012 were in contrast to those sampled in other seasons.  
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At the same time, the CA test was carried out on soft algae data and this revealed the 

split in the diatom assemblage data is not reflected in the soft algae data, where far more 

scatter in the data is evident (this may be due to lower counts in this dataset). The results 

revealed 21.4% of the variance was explained by axis 1 and 13.2% by axis 2 (Figure  5.28a). 

The eigenvalues of the CA were 0.103 and 0.079, for axes 1 and 2 respectively (Table 

 5.7).The data plot of this CA revealed an arch effect for June 2013 (Figure  5.28a) and so  

detrended correspondence analysis (DCA) was applied. The DCA results for soft algae 

showed that soft algae assemblages varied between seasons in the MacKenzie River. The 

results also showed that the species assemblage in July 2012 was different to that from other 

seasons (Figure  5.28b). The results revealed 21.4% of the variance was explained by axis 1 

and 11.0% by axis 2 (Figure  5.28b). The eigenvalues of the DCA were 0.103 and 0.075, for 

axes 1 and 2 respectively (Table  5.8). 
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Figure  5.27:  (a) Correspondence Analysis (CA) of diatoms under 10-15 ML/day along the MacKenzie River; (b) Detrended Correspondence 

Analysis (DCA) of diatoms under 10-15 ML/day along the MacKenzie River: February 2012 (brown circle), July 2012 (blue diamond), 

November 2012 (green box), and June 2013 (red triangle) 



173 
 

 

 

 
Figure  5.28: (a) Correspondence Analysis (CA) of soft algae under 10-15 ML/day 

along the MacKenzie River; (b) Detrended Correspondence Analysis (DCA) of soft 

algae under 10-15 ML/day along the MacKenzie River: February 2012 (brown circle), 

July 2012 (blue diamond), November 2012 (green box), and June 2013 (red triangle) 
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The CA test was also performed on diatom samples before, during (35-40 ML/day) and 

after fresh releases. The diatom results showed 22.3% of variation was explained by 

axis 1 and 19.9% by axis 2. The eigenvalues of the CA were 0.143 and 0.128, for axes 1 

and 2 respectively (Figure  5.29a; Table  5.7). At the same time, the DCA results for 

freshes (35-40 ML/day) showed the diatom species assemblages are different during 

water release events from Wartook Reservoir into the MacKenzie River. The 

eigenvalues were 0.143 and 0.120 for axes 1 and 2 respectively (Table  5.8). The DCA 

of diatom species showed that axis 1 accounted for 22.3% of the variation and 18.6% 

for axis 2 respectively (Figure  5.29b). The results of indirect gradient analysis (CA) and 

direct gradient analysis (DCA) were similar. 

 The CA test was also carried out on soft algae samples before, during (35-40 

ML/day) and after the release of freshes. The soft algae result showed 20.5% of 

variation was explained by axis 1 and 14.0% by axis 2 (Figure  5.30a). The eigenvalues 

of CA for axes 1 and 2 were 0.140 and 0.095 respectively (Table  5.7). The DCA of soft 

algae species showed that axis 1 accounted for 20.5% of the variation and 10.5% for 

axis 2 respectively (Figure  5.30b; Table  5.8). The arch artefact was observed in the CA 

of soft algae which was eliminated by analysis using DCA (Figure  5.30a-b).  
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Figure  5.29: (a) Correspondence Analysis (CA) of diatoms under 35-40 ML/day along 

the MacKenzie River; (b) Detrended Correspondence Analysis (DCA) of diatoms under 

35-40 ML/day along the MacKenzie River: Before Freshes (brown circle), during 

Freshes (blue diamond) and after Freshes (green box) 
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Figure  5.30: (a) Correspondence Analysis (CA) of soft algae under 35-40 ML/day 

along the MacKenzie River; (b) Detrended Correspondence Analysis (DCA) of soft 

algae under 35-40 ML/day along the MacKenzie River: Before Freshes (brown circle), 

during Freshes (blue diamond) and after Freshes (green box) 
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The CA of the diatom samples collected before, during (55 ML/day) and after high 

flows showed axis 1 explaining 22.5% of the variation, whilst axis 2 explained 18.9% 

(Figure  5.31a). The eigenvalues of the CA for axes 1 and 2 were 0.180 and 0.152 

respectively (Table  5.7). Simultaneously, the DCA carried out on diatom species data 

from before, during (55 ML/day) and after high flows showed that axis 1 accounted for 

22.5% of the variation and axis 2 10.3% (Figure  5.31b, Table  5.8). 

The CA of the soft algae samples indicated that axis 1 explained 22.3% of the 

variation whilst axis 2 explained 19.9% (Figure  5.32a). The DCA result from the 55 

ML/day flow showed again that the diatom species assemblage and soft algae 

community differed between before, during and after high flows. The soft algae result 

showed that axis 1 explained 20.3% of the variation and axis 2 10.4%. The eigenvalues 

of DCA for axes 1 and 2 were 0.143 and 0.073 respectively (Figure  5.32b). The arch 

effect was also observed in the CA of the soft algae and this was eliminated by 

detrending (in the DCA) (Figure  5.32a-b, Table  5.8).  
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Figure  5.31:  (a) Correspondence Analysis (CA) of diatoms under 55 ML/day along the 

MacKenzie River; (b) Detrended Correspondence Analysis (DCA) of diatoms under 55 

ML/day along the MacKenzie River: Before high flows (brown circle), during high 

flows (blue diamond) and after high flows (green box) 
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Figure  5.32:  (a) Correspondence Analysis (CA) of soft algae under 55 ML/day along 

the MacKenzie River; (b) Detrended Correspondence Analysis (DCA) of soft algae 

under 55 ML/day along the MacKenzie River: Before high flows (brown circle), during 

high flows (blue diamond) and after high flows (green box) 
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The CA test also was carried out on diatom species under all flows across different 

seasons. The results of all flows indicated strong gradients in the datasets, with both 

axes 1 and 2 explaining a large portion of the variance in the diatom communities. The 

analysis revealed that 14.2% of variation for axis 1 and 12.1% of variation for axis 2 

(Figure  5.33a). The eigenvalues for axes 1 and 2 were 0.109 and 0.093 respectively 

(Table  5.7). Meantime, the DCA result of all flows revealed 14.2% of variation was 

explained by axis 1 and 11.8% by axis 2 (Figure  5.33b; Table  5.8). 

The CA test was also applied to data of soft algae species under all flows across 

different seasons with axis 1 explaining 14.2% of the variation and axis 2 10.8% (Figure 

 5.34a; Table  5.7). The arch effect was observed and so a DCA was applied. The results 

of the DCA showed that 14.2% of the variation was explained by axis 1 and 8.1% by 

axis 2 (Figure  5.34b). The eigenvalues for axes 1 and 2 were 0.106 and 0.060 

respectively (Table  5.8). The DCA results indicate that there is a strong unimodal 

response of species to flow regime. In other words, the DCA test suggests that 

Canonical correspondence analysis (CCA) would be an appropriate means for exploring 

the relations between the species and environmental data sets. 
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Figure  5.33: (a) Correspondence Analysis (CA) of diatoms altogether in different seasons under baseline flows and under different treatment 

flow regimes along the MacKenzie River; (b) Detrended Correspondence Analysis (DCA) of diatoms altogether in different seasons under 

baseline flows and under different treatment flow regimes along the MacKenzie River. February 2012 (brown circle), July 2012 (blue diamond), 

November 2012 (green box), and June 2013 (red up-triangle), before Freshes (yellow square), during Freshes (pink left-triangle), after Freshes 

(green right-triangle), before high flow (yellow down-triangle), during high flow (cross) and after high flow (brown star) 
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Figure  5.34:  (a) Correspondence Analysis (CA) of soft algae altogether in different seasons under baseline flows and under different treatment 

flow regimes along the MacKenzie River; (b) Detrended Correspondence Analysis (DCA) of soft algae altogether in different seasons under 

baseline flows and under different treatment flow regimes along the MacKenzie River. February 2012 (brown circle), July 2012 (blue diamond), 

November 2012 (green box), and June 2013 (red up-triangle), before Freshes (yellow square), during Freshes (pink left-triangle), after Freshes 

(green right-triangle), before high flow (yellow down-triangle), during high flow (cross) and after high flow (brown star) 
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Table  5.11: Comparison of CA eigenvalues and cumulative percentage variance under different 

flow regimes 

 

 

 

 
 
 
 
 
 
 
 
 

 

 

 

 

Table  5.12: Comparison of DCA eigenvalues and cumulative percentage variance under 

different flow regimes 

 

 

 

 

 

 

 

  

 Diatoms Soft algae 

Axis 1  Axis 2 Axis1  Axis 2 

10-15 ML/d Eigenvalues 0.163  0.132 0.103  0.079 

Cumulative % variance 24.1 19.6 21.4 13.2 

35-40 ML/d Eigenvalues 0.143  0.128 0.140  0.095 

Cumulative % variance 22.3 19.9 20.5 14.0 

55 ML/d Eigenvalues 0.180  0.152  0.143  0.100 

Cumulative % variance 22.5 18.9 22.3 19.9 

altogether Eigenvalues 0.109 0.093 0106 0.081 

Cumulative % variance 14.2 12.1 14.2 10.8 

 Diatoms Soft algae 

Axis 1  Axis 2 Axis1  Axis 2 

10-15 ML/d Eigenvalues 0.163  0.111 0.103  0.075 

Cumulative % variance 24.1 16.5 24.1 11.0 

35-40 ML/d Eigenvalues  0.143  0.120  0.140  0.071 

Cumulative % variance 22.3 18.6 20.5 10.5 

55 ML/d Eigenvalues 0.180  0.083 0.143  0.073 

Cumulative % variance 22.5 10.3 20.3 10.4 

altogether Eigenvalues  0.109  0.091 0.106  0.060 

Cumulative % variance 14.2 11.8 14.2 8.1 
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5.8.4 Cononical Correspondence Analysis (CCA) 

Canonical Correspondence Analysis (CCA) was used to determine the direct relationship 

between diatom and soft algae communities and the environmental variables. CCA is a 

constrained ordination which uses a priori hypotheses (in contrast with unconstrained tests 

which do not use a priori hypotheses). The CCA analyses were applied to determine the most 

important variables influencing the diatom and soft algae communities under different 

seasons and under different flows along the MacKenzie River. Furthermore, the CCA 

analyses were performed to examine how algal species respond to a range of variables under 

different flows. The environmental variables applied to the CCA analyses included pH, 

conductivity, turbidity, temperature, dissolved oxygen, total suspended solid, dissolved solid, 

total nitrogen, and total phosphorus under different flow regimes. 

Due to potential co-variation between variables, the number of explanatory variables 

was restricted using a forward-selection process and Bonferroni-adjustment test. The forward 

selection option is used to identify the significant environmental variables. The iteration of 

forward selection chooses the variables that explain the greatest variation. To restrict the 

number of explanatory variables a Bonferroni-adjustment was applied to the forward-

selection process, where the p-value is divided by the number of variables included (e.g. the 

first significant variable must have a p-value of <0.05 (0.05/1); the second significant 

variable must have a p-value of <0.025 (0.05/2) for it to be significant).  

The CCA analyses of diatom and soft algae data under base flow (10-15 ML/day) 

showed that species assemblages were different under different flow regimes. In July 2012 

the most influential environmental factors were TP, TDS and DO while the most influential 

factors in February 2012, November2012 and June 2013 were conductivity, TSS, turbidity, 

silica, total nitrogen and temperature (Figure  5.35a). The eigenvalues for axes 1 and 2 were 

0.134 and 0.115 respectively (Table  5.9). The significant environmental variables, including 
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TP, TN, temperature and TDS, were recognised using manual forward selection. After 

forward selection, the eigenvalues derived from the CCA were 0.113 and 0.104 for axes1 and 

2 respectively (Figure  5.35b; Table  5.10).  

The CCA carried out on soft algae revealed the percentage variance of the species-

environment relationship explained was 9.4% and 7.2% for axes1 and 2 respectively (Figure 

 5.36a; Table  5.9). As mentioned earlier several environmental variables were used to 

understand the relationship between species composition and environmental variables. Under 

15 ML/day the significant environmental variables for soft algal distributions and abundances 

were turbidity, DO, TP and TN (Figure  5.36b; Table  5.10). 



186 
 

            

Figure  5.35: Cononical Correspondence Analysis (CCA) of diatoms under 15 ML/day along the MacKenzie River: (a) with all environment 
variables; (b) significant (p < 0.05) variables after forward selection. February 2012 (brown circle), July 2012 (blue diamond), November 2012 
(green box), and June 2013 (red triangle) 
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Figure  5.36: Cononical Correspondence Analysis (CCA) of soft algae under 15 ML/day along the MacKenzie River: (a) with all environment 

variables; (b) significant (p < 0.05) variables after forward selection. February 2012 (brown circle), July 2012 (blue diamond), November 2012 

(green box), and June 2013 (red triangle) 
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CCA was performed on diatom species and environmental variable data associated with the 

35-40 ML/day flow and the eigenvalues derived from the CCA were 0.121 and 0.105% for 

axes1 and 2 respectively (Table  5.9). The CCA results showed that pH, TP, TDS, turbidity, 

temperature and DO were the most significant environmental variables influencing diatom 

assemblages across seasons and sites. The percentage variance of the species-environment 

relationship explained were 17.5% in axis 1 and 15.5% by axis 2 (Figure  5.37). Conductivity, 

pH, TDS and TN were significant in the analysis. CCA carried out on soft algae revealed pH, 

conductivity, turbidity, TDS and TN were significant environmental variables in Freshes (35 

ML/day) (Figure  5.38; Table  5.10).  
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 Figure  5.37:  Cononical Correspondence Analysis (CCA) of diatoms under 35 ML/day along the MacKenzie River: (a) with all environment 

variables; (b) significant (p < 0.05) variables after forward selection. Before Freshes (brown circle), during Freshes (blue diamond) and after 

Freshes (green box) 
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Figure  5.38: Cononical Correspondence Analysis (CCA) of soft algae under 35 ML/day along the MacKenzie River: (a) with all environment 

variables; (b) significant (p < 0.05) variables after forward selection. Before Freshes (brown circle), during Freshes (blue diamond) and after 

Freshes (green box) 
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CCA analyses were applied to diatom and environmental data under high flows (55 ML/day).  

Five environmental variables (silica, conductivity, pH and TDS and turbidity) were found to 

correlate significantly (after forward selection) with the diatom data; 11.3% of the species-

environment interactions was accounted for by axis 1 and 10.6% by axis 2 (Figure  5.39). 

Three significant variables (TP, pH and conductivity) were identified in the soft algae CCA, 

with axis 1 accounting for 11.9% of the variance and axis 2 7.6% (Figure Figure  5.40).  

The CCA was applied using forward-selection to determine the most influential 

variables, environmental drivers of flow water chemistry and biological properties for all 

flows. Water chemistry had a significant influence on the diatom communities along the 

MacKenzie River under these circumstances. The CCA results showed that the diatom 

assemblage pattern was different during high flow compared with all the other flow 

scenarios. Diatom assemblages were associated with TDS and turbidity, parallel with axis 1 

(9.9%), and pH and TP, temperature and DO parallel with axis 2 (6.8%) (Figure  5.41). The 

soft algae also were evaluated under all flows conditions and their responses to 

environmental variables analysed (Figure  5.42). This accounted for 8.5 % of the species-

environment interactions on axis 1 and 3.0% on axis 2 (Table  5.10). The results highlight that 

nutrient availability is the major driver in soft algal assemblages in the MacKenzie River.  
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Figure  5.39: Cononical Correspondence Analysis (CCA) of diatoms under 55 ML/day along the MacKenzie River: (a) with all environment 

variables; (b) significant (p < 0.05) variables after forward selection. Before high flows (brown circle), during high flows (blue diamond) and 

after high flows (green box) 
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Figure  5.40: Cononical Correspondence Analysis (CCA) of soft algae under 55 ML/day along the MacKenzie River: (a) with all environment 

variables; (b) significant (p < 0.05) variables after forward selection. Before high flows (brown circle), during high flows (blue diamond) and 

after high flows (green box) 
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Figure  5.41: Cononical Correspondence Analysis (CCA) of diatoms altogether in different seasons under baseline flows and under different 

treatment flow regimes along the MacKenzie River: (a) with all environment variables; (b) significant (p < 0.05) variables after forward 

selection..  February 2012 (brown circle), July 2012 (blue diamond), November 2012 (green box), and June 2013 (red up-triangle), before 

freshes (yellow square), during freshes (pink left-triangle), after freshes (right-triangle), before high flow (yellow down-triangle), during high 

flow (cross) and after high flow (star). 
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Figure  5.42: Cononical Correspondence Analysis (CCA) of soft algae altogether in different seasons under baseline flows and under different 

treatment flow regimes along the MacKenzie River: (a) with all environment variables; (b) significant (p < 0.05) variables after forward 

selection.  February 2012 (brown circle), July 2012 (blue diamond), November 2012 (green box), and June 2013 (red up-triangle), before freshes 

(yellow square), during freshes (pink left-triangle), after freshes (right-triangle), before high flow (yellow down-triangle), during high flow 

(cross) and after high flow (star)
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Table  5.13: Comparison of CCA eigenvalues and cumulative percentage variance under 

different flow regimes 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Table  5.14: Comparison of CCA (after forward selection) in eigenvalues and cumulative 

percentage variance under different flow regimes 

 Diatoms Soft algae 

Axis 1  Axis 2 Axis1  Axis 2 

10-15 ML/d Eigenvalues 0.134  0.115  0.068  0.052 

Cumulative % variance 19.8 17.0 12.2 9.2 

35-40 ML/d Eigenvalues 0.121 0.105  0.082  0.060 

Cumulative % variance 19.1 16.0 12.5 10.1 

55 ML/d Eigenvalues  0.114  0.095  0.075  0.061 

Cumulative % variance 14.2 11.9 13.1 8.7 

altogether Eigenvalues 0.109 0.092 0.075 0.063 

Cumulative % variance 10.5 7.4 8.9 5.2 

 Diatoms Soft algae 

Axis 1  Axis 2 Axis1  Axis 2 

10-15 ML/d Eigenvalues 0.113   0.104 0.062   0.049 

Cumulative % variance 18.8 16.2 9.4 7.2 

35-40 ML/d Eigenvalues 0.113  0.097  0.080  0.043 

Cumulative % variance 17.5 15.5 11.9 8.8 

55 ML/d Eigenvalues 0.084  0.082  0.062  0.049 

Cumulative % variance 11.3 10.6 11.9 7.6 

altogether Eigenvalues 0.076  0.053 0.046  0.029 

Cumulative % variance 9.9 6.8 8.5 3.0 
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Chapter 6: Discussion and synthesis of results 

 

 

 

Chapter outline 

In this chapter the interactions between the flow in the MacKenzie River and its water 

quality are discussed. These are used to describe and account for the response of the 

stream ecosystem focussing on algae as a principal indicator of stream condition. 

