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ABSTRACT:

This paper presents a new method for segmentation of LIDAR point cloud data for automatic building extraction. Using the ground
height from a DEM (Digital Elevation Model), the non-ground points (mainly buildings and trees) are separated from the ground points.
Points on walls are removed from the set of non-ground points by applying the following two approaches: If a plane fitted at a point
and its neighbourhood is perpendicular to a fictitious horizontal plane, then this point is designated as a wall point. When LIDAR
points are projected on a dense grid, points within a narrow area close to an imaginary vertical line on the wall should fall into the
same grid cell. If three or more points fall into the same cell, then the intermediate points are removed as wall points. The remaining
non-ground points are then divided into clusters based on height and local neighbourhood. One or more clusters are initialised based
on the maximum height of the points and then each cluster is extended by applying height and neighbourhood constraints. Planar roof
segments are extracted from each cluster of points following a region-growing technique. Planes are initialised using coplanar points as
seed points and then grown using plane compatibility tests. If the estimated height of a point is similar to its LIDAR generated height,
or if its normal distance to a plane is within a predefined limit, then the point is added to the plane. Once all the planar segments are
extracted, the common points between the neghbouring planes are assigned to the appropriate planes based on the plane intersection
line, locality and the angle between the normal at a common point and the corresponding plane. A rule-based procedure is applied
to remove tree planes which are small in size and randomly oriented. The neighbouring planes are then merged to obtain individual
building boundaries, which are regularised based on long line segments. Experimental results on ISPRS benchmark data sets show that
the proposed method offers higher building detection and roof plane extraction rates than many existing methods, especially in complex
urban scenes.

1. INTRODUCTION

Automatic extraction of buildings from remote sensing data is a
prerequisite for many GIS (Geographic Information System) ap-
plications, such as urban planning and 3D building modelling.
Since airborne LIDAR systems provide an efficient way for rapid
high resolution 3D mapping of the earth surface, much research
currently focusses on automatic feature (buildings, trees, roads,
ground etc.) extraction from LIDAR data. The ISPRS test project’
on urban object classification and 3D building reconstruction has
given impetus to the process of evaluation and comparison of pro-
posed methods on a common platform.

There are two test data sets in the ISPRS benchmark project:

Vaigingen (VH) from Germany and Downtown Toronto (TR) from
Canada. The VH data set represents a mixture of historic and res-

idential buildings, with the historic buildings having a complex Figure 1: A complex urban scene, downtown Toronto.

roof structure and the residential buildings a rather simple roof

structure. Although there is a considerable amount of vegetation ~ shown in Figure 1.% Consequently, the task of building detection
in this data set, the number of high-rise buildings is limited. In and reconstruction in the TR data set is far more difficult than in
contrast, the TR data set is from the central business district of ~ the VH data set.

Toronto. This data set contains representative scene characteris-

tics of a modern mega city in North America, including a mixture The complexity of the task of building extraction in the TR data
of low- and high-story buildings with a wide variety of rooftop set is not only due to complex roof structures, but also because

structures. An example of such complex high-rise buildings is ~ buildings have varying heights that contribute significant shad-
ows and occlusions. It is well known that shadows and occlusions

*Corresponding author. are two major problems in feature extraction from aerial imagery.
LAvailable at http://www2.isprs.org/commissions/comm3/
wgd/tests.html. 2From http://en.wikipedia.org/wiki/Downtown_Toronto.
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Although shadows are not a problem in the LIDAR system, oc-
clusions cause a large number of data gaps in the LIDAR point
cloud. However, multiple passes from different angles by the LI-
DAR system can overcome this problem by capturing data of the
occluded areas. There is another problem that might be observed
in LIDAR data, namely that in a modern mega city like Toronto,
different types of materials are used both on the roof and walls of
abuilding. Some of these materials are glass which may be trans-
parent or semitransparent. As a consequence, there is a signifi-
cant number of unexpected LIDAR points reflected from objects
inside the building and under the rooftop. Many of these points
may be considered as noise. This phenomenon adds difficulty in
building extraction from LIDAR point clouds in cities.

