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Abstract: The development of robust and accurate methods for automatic building detection and
regularisation using multisource data continues to be a challenge due to point cloud sparsity, high
spectral variability, urban objects differences, surrounding complexity, and data misalignment.
To address these challenges, constraints on object’s size, height, area, and orientation are generally
benefited which adversely affect the detection performance. Often the buildings either small in size,
under shadows or partly occluded are ousted during elimination of superfluous objects. To overcome
the limitations, a methodology is developed to extract and regularise the buildings using features
from point cloud and orthoimagery. The building delineation process is carried out by identifying
the candidate building regions and segmenting them into grids. Vegetation elimination, building
detection and extraction of their partially occluded parts are achieved by synthesising the point cloud
and image data. Finally, the detected buildings are regularised by exploiting the image lines in the
building regularisation process. Detection and regularisation processes have been evaluated using
the ISPRS benchmark and four Australian data sets which differ in point density (1 to 29 points/m2),
building sizes, shadows, terrain, and vegetation. Results indicate that there is 83% to 93% per-area
completeness with the correctness of above 95%, demonstrating the robustness of the approach.
The absence of over- and many-to-many segmentation errors in the ISPRS data set indicate that the
technique has higher per-object accuracy. While compared with six existing similar methods, the
proposed detection and regularisation approach performs significantly better on more complex data
sets (Australian) in contrast to the ISPRS benchmark, where it does better or equal to the counterparts.

Keywords: point cloud; orthoimage; segmentation; graph; detection; regularisation; footprint;
occlusion; shadow; vegetation

1. Introduction

The automated extraction and localisation of urban objects is an active field of research in
photogrammetry with the focus on detailed representations. Building being a key urban object
is indispensable to diverse applications in cartographic mapping, urban planning, civilian and military
emergency responses, and the crisis management [1,2]. Accurate and updated information of the
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buildings is quite imperative to keep these applications operational. At a first glance, a building may
appear to be a simple object that can be easily classified and extracted. However, in reality, automatic
building extraction is quite challenging due to the differences in viewpoint, surrounding environment,
and complex shape and size of the buildings. There have been several attempts to develop a fully
autonomous system that can not only deal with occlusion, shadow, and vegetation but also identify
objects with different geometric and radiometric characteristics from diverse and complex scenes.

In the past, some promising solutions used the interactive initialisation setup, followed by an
automatic extraction procedure [3]. However, this approach stood practical only if a trained human
operator would make the initialisation and supervise the extraction process. Beginning with a single
data type, either image [4] or height data [5], automatic building extraction has proven to be a
non-trivial task [6]. It can be considered as two interdependent tasks, detection and reconstruction [7],
where, arguably, the accuracy of later is subject to a reliable detection. However, both the tasks are
challenging especially on complex scenes. Since today, the rule-based procedures have shown a success
in achieving a certain level of automaticity [8]. These rules are based on the expert knowledge and
describe the appearance, dimension, and constraints on different features to distinguish urban objects.
The methods in [2,9–11] are the few examples.

This paper concentrates on building detection and boundary regularisation using multisource
data. We first discuss the related works in building detection paradigm and then cover the relevant
literature on boundary regularisation. The development of very high resolution spaceborne images
makes it possible to sense individual buildings in an urban scenario [12], which is imperative in
various reconstruction, cartographic, and crisis management applications. However, an increasing
spectral and textural information in high-resolution imagery does not warrant a proportional increase
in building detection accuracy [9,13], rather add to the spectral ambiguities [14]. Consequently, objects
of the same type may appear with different spectral signatures whereas different objects may appear
to have similar spectral signatures under various background conditions [15]. These factors together
with the sensory noises reduce the building detection rate. Therefore, using the spectral information
alone to differentiate these objects will eventually result in poor performance [12].

On the other hand, Airborne Laser Scanning (ALS) data provide a height information of salient
ground features, such as buildings, trees, bushes, terrain, and other 3D objects. Therefore, adopting
height variation to distinguish these urban objects is a more suitable cue than the spectral and texture
changes. However, the accuracy of the detected boundaries is often compromised due to the point
cloud sparsity and hence, reduces the planimetric accuracy [9,15]. In addition, the appearance of trees
and buildings sometimes appear similar under complex urban scenes [10], where height information
alone is hardly perceived to produce a finer classification [13]. Therefore, several researchers have
developed a consensus to use multisource data in designing better detection strategies to increase the
building detection rate [2,9,10,15,16].