Observations of the relationships between the physical, chemical and biological 

characteristics of the MacKenzie River are then compared with observations in 

comparable systems to determine the degree to which the MacKenzie River responds in 

a similar fashion to other regulated streams. This evidence is then used to produce 

generalised observations of stream response to flow releases in order to generate 

guidelines for future water release operations in the MacKenzie River. The 

contributions of this study to a broader understanding of the nature and benefits of 

consumptive flow releases for environmental benefit are then discussed. 

 

6.1 How does the MacKenzie River interaction under conditions of base flow (10-

15 ML/day) in different seasons?  

Owing the seasonal nature of rainfall in the Grampians region the MacKenzie River is 

subject to extended periods of low flow. While this has always been so, the highly 

regulated nature of the system has likely extended these phases, and has impacted on the 

stream condition through these base flow conditions. In this section, the relationships 
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between flow, water quality and algal community structure and general ecosystem 

function are described and discussed under typical base flows (e.g. 10-15 ML/day). 

 

6.1.1 Physicochemical factors and nutrient flux under base flow 

The pH of the MacKenzie River increases with distance downstream transitioning from 

slightly acid conditions upstream to alkaline in the lower reaches. The low pH 

conditions in the upper MacKenzie River coincide with lower turbidity and so greater 

light transparency which contributes to photosynthetic production by benthic algae. The 

pH can also impact on nutrient bioavailability and dynamics (uptake /release / 

transformations). For example, Wu et al. (2014) found the release of phosphorus 

decreased due to low pH in Lake Xuanwu (China). Therefore, it can be anticipated the 

release of phosphorus from sediment in the upstream of the MacKenzie River is likely 

lower due to low pH. 

The temperature and dissolved oxygen of water in the MacKenzie River change 

spatially and temporally. The results of the present study also show that when 

temperature increases, the concentration of dissolved oxygen (DO) decreases which is 

consistent with the decreasing capacity of warmer water to hold oxygen (Hunt and 

Christiansen 2000, Allan and Castillo 2007). At the same time, electrical conductivity 

(EC) increases due to the greater dissolved mineral content entering the system. The 

temperature interacts with other water chemistry factors to affect the rate of 

photosynthesis and respiration down the MacKenzie River. 

Turbidity, total suspended solids (TSS), cations and anions also increased with 

distance downstream along the MacKenzie River, particularly downstream of points of 

sediment input and water abstraction in reach 2 and 3, a result presented by the Victoria 

EPA (2003b) and corroborated here. The range of turbidity, TSS, cations and anions 
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were less in the MacKenzie River in comparison with the Wimmera and Glenelg Rivers 

(Anderson and Morison 1989, Chee et al. 2009, Alluvium 2013, VEWH 2015, WCMA 

2015) as the MacKenzie River sits higher in the catchment.  

The concentrations of nutrients increase with distance downstream due to 

agricultural activities and land use which contribute to increases in the concentration of 

nitrogen and phosphorus in the MacKenzie River.  Land use from Zumsteins, and 

wastes from stock, which range across much of the catchment, are the likely source of 

nutrients in the middle and lower reaches of the river. Nutrients (nitrogen and 

phosphorus) and light are the main resources to promote algal productivity in the river. 

These nutrient changes have an influence on the condition of the MacKenzie River. The 

physical and chemical parameters (e.g. turbidity, temperature, TSS, dissolved organic 

matter) increase with distance from the Wartook Reservoir. Conversely, some other 

factors (e.g. gradient, mean particle size and dissolved oxygen) decline downstream 

(Figure  6.1) 
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Figure  6.2: The changes of the physical and chemical characteristics of the MacKenzie 
River. 

 

The physical and chemical characteristics of the river are controllers for algal 

community structure and function. In fact biological structure, ecological processes and 

ecosystem function and metabolism can change due to flow patterns, water quality and 

climatic variability in Australian rivers and globally. The results presented here for the 

MacKenzie River results show some similarities and dissimilarities to the conclusions 

of Boulton et al. (2014) and the River Continuum Concept (Vannote et al. 1980). For 

example, the DO dramatically decreases in the middle of the river and increases slightly 

downstream (see Chapter 5; Figure 5.5d), the water velocity is stagnant in the middle of 

the river whilst the River Continuum Concept suggests that average velocity increases 

in downstream of rivers. These changes can appear naturally or as a consequence of 

anthropogenic modification of lotic systems due to water abstractions, diversions and 
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evaporations. As aforementioned the DO dramatically decreased in the middle reaches 

due to bacterial activity, high turbidity and standing water. However, the DO slightly 

increased downstream because of increasing flow velocity and photosynthesis of aquatic 

plants and algae. It is, therefore, reasonable to conclude that the community metabolism 

of the river declines, presumably due to imbalance between photosynthesis and 

respiration, in the middle and lower reaches (Table 6.1). 

The results of this study were compared with the study of Anderson and Morison 

(1989) on the Wimmera River which revealed that most physicochemical parameters 

had increased in the catchment over the last two decades. Nevertheless, the 

concentration of measured dissolved ions did not exceed the limits defined in ANZECC 

and ARMCANZ (2000) for any reach. This study conforms with other published reports 

(e.g. Alluvium (2013)) that reveal the water quality and stream condition of the 

MacKenzie River are influenced by flow modifications (e.g. construction of Wartook 

Reservoir in 1887, human settlement in Zumsteins and lower reaches of the river, water 

diversion to the Mt Zero Channel,  water storages and water plant treatment). In general, 

water quality varies in riverine ecosystems (spatially and temporally) and these changes 

can provide good evidence to assist in understanding the effects of human impacts and 

modifications (Heathwaite 2010). To summarise, the physical and chemical components 

of the environment interact with each other in the river. Flow regimes and 

physicochemical features are primary drivers which govern and maintain the biological 

patterns and structure of the river, and this is discussed further below.  
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Table  6.1: Water quality changes along the MacKenzie River under base flow based on 

water quality claffification of ANZECC and ARMCANZ (2000) 

Site Condition 

S1 Good 

S2 Good 

S3 Good 

S4 Good 

S5 Moderate 

S6 Moderate 

S7 Moderate 

S8 Moderate 

S9 Poor 

S10 Poor 

 

 

 

 6.1.2 Algal response under base flow 

Algae are abundant and widespread in their distribution and have a broad range of 

structural and functional attributes (Burns and Ryder 2001, Victoria EPA 2003a). 

Furthermore, algal colonisation and structure are known to be highly responsive to 

shifts in water quality and flow variation (Ryder et al. 2006, Robson et al. 2008, Chester 

and Robson 2014). Here, biofilm assemblages and algal indicators such as chlorophyll-a 

have been used to understand the in-stream ecological and water quality response to 

flows in the MacKenzie River.  
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6.1.2.1 Algal species composition and DSIAR under base flow 

The responses of algae to water chemistry have been long established (Stevenson 2014). 

For instance, Hustedt (1937) examined diatoms of Bali, Java and Sumatra in Indonesia 

and classified them into five groups based on their response to pH. Likewise, ter Braak 

and van Dame (1989) inferred the range of pH from diatoms in some European rivers. 

Winterbourn et al. (1992) reported acidic species (e.g. Eunotia sp.) as common and 

dominant taxa in some British streams. This has been observed widely in Australia as 

well (Philibert et al. 2006). The pH range provides thresholds for various diatom species 

and so shifts from a T. flocculosa dominated assemblage to samples dominated by 

circumneutral to alkaliphilous taxa (e.g. C. cistula) is expected. The results from the 

present study also showed similar evidence in term of acidophilous species in the lower 

pH waters in the upstream sections of the MacKenzie River under base flows (see 

Chapter 5).   

Increased levels of turbidity and TSS will have adverse effects on primary 

productivity of benthic algae and metabolism of the fluvial community and ecosystem 

function due to their contribution as an inhibitor for light capturing by benthic algae.  

According to Watts et al. (2009b), a high diversity of algal periphyton species (biofilms) 

is an indicator of good river health. In other words, river health improves with 

increasing algal periphyton diversity in rivers, particularly epiphytic species (Guo et al. 

2016a, Poikane et al. 2016). For the MacKenzie River, ecosystem health was examined 

by relating algal species composition to flow regime. The base flow results revealed 

middle and downstream reaches have low algal diversity despite a high incidence of 

algal blooms. Watts et al. (2009b) found similar evidence in the Mitta Mitta River for 

increasing incidence of algal blooms downstream under constant base flows. Flows 
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monitored as part of this study seemed to be insufficient to prevent or reduce algal 

blooming (mostly of green algae and cyanobacteria) in the lower parts of the river.  

The PCA results (Chapter 5; Figure 5.29; Table 5.9) showed the upstream species 

are more associated with the concentration of dissolved oxygen in comparison with 

downstream species under base flow. Furthermore, the CCA results showed that 

temperature has an influence on the diatom community whilst the DO is less important 

for soft algae.  

According to Bond et al. (2012), one of the main requirements for river health is 

the stream’s ability to retain its biodiversity and ecological integrity. The current results 

reveal the upstream reaches of the MacKenzie River to have a higher diversity of 

diatoms and fewer blooms of filamentous green algae and cyanobacteria, and so can be 

considered to be in good condition.  

The DSIAR results show the upstream reaches have the highest scores (least 

impacted), with DSIAR scores decreasing downstream. The calculated DSIAR shows 

more variation in the downstream reaches (Reaches 2 and 3) compared to upstream 

(Reach 1). Therefore, it is reasonable to conclude that stream condition declines along 

the river due to the ephemeral nature of the river and human modification. Indeed, 

during dry seasons, the health and condition of the river shifts from moderate to poor in 

the lowermost parts of the river. Overall, the middle and downstream reaches are under 

stress because of the low discharge and poorer quality of the water under base flow. The 

river does not retain its biodiversity under low flow whilst it does recover it under 

freshes.   
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6.1.2.2 Biological properties and river productivity under base flow  

The CCA results show that certain environmental variables (e.g. turbidity, low 

concentration of nutrients) have impacts on algal biomass and primary production in the 

lower parts of the MacKenzie River. Therefore, these phenomena have impacts on food 

webs and higher trophic levels. The indicators of river health -primary productivity 

(algal biomass) and species composition (key species assemblages) can be controlled by 

environmental variables. The PCA results show the upstream species are correlated with 

low pH, low temperature and high DO, while the downstream species are correlated 

with high turbidity, TSS, EC, TN and TDS. Furthermore the results show that TP, 

temperature and DO correlate negatively with turbidity, TSS and conductivity. Overall 

the results show flow regimes, water quality and other environmental factors can affect 

algal biomass (measured as dry mass, AFDM, chl-a) and species composition along the 

river under different seasonal conditions (spatial and temporal).  

 

6.1.2.3 Stream ecosystem metabolism under base flow 

The pH has not only a substantial correlation with algal community structure but also 

has a broader influence on metabolism and productivity of the riverine community. 

Kuwabara (1992), for example, found that the metabolism of the fluvial community can 

change as pH varies across the catchment. Generally stream ecosystem metabolism 

(processes of synthesis and decomposition of any organic materials and production 

(autochthonous and allochthonous)) can be measured by the concentration of oxygen in 

a river (Odum 1956, Grimm and Fisher 1984, Uehlinger and Naegeli 1998, Allan and 

Castillo 2007, Grace et al. 2015). It has been reported that increasing turbidity of water 

inhibits the growth of benthic algae as the energy source for photosynthesis declines for 

benthic primary producers (e.g. benthic algae). Comparing the results of the present 
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study with others, it is reasonable to conclude that pH affects algal community structure 

which changes naturally and as a consequence of anthropogenic inputs or activities 

along the MacKenzie River. While the use of metabolism chambers is a more direct 

method for measurement of stream community metabolism, the measurement of benthic 

community metabolism is an important approach for the monitoring of river health 

(Bunn et al. 1999, Bunn and Davies 2000, Fellows et al. 2006) and indirect inference 

using DO appears sufficient here to demonstrate these effects.  

 

6.1.2.4 Food webs under base flow 

The current results indicate the diatom relative abundance is high in upstream reaches 

while green algae and cyanobacteria are more abundant downstream (see Chapter 5). It 

has been previously reported that epiphytic diatoms and cryptophytes are favoured food 

sources for stream invertebrates because freshwater algae have a substantial 

concentration of polyunsaturated fatty acids (Torres-Ruiz et al. 2007, Guo et al. 2016a, 

Guo et al. 2016b). The role of benthic algae is pivotal in both lotic and lentic systems 

because they are a major component of stream food webs (Stevenson et al. 1996, Burns 

and Ryder 2001). In the MacKenzie River, algae synthesize organic matter (carbon) so 

that the latter enters the food web, eventually to reach high trophic consumers (e.g. fish 

and platypus). Thus, it is reasonable to conclude that the algal community present 

upstream is healthier for consumers than the cyanobacterial community downstream. In 

fact, most of the carbon synthesized by cyanobacteria is not transferable to higher 

trophic levels as they are not a food source of sufficient quality for second order (e.g. 

macroinvertebrate) and ultimately higher trophic levels (e.g. fish, platypus and 

waterbirds) of stream food webs.   
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6.1.3 Key findings on MacKenzie River under base flow 

The base flow regime for the MacKenzie River is 10-15 ML/day; occasionally the flow 

is increased to 35-40ML/day every two or three months for three days to meet 

environmental and consumptive flow requirements. The results show there were trends 

along the ten sampling sites during the different flow regimes. The physico- chemical 

analyses revealed longitudinal differences downstream which reflect a decline in stream 

condition, with lower oxygen levels and elevated nutrients, salinity and pH. While this 

can be expected under the River Continuum Concept it is clear that, under low flow, the 

water quality of the lower MacKenzie River is relatively poor. This condition improves 

after water releases whereby the full length of the River improves, however this result is 

temporary with the lower reaches returning to before-release conditions within a few 

days.  

 

• Water quality declines from upstream to downstream in the MacKenzie River, 

particularly in summer and autumn; 

• Algal species composition and relative abundance differs along the river such that 

diatoms are abundant upstream while green algae and cyanobacteria are abundant in 

the middle and lower reaches;  

•  DSIAR scores are high upstream which indicates good stream condition, but are low 

downstream, indicating poor condition; 

•  Algal blooms (Cladophora and Chara) occur in surface waters downstream which 

prevents penetration of light to the benthos; 

• Although the rate of primary productivity is high downstream because of algal 

blooms, most synthesised carbon is unsuited to transfer to higher trophic consumers. 

Therefore bacterial activity increases to decompose the algal blooms which require 
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more oxygen from water column. Presumably the rate of respiration is high in the 

lower reaches of the river;  

• Benthic metabolism changes along the river course such that downstream food webs 

are less effective and/or efficient than those upstream under conditions of base flow. 
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6.2 How does the MacKenzie River function under manipulated flow regimes?  
In this section hydrologic connectivity, physicochemical factors, nutrients dynamics, 

algal biomass, algal community assemblage, food webs and ecosystem metabolism 

within the MacKenzie River are discussed in the context of flow freshes and pulses and 

similar flow manipulations up to 55-60 ML/d.  

 

6.2.1 Physicochemical factors and nutrients flux under freshes and high flows 

The results revealed that the water quality of the MacKenzie River has varied due to the 

regulation of flows for consumptive users at different points along the River. Results 

from the Pearson’s correlation matrix (Chapter 5; Table 5.8) revealed that most water 

quality characteristics responded significantly to freshes and high flows. Furthermore, it 

seems that Wartook Reservoir has a substantial impact on most physical and chemical 

characteristics of the River. This can be concluded by comparing the results from base 

flow monitoring with those from higher flow water release events.  

The results of this study under water release events (freshes and high flows) 

showed that the pH of the upstream and downstream reaches became similar. In other 

words, water release events likely bring acidic water from Wartook Reservoir to the 

lower parts of the MacKenzie River, reducing the alkalinity of that reach. The pH can 

determine solubility and availability of nutrients (e.g. N and P) and other chemical 

elements (e.g. heavy metals) in rivers and streams. The concentration of dissolved 

oxygen (DO) changes substantially along the river, particularly in the midstream where 

the DO increased greatly in response to water release events. However, the phenomenon 

returns to antecedent conditions after the passing of these events. It seems Wartook 

Reservoir upstream of the MacKenzie River has substantially, adversely impacted on 

the concentration of dissolved oxygen and temperature of the river. For instance the 
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water temperature decreased approximately 2°C (See Chapter 5; Table 5.2) in the lower 

part of the river due to the water release from Wartook Reservoir into the river. Watts et 

al. (2009b), found similar evidence for declining oxygen concentration at Dartmouth 

dam and the lower reaches of the Mitta Mitta River. It has been reported the respiration 

will increase with increasing temperature (Stevenson et al. 1996). The concentration of 

the dissolved oxygen in the MacKenzie River indicates the primary productivity of 

upstream is higher than in the midstream and downstream reaches. This phenomenon 

occurs because of natural features and human modifications along the river. In other 

words, the exchange of the oxygen in the atmosphere is a result of the mixing of the 

water which increases the concentration of oxygen due to the higher slope in the 

upstream reaches (see Chapter 3; Section 3.4.1). Conversely water flows more slowly 

due to the lower slope downstream (see Chapter 3; Section 3.4.3). The metabolism of 

the river is influenced by the cold water and oxygen release from Wartook Reservoir.  

The transport of sediment from upstream and midstream to downstream, and the 

deposition of those sediments into downstream reaches, resulted in elevated turbidity 

and TSS in the downstream sections of the MacKenzie River. Increasing turbidity has 

been reported in most Australian rivers particularly in dry land rivers (Hamilton et al. 

2005, Bunn et al. 2006a, Bunn et al. 2006b, Ward et al. 2013). By comparing the 

turbidity and pH it is reasonable to conclude that the low pH (acidic) correlates with the 

level of turbidity in rivers. This phenomenon was observed in the upstream of the 

MacKenzie River where it has low pH and low turbidity.  

Nutrients (P, N, Si) are a main source of chemical energy for both autotrophic 

(e.g. cyanobacteria) and heterotrophic (bacteria) microbes in rivers and streams (Allan 

and Castillo 2007). Flow alteration and human activities (e.g. agriculture) profoundly 

influenced nutrient dynamics along the MacKenzie River. The nutrients enter the 
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MacKenzie River as dissolved materials from the atmosphere, lithosphere and 

hydrosphere. The nutrients also enter the MacKenzie River in organic form via 

biological assimilation (nitrogen assimilation by cyanobacteria). The contribution of the 

dissolved inorganic and organic nutrients can be more than that of organic materials 

under water release events, due to greater sediment input into the water. The statistical 

analyses showed that total nitrogen (TN) and total phosphorus (TP) were high under 

water release events. 