This paper proposes a new building detection method using a
novel segmentation technique for LIDAR point cloud data cov-
ering complex urban scenes. The point cloud data is first divided
into ground and non-ground points using a height threshold above
the ground height. The non-ground points are mainly buildings
and trees and these are further processed to remove the trees and
to separate individual buildings. Points on walls can be removed
by applying a plane fitting technique and by projecting data onto
a dense grid. The remaining non-ground points are then divided
into clusters based on height and local neighbourhood. The over-
lapping points between the neghbouring planes are assigned to
the appropriate planes based on their locality and the plane inter-
section line. A rule-based procedure is then applied to remove
tree planes, which are small in size and randomly oriented. The
neighbouring planes are merged to obtain individual building re-
gions. The building boundaries are regularised by adjusting small
lines with respect to long lines.

2. RELATED WORK

Dorninger and Pfeifer (2008) proposed a comprehensive method
for extraction, reconstruction and regularization of roof planes
from LIDAR point clouds. Jochem et al. (2012) presented a roof
plane segmentation technique from raster LIDAR data using a
seed point based region growing technique. Oude Elberink and
Vosselman (2009) used a target based graph matching approach
that can handle both complete and incomplete laser data. Exten-
sive and promising experimental results were shown on four data
sets. Rau (2012) proposed a line-based roof model reconstruction
algorithm, called TIN-Merging and Reshaping.

Awrangjeb and Fraser (2014a) proposed a region-growing method
based on a plane-fitting technique using LIDAR point cloud data.
Gerke and Xiao (2014) combined aerial imagery and LIDAR data
to separately detect four object classes including buildings. Sohn
et al. (2012) proposed a new algorithm to generalize noisy poly-
lines comprising a rooftop model by maximizing a shape regular-
ity (orthogonality, symmetricity and directional simplications).
Mongus et al. (2014) used a multi-scale decomposition of LI-
DAR point cloud data to separate ground points and they applied
a local surface fitting technique for extraction of planar segments.
Awrangjeb et al. (2013) used roof edge and ridge lines from the
aerial orthoimagery to define seed points for a region-growing
technique applied on LIDAR point cloud data.

3. PROPOSED METHOD

Figure 2 shows the work flow of the proposed building extrac-
tion technique. The proposed method first divides the input LI-
DAR point cloud data into ground and non-ground points. The
non-ground points, representing objects above the ground such

Inputs: Raw
LIDAR data
Non-ground points (mainly,
on trees and buildings)

Removal of
points on walls

Finding point clusters

Plane extraction from
each point cluster

Aggregation of

planes for buildings

Building boundary

regularisation

Output: Building foot-
prints & roof planes

Figure 2: The proposed building extraction method.

(c) (d)

Figure 3: A sample scene from the Toronto data set: (a) LIDAR
points, (b) 3D view, (c) non-ground points and (d) non-ground
points after removal of wall points. In each figure, points at sim-
ilar heights are shown using the same colour.

as buildings and trees, are further processed for building extrac-
tion. Points on walls are removed from the non-ground points,
which are then divided into clusters. Planar roof segments are ex-
tracted from each cluster of points using a region-growing tech-
nique. The extracted segments are refined based on the relation-
ship between each pair of neighbouring planes. Planar segments
constructed in trees are eliminated using information such as area,
orientation and unused LIDAR points within the plane boundary.
Points on the neighbouring planar segments are accumulated to
form individual building regions. A new algorithm is proposed to
regularise the building boundary. The final output from the pro-
posed method will be individual buildings and roof planes (points
and 3D boundaries).

Figure 3(a) shows a sample scene from the Toronto data set, which
has a point density of 6 points/m? (ISPRSbenchmark, 2013). In
each subfigure of Figure 3, points at similar heights are shown us-
ing the same colour. Figure 3(b) shows a 3D view of the sample
scene, where walls from some high rise buildings are shown. In
the following subsections, different steps of the proposed method
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Figure 4: LIDAR points reflected from a narrow area around an
imaginary line on a wall or large height jump.

are described using this sample scene.
3.1 Finding non-ground points and removing wall points

The non-ground points can be easily separated from the ground
points using a bare-earth DEM (Digital Elevation Model). If a
bare-earth DEM is not available, one can be generated from the
LIDAR point cloud data. We assume that the bare-earth DEM is
given as an input to the proposed method. For each LIDAR point,
the corresponding DEM height is used as the ground height H,,.
A height threshold 7}, = Hg + h., where h. is a height constant
that separates low objects from higher objects, is then applied to
the LIDAR data. In this study, h. = 1 m has been set (Awrangjeb
and Fraser, 2014a). Figure 3(c) shows the non-ground points for
the sample scene.

