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a b s t r a c t

In blasting operation, the aim is to achieve proper fragmentation and to avoid undesirable events such
as backbreak. Therefore, predicting rock fragmentation and backbreak is very important to arrive at a
technically and economically successful outcome. Since many parameters affect the blasting results in a
complicated mechanism, employment of robust methods such as artificial neural network may be very
useful. In this regard, this paper attends to simultaneous prediction of rock fragmentation and backbreak
in the blasting operation of Tehran Cement Company limestone mines in Iran. Back propagation neural
network (BPNN) and radial basis function neural network (RBFNN) are adopted for the simulation. Also,
regression analysis is performed between independent and dependent variables. For the BPNN modeling,
a network with architecture 6-10-2 is found to be optimum whereas for the RBFNN, architecture 6-
36-2 with spread factor of 0.79 provides maximum prediction aptitude. Performance comparison of the
developed models is fulfilled using value account for (VAF), root mean square error (RMSE), determination

2
coefficient (R ) and maximum relative error (MRE). As such, it is observed that the BPNN model is the
most preferable model providing maximum accuracy and minimum error. Also, sensitivity analysis shows
that inputs burden and stemming are the most effective parameters on the outputs fragmentation and
backbreak, respectively. On the other hand, for both of the outputs, specific charge is the least effective
parameter.
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. Introduction

Backbreak is one of the undesirable phenomena in the blasting
peration. In other words, a blast without any unwanted effects
an be evaluated as a successful activity, and in such activity, a
arge proportion of the available energy has been consumed in
he right direction, i.e. rock fragmentation. Rock fragmentation
an be considered as the main objective of the blasting opera-
ion. Size distribution of the rock fragments is very important on
he overall mining and processing plant economics (Michaux and
∗ Corresponding author. Tel.: +91 294 2471379.
E-mail address: mkhandelwal1@gmail.com (M. Khandelwal).

eer review under responsibility of Institute of Rock and Soil Mechanics, Chinese
cademy of Sciences.

674-7755 © 2013 Institute of Rock and Soil Mechanics, Chinese Academy of
ciences. Production and hosting by Elsevier B.V. All rights reserved.
ttp://dx.doi.org/10.1016/j.jrmge.2013.05.007

t
o
i
t
o
i
i
f
e
r
t
s

Elsevier B.V. All rights reserved.

jordjevic, 2005; Monjezi et al., 2009). On the other hand, the
lasting operation usually is accompanied by various unwanted
henomena such as backbreak. Backbreak is the fractured zone
eyond the last blasting row (Jimeno et al., 1995). Occurrence
f this phenomenon is an indication of wasting potential explo-
ive energy. Moreover, it has some other hazardous effects such
s slope instability. Therefore, remedial measures should be pre-
ented for diminishing and/or omitting backbreak. The effective
last design parameters are (1) blasting pattern components, (2)
ock mass geomechanical properties, and (3) explosive specifica-
ions (Thornton et al., 2002; Zhu et al., 2007, 2008). Implementation
f a suitable blasting pattern, as a controllable parameter, is very
mportant in preventing backbreak and achieving proper fragmen-
ation (Monjezi and Dehghani, 2008). Gates et al. (2005) pointed
ut that the backbreak is increased when inappropriate delay tim-
ng is applied. Many researchers believe that excessive burden
s the main cause of the backbreak and producing oversize rock
ragments (Konya and Walter, 1991; Konya, 2003). To date, sev-

ral empirical models have been developed to predict the blasting
esults. However, complicated nature of the problem due to mul-
iplicity of the effective parameters has caused development of
implified prediction models with limited number of independent

dx.doi.org/10.1016/j.jrmge.2013.05.007
http://www.rockgeotech.org
mailto:mkhandelwal1@gmail.com
dx.doi.org/10.1016/j.jrmge.2013.05.007
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Fig. 1. Tehran cement company limestone mines.

ariables. The simplification assumptions are the main cause of
oor performance of the empirical models. Moreover, simulta-
eous prediction of backbreak and fragmentation is not possible
sing previously developed models. In order to overcome short-
omings of the empirical models, artificial intelligence (AI) based
ethods can effectively be applied to solving complicated prob-

ems. Some of the most popular AI paradigms are artificial neural
etwork (ANN), fuzzy inference system (FIS) and genetic algorithm
GA).

