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Abstract This paper reviews the state-of-the-art in the theory of de-
terministic and uncertain linear semi-in�nite optimization, presents some
numerical approaches to this type of problems, and describes a selection of
recent applications in a variety of �elds. Extensions to related optimization
areas, as convex semi-in�nite optimization, linear in�nite optimization, and
multi-objective linear semi-in�nite optimization, are also commented.
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1 Introduction

Linear semi-in�nite optimization (LSIO in short) deals with linear opti-
mization problems in which either the dimension of the decision space or
the number of constraints (but not both) is in�nite. We say that a linear
optimization problem is ordinary (respectively, in�nite) when the dimen-
sion of the decision space and the number of constraints are both �nite
(respectively, in�nite).
The �rst three known contributions to LSIO are due to A. Haar (1924),

E. Remez (1934), and G. Dantzig (1939), but they were basically ignored
until the 1960s due to either the low di¤usion, inside the mathematical com-
munity, of the journals where Haar and Remez published their discoveries,
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and the languages used (German and French, respectively), or to the tem-
porary leave by Dantzig of his incipient academic career when he joined the
Pentagon; in fact, he only wrote on his �ndings on LSIO within his pro-
fessional memories, published many years later [52]. More in detail, Haar�s
paper [108] was focussed on the extension of the homogeneous Farkas lemma
for linear systems from Rn to an Euclidean space equipped with a scalar
product h�; �i (actually, the space C ([0; 1] ;R) of real-valued continuous func-
tions on [0; 1] equipped with the scalar product hf; gi =

R 1
0
f (t) g (t) dt);

these systems are semi-in�nite because they involve �nitely many linear
inequalities while the variable ranges on an in�nite dimensional space. Re-
mez�s paper [161], in turn, proposed an exchange numerical method for a
class of LSIO problems arising in polynomial approximation, e.g., comput-
ing the best uniform approximation to f 2 C ([0; 1] ;R) by means of real
polynomials of degree less than n� 1; i.e.,

infx2Rn maxt2[0;1]

�����f(t)�
n�1X
i=1

xit
i�1

����� ;
which is equivalent to the LSIO problem

PA : infx2Rn xn
s.t. �xn � f(t)�

Pn�1
i=1 t

i�1xi � xn; t 2 [0; 1] :
(1)

Finally, Dantzig reformulated a Neyman-Pearson-type problem on statisti-
cal inference (posed by the same J. Neyman in a doctoral course attended
by Dantzig) as a linear optimization problem with �nitely many constraints
and an in�nite number of variables; Dantzig observed that the feasible set of
this LSIO problem was the convex hull of its extreme points and conceived
a geometry of columns allowing to jump from a given extreme point to a
better adjacent one, which is a clear antecedent of the celebrated simplex
method for linear optimization problems he proposed in 1947.
The next contributions to LSIO came in the 1960s, and are due to A.

Charnes, W. Cooper and their doctoral student K. Kortanek; they conceived
LSIO as a natural extension of ordinary linear optimization (also called
linear programming, LP in short) and coined the term "semi-in�nite" in [41]
(for more details, see the description by the third author of the inception
of LSIO in [126]). In [40] and [41] the LSIO problems with �nitely many
variables were called primal. These problems can be written as

P : infx2Rn c
0x

s.t. a0tx � bt; t 2 T;
(2)

where c0 represents the transpose of c 2 Rn; at = (a1 (t) ; :::; an (t))0 2 Rn;
and bt = b (t) 2 R for all t 2 T: As in any �eld of optimization, the �rst
theoretical results on LSIO dealt with optimality conditions and duality,
and showed that LSIO is closer to ordinary convex optimization than to
LP as the �niteness of the optimal value does not imply the existence of
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an optimal solution and a positive duality gap can occur for the so-called
Haar�s dual problem of P (term also introduced by Charnes, Cooper and
Kortanek),

D : sup
�2R(T )+

X
t2T

�tbt

s.t.
X

t2T
�tat = c;

(3)

where R(T )+ is the positive cone in the linear space of generalized �nite se-
quences R(T ); whose elements are the functions � 2 RT that vanish every-
where on T except on a �nite subset of T called supporting set of �; and
that we represent by supp�: Observing that

inf
x2Rn

(
L (x; �) := c0x+

X
t2T

�t (bt � a0tx)
)
=
X
t2T

�tbt (4)

if � 2 R(T )+ is a feasible solution of D and �1 otherwise, one concludes
that D is nothing else than a simpli�ed form of the classical Lagrange dual
of P :

DL : sup
�2R(T )+

inf
x2Rn

L (x; �) : (5)

As in convex optimization, the �rst characterizations of the optimal solu-
tions of P and the duality theorems required some constraint quali�cation
(CQ in brief) to be ful�lled. The problem P in (2) is said to be continuous
whenever T is a compact topological space and the function t 7! (at; bt) is
continuous on T: The approximation problem PA in (1) can easily be refor-
mulated as a continuous LSIO problem by taking T = [0; 1]� f1; 2g � R2.
The continuous dual problem of a continuous LSIO problem P is

DC : sup�2C0+(T )
R
T
bt d� (t)

s.t.
R
T
atd� (t) = c;

where C0+ (T ) represents the cone of non-negative regular Borel measures on

T: Since the elements of R(T )+ can be identi�ed with the non-negative atomic
measures, the optimal value of DC is greater or equal than the optimal value
of D:
The �rst numerical approach to su¢ ciently smooth LSIO problems, pro-

posed by S. Gustafson and K. Kortanek in the early 1970s, consisted in the
reduction of P to a nonlinear system of equations to be solved by means of a
quasi-Newton method ([106], [107]). This approach was improved in [73] by
aggregating a �rst phase, based in discretization by grids, in order to get a
starting point for the quasi-Newton second phase. Simplex-like methods for
particular classes of LSIO problems were proposed in [6], under the assump-
tion that T is an interval and the n+ 1 functions a1 (�) ; :::; an (�) ; b (�) are
analytic functions on T , and in [5], under the assumption that the feasible
set of P is quasipolyhedral (meaning that its nonempty intersections with
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polytopes are polytopes). An interior cutting plane method for continuous
LSIO problems, inspired by the Elzinga-Moore method of ordinary convex
optimization, was proposed in [90] and improved by an accelerated version
in [16].
In many applications of optimization to real word problems the data

de�ning the nominal problem are uncertain due to measurement errors, pre-
diction errors, and round-o¤ errors, so that the user must choose a suitable
uncertainty model.
Parametric models are based on embedding the nominal problem into

some topological space of admissible perturbed problems, the so-called space
of parameters. Qualitative stability analysis provides conditions under which
su¢ ciently small perturbations of the nominal problem provoke small changes
in the optimal value, the optimal set and the feasible set; to be more precise,
conditions ensuring the lower and upper semicontinuity of the mappings as-
sociating to each parameter the corresponding optimal value, optimal set
and feasible set. These desirable stability properties are generic in certain
set of parameters when they hold for most (in some sense) elements of that
set. The �rst works on qualitative stability analysis of LSIO continuous
problems were published in the 1980s by the group of Goethe University
Frankfurt, formed by B. Brosowski and his collaborators T. Fischer and
S. Helbig, together with their frequent visitor M.I. Todorov, who provided
conditions for the semicontinuity of the above mappings, for continuous
LSIO problems, under a variety of perturbations including those a¤ecting
the right-hand-side function b (�) (see, e.g., [23], [24], [70], [178]). The ex-
tension of these results to (non-necessarily continuous) LSIO problems, and
to their corresponding Haar�s dual problems, was carried out by Todorov
and the authors of this review in the second half of the 1990s ([89], [92],
[93], [94]). In [129] several results about the stability of the boundary of the
feasible set in LSIO are given.
Quantitative stability analysis, in turn, yields exact and approximate

distances, in the space of parameters, from the nominal problem P to im-
portant families of problems (e.g., from either a given consistent problem
P to the inconsistent ones or from a given bounded problem P to the class
of solvable problems), error bounds, and moduli of di¤erent Lipschitz-type
properties which are related to the complexity analysis of the numerical
methods; see, e.g., the works published during the last 15 years by the
second author of this review together with the group of University Miguel
Hernández of Elche, Spain (M.J. Cánovas, J. Parra, F. Toledo) and their
collaborator A. Dontchev ([25], [33], [34], [35], [36]). Sensitivity analysis
provides estimations of the impact of a given perturbation of the nominal
problem on the optimal value, so that it can be seen as the quantitative
stability analysis specialized to the optimal value. Results of this type for
LSIO problems can be found in some of the above mentioned works and in
the speci�c ones of the �rst author, the group of Puebla, Mexico (S. Gómez,
F. Guerra-Vázquez, M.I. Todorov) and their collaborator T. Terlaky ([76],
[100]).
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Linear semi-in�nite optimization has attracted during the last decades
the attention, on the one hand, of optimization theorists as it is a sim-
ple, but non-trivial, extension of LP, and, on the other hand, of the linear
optimization community, typically oriented towards numerical issues, as a
primal LSIO problem can be seen as a huge LP problem. In fact, during
the 1990s, authors like M. Powell, M. Todd, L. Tunçel or R. Vanderbei ex-
plained the numerical di¢ culties encountered by the interior-point methods
on huge LP problems by analyzing the convergence of their adaptations to
simple LSIO problems ([156], [177], [181], [183]). Finally, from the model-
ing perspective, LSIO has been systematically applied in those �elds where
uncertain LP problems arise in a natural way (as it happens in engineer-
ing and �nance), specially when the user appeals to the robust approach.
For all these reasons, several survey papers and extended reviews on LSIO
have been published in the past, the last ones dated in 2005 ([74], [75]),
and 2014 ([91], exclusively focused on uncertain LSIO). Linear semi-in�nite
optimization was also considered in two other surveys, the �rst one on semi-
in�nite optimization, published in 2007 ([139]), and the second one on the
stability analysis of (ordinary, semi-in�nite and in�nite) linear optimization
problems, published in 2012 ([138]). It is worth mentioning another sur-
vey on non-linear semi-in�nite optimization [170] which explicitly precludes
LSIO. Coherently with these antecedents, this review is intended to cover
the period 2007-2016, for deterministic LSIO, and 2014-2016, for uncertain
LSIO.