A 2D neighbourhood, for example, Delaunay triangles or Voronoi
neighbourhood, is usually considered in any region growing seg-
mentation technique. A large number of unexpected triangles
or neighbourhood points can be found for the points on a roof
with the points on its walls. Since this paper aims for an ef-
fective segmentation of individual roof planes, the wall points
are first removed by applying a plane fitting technique and by
projecting data on a dense grid as follows. A fictitious horizon-
tal plane & is formed. Considering the length and width of the
test area to be [, (Easting) and w, (Northing), the following four
points can be used to construct S: (1,1,1), (lq,1,1), (1, wa, 1)
and (lq,wq, 1), where a constant height of 1 m is considered.
For each non-ground LIDAR point P, its neighbouring point set
Sn = {Q;} is obtained, where each neighbour Q; resides within
adistance H, from P and has a maximum height difference of V
with P. The value of the horizontal distance threshold Hy is set
at twice the maximum point-to-point distance (d.,,) in the input
LIDAR data (Awrangjeb et al., 2013). Considering the maximum
slope (with respect to ) for a roof plane is 75°, the value of the
vertical distance threshold Vj is set at d,, X tan(75°). S, in-
cludes P and if |S,,| > 3, a plane (,, is constructed for P. If the
angle between ¢, and ' is at most 35, then ¢, is determined as a
vertical plane and P is removed as a wall point.

The above procedure removes a large number of points reflected
from walls. However, some of the points on walls may still sur-
vive, especially those which reside far away from each other or
get reflected from different planes of a wall. The surviving wall
points, which reside within the area close to an imaginary verti-
cal line on a wall can be removed easily. Figure 4 shows such
wall points which are far away (more than Hy) from each other.
In order to remove these points, all the surviving points are pro-
jected onto a dense grid of resolution 0.25 m (Awrangjeb et al.,
2012). Assuming that the grid resolution is less than the LIDAR

Figure 5: (a) Clusters of points for the sample scene in Figure 3
and (b) extracted planar segments.

point density (i.e., d, > 0.25 m), this projection will transfer all
points within a narrow area close to an imaginary vertical line
to the same grid cell. If a grid cell has more than one projected
point, points that are at the top and bottom of the line are kept
and others are removed. For illustration, the red coloured points
in Figure 4 are removed, but the light blue coloured points are
preserved. Figure 3(d) shows the non-ground LIDAR points after
the removal of wall points. As can be seen in the figure, points
that are far away from each other or are reflected from different
planes of a wall can not be removed. However, it will be unlikely
that a vertical plane is extracted from these surviving wall points.

3.2 Point clustering

All the non-ground points obtained after removal of wall points
are now processed to generate clusters of points based on height.
Initially, all these points are not assigned to any clusters. Consid-
ering the maximum LIDAR height as the current height, points
at this height (within a specified tolerance) are found and one or
more clusters are initialised depending on their locality. Then
each of the cluster is extended until no points can be added to the
cluster. Points in each cluster are marked so that they are not as-
signed to another cluster. Once all the clusters initialised from the
current height are finalised, the points that are not yet assigned to
any clusters are then processed to generate more clusters. The
next current height will be the maximum height of these unas-
signed points.

Let the current maximum height be h,, and the set of points
that has similar height (i.e., within h,, & T, where T} = 0.1 m
(Awrangjeb et al., 2013) to allow the error in LIDAR generated
heights) is S.. One or more clusters &;, where ¢ > 1, are ini-
tialised using S. based on the locality. For a point P € &;, there
is at least one neighbouring point @) in the same cluster such that
the 2D Euclidean distance |P.Q| < Hgy. If P and @ are in two
different clusters then |P.Q| > Hy.

In order to extend a cluster &;, let R be a neighbour of P, where
P € ¢; but R has been neither assigned to any cluster nor yet
designated as a wall point. R is considered to be a neighbour of
P, if |P.R| < Hg and their height difference is within V4. R is
added to &;, which is iteratively extended until no R is found as a
neighbour of P.