ANN has capability of learning, evoking and generalizing from
he given patterns (Cheng and Ko, 2006). Its high performance
n solving complicated problems has made this technique so
pplicable. Various applications of the ANN method in rock engi-
eering have been reported in the literature (Cai and Zhao, 1997;
ang and Zhang, 1997a, 1997b; Maulenkamp and Grima, 1999;
enadros and Kaliampakos, 2004; Ermini et al., 2005). Also, sev-
ral researchers have implemented the method in the field of
ine blasting (Khandelwal and Singh, 2005, 2006, 2007, 2009;

akhshandeh et al., 2010; Kulatilake et al., 2010; Khandelwal, 2010,
012; Monjezi et al., 2010).

In this paper, an attempt has been made to simultaneously pre-
ict backbreak and fragmentation due to blasting operation in the
ehran Cement Company limestone mines using ANN method.

. Case study

Tehran Cement Company limestone mines, i.e. Bibishahrbanoo,
esari and Safaie, are located at the southeast of Tehran. These
ines are under development and have total proved limestone

eposits of 41.3 million tons. From the geological point of view,
hese mines are situated in the sedimentary rocks of Cretaceous
eriod. The limestone layers with an eastwest extension have 75◦

ip to the north. Limestone is the main exposure layer in the
rea while in some parts black shale and cream marl are also
bserved. The Nesari mine is located 10 km northeast of Tehran
ement Company. Layers of dolomite and dolomitic limestone are
bserved in this mine in a narrow strip formation. Safaie Moun-
ain is also located in the northwest of Bibishahrbanoo Mountain
Fig. 1).

The blasting pattern specifications of limestone mines are pre-
ented in Table 1. Mean fragment size of 45 cm is suitable for the

ine primary crusher.
The controllable parameters of burden, spacing, stemming,

ench height, specific charge and specific drilling are considered as
nputs to develop an ANN model for predicting backbreak and rock
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ragmentation as the model outputs. Fig. 2 shows the undesirable
ackbreak after blasting in mines.

It is noted that, for determining fragmentation quality, image
rocessing method is employed. As such, 80% passing size (D80)

s considered as the fragmentation evaluation index. Variations of
he input and output parameters are given in Table 2. In this study,
03 datasets are collected from practical blasting operations of the
ines. The available datasets are grouped into training and testing

atasets. For this, using sorting mechanism, 10% of the datasets are
ept apart for testing and evaluating of the simulations.

. Statistical analysis

Multivariate regression analysis (MVRA) is an extension of
egression analysis, which was firstly employed by Pearson in
908 (Yilmaz and Yuksek, 2009). This method can easily be used
or determining the linear and/or nonlinear relationship between
ependent predictive and independent criterion variables. The
ain form of MVRA is

= ˇ0 + ˇ1x1 + ˇ2x2 + · · · + ˇnxn (1)

here ˇ1, ˇ2,. . ., ˇn are the coefficients of regression model; ˇ0 is
constant value; Y is the dependent variable; and x1, x2,. . ., xn are

he independent variables.
Two MVRA models are developed to predict backbreak and frag-

entation considering input parameters given in Table 2.
Eqs. (2) and (3) show mathematical formulations of the

eveloped models for predicting backbreak and fragmentation,
espectively. Also, statistical details of the MVRA models are sum-
arized in Table 3.

B = 0.494B + 1.082S + 0.015H + 1.203T − 0.056SC + 23.576SD − 8.501 (2)

r = 0.371B + 0.215S − 0.012H + 0.182T − 0.025SC + 6.45SD − 1.959 (3)

. Basis of artificial neural network

ANN is a subsystem of AI. This computational system is a sim-
lation of human brain (Maulenkamp and Grima, 1999). Original
NN was introduced by McCulloch and Pitts (1943), and since then

t was popular and applicable to various fields of science and tech-
ology to solve complicated problems. Capabilities of the technique
re calculating arithmetic and logical functions, generalizing and
ransforming independent variables to the dependent variables,
arallel computations, nonlinearity processing, handling imprecise
r fuzzy information, function approximation and pattern recogni-
ion.