2 Deterministic linear semi-in�nite optimization (2007-2016)

Let us introduce the necessary notation and basic concepts. Given a real
linear spaceX; we denote by 0X the zero vector ofX; except in the particular
cases that X = Rn or X = RT ; whose null-vector are represented by 0n and
0T ; respectively. Given a nonempty set Y � X; by spanY; and conv Y we
denote the linear hull and the convex hull of Y , respectively, while coneY
denotes the conical convex hull of Y [ f0Xg : We also denote by X 0 the
algebraic dual of X; and by h�; �i the duality product (i.e., h ; xi =  (x)

for all  2 X 0 and x 2 X). Obviously, (Rn)0 = Rn whereas
�
RT
�0 ' R(T ) =�

� 2 RT : supp� is �nite
	
: Indeed,

�
RN
�0
is of uncountable dimension while

the dimension of R(N) is countable (see, e.g., [2] and [7]).
Given a topological space X and a set Y � X; intY , clY , and bdY

represent the interior, the closure, and the boundary of Y , respectively.
When X is a locally convex Hausdor¤ topological space (lcs in short) and
Y � X; rintY denotes the relative interior of Y: We denote by X� the
topological dual of X; i.e., X� = X 0 \ C (X;R) : It is known (e.g., [6]) that
(Rn)� = Rn whereas

�
RT
��
= R(T ) when one considers RT equipped with

the product topology.
The Euclidean (respectively, l1) norm and the associated distance in

Rn are denoted by k�k and d (respectively, k�k1 and d1). We denote
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by Bn the closed unit ball of Rn for the Euclidean norm. If Y is a non-
empty convex subset of Rn, dimY and extrY denote the dimension (i.e.,
the dimension of the a¢ ne hull of Y ) and the set of extreme points of
Y , respectively. If Y is a convex cone in Rn, its (negative) polar cone is
Y � = fx 2 Rn : hy; xi � 0 8y 2 Y g : Moreover, the cone of feasible direc-
tions (respectively, normal cone) of Y at x 2 Y is

D (X;x) := fd 2 Rn : 9� > 0; x+ �d 2 Xg

(respectively, D (X;x)�). Since Y is convex, D (Y ;x) is convex too (while
D (Y ;x)

� is, additionally, closed).
We denote by F; S and v (P ) the feasible set, the optimal set and the

optimal value of the problem P in (2), and by FD; SD and v (D) the feasible
set, the optimal set and the optimal value of the problem D in (3).
A basic result on the feasibility of linear systems establishes ([44], [90])

that
F 6= ; , (0n; 1) =2 cl cone f(at; bt) : t 2 Tg : (6)

For the sake of simplicity, we only consider in this survey three constraint
quali�cations for a problem P such that F 6= ;. The �rst one is an interior-
type condition which was already used in the 1950s:

�P satis�es the Slater constraint quali�cation (SCQ in short) if there
exists bx 2 Rn (called Slater point) such that a0tbx > bt for all t 2 T:
When P is continuous, intF 6= ; implies SCQ and the converse holds
whenever (at; bt) 6= 0n+1 for all t 2 T (in this case, intF coincides with
the set of Slater points [90, Corollary 5.9.1]).

The second CQ is a closed cone condition introduced by Charnes, Cooper
and Kortanek in [42]:

�P satis�es the Farkas-Minkowsky constraint quali�cation (FMCQ in
brief) if

fx 2 Rn : a0tx � bt; t 2 Tg � fx 2 Rn : a0x � bg
+

9eT � T;
��� eT ��� <1 :

n
x 2 Rn : a0tx � bt; t 2 eTo � fx 2 Rn : a0x � bg

or, equivalently, if the so-called characteristic cone

cone f(at; bt) : t 2 Tg+ cone f(0n;�1)g

is closed. The closedness of the second moment cone

cone f(at; bt) : t 2 Tg

implies FMCQ. If P is continuous, SCQ implies that the second moment
cone is closed, entailing that the characteristic cone is also closed, and
so P satis�es FMCQ [90, Theorem 5.3(ii)].
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The third CQ is local, and involves the convex cone generated by the
gradients of the active constraints at a given point. Given x 2 F; the active
cone of P at x is

A (x) := cone fat : t 2 T (x)g ;

where T (x) = ft 2 T : a0tx = btg is the set of active indices at x: This CQ
was introduced by R. Puente and V. Vera de Serio in [160], and extended
to convex SIO in [90, §7.5] (see also [62], [63], [64]).

�P satis�es the local Farkas-Minkowsky constraint quali�cation (with ab-
breviated acrostic LFMCQ) at x 2 F if D (F ;x)� = A (x) :

It is easy to prove that FMCQ implies that LFMCQ holds at any feasible
point [90, §5.2].

2.1 Optimality

The classical LSIO optimality theorem establishes that the Karush-Kuhn-
Tucker (KKT in short) condition at x 2 F; which is given by c 2 A (x) ;
guarantees the optimality and the converse holds whenever LFMCQ holds
at x: More precisely:

Theorem 1 (Optimality in LSIO under LFMCQ) ([90, Theorem 7.1],
[160]) Each one of the following statements is su¢ cient for the (primal)
optimality of x 2 F , and they are also necessary when LFMCQ holds at x:

(i) c 2 clA (x).
(ii) c 2 A (x) (KKT condition).
(iii) There exists a feasible solution � of D such that �t (a0tx� bt) = 0 for all

t 2 T (complementarity condition).
(iv) There exists � 2 R(T )+ such that L (x; �) � L

�
x; �

�
� L

�
x; �

�
for all x 2

Rn; with L (�; �) de�ned as in (4), and for all � 2 R(T )+ (Lagrange saddle
point condition).

Consequently, the optimality is characterized by the KKT condition un-
der FMCQ and also under SCQ when P is continuous. A data quali�cation
involving c which is weaker than LFMCQ has been used in [135]. The above
optimality theorem under CQs has been extended to in�nite optimization
in di¤erent ways ([48], [54], [65], [66], [133]), to multi-objective LSIO in [78,
Theorem 23] and to multi-objective convex semi-in�nite optimization in [79]
and [98].
The problem of checking the optimality of a given feasible solution of P

without CQs was �rst handled in [87] and [95] via the concept of extended
active constraints at x�; approach that has been recently extended to convex
semi-in�nite optimization in [145]. The next theorem gathers some asymp-
totic characterizations (through conditions involving limits) of the optimal
solutions which have been obtained by using a novel geometric approach
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(based in the so-called ladder regions introduced by Y. Liu and M. Ding in
LSIO [136]).
We associate with each �nite set T0 � T and vector c0 2 Rn; the linear

optimization problem

P
�
T0; c

0
�
: infx2Rn



c0; x

�
s.t. a0tx � bt; t 2 T0;

whose feasible set and solution set we denote by F0 (called ladder) and
S0; respectively. Moreover, given x0 2 F0; we denote by T0

�
x0
�
and by

A0
�
x0
�
the set of active indices and the active cone of x0 with respect to

the problem P
�
T0; c

0
�
; respectively, i.e., T0

�
x0
�
= ft 2 T0 : a0tx = btg and

A0
�
x0
�
= cone

�
at : t 2 T0

�
x0
�	
:

Theorem 2 (Optimality in LSIO without CQs) [137] Let x 2 F . The
following statements are equivalent:

(i) x is an optimal solution of P:
(ii) There exist sequences fTrgr2N of �nite subsets of T; fcrgr2N � Rn and

fxrgr2N � Rn such that
cr ! c; (7)

xr ! x; (8)

xr 2 Fr; r = 1; 2; :::; (9)

and
cr 2 Ar (xr) ; r = 1; 2; :::: (10)

(Asymptotic KKT condition.)
(iii) There exist sequences fTrgr2N of �nite subsets of T; fcrgr2N � Rn;

fxrgr2N � Rn and f�rgr2N � R(T ) such that (7), (8) and (9) hold as
well as

cr =
X
t2T

�rtat; r = 1; 2; :::; (11)

supp�r � Tr(x
r); r = 1; 2; :::; (12)

fat : t 2 supp�rg is linearly independent; r = 1; 2; :::; (13)

a0tx = bt; 8t 2 supp�r; r = 1; 2; :::: (14)

(Asymptotic complementarity condition.)
(iv) There exist sequences fTrgr2N of �nite subsets of T; fcrgr2N � Rn;

fxrgr2N � Rn and f�rgr2N � R(T ) such that (7), (8), (9) and (12)
hold, and

L(xr; �) � L(xr; �r) � L(x; �r); 8x 2 Fr;8� 2 R(T )+ with supp� � Tr(x
r):

(15)
(Asymptotic Lagrange saddle point condition.)
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(v) There exists a sequence f(�r; "r)gr2N � R(T )+ � R+ such thatX
t2T

�rt bt � c0x� "r; r = 1; 2; :::; (16)

and  X
t2T

�rtat; "r

!
! (c; 0): (17)

The asymptotic characterizations of optimality in (ii)-(iv) appeared by
the �rst time in [137, Theorem 4.4] and their equivalence with (v) is shown
in [137, Corollary 4.5]. The latter characterization is a particular case of
optimality conditions in convex in�nite optimization (see [55, Corollary 5],
[174], and [22]). Observe the existence of many relationships among the
conditions involved in Theorem 2, e.g., (9) and (10) imply that fxrgr2N is
a sequence of optimal solution of the LP problems P (Tr; cr) ; which in turn
shows the existence of a sequence f�rgr2N such that (12), (11), and (15)
hold.

2.2 Duality

The main classical LSIO duality theorems give conditions guaranteeing the
identity v (P ) = v (D) (i.e., the zero duality gap) together with the attain-
ment of either the dual or the primal optimal value (i.e., solvability of either
D or P ). Recall that we denote by F and S the primal feasible and optimal
sets and by FD and SD their (Haar) dual counterparts.

Theorem 3 (Zero Haar-duality gap with solvability) Let (a; b; c) 2
(Rn)T � RT � Rn be such that F 6= ; 6= FD:

(i) If P satis�es FMCQ, then v(P ) = v(D) 2 R and SD 6= ; (strong or
infmax duality).

(ii) If c 2 rint cone f(at; bt) : t 2 Tg ; the following statements are true:
(a) v(P ) = v(D) 2 R and S 6= ; (converse strong or minsup duality):
(b) S is the sum of a non-empty compact convex set with a linear sub-
space.
(c) There exists a sequence of �nite subproblems of P; fP (Tr; c)gr2N,
such that

v(P ) = lim
r!1

v(P (Tr; c))

(discretizability).
(d) If fP (Tr; c)gr2N is a sequence of �nite subproblems of P such that
the sequence fTrgr2N is expansive (i.e., Tr � Tr+1 for all r 2 N) and
satis�es F = \r2NFr, then