Each of the extended clusters represents an individual building,
a roof plane or a roof section. Thereafter, an extended cluster
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&; is considered a valid cluster if it is larger than 1 m? in area.
To obtain the area of a cluster, its points are projected onto an
initially white mask M., of resolution 0.25m (Awrangjeb et al.,
2012). For each point projected at location (z,y) of M., all the
pixels within a n X n neigbourhood are made black. The value
of n is determined based on d,, and the resolution of M,, such
that all the pixels corresponding to an individual building, roof
section or plane become black. The area of &; is thus roughly
estimated by counting the number of black pixels multiplied by
the pixel size.

Figure 5(a) shows a 3D view of all the clusters for the sample
scene in Figure 3. Compared to the wall points in Figure 3(d),
Figure 5(a) shows that the points on walls are not assigned to any
clusters for the sample scene in Figure 3(a). Trees with small
canopy can also be removed in this clustering technique.

3.3 Roof plane extraction

Planar roof segments are extracted from each cluster of points.
By using the Delaunay triangulation algorithm, a natural neigh-
bourhood of points in the cluster can be generated. The neigh-
bourhood of a point P consists of the points Q;, 1 <i < mn,
where each line PQ); is a side of a Delaunay triangle. In order to
avoid points which are far away from P, the following condition
is applied: |PQ;| < T4. The coplanarity of P is decided using
its neghbouring points following the procedure in Awrangjeb and
Fraser (2014a). Points within a roof plane are found to be copla-
nar and those along the boundary of a plane are generally found
to be non-coplanar.

For each cluster, let the two sets of the non-ground LIDAR points
be 51, containing all the coplanar points, and S2, containing the
rest (non-coplanar). The first planar segment can now be ini-
tialised using a coplanar point P € S; and its neighbours. This
new planar segment is extended using the neighbouring points
from S; and S>. Once the extension is complete, all the coplanar
points in the extended planar segment are marked so that none
are latter used for initiating another planar segment. As a result,
the points in S2, which mainly reside along the plane boundaries,
can be used by more than one extracted plane. The second planar
segment is grown by using an unused coplanar point (from S7).
The iterative procedure continues until no coplanar point remains
unused.

Figure 5(b) shows all the extracted planes for the sample scene.
Since two extracted planes may have some points in common, es-
pecially along the plane intersection or when a plane is extracted
twice or more times. In order to refine the extracted planes, the
following rules are applied: First, if two planes share the major-
ity of the plane points they are considered to be coincident planes
(i.e., a plane is multiply extracted) and they are merged. Second,
if two planes are parallel, each of the common points P is as-
signed to the plane with which it has a smaller normal distance.
Third, for two non-parallel planes, if P is coplanar then two an-
gles are estimated between its normal and the two plane normals.
P and its neighbours are then assigned to the plane with which
the angle is smaller. Fourth, P can also be assigned based on its
locality, i.e., assigned to the nearest plane. Finally, the remaining
common points are assigned based on their locations with respect
to the plane intersection line.

In order to remove false-positive planes, mostly constructed on
trees, a rule-based procedure is applied. For an extracted LI-
DAR plane, its area, straight line segments along its boundary,
and neighbourhood information, as well as any LIDAR spikes
within its boundary, are used to decide whether it is a false alarm.
For a given point on the extracted LIDAR plane, the mean height

Figure 6: (a) Extracted plane boundaries for the sample scene in
Figure 3 and (b) extracted building boundaries. Both are shown
overlaid on a digital surface model for the sample scene.

(b)

Figure 7: Extracting a 3D plane boundary: (a) LIDAR points on
the plane, (b) Canny edge around a mask of resolution 0.25 m and
(c) boundary after assigning only height values from the nearest
LIDAR points to boundary in (b).

difference with its neighbouring points is also used. This height
difference is large for a tree plane, but small for a roof plane. The
average height difference for a plane is estimated from individual
height differences within the plane. A LIDAR plane fitted on a
tree is usually small in size and there may be some LIDAR spikes
within its boundary. Moreover, there may be a large number of
unused (i.e., not on any of the extracted planes) LIDAR points
within the boundary of a tree plane. The number of points used
by the extracted planes is usually low on a tree cluster, but high on
a building cluster. Moreover, there may be some long straight line
segments (at least 3m long. minimum building width (Awrang-
jeb et al., 2010)) along the boundary of a roof plane. Figure 6(a)
shows the final extracted roof planes.