To conclude, water quality is one of the main indicators of good ecological status 

in rivers. The ecological monitoring in the Wimmera River showed that the flow regime 

and water quality are critical characteristics that affect river health, particularly in the 

lower reaches (Anderson and Morison 1989, Westbury et al. 2007, Alluvium 2013). 

Therefore improving water quality in the MacKenzie River not only brings benefits for 

the MacKenzie River, but also brings benefits to the Wimmera River simultaneously 

(Table 6.2) 

 

Table  6.2: Water quality changes along the MacKenzie River under freshes and high 

flows based on water quality claffification of ANZECC and ARMCANZ (2000). 

Site Condition 

S1 Good 

S2 Good 

S3 Good 

S4 Good 

S5 Good 

S6 Good 

S7 Good 

S8 Good 

S9 Moderate 

S10 Moderate 
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6.2.2 Algal response under manipulated flow regimes  

In the following sections, the algal response in terms of algal species composition, algal 

productivity, their contribution to food webs and river metabolism under different flow 

regimes are discussed.  

 

6.2.2.1 Algal species composition and DSIAR under manipulated flows 

The results from algal monitoring surveys revealed the key indicator taxa (indicators of 

river health) increased under freshes and high flows. Indeed, the relative abundance of 

diatoms increased during and after freshes and high flows, especially epiphytic diatoms 

such as T. flocculosa, G. affine, N. radiosa, and E. minutum (epiphytic diatoms) (see 

Chapter 5). Biggs and Hickey (1994) and Ryder et al. (2006) found diatoms to increase 

while soft algae decreased under water release events. In contrast, Davie and Mitrovic 

(2014) found diatom abundance to decline while filamentous green algae and 

cyanobacteria increased downstream with high water releases in the Severn River 

(NSW). The CA and DCA results showed that algal community assemblages were 

different during high flow events compared to low flow events (see Chapter 5). The 

results showed that downstream species were more closely associated with turbidity, 

TSS and conductivity. The CCA (Chapter 5: Figures 5.41-43) results indicated that 

turbidity is a significant factor affecting both soft algae and diatoms. Biggs and Hickey 

(1994) found physiognomy of algal periphyton changed under different hydraulic 

gradients in the Ohau River, South Island, New Zealand. These authors also found the 

diatoms most abundant in the river were Cymbella kappii, Synedra ulna and 

Gomphoneis herculeana.  
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The results also showed cyanobacteria have more tolerance and resilience than 

green algae under flow discharges along the MacKenzie River. Blenkinsopp and Lock 

(1994) also found similar evidence in the Glywedog River (North Wales, UK). In other 

words, the cyanobacteria are more resilient under water releases, similar with findings 

of this study (see Chapter 5).   

It has been documented that flow regulation has a detrimental impact on riverine 

biotic communities and structure (Bunn and Arthington 2002, Allan and Castillo 2007, 

Boulton et al. 2014). Of particular relevance to the current findings, Robinson et al. 

(2003) found macro-invertebrate community changes with distance downstream on the 

Spol River (Switzerland). These authors reported that benthic macro-invertebrate 

assemblages changed from Grammaridae and Turbellaria to the more tolerant 

Simuliidae and Chironomidea. Therefore, it can be concluded that biological structure 

can change under long term flow regime modification (e.g. as a consequence of dams or 

reservoirs).  

In the present study the algal species composition, and DSIAR, showed the lower 

reaches of the river to be in poor condition under low flows, but this condition improved 

under flows of 35 ML/day, as indicated by the reduction in green algae and 

cyanobacteria and an improvement in DSIAR scores. 

 

6.2.2.2 Algal biomass and productivity under manipulated flows 

It was found that the pulsed flows decreased the occurrence of algal blooming and the 

algal biomass in the river as higher flows were able to scour and flush the river of green 

algae and cyanobacteria. Bourassa and Cattaneo (1998) and Watts et al. (2009b) 

reported similar results in terms of decreasing algal biomass during water release 

events.  
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In the present study, algal biomass is used as a surrogate of gross primary 

productivity, and it was found that levels increased as a consequence of flow alteration 

and higher concentration of nutrients. However, the accumulation of biomass decreased 

during and after high flows. Observations showed that dry mass was greatest at 

downstream monitoring sites. The accumulation of AFDM (ash-free dry mass) also 

increased from upstream to downstream under manipulated flows. The concentration of 

chlorophyll-a decreased under high flows along the river. This study were consistent 

with others which also reported that algal biomass decreased during and immediately 

subsequent to high flows (Horner et al. 1990, Biggs and Gerbeaux 1993, Jowett and 

Biggs 1997, Ryder et al. 2006, Watts et al. 2006, Flinders and Hart 2009, Davie and 

Mitrovic 2014).  For example, it has been reported that low flow discharges in the Mitta 

Mitta River were insufficient to be effective in algal scouring along the river (Watts et 

al. 2006).  

Some scientists have reported that sub-scouring flows can enhance the algal 

biomass in riverine ecosystems (Grimm and Fisher 1989, Stevenson et al. 1996) and so 

relationships between flow rates, velocity and thresholds required for scouring are 

important to understand algae responses under different flow regimes. The similarities 

and dissimilarities of the algal response in the present study with other published 

materials resummarised in (Table 6.5). 
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Table  6.3: The response of algal biological properties under pulsed flow regimes

Author (year) Biological 
properties 

Change Algal group Locality  

Horner et al. (1990) Chlorophyll-a Decrease Diatoms and 
Cyanobacteria 

USA 

Biggs and Gerbeaux 
(1993) 

Chlorophyll-a Decrease Diatoms and Green 
algae 

New Zealand  

Biggs and Stokseth 
(1996) 

AFDM Increase Diatom and 
filamentous green algae 

New Zealand 

Jowett and Biggs 
(1997) 

Biomass Decrease Diatoms  New Zealand 

Biggs et al. (1998) AFDM,  Increase Diatom and 
filamentous green algae 

New Zealand 
Chlorophyll-a Decrease 

Bourassa and 
Cattaneo (1998) 

Chlorophyll-a Decrease Algal periphyton Quebec, 
Canada 

Townsend and 
Padovan (2005) 

Biomass Increase Cyanobacteria NT, 
Australia 

Ryder et al. (2006) Dry mass,  Decrease Diatom and 
filamentous green algae 

NSW, 
Australia AFDM, Decrease 

Chlorophyll-a, Decrease 
Species 
composition 

Increase 

Watts et al. (2006) Biomass Decrease Cyanobacteria and 
Green algae 

NSW, 
Australia 

Watts et al. (2009b) Biomass  Decrease Biofilms NSW, 
Australia 

Davie and Mitrovic 
(2014) 

Chlorophyll-a 
and taxonomic 
composition 

Decrease Diatoms, Cyanobacteria 
and Green algae 

NSW, 
Australia 

This study Dry mass,  Decrease Diatoms, 
Cyanobacteria, Green 
algae and Chrysophytes  

Vic, 
Australia AFDM,  Increase 

Chlorophyll-a Decrease 
Species 
composition 

Increase 
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6.2.2.3 Stream ecosystem food webs and metabolism under manipulated flows  

Algae are an important component of the aquatic food web (Bunn et al. 1999, Bunn et 

al. 2006a, Davies et al. 2008) with microalgae being the main food source for many 

aquatic fauna (e.g. mayfly and snail) in freshwater ecosystems. Indeed, algae play an 

important role in producing and synthesising organic matter (carbon) so that carbon can 

enter the food web and be available for higher order trophic consumers (e.g. fish and 

waterbirds) (Bunn et al. 2006a, Guo et al. 2016a). This makes algae an essential part of 

the food web and biogeochemical cycling in freshwater ecosystems (Stevenson 2014).  

As mentioned in Section 6.1.2.4, under the base flow synthesised carbon likely 

was not effectively transferred to higher trophic levels due to the low quality of food. In 

contrast, however, results from the pulsed flow experiments showed that the algal 

taxonomic composition of the population shifted from green algae dominated 

community to Bacillariophyceae in the downstream reaches of the MacKenzie River. 

This likely increased the quality of food for consumers.  

The ordination results in this study showed that some environmental variables 

(e.g. turbidity, concentration of nutrients) had impact on algal biomass and primary 

production in the lower parts of the MacKenzie River. It can be concluded that high 

turbidity has adverse impacts on food webs and high trophic levels due to its impact on 

light availability. 

 

6.2.3 Key findings under manipulated flow regimes 

Algal species composition changed along the river under different flow regimes and 

different seasons. Under base flow, diatoms were more abundant upstream and 

filamentous green algae were more abundant downstream. The results showed that the 

algal composition shifted downstream after water release events. Green algae, 
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cyanobacteria and Chrysophyta gradually increased from upstream to downstream 

under base flow conditions, and before water releases, whereas diatoms were greater 

upstream and increased downstream after water releases. However, cyanobacteria and 

Chrysophyta have the highest percentages in some sites in the mid-stream (Reach 2). 

Furthermore, the results showed that cyanobacteria were more resistant and tolerant 

under water release events. Conversely, the tolerance and resilience of green algae were 

low under water release events. The observation showed that blooms of filamentous 

green algae and cyanobacteria were reduced by the water release in downstream 

reaches. High diversity within the algal community along the river indicates a healthy 

river with good ecological status. These patterns are also reflected by algal diversity, 

which declined downstream, also indicative of declining stream health. After water 

release events numbers of cyanobacteria and filamentous green algae decline and these 

were replaced by mostly diatoms.  Again, the pre-flow assemblages gradually returned 

when base flows returned. Similarly, DSIAR scores revealed a pre-release pattern of a 

gradient from good quality water to moderate and poor conditions in the lower reaches. 

These conditions too changed after flow releases with scores reflecting consistently 

good status throughout. DSIAR scores remained high after releases events ceased but 

they gradually declined after several days in the lower sections of MacKenzie River. 

The biological properties of the algal periphyton communities varied between sites 

under different flow regimes. The accumulation of dry mass (not ash-free) decreased 

downstream during freshes. However, the accumulation of AFDM (ash-free dry mass) 

gradually increased from upstream to downstream. The results showed that the 

concentration of chlorophyll-a decreased from upstream to downstream under water 

release events. 
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The Pearson’s correlation matrix of the hydrological characteristics and biological 

properties was developed under the four different flow scenarios. The results revealed  

significant relationships (p< 0.05) between flow regime and the water quality measures 

of pH, conductivity, total nitrogen, turbidity, phosphorus, total nitrogen, and the 

biological measures of chlorophyll-a, dry mass, ash-free dry mass and DSIAR. The 

relationships between the environmental variables were also examined revealing that pH 

and turbidity had significant (p< 0.05) relationships with most other water quality and 

biological measures.  

The PCA plot revealed patterns in ecological datasets and showed relationships 

between the environmental variables and algal species in the dataset. The PCA indicated 

the upstream species were associated with low pH and temperature and higher DO. In 

contrast downstream species were associated with higher turbidity, TSS, conductivity, 

TN, and TDS. Furthermore, the results revealed TP and temperature and DO correlated 

negatively  with turbidity, TSS and conductivity.  

Exploration of the diatom and soft algae assemblage data using the 

computationally simple, unconstrained ordination technique of CA indicated that there 

were two strong gradients in the data sets. In the diatom data there was a clear split 

between the assemblages observed during water release events and those observed at 

other flows. This split in the diatom assemblage data is not reflected in the soft algae 

data and there is far more scatter in the data. The DCA was used when gradients length 

>2 and to eliminate the arch effects for appropriate interpretation. The results of the CA 

and DCA of the diatom data were also similar whilst the results of the CA and DCA 

were not similar in some data visualisation plots due to arch effect observed in CA plots 

where DCA applied to remove the arch effect.  
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Finally, constrained ordination (CCA) was used to determine the direct 

relationships between diatom and soft algal communities and the water chemistry 

(environmental variable) data under different flows. A subset of significant 

environmental variables for both the diatom and soft algal data was determined using 

manual forward selection. To identify the most important of the closely related variables 

the number of explanatory variables was reduced using a Bonferroni-adjustment applied 

to the forward-selection process, where the p-value is divided by the number of 

variables included. For the diatom and soft algae data five environmental variables were 

found to have significant influence (e.g. pH, TSS, Turbidity, TN and TP).  

 

• Water quality (e.g. dissolved oxygen) improved along the MacKenzie River under 

freshes and high flows; 

• Algal species composition shifted from green algae-dominated, to a mix of diatoms, 

green algae and cyanobacteria in downstream reaches of the MacKenzie River;   

• The stream condition improved under flows of 35 ML/day (optimal flow for the 

MacKenzie River) and high flows (55 ML/day), as indicated by the reduction in 

green algae and cyanobacteria and an improvement in DSIAR scores;  

• Pulsed flows created suitable conditions for algal assemblage changes, then likely 

higher quality and more suitable synthesised carbons were transferred to higher 

trophic consumers;   

• Depending on water availability, environmental watering plans often seek to release 

water along the MacKenzie River in order to improve water quality, stream condition 

and river health, especially for the downstream reaches. Therefore, this work 

demonstrates that elevated flows improve the condition of the river, and so there is 

good prospect for improving the condition by manipulating the nature of releases.  
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6.3 Modelling  

Regression models were developed to describe the relationships between the relative 

abundance of cyanobacteria, green algae, and diatoms and different flow regimes along 

the MacKenzie River. The mean values and standard deviation for each parameter were 

calculated and used to produce a regression model. Regression models are used to 

simplify complicated datasets to make them more understandable and manageable (Mac 

Nally 2000, 2002). In addition, Klaar et al. (2014) found that regression models have a 

set of capabilities suited to the application of ecological monitoring to the development 

of hydroecological models for environmental flow standards. In the present study, the 

models were also used to examine the response of algae within a wide hydrological 

gradient at three reaches along the MacKenzie River.  

 

6.3.1 Algal response models in Reach-1 

The algae-based models have been developed as a tool to assist in the future 

configuration of flows in the river. Algal response models, in different hydraulic 

gradients, can be useful in water management efforts to find sustainable solutions for a 

healthy working river. Figure  6.2 shows that the relative abundance of diatoms 

increased gradually and consistently with increasing flow in Reach 1, while green algae 

and cyanobacteria decreased under freshes and high flows. The models also highlighted 

that dry mass decreased in this reach after water release events (Figure  6.3a). 

Furthermore, the models predict the relative abundance of algal communities (diatom, 

green algae and cyanobacteria) under cease to flow, low flows, freshes, high flows as 

well as between two different flows (e.g. between low flows and freshes). The 

relationships between flow and biological properties (dry mass, AFDM and chl-a) were 

measured and then empirical data applied to develop the regression models (Figure 
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 6.3b-c). The models infer the fluctuations of the biological properties.  Moreover, there 

was a strong positive relationship between DSIAR and flow (Figure  6.3d), particularly 

in response to pulsed or high flow water release events, confirming that stream 

conditions changed during and after high flow water release events.  

 

 

 

Figure  6.3: Algal response (measured as relative abundance) to flow regimes in Reach 

1 at the MacKenzie River: D= diatom, GA= green algae, C= cyanobacteria, OA= other 

algae. 
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Figure  6.4: Response of algae indicators to flow in Reach-1 of the MacKenzie River: 

(a) relationship between dry mass and flow; (b) relationship between AFDM and flow; 

(c) relationship between chlorophyll-a and flow; (d) relationship between DSIAR and 

flow. Data indicate means ± SD 
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6.3.2 Algal response models in Reach-2 

Analysis shows that flow regime has a substantial influence on algal community 

structure and biomass in the mid-stream (Reach 2) sections of the MacKenzie River 

where soft algae decreased while diatoms increased in relative abundance after releases 

(Figure  6.4). In addition, the results indicated that stream condition (as measured by 

DSIAR) can be improved by freshes and high flows. Cuffney et al. (2011) developed 

multi regression models based on algae and invertebrate response to human 

modification (e.g. agricultural developments) in rivers of the USA. The authors showed 

algae and invertebrate communities change due to the degradation of riverine 

ecosystems.  

The data showed that dry mass decreases while AFDM increases after water 

release events (Figure  6.5a-b). The concentration of chlorophyll-a slightly decreases 

while DSIAR scores increase strongly, then reach a plateau at 35 ML/day (Figure  6.5 c-

d). The models indicate that Reach 2 is more readily influenced by flow regime. 

Therefore it is in a less stable ecological state and is more easily perturbed with varying 

flow regimes due to the higher sensitivity of this reach to flow. The models predict the 

response of algae under different flow regimes can infer responses even to bankfull and 

overbank flows. Mac Nally (2000) illustrated that regression modelling is a useful and 

reliable approach in ecology and conservation biology. The models showed that 35 

ML/d is a threshold flow level in the response of algal biodiversity, DSIAR score and 

the quality of food source for second order consumers in the food web. Therefore, this 

study showed 35 ML/d is an optimal flow above which only marginal benefits accrue 

for the MacKenzie River.  
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Figure  6.5: Algal response to flow in Reach-2 of the MacKenzie River: D= diatom, 

GA= green algae, C= cyanobacteria, OA= other algae. 
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Figure  6.6: Response of algae indicators to flow for Reach-2 of the MacKenzie River: 

(a) relationship between dry mass and flow regimes; (b) relationship between AFDM 

and flow regimes; (c) relationship between chlorophyll-a and flow regimes; (d) 

relationship between DSIAR and  flow regimes. Data indicate means ± SD. 
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6.3.3 Algal response models in Reach-3 

The lower part of the river (Reach 3) has shown the potential to change greatly over 

time, as evidenced during the persistent drought conditions between 1998 and 2009 

(GWMWater pers. comm. 2012). Observations showed that high flows and freshes had 

a significant impact on the lower sections of the MacKenzie River in Reach 3 where 

green algae and cyanobacteria decreased while diatoms increase in relative abundance 

(Figure  6.6). In addition, the models showed that stream condition and water quality can 

be improved by freshes and high flows. In Reach 3 the accumulation of dry mass, 

AFDM and Chlorophyll-a concentration declined under higher flows of 15 ML/day or 

more (Figure  6.7a-c). DSIAR consistently improved with higher flows (Figure  6.7d) 

reflecting the increased abundance of sensitive diatom flora. This in turn indicated 

relatively good condition of the river throughout its length. There is generally a stronger 

positive response to flows indicating that Reach 3 is influenced by flow regime. 