S \ lim sup
r2N

Sr 6= ;;

in other words, there exist a subsequence of optimal solutions of the
problems P (Tr; c) converging to an optimal solution of P:
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Statement (i) was proved in [43]. Concerning (ii), (a) is in [165]; (b) in
[88] (in [96], for convex in�nite-dimensional optimization); (c) in [90, §8.3],
although the study of the relationship between discretizability and absence
of duality gap started with A. Charnes, W. Cooper and K. Kortanek ([41],
[42], [43]), R.J. Du¢ n and L.A. Karlovitz [58], among others; and (d) is
Theorem 8.6 in [90].
A new non-homogeneous Farkas lemma for linear semi-in�nite inequality

systems composed by m blocks of constraints with a¢ ne coe¢ cient func-
tions a1 (�) ; :::; an (�) ; b (�) de�ned on spectrahedral sets (i.e., solutions sets
of semi-de�nite systems) Tj ; j = 1; :::;m; has been proved in [46]. When the
constraint system of an LSIO problem belongs to this class of systems, the
Haar dual problem can be formulated as a semi-de�nite optimization prob-
lem. A duality theorem [46, Theorem 2.1] is provided assuming the FMCQ.
Su¢ cient conditions for this constraint quali�cation to be held are SCQ and
that Tj is a polytope, j = 1; :::;m:
Some recent contributions to LSIO duality theory are related with the

semi-in�nite versions of the Fourier (also called Fourier-Motzkin) elimina-
tion method, whose classical version provides linear representations of the
projections of polyhedral convex sets on the coordinate hyperplanes. To the
best of our knowledge, the �rst semi-in�nite version of that method, which
provides linear representations of the projections of closed convex sets on
the coordinate hyperplanes, was introduced in [77] to characterize the so-
called Motzkin decomposable sets (i.e., those sets which can be expressed
as sums of polyhedral convex sets with closed convex cones, as the optimal
set S of P when c 2 rintM), see also [81] and [77]. The second and third
semi-in�nite versions of the Fourier elimination method are due to A. Basu,
K. Martin, and C. Ryan ([12], [13], [14]) and to K. Kortanek and Q. Zhang
[127], respectively, these four papers dealing with LSIO duality theory.
The primal problem P is reformulated in [13] by aggregating an addi-

tional variable z representing upper bounds for hc; �i to be minimized on
the feasible set, contained in Rn+1; in order to get known and new duality
results for the pair P �D. This formulation of P ; called standard by the au-
thors, has been reformulated again in [127] as a conic linear program from
which the so-called classi�cation duality theorems for semi-in�nite linear
programs [125] have been recovered.
A duality scheme for LSIO inspired by [7] is used in [12] (where the

index set T is countable), [13], and [14]. Denoting by Y a linear subspace
of RT (called constraint space) such that

U := span fa1 (�) ; :::; an (�) ; b (�)g � Y; (18)

by Y 0 its algebraic dual, and by Y 0+ =
�
 2 Y 0 :  (y) � 0;8y 2 Y \ RT+

	
the positive cone in Y 0; the algebraic dual problem associated with Y is
de�ned as

DY : sup 2Y 0
+
 (b)

s.t.  (ak) = ck; k = 1; :::; n:
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In [12] it is shown that DRT is equivalent to D when T = N; while the
equivalence may fail when T is uncountable. The main merit of [14] is having
posed the challenging problem of identifying vector spaces Y satisfying (18)
such that the pair P �DY enjoys desirable properties. Indeed, the authors
pay attention to the classical strong duality property and to dual pricing, the
property (related with sensitivity analysis) which consists of the existence,
for any perturbation d of b, of an optimal dual solution �d such that the
rate of growth of the dual optimal value along the ray R+d is

X
t2T

�dt bt).

Theorem 4 (Strong duality and dual pricing I) [14] Assume that P is
bounded. Then, P �DU satis�es strong duality and dual pricing. Moreover,
the dual optimal set SDU is a singleton.

The proof that P�DU satis�es strong duality (respectively, dual pricing)
can be found in [14, Theorem 4.1] (respectively, [14, Theorem 4.3]).

Theorem 5 (Strong duality and dual pricing II) [14, Proposition 5.2]
If P �DY satis�es strong duality (respectively, dual pricing), then P �DQ

also satis�es strong duality (respectively, dual pricing) for any subspace Q
such that U � Q � Y:

Theorems 5.7 and 5.12 in [14] provide vector spaces Y; with U ( Y; such
that DY satis�es strong duality and dual pricing, respectively.
The three papers [12], [13], [14] use almost exclusively arguments based

on the Fourier elimination method, even to prove statements that can be
easily obtained via convex analysis. Doing that, the authors try to defend
the thought-provoking thesis, refuted by K. Kortanek and Q. Zhang [127],
that LSIO is a subdiscipline of algebra. In our modest opinion, this claim
has no practical implication and the consequence of the exclusive use of
this methodology, less attractive than the elegant tools of convex analysis,
is to require the readers an extra e¤ort that not everybody is ready to pay.
Besides this aesthetic drawback, the Fourier elimination method has the
inconvenient, in comparison with the conventional tools of convex analysis,
that it is hardly extensible to in�nite dimensions, so that it cannot be used
to repair the failure of strong duality and dual pricing for the Lagrange dual
problems in in�nite dimensional convex optimization, despite the reasonable
conjecture that the above interesting results admit extensions to more gen-
eral settings in the same way the classical Lagrange duality theorems have
been already extended (see, e.g., [97] and references therein).

2.3 Numerical methods

A variety of approaches have been proposed for solving LSIO problems
which satisfy di¤erent assumptions (discretization, cutting plane, reduc-
tion, penalty, interior-point, simplex-like, smoothing, etc.). Next, we de-
scribe brie�y the most popular approaches.
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�Grid discretization Methods

Let P be an arbitrary LSIO problem. We associate with each nonempty
�nite set T0 � T the corresponding discretization of P :

P (T0; c) : infx2Rn c
0x

s.t. a0tx � bt; t 2 T0:

Obviously, P (T0; c) is a �nite program when T0 is �nite. Discretization
methods generate sequences of points in Rn converging to an optimal solu-
tion of P by solving a sequence of problems of the form P (Tk; c) ; where Tk
is a nonempty �nite subset of T for k = 1; 2; :::

Grid discretization algorithmic scheme Let " > 0 be a �xed small
scalar (called accuracy).
Step k : Let Tk be given.
(i) Compute a solution xk of P (Tk; c) :
(ii) Stop if xk is feasible within the �xed accuracy ", i.e., a (t)

0
xk�b (t) �

�" for all t 2 T: Otherwise, replace Tk with a new grid Tk+1:

Obviously, xk is infeasible before optimality. Grid discretization methods
select a priory sequences of grids, T1; T2; :::; (usually expansive, i.e. satisfying
Tk � Tk+1 for all k). The alternative discretization approaches generate
the sequence fTkgk2N inductively. For instance, the classical Kelley cutting
plane approach consists of taking Tk+1 = Tk [ ftkg ; for some tk 2 T;
or Tk+1 = (Tk [ ftkg) n ft0kg for some t0k 2 Tk (if an elimination rule is
included).
Convergence of discretization methods requires P to be continuous [90,

Theorem 11.1], which is based on Theorem 3(ii-d). The main di¢ culties
with these methods are undesirable jamming in the proximity of an optimal
solution and the increasing size of the auxiliary problems P (Tk; c) (unless
elimination rules are implemented). These methods are only e¢ cient for low-
dimensional index sets. For more details, see [139] and references therein.
To the authors knowledge, no signi�cant contribution to this approach has
been published during the last decade.

�Central cutting plane methods

Let P be an LSIO problem. Given � 2 R; the set fx 2 F : c0x � �g is
called the sublevel set of P for �: We associate with any polytope (i.e., a
bounded polyhedral set) Q a certain center (e.g., the centre of the greatest
ball contained in Q or the analytic centre of Q) and the ordinary LP problem

P (Q) : infx2Q c
0x :

Central cutting plane methods generate sequences of points in Rn con-
verging to an optimal solution of P by solving a sequence of problems of
the form P (Qk) ; where Qk is a polytope for k = 1; 2; :::
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Central cutting plane algorithmic scheme Let " > 0 be a �xed accu-
racy.
Step k : Let Qk be a polytope containing some sublevel set of P:
(i) Compute a center xk of Qk:
(ii) If xk =2 F; set Qk+1 =

�
x 2 Qk : a (t0)0 x� b (t0) � 0

	
, where t0 2 T

satis�es a (t0)
0
xk � b (t0) < 0; and k = k + 1: Otherwise, continue.

(iii) If c0xk � min fc0x : x 2 Qkg + "; stop. Otherwise, replace Qk with
a new set Qk+1 = fx 2 Qk : c0x � c0xkg :

Obviously, (ii) aggregates to the current polytope Qk a feasibility-cut
(some constraint of P violated by xk) when xk is unfeasible, whereas (iii)
checks the "-optimality of xk; aggregating to Qk an objective-cut when the
result is negative.
The comments on the convergence and drawbacks of discretization meth-

ods also apply to cutting plane algorithms. Nevertheless, e¢ cient implemen-
tations of the latter methods turn out to be computationally faster than the
grid discretization counterparts and, moreover, they stop before optimality
at a feasible solution. For more details see [16] and references therein.
Algorithm 2 in [53] is a (non central) cutting plane method generating

at each step, from the current non�feasible point xk, a feasible one which is
the result of shifting xk towards a �xed Slater point with step length easily
computable.
The two cutting plane discretization algorithms for a continuous LSIO

problem P whose feasible set is a convex body (a compact convex full dimen-
sional set proposed in [151] are inspired by the logarithmic barrier decom-
position method in [141]. Both algorithms update the current discretization
P (Tk; c) of P by selecting a point in the proximity of the central path of
P (Tk; c) and aggregating to the constraints of P (Tk; c) some violated con-
straints. Then the full dimension of the new feasible set is recovered and
the central path is updated. This process continues until the barrier pa-
rameter is small enough. The novelties introduced by [151], in comparison
with [141], are that the violated constraints are aggregated without chang-
ing their right-hand-side (RHS in short) coe¢ cients (as it was proposed by
[141] in order to maintain the full dimension of the feasible sets), that more
than one violated constraints can be aggregated in each step, and that the
barrier function is updated at step k: The method in [151], called "interior
point constraint generation algorithm" even though it does not generate
feasible points of P; converges to an "-optimal solution after a �nite num-
ber of constraints is generated. The authors provide complexity bounds on
the number of Newton steps needed and on the total number of constraints
that is required for the overall algorithm to converge. Computational ex-
periments are reported.

