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Abstract

Probabilistic slope stability analysis typically requires an optimisation technique to locate the most probable slip surface.
However, for many slopes particularly those containing many different soil layers or benches several distinct critical slip surfaces 
may exist. Furthermore, in large slopes these critical slip surfaces may be located at significant distances from each other. In such 
circumstances, finding and rehabilitating the most probable failure surface is of little merit, as rehabilitating that surface does not 
improve the safety of the slope as a whole. Unfortunately, existing slip surface search techniques were developed to converge on
one global minimum. Therefore, to implement such methods to evaluate the stability of a slope with multiple failure mechanisms 
requires the user to define probable slip locations prior to calculation. This requires extensive engineering experience and places 
undue responsibility on the engineer in question. This paper proposes the use of a locally informed particle swarm optimisation 
method which is able to simultaneously converge to multiple critical slip surfaces. This optimisation model when combined with
a reliability analysis is able to define all areas of concern within a slope. A case study of a railway slope is presented which 
highlights the benefits of the model over single objective optimisation models. The approach is of particular benefit when 
evaluating the stability of large existing slopes with complicated stratigraphy as these slopes are likely to contain multiple viable 
slip surfaces.
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1. Introduction 

Nomenclature

FOS Factor of Safety
c' Effective cohesion

x slice width
W slice weight

’ Friction angle of soil
u Porewater pressure

Inclination of slice base
Reliability Index

g(X) Performance function
E(X) Mean of variable X

Standard deviation of X
X Vector of variables

Probability of failure, System Probability of failure
Correlation matrix

U Particle position
V particle velocity

Slope instability is one of the main problems faced by transport networks. Traditionally earthworks were designed 
to resist deep seated rotational failures. However, over recent years increased rainfall across much of Western 
Europe, has led to a sharp increase in incidence of shallow planar failures. These failures are caused by infiltrating 
rainwater percolating downward filling available soil pore space thereby reducing inherent soil suctions and 
temporarily lowering the shear strength of the near surface soils (Ridley et al. 2004; Xue & Gavin 2007). 

This is of particular concern for aged transport networks such as the rail networks across both Ireland and the UK 
where many earthwork assets were constructed in the mid-19th century. These slopes are typically far steeper than 
those recommended by modern design standards and as a result many rely on soil suctions for stability (Jennings & 
Muldoon 2001). This makes them more susceptible to changes in climatic condition. Given the current economic 
circumstances throughout Europe, the budget is not available to replace all offending slopes. However it is 
imperative that we are able to identify and remediate the slopes which represent the biggest risk to end-users, as any 
failure could potentially result in numerous fatalities. 

Probabilistic methods are ideally suited for evaluating existing infrastructure as you can account for parameter 
variation, both spatially and temporally, by modelling each variable using a distribution or in some cases a series of 
distributions. This allows for a much more realistic estimate of a slopes capacity than traditional deterministic 
design, where the designer selects single parameter values to represent strength properties throughout the slope. 
Typically this results in ultra-conservative designs as the designer is forced into selecting lower bound values in 
order to reduce risk, however in some extremely variable soils even this approach may not be adequately 
conservative enough. Furthermore, using a deterministic methodology many safe slopes get misclassified as areas of 
concern. Therefore this paper uses reliability theory to evaluate the stability of slopes, outputting a probability of 
failure as opposed to the factor of safety more traditionally seen in slope design.

Furthermore given that slopes are susceptible to many different forms of failure as outlined above this paper 
evaluates stability using a multi-modal optimization algorithm (LIPS) which is able to detect all viable slip surfaces 
simultaneously. This algorithm is demonstrated in conjunction with Bishops circular method and first order system 
reliability method to assess the stability of transport slopes. 



2470   Cormac Reale et al.  /  Transportation Research Procedia   14  ( 2016 )  2468 – 2476 

2. Methodology

2.1. Traditional Limit State Equation

Traditionally slope stability was evaluated in terms of a factor of safety, which was obtained by inputting 
deterministic parameter values into limit equilibrium equations in the form of Equation (1), where the factor of 
safety of a slope can be defined as the ratio between resistance and disturbance along a potential slip surface:OS = (1)

There are many such methods published (Fredlund & Krahn 1977) each with their own positives and negatives 
most of which are based on the method of slices, where the slope is divided into a number of vertical slices and the 
forces/moments for the slope are determined about the origin. . For the slope shown in Figure 1, using the simplified 
Bishop’s method of slices (Bishop 1955), the factor of safety of a slope can be defined as:

= [ ( ) ] /  
(2)

where Wi is the weight of the ith slice, i is the tangential angle of the base of the ith slice, xi is the ith  slice width, ci

is the cohesion of the soil on the base of the ith slice, ui is the pore water pressure at the base of the ith slice, and i is 
the friction angle of the soil at the base of the ith slice. To obtain the minimum FOS of a slope, either a trial and error 
or an optimization technique must be implemented. 