3.4 Building boundary extraction and regularisation

In order to obtain the boundary of an extracted plane, LIDAR
points on the plane are used. Figure 7(a) shows the points for
an extracted plane. A binary mask of resolution 0.25 m is gen-
erated, as shown in Figure 7(b). Then, the Canny edge around
the black shape in the mask is extracted. Since the edge is a 2D
boundary, the height values from the nearest LIDAR points are
assigned to the edge points. Fig. 7(c) shows the extracted plane
boundary. Figure 6(a) shows the boundaries of the extracted roof
planes from the sample scene.

All the LIDAR points from the neighbouring roof planes are now
merged in order to obtain an individual building segment. The
building boundary is thus extracted following the same procedure
discussed above. Figure 6(b) shows the building boundaries for
the sample scene.

To regularise an extracted building boundary, corners on the bound-
ary are first detected using an automatic and robust contour-based
corner detector (Awrangjeb and Lu, 2008). A least-squares straight
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Figure 8: Building footprints overlaid on orthoimagery or on dig-
ital surface models: (a) Area 1, (b) Area 3, (c) Area4 and (d) Area
5. Yellow coloured ellipses show examples of merged buildings.

line is then fit using the LIDAR points within the boundary seg-
ment between two consecutive corners. Lines which are at least
6 m in length, twice the minimum building length are kept fixed.
Other lines are rotated to make them either parallel or perpendicu-
lar to the nearest fixed lines. Perpendicular lines are then added in
between successive parallel lines. Finally, the intersection points
of consecutive lines are obtained and the nearest LIDAR point
heights are assigned to the intersection points to obtain the regu-
larised building boundary. Figure 8 shows the regularised build-
ing footprints for four test areas.

4. PERFORMANCE STUDY

In the performance study conducted to assess the proposed ap-
proach, all five test areas adopted by the ISPRS benchmark project
were employed. The objective evaluation followed the system
in Rutzinger et al. (2009) adopted by the ISPRS benchmark
project. In this system, three categories of evaluations (object-
based, pixel-based and geometric) have been considered. A num-
ber of metrics have been used in the evaluation of each category.
While the object-based metrics, completeness, correctness, qual-
ity and under- and over-segmentation errors, estimate the perfor-
mance by counting the number of objects (buildings or planes
in this study), the pixel-based metrics, completeness, correct-
ness and quality, show the accuracy of the extracted objects by
counting the number of pixels. In addition, the geometric metric
(root mean square error, RMSE) indicates the accuracy of the ex-
tracted boundaries and planes with respect to the reference enti-
ties. The definitions of these indices can be found in the literature
(Rutzinger et al., 2009, Awrangjeb et al., 2010, Awrangjeb and
Fraser, 2014b). In the ISPRS benchmark, the minimum areas for
large buildings and planes have been set at 50 m? and 10 m?, re-
spectively. Thus, the object-based completeness, correctness and

quality values will be separately shown for large buildings and
planes.

4.1 Data sets

The first data set is from Vaihingen (VH) in Germany (Cramer,
2010). There are three test areas in this data set and each area is
covered with a point density of 4 points/m?. Area 1 is situated in
the centre of the town of Vaihingen. It is characterized by dense
development consisting of historic buildings having rather com-
plex shapes, and it also has some trees. Area 2 is characterized by
a few high-rise residential buildings that are surrounded by trees.
Area 3 is purely residential, with detached houses and many sur-
rounding trees. The number of buildings (larger than 2.5 m?) in
these three areas is 37, 14 and 56, and the corresponding number
of planes is 288, 69 and 235, respectively.

The second data set covers the central area of the City of Toronto
(TR) in Canada. This ‘Downtown Toronto’ data set contains rep-
resentative scene characteristics of a modern mega city in North
America, including a mixture of low- and high-story buildings
with a wide variety of rooftop structures, and street and road fea-
tures. There are two areas selected from this data set and each has
a point density of 6 points/m®. The first area (Area 4) contains a
mixture of low and high, multi-story buildings, showing various
degrees of shape complexity in rooftop structure and rooftop fur-
niture. The scene also contains different urban objects including
cars, trees, street furniture, roads and parking lots. The second
area (Area 5) represents a typical example of a cluster of high-rise
buildings. The scene contains shadows cast by high buildings,
under which various types of urban objects (e.g., cars, street fur-
niture, and roads) can be found. The number of buildings (larger
than 2.5 m?) in these two areas is 58 and 38, and the correspond-
ing number of planes is 968 and 641, respectively.