ANN is trained using a set of real inputs and their corresponding
utputs. For a better approximation, sufficient number of datasets
s required. Performance of the trained model is checked with part
f the available data known as testing datasets. To find out the best
ossible network, various topologies are constructed and tested.
he process of model training-testing has to be continued until the
ptimum model with minimum error and maximum accuracy is
chieved. ANN training-testing (Monjezi and Dehghani, 2008) is
llustrated in Fig. 3.

A neural network has a layered structure, and each layer con-
ains processing units or neurons. Problem effective variables
re placed in the input layer, whereas objectives or dependent
ariables are put in the last (output) layer. The computation compo-
ents (black box) of the system are the neurons of hidden layers. All
f the layers are connected to each other by weighted connections.

ig. 4 shows a typical ANN structure. Each neuron is connected to
he neurons in the subsequent layer. However, there is no connec-
ion between the neurons of the same layer (Demuth and Beale,
994).
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Table 1
Blasting pattern specifications of limestone mines.

Main explosive type Secondary explosive type Blasting hole pattern Bench height (m) Hole diameter (mm) Rows per blast Holes per row

ANFO Emulation V-cut (staggered) 15 76 1–4 10–15

Fig. 2. The undesirable backbreak after blasting in mines.

Table 2
Basic statistics of inputs and output parameters.

Burden B (m) Spacing S (m) Hole height H (m) Stemming T (m) Specific charge SC (kg/m3) Specific drilling SD (m/m3) Back break BB (m) Fragmentation Fr (m)

(8.303) 0.063–0.226 (0.109) 1–4 (2.41) 0.37–1.76 (0.82)

N

a
t

g
i
t
o

O

w
b

f
a

y

1.8–4.5 (3.02) 1.7–4.3 (3.35) 2.5–28.5 (17.8) 1.6–3 (2.8) 1.96–28.68

ote: Numbers in parentheses represent the average values.

In the training process, the interconnections among the neurons
re initially assigned specific weights. The network would be able
o perform a function by adjusting the initial weights.

A single neuron containing multiple inputs (x1,· · ·, xn) and a sin-
le output (y) is shown in Fig. 5. In the process of ANN training, an
nitial arbitrary value (weight) is assigned to the connections and
hen to combine all of the weighted inputs and generate the neuron
utput, and the following equation is applied:

=
∑

xiwi + b (4)

here xi is the inputs, wi is the connection weights, and b is the
ias.

To map a neuron net output to its actual output, an activation
unction f has to be selected. The transfer function can be expressed

s

= f (O) = f (
∑

xiwi + b) (5)

Fig. 3. Artificial neural network training-testing process.

i
[
t
f
t
t

Fig. 4. Artificial neural network structure.

Applying Eq. (5) to the neuron initial summation output result-
ng from Eq. (4), the neuron final output within a range of [0, 1] or
−1, 1] is achieved depending on the type of applied transfer func-

ion. It is noted that a single activation function should be selected
or the neurons of a particular layer. Type of the activation func-
ion is fully dependent on nature of the problem to be solved. Also
heir respective graphic presentations are shown in Table 4. During

Fig. 5. Neuron structure.
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Table 3
Linear regression coefficients for backbreak and fragmentation.

Independent variables Regression coefficient Standard error

Backbreak Fragmentation Backbreak Fragmentation

Constant −8.501 −1.959 7.746 1.882
B 0.494 0.371 0.804 0.194
S 1.082 0.215 0.868 0.213
H 0.015 −0.012 0.035 0.009

0.18
−0.02

6.45
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T 1.203
SC −0.056
SD 23.576

he training process, network tries to decrease difference between
redicted and real values.

To do so, a specific algorithm is selected by which connection
eights and biases are repeatedly updated until the minimum error

s provided. There are various types of training algorithms, such as
ack propagation and radial basis (Demuth and Beale, 1994).

.1. Back propagation neural network

Back propagation neural network (BPNN) normally has a multi-
ayer structure with one or more nonlinear hidden layer and a linear
utput layer. It is widely used as a predicting tool in various fields of
eo-sciences. Generally, in BPNN four transfer functions are used as
resented in Table 4. These networks can be used to make nonlinear
nd/or linear correlation between input(s) and output(s).