�KKT reduction methods

The basic idea of the KKT reduction methods, which were already
known from Chebyshev approximation, consists of replacing P with a non-



14 M.A. Goberna, M.A. López

linear system of equations obtained from the KKT local optimality condi-
tions for P:
In fact, if x is a local minimizer of P satisfying LFMCQ, Theorem 1

guarantees the existence of indices tj 2 T (x) ; j = 1; :::; q (x) ; with q (x)
depending on x; and nonnegative multipliers �j ; j = 1; :::; q (x) ; such that

c =

q(x)X
j=1

�ja
�
tj
�
:

We also assume the availability of a description of T � Rp as

T = ft 2 Rp : ui (t) � 0; i = 1; :::;mg ;

where ui is smooth for all i = 1; :::;m: Observe that q (x) is the number of
global minima of the so-called lower level problem at x;

Q (x) : inf
�
a (t)

0
x� b (t) : ui (t) � 0; i = 1; :::;m; t 2 T

	
;

provided that the optimal value of this problem is zero, i.e. v (Q (x)) = 0:
This is a global optimization problem which can be solved whenever T
is a �nite dimensional interval and a1 (�) ; :::; an (�) ; b (�) 2 R [t] (the ring of
polynomials in the single variable t with real coe¢ cients), in which case t 7!
a (t)

0
x� b (t) is polynomial too. Then, under some constraint quali�cation,

for each tj ; j = 1; :::; q (x) ; the classical KKT theorem yields the existence

of nonnegative multipliers �
j

i ; i = 1; :::;m; such that

rta

�
tj
�
; x
�
�rtb

�
tj
�
=

mX
i=1

�
j

irtui
�
tj
�

and
�
j

iui
�
tj
�
= 0; i = 1; :::;m:

KKT reduction algorithmic scheme Step k : Start with a given xk
(not necessarily feasible).
(i) Estimate q (xk) :
(ii) Apply Nk steps of a quasi-Newton method (for �nite systems of
equations) to8>>>>>>>><>>>>>>>>:

c =

q(xk)X
j=1

�ja (tj)

a (tj)
0
x = b (tj) ; j = 1; :::; q (xk)

hrta (tj) ; xi � rtb (tj) =
mX
i=1

�jirtui (tj) ; j = 1; :::; q (xk)

�jiui (tj) = 0; i = 1; :::;m; j = 1; :::; q (xk)

9>>>>>>>>=>>>>>>>>;
;
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(with unknowns x; tj ; �j ; �
j
i ; i = 1; :::;m; j = 1; :::; q (xk)) leading to

iterates xk;l; l = 1; :::; Nk:
(iii) Set xk+1 = xk;Nk

and k = k + 1:

The main advantage of the KKT reduction methods on the discretiza-
tion and cutting plane methods is their fast local convergence (as they are
adaptations of quasi-Newton methods) provided that they start su¢ ciently
close to an optimal solution. The so-called two-phase methods combine a
discretization or central cutting plane method providing a rough approx-
imation of an optimal solution of P (1st phase) and a reduction method
afterwards improving this approximation (2nd phase). No theoretical result
supports the decision to switch from phase 1 to phase 2. For more details
see [73], [139], and references therein. The last extension we know of the
above reduction scheme to smooth non-linear semi-optimization appeared
in [189].
Numerical methods which are not based on the three approaches above

have been proposed for particular types of LSIO problems. On the one
hand, an exchange method for continuous LSIO problems such that T is a
compact interval in R based on the geometric concept of ladder point has
been proposed in [136]. On the other hand, [190] proposed an interior-point
method for polynomial LSIO problems (i.e., assuming that T is a com-
pact interval in R and a1 (�) ; :::; an (�) ; b (�) 2 R [t]; this method is inspired
by Lasserre�s method [130] for polynomial nonlinear semi-in�nite optimiza-
tion; error bounds for the used approximations are given; the e¢ ciency of
this approach has been illustrated by two classical test problems. The lat-
ter method, for polynomial LSIO problems with one-dimensional index set,
has been extended in [104] to similar problems with semialgebraic index
set T = ft 2 Rm : gj (t) � 0; j = 1; :::; sg ; where gj is a polynomial on the
variables t1; :::; tm for all j = 1; :::; s: Since unconstrained minimization of a
polynomial on Rn is NP-hard when n > 1, the polynomial LSIO problem
P is NP-hard too, so that it cannot be expected to be solved in polynomial
time (unless P=NP), [104] proposes to construct a sequence of polynomial
time problems whose optimal solutions converge to some optimal solution of
P: The author associates to the set of polynomial functions G := fg1; :::; gsg

its quadratic module Q (G) ; which is formed by the sums
sX
j=0

�jg; where

g0 = 1 and the s + 1 functions �0; :::; �s are sums of squares of polynomi-
als. Aggregating the condition that deg (�jgj) � 2k for k 2 f0g [ N; one
gets the so-called k�th truncation Qk (G) of Q (G) ; with Q (G) being he
expansive union of the sequence fQk (G)gk2N : Under certain assumptions,
F :=

n
x 2 Rn : a (t)T x+ b (t) 2 Q (G)

o
: Thus, P is approached by the

sequence of problems

(Pk) inf
x2Rm

cTx

s.t. a (t)
T
x+ b (t) 2 Qk (G) ;
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k 2 N; with v (Pk) & v (P ) as k �! 1: Finally, each problem (Pk) is
reformulated as a semi-de�nite problem whose Lagrange dual, called semi-
de�nite relaxation of (P ) ; can be solved in polynomial time.
Descent methods (respectively, simplex-like methods) for P start with

a feasible solution (respectively, an extreme point of F obtained from an
arbitrary feasible solution via puri�cation). This initial feasible solution can
be obtained with some semi-in�nite version of the relaxation method for
ordinary linear inequality systems proposed independently by Agmon [1]
and by Motzkin and Schoenberg [149] in 1954. The semi-in�nite �xed step
relaxation algorithm can be described as follows:

Relaxation algorithmic scheme Let " > 0 be a �xed accuracy.
Step k : Let xk =2 F be given:
(i) Compute an approximate value �k of d (xk;Hk) ; where

Hk := fx 2 Rn : ha (tk) ; xi = b (tk)g

is the hyperplane determined by some constraint ha (tk) ; xi � b (tk) ;
tk 2 T; violated by xk: Take �k 2 ]0; 2] according to a given rule and
compute

xk+1 := xk + �k�k
a (tk)

ka (tk) k
:

(ii) Stop if xk+1 is feasible within the �xed accuracy ", i.e., a (t)
0
xk+1�

b (t) � �" for all t 2 T: Otherwise, replace xk with xk+1:

This relaxation scheme admits di¤erent implementations, e.g., if �k = 1
for all k; then xk+1 is an approximate projection of xk onto Hk; and, if
�k = 2 for all k; then xk+1 is an approximate symmetric of xk with respect
to Hk: The relaxation parameter �k is maintained �xed in [113] and [118]
(with �k = 1 for all k), as well as in [102] and [103] (with �k = � for all k;
for some � 2 (0; 2]), whereas �k is taken at random in some subinterval of
(0; 2] in [68], where all this variants of the relaxation algorithm are compared
from the computational e¢ ciency point of view.
It is worth mentioning that LSIO problems can also be solved by means

of methods which have been conceived for more general problems, as in�-
nite linear optimization problems ([72]), convex semi-in�nite optimization
problems ([9], [10], [67], [194]), or non-linear semi-in�nite optimization prob-
lems. The NEOS Server allows to solve the latter type of problems by the
program NSIPS, coded in AMPL, see [184] and [185]: http://www.neos-
server.org/neos/solvers/sio:nsips/AMPL.html
Finally, let us observe that a unique numerical method has been pro-

posed so far for integer LSIO problems, more precisely, for a class of prob-
lems which arises in solid waste management [105].
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3 Uncertain linear semi-in�nite optimization (2014-2016)

Let
P : infx2Rn c

0x

s.t. a0tx � bt; t 2 T;
(19)

be a given LSIO primal problem, called nominal , whose data, gathered in
the triple

�
a; b; c

�
2 (Rn)T � RT � Rn; are uncertain for some reason. We

consider the linear space (Rn)T � RT � Rn equipped with the topology
induced by the box (or Chebyshev) pseudo-norm

k(a; b; c)k1 := max fkck1 ; supt2T k(at; bt)k1g ; 8 (a; b; c) 2 (R
n)
T�RT�Rn;

which is a proper norm whenever T is �nite. In this way, (Rn)T �RT �Rn
is equipped with the pseudometric d1 de�ned as

d1
��
a1; b1; c1

�
;
�
a2; b2; c2

��
:=


�a1 � a2; b1 � b2; c1 � c2�

1 ;

for any pair
�
a1; b1; c1

�
;
�
a2; b2; c2

�
2 (Rn)T � RT � Rn: Obviously, d1

describes the topology of the uniform convergence on (Rn)T � RT � Rn:
Any perturbation of the triple

�
a; b; c

�
which preserves the decision space

Rn and the index set T of P provides a perturbed problem

P : infx2Rn c
0x

s.t. a0tx � bt; t 2 T;

with associated data triple (a; b; c) 2 (Rn)T �RT �Rn: The parameter space
� � (Rn)T � RT � Rn is formed by the admissible perturbations of the
nominal data

�
a; b; c

�
. For instance, if the RHS of P cannot be perturbed,

the parameter space is formed by the triples
�
a; b; c

�
; and abusing of the

language, we can identify
�
a; b; c

�
with the pair � = (a; c) ; so that we have,

in that case, � = (Rn)T�Rn: Then, d1
�
�; �
�
= d1 ((a; c) ; (a; c)) 2 [0;+1]

measures the size of the perturbation.
In the next two subsections we consider the seven parameter spaces

which appear in Table 1.

Scenario Perturbable data Parameter space �

1 (a; b; c) (Rn)T � RT � Rn
2 (a; b) (Rn)T � RT
3 (a; c) (Rn)T � Rn
4 (b; c) RT � Rn
5 a (Rn)T

6 b RT
7 c Rn

Table 1
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Scenarios 1, 4 and 6 correspond to the so-called full, canonical and RHS
perturbations, respectively. It is easy to prove that the set of parameters
�con providing primal and dual consistent problems is a convex cone in
Scenarios 4, 6 and 7. The stability behavior of Scenario 5 is the most di¢ cult
to be analyzed ([51]).

3.1 Qualitative stability

This subsection provides conditions, preferably expressed in terms of the
data, under which su¢ ciently small perturbations of the nominal problem
provoke small changes in the following four mappings (two of them set-
valued, the remaining two extended real-valued):

�The (primal) feasible set mapping F : � � Rn associating with each
� 2 � the corresponding primal feasible set.

�The (primal) optimal set mapping S : � � Rn associating with each
� 2 � the corresponding primal optimal set.

�The (primal) optimal value function # : � ! R assigning to � 2 � the
corresponding primal optimal value.

�The gap function g : � �! R[f+1g such that

g (�) :=

�
# (�)� #D (�) ; if # (�)� #D (�) 2 R;
+1; otherwise,

where #D (�) denotes the corresponding dual optimal value. It can easily
be shown that g is an homogeneous function such that g�1 (R) = �con:
Moreover, g is the di¤erence of two convex functions (i.e., a DC function)
in Scenarios 6 and 7, so that g (�; c) and g (b; �) are DC functions for all
c 2 Rn and for all b 2 RT ; respectively, in Scenario 4.

The stability properties of g at � 2 �con are related with the preservation
of the primal-dual consistency under su¢ ciently small perturbations, i.e.,
with the condition that � 2 int�con:

Theorem 6 (The interior of �con) [99, Theorem 1] The membership of
an element of �con to its interior int�con is characterized in Table 2, where
the involved conditions (20) and (21) are

0n+1 =2 cl conv f(at; bt) : t 2 Tg (20)

and

c 2 int cone fat : t 2 Tg : (21)
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Scenario Parameter Characterization of � 2 int�con
1 (a; b; c) (20) and (21)

2 (a; b)
(20), if c = 0n
(20) and (21), else

3 (a; c)
(21), if supt2T bt � 0
(20) and (21), else

4 (b; c) (20) and (21)

5 a

(20) and (21), if c 6= 0n and supt2T bt > 0
(21), if c 6= 0n and supt2T bt � 0
(20), if c = 0n and supt2T bt > 0
It holds for sure, if c = 0n and supt2T bt � 0

6 b (20)
7 c (21)

Table 2

Theorem 7 (Stability of the duality gap) [99, Theorem 2] Let � 2 �con;
with � being the parameter space for any scenario k 2 f1; 3; 4; 5; 7g ; or
k = 2 with c 6= 0n: Then, the following statements are equivalent:

(i) g is identically zero in some neighborhood of � (0�stability).
(ii) g is continuous at �:
(iii) g is upper semicontinuous at �:
(iv) � 2 int�con:

Moreover, if jT j <1; then the four statements (i) - (iv) are equivalent
for any k 2 f1; :::; 7g.