Therefore it is in a less stable ecological state and, while more vulnerable to low flows, 

can readily reap benefits from enhanced flow regimes. The models showed that 35 

ML/d is threshold to improve algal biodiversity, DSIAR score and food sources. Hence, 

35 ML/d is optimal flow brings for the lower reach of the MacKenzie River above 

which there is only marginal benefit. 
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Figure  6.7:  Algal response to flow in Reach-3 at MacKenzie River: D= diatom, GA= 

green algae, C= cyanobacteria, OA= other algae. 
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Figure  6.8:  Response of algae indicators to flow in Reach-3 at MacKenzie River: (a) 

relationship between dry mass and flow regimes; (b) relationship between AFDM and 

flow regimes; (c) relationship between chlorophyll-a and flow regimes; (d) relationship 

between DSIAR and  flow regimes. Data indicate means ± SD. 
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6.4 Application of the models  

The utilisation of ecological modelling has provided a powerful tool for the evaluation 

of the impact that catchment disturbance and hydrological changes have had on riverine 

ecosystems. According to Stevenson (2014), there are four phases for an evaluation of 

the interaction of natural resources and human activities including designing the 

ecological assessment, characterising the condition of the stream, diagnosing causes and 

threats to its condition, and comparing management options to select logical and 

rational options. The ecological models have great potential to monitor these impacts in 

riverine ecosystems (see chapter 2; section 2.9). In the present study, the ecological 

models (based on the functional relationships between stream hydrology, water quality, 

species composition, algal biomass, chlorophyll-a concentration and ecosystem 

function) were developed as tools to assist in the future configuration of flows for the 

MacKenzie River. The models showed the stream condition improved as indicated by 

the reduction in green algae and cyanobacteria, an improvement in water quality, 

increase in algal biodiversity and in the performance of food webs and metabolism.  

The use of flow releases within the MacKenzie River provides an opportunity to 

measure and assess responses to inform manipulations of the nature of releases, 

allowing for fine-tuning, over short periods, under an adaptive approach. The results 

revealed the upstream reaches of the MacKenzie River to have higher diversity of 

diatoms, higher DSIAR scores, less filamentous algae, and so can be considered to be in 

relatively good condition. However, the midstream and downstream sections were 

under stress because of the low flows and poorer quality of the water (Table  6.6). 

Indeed, the health and condition of the river shifts from moderate to poor condition 

classes towards the lowermost parts of the river in dry seasons.  
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Table  6.4: Ecological condition under base flows and recommendations for the 

adaptive management in the MacKenzie River.  

Site Condition Action 

S1 Good Conserve as good 

S2 Good Conserve as good 

S3 Good Conserve as good 

S4 Good Conserve as good 

S5 Moderate Need to improve 

S6 Moderate Need to improve 

S7 Moderate Need to improve 

S8 Moderate Need to improve 

S9 Poor Need to improve 

S10 Poor Need to improve 
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The conceptual model was based on environmental variables, base flow and water 

quality which influence river health indicators including algal species composition, 

productivity, food webs and metabolism to explain the underlying elements and 

mechanisms of river health in the MacKenzie River (Figure  6.8). The model shows 

environmental variables (e.g. climate), flow regimes (e.g. base flows) and water quality 

affect the algal species composition, DSIAR, algal productivity, food webs and 

metabolism of the benthic community.  Based on water quality measurements and 

biological properties, it can be concluded that river health is at risk in the middle and 

lower part of the MacKenzie River under base flow due to poor water quality and low 

ecological integrity (low ability to support biological processes and functions). 

However, the stream condition and river health improved under freshes (see section 

6.3). 

It has been assessed whether flows moderate a tendency towards simplified algal 

communities by removing ‘invasive’ flora and allowing opportunities for a greater 

diversity of taxa to colonise and flourish. The biomass/metabolism studies have 

examined the role of algae in providing energy to the food web and the influence of 

flow in promoting this; or mitigating over production. The relationship between input, 

model and output, and their components for a healthy working river, are depicted in 

Figure  6.9.  
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Figure  6.9 Conceptual model for the MacKenzie River (e.g. under base flow 10-15 
ML/day).  
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Figure  6.10: The relationship of input, model and output and their components for a healthy working river 



234 
 

The success in river protection and restoration depends on the understanding and 

accurate modelling of the regulated system (Christensen et al. 1996). Acreman and 

Ferguson (2010) discussed that the water body in rivers will be in good condition when 

the biology, water quality and hydrology meet the reference condition.  

It seems the ecological impacts of the water release events are not consistent 

across waterways either. The ecological models based on algal responses to different 

flow regimes reveal that, under low flows, the downstream sections of the MacKenzie 

River are stressed and so require further water release events to sustain an enhanced 

ecosystem health. The models show that flow affects algal community patterns and 

ecosystem function and so water release events can play a major role to improve the 

ecosystem processes in the MacKenzie River. The models infer the fluctuation of algal 

species composition and algal biomass under different flow regimes. The models 

illustrated that water release events (freshes) represent clear opportunities to improve 

the ecological conditions of the MacKenzie River despite limited water availability, 

particularly in the middle and lower parts of the river.  

 

6.5 Adaptive management  
The configuration of consumptive flows in the MacKenzie River system (one of the 

main tributaries of the Wimmera River) fall within the Wimmera-Glenelg Bulk and 

Environmental Entitlements, for which Grampians Wimmera Mallee Water 

(GWMWater) is the storage manager. Although coordinated use of entitlements is 

implied within their administrative arrangements, cooperation still proves difficult, 

particularly during times of water shortage when entitlement holders become focused on 

their own individual requirements. Storage managers have, however, a duty of care to 

the environment in the way they operate reservoir systems and manage water delivery to 

both consumptive and environmental entitlement holders. Biological indices and 
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ecological models can be useful as tools (see Chapter 2 and Chapter 5) for water 

resource managers in their assessment of water quality, stream condition and their 

decision making with regards to water sharing amongst the consumptive users. These 

models can be utilised to improve environmental benefits and river health. 

This research provides the means to enhance stream condition by gearing 

consumptive flows to complement environmental flows. The passage of time has shown 

that many historical water sharing arrangements have not adequately protected aquatic 

environments (MDBA 2014b). The extraction of water has proven to be unsustainable 

for many rivers within arid or semi-arid regions which are particularly vulnerable to the 

over exploitation of vulnerable water resources due to their more variable climate.  

Implementing ecological response models in regulated systems as an aid to 

decision making therefore, also holds great potential for a more adaptive approach to 

water resource management. Adaptive management creates an efficient framework from 

within which trade-offs occur between human uses and the environment, to the benefit 

of both (Watts et al. 2009a). Furthermore, adaptive management can play a significant 

role to decrease tension in an extremely complicated system associated with social, 

technological, political, economic and environmental issues, as trial and error 

approaches can be more readily employed with the aim of improving arrangements over 

time. A conceptual flow chart was developed to summarise the absence and presence of 

ecological problems, allocation of environmental flows, and potential of consumptive 

flows and adaptive management to underpin a healthy working river systems (Figure 

 6.10). Hence equitable and effective sharing of the water resource between consumptive 

users and the environment is critical.  

The relationship of adaptive management, ecological models, flow regimes and 

river health were depicted in Figure  6.11. As mentioned earlier, water resource 
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management is an ongoing challenge for water managers and river scientists. Therefore, 

new ecological models based on changes in water resources is essential in terms of 

adaptive management. For example, the results of the present study can be used by 

water managers (e.g. GWMWater) to tailor the duration and discharge of freshes used to 

deliver consumptive water to improve the condition of the stream thereby 

supplementing the flows dedicated to environmental outcomes. 
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Figure  6.11: Guidelines for evaluation of river health by configuration of consumptive 

flows in for rivers (e.g. the MacKenzie River).
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Figure  6.12: Conceptual model based on the relationship among flow regime, river health, ecological models, and adaptive management.
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6.5.1 Constraints in water management efforts 

Generally, waterway managers face three constraints in water management efforts; 

physical, operational and policy constraints.  As mentioned in Chapter 3, the 

MacKenzie River has been modified and engineered in several locations including the 

construction of Wartook Reservoir in 1887, water diversion in Mt Zero Channel, the 

commissioning of the Wimmera pipeline in 2010, water storages and water plant 

treatment. However, there are some operational and policy constraints in the Wimmera 

–Glenelg system (including MacKenzie River) due to scarce water availability. Those 

constraints are common particularly in arid and semi-arid regions. Overall, the 

allocation of water between consumptive users and the environment is dependent on the 

availability of water and ultimately the decision to release.  The operational constraints 

are related to the range and manner of operation protocols and strategic rules used by 

water resource management. The policy constraints are related to the water sharing 

agreements at regional, state and federal government levels. The policy constraints are 

very complicated in comparison with other constraints.  

6.5.2 Best available science 

In order to solve the barriers and obstacles in water resource management, water 

managers and environmental scientists use different methods to evaluate the ecological 

responses during hydrologic alteration in freshwater ecosystems (Norris et al. 2011, 

Webb et al. 2011). However ecologists and water managers have recently begun turning 

from experience-based (expert opinion) methods to evidence-based methods (Webb et 

al. 2012, Klaar et al. 2014). This project brought new evidence by monitoring and 

empirical data based on algae (bioindicators) under different flow regimes along the 

MacKenzie River. The modelling was performed using collected data. According to 



240 

 

Nichols et al. (2013), water managers are required to employ the best available science 

to deliver the best approach and techniques to freshwater management efforts. 

Therefore, managers are expected to apply the best available science for the 

management of the MacKenzie River. This project brought new recommendations and 

suggestions for local water managers (GWMWater) to configure the consumptive flows 

for environment benefits. Presently river scientists commend water managers and 

stakeholders to employ the “best available science” now rather than waiting for future 

science discoveries that might provide better outcomes (Ryder et al. 2010, Nichols et al. 

2013). As previously discussed conflict pertaining to the use of freshwater resources has 

increased as a result of population growth; as well as resulting from socioeconomic 

developments, industrialisation, global warming and climate changes across the world 

(Rosenberg et al. 2000, Poff et al. 2003, Millennium Ecosystem Assessment 2005, 

Stevenson and Sabater 2010, Wilby et al. 2010, Arthington 2012). Such developments 

have proven detrimental to freshwater ecosystems globally. As a result, the quality and 

quantity of water has decreased tremendously, particularly in arid and semi-arid regions 

of the world. Therefore, water managers have tried to implement the best available 

science to deal with this problem.  

 Ecological response models (e.g. algae-based models) have a high potential to 

diagnose the causes and threats to freshwater systems (Yoder and Rankin 1998, 

Stevenson 2014). Using ecological response models for flow configuration and water 

allocation is one of the best available scientific tools that water managers can rely on. 

As previously mentioned river scientists, water managers and stakeholders are looking 

to sustain and improve freshwater ecosystems in order to provide goods and services for 

society and the environment (Baron et al. 2003, Arthington et al. 2006). Ecological 
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models can be used for predicting ecological response from particular operations 

(Stevenson 2014).  

 

6.5.3 Reservoir operation  

Flow magnitude, duration, timing, frequency are the main aspects of the flow regimes 

(Poff et al. 1997, Arthington 2012) as well as the rate and character of rising and falling 

flows.   Operational protocols and recommendation have been developed based on these 

flow attributes and are intended to improve the ecological condition for each of the three 

reaches of the MacKenzie River. As outlined in Chapter 5, the measured base flow 

regime in the MacKenzie River was 10-15 ML/day with freshes measured at about 35-

40 ML/day and a high flow of 55ML/day. The suggested magnitude and duration of 

flow to be considered each season to maximise ecological outcomes for the MacKenzie 

River.   

Recommendations provided here on configuring consumptive flows consider 

maximising the DSIAR score, water quality and stream condition, food sources, and 

nutrients dynamics to improve overall ecosystem health. The current study has revealed 

the connection between different flow types (low flows, freshes and high flows,) and 

ecological responses. Factors such as longitudinal connectivity of the river, flushing and 

transferring sediments along the river, and improving water quality, habitat for fish 

community and recruitment of aquatic biota, dispersal of platypus population and the 

interface with the larger Wimmera River can all be considered.  

The management of water supply systems are constrained by a range of 

competing objectives such as balancing water between storages, maximising the 

efficiency of the system, delivering water in a timely manner, and physical constraints 
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such as flow rates that do not exceed valve or weir capacities. These objectives may not 

be always compatible with facilitating or maximising environmental outcomes. 

The results in chapter 5 showed that stream condition based on algae response can 

improve for at least one week after water release events, including both freshes (35-40 

ML/day) and high flows (55 ML/day). The data and models showed the optimal release 

for the MacKenzie River is 35 ML/day which is supplementary to the environmental 

flows of the river. Therefore, if the reservoir operator needs to transfer a high volume of 

water (e.g. 1000 ML) from Wartook Reservoir to Taylors Lake, it would be preferable 

to transfer this water at a rate of 35 ML/day which would bring greater benefits to the 

stream (Table  6.7). Operating hydrologic scenarios and their ecological advantages and 

disadvantages were explained for the configuration of consumptive flows along the 

MacKenzie River. The hydrologic scenarios were developed based on observation, 

empirical data and models (Table  6.8).  
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Table  6.5: Transfers between reservoirs and environment benefit through MacKenzie 

River 

Lake Wartook  (e.g.1000 ML)                       Taylors Lake         

Discharge  

(ML/day) 

Climatic 

scenario 

Duration 

(days) 

Benefits after water release 

(days) 

Total benefits 

(days) 

5 Dry 200 0 0 

5 Wet 200 0 0 

10 Dry 100 0 0 

10 Wet 100 0 0 

15 Dry 66 0 0 

15 Wet 66 0 0 

25 Dry 40 0 0 

25 Wet 40 0 0 

35 Dry 28 7 35 

35 Wet 28 14 42 

45  Dry 22 7 29 

45 Wet 22 14 36 

55  Dry 18 7 25 

55 Wet 18 14 32 

65 Dry 15 7 22 

65 Wet 15 14 29 

100 Dry 10 7 17 

100 Wet 10 14 24 
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Table  6.6: Hydrologic scenarios and expected ecological response in the Mackenzie 

River  

Hydrologic scenarios  Algal responses Ecological pros and cons 
Low flow (f < 15 ML/day) 
 

According to the models, 
under this scenario dry mass,  
AFDM, Chl-a increase along 
the river (three reaches), 
 algal blooms occur,  
green algae and 
cyanobacteria are more 
dominant in the river, low 
DSIAR scores,  particularly 
in lower part of the river  

Water quality is low, anoxia may 
occur, salinity is higher, lateral 
connectivity and there is 
longitudinal disconnection along 
the river, aquatic biota are under 
stress, river is intermittent (some 
pools appear along the river 
particularly in Reach 2  
 

Low flow (f =15 ML/day) 
 
 
 

Under this scenario dry 
mass, AFDM and Chl-a 
increase in the river, algal 
blooms occur, green algae 
and cyanobacteria are more 
dominant and common in 
the river. Low DSIAR 
scores  
 

Water quality is low particularly 
in a dry season, anoxia occurs 
occasionally, lateral connectivity 
and longitudinal disconnection 
may occur along the river, 
eutrophication occurs. 
 

Small freshes ( 15 < f < 35 
ML/day) 
 
 
 

dry mass is less while 
AFDM and Chl-a increase in 
the river, algal blooming 
occurs rarely, algal 
community is shifting from 
green algae and 
cyanobacteria to diatoms 
where diatoms are more 
dominant in the river, 
moderate DSIAR score in 
the river.  
 

Water quality increases, salinity 
decrease, longitudinal connection 
occurs occasionally,  it controls  
ecological function and 
hydrological process such as 
maintenance of habitat, aquatic 
biota,  

Freshes (f=35 ML/day) 
 
 
 
 

under this scenario also dry 
mass decreases while 
AFDM and Chl-a increase in 
the river, algal blooming 
disappear in upstream, but 
algal blooming can be seen 
in lower part of the river, 
algal community is shifting 
to diatoms where diatoms 
are dominant in the river,  

Water quality improves, river 
health and stream condition 
improve, salinity decreases, 
longitudinal connection occur 
sometimes along the river, 
sediments transfer along the river, 
and eutrophication disappear.  
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Table 6.4 (continued): Hydrologic scenarios and expected ecological response in the 
Mackenzie River. 

Large Freshes (35 < f < 55 
ML/day) 
 
 
 

According to the models,  
under this scenario dry mass 
decrease while AFDM and 
Chl-a decrease in the river, 
algal blooming disappear in 
upstream, algal community 
is shifting to diatoms where 
diatoms are dominant in the 
river, high DSIAR score in 
the river.  
 

Water quality improves 
substantially, river health and 
stream condition improve, 
longitudinal connection occur 
sometimes along the river, 
sediments transfer along the river, 
habitat ameliorate for fish 
community and recruitment of 
aquatic biota and eutrophication 
disappear. 

 
High flows (f=55 ML/day) 
 
 

The models shows under this 
scenario dry mass decreases 
AFDM increase and Chl-a 
decrease in the river, algal 
blooming disappears in 
upstream, diatoms are 
dominant in the river, high 
DSIAR score in the river.  
 

It is important for the 
hydrological process and 
ecological function along the 
river. The high flows not only 
maintain the habitats but also 
create further habitats for the 
aquatic biota, lateral and 
longitudinal connections, 
improve habitat for fish species 
breeding in the river. 