4.2 Experimental results and discussion

The evaluation results are presented for building detection and
roof plane extraction separately.>

4.2.1 Buildingdetection Table 1 shows the object-based eval-
uation results and Table 2 shows the pixel-based and geomet-
ric evaluation results. Figures 9 and 10 depict the pixel-based
performance in all five areas. They also show some complex
cases, where the proposed method either failed to detect some
small buildings (or parts of large buildings) or mistakenly de-
tected some other objects.

The proposed method performed well in all five test areas. When
all the buildings are considered, the average completeness and
correctness in object-based evaluation were about 89%, with an
average quality of 80% (Table 1). As shown in Table 2, the pro-
posed method performed better in pixel-based evaluation, where
completeness, correctness and quality values were 2 to 3 % higher
than those in the object-based evaluation.

However, the proposed method failed to detect some small build-
ings. Two such examples are shown by yellow circles in Fig-
ure 9(f). As shown in Figure 9(e), the method also failed to ex-
tract certain complex roof structures. Some building parts that are
close to the ground are also missed. The building part within the
black rectangle in Figure 9(f) is less than 1 m above the ground.
Another such example is shown in Figure 10(c). Figures 10(d)-
(e) show two opposite scenarios, where although the structures

3Results are available at http: //wuw2. isprs.org/commissions/
comm3/wg4/results.html under ‘MON2’.
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Table 1: Object-based evaluation of building detection results.
Object-based: C,,, = completeness, C, = correctness and
= quality (Cynp, Cyp and @y are for buildings over 50 m?) in
percentage. Segmentation errors: M = over-segmentation, N =
under-segmentation and B = both over- and under-segmentation.

Area Cm Cr Ql Cmb Crb le M/N/B
1 89.2 914 823 100 100 100 0/6/0
2 85.7 923 80 100 100 100 0/2/0
3 839 979 825 974 100 974 0/8/0
4 100 83.6 836 100 949 949 1/11/0
5 86.8 78.6 702 914 941 865 0/1/0
Avg 89.1 888 79.7 978 978 958 0.2/5.6/0

Table 2: Pixel-based and geometric evaluation of building detec-
tion results. Pixel-based: Cy,p = completeness, C;, = correct-
ness and @)y, = quality in percentage. Geometric: planimetric
accuracy with respect to R,. = extracted and R,, = reference
buildings in metre.

Area | Crnp Crp Qi Rpe Rpr
1 88.1 90 80.3 095 1

2 87.1 94 826 09 0.81
3 87.7 89 79.1 0.75 0.96
4 95.1 91.1 87 0.96 1.07
5 96.7 932 903 089 093
Avg 909 915 839 089 095

Table 3: Object-based evaluation of plane extraction results.
Object-based: C,, = completeness, C,. = correctness and Q; =
quality (Crmp, Crp and Qyp are for planes over 10 m?) in percent-
age. Segmentation errors: M = over-segmentation, N = under-

(e)

Figure 9: Building detection in the Vaihingen data set: (a) Area
1, (b) Area 2 and (c) Area 3. Some complex cases are shown in
(d) to (f). Yellow = true positive, blue = false negative and red =
false positive pixels.

segmentation and B = both over- and under-segmentation.
Area Cm CT Ql Cmb Crb le M/N/B
1 66 917 623 857 975 839 17/22/11
2 71  90.7 662 854 100 854 11/2/0
3 732 892 673 919 99.1 912 7/34/2 Low heght
4 70.2 783 58.8 87.1 89  78.6 180/30/84 T buildings missed |
5 679 80.7 584 882 843 758 96/26/57 \
Avg | 69.7 86.1 62.6 87.7 94 83  62.2/22.8/30.8
are higher than the surrounding ground, they are found as false
positive.

When buildings larger than 50 m? are considered, the method
showed the maximum performance in Areas 1 and 2. However,
in Area 3 a large building was missed due to missing LIDAR
data, as illustrated in Figure 9(d). In both Areas 4 and 5, some
low objects were detected as shown in Figure 10(b). In Area 5,
some low buildings were also missing. Consequently, in Areas
3 to 5, the proposed method did not perform the maximum for
large buildings.