Fig. 1. Terms used to describe slip surface geometry.

2.2. Probabilistic methods

Over recent decades probabilistic methods have become increasingly common across Transport Engineering. One 
area in particular which has received significant attention is slope stability(Xu & Low 2006; Gavin & Xue 2010; 
Cheng et al. 2015; Liang et al. 1999; Reale et al. 2016). This is due to researchers recognizing the inadequacy of 
deterministic design in light of the significant uncertainties associated with site investigation, slip surface location, 
climate and of course spatial variation. Reliability analyses assign distributions to each variable allowing any 
uncertainties to be accounted for within stability calculations, thereby offering a more meaningful rational 
interpretation of slope safety over traditional deterministic design which assumes fixed point values. The 
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performance function g(X) or limit state function of a slope can be expressed as the difference between a slopes 
capacity (C) and demand (D), see Equation 3.

( ) = ( )  > 0,  = 0,   < 0,   ( ) = ( , , … , )  = 1  (3)

where X is a vector of the different random variables ( )  represented in the slope. Safety in a reliability analysis is 
f. The probability of failure (pf)

can be defined as the probability at which the performance function is less than zero, see Equation 4.= [ ( ) 0] (4)

In a normal space, the reliability index is defined as the distance in standard deviations from the mean of the 
performance function to the design point, Equation 5. This can be seen graphically in Figure 2.=  [ ( )][ ( )] (5)

Where E[g(X)] is the mean of the performance function and is its standard deviation. When analysing slope 
stability the performance function of the slope is typically expressed as in Equation (6).( ) = 1.0 (6)
where FOS is the factor of safety as defined by a relevant limit state equation.

There are at present a number of means of performing a probabilistic analysis of Equation (6). These can be 
separated into two distinct groups approximate methods such as FOSM (first order second moment) etc. and 
simulation methods such as Monte Carlo. 

This paper utilizes an approximate method namely first order reliability method more commonly known as 
FORM. This approach is discussed below.

2.3. First Order Reliability Methods Hasofer Lind

Hasofer & Lind (1974) proposed an approximate method which assumes a first order tangent to the limit state 
function at the design point (i.e. when g(X)=0). This method gives an exact solution for linear performance 
functions and a close approximation for nonlinear functions. This method known as FORM is commonly used 
across many engineering disciplines. FORM requires all computation to be done in the standard normal space, 
therefore the vector of uncorrelated random variables (X) needs to be transformed into a vector of standardised 
normal variables ( ) prior to minimisation. Equation (7) is used to transform random variables into the standard 
normal space.=     = [1,2, … , ] (7)

The reliability index is then defined as the minimum distance from the origin to the limit state surface in the 
normalised Gaussian space, See Equation 8.= { } / (8)

where the limit state surface is defined by ( ) = 0.
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Fig. 2. Hasofer Lind reliability index shown graphically as the minimum distance from the origin to the limit state surface in a reduced normal 
space.

2.4. System Reliability

As slopes are susceptible to many different failure mechanisms the actual failure surface is usually dependant on 
whichever triggering mechanism which presents itself first. i.e. a severe weather event is likely to trigger a shallow 
slide while additional physical loading will preferentially deteriorate a deep seated failure. As a result, slope stability 
is increasingly being considered as a system reliability problem, where the probability of any aspect of the slope 
failing is considered as opposed to the probability of the critical slip surface failing. As the system failure 
probability incorporates the probability of the critical slip surface failing, the probability of the system failing is 
larger than that of any individual component. Therefore in order to evaluate system reliability all viable slip surfaces 
need to be identified and the correlation between them established. In a Cartesian co-ordinate defined search space 
the correlation between the different failure modes ( ) can be determined by Equation (9), where (see Equation 7) 
is a vector containing the design points of all possible failure modes.= (9)

While a number of different methodologies exist for evaluating the system reliability this paper utilises a bi-
model bounded approach developed by Ditlevsen (1979) which estimates the system probability of failure based on 
the correlation between the different failure modes. 

, + ( ) ( , );  0 ,
min ( ) max ( , );  1         (10)
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2.5. Optimisation method – Locally Informed Particle Swarm Optimisation (LIPS)

For multimodal problems, numerous extrema exist which need to be located simultaneously, these optima may be 
located in vastly different areas of the search space. This paper uses a multi modal optimisation algorithm termed 
LIPS (locally informed particle swarm) to locate all significant minima. LIPS is a modified form of particle swarm 
optimisation (PSO) adapted to solve multi-modal problems. PSO is based on how swarm animals such as birds seek 
food collaboratively. The general idea being that each individual animal within the swarm is considered as a particle 
within the algorithm and each particle represents a solution (collection of design points) to an optimisation problem. 
These particles then move about the search space or performance function surface with a certain velocity. During 
every iteration each particle updates both its velocity and its position based on both that particles best experience 

pbest) and the swarms best experience so far (global optima termed gbest). When 
a particle nears an optima its velocity decreases. Each particle is aware of the current global best solution and if the 
program runs for long enough all particles should move towards this point. 