A partial extension of this result to linear in�nite optimization, only for
Scenarios 4, 6 and 7, and for a type of dual problem which coincides with
DC when P is a continuous LSIO problem, can be found in [187].

The adjective generic applied to certain desirable property, as the 0-
stability, may have di¤erent meanings. Topological genericity on �con means
that the property holds in a dense open subset. This kind of genericity is
called weak in [59, Remark 1], as it does not imply that the set of parameters
of �con where that property fails has Lebesgue measure zero.

Theorem 8 (Topological genericity of the 0�stability) [99, Theorem
3]Table 3 below provides su¢ cient conditions guaranteeing the weak generic-
ity of the 0�stability of g in �con for the seven scenarios (assuming jT j <1
in Scenario 6).
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Scenario Parameter Su¤. cond. for int�con to be dense in �con
1 (a; b; c) jT j � n
2 (a; b) jT j � n or c = 0n
3 (a; c) jT j � n and supt2T bt � 0
4 (b; c) dim cone (a) = n
5 a jT j � n and supt2T bt � 0
6 b No condition is needed
7 c dim cone (a) = n

Table 3

3.2 Quantitative stability

We assume in this subsection that the nominal problem P is continuous and
only perturbations P of P providing continuous problems are allowed, i.e.,
that the corresponding triples (a; b; c) belong to C (T;Rn)�C (T;R)�Rn: In
other words, we consider in this subsection the restriction of F and S to the
linear subspace of continuous parameters �0 := C (T;Rn)�C (T;R)�Rn �
�:
Recall that the graph of a mappingM : �0 � Rn is

gphM : = f(�; x) 2 �0 : x 2M (�)g :

�A set-valued mapping M : �0 � Rn is pseudo-Lipschitz (also called
Aubin continuous or Lipschitz-like) at

�
�; x
�
2 gphM if there exist

neighborhoods V� of � and Ux of x; and a scalar � � 0 such that

d (x;M (�)) � �d
�
�; �0

�
; 8�; �0 2 V�;8x 2M(�0) \ Ux: (22)

The in�mum of such � for all the triples
�
V�; Ux; �

�
verifying (22) is called

Lipschitz modulus ofM at
�
�; x
�
and it is denoted by lipM

�
�; x
�
:

The reader will �nd in the monographs [57], [123], [148], [163], etc., a
comprehensive study of this property. Formulas involving lipF

�
�; x
�
and

lipS
�
�; x
�
can be found in [91] and references therein.

For many authors, the pseudo-Lipschitz property is too demanding, so
that they prefer the weaker notion of calmness. We devote the rest of this
section to the study of the calmness property of F and S in di¤erent sce-
narios, as well as to propose either exact expressions or estimates of the
corresponding moduli. Let us start by de�ning this property.

�A set-valued mappingM : �0 � Rn is calm at
�
�; x
�
2 gphM if there

exist neighborhoods V� of � and Ux of x; and a scalar � � 0 such that

d
�
x;M

�
�
��
� �d

�
�; �
�
; 8� 2 V�;8x 2M(�) \ Ux: (23)

The in�mum of such � for all the triples
�
V�; Ux; �

�
verifying (23) is called

calmness modulus ofM at
�
�; x
�
and it is denoted by clmM

�
�; x
�
:
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Calmness was introduced in 1976 by Clarke [47] in the context of func-
tions and in connection with constraint quali�cation conditions, but the
term calmness was coined in [163]. It plays a key role in many issues of
mathematical programming like optimality conditions, error bounds and
stability of solutions, among others, and this fact motivated an increasing
interest among researchers in the last twenty years. Calmness property is
known to be equivalent to the metric subregularity of the inverse mapping,
property introduced by Io¤e [116] under a di¤erent name.
In Scenario 6 we shall consider the feasible set mapping depending

only on the right-hand-side (RHS); speci�cally, let us consider a �xed a �
(at)t2T 2 C (T;Rn) and the corresponding feasible set mapping
Fa : C (T;R)� Rn given by

Fa (b) := F (a; b) = fx 2 Rn : a0tx � bt for all t 2 Tg : (24)

In this framework, C (T;R) is our parameter space and the parameter is
� � b 2 C (T;R); the parameter space is endowed with the supremum norm
kbk1 := maxt2T jbtj : It makes sense to deal �rst with the calmness property
of Fa at

�
�; x
�
�
�
b; x
�
2 gphFa and, in a second stage, to study the

calmness of F : Let us announce that calmness of Fa at
�
b; x
�
is equivalent

to calmness of F at
��
a; b
�
; x
�
2 gphF ; and the calmness modulus of Fa

at
�
b; x
�
is closely related to the calmness modulus of F at

��
a; b
�
; x
�
(see

(32) below):
In the case of �nite linear systems (i.e., when T is �nite), it is well-

known that Fa is always calm at any point of its (polyhedral) graph as
a consequence of a classical result by Robinson [162]. For T in�nite, it is
known that the Slater constraint quali�cation (SCQ) is a su¢ cient condition
for the calmness of F and of Fa; as far as SCQ characterizes, in both cases,
the Aubin continuity. In fact, Fa has a closed and convex graph and the
equivalence between the Aubin property and SCQ comes from the Robinson-
Ursescu Theorem (as SCQ is equivalent to b 2 int dom Fa). However, this
classical result does not apply for multifunction F ; whose graph is closed
but not convex. In this case, the equivalence between the Aubin continuity
and SCQ is established via speci�c arguments of linear systems (see again
[88, Theorem 6.9]).
For continuous LSIO problems, the maximum function s : Rn �! R;

given by
s (x) := max

�
bt � a0tx; t 2 T

	
, (25)

is a key tool in the calmness analysis of F . Obviously

Fa
�
b
�
= fx 2 Rn : s (x) � 0g ;

and
d
�
b;F�1a (x)

�
= [s (x)]+ :

By the Io¤e-Tikhomirov theorem (see, for instance, [193, Theorem 2.4.18]),
we have, the convex subdi¤erential of s at any x 2 Rn is

@s (x) = conv
�
�at : bt � a0tx = s (x) ; t 2 T

	
:
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Observe that when the inequality system does not contain the trivial
inequality 00nx � 0, x 2 intFa(b) if and only if x is a Slater point, and then
Fa is clearly calm at (b; x): So, we will focus exclusively on the case when
x 2 bdFa(b), in which case s (x) = 0; and so

@s (x) = conv
n
�at : t 2 T(a;b) (x)

o
;

with T(a;b) (x) :=
�
t0 2 T : bt0 � a0t0x = 0

	
denoting the set of active in-

dices at x. The associated active cone will be

A(a;b) (x) = conefat : t 2 T(a;b) (x)g:

We can establish the following list of equivalences:

Theorem 9 (Calmness of the feasible set mapping) (a) Let x 2
bdFa(b). The following are equivalent:
(i) Fa is calm at (b; x) 2 gphF ;
(ii) s has a local error bound at x; i.e., there exist a constant � � 0 and

a neighborhood Ux of x such that

d (x; [s � 0]) � � [s (x)]+ ;8x 2 Ux;

(iii) lim inf
x!x;
s(x)>0

d (0n; @s (x)) > 0;

(iv) the strong basic constraint quali�cation at x holds; i.e., there exist
� > 0 and neighborhood of x, Ux; such that

N(Fa(b); x) \ Bn � [0; � ]@s(x); 8x 2 Ux \ bdFa(b); (26)

where N(Fa(b); x) is the normal cone to Fa(b) at x.

(v) lim inf
x!x;
s(x)>0

sup
u 6=x

[s (x)� [s (u)]+]+
kx� uk > 0;

(vi) there exist �0 > 0 and a neighborhood Ux of x such that, for each
x 2 Ux with s (x) > 0 we can �nd ux 2 Rn, with kuxk = 1, and �x > 0
satisfying

s (x+ �xux) � s (x)� �x�0: (27)

(vii) there exists a neighborhood Ux of x such that

N(Fa(b); x) = clA(a;b) (x) ; 8x 2 Fa(b) \ Ux; (28)

and, additionally, there is � > 0 such that

A(a;b) (x) \ Bn � [0; � ](�@s (x)); 8x 2 bdFa(b) \ Ux: (29)
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Moreover, in relation to (iii) and (v) we have

clmFa(b; x) =
 
lim inf
x!x;
s(x)>0

d (0n; @s (x))

!�1
(30)

=

 
lim inf
x!x;
s(x)>0

sup
u 6=x

[s (x)� [s (u)]+]+
kx� uk

!�1
: (31)

Concerning (vi), the in�mum of constants �0 in (27) (for some associated
Ux) coincides with 1=clmFa(b; x): Finally, with respect to (vii) ; the in�mum
of constants � in (29) (for some associated Ux) also coincides with the
calmness modulus clmFa(b; x):
(b) One has

clmF((a; b); x) = (kxk+ 1) clmFa(b; x); (32)

and therefore, F is calm at
��
a; b
�
; x
�
2 gphF if and only if Fa is calm at�

b; x
�
2 gphFa:

In part (a); the equivalence (i) , (ii) comes from Azé and Corvellec
[11, Proposition 2.1 and Theorem 5.1]; (i) , (v) follows from Fabian et
al. [61, Theorem 2(ii)]; (v) , (vi) is a consequence of the convexity of s;
(i) , (vi) is a linear semi-in�nite version of [124, Theorem 3]; (i) , (iv)
follows from Zheng and Ng [195, Theorem 2.2]; (i) , (vii) is Theorem 3
in Cánovas et al. [37], (30) can be found in Kruger et al. [128, Th. 1]; and
(31) follows from [61, Theorem 1(ii)]. Condition (28) in (vii) is called in [37]
Abadie constraint quali�cation around x; whereas (29) constitutes a kind of
uniform boundedness of the scalars involved in certain conic combinations.
In part (b), (32) is established in Theorem 5 in [37].
When T is �nite (i.e. for �nite systems of inequalities), Theorem 3.1 in

[30]) gives the following characterization of 1=clmFa(b; x) :

lim sup
x!x; s(x)>s(x)

@s (x) =
[

D2D(x)

conv f�ai; i 2 Dg ; (33)

where

D (x) :=

8><>:D � T(a;b) (x)

�������
there exists d verifying:(
a
0

id = 1; i 2 D;
a
0

id < 1; i 2 T(a;b) (x) nD

) 9>=>; ;

and (30) gives rise to the following result [37, Theorem 4]:

clmFa(b; x) = max
D2D(x)

(d(0n; convfai; i 2 Dg))�1: (34)