 
High flows  
(55 < f < 100 ML/day) 
 
 
 

 

Bankfull flows  
(100 < f < 500 ML/day) 
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6.5.4 Operating recommendations for the MacKenzie River  

Wartook Reservoir and the MacKenzie River are both integral parts of the water supply 

system for the region and so there are a range of operational and strategic considerations 

that need to be made in determining the release of water. One of these considerations is 

the availability of environmental allocation and the constraints this brings to 

maximising environmental outcomes. There remain opportunities, however, within the 

consumptive allocation to enhance stream condition. Operational protocols, therefore, 

aim to consider how water allocations can be used to maximise outcomes for both 

environmental and consumptive users and have been formulated as strategic (high level) 

and operational (day-to-day) rules. A new flow allocation was recommended for the 

MacKenzie River by amalgamating allocated environmental flows and consumptive 

flows (Table  6.9). A total of 10,000 ML/year of water is released from Lake Wartook 

into the MacKenzie River. Approximately 4,000 ML/year (about one third) was 

released explicitly for environmental purposes as so called environmental flows. The 

remaining 6,000 ML (about two thirds) was released to meet consumptive demands and 

to transfer water to downstream reservoirs. The findings of this study showed that 

configuration of consumptive flows brings more benefits to the river. This study showed 

the river health will improve if local water agencies (GMWWater and WCMA) return 

35 ML/day for three days (Table  6.9). 
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Table  6.7: Recommendations for configuration of flow regimes by amalgamation of 

allocated environmental flows and consumptive flows in the MacKenzie River 

 

Amalgamation of allocated environmental flows and consumptive flows  
 

Description  

Timing Flow type Magnitude Duration   

January  Cease to flows 0 ML/d  
22-25 day Base flows 2 ML/d 

Freshes 5-50 ML/d 4-7 days 
Recommended  
additional freshes 

35 ML/d 3 days 
fortnightly  

Return from 
consumptive flows 
as a top-up for 
environmental flows 

High flows No high flows 0  

Bankfull  No bankfull 0 
overbank No overbank 0 

February  Cease to flows 0 ML/d  
22-24 day 

 
Base flows 2 ML/d 
Freshes 5-50 ML/d 3-4 days 
Recommended  
additional freshes 

35 ML/d 3 days 
fortnightly  

Return from 
consumptive flows 
as a top-up for 
environmental flows 

High flows No high flows 0  
Bankfull  No bankfull 0 
Overbank No overbank 0 

March Cease to flows 0 ML/d  
22-26 day 

 

Base flows 2 ML/d 
Freshes 5-50 ML/d 4-7 days 
Recommended  
additional freshes 

35 ML/d 3 days 
fortnightly  

Return from 
consumptive flows 
as a top-up for 
environmental flows 

High flows No high flows 0  
Bankfull  No bankfull 0 
Overbank No overbank 0 

April Cease to flows 0 ML/d  
22-25 day 

 
Base flows 2 ML/d 
Freshes 5-50ML/d 4-7 days 
Recommended  
additional freshes 

35 ML/d 3 days 
fortnightly  

Return from 
consumptive flows 
as a top-up for 
environmental flows 

High flows No high flows 0  
Bankfull  No bankfull 0 
Overbank No overbank 0 

May Cease to flows 0 ML/d  
22-26 day 

 
Base flows 2 ML/d 
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Freshes 5-50 ML/d 4-7 days 
Recommended  
additional freshes 

35 ML/d 3 days 
fortnightly  

Return from 
consumptive flows 
as a top-up for 
environmental flows 

High flows No high flows 0  
Bankfull  No bankfull 0 
Overbank No overbank 0 

June Cease to flows N/A N/A  
Base flows 7 ML/d  Continuous 
Freshes N/A 0 
Recommended  
additional freshes 

35 ML/d 3 days monthly Return from 
consumptive flows 
as a top-up for 
environmental flows 

High flows 130 ML/d 15 days   
Bankfull  500 ML/d Any 
Overbank 900 ML/d 1 day 

July Cease to flows N/A N/A  
Base flows 7 ML/d  Continuous  
Freshes N/A 0  
No need additional 
freshes 

- - - 

High flows 130 ML/d 22 days  
Bankfull  500 ML/d Any 
Overbank 900 ML/d 1 day 

August  Cease to flows N/A N/A  
Base flows 7 ML/d  Continuous  
Freshes N/A 0  
No need additional 
freshes 

- - - 

High flows 130 ML/d 22 days  
Bankfull  500 ML/d Any  
Overbank 900 ML/d 1 day  

September Cease to flows N/A N/A  
Base flows 7 ML/d  Continuous 
Freshes N/A 0 
Recommended  
additional freshes 

35 ML/d 3 days monthly Return from 
consumptive flows 
as a top-up for 
environmental flows 

High flows 130 ML/d 15 days  
Bankfull  500 ML/d Any 
Overbank 900 ML/d 1 day 

October Cease to flows N/A N/A  
Base flows 7 ML/d  Continuous 
Freshes N/A 0 
Recommended  
additional freshes 

35 ML/d 3 days monthly Return from 
consumptive flows 
as a top-up for 
environmental flows 

High flows 130 ML/d 15 days  
Bankfull  500 ML/d Any 
Overbank 900 ML/d 1 day 

November Cease to flows N/A N/A  
Base flows 7 ML/d  Continuous 
Freshes N/A 0 



249 

 

Recommended  
additional freshes 

35 ML/d 3 days monthly Return from 
consumptive flows 
as a top-up for 
environmental flows 

High flows 130 ML/d 15 days  
Bankfull  500 ML/d Any 
Overbank 900 ML/d 1 day 

December Cease to flows 0 ML/d  
22-25 day 

 

Base flows 2 ML/d  
Freshes 5-50 ML/d 4-7 days 
Recommended  
additional freshes 

35 ML/d 3 days 
fortnightly  

Return from 
consumptive flows 
as a top-up for 
environmental flows 

High flows No high flows 0  
Bankfull  No bankfull 0 
overbank No overbank 0 

 
 

 

6.5.4.1 Recommendations of Strategic Rules  

The identification of optimum flow releases to enhance the condition of the MacKenzie 

River allows for the formulation of recommendations of general rules or guidelines that 

can be followed by the operator, and understood by the community. 

Management Framework: Storage management frameworks, or any form of 

governing or legislative documentation, should be amended or created to enable 

adequate flexibility for the storage operator to configure consumptive flow deliveries to 

provide environmental benefit in the Wimmera-Glenelg system (including The 

MacKenzie River). 

Communications:  An agreement should be in place between the storage 

operator (GWMwater) and environmental flow planners (WCMA, VEWH and 

DELWP) to mandate that discussions will take place around all flows (both 

consumptive and environmental) and to look for opportunities for water use efficiency 

and the optimisation of benefits around each flow. 
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Mapping environmental values in the MacKenzie River system:  Values should 

be mapped (based on the best available science) in both a spatial and temporal context 

so that when flow enhancement opportunities arise, flows can be quickly configured to 

match the spatial/temporal environmental requirements at the time.   

6.5.4.2 Operational Rules  
Allocation of Water: Water sharing frameworks vary from region to region, however 

the allocation or availability of water for various uses will present a constraint on how 

water can be configured for environmental benefit. The configuration of consumptive 

flows in the MacKenzie River for environmental benefit must fully regard the volume 

of consumptive water for use and work within this constraint.  

Best Available Science: Only the best available science should be used to guide 

the development of flow plans. This science should include consideration of all aspects 

of the flow regime and provide the detail for how flows should be configured based on 

the environmental values identified from the strategic rules, such as cease to flows, 

freshes and so on. 

System Operating Rules: Flows can only be configured within the physical and 

operational capacities of the supply system. Flow rates, the rate at which flows rates can 

be changed, target filling or drawdown curves, system monitoring and availability of 

personnel to make operational changes will all constrain the ability to deliver desired 

flows and particular flow regimes. These constraints should be documented and be 

adhered to in the configuration of any flows.  

Site Specific Rules: Some reservoirs and rivers will have particular and unique 

operating rules associated with them. This might be due to flood management, water 

quality management, provision of recreational values and so on. This site specific 
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information usually presents as an additional set of constraints to how flows can be 

configured, but are not universal and so should be considered separately. 

These operational rules are derived from the main facets of the flow regimes 

including magnitude, duration, variation, timing, frequency and rate of change. The 

magnitude, timing and duration of the water release should be optimised to meet all 

ecological requirements and management objectives. This applies in particular to the 

main water release events which can be planned by either the responsible environmental 

flows planner or the storage operator, to ensure flows can be manipulated to provide 

benefits to stream ecosystems.  

 

 

6.6 Chapter summary  
Algae-based response models were developed for base flows, freshes and high flows for 

between 15 ML/d to 55 ML/d in the MacKenzie River. Algal communities were 

observed and found to respond to different flow regimes which demonstrated that 

appropriate flow manipulations can be used to improve river health. Under the right 

circumstances, consumptive flows can used to improve river health and this presents 

interesting challenge for river scientists and water engineers given the additional 

constraints that consumptive flow have over dedicated environmental flows. The results 

were also used to tailor the duration and discharge of consumptive water to improve the 

condition of the stream thereby supplementing the flows dedicated to environmental 

outcomes.  

This chapter has provided a worked example of how a consumptive flow 

transfer can be configured to enhance stream condition. In addition, this research 

forecasts that benefits can accrue when management moves from a contest between 
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volumes for allocations and configurations to a coordinated approach to bring 

environmental benefits without compromising consumptive needs. A number of 

conceptual diagrams and a flow chart were developed to summarise the steps for the 

configuration of consumptive flows in working river systems.  
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Chapter 7: Conclusions and future research 

 

7.1 Use of algae to evaluate stream condition in the MacKenzie River 

Human activities in western Victoria have altered the ecological condition of the 

MacKenzie River. As a consequence of this modification, the algae community in many 

parts of the river reflect a degraded state. The observations presented here show that 

water quality, algal community structure and biological properties respond to different 

flow regimes in different seasons. 

The findings of this study have revealed the upstream reaches of the MacKenzie 

River to have higher DSIAR scores, relatively few filamentous algae and high water 

quality, and so can be considered to be in good condition. However, the mid-stream and 

downstream sections are under stress because of low flows and the poorer quality of the 

water. Indeed, the health and condition of the river shifted from moderate to poor 

condition classes towards the lowermost parts of the river, particularly in dry seasons.  

High diversity within the algal community along the river indicates a healthy river 

with good ecological status. Under base flow, diatoms were more abundant upstream 

and green algae and cyanobacteria are more abundant downstream. Green algae and 

cyanobacteria gradually increase downstream under base flow conditions, and before 

water releases, whereas diatoms decrease in relative abundance downstream. However, 

the algal composition shifted downstream after water-release events, as a result of the 

reduction in the abundance of green algae and cyanobacteria in downstream reaches.  

The biological properties (dry mass, AFDM and chl-a) of the algal periphyton 

communities, and the species composition, varied between sites under different flow 

regimes. The accumulation of dry mass decreased downstream during freshes. 



254 

 

However, the accumulation of AFDM gradually increased from upstream to 

downstream. In contrast, the concentration of chlorophyll-a decreased from upstream to 

downstream under high-flow events (water releases and natural high flows) due to 

reduction of algal assemblages by scouring and burial.  

Whilst the water quality does vary during different seasons, the main changes in 

water quality are observed during the water release events. The river health and 

condition shifts from moderate to poor condition towards the lower most parts of the 

river in dry season. 

 

7.2 Ecological response models to configure consumptive flows in the MacKenzie 

River 

In the present study, ecological response models were developed using freshwater algal 

assemblages to configure consumptive flows to achieve greater ecological benefit in the 

MacKenzie River. The quantitative and conceptual ecosystem response models, based 

on the functional relationships between stream hydrology, water quality, algal species 

composition, biomass, chlorophyll-a concentration and ecosystem function (food webs 

and river benthic metabolism), were developed as the tool to assist in the future 

configuration of flows in this river. The models built are based on data (empirical 

evidence) which was collected under different seasons and different flow regimes.  

Although the base flows of the MacKenzie River support the ecosystem function, 

aquatic biota, physicochemical processes, biological processes and ecological attributes, 

anthropogenic modifications have profoundly changed the river since the construction 

of Wartook Reservoir in 1887.  The data and models show that the structure and 

function of the algal communities, as primary producers, were strongly influenced by 

the various flow regimes. The study demonstrates that consumptive flows can be used 
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to improve river health under the right circumstances and this presents an interesting 

challenge for the river scientists and water engineers given the constraints (physical, 

operational and policy) that consumptive flows have relative to those of dedicated 

environmental flows. Indeed, the models predict that appropriate flow manipulation can 

be used to improve river health. The most important findings pertain to the lower 

reaches of the river which are shown to be in poor condition under low flows, but also 

show improvement under flows of 35 ML/day, as indicated by the reduction in green 

algae and cyanobacteria and an increase in DSIAR scores. The outcomes of this study 

can be used to improve the condition of the stream by guiding the duration and 

discharge of freshes used to deliver consumptive water, and thereby to supplement the 

flows dedicated to environmental outcomes. 

Overall, the lower parts of the MacKenzie River were in poor conditions in terms 

of water quality, stream condition and river health. However, environmental flows 

changed the water quality and stream condition, and these elements improved. On the 

basis of this if 35ML/day can be released then the condition of the system will be 

improved. However, this improvement is only temporary and poor conditions return 

after about 15 days.  

 

7.3 River management and water sharing  

Rivers bring many socio-economic, geopolitical and cultural values for society world-

wide such as political power, social services, cultural initiatives, health care, sanitation, 

power generation, irrigation, fisheries, industries, transportations, urban and domestic 

water, scenic and recreational values. Indeed, rivers make a significant contribution in 

providing goods and services for human well-being. Meanwhile, rivers play a pivotal 

role in the maintenance of aquatic wildlife biodiversity, habitat diversity and ecosystem 
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function (Assessment Millennium Ecosystem 2005). Unfortunately, most of the rivers 

globally are modified and regulated. In concert, rivers are both incredibly valuable and 

highly threatened. Therefore, the conservation of rivers is absolutely imperative, and 

given the incremental increase in river knowledge,  this is best achieved through 

adaptive management (Arthington 2012) because waterway managers need to update 

the water allocation and abstraction under adaptive management processes including 

monitoring, operational rules, implement, assess and planning.  

While management usually focuses on environmental flow allocation as the 

means of improving stream condition, this study highlights the benefits that can arise 

from flows tied to consumptive water transfers and opens the way to address the 

ongoing challenge for river scientists and water engineers in providing ecological 

benefits from scarce water. This study shows that benefits can accrue when 

management moves from a contest between volumes to allocations and abstraction. 

Considerable environmental benefits can be gained from the configuration of 

consumptive flows by rigorous adaptive management in engineered and modified rivers.   

In essence, this study demonstrates how to measure and assess responses to inform the 

manipulation of water releases, with an in-built capacity for fine-tuning, reflecting an 

adaptive approach.  

Evaluation of river health, stream condition and water quality identify the causes 

and threats of the ecological disturbances and flows alteration in riverine ecosystems 

which is very important for river management and water sharing. Suggested operational 

protocols, strategic rules and recommendations are provided in chapter 6 and are based 

on the water-release events to improve ecological condition in three different reaches of 

the MacKenzie River. These operational rules are derived by the amalgamation of 
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environmental flows and consumptive flows from the main attributes of the flow 

regimes including magnitude, duration, variation, timing and frequency.  

At present there is only 4000 ML allocated for environmental flows for the 

MacKenzie River. This volume would only allow for approximately 10 ML/day in each 

year. This study showed the volume of allocated water for the MacKenzie River as 

environmental flows did not meet the ecological requirements, particularly in the lower 

reaches. However, good ecological condition can be achieved if consumptive flows are 

also released in a manner that benefits the ecology of the River. There are certain 

constraints on the release of this water, but where consumptive flow release operations 

are developed with environmental flow operations (10 ML/day for12 months) with flow 

of 35ML/day for three days every two weeks as a top-up from consumptive flows. 

Indeed, there are clear benefits that would accrue from integrating environmental flows 

and consumptive flow operations. This would be achieved by respective operators 

exchanging flow release plans and for this to be coordinated between water agencies 

(GWMwater, WCMA and DELWP). The agencies have this as a planning goal and so 

the way is paved for more effective use of all water releases.  

Overall, evidence-based decisions and strategies in water resources management 

are imperative today due to scarce water avaliblility. Therefore, the development of 

hydroecological models (e.g. statistical models) have been increased to bring accurate 

evidence  for water mangers in terms of an understanding of antecendent condition, 

hydrologic alterations, ecological responses and ecological limits for those alterations in 

riverine ecosystems.  
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8.3 Recommendations for future work 

Configuration of consumptive flows is a very controversial topic across the world 

particularly in drought prone regions. Improving the present conceptual and quantitative 

ecological models towards returning water to the environment represents an ongoing 

challenge for water managers and river scientists. Therefore, additional work and 

research configuring consumptive flows for ecological benefits is needed. In particular 

this could include the use of a broader range of bio-indicators (e.g. fish).  

The model that underpins this is based on three experimental release flows and 

could be refined by continuing to monitor across a greater range of flow discharges.  

In the early stages of this release protocol it would be beneficial to monitor other 

aspects of the river ecosystem to assess if higher organisms are responding positively, 

and to assess the utility of algal monitoring in reflecting whole of system changes. 

Although flow regime is the main driver for ecological response modelling in the 

MacKenzie River, investigation of secondary drivers such as physical topography, 

vegetation canopy, sediment movement and other environmental variables are needed to 

comprehensively evaluate the function of the system.    

Additional work is required to address the operational rules of water management 

with respect to social and economic objectives. This is because the allocation of water 

in the MacKenzie River is multilateral in character and must support social and 

economic aspirations. 

Lastly, the MacKenzie River system was greatly affected by the fire in 2014 and 

this is likely to have compromised the stream’s water quality. It is important to monitor 

the flow-water quality-algae relationships after fire to assess the impact of bushfires, 

and to modify the response model to accommodate post fire conditions to ensure the 

ecological benefits that accrue from flow releases for both environmental and 
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consumptive purposes. Therefore, additional work on the impact of bushfires on 

MacKenzie River, and other stream systems, deserves further attention.  
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Development of an Algal Response Model to Inform Water Resource System 
Operations  
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Abstract  
 
An algal response model is being developed to inform the operational characteristics of 
a water supply system. The intent of this research is to refocus approaches to water 
allocations from a contest over volume, towards a cooperative approach between all 
users with multiple socioeconomic and environmental benefits.  
 
The algal response model will ultimately be used to aid in the development of a 
framework, and operational principles, to configure consumptive water transfers to 
complement dedicated environmental flows. A constraint imposed within this 
framework will be that whilst providing beneficial environmental outcomes, any flow 
configuration identified will not compromise consumptive water users.   
 
Field trials have begun in the MacKenzie River in western Victoria, Australia. This 
River has experienced a highly modified flow regime since the construction of Wartook 
Reservoir in 1887. Water released from the reservoir is regulated at several locations for 
water supply and also, more recently, for the specific provision of environmental flows.  
 
With baseline monitoring of the waterway now completed, preliminary results are 
available to commence evaluating the complex environmental response patterns and 
benefits that may accrue from flows dedicated to consumptive use.  
 
1. INTRODUCTION 
 
Historically, the management of rivers and streams has focused on extracting water for 
consumptive use for agriculture, industry and urban water supply (Acreman & Dunbar, 
2004). The main factors of concern have been the amount of water available and the 
quality of water with respect to its suitability for agricultural, industrial, domestic or 
recreational uses (Norris & Thoms, 1999). However, water managers have increasingly 
realised that the protection of natural ecological processes in rivers and streams also 
helps to protect some of their utilisation value. 
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Today, there is an increasing requirement, supported by international, national and 
regional legislation, to conserve and restore the ecological and biological health of 
rivers and their associated aquatic ecosystems (Acreman & Dunbar, 2004). Typically, 
these flow requirements specify a flow regime to support the structure and function of 
aquatic ecosystems within streams and rivers. Current scientific understanding of 
hydrologic controls on riverine ecosystems, and evidence obtained from river studies, 
support the development of environmental flow standards at regional scales (Arthington 
et al, 2006). 
 