LIPS differs from standard PSO in that not every particle is aware of the location of the global minimum at any 
given time, instead each particle is aware of its personal best solution and that of its neighbourhood. Where 
a particles neighbourhood, is the m closest particles to that particle measured in Euclidean distance. This allows 
particles to learn from those particles surrounding, while also mitigating the influence of particles on the opposite 
side of the search space. This ensures that LIPS is able to develop a number of stable niches in different areas of the 
search space thus allowing the algorithm to optimise simultaneously to multiple different local optima. 

The velocities (V) and positions (U) of the particles are updated using Equations (14 - 16). Further details on the 
optimisation process can be found in Reale et al. (Reale et al. 2015).

, =  , + , (11)

, = . , + , , (12)

, =   . /
(13)

Where  is a random distributed number in the range of [0, (4.1)/nsize] and is equal to the summation of . 
nbestj is the jth nearest neighbourhood to ith particle’s personal best (pbest), nsize is the neighbourhood size and is 
the inertia weight which balances the search between global and local performance.

3. Case Study – Rail Embankment

A 10 m rail embankment is used to demonstrate the capabilities of the method. The slope is comprised of 
a glacial till with a slope angle of 38 º, while ground level is inclined at 2 º to the horizontal, see Figure 3. The 
bearing stratums underlying the embankment consist of a shallow weak silty clay layer overlying a stiffer clay 
deposit. The geotechnical parameters used are presented in Table 1. 

Several failure modes were detected by the LIPS algorithm, see Figure 4, with two distinct failure mechanisms 
found, one shallow seated slip surface contained entirely within the embankment layer and another deeper failure 
surface passing through the underlying clay layer. The correlation matrix between the failure modes and their 
respective reliability indices is shown in Table 2. The probability of failure of the critical slip surface (m3) is 0.0016, 
while the system probability bounds were found to be [0.0017, 0.0027]. This demonstrates the importance of 
analyzing the slope as a system instead of just being concerned with the critical slip surface which may be 
significantly safer than the slope assessed as a whole.
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Fig. 3. Slope profile.

Table 1. Geotechnical parameters used in analysis.

Property Mean Coefficient of 
Variation

Cohesion (embankment) (kPa) 5 0.2

Friction angle (embankment) (º) 34 0.1

Cohesion (layer 1) (kPa) 10 0.2

Friction angle (layer 1) (º) 28 0.15

Cohesion (layer 2) (kPa) 20 0.1

Friction angle (layer 2) (º) 26 0.1

                                    Table 2. Correlation matrix between different slip surfaces
                                    and associated reliability indices.

1 2 3 4 5

1 1.00 0.64 0.55 0.71 0.65 3.80

2 0.64 1.00 0.96 0.98 0.98 3.24

3 0.55 0.96 1.00 0.96 0.94 2.95

4 0.71 0.98 0.96 1.00 0.99 3.27

5 0.65 0.98 0.94 0.99 1.00 3.02
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Fig. 4. Representative probabilistic slip surfaces detected by LIPS.

4. Conclusions and recommendations for future research

Across Europe railway Infrastructure managers are facing challenges in managing aged cutting and embankment 
assets with reduced budgets. Compounding this changes in climate are causing increased stress on these networks 
with slope capacity inherently linked to climate. This paper has shown the benefits of combining multi-modal 
optimisation algorithms with probabilistic methods for analysing existing railway slopes. A first order reliability 
method was used in conjunction with Bishops Circular method and a bi-modal bounded system reliability approach 
to determine the stability of the slope presented. The optimisation algorithm was able to detect the presence of all 
viable slip circles simultaneously thereby eliminating the chance of a missing a key slip surface, thus removing 
subjectivity caused by the designer. As can be seen from Figure 4 the LIPS model was able to detect both deep 
seated and shallow failures in the same slope. If a traditional analyses was performed only the shallow failure would 
have been detected. However depending on the proximity of the railway track to the embankments edge, the shallow 
failure may not be of critical importance to the Infrastructure manager, whilst the slightly safer larger rotational 
failure could be more concerning. 

Probabilistic tools are extremely useful for evaluating aged infrastructure as they can account for uncertainties in 
building materials and both spatial and temporal variability, thereby allowing a far more accurate representation of 
slope capacity. Which in some cases can lead to assets previously classified as unstable by deterministic methods, 
being reclassified as safe due to low levels of uncertainty in the design. In such cases design lives can be extended 
allowing for substantial cost savings. This can be seen in the case study presented which has very steep sides (38 º)
but has a minimum reliability index of approximately 3 which would be considered stable, however the associated 
minimum factor of safety is 1.15 which would be considered unacceptable. 

Finally the authors wish to acknowledge that the model is currently limited to circular slip circles which may not 
be the critical slip surface for all situations i.e. in certain weather conditions parallel failures may take precedence.
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