By introducing two new families of indices sets, namely

DAI (x) := fD 2 D (x) : such that fai; i 2 Dg is a¢ nely independentg;
(35)
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and

D0 (x) :=

8><>:D � T(a;b) (x)

�������
there exists d 6= 0n verifying:(
a
0

id = 0; i 2 D;
a
0

id < 0; i 2 T(a;b) (x) nD

) 9>=>; ;

we get the following relations (see [30, Theorem 3.2] for the inclusions, and
(37) below for the equality):S

D2DAI(x)
conv f�ai; i 2 Dg � lim sup

x!x; s(x)>s(x)

@s (x)

�
S
D2D(x)[D0(x) conv f�ai; i 2 Dg � bd @s (x)

= lim sup
x!x

@s (x) :

(36)

Under the Linear Independence Constraint Quali�cation, i.e. when the
vectors fai; i 2 T(a;b) (x)g are linearly independent, all the inclusions above
become equalities since the system fa0id = 1; i 2 I (x)g obviously has a
solution; in other words,

T(a;b) (x) 2 DAI (x) ;

and so S
D2DAI(x)

conv f�ai; i 2 Dg = conv
n
�ai; i 2 T(a;b) (x)

o
= bdconv

n
�ai; i 2 T(a;b) (x)

o
= bd @s (x) :

Moreover, the well-known Mangasarian-Fromovitz Constraint Quali�-
cation is not su¢ cient to guarantee equality in any of the inclusions in
(36) as the example in [30, Remark 3.3(ii)] shows. Let us note that (36)
is established in [30, Remark 3.3(ii)] for �nite inequality systems involving
continuously di¤erentiable functions.
In [60] the authors generalize the outer subdi¤erential construction (33),

given by Cánovas et al. in [30, Theorem 3.2], from supremum functions to
pointwise minima of regular Lipschitz functions. They provide an improve-
ment of Theorem 3.2 in [30] by replacing the family DAI (x) in (36) with
D (x) : Also in [132] a re�nement of this theorem in [30] is given.
In [26] speci�c formulas for the calmness modulus of feasible set map-

pings associated with partially perturbed linear inequality systems are given,
taking [37, Section 4] as starting point. The paper analyzes the relationship
between the calmness modulus of a particular feasible set mapping (related
to the KKT conditions for the original LP problem) and the linear rate of
convergence for the distance between the central path of a linear program
and its primal-dual optimal set.
Another couple of applications of the modulus of calmness for fully per-

turbed linear programs (Scenario 1) can be found in [28, §5]. The �rst one
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to a descent method in LP, and the second to a regularization method for
linear programs with complementarity constraints.
Concerning the optimal set mapping S in LSIO, Theorem 3.1 in [27]

establishes that, in Scenario 4 and under SCQ, perturbations of c are neg-
ligible when characterizing the calmness of Sa, and that this property is
equivalent to the calmness of the level set mapping

(�; b) 7! fx 2 Rn : c0x � �; a0tx � bt 8t 2 Tg

at
�
(c0x; b); x

�
. If T is �nite, the SCQ continues to be a key property but

the �niteness of T is no longer a su¢ cient condition for the calmness of S,
in the fully-perturbed setting or Scenario 1, as the following result shows:

Theorem 10 (Calmness of the optimal set mapping) [29, Theorem
4.1] Assume that T is �nite (T = f1; 2; :::;mg) and S(c; a; b) = fxg : The
following are equivalent:
(i) S is calm at ((c; a; b); x);
(ii) either SCQ holds at (a; b) or F(a; b) = fxg;
(iii) 0n =2 bd conv

n
ai; i 2 T(a;b) (x)

o
:

Additionally, [29] provides, for T �nite, a formula for the calmness mod-
ulus of S which is exact in Scenario 4 and an upper bound in Scenario 1,
respectively.
In [32] a lower bound on clmSa((c; b); x) for an LSIO with a unique

optimal solution, under SCQ and in Scenario 4, is given in Theorem 6. It
turns out that this lower bound equals the exact modulus when T is �nite
without requiring either SCQ or the uniqueness of x as optimal solution of
P: Also when T is �nite and the optimal set is a singleton, a new upper
bound for clmSa((c; b); x) is proposed in Theorem 13. This upper bound is
easily computable, as it is formulated exclusively in terms of the nominal
data c, b; and x; but examples show that it may not be attained.
In [28], the main result (Theorem 3.1) gives the following character-

ization of the boundary of the subdi¤erential set of a convex function
f : Rn ! R at any point x 2 Rn :

bd @f(x) = lim sup
x6=x; x!x

@f(x): (37)

Using (37), the authors provide in Theorem 4.1 an upper bound of
clmS((c; a; b); x) for a continuous LSIO such that S(c; a; b) = fxg and SCQ
holds.
When T is �nite, in order to provide estimates of clmS((c; a; b); x); with

((c; a; b); x) 2 gphS, and taking KKT optimality conditions into account,
we de�ne:

M (x) :=

�
D � T(a;b) (x) : �c 2 cone fai; i 2 Dg
and D is minimal for the inclusion order

�
:

If D 2M (x) ; Carathéodory�s Theorem yields jDj � n.
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Associated with each D 2 M (x) we consider the mapping LD : Rm �
RD � Rn

LD (b; d) := fx 2 Rn : a0ix � bi; i = 1; ::;m; � a0ix � di; i 2 Dg:

Corollary 4.1 in [30, Corollary 4.1] establishes that

clmSa((�c;�b); x) = sup
D2M(x)

clmLD((�b;��bD); x);

meanwhile sup
D2M(x)

clmLD((�b;��bD); x) is only a lower bound of clmSa((�c;�b); x)

for the semi-in�nite optimization problem [30, Theorem 4.2]. Moreover, un-
der SCQ, S(c; a; b) = fxg; and for small kck, one has [31, Section 5]

clmS((c; a; b); x) = (kxk+ 1) clmSa((c; b); x):

The Aubin property of S for linear programs under full perturbations
is characterized in the �rst part of [38], whereas in the second part of that
paper a formula for computing the exact Lipschitz modulus is given.
Table 4 summarizes the recent literature on calmness in LSIO that we

have commented above. Column 1 enumerates the references in chronolog-
ical order, columns 2 and 3 inform on the type of LSIO problem each ref-
erence deals with (either a �nite one or a continuous one, or both), column
4 indicates the considered scenarios, column 5 whether the corresponding
paper provides the exact value of clmF

�
�; x
�
or not, while columns 6 and 7

provide a similar information regarding clmS
�
�; x
�
through estimation or

exact formulas, respectively.

Paper Finite Cont. Scenarios F exact S est S exact
[27]

p p
4

p

[32]
p p

4
p p

[37]
p p

2, 6
p

[28]
p

1
p

[29]
p

1, 4
p p

[30]
p p

4
p

[31]
p

1
[38]

p
1, 4

[26]
p

1, 4
p

Table 4

3.3 Robust linear semi-in�nite optimization

Suppose that we are given an uncertain LSIO problem P as in (19), where
c 2 Rn and

�
a; b
�
2 (Rn)T �RT are uncertain. The robust approach trans-

forms P into deterministic problems involving the so-called uncertainty sets.
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We assume, for the sake of simplicity, that the uncertainty sets for the vec-
tors

�
at; bt

�
are Euclidean closed balls centered at

�
at; bt

�
of the same radius,

say � � 0; i.e., the sets

U�t :=
�
at; bt

�
+ �Bn+1; t 2 T:

We also assume that the uncertainty sets for the cost vector c is an Euclidean
closed ball centered at c of radius � � 0; i.e., the set

V � := c+ �Bn:

The user must decide the value of the parameters � and � in such a way
that the uncertainty sets are su¢ ciently large to contain any conceivable
value of the real data but su¢ ciently small to guarantee the existence of
robust solutions.
Pessimistic decision makers only accept solutions which are immunized

against infeasibility. Once some � � 0 has been chosen, the solutions of the
linear semi-in�nite system

fa0x � b; (a; b) 2 U�t ; t 2 Tg (38)

are called robust feasible solutions, which form the so-called robust feasible
set F�R :
The following question arises in a natural way: how large can we take �

in order to guarantee that F�R 6= ;? Since f� � 0 : F�R 6= ;g is a bounded
interval containing 0, it is enough to compute its supremum, the so-called
radius of robust feasibility of P :

�M
�
P
�
:= sup f� � 0 : F�R 6= ;g ; (39)

where sup ; = �1.
The following characterization of �M

�
P
�
; proved in [84, Theorem 2.5

and Proposition 2.3], is based on the existence theorem (6) and arguments
similar to those used in [33] to compute the distance to ill-posedness in the
consistency sense in the parametric setting (Scenarios 1 and 2). The formula
involves the set

H
�
a; b
�
:= conv

��
at; bt

�
; t 2 T

	
+ R+ f(0n;�1)g ;

which is called hypographical set of P in [33].

Theorem 11 (The radius of robust feasibility) The following equation
holds:

�M
�
P
�
= d

�
0n+1;H(a; b)

�
: (40)

Moreover, if the recession cone of the feasible set of P is a linear subspace,
then the supremum in (39) is attained.
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In contrast with the existing consensus on the type of acceptable solu-
tions by the robust optimization community, there is a controversy on the
type of optimal solutions to be selected once � � 0 such that F�R 6= ; and
� � 0 have been chosen. These are the most popular concepts of robust
optimal solutions:

�A vector x 2 F�R is a minmax (or worst-case) optimal solution when it is
an optimal solution of the so-called robust (or pessimistic) counterpart
of P (a deterministic convex semi-in�nite optimization problem):

infx2Rn maxc2V � c0x
s.t. a0x � b; (a; b) 2 U�t ; t 2 T:

(41)

We denote by S�;�M the set of minmax optimal solutions.
�A vector x 2 F�R is a highly robust optimal solution when it is an optimal
solution of

infx2Rn c
0x

s.t. a0x � b; (a; b) 2 U�t ; t 2 T;
for all c 2 V � : We denote by S�;�H the set of highly robust optimal
solutions.