In Areas 1, 3 and 4 there are many under-segmentation errors as
indicated in Table 1. These errors were due to merging of nearby
buildings, as shown within yellow coloured ellipses in Figure 8.
In terms of planimetric accuracy (Table 2), the proposed method
showed better accuracy with respect to the extracted footprints
than with respect to the reference data. The overall error was
within 1 to 2 times the maximum point spacing in the input LI-
DAR point cloud data.

4.2.2 Roof plane extraction Table 3 shows the object-based
evaluation results and Table 4 shows the pixel-based and geomet-
ric evaluation results. Figures 11 and 12 illustrate the extracted
plane boundaries for four test areas.

Figure 10: Building detection in the Toronto data set: (a) Area 4
and (b) Area 5. Some complex cases from (a) and (b) are shown
in (c) to (e). Yellow = true positive, blue = false negative (FN)
and red = false positive (FP) pixels.

In object-based evaluation (Table 3), the proposed method per-
formed better in the Vaihingen than in the Toronto data sets. Among
three Vaihingen areas, it performed the best in Area 3, which is

a residential area, followed by Areas 2 and 1. Between the two
Toronto areas, the method performed slightly better in Area 4
than in Area 5. A similar performance trend was observed for
planes larger than 10 m? in area.

While the completeness, correctness and quality values for planes
larger than 10 m? are compared with those of all planes, it is ev-
ident that there is a significant number of small roof planes in
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Table 4: Pixel-based and geometric evaluation of plane extraction
results. Pixel-based: Ciy,, = completeness, C, = correctness and
Qip = quality in percentage. Geometric: planimetric accuracy
with respect to R, = extracted and R, = reference planes and
height error with respect to Ry = extracted and Ry, = reference
planes in metre.

Area | Crp Crp Qip Rpe Rpr Rhe  Rar

744 979 732 077 087 036 023

76.8 994 764 092 0.7 042 034

815 981 803 083 079 021 0.13

872 942 827 114 106 331 279

N B W=

91.1 939 86 121 1.12 16.63

Avg | 822 967 797 097 091 543 4.02

Figure 11: Extracted roof planes in the Vaihingen data set: (a)
Area 1 and (b) Area 3.

the benchmark data sets and the method missed many of these.
The large number of over-segmentation errors indicates that the
method did not work well for complex roof structures, especially
in Areas 4 and 5. Moreover, a high number of under-segmentation
errors in all areas, except in Area 2, is clear evidence that the
method merged a large number of neighbouring small planes with
big planes.

In pixel-based evaluation (Table 4), in terms of completeness and
quality, the method performed best in Area 5 followed by Areas
4, 3,2 and 1. Among all test areas, it showed the best correctness
in Area 2, followed by Area 3. In Areas 4 and 5 many false planes
were extracted, as shown by red coloured pixels in Figure 10(a)-

(b).

The planimetric accuracy was similar to that in building detection
results, approximately 1 to 2 times the maximum point spacing
in the input LIDAR point cloud. In terms of height accuracy, the
method showed better performance in the Vaihingen data set than
in the Toronto data set. In Area 5, it showed a significant height
error.

On average, the proposed method showed better performance in
pixel-based evaluation than in object-based evaluation. While in
object-based evaluation the completeness, correctness and qual-
ity values were 70%, 76% and 63%, respectively, in pixel-based
evaluation they were 82%, 97% and 80%, respectively. Thus, it is
evident that although the proposed method is capable of recognis-
ing all LIDAR points on complex building roofs, it suffers from
a large number of segmentation errors.

4.3 Comparative performance

In this section, the results from the proposed method are com-
pared with those from existing methods that exploit LIDAR data
as an input source. The methods being compared in this study are
chosen such that they have been tested at least against the TR data

Figure 12: Extracted roof planes in the Toronto data set: (a) Area
4 and (b) Area 5.

set, which represents a modern city.* As usual, the comparisons
are shown separately for building detection and roof extraction.