Based on the processing strategy, building extraction methods are broadly divided into three
categories [2,9,17,18]. The model-driven approaches estimate a building boundary by fitting input data
to the adopted model from a predefined catalogue (e.g., flat, saddle, etc.). Therefore, the final boundary
is always topologically correct. However, the boundary of a complex building cannot be determined
if the respective model is not present in the catalogue. For example, Zhou et al. [13] interpolated the
Light Detection And Ranging (LiDAR) data and used image knowledge to extract urban houses and
generated 3D building models while considering the steep discontinuities of the buildings. Similarly,
another example is a geometric information-driven method [19] that used aspect graphs containing
features such as geometry, structures, and shapes for building identification and 3D representation.
In contrast, the data-driven approaches pose no constraint on the building appearance and can
approximate a building of any shape. A disadvantage of these methods is their susceptibility to the
incompleteness and inaccuracy of the input data [2], such as Awrangjeb and Fraser [11], that clustered
the similar surfaces based on the coplanarity feature using the non-ground LiDAR points and extracted
the buildings. However, it suffers from under-segmentation issue because of the incompleteness of 3D
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points. The hybrid approaches, however, exhibit the characteristics of both model- and data-driven
approaches, for example, Habib et al. [18] proposed a pipeline framework for automatic building
identification and reconstruction using LiDAR data and aerial imagery. The segmentation of the
buildings and the boundary generation were achieved through a data-driven approach using LiDAR
point cloud, while rectangular primitives were fitted to reconstruct the object.

Despite the agreement to use multisource data, how to optimally combine the distinct features
so that their weaknesses can be compensated effectively is a hot area of investigation. Haala [20] classified
the integrated data-driven methods into two categories. The methods reported in [2,9,15,21] used both
ALS data and airborne imagery primarily for building extraction. The spatial features like Normalised
Difference Vegetation Index (NDVI), entropy, and illumination were used to eliminate vegetation and
overcome shadows and occlusion issues. Thus, detection rate and planimetric accuracy of the detected
buildings were fairly high. Our proposed building detection method falls under this category. The
method in [2] primarily separated the LiDAR data to generate a building mask and later, used image
features like NDVI and entropy for building extraction. Due to large height threshold of 2.5 m to avoid
roadside furniture, bushes, and several low height objects, many small buildings (with area < 10 m2)
were also missed. On the other hand, the methods in [15,22] generated a DSM from the first and last
pulse return of the LiDAR data, which was used along with NDVI and spatial relationship between
buildings and trees to complement the detection process.

The techniques in the second group use LiDAR as the primary cue for building detection and
employ spatial features only to remove vegetation [10,23]. Consequently, such approaches undergo
a poor horizontal accuracy of the detected buildings due to LiDAR point discontinuity. A method
based on the Dempster–Shafer theory in [10], classified LiDAR data into several groups representing
buildings, trees, grassland, and bare soil. Finally, a morphology operation was performed to eliminate
small segments requiring parameter tuning based on the estimation of wooded areas. This results
in poor detection rate for the small buildings because of large area threshold (30 m2) and untrained
Dempster–Shafer model [24]. Xiao et al. [6] used edge, height information and a dense image matching
technique to detect the façades in oblique images, which were represented as vertical planes to
define the building hypotheses. The main disadvantage is that it fails to extract small buildings and
simply ignores the building attachments and small structures in the backyards and in open areas.
Rottensteiner [10], after carrying out a comparative study, argues that a building extraction method
generally fails to detect partially occluded buildings and often merges a tree standing close to them.