Various types of functions, such as Newton and gradient
escent, can be used for training BPNNs. In the simplest form,
eights and biases are frequently updated to decrease performance

unction. Two different techniques (incremental method and batch
ethod) are implemented in the learning process of the ANN. In the

ncremental method, weights and biases are upgraded after each
nput entrance to net but in the batch method upgrading process is
one after entrance of all inputs. Generally, performance function

s considered as the mean square error (MSE), which is calculated
y the following equation (Demuth and Beale, 1994; Benadros and
aliampakos, 2004):

SE = 1
N∑

(yi − y′
i)

2 (6)

N

i=1

here N is the number of input–output datasets.

able 4
PNN most usual transfer functions.

Transfer function
situation

Transfer function diagram

Hidden layers

Output layer

m
I
d
R

5

A
(
(

V

R

R

2 0.72 0.178
5 0.049 0.014

19.33 4.756

.2. Radial basis function neural network

Radial basis function neural network (RBFNN) is one of the effi-
ient artificial networks. These types of the networks are mostly
sed for function approximation. However, they can also be applied
or pattern recognition and classification. Arriving in very small
rrors during training process can be considered as the main
dvantage of RBFNN over BPNN (Haykin, 1999; Christodoulou and
eorgiopoulos, 2001). Unlike BPNN, in the structure of RBFNN,

here is only one hidden layer that makes computation time very
ess. Moreover, transfer function ϕ of the hidden layer is always of
he Gaussian type:

(P) = exp

(
− 1

2�j
||P − Cj||2

)
(7)

here P is the input vector; Cj and �j are the center and extension
spread factor) of Gaussian function, respectively.

As illustrated in Fig. 6a, ϕ(P) reaches the maximum value (1.0)
hen P is equal to 0.0. In this way, when difference between values

f weights and inputs is lower, the neuron output will be greater. In
act, here the amount of output of hidden layer shows the absolute
ifference between connection weights and inputs. In the RBFNN,
he jth network output dj (Demuth and Beale, 1994) can be calcu-
ated by

j =
N∑

j=1

ϕj(P)wij (8)

here ϕj is the jth neuron output, and wij is the output layer weight.
During the training process, parameters Cj, �j and wij are deter-

ined by the network to provide the best approximation function.
n this process, optimum number of neurons required for the hid-
en layer is also determined by the network. The structure of a
BFN is illustrated in Fig. 6b.

. Results and discussion

To compare model performance of the regression analysis and
NN method, value account for (VAF), root mean square error

RMSE), determination coefficient (R2) and maximum relative error
MRE) are utilized:

AF = 100
[

1 − var(y − y′)
var(y)

]
(9)

MSE =

√√√√ 1
N

N∑
i=1

(y − y′)2 (10)
2 =
[ ∑N

i=1(y − ȳ)(y′ − ȳ′)∑N
i=1(y − ȳ)2∑N

i=1(y′ − ȳ′)2

]2

(11)
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Fig. 7. The correlation of measured and predicted data with back propagation neural
network.

F
n

o
a
p
this relation R is calculated by
ig. 6. (a) Radial basis transfer function (radbas) and (b) structure of a radial basis
unction network.

RE = max
(

100
|y − y′|

y

)
(12)

here y and y’ are the measured and predicted values, respectively;
¯ and ȳ′ are the average measured and average predicted values,
espectively; var(·) is the variance.

Table 5 shows the performance of some of the constructed
PNN models. As it is observed from this table, BPNN model with
rchitecture 6-10-2 gives the best result with minimum errors
nd maximum accuracy, and is considered as the optimum model
mongst the BPNN models. Also, Table 6 shows the performance of
ome of the constructed RBFNN models with various spread factors.
s it is seen from Table 6, the model with spread factor of 0.79 pro-
ides the best results. Furthermore, performance of the regression
odel is shown in Table 7. Figs. 7–9 show the correlation between

redicted and measured outputs for the three methods of model-
ng. In Figs. 7–9, dashed line shows 1:1 slope line, where measured
nd predicted values will be same. From Tables 5–7 and Figs. 7–9, it
s noted that BPNN modeling shows better prediction capability as
ompared to the other applied methods. Superiority of BPNN over
BFNN was also reported by Monjezi et al. (2010).