The challenge of maintaining healthy working rivers is in balancing the environmental 
requirements against the broader social and economic elements which sustain 
productive industries and communities. There is no better contemporary example of the 
difficulty of this challenge than the Murray-Darling Basin Plan (MDBA, 2012). The 
uptake of flow management recommendations by agencies and water managers, and 
their acceptance by regional communities, is dependent on an understanding of the 
interdependencies among management actions and ecosystem health.  
 
The MacKenzie River in western Victoria has been chosen as the case study because 
this river has been substantially modified since the construction of Wartook Reservoir 
in 1887. The project is supported by Grampians Wimmera Mallee Water (GWMWater) 
as the water corporation who owns and operates the dams, weirs and other assets 
associated with the water supply system. This close relationship with GWMWater has 
enabled the coordination of releases of water for the benefit of this project.   
 
Work has started with the collection of baseline information from the MacKenzie River. 
An ecological response model, using an algal-based index, will be developed to assist 
with the formation of a framework to enable the storage manager to configure water 
transfers to provide positive environmental benefits. Such actions will close the loop on 
the overall water balance so that the environment is considered at all stages of managing 
the water balance.  
 
Although the allocation of water for consumptive users (industry, agriculture, fisheries, 
urban, recreational and domestic usage) is based mainly on engineering and 
mathematical models, the use of ecological models, incorporating biological indices, 
has great potential to improve the way water supply systems are operated and transfers 
between reservoirs are made. 
 
This research aims to develop an ecosystem response model to consider changes in algal 
periphyton communities in response to water chemistry and associated impacts on 
biofilm biodiversity, biological structure or general ecosystem function. 
 
 
2. METHODS 

 
The MacKenzie River is located on the northern slopes of the Grampians National Park 
in Victoria, south-east Australia. The Mackenzie River is one of the main tributaries of 
the Wimmera River and flows approximately 50 km from Wartook Reservoir before 
joining the Wimmera River. Ultimately it discharges into Lakes Hindmarsh and 
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Albacutya (Figure 1). The catchment lies to the south of the city of Horsham and covers 
an area of approximately 597 km2 (WCMA, 2004). The River has had a substantially 
modified and engineered flow regime since the construction of Wartook Reservoir in 
1887 (SKM, 2002). Water released from Wartook Reservoir is regulated at several 
locations for water supply and also, more recently, for the provision of environmental 
flows. The environmental watering of the MacKenzie River often includes pulses to 
mimic part of the flow regime to generate specific ecological responses and ‘top up’ 
critical refuge pools (VEWH, 2012). The MacKenzie River is ephemeral in nature. The 
discontinuous sections are mostly in the middle and lower parts of the River where 
flows vary greatly and are often dependent on transfers of water to consumptive users. 
Field sites have been established to reflect this variable and ephemeral nature. 
Commencing at Wartook Reservoir, an additional ten sites are located on the River 
proper. Further sites are located on the Mt Zero Channel which takes water from the 
upstream reach of the River for consumptive purposes. This channel is being used as a 
control site where flows can be manipulated with greater precision.   
 
Monitoring is undertaken regularly across the whole year, at all sites, to understand the 
effect of water release events on water quality and algal periphyton communities. 
Samples for water quality analyses were collected coincident with the algal samples. In 
situ measurements of temperature, pH, conductivity and dissolved oxygen were 
obtained using an Horiba multimeter. Other measurements, including total suspended 
solids (TSS), total nitrogen (TN) and phosphates (PO4-P), were undertaken in the 
laboratory using a HachDR 2800 and following standard methods. 
 
Algae were collected from five cobbles, pebbles or rocks, selected at random at each 
sampling station where velocity was relatively low at each of the established sampling 
sites. The periphyton was scraped from an area of 20-30 cm2 using a soft toothbrush and 
the algal suspension rinsed into a collection bottle. Separate samples were collected for 
estimation of biomass (dry mass, ash-free dry mass [AFDM] and Chlorophyll-a) and for 
algal identification and counting. Soft algae and diatoms were identified in the 
laboratory according to selected texts (Krammer & Lange-Bertalot 1986, 1988, 1991a, 
1991b; Sonneman et al, 2000; Ling & Tyler 2000). 
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Figure 1 Location of the ten sampling stations along the MacKenzie River system 
in the Wimmera catchment 
 
Streamflow information is available from a number of sites along the length of the 
MacKenzie River, and for this paper the data were obtained from GWMWater 
operational data. Other information (such as site information, flow regime variations 
and water quality data) can be obtained from the Victorian Water Resources Data 
Warehouse as quality controlled data 
(http://www.vicwaterdata.net/vicwaterdata/home.aspx).  
 
The algae-based ecological model, incorporating biological indices, is developed in this 
project, and is based on ecological conditions which define a healthy working river. The 
sensitivity values of species to anthropogenic stressors will be used to calculate algae-
based index scores for each sample in the datasets. Using the algae-based indices, every 
site of the MacKenzie River can be categorised as in bad, poor, moderate, good or 
excellent condition.  
 
The conceptual ecological model will be configured so that the influence of flow 
regimes on water quality, algal biomass, chlorophyll-a concentration, species 
composition and ecosystem function can be understood. This information will be used 
to inform the overall health implications for the River and, hence, assist the storage 
manager in configuring the consumptive flow for the MacKenzie River for greater 
ecological benefit. 
 
 
3. RESULTS 
 
The water quality results show the up-stream sections of the MacKenzie River has low 
pH (acidic), low conductivity and low nutrients. Down-stream however, the waters have 
higher pH (alkaline), higher conductivity and higher levels of nutrients (Table 1). The 

http://www.vicwaterdata.net/vicwaterdata/home.aspx
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results of the analyses of biomass showed changes between sampling sites. Chlorophyll-
a concentrations were highest at sites S1 and S3 (upstream). The accumulation of 
AFDM and dry mass were highest at the first sampling station (Figure 2) and results 
show there to be a 100% variation in values between site 1 and site 10.  
 
Table 1 Average annual physical and chemical water quality characteristics at the 
sampling stations (S1-S10) on the MacKenzie River in 2012 (Temp. = temperature, 
Cond. = conductivity, DO = Dissolved Oxygen). The data are an average of three 
repeat samples along the river during different seasons.  

 
 

  
Figure 2 Average annual concentration of chlorophyll-a and accumulation of dry 
mass and ash-free dry mass (AFDM) at each of the sampling stations along the 
MacKenzie River in 2012 (Based on an average of three readings from different 
sampling seasons). 
 
The species composition of diatoms and soft algae assemblages showed significant 
changes along the river. The most common diatom species in the upstream sites were 
Tabellaria flocculosa, Gomphonema affine, Navicula radiosa, Frustulia rhomboides, 
Melosira arentii, and Eunotia minor. However, this community changed downstream to 
include high numbers of Nitzschia capitellata and Meridion circulare (Figure 3). Here, 
common species in the soft algae community were Scenedesmus gracile and 
Cosmarium circulare.  
 
The lower, discontinuous part of the MacKenzie River is ephemeral in nature. Here 
flows depend largely on the transfer of water to consumptive users. However it is one of 
the main tributaries of the Wimmera River and so plays an important role ecologically. 
Figure 4 compares the volume of the water in Wartook Reservior and the head gauge of 
MacKenzie River, showing that water levels have varied seasonally in recent years. 
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 Unit S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 
pH - 6.5 6.8 6.7 6.6 6.9 7.2 7.4 7.3 7.5 7.5 
Temp. ºC 14 13 12 13 15 16 15 15 13 14 
Cond. µS cm-1 70 75 78 71 75 140 150 120 110 150 
DO mg l-1 8.1 7.5 9.5 8.2 8.2 8.5 8.52 8.46 9.2 8.5 
TSS mg l-1 4 5.2 6 7.1 9.8 9.1 8.5 17 11.5 14 
TN mg l-1 0.6 0.7 0.9 1.2 0.9 1.3 1.4 1.6 1.8 1.6 
PO4-P mg l-1 0.06 0.07 0.08 0.7 0.07 0.09 0.08 0.09 0.07 0.9 
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Figure 5 presents the flow hydrograph from Wartook Reservoir over a several months 
of 2012. Flow varies significantly over the course of a year and is dependent on both 
consumptive and environmental demands from the reservoir. Note that the maximum 
flow rate which can be discharged from Wartook is about 500 ML/d. Additional inflows 
can occur downstream of the reservoir from adjacent catchments and minor waterways. 
Sampling sites 6 to 10 would be most impacted by these other sources of inflow.  
 

 
 
Figure 3 Results of diatom analysis along the MacKenzie River sampling stations 
in July 2012. The length of each bar indicates the population size found for each 
species at each site. 
 

 
 

Figure 4 Hydrographs of Wartook Reservior measured at the head gauge for the 
past several years. Wartook Reservoir is located at the headwaters of the 
MacKenzie River. 
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The flow regime of the MacKenzie River directly impacts on the water quality, algal 
biomass, chlorophyll-a concentration, species composition and ecosystem functions. 
The conceptual model developed for the flow regime, and its impacts on water quality 
and biological properties of algal communities, is shown in Figure 6. The algae-based 
index will be developed for the Mackenzie River to understand stream condition and 
assist in configuring consumptive flows. Applied across the whole of the MacKenzie 
River system the index will allow sections to be classified as excellent, good, moderate, 
poor or bad condition. The conceptual model connects, multiple elements of the flows 
regime, the algae-based index and subsequent water body classification along the 
MacKenzie River to enhance the ecological performance of consumptive flows.  
 

 
 

Figure 5 Streamflow fluctuations at Wartook measured at the outlet structure of 
the Reservoir in 2012. These flows represent the water being released from the 
Reservoir into the River. 
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Figure 6 Conceptual model based on algae response for the MacKenzie River 
 
 
 
 
 
 

 
 

4. DISCUSSION 
 
The flow regime is a significant feature that directly influences the physical river 
environment (Gordon et al, 2004). According to Acreman & Dunbar (2004), all 
environmental flow methods for the allocation of water can be divided into four 
categories: look-up tables, desk top analysis, functional analysis and hydraulic habitat 
modelling. Each method has advantages and disadvantages. The flow regime has a 
direct impact on physical form, streamside zone, habitat structure, water quality and the 
aquatic biota of a river (Ladson et al, 1999). Deviation from the natural flow regime 
must be considered when trying to understand water quality and the allocation of water 
for environmental benefits (Norris & Thoms 1999).There are six types of flows (flow 
components) that describe the full flow regime of the rivers including cease to flow, low 
flows, freshes, high flows, bankfull flows and overbank flows (VEWH 2012). Each type 
of flow component has five ecological characteristics including magnitude, frequency, 
timing, duration and rate of change of hydrological conditions (Richter et al, 1996; Poff 
et al, 1997; Arthington, 2012).  
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Algae are sensitive to changes in environmental conditions and respond rapidly to 
disturbance (Stevenson et al, 2010). In addition to this, they are abundant and 
cosmopolitan in their distribution, can be sampled rapidly and have a wide range of 
structural (biomass, composition) and functional (metabolism) attributes (Burns & 
Ryder, 2001; EPA, 2003). Flow variation in rivers has been shown to affect biofilm 
structure (e.g. Ryder et al., 2006) and ecosystem processes (Ryder & Miller, 2005). 
Within the biofilm, diatom algae assemblages are highly responsive to shifts in water 
quality (Reid et al, 1995) and so their identification can reveal ecological responses to 
flow-driven changes in stream water quality.  
 
The results of this research have provided base line data for the MacKenzie River. They 
suggest that the algal communities, especially diatoms, are indeed sensitive to changes 
in water quality and different flow regimes. It is evident that assemblages vary with 
season suggesting that their response to flow will vary depending on the season and 
characteristics of water releases. Further analyses are being undertaken to assess the 
statistical relationship between the diatom results, water quality data and the antecedent 
conditions (e.g. rainfall and temperature in the lead up to the sampling period), and to 
changes in the primary productivity and algal community structure along the 
MacKenzie River.  
 
The MacKenzie River has been substantially regulated to allow for the manipulation of 
water transfers to generate multiple benefits for consumptive and environmental users. 
The project aims to advance the means in which water supply systems are operated and 
allocations to entitlement holders are made. The method employed to date has focussed 
on the use of biofilms and algal indicators for understanding in-stream ecology, water 
quality and their relation to the allocation of water for environmental benefits. However, 
more sampling is required and an opportunity exists to examine changes under field-
based, experimental conditions by designing a pilot experiment at Mt Zero channel to 
understand the relationships among water quality, algal community structure, algal 
biomass and ecosystem functions. This will further enhance the development of an 
ecological response model to guide consumptive, and environmental, water transfers.  

 
5. CONCLUSION 

 
This paper has described a research project which aims to use the MacKenzie River in 
Victoria, Australia, to develop an ecosystem response model to help improve the 
operational decisions around transferring consumptive water for environmental benefits.  
At this stage of the research project, it is concluded that: 

• The establishment of ten field sites provides sufficient resolution of information 
along the length of the River to help create an ecosystem response model; 

• The use of water quality is useful in creating an ecosystem response model; 
• The monitoring of algal periphyton communities is useful in developing an 

ecosystem response model; 
• Having support of the operator of the upstream reservoir, and associated in-

stream infrastructure assets, is useful for the purpose of designing specific flows 
to help create an ecosystem response model; 

• The conceptual framework creates a good platform to develop an ecosystem 
response model;  



312 

 

• Preliminary results indicated that water quality and algal periphyton 
communities are sensitive to streamflow changes along the River. 
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Appendix C: 

 

Morphology, ecology and biogeography of Stauroneis pachycephala P.T. Cleve 

(Bacillariophyta) and its transfer to the genus Envekadea 

 

 

Atazadeh E, Edlund M, Van de Vijver B., Mills K., Spaulding S., Gell P., Crawford S., 

Barton A., Lee S., Smiths K. Newall P., Potapova M. (2014. Diatom Research 29(4): 

455-464 

 

 

 

Abstract 
Stauroneis pachycephala was described in 1881 from the Baakens River, Port 

Elizabeth, South Africa. Recently, it was found during surveys of the MacKenzie River 

(Victoria, Australia), the Florida Everglades (USA), and coastal marshes of Louisiana 

(USA). The morphology, ecology and geographic distribution of this species are 

described in the present paper. This naviculoid species is characterised by lanceolate 

valves with a gibbous centre, a sigmoid raphe, an axial area narrowing toward the valve 

ends, and capitate valve apices. The central area is a distinct stauros that is slightly 

widened near the valve margin. The raphe is straight and filiform, and the terminal 

raphe fissures are strongly deflected in opposite directions. Striae are fine and radiate in 

the middle of the valve, becoming parallel and eventually convergent toward the valve 

ends. The external surface of the valves and copulae is smooth and lacks ornamentation. 

We also examined the type material of S. pachycephala. Our observations show this 
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species has morphological characteristics that fit within the genus Envekadea. 

Therefore, the transfer of S. pachycephala to Envekadea is proposed and a lectotype is 

designated. 

 

Keywords: diatoms, morphology, Stauroneis pachycephala, ecology, Envekadea, 

biogeography, taxonomy, lectotype  

 

 

Recent revisionary efforts on the classification and phylogeny of diatoms have targeted 

the naviculoid diatoms and recognised the importance of valve ultrastructure, protoplast 

organisation, molecular sequences, ecological and geological ranges, sexual 

compatibility and biogeography in defining relationships and diversity within this 

heterogeneous group(Round and Sims 1980, Round et al. 1990, Mann 1999, Spaulding 

et al. 1999). Revisions have resulted in the resurrection of old or description of 

numerous new genera, split off from the catch-all genus Navicula s.l. Bory de St. 

Vincent (Round et al. 1990). The genus Envekadea Van de Vijver et al. was described 

to include naviculoid diatoms with a sigmoid raphe, non-porous copulae, and large, 

rectangular to polygonal areolae closed by external hymenes (Gligora et al. 2009). 

Members of this genus are distributed across a broad ecological spectrum from marine 

to oligotrophic freshwaters (Gligora et al. 2009). To date, five species of Envekadea 

have been recognized (Gligora et al. 2009, Graeff et al. 2013, Lee et al. 2013b), 

including Envekadea pseudocrassirostris (Hustedt) Van de Vijver, Gligora, Hinz, Kralj 

& Cocquyt, E. hedinii (Hustedt) Van de Vijver, Gligora, Hinz, Kralj & Cocquyt, E. 

metzeltinii Lee, Tobias & Van de Vijver, E. palestinae (Gerloff, Natour & Rivera) Lee, 

Tobias & Van de Vijver and E. vanlandinghamii Graeff, Kociolek & S.R. Rushforth. 
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Stauroneis pachycephala P.T. Cleve has morphological features that conform to 

Envekadea. Stauroneis pachycephala was described in 1881 from the Baakens River, 

Port Elizabeth, South Africa, and subsequently reported from Australia (Foged 1978, 

John 1983, 1993, Gell and Gasse 1994, Hodgson 1995, Vyverman et al. 1995, Hodgson 

et al. 1997b, Haynes et al. 2007, Taukulis and John 2009), New Zealand (Foged 1979), 

Sweden (Cleve-Euler 1953), Sri Lanka, Cuba, and Papua New Guinea (Foged et al. 

1976, Foged 1984, Vyverman 1991). 

In the present paper, we provide morphological, ecological, and biogeographical 

analyses of S. pachycephala based on new collections from Victoria (Australia), Florida 

(USA), Louisiana (USA), and compare these with type material from South Africa. The 

transfer of S. pachycephala to Envekadea is proposed and a lectotype is designated.  

 

The MacKenzie River is located on the northern slopes of the Grampians National Park 

in Victoria, south-east Australia. The river receives a substantially modified and 

engineered flow regime since the construction of the Wartook Reservoir in 1887 (SKM 

2002b, Atazadeh et al. 2012). The river is one of the main tributaries of the Wimmera 

River and flows approximately 50 km from the Wartook Reservoir before joining the 

Wimmera River. The catchment lies to the south of the city of Horsham and covers an 

area of approximately 597 km2 (WCMA 2004b).  The upstream section of the river 

receives water for most of the year, providing a water supply for the city of Horsham. 