4.3.1 Comparing building detection performance In build-
ing detection, in Areas 1 to 3 the proposed method always showed
better completeness, in both object- and pixel-based evaluation,
than Mongus et al. (2014). In Area 3, the proposed method
showed significantly better object-based completeness than Mongus
et al. (84% vs 70%). But Mongus et al. showed 4 to 9% better
correctness in some cases, specially in Areas 1 and 3. In Area 4,
Mongus et al. showed better correctness values (3 to 11%) than
the proposed method. However, in Area 5 the proposed method
offered 3 to 17% better object-based and pixel-based correctness.
Nevertheless, Mongus et al. is a semiautomatic method as it has
to tune parameter values for different test data sets. For exam-
ple, the area threshold was set at 25 m? for the VH data set and
100 m? for the TR data set, which is also an indication that their
approach is unable to detect small buildings such as garages and
garden sheds.

In terms of object- and pixel-based correctness and complete-
ness and also when buildings larger than 50 m? are considered,
the proposed method (in most cases, except an object-based cor-
rectness value in Area 4) offered better performance than Gerke
and Xiao (2014) in Areas 4 and 5. In the TR data set, while
the object-based correctness values were around 80% by the pro-
posed method, those by Gerke and Xiao were significantly lower
(e.g., less than 30% in Area 5). A similar performance difference
was found in Area 2: while Gerke and Xiao offered significantly
lower object-based correctness values (12 and 42% using Markov
model and random tree, respectively), the proposed method of-
fered a high correctness of 92%. In Area 3, while the proposed
method offered an object-based correctness of 98%, Gerke and
Xiao showed only 63% correctness when the Markov model was
used for unsupervised classification.

4.3.2 Comparing roof extraction performance In Area 4,
in most cases the proposed method offered 2 to 10% better cor-
rectness and completeness than Rau (2012), which showed 2%
more pixel-based correctness than the proposed method (80 vs
78%). The proposed method also showed better planimetric and
height accuracy in this area. In Area 5, in terms of completeness
and correctness, while the proposed method offered 1 to 3% bet-
ter object-based performance, Rau offered 2 to 3% better pixel-
based performance. In this area, although the proposed method
offered better planimetric accuracy (1.1 m vs 1.8 m) than Rau, it
showed higher height errors. In Areas 1 to 3, while the proposed
method offered better height accuracy, Rau in general offered bet-
ter pixel-based completeness and correctness. It should be noted

4Results from the methods being compared are available at http:
//www2.isprs.org/commissions/comm3/wg4/results.html.
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that Rau is a semiautomatic method and the structure lines need to
be manually extracted from the stereo-pair, whereas the proposed
method is fully automatic.

In Area 5, in both object- and pixel-based evaluations, while the
proposed method offered 2 to 3% better completeness than Sohn
et al. (2012), the latter showed 2 to 4% better correctness. In
Area 4, in most cases Sohn et al. gave better performance than
the proposed method, while the proposed method showed better
object-based completeness and planimetric accuracy. In Areas 1
to 3, in most cases Sohn et al. again offered better performance
than the proposed method. The proposed method showed better
completeness in Area 2 and better height accuracy in all 3 areas.

In all test areas, while the proposed method suffered from more
over-segmentation errors, Rau (2012) and Sohn et al. (2012) had
more under-segmentation errors.

5. CONCLUSION

A method for segmentation of LIDAR point cloud data for au-
tomatic detection and extraction of building rooftops has been
proposed. Experimental results have shown that the proposed
method is capable of yielding higher building detection and roof
plane extraction rates than many existing methods, especially in
complex urban scenes, as exemplified here by downtown Toronto.

However, since the method uses LIDAR data alone, the planimet-
ric accuracy is limited by the LIDAR point density. At present,
the method does not incorporate smoothing of the boundaries of
extracted planar segments. Moreover, it will not work on curved
roofs. Since the involved evaluation system (Rutzinger et al.,
2009) is a threshold-based evaluation system, a bias-free eval-
uation using an automatic and threshold-free system (Awrangjeb
and Fraser, 2014b) would be useful for more reliable experimen-
tal results. Future work will look at the development of a regular-
isation procedure to smooth roof plane boundaries and to recon-
struct building roof models. The integration of image data will
also facilitate better object extraction where LIDAR information
is missing. An extension of the proposed method could be the
use of higher density point cloud data (e.g., a low density LIDAR
point cloud complemented by a DSM derived from dense image
matching) and thus the curved surfaces could be better approxi-
mated.
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