. Sensitivity analysis
Cosine amplitude method (CAM) of sensitivity analysis was
rst introduced by Yang and Zhang (1997a). This technique was
mployed to find out the most effective input parameters on

R

ig. 8. The correlation of measured and predicted data with radial basis function
eural network.

utput parameters. In this method, all the data pairs are defined
s a specific point in m-dimensional space. In this way, each of the
arameters is directly connected to the outputs. The strength of
ij

ij =
∑m

k=1xikxjk∑m
k=1x2

ik

∑m
k=1x2

jk

(13)
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Table 5
The calculated performance indices for back propagation neural network models.

No. Net structure R2 (%) RMSE VAF (%) MRE (%)

BB Fr BB Fr BB Fr BB Fr

1 6-10-2 87.1 84.8 0.2206 0.0673 90.21 95.28 16.58 16.23
2 6-14-2 90.2 86.7 0.3052 0.1294 82.73 86.34 20.2 27.45
3 6-18-2 74.9 65.3 0.4867 0.3581 77.35 74.81 43.5 62.7
4 6-5-5-2 75.6 66.1 0.3955 0.3024 81.47 63.23 36.11 59.89
5 6-10-6-2 88.5 79.5 0.5438 0.4147 70.31 47.36 52.74 68.55
6 6-10-10-2 86.4 73.8 0.367 0.2634 85.34 80.03 27.96 33.57

Table 6
The calculated performance indices for radial basis function neural network models.

No. Spread factor Net structure R2 (%) RMSE VAF (%) MRE (%)

BB Fr BB Fr BB Fr BB Fr

1 0.7 6-36-2 48 53.6 0.461 0.249 89.55 76.12 34.1 38.46
2 0.79 6-36-2 51.5 59.7 0.3108 0.112 88.82 86.53 25 29.63
3 0.8 6-36-2 50.3 58.1 0.354 0.158 93.4 89.6 29.03 32.52

Table 7
The calculated performance indices for multivariate regression analysis model.

R2 (%) RMSE VAF (%) MRE (%)

BB Fr BB Fr BB Fr BB Fr

75.1 30.1 0.672 0.291 34.77 21.73 45.32 60.22

F
a

w
n
o

t
m
t

7

c
m
n
T
t

ig. 9. The correlation of measured and predicted data with multivariate regression
nalysis.

here xi and xj are inputs and outputs, respectively; and m is the
umber of all datasets. The larger the Rij is, the higher the influence
f relevant input is.

In Fig. 10, it can be inferred that the stemming and burden are

he most influential input parameters on the backbreak and frag-

entation. It is noted that for both the outputs, specific charge is
he least effective parameter.

r
s
c
t

Fig. 10. Sensitivity analysis for backbreak and fragmentation.

. Conclusions

Precise prediction of backbreak and fragmentation is very cru-
ial for success of a mining project. In this paper, an attempt is
ade to utilize different types of ANNs for predicting simulta-

eous fragmentation and backbreak in the blasting operation of
ehran Cement Company limestone mines. The ANN models are
rained using a database including 103 datasets. To achieve more

eliable predictive models, parameters including burden, spacing,
temming, bench height, specific charge and specific drilling are
onsidered as the model inputs to predict outputs fragmenta-
ion and backbreak. BPNN and RBFNN are adopted for this study.
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lso, regression analysis is performed between the same indepen-
ent and dependent variables. For the BPNN and RBFNN modeling,
etworks with architectures 6-10-2 and 6-36-2 respectively are

ound to be optimum. Efficiency of the developed models is exam-
ned using testing datasets. Indices of VAF, RMSE, R2 and MRE
re calculated for predicted outputs and compared with the real
utputs. It is found that performance of the BPNN model with
aximum accuracy and minimum error is better than that of

he RBFNN and statistical models. Also, it is observed that inputs
urden and stemming are the most effective parameters on the
utputs, whereas specific charge is the least effective parameter
or both the outputs. At the end, it is recommended that hybrid

odels, combination of fuzzy logic and/or genetic algorithm with
eural networks, could be applied for further research.
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