However, the lower part of the river is ephemeral and flows vary depending on 

withdrawals for consumption (WCMA 2004b). Despite the irregular flow regime, 

riparian vegetation is present along the length of the river and the river supports a range 

of aquatic fauna, such as brown trout (Salmo trutta Linnaeus), eastern gambusia 
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(Gambusia holbrooki Girard), and platypus (Ornithorhynchus anatinus Shaw) (WCMA 

2004b).  

The second site studied was the Florida Everglades, USA. This large wetland extends 

from Lake Okeechobee in the north to Florida Bay in the south, and includes both 

freshwater marsh in the interior and saline marsh along the coast. The Everglades has a 

distinct wet and dry season controlled by the subtropical climate and hydrologic 

management. Anthropogenic modification for water storage and flood control to support 

agricultural activity and urban populations beginning in the early 1900s have altered the 

broad, slow-moving sheet flow of water across the Everglades landscape into a complex 

network of channelised and controlled flow into distinct compartments, including Water 

Conservation Areas (WCAs) and the Everglades National Park (Light and Dineen 

1994). Much of the Everglades has a shallow peat layer that allows biogeochemical 

interactions between the limestone bedrock, groundwater, and biota, producing hard-

water conditions and thick, calcareous periphyton assemblages (Gaiser et al. 2011, 

Hagerthey et al. 2011). In WCA 1 (the Arthur R. Marshall Loxahatchee National 

Wildlife Refuge). However, a much deeper peat layer produces soft-water conditions 

and loose, flocculent assemblages with a distinct species composition (Harvey and 

McCormick 2009, Gaiser et al. 2011). Common Everglades wetland vegetation includes 

sawgrass (Cladium jamaicense), spikerush (Eleocharis spp.) and water lily (Nymphaea 

odorata), and common aquatic fauna include mosquitofish (Gambusia holbrooki), 

largemouth bass (Micropterus salmoides) and American alligator (Alligator 

mississippiensis) (Davis and Ogden 1994). 

The third region studied was the coastal marsh in the Chenier Plain of southwest 

Louisiana, USA. The Louisiana coastal marsh can be divided into two geomorphic 

zones: the Mississippi delta plain on the southeast coast and the Chenier plain of the 
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southwest with the dividing line located near Vermillion Bay (29°43'11" N, 91°58'34" 

W). The Chenier plain extends from Vermillion Bay to the Texas state border and 

includes over 6,000 km2 of coastal marshes. It was formed by deposits of fine-grained 

sediments of the Mississippi River during the Middle to Late Holocene. A series of 

regressive-transgressive phases created relict beach ridges (called ‘cheniers’) within a 

30-km wide coastal plain of low-energy fresh, brackish, and saline marshes (McBride et 

al. 2007). The cheniers act as barriers, reducing tidal flow to some areas of the marsh. 

The sediments are largely fine-grained silts and clays, with large amounts of organics 

and peat. Vegetation follows a general north-south salinity gradient of fresh to brackish 

to saline marsh.  Diatom samples were collected from a network of permanent wetland 

monitoring stations located throughout coastal Louisiana, the Coastwide Reference 

Monitoring System (Steyer 2010, Folse et al. 2012). The CRMS was designed to 

monitor coastal habitats in Louisiana and evaluate the effectiveness of wetland 

restoration strategies(Steyer 2010, Smith 2012). 

Benthic diatom samples from Australia were collected using standard methods 

(Stevenson and Bahls 1999). Physical and chemical characteristics of the water, 

including temperature, pH, specific conductivity and dissolved oxygen were measured 

in situ using an Horiba multimeter (Water checker U-10). Total nitrogen (TN), 

dissolved phosphorus (PO4-P) and total suspended solids (TSS) were measured in the 

laboratory using a Hach DR 2800 spectrophotometer. Diatom samples were digested in 

10% H2O2 at 90°C on a hotplate for 2 hours, after which 2 drops of 10% HCl were 

added. Samples were topped up with distilled water and left to settle overnight, the 

supernatant was discarded, and this process repeated at least four times (Battarbee 

1986). Permanent slides were prepared using the mountant Naphrax. Diatoms were 

identified using a Nikon Eclipse 80i microscope equipped with differential interference 
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contrast (DIC). For scanning electron microscopy (SEM), the rinsed samples were 

resuspended in a solution of deionised water and household bleach (50:1) for 30 

minutes and rinsed three times in distilled water. Diatom suspensions were dried 

directly on 22 mm aluminium stubs and gold coated with a Dynavac Xenosput sputter 

coater. Frustules were imaged in a Philips XL30 field-emission scanning electron 

microscope, with a working voltage of 2.0 kV and spot size 2. Material and samples 

from Florida and Louisiana were collected and prepared as noted in (Smith 2012, Lee et 

al. 2013a), respectively, and studied using an Olympus BX51 light microscope 

equipped with full immersion DIC optics capable of 1000x magnification. Permanent 

slides (or duplicates) of all collections that were microscopically analysed have been 

deposited at the Academy of Natural Sciences of Drexel University in Philadelphia 

(ANSP), the National Botanic Garden of Belgium (BR; Meise) and the Canadian 

Museum of Nature (CANA). 

Additional material examined for this study included exsiccatum Nr. 197 for Stauroneis 

pachycephala Cleve (Cleve & Møller 1879; South Africa (Cape of Good Hope) 

Baakens River, Port Elizabeth) from the Diatom Herbarium, Academy of Natural 

Sciences of Drexel University in Philadelphia (ANSP) and the isotype slide (ANSP 

GC64419) of Stauroneis pachycephala var. alaskana (Foged 1981) from Kuzitrin Lake, 

Alaska.  

 

Envekadea pachycephala (P.T. Cleve) I. Atazadeh & M.B. Edlund comb. nov. (Figs 

1-39) 

Basionym: Stauroneis pachycephala P.T. Cleve 1881, p. 15; pl. 3, fig. 43. 

Lectotype: Here designated as the specimen (Fig. 13) located 9.4 mm E x 5.8 mm S 

from the origin marked on slide ANSP Cleve & Møller 197. 
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Remarks: Stauroneis pachycephala was included in Cleve & Møller’s (1878, and not 

1879 as erroneously reported several times by various authors) list of species present in 

exsiccatum 197. However, this record must be considered as a nomen nudum, since the 

name was published without a valid description or diagnosis (ICBN Art. 38, (McNeill et 

al. 2012)). Therefore the valid description in (Cleve 1881) is taken as the basionym.  

Australian material: Cells solitary, frustules rectangular in girdle view with rounded 

capitate apices (Figs 1-11). Valves linear-lanceolate with convex margins, gradually 

narrowing towards capitate, broadly rounded valve apices. Valve dimensions (n=30): 

length 43.1-58.0 µm, breadth 7.0-9.0 µm, length:breadth 5.2:6.5, breadth of apex 5.4-

6.7 µm, breadth of constriction 4.6-6.0 µm. Axial area very narrow, linear. Central area 

forming a large and distinct stauros, slightly widening towards the valve margin. Raphe 

straight and filiform. Proximal raphe ends slightly expanded. Distal raphe fissures 

hooked towards opposite sides and widening at their ends. Striae radiate in the middle 

becoming convergent near the apices, 27.0-30.3 in 10 µm.  

South African material (lectotype; ANSP Cleve & Møller Nr. 197): The lectotype 

slide of S. pachycephala was examined during this study. Cleve described S. 

pachycephala in 1881 from the Baakens River, Port Elizabeth, South Africa: "(valves) 

Linear, gibbous in the middle and at the ends, which are broadly rounded and capitate. 

Striae oblique, very fine, about 29 in 0.01 mm. (29 in 10 µm), reaching the median line. 

Stauros reaching the margin. Median line straight. Terminal nodules turned opposite 

direction. Length 0.055 mm (55 µm). Breadth 0.009 mm (9 µm)."  

Valves lanceolate with the valve outline narrowing abruptly from the valve center to the 

subparallel sides, then expanding to the capitate valve apices (Figs 12-15). Valve 

dimensions (n=23): length 44.8-60.0 µm, breadth 8.0-10.0 µm, length:breadth 5.2-6.5, 

breadth of apex 5.4-6.7 µm, breadth of valve constriction 4.5-6.0 µm. Central area 
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forming a distinct stauros, abruptly widening near the valve margin. Raphe straight and 

filiform. Distal raphe fissures deflected in opposite directions. Striae fine, radiate in the 

valve center, becoming parallel mid-valve and convergent at the valve ends, 24.4-29.4 

in 10 µm.  

African specimens show slight differences in valve outline compared to other 

populations, with margins that narrow more abruptly away from the valve center, with 

larger specimens having nearly parallel sides tapering to capitate ends. The sample from 

South Africa contains an alkaline or brackish diatom assemblage dominated by 

Mastogloia G.H.K. Thwaites in W. Smith, Plagiotropis E. Pfitzer and several brackish 

Navicula J.B.M. Bory de Saint-Vincent species. 

North American material: In 1981, Foged described S. pachycephala var. alaskana 

Foged from Alaska, USA. A specimen found on the isotype slide (Fig. 16) conforming 

to the original illustration and description of S. pachycephala var. alaskana belongs to 

Caloneis P.T. Cleve and is not treated further in this paper. Recently, E. pachycephala 

was found during a survey in the Florida Everglades. The taxon is rare in Florida, but 

the highest abundances were observed in WCA-1, a distinctive, soft-water environment 

within the Everglades (E. Gaiser, unpublished data).  

Valves lanceolate, raphe sigmoid, axial area narrowing toward the valve ends, and 

capitate valve apices. The central area a distinct stauros that is slightly widened near the 

valve margin (Figs 17-24). Valve dimensions (n=16): length 34-46.4 µm, breadth 6.7-

8.6 µm. length:breadth 5.2-6.2, constriction breadth 3.5-4.6 µm, apex breadth 4.9-5.7 

µm, 27.8-29.4 striae per 10 µm.  

Samples from Florida were dominated by acidophilic species such as Brachysira 

brebissonii R. Ross in Hartley and Frustulia crassinervia (Brébisson) Lange-Bertalot & 

Krammer in Lange-Bertalot & Metzeltin.  
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Additional North American populations of E. pachycephala were found in coastal 

marshes in Louisiana, USA (Smith 2012). Valves lanceolate with an expanded valve 

center that narrowed toward a constriction that subtended capitate valve apices (Figs 25-

32). Valve dimensions (n=15): length 34.8-50.3 µm, breadth 7.0-8.3 µm, length:breadth 

5.0-6.4, breadth at constriction 3.6-4.6 µm, breadth at apex 4.8-6.2 µm. Striae radiate at 

the valve center, becoming parallel and eventually convergent at the valve ends, 26.3-

30.3 striae per 10 µm.  

In Louisiana, E. pachycephala was found in association with diverse Eunotia Ehrenberg 

and Pinnularia Ehrenberg species as well as Nitzschia obtusa W. Smith and Nitzschia 

scalaris (Ehrenberg) W. Smith in brackish sites (Smith 2012). 

SEM observations of Australian material: Areolae are entirely covered by external 

hymenes, giving the valve a smooth outer surface and obscuring the external areolar 

features. The raphe branches are straight, located in a shallow, narrow groove, clearly 

widening towards the central area (Figs 33, 34). The external proximal raphe ends are 

slightly enlarged and terminate in expanded pore-free regions. The external distal raphe 

ends are widened and hooked in opposite directions (Figs 33, 35) giving the raphe a 

sigmoid path. Internal raphe branches are straight and located on a raised, thickened 

sternum (Figs 36, 37). Internal distal raphe ends terminate on short but prominent 

helictoglossae, situated in an asymmetrically expanded part of the raphe sternum, most 

likely corresponding with the external groove (Figs 36, 37). Proximal raphe ends are 

short but clearly unilaterally hooked (Figs 36, 39). Striae are clearly visible in LM 

images and internal SEM views (Figs 36, 38). Striae are clearly bent and radiate near 

the central area, becoming more geniculate about 1/3 of the way toward the valve apex. 

Striae become parallel and even convergent at the apices. Striae are uniseriate and 

internally open by small, rounded areolae. The striae are situated between slightly raised 
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virgae and the areolae separated by very narrow struts. Striae continue uninterrupted 

with a few areolae on the valve mantle. The valve mantle is bordered by a large, 

unornamented zone that becomes smaller near the apices (Figs 33, 35, 38). The central 

area is formed by a thickened stauros, extending from the central nodule to the valve 

margins, where it merges into the valve mantle. The girdle is composed of apparently 

open, smooth copulae lacking perforations (Figs 38, 39).  

Taxonomic remarks: The morphological characteristics observed in E. pachycephala, 

such as the sigmoid raphe with the unilaterally deflected internal proximal ends, 

external distal raphe ends deflected in opposite directions and uniseriate, radiate striae 

occluded by external hymenes covering the entire valve, the internal structure of the 

areolae, and the unperforated copulae justify its transfer to Envekadea. The stauros, 

which is easily visible in the interior the valve of E. pachycephala, is absent in other 

known Envekadea species (Gligora et al. 2009, Graeff et al. 2013, Lee et al. 2013b). 

Ecology: The pH in the MacKenzie River where E. pachycephala was reported was 

circumneutral to acidic and the specific conductivity, suspended solids, and nutrient 

concentrations were low (Table 1). During this survey in the MacKenzie River, E. 

pachycephala was found only in the upper reaches of the MacKenzie River, especially 

near the Wartook Reservoir. The most common diatom genera in the MacKenzie River 

were Tabellaria Ehrenberg ex F.T. Kutzing, Navicula, Gomphonema Ehrenberg, 

Frustulia Rabenhorst, Brachysira Kützing, Brevisira K. Krammer, Eunotia, and 

Neidium E. Pfitzer. The relative abundance of E. pachycephala was low (3-4%). It was 

found in standing or slowly flowing water.  

In contrast, this species was present (maximum abundance 5.8%) in the Florida 

Everglades under higher specific conductances (96.9-5420 µS cm-1) with slightly higher 

nutrient content (total phosphorus 163-595 μg/g) and pH from 5.23-7.67.  
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In Louisiana, the salinity optimum for E. pachycephala was estimated at 2.43 ppt, but 

the taxon was found at sites with salinities from 0.02 to 10.67 ppt (Smith 2012). The 

type material from South Africa showed that this species co-occurs with brackish 

species such as Navicula, Mastogloia, and Plagiotropis. These results show that E. 

pachycephala has a wide ecological tolerance, from freshwater to brackish and low to 

high concentrations of nutrients. 

In the original description by Cleve (1881), E. pachycephala (as Stauroneis) was 

reported from brackish water in South Africa. In 1953, it was reported by Cleve-Euler 

from both Sweden and the southern hemisphere, in fresh and brackish waters (Table 2). 

(Cleve 1894, Hustedt 1959 ) reported it in brackish water from Tasmania and South 

Africa. According to (Foged 1978), E. pachycephala is mesohalobous and alkaliphilous 

(Table 2). This taxon was also reported from the Swan River Estuary in Western 

Australia by (John 1983). In our study, E. pachycephala was found in freshwater in 

Australia, whereas populations from Florida and Louisiana were growing in fresh to 

brackish conditions and across a wide nutrient spectrum. Based on its wide geographic 

range (including a report from Cuba (Foged 1984), it is a subtropical species that is 

more common in the southern hemisphere (Fig. 40). 

When originally described, Envekadea included species inhabiting a broad ecological 

spectrum, from brackish to fresh waters (Gligora et al. 2009). There are relatively few 

diatom genera that inhabit both fresh and saline waters (e.g. Surirella P.J.F. Turpin, 

Mastogloia, Navicula, Nitzschia A.H. Hassall; (Round and Sims 1980); most genera are 

restricted to fresh or saline habitats. Our study confirmed that Envekadea species 

tolerate a wide range of salinities, but in our case, we note that a single Envekadea 

species, E. pachycephala, is found across a wide range of salinity and nutrient 

conditions. For example, E. pachycephala has been reported from both brackish and 
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freshwater in Australia and adjacent areas (Foged 1978, John 1983, Gell and Gasse 

1994, Vyverman et al. 1995, Hodgson et al. 1997a).  Several studies suggest that E. 

pachycephala is rare in mesohalobous (Foged 1978) or brackish habitats (John 1983), 

which might suggest that these habitats are simply depositional areas where freshwater 

populations accumulate in fluvial sediments. However, Hodgson (1995) and Hodgson et 

al. (1997) studied both modern and fossil collections from Tasmania and noted that E. 

pachycephala has an ecological optimum in brackish waters, and that it was most 

abundant in Tasmania's Lake Fidler during a brackish water phase. Clearly additional 

work on the ecophysiology of this taxon is warranted to define its salinity tolerance, 

because salinity is one of the strongest ecological gradients controlling diatom 

distribution (Gell & Gasse 1994, Smith 2012).  Further evidence for the wide tolerance 

of this taxon is found in its species associations. In freshwater, it was most often 

associated with Frustulia, Brachysira, Brevisira, Eunotia, Tabellaria, Navicula, 

Gomphonema and Neidium species, while in brackish water it was associated with 

brackish species of Navicula, Nitzschia, Mastogloia, and Plagiotropis.  

There are slight morphological differences among the worldwide populations of E. 

pachycephala. We note that the MacKenzie River and type specimens from South 

Africa are slightly larger than those reported elsewhere, including the new populations 

from Florida and Louisiana, but the full range of valves encountered (length 34.8-60.0 

µm) encompasses the typical range of sizes expected for a single species (Edlund and 

Bixby 2001). The African specimens also show slight differences in valve outline, with 

margins that narrow more abruptly away from the gibbous valve center, with larger 

specimens having nearly parallel sides tapering to capitate ends. However, efforts to 

identify non-reducible morphological groups within the populations we studied did not 

provide clear separation of any subset of specimens or populations to suggest that we 
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are working with more than one taxon. The broad geographic range and environmental 

tolerance clearly invites future efforts to consider reproductive and molecular evidence 

that might support the recognition of separate species within this widespread taxon.  

We examined the morphology, ecology and biogeography of E. pachycephala and 

demonstrated that this species has a wide geographic distribution with a broad 

ecological tolerance, from fresh to brackish water. However, its salinity tolerance 

requires further investigation. Based on its morphology, S. pachycephala is transferred 

to the genus Envekadea as E. pachycephala (P.T. Cleve) I. Atazadeh & M.B. Edlund. 

Until now, only five species had been included within Envekadea (Gligora et al. 2009, 

Graeff et al. 2013, Lee et al. 2013b); this taxon adds another species to the genus.  
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Table 1. Minimum and maximum values of water quality parameters measured at the 

Lake Wartook head gauge at the MacKenzie River from November 2011 through 

October (GWMWC 2012). 