Once � � 0 has been chosen, it is also natural to ask how large the
parameter � can be taken in order to guarantee the existence of minmax
optimal solutions and/or highly robust optimal solutions.
We de�ne the radius of minmax robust e¢ ciency of P for a given � � 0

such that F�R 6= ; as

��M := sup
n
� � 0 : S�;�M 6= ;

o
:

Analogously, the radius of highly robust e¢ ciency of P for a given � such
that F�R 6= ; as

��H := sup
n
� � 0 : S�;�H 6= ;

o
:

The value of ��H is related to the existence of strongly unique solution to
the problem

infx2Rn c0x
s.t. a0x � b; (a; b) 2 U�t ; t 2 T:

(42)

Recall that a vector x 2 F�R is said to be isolated (or strongly unique)
solution for the problem in (42) if there exists � > 0 such that

c0x � c0x+ � kx� xk for all x 2 F�R : (43)

The in�mum of such � verifying (43) is called isolation modulus of x; that
we denote by iso (�;x) : It is known [88, Theorem 10.5] that x 2 F�R is an
isolated solution for the problem in (42) if and only if c 2 intD (F�R ;x)

�
:

Recall that D (F�R ;x)
� can be recovered from

�
a; b
�
when the system (38)

satis�es LFMCQ at x:
The next theorem is the specialization to scalar optimization of results

in the recent work [86] (on robust multi-objective convex optimization).
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Theorem 12 (The radii of minmax and highly robustness ) Let � �
0 be such that F�R 6= ;: Then, the following statements hold:

(i) ��M = +1:
(ii) ��H > 0 if and only if the problem in (42) has an isolated solution x; in

which case ��H = iso (�;x) :

Let us observe that

inf f� � 0 : F�R 6= ;g = inf
n
� � 0 : S�;�H 6= ;

o
= 0;

while

dist

0@�c; conv
8<: [
x2F�

R

D (F�R ;x)
�

9=;
1A � inf

n
� � 0 : S�;�M 6= ;

o
� kck :

Optimality conditions for robust multi-objective (and so for scalar) LSIO
problems with arbitrary uncertainty sets can be found in [84, Theorem 3.3]
whereas duality theorems for robust scalar (respectively, multi-objective)
LSIO problems involving the optimistic counterparts are given in [83] (re-
spectively, [84]) .
Concerning the numerical treatment of the robust counterpart problem

in (41), let us observe that, taken into account the special structure of the
index set

[
t2T

U�t � Rn+1; only discretization methods can be applied, with

the serious inconvenient that grid discretization methods are only e¢ cient
provided the dimension n+ 1 of the index set is su¢ ciently small.
The stability of robust optimization problems with respect to pertur-

bations in their uncertainty sets is studied in [39]. In particular, the paper
focus on robust LSIO problems, and considers uncertainty in both the cost
function and constraints. The authors prove Lipschitz continuity proper-
ties of the optimal value and the "-optimal solution set with respect to the
Hausdor¤ distance between uncertainty sets.

4 Selected applications 2007-2016

Chapter 1 of [90] describes the way the primal LSIO problem P arises in
functional approximation, pattern recognition, environmental decision mak-
ing, generalized Neyman-Pearson problem for grouped data, optimal exper-
imental design in regression, maximum likelihood estimation, semi-de�nite
programming, and geometric programming. In turn, Chapter 2 describes
applications of the dual problem D to data envelopment analysis, location
problems, and robustness in Bayesian statistics. We now describe three new
applications of linear semi-in�nite optimization and provide comments on
other applications spread on the recent literature.
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4.1 Linear conic optimization

Consider the conic optimization problem

PK : infx2Rn c
0x

s.t.

264 a01x+ b1
...

a0mx+ bm

375 2 �K;
where c 2 Rn,

�
ai; bi

�
2 Rn+1; 1 � i � m; and K is a closed pointed convex

cone in Rm such that intK 6= ;: Since K�� = K; given x 2 Rn;264 a01x+ b1
...

a0mx+ bm

375 2 �K ()
mX
i=1

�ia
0
ix � �

mX
i=1

�ibi;8� = (�1; :::; �m) 2 K�;

so that PK can be reformulated as an LSIO problem. Since the convergence
of most numerical approaches described in Subsection 2.3 requires the given
LSIO problem to be continuous, it is convenient to reformulate again PK
as

PK : infx2Rn c
0x

s.t.
mX
i=1

�ia
0
ix � �

mX
i=1

�ibi; � 2 B;
(44)

where B is any compact base of K� ; i.e., a compact convex subset of K�

such that 0m =2 B and coneB =K� (called compact sole in [7, p. 57]). The
condition that 0m =2 B plays an important role in theoretical and numerical
aspects of PK as 0m 2 B is incompatible with the desirable SCQ.

The cone K � Rm; with m = q+

qX
j=1

nj ; in [109] is the cartesian product

of q second order cones of the form
�
x 2 Rnj+1 : xnj+1 �



�x1; :::; xnj�

	 ;
j = 1; :::; q; so, the equivalent continuous LSIO problem can be solved by
means of some LSIO method; the authors preferred a dual simplex method
whose convergence is not guaranteed (continuity is not enough). Since the
dimension of B is m; PK could be solved using discretization methods when
m is small.
The LSIO theory has also been used in this setting. Indeed, some results

in [59], on genericity of strong duality and weak genericity of uniqueness
in linear conic optimization (specially those in Subsection 4.1), have been
obtained appealing to the LSIO reformulation of PK : However, the known
genericity results on LSIO (see [101], [150] and references therein) cannot
be directly transferred to linear conic optimization as the class of LSIO
reformulations represents a small subset of �0 (see [59, Subsection 4.4]).
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4.2 Robust linear and convex programming

The robust counterpart, P�R in (41), with � > 0; of any linear optimiza-
tion problem P is a continuous LSIO problem even though T is �nite, so
that P�R could be solved by means of one of the numerical approaches de-
scribed in Subsection 2.3. Due to the di¢ culties encountered by the numer-
ical LSIO methods to solve P�R (recall the argument in the last paragraph
of Subsection 3.3), many authors impose strong conditions on P allowing
to reformulate P�R as a tractable �nite convex problem (see [15] and refer-
ences therein). However, when these assumptions fail, LSIO methods can
be useful. Indeed, there is a stream of works dealing with waste manage-
ment under uncertainty where the uncertain LP problem is solved through
its reformulation as an LSIO problem. This approach is compared with the
interval linear optimization one in [105], [110], [111], [114], [134], [147] (a
paper on water resources management), whose authors conclude that the
LSIO approach has the following advantages:
(i) It re�ects better the association of the total system revenue with gas and
power prices;
(ii) it generates more reliable solutions with a lower risk of system failure
due to the possible constraints violation; and
(iii) it provides a more �exible management strategy since the capital avail-
ability can be adjusted with the variations in gas prices.
An integer LSIO model has been proposed in [196] for planning municipal
energy systems.
However, LSIO theory, in particular the existence theorem (6), plays a

crucial role in getting formulas for the radius of robust feasibility for �nite
linear and convex problems with uncertain constraints (in the latter case,
together with the calculus rules for conjugate functions). A direct simple
proof of (40) for robust linear programs has been given in [85]. The Euclidean
balls are replaced with the much more general class of spectrahedral sets
(including ellipsoids, balls, polytopes and boxes) in [45], where the formulas
for the radius of robust feasibility involves the Minkowski function (or gauge)
of the corresponding spectrahedral set.
Formulas for the radius of robust feasibility have been provided in [82]

for convex programs with uncertain polynomial constrains. More in detail,
this paper considers a nominal convex problem of the form

P : infx2Rn f(x)
s.t. gj (x) � 0; j = 1; :::q;

where f : Rn ! R is a convex function and gj : Rn ! R is a convex
polynomial for all j: The robust counterpart of P ; depending on a parameter
� � 0; is the problem

P�R : infx2Rn f(x)

s.t.
gj (x) +

Pp
l=1 v

l
j�g
l
j(x) + a

0
jx+ bj � 0;

( vj ; aj ; bj) 2 � (M � Bn+1) ; j = 1; :::q;
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where �glj are given convex polynomials on Rn, l = 1; : : : ; p, vj =
�
v1j ; :::; v

p
j

�
2

Rp; M � Rp+ is a given convex compact set with 0p 2M and ��j � 0, j 2 J .
An upper bound for the radius of robust feasibility is given in [82, Theorem
2.1] and an exact formula in [82, Theorem 3.1] under the assumption that
gj is a sum-of-squares (i.e., it is the �nite sum of squares of polynomial
functions) for all j: This formula expresses �M

�
P
�
as the square root of the

optimal value of some semi-de�nite optimization problem.

4.3 Machine Learning

Pattern classi�cation is to classify some unseen object into one of the given
classes (or categories). This is done by means of mathematical models, called
classi�ers, which can be of di¤erent nature: statistical models (which select a
discriminant function on the basis of a priori information on the probabilistic
distributions of the classes), neural networks, fuzzy systems, deterministic
systems or optimization models. A classi�er is implemented with the help of
a given (training) data set of examples that have been previously classi�ed
(or labelled), say

�
xi; i = 1; ::::; N

	
� Rn. An optimization model for clas-

si�cation is called a machine learning or support vector machine (SVM in
brief), and such a model becomes an optimization problem introducing the
training data (the input); the optimal solution provides decision functions
(the output) whose values on unseen objects determine their classi�cation.
In the simplest case of two classes contained in Rn; a unique decision

function g : Rn 7! R belonging to a predetermined family classi�es an ob-
ject x 2 Rn in the 1st (respectively, 2nd) class if g (x) > 0 (respectively,
g (x) < 0). The decision function g is computed by solving an optimiza-
tion problem with one constraint associated with each example. A training
example xi is called support vector if the corresponding dual variable is non-
zero, i.e., if a small perturbation of xi a¤ects the output g. For instance,
if the sets of examples of both classes can be strictly separated by means
of hyperplanes, it is sensible to select an a¢ ne function g (x) = w0x � b;
with w 2 Rn n f0ng (called weight vector) and b 2 R (called bias), such
that the corresponding hyperplane H := fw 2 Rn j w0x = bg separates the
examples in both classes maximizing the distance to the training data set.
In that case, the training examples closest to H are the support vectors.
Most SVM algorithms exploit the empirical fact that the cardinality of the
set of support vectors is small in comparison with the whole training data
set. In some applications, together with the training data set there is either
a (possibly in�nite) knowledge set necessarily contained in one of the two
classes or logical constraints to be respected. The ordinary (respectively,
semi-in�nite) version of the non-homogeneous Farkas lemma allows to for-
mulate the inclusion constraint when the contained set is formed by the
solution of a given ordinary (respectively, semi-in�nite) system. Concerning
the introduction of a logical constraint of the form t 2 T ) (Ex� a)0 t � b,
where T � Rp is an in�nite set, E 2 Rp�n, a 2 Rp and b 2 R, as pointed out
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by O. Mangasarian [142], it is equivalent to the linear semi-in�nite system�
(Ex� a)0 t � b; t 2 T

	
: Prior knowledge over arbitrary general sets has

been incorporated in [143] and [144] into nonlinear kernel approximation
problems in the form of an LSIO problem by means of a theorem of the
alternative for convex functions. The resulting LSIO problem is then solved
by means of a discretization procedure. The mentioned papers include nu-
merical examples and an important lymph node metastasis prediction ap-
plication.