Qin and Fang [14] first obtained an initial building mask hierarchically by considering the shadow
and off-terrain objects. Later, a graph cut optimisation technique based on spectral and height similarity
was used to refine the mask by exploring the connectivity between the building and non-building
pixels. This method can handle shadows and small buildings to a good extent, but the building
patches on steep slopes, roof parts under shadows and the roofs with vegetation cannot be extracted.
Zhang et al. [12] proposed a dual morphology top-hat profile to overcome the spectral ambiguity using
DSM and ultra-high-resolution image for feature classification. However, the accuracy of the DSM
remains a critical factor in building extraction, particularly for small objects.

Chen et al. [15] proposed a hierarchical approach for building detection using normalised DSM
(nDSM) and QuickBird imagery. The initial building segments were estimated by truncating both
nDSM and NDVI, and final buildings were determined using region size and spatial relation between
trees and buildings. Nevertheless, the success of this method is completely dependent on the quality
of the nDSM, which is generally not available for many areas. Following the mask generation process
in [15], Grigillo et al. [25] eliminated the vegetation under shadows by truncating areas with low
homogeneity. However, this method fails to address occlusion and works well when trees are isolated
and produces inaccurate building boundary when surrounded by trees.

The following works give an outlook on boundary regularisation, which is a process outlining a
building periphery with minimum possible lines. A polygon extraction method in [26] determined
a dominant direction of the building using the cross correlation mapping and later, used a rotating
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template and angle histogram to obtain a regularised boundary. Fu and Shan [27] used three primitive
models based on locating 2D rectangles to construct 3D polyhedral primitives followed by assembling
the final buildings with right-angled corners. Ma [28] categorised the lines into two perpendicular
classes and carried out a weighted adjustment to calculate the azimuth of these classes using the
Gauss-Markov model. Finally, the adjacent parallel lines were combined together to construct a
regularised boundary. Sampath and Shan [17] utilised a conditional hierarchical least squares method
ensuring the lines participating in regularisation had the slopes of parallel lines equal or a product
of the slopes of perpendicular lines was −1 (orthogonal). Similarly, the technique in [29] forced
boundary line segments to be either parallel or perpendicular to the dominant building orientation
when appropriate and fitted the data without a constraint elsewhere. A compass line filter [30], on the
other hand, extracted straight lines from irregularly distributed 3D LiDAR points and constructed a
boundary by topological relations between adjacent planar and local edge orientation. For building
boundary extraction, Wei [31] used the alpha-shape algorithm and applied a circumcircle regularisation
approach to outline the rectangular buildings.

The literature on building extraction methodologies accentuate that success of the most existing
detection methods relies on the quality of DEM and the accuracy of co-registration between the
multisource data. They often impose constraints on several features such as height, area, and
orientation to distinguish different urban objects and remove vegetation. These methods have been
observed devoid of addressing the buildings which are small in size, under shadows or especially
partly occluded. Furthermore, the building outlines produced by these data-driven approaches are
generally ragged. Therefore, the set research objective of this study is to develop a method equally
capable enough to (1) deal with a moderate misregistration between LiDAR point cloud data and
orthoimagery; (2) identify the buildings which are partially occluded or under shadows; (3) extract the
buildings as small as possible without affecting the larger ones; and finally (4) generate the regularised
and well-delineated building boundaries.

The initial version of the proposed building detection approach is published in [32]. Here, it is
presented in more detail and extends the initial version in the following aspects. A comprehensive
evaluation and analysis of a wide range of test data sets have been included. These data sets differ in
scene complexity, vegetation, topography, building sizes, and LiDAR resolution (1 to 29 points/m2).
We further incorporate LiDAR’s point density feature in different processes to make the proposed
approach flexible and robust towards multiple data acquisition sources, e.g., airborne and mobile laser
scanning systems. An adaptive local rather a global height threshold is utilised in one of the detection
steps for fine delineation of the building boundaries. Moreover, a new boundary regularisation
technique is also introduced which generates 2D building footprints using the spectral information
(image lines) assuming buildings are rectilinear.

To meet the set objectives and evaluate rigorously, the proposed approach is tested using the
ISPRS (German) and the Australian benchmark data sets. Compared to the ISPRS benchmark, the
Australian data sets are found far complex and challenging due to hilly terrain (Eltham and Hobart),
dense vegetation, shadows, occlusion, and low point density (1 point/m2). Often, the buildings are
covered with close by trees or shadows as described by real examples in Figure 1. The evaluation
study, particularly on the Australian data sets, demonstrates the robustness of the proposed technique
in regularising boundary and separating partly occluded buildings from connected vegetation and
detecting small buildings apart from the larger ones.

The rest of the paper is organised as follows: Section 2 details the proposed building detection
and the boundary regularisation techniques. Section 3 presents the performance study and discusses
the experimental results using five test data sets followed by a comparative analysis. Finally, Section 4
concludes the paper.
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Figure 1. Complex scenarios in the Australian data sets: Partly occluded and shadowed buildings.

2. Proposed Method

The workflow of the proposed approach consists of three stages as sketched in Figure 2. In the
data preprocessing stage, several data metrics are generated to be used at later stages, which are
namely the building mask and height difference data from the ALS, while entropy, NDVI, and image
lines from the orthoimage. In the building detection stage, the candidate building regions are identified
following a proposed graph-based line clustering process to remove the superfluous objects. Next, the
buildings and their parts occluded or under shadows are identified and vegetation is eliminated using
a proposed cell-based clustering process. Subsequently, the detected area is enlarged to reduce the
misalignment between the aggregated data. Finally, the building footprints are generated using a new
proposed building regularisation process.

Candidate region detection

Line clustering & false 

candidate elimination

Cell clustering for building 

detection & vegetation removal

Outline extension of detected 

buildings

1 - Data preprocessing
Building edge selection

Building footprint 

generation

Edge line estimation

NDVI Image linesEntropy

Building mask ΔH matrix

2 - Building detection

3 - Building regularisation

ALS Data + DTM

Aerial image

Figure 2. Workflow of the proposed building detection and regularisation approach.

2.1. Data Preprocessing

The proposed approach takes ALS data, orthoimagery, and a digital terrain model (DTM) as an
input. For this study, DTM with 1 m horizontal resolution was available for each benchmark data set.
Otherwise, it can be generated using any commercial software, such as MARS R© explorer [33].

2.1.1. Test Data

Figure 3a presents a test data set, which is an Australian site named Aitkenvale (AV) in
Queensland. The AV data set can be regarded as a moderately vegetated area containing complex
building neighbourhood structures, small and occluded buildings, shadowed, impervious and
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transparent roofs, flat and gabled structures. It is, thereby, selected to evaluate the performance
and illustrate the different processes of the proposed approach.

The test ALS data set has a point spacing of 0.17 m with 29.3 points/m2 and the corresponding
RGB colour orthoimage has a resolution of 0.05 m. The available orthoimages for the Australian
sites were created using DTM. These data sets were registered using the mutual information based
method [34], which exploits the statistical dependency between same- and multi-modal data sets to
produce a similarity measure and uses LiDAR intensity in simultaneous registration. Nevertheless, the
building roofs and tree tops are considerably displaced with respect to the LiDAR owing to the absence
of true orthophotos.
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Figure 3. Sample data: (a) RGB Orthoimage; (b) The building mask.

2.1.2. ALS Generated Data

A building mask is generated using ALS data and ground height from DTM to divide the
point cloud into the ground and non-ground points. For each point, a height threshold is calculated
as ht = hg + hr f , where hg is the ground-height taken from DTM while hr f is a relief factor that
separates the low height objects from the large height objects. For this study, hr f has been set to 1 m
to keep low height objects [11], which classifies many points on bushes and low height trees as the
non-ground points. Figure 3b shows the building mask where black region corresponds to elevated
objects (buildings and trees) while white region represents bare-earth including roadside furniture,
cars, and bushes.

Moreover, height difference data is generated by dividing the ALS data into a uniform grid of
magnitude twice of the ALS data spacing. The method is explained with a sample image from test
data set as shown in Figure 4a. If a cell contains only one laser point, the elevation of the point is
assigned to the cell. Otherwise, the elevation of the laser point which is closest to the centre of the cell
is assigned to the grid (see Figure 4b). In case, a cell has no laser point, the elevation of the grid is
assigned zero height. Finally, the average height difference ∆H of each cell is computed by averaging
the elevation differences of 