 

Parameter minimum maximum units 

pH 6.3 6.8 – 

Specific conductivity 69 85 µS cm-1 

Ammonia, NH3 0.024 0.150 mg L-1 

Soluble reactive phosphorus, SRP <0.003  mg L-1 

Total Kjeldahl nitrogen, TKN 0.007 0.015 mg L-1 

Total phosphorus, TP 0.007 0.015 mg L-1 

Nitrate-Nitrite, NOx <0.003 0.014 mg L-1 

Chlorophyll-a 3.2 12 µg L-1 
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Table 2. Morphological and ecological characteristics of Envekadea pachycephala 
populations. NSW = New South Wales, QLD = Queensland, PNG = Papua New Guinea 

 
 

Envekadea pachycephala  
    

 

Length Width Stria density Habitat Locality 

Author (year) (µm) (µm) (#/10 µm)   

      (Cleve and Moller 
1877-1882) 44.8-60.0 8.0-10.0 24.4-29.43 Brackish S. Africa 

      

Cleve 1894 40-55 7-9 29 Brackish Tasmania, S. 
Africa 

      

Cleve-Euler 1953 40-55 7-9 29 Fresh-brackish 
Southern 

Hemisphere, 
Sweden 

      

Hustedt 1959 40-60 7-9 30 Brackish Tasmania, S. 
Africa 

Foged 1976 35-41 7-8 30-35 Halophilous, alkaliphilous  Sri Lanka 

Foged 1978 35 6.5 30 Mesohalobous, alkaliphilous NSW, QLD 

Foged 1979 46 7 - Oligohalobous, alkaliphilous New Zealand 

      

John 1983 36-40 6-7 30 Freshwater Western Australia 

      

Foged 1984 40 8 dense Oligo- to mesohalobe, 
alkaliphile Cuba 

      
Vyverman 1991 44-45 7.9-8.1 28 Mesohalobous, alkaliphilous PNG 
      
Gell & Gasse 1994 40-60 7-9 30 Freshwater Victoria 

      Hodgson 1995 52.5 7.7 - Fresh-brackish Tasmania 

      Hodgson et al. 1997 33 5 30 Brackish Tasmania 

      (this study) 43.1-58.0 7.0-9.0 27.0-30.3 Freshwater Victoria, Australia 
      
(this study) 38.8-45.6 6.9-7.8 27.8-29.4 Freshwater, alkaline Florida 
      
(this study) 34.8-50.3 7.0-8.3 26.3-30.3 Fresh-brackish Louisiana 
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Figs 1-16. Envekadea species, light micrographs, DIC, scale bar = 10 µm. Figs 1-8. 
Envekadea pachycephala MacKenzie River, Wartook Outlet, Victoria, Australia (ANSP 
GC40128, CANA 87195, BR-4323). Figs 9-11. Envekadea pachycephala Wartook 
Reservoir, Victoria, Australia (ANSP GC40129, BR-4324). Figs 12-15. Envekadea 
pachycephala, Cl. & Møller exsiccatum Nr. 197 (ANSP Cleve & Moller 197), South 
Africa, Cape of Good Hope, Baakens River, Port Elizabeth. Fig. 13. Lectotype 
specimen. Fig. 16. Isotype slide of Stauroneis pachycephala var.  
alaskana Foged (1981) from ANSP GC64419 (Kuzitrin Lake, Alaska); this taxon 
belongs in the genus Caloneis. 
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Figs 17-32.  Size diminution series of Envekadea pachycephala from Florida 
Everglades and Louisiana, USA, light micrographs, DIC. All figures as same scale; 
scale bar (Fig. 17) = 10 µm.  
Figs 17-24. Envekadea pachycephala, Florida Everglades, USA (ANSP GC59136). 
Figs 25-32. Envekadea pachycephala, Louisiana, USA (ANSP GC65210). 
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Figs 33-39. Envekadea pachycephala, MacKenzie River, Australia. SEM. Fig. 33. 
External valve view. Fig. 34. Central part of the valve with expanded proximal raphe 
ends, external view. Fig. 35. External distal raphe end. Fig. 36. Internal valve view. Fig. 
37. Valve apex showing distal raphe end and helictoglossa. Fig. 38. Internal view of 
valve end showing unornamented valvocopula. Fig. 39. Central part of the valve with 
unilaterally deflected proximal raphe ends, internal view. Scale bars = 10 µm (Figs 33, 
36) and 2 µm (Figs 34, 35, 37-39). 
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Fig. 40. World-wide distribution of the records for Envekadea pachycephala (shaded area). 
South Africa (Cleve et Moller 1881, Cleve 1894, Hustedt 1959 ), Australia (Cleve 1894, 
Hustedt 1959, Foged 1978, John 1983,1993, Gell & Gasse 1994, Hodgson 1995, Vyverman 
et al. 1995, Hodgson et al. 1997, Haynes et al. 2007, Taukulis & John 2009). New Zealand 
(Foged 1979), Sri Lank (Foged 1976) Cuba (Foged 1984) Papua New Guinea (Vyverman 
1991), Sweden (Cleve-Euler 1953). In the present study, it is reported from Victoria 
(Australia) and Florida and Louisiana (USA). 
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Appendix D: List of all diatom species and their taxonomic authorities identified during 

this research in the MacKenzie River. 

 

Code Species Name Taxonomic Authority 
AcInf Achnanthes inflata (Kützing) Grunow 1868 
AcMin Achnanthidium minutissimum (Kützing) Czarnecki 1994 
AsFor Asterionella formosa Hassall 1850 
AuAmb Aulacosira ambigua (Grunow) Simonsen 1979 
AuDis Aulacoseira distans  (Ehrenberg) Simonsen 1979 
AuLac Aulacoseira lacustris (Grunow) Krammer 1991 
AuSub Aulacoseira subarctica (Müller) Haworth 1990 
BrBre Brachysira brebissonii Ross in Hartley 1986 
BrCal Brachysira calligraphica Lange-Bertalot 1994 
BrIra Brachysira irawanoides Lange-Bertalot & Gerd Moser 1994 
CaUnd Caloneis undosa Lange-Bertalot & Krammer 1987 
CaVen Caloneis ventricosa (Ehrenberg) Meister 1912 
CoPla Cocconies placentula Ehrenberg 1838 
CrCus Craticula cuspidata (Kutzing) D.G.Mann 1990 
CsTho Cyclostephanos tholiformis Stoermer, Håkansson & Theriot 1988 
CyMen Cyclotella meneghiniana Kützing 1844 
CyRos Cyclotella rossii Håkansson 1990 
CmAsp Cymbella aspera (Ehrenberg) Cleve 1894 
CmCis Cymbella cistula (Ehrenberg) Kirchner 1878 
CmLan Cymbella lanceolata (Agardh) Kirchner 1878 
CbCus Cymbopleura cuspidata (Kützing) Krammer 2003 
CbNav Cymbopleura naviculiformis (Auerswald) Krammer 2003 
CbSpp Cymbopleura sp. (Krammer) Krammer 1997 
CbSub Cymbopleura subanglica Krammer 2003 
DtSpp Diatoma sp. Bory de Saint-Vincent 1824 
DtTen Diatoma tenuis Agardh 1812 
DpSub Diplonies subovalis (Hilse) Cleve 1891 
DsSte Discostella stelligera (Cleve & Grunow) Houk & Klee 2004 
EnMin Encyonema minutum (Hilse) D.G.Mann 1990 
EnSpp Encyonema sp. Kützing 1834 
EnPac Envekadea pachycephala (Cleve) Atazadeh & Edlund 2014 
EpSor Epithemia sorex Kützing 1844 
EuBig Eunotia bigibba Kützing 1849 
EuBil Eunotia bilunaris (Ehrenberg) Schaarschmidt 1881 
EuCar Eunotia carolina Patrick 1958 
EuCur Eunotia curvata (Kützing) Lagerstedt 1884 
EuDio Eunotia diodon Ehrenberg 1837 
EuExi Eunotia exigua (Brébisson in Kutzing) Rabenhorst 1864 
EuFab Eunotia faba Ehrenberg 1837 
EuFal Eunotia fallax Cleve 1895 
EuFle Eunotia flexuosa (Brébisson ex Kützing) Kützing 1849 
EuHex Eunotia hexaglyphis Ehrenberg 1854 
EuMin Eunotia minor (Kützing) Grunow 1881 
EuPec Eunotia pectinalis Kützing) Rabenhorst 1864 
EuRho Eunotia rhomboidea Hustedt 1950 
EuSer Eunotia serpintina Ehrenberg 1854 
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EuSer Eunotia serra Ehrenberg 1837 
EuSud Eunotia sudetica Müller 1898   
EuTri Eunotia triodon Ehrenberg 1837 
FrAci Fragilaria acidobiontica (Charles) Williams and Round 1988 
FrCap Fragilaria capucina Desmazières 1830 
FrVau Fragilaria vaucheriae (Kützing) J.B.Petersen 1938 
FsBla Frustulia blancheana Maillard 1978 
FsRho Frustulia rhomboides (Ehrenberg) De Toni 1891 
FrSpp Frustulia sp. Rabenhorst 1853 
FrVul Frustulia vulgaris (Thwaites) De Toni 1891 
GoAcu Gomphonema acuminatum Ehrenberg 1832 
GoAff Gomphonema affine Kützing 1844 
GoAng Gomphonema angustatum (Kützing) Rabenhorst 1864 
GoGra Gomphonema gracile Ehrenberg 1838 
GoOli Gomphonema olivaceum (Hornemann) Brébisson 1838 
GoSpp Gomphonema sp. Ehrenberg 1832 
GoCla Gomphonma clavatum Ehrenberg 1832 
GyAcu Gyrosigma acuminatum (Kützing) Rabenhorst 1853 
GyAtt Gyrosigma attenuatum (Kützing) Rabenhorst 1853 
HaAmp Hantzschia amphioxys (Ehrenberg) Grunow 1880 
KaObl Karayevia oblongella  (Østrup) Aboal 2003 
LuMut Luticola mutica (Kützing) Mann 1990 
MlAre Melosira arentii (Kolbe) Nagumo & Kobayashi 1977 
MeCir Meridion circulare (Greville) Agardh 1831 
NaCry Navicula cryptocephala Kützing 1844 
NaGre Navicula gregaria Donkin 1861 
NaHei Navicula heimansioides Lange-Bertalot 1993 
NaInc Navicula incertata Lange-Bertalot 1985 
NaLan Navicula lanceolata Ehrenberg 1838 
NaRad Navicula radiosa Kützing 1844 
NaRhy Navicula rhynchocephala Kützing 1844 
NaVir Navicula viridula Ehrenberg 1836 
NeAff Neidium affine (Ehrenberg) Pfitzer 1871 
NeApi Neidium apiculatum Reimer 1959 
NeBoy Neidium boyeri Reimer 1959 
NeIri Neidium iridis (Ehrenberg) Cleve 1894 
NiAgn Nitzschia agnita Hustedt 1957 
NiCao Nitzschia capitellata Hustedt 1922 
NiCla Nitzschia clausii Hantzsch 1860 
NiDiss Nitzschia dissipata (Kützing) Rabenhorst 1860 
NiGra Nitzschia gracilis Hantzsch 1860 
PiAba Pinnularia abaujensis (Pantocsek) R.Ross 1947 
PiBor Pinnularia borealis Ehrenberg 1843 
PiBra Pinnularia braunii Cleve 1895 
PiTab Pinnularia cf. tabellaria Ehrenberg 1843 
PiDiv Pinnularia divergens Smith 1853 
PiInt Pinnularia interupta Smith 1853 
PiSim Pinnularia similis Hustedt 1937 
PiSub Pinnularia subcapitata Gregory 1856 
PiBir Pinnularia viridiformis Krammer 1992 
PlFre Planothidium frequentissimum (Lange-Bertalot) Lange-Bertalot 1999 
PmAbu Psammothidium abundans (Manguin) Bukhtiyarova & Round 1996 
PmCon Psammothidium confusum (Manguin) van de Vijver 2002 

http://www.algaebase.org/search/species/detail/?species_id=Ude2035e50def441e
http://www.algaebase.org/search/species/detail/?species_id=Ude2035e50def441e
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PsBre Pseudostaurosira brevistriata (Grunow) Williams & Round 1988 
RhBre Rhopalodia brebissonii Krammer 1987 
SePup Sellaphora pupula (Kützing) Mereschkovsky 1902 
SfExi Stauroforma exiguiformis (Lange-Bertalot) Flower,  Jones & Round 1996 
StAcu Stauroneis acuta Smith 1853 
StAnc Stauroneis anceps Ehrenberg 1843 
StKri Stauroneis kriegeri Patrick 1945 
StPho Stauroneis phoenicenteron (Nitzsch) Ehrenberg 1843 
StCon Staurosira contruens Ehrenberg 1843 
StEll Staurosira elliptica (Schumann) Williams & Round 1987 
SsPin Staurosirella pinnata (Ehrenberg) Williams & Round 1988 
SpAnc Stenopterobia anceps (Lewis) Brébisson ex Van Heurck 1896 
SpCur Stenopterobia curvula (Smith) Krammer 1987 
SpDel Stenopterobia delicatissima (Lewis) Brébisson ex Van Heurck 1896 
SuAng Surirella angusta Kützing 1844 
SuEle Surirella elegans Ehrenberg 1843 
SuLin Surirella linearis Smith 1853 
SyAcu Synedra acus Kützing 1844 
SyRum Synedra rumpens Kützing 1844 
SySub Synedra subrhombica Nygaard 1954 
TaFen Tabellaria fenestrata (Lyngbye) Kützing 1844 
TaFlo Tabellaria flocculosa (Roth) Kützing 1844 
TaVen Tabellaria ventricosa Kützing 1844 
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Appendix E: List of all soft algae species and their taxonomic authorities identified 

during this research in the MacKenzie River. 

 

Code Species Name Taxonomic Authority 
AnMac Anabaena macrospora Klebahn 1895 
AnFlos Anabaena flos-aquae Brébisson ex Bornet & Flauhault 1886 
AkFal Ankistrodesmus falcatus (Corda) Ralfs 1848 
BaBre Bambusina brebissonii Kützing ex Kützing 1849 
BuPyg Bulbochaete pygmaea Kargupta et al. 1977 
CaRef Campylomonas reflexa (Marsson) Hill 1991 
CeCor Ceratium cornutum (Ehrenberg) Claparède & Lachmann 1859 
CeFur Ceratium furcoides (Levander) Langhans 1925 
ChVul Chara vulgaris Wallroth 1815 
ChSpp Chara sp. Linnaeus 1753 
ClVul Chlorella vulgaris Beyerinck [Beijerinck] 1890 
CrTur Chroococcus turgidus (Kützing) Nägeli 1849 
CdGlo Cladophora glomerata (Linnaeus) Kützing 1843 
CoSpp Closterium sp.   
CoEhr Closterium ehrenbergii Meneghini ex Ralfs 1848 
CoTum Closterium tumidulum Gay 1884 
CsCir Cosmarium circulare Reinsch 1867 
CsSpo Cosmarium spotella Brébisson ex Kützing 1849 
CsDep Cosmarium depressum (Nägeli) Lundell 1871 
CsJav Cosmarium javanicum  Nordstedt 1880 
CySpp Cryptomonas sp. Ehrenberg 1832 
DiDiv Dinobryon divergens Imhof 1887 
DiSer Dinobryon sertularia Ehrenberg 1834 
EuAns Euastrum ansatum Ehrenberg ex Ralfs 1848 
EuSpp Euastrum sp. Ralfs 1848 
EuDiv Euastrum divergens Joshua 1886 
EgAcu Euglena acus (Müller) Ehrenberg 1830 
GyAus Gymnodinium australicum Playfair 1919 
GoPec Gonium pectorale Müller 1773 
LySpp Lyngbya sp. Agardh Ex Gomont 1892 
LyHie Lyngbya hieronymusii Lemmermann 1905 
MePun Merismopedia punctata Meyen 1839 
MiAla Micrasterias alata Wallich 1860 
MoSub Monoraphidium subclavatum Nygaard 1977 
NiFur Nitella furcata (Roxburgh ex Bruzelius) Agardh 1824 
NiSpp Nitella sp. Agardh 1824 
NoSpu Nodularia spumigena Mertens ex Bornet & Flahault 1888 
NsLin Nostoc cf. linckia Bornet ex Bornet & Flahault 1886 
OeMon Oedogonium monile Braun ex Hirn 1900 
OeUnd Oedogonium undulatum Braun ex Hirn 1900 
OoPar Oocystis parva West & West 1898 
OoPus Oocystis pusilla Hansgirg 1890 
OsLim Oscillatoria limosa Agardh ex Gomont 1892 
OsSpp Oscillatoria sp. Vaucher ex Gomont 1822 
OsAnn Oscillatoria annae Goor 1918 
OsTer Oscillatoria terebriformis Agardh ex Gomont 1892 

https://en.wikipedia.org/wiki/Jacob_Georg_Agardh
https://en.wikipedia.org/wiki/Carl_Adolph_Agardh
https://en.wikipedia.org/wiki/Jean_Pierre_%C3%89tienne_Vaucher
https://en.wikipedia.org/w/index.php?title=Maurice_Gomont&action=edit&redlink=1
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OsIrr Oscillatoria irrigua Kützing ex Gomont 1892 
PdAng Pediastrum anguslosum Ehrenberg ex Meneghini 1840 
PdDup Pediastrum duplex Meyen 1829 
PeLom Peridinium lomnickii Lindemann 
PeRac Peridinium raciborskii Woloszynska 1912 
PhAut Phormidium autumale Gomont 1892 
PhPla Phormidium playfairi  
RhSpp Rhizoclonium sp. Kützing 1843 
ScArm Scenedesmus armatus (Chodat) Chodat 1913 
ScGra Scenedesmus gracilis Matvienko 1938 
ScAcu Scenedesmus acutus Meyen 1829 
ScAcu Scenedesmus acuminatus (Lagerheim) Chodat 1902 
ScOpo Scenedesmus opoliensis  Richter 1895 
ScObl Scenedesmus obliquus (Turpin) Kützing 1833 
SzSpp Schizothrix sp. Kützing ex Gomont 1892 
SyInf Spirogyra inflata (Vaucher) Dumortier 1822 
SdMeg Staurodesmus megacanthus (Lundell) Thunmark 1948 
StJab Staurastrum javanicum Turner 1893 
StSmi Staurastrum smithii Teiling 1946 
StPin Staurastrum pinnatum Turner 1893 
StGra Staurastrum gracile Ralfs ex Ralfs 1848 
StEle Staurastrum elegans Borge 1896 
SgFla Stigeoclonium flagelliferum Kützing 1849 
UlSpp Ulothrix sp. Kützing 1833 
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