When the two sets cannot be separated by means of hyperplanes, di¤er-
ent strategies are possible, for instance, separating the two sets by means
of a certain family of nonlinear surfaces (e.g., quadrics), minimizing a cer-
tain unconstrained function penalizing (for each given hyperplane in Rn) the
missclassi�ed examples, or separating through hyperplanes the images of the
examples in a certain space Rl (called featured space) by means of a suitable
mapping � : Rn 7! Rl. These two strategies involve LSIO problems. First, if
the training sets are separated by means of ellipsoids, the corresponding lin-
ear semi-de�nite optimization problem can be reformulated and solved as an
LSIO problem. Second, if the examples are mapped on the featured space,
the decision function has the form f (x) = w0� (x) + b; and x is classi�ed
into the 1st (respectively, 2nd) class if f (x) > 0 (respectively, f (x) < 0).
As a consequence of the KKT condition, if (w; b) is an optimal solution,

there exist multipliers �i; i = 1; ::::; N; such that w =
NX
i=1

�iyi�
�
xi
�
; where

yi denotes the label yi = +1 (respectively, yi = �1) if example xi belongs
to the 1st class (respectively, 2nd class). Replacing in the expression of f ,
we get

f (x) =
NX
i=1

�iyi�
�
xi
�0
� (x) + b =

NX
i=1

�iyi{
�
xi; x

�
+ b; (45)

where the function { : R2n 7! R such that { (x; z) = � (x)
0
� (z) ; called

kernel, is symmetric and can be interpreted as a measure of the similarity
between x and z. Among the kernels commonly used to classify let us men-
tion the polynomial kernel { (x; z) = (x0z + 1)m ; with m 2 N; the Gaussian
(or radial basis function) kernel { (x; z) = exp

�
�
 kx� zk2

�
; with 
 > 0;

and the three-layer neural network kernel { (x; z) = 1
1+exp(�x0z��) ; with

�; � 2 R.
Since typical learning problems involve multiple, heterogeneous data

sources, it is usually convenient to use a convex combination of kernels
instead of just one. Linear semi-in�nite optimization is also used in multiple
kernel learning where, according to [169], an optimal decision function for
the given training data is obtained by solving a problem of the form
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sup�2R; �2RK �

s.t. � �
KX
k=1

�kSk (�) ; � 2 A;

KX
k=1

�k = 1; �k � 0; k = 1; :::;K;

9>>>>>>=>>>>>>;
where the functions Sk (�) are continuous and

A :=

(
� 2 RN :

NX
i=1

yi�i = 0; 0 � �i � C; i = 1; :::; N

)

is a polytope. This continuous LSIO problem is solved in [169] by means of
a simplex dual algorithm.
Finally, consider the case in which there is an in�nite family of ker-

nels, say f{ (t) ; t 2 Tg ; where T is a one dimensional compact interval
(the model could be generalized by replacing the restrictive assumption
that T is an interval by the weaker one that T is a compact topological
space). One of the ways to handle in�nitely many kernels consists of con-
sidering nonnegative convex combinations of �nite subsets, a limitation of
the feasible decisions which does not always allow to represent the simi-
larity or dissimilarity of data points, speci�cally highly nonlinearly distrib-
uted and large-scaled ones. Thus, [152], [153], and [154] consider weighted
combinations of all the kernels by means of probability measures on T:
To each � 2C0+ (T ) is associated the weighted combination of elements

of f{ (t) ; t 2 Tg ; i.e., {� (x; z) :=
Z
T

{ (x; z; t) d� (t) : For instance, if the

family is formed by Gaussian kernels, the form of the weighted combina-

tion would be {� (x; z) :=
Z
T

exp
�
�t kx� zk2

�
d� (t) : This way, after the

change of variable � = ��; the LSIO problem becomes

inf�2R;�2C0+(T ) �

s.t. � +

Z
T

S (t; �) d� (t) � 0; � 2 A;Z
T

d� (t) = 1;

9>>>=>>>; (46)

where

S (t; �) :=
1

2

NX
i;j=1

�i�jyiyj{�
�
xi; xj

�
�

NX
i=1

�i:

The connections between machine learning, LSIO and other optimization
�elds have been discussed in [176].
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4.4 Other applications

�Finance, economy and games
The uncertain portfolio problem is another source of applications of
LSIO. First, the general uncertain portfolio problem has been formu-
lated in [186] as an LSIO problem, where the reader can �nd examples
solved via feasible direction methods. Second, the problem consisting of
minimizing the portfolio cost subject to constraints guaranteeing that
the portfolio payout is always greater or equal to the payo¤ of the bar-
rier option has been modeled in [131] and [146] as an LSIO problem
whose corresponding dual is solved via discretization and its optimal so-
lution is interpreted in economic terms; this model is studied in detail in
the monograph [146], which provides numerical examples showing that
this approach is superior to those developed previously in the literature.
Third, basket options (a popular way to hedge portfolio risk as they o¤er
the unique characteristic of a strike price based on the weighted value of
the basket of assets) has been modelled in [155] as a stochastic optimiza-
tion problem involving m assets, each asset with its corresponding strike
Ki, spot price C0;i; and weight, wi; i = 1; :::;m; the horizon is � ; and
there is a riskless zero bound with initial price 1 and future payo¤ er� :
The price of asset i at the horizon is a random variable Si: The payo¤
of the call option i at maturity � is (Si �Ki)+ := max fSi �Ki; 0g :
An important problem in stochastic �nance consists of computing the
interval of variation of the expected value of the price of the basket
option at maturity, i.e., the random variable er�

�
wTS �KB

�
+
; where

KB denotes the strike. Under mild assumptions, [155] reformulates the
dual problems of maximizing and minimizing the mentioned expected
value as LSIO problems. In particular, the LSIO problem providing the
upper bound of the expected value of er�

�
wTS �KB

�
+
turns out to be

solvable by means of a closed formula. This problem has been studied
in detail in [53] from the numerical LSIO perspective.
Complementary references: [8], [166], [167], [171], [172], [175], [182].

�Probability and Statistics
The most important application of LSIO in statistics is Bayesian ro-
bustness. Two central problems in this �eld consist of analyzing the
robustness of Bayesian procedures with respect to the prior and calcu-
lating minimax decision rules under generalized moment conditions.
The univariate moment problem has been reformulated as a dual LSIO
problem by assuming that the prior belongs to a class de�ned in terms of
the so-called generalized moment conditions. These problems have been
solved by the cutting-plane discretization method proposed by Betrò in
[16] ([17], [18], [157], [158]).
Concerning the second problem, the corresponding decision rules are ob-
tained by minimizing the maximum of the integrals of the risk function
with respect to a given family of distributions on a certain space of pa-
rameters; [69] considers systems whose components have exponential life
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distributions. The corresponding optimal component testing problem is
formulated as an LSIO problem which is solved by means of an algorith-
mic procedure that computes optimal test times based on the column
generation technique (dual simplex method).
The deterministic semi-Markov decision processes in Borel spaces are
usually formulated as in�nite LP problems. These problems have been
approximated by means of primal/dual LSIO problems in [122], where
the authors show that strong duality holds.
Complementary references: [3], [50], [188], [191].

�Stochastic programming
In [112] the authors deal with the optimal scenario generation problem
and show that, for linear two-stage stochastic models, this problem can
be formulated as a generalized semi-in�nite program, which is convex
in some cases and enjoys stability properties. Additionally, the prob-
lem of optimal scenario reduction for two-stage models admits a new
formulation (based on the minimal information distance) as a mixed-
integer linear semi-in�nite program. The latter decomposes into solving
binary and linear semi-in�nite programs recursively. Also in this paper,
a mixed-integer linear semi-in�nite program is proposed for optimal sce-
nario generation in chance constrained programming. The approach is
illustrated with an application to scenario generation for the classical
newsvendor problem.
Distributionally robust two-stage stochastic linear optimization prob-
lems with higher-order are reformulated as LSIO problems in [71]. A
numerical experiment is reported, where the LSIO problem is solved
with the reduction method of [189].

�Best approximate solutions of inconsistent systems
Best approximate solutions of inconsistent linear systems of the form
fAx = bg ; with A 2 Rm�n; b 2 Rm; m � n; are usually computed,
following Legendre, by minimizing the Euclidean norm of the residual
vector r (x) := Ax � b 2 Rm; whose optimal set has the closed form�
x 2 Rn :

�
A>A

�
x = A>b

	
(a unique optimal solution

�
A>A

��1
A>b

whenever the columns of A are linearly independent). When the incon-
sistent system is formed by inequalities,

�
a>j x � bj ; j = 1; :::;m

	
; the

minimization of the Euclidean norm of the residual vector

r+ (x) :=
�
max

�
a>1 x� b1; 0

	
; : : : ;max

�
a>mx� bm; 0

	�
:=
��
a>1 x� b1

�
+
; : : : ;

�
a>mx� bm

�
+

�
on Rn requires an iterative method (as the least-squares method pro-
posed by Han in 1980). When the �nite index set f1; :::;mg is replaced
by an in�nite set T; the residual vector becomes a real-valued function
T 3 t 7!

�
a>t x� bt

�
+
; whose size can certainly be measured with the

uniform norm, but not always with the Euclidean one (except under
continuity assumptions). Computing the best uniform solution can so
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be formulated as the LSIO problem

P : inf (x;xn+1)2Rn+1 xn+1
s.t. a>t x� xn+1 � bt; t 2 T;

which allows to give conditions guaranteeing the existence and unique-
ness of best uniform solutions via LSIO theory and compute them with
LSIO methods [80].

�Big Data Analytics
As claimed by di¤erent authors in [121], mathematical optimization is
an important tool used in big data analytics, in particular in arti�cial in-
telligence and machine learning. We can mention, among the most used
optimization tools, dynamic programming, heuristic and metaheuristic
methods, multi-objective and multi-modal methods, such as Pareto opti-
mization and evolutionary algorithms. It is evident that identifying and
selecting the most important features from a ultrahigh dimensional big
dataset play a major role in processing large volume of data to take in-
stant decision in short period of time. Hence, ranking the features based
on their relevance and selecting the most relevant features can vastly
improve the generalization performance. Feature selection is also con-
sidered very important for big data analytics due to its characteristics
of semi-in�nite optimization problem. To address an associated convex
SIO problem, Tan et al. [173] propose an e¢ cient feature selection algo-
rithm that works iteratively and selects a subset of features, and solves
a sequence of multiple kernel learning subproblems. The authors assert
that the proposed method converges globally under mild condition and
yields low biasness on feature selection.

�Engineering and Chemistry
In [56] the model reduction of high order linear-in-parameters discrete-
time systems is considered. The coe¢ cients of the original system model
are assumed to be known only within given intervals, and the coe¢ cients
of the derived reduced order model are also obtained in intervals, such
that the complex value sets of the uncertain original and reduced mod-
els will be optimally close to each other on the unit circle. The authors
apply a novel approach based on the minimization of the in�nity norm
of �distance�between two polygons representing the original and the re-
duced uncertain systems. Thanks to a special de�nition of this distance,
the problem admits an LSIO reformulation which reduces signi�cantly
the computation time.
In [180] the authors addressed the problem of optimizing the power �ow
in power systems with transient stability constraints. They translate
this problem into a SIO problem and, based on the KKT-system of this
reformulated SIO, a smoothing quasi-Newton algorithm is presented in
which numerical integration is used. The convergence of the algorithm
is also established.

�Other references
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Selected applications of LSIO to di¤erent �elds can be found in [3], [4],
[19], [20], [21], [49], [56], [69], [115], [117], [119], [120], [134], [140], [159],
[164], [168], [180], [179], [191], [192] and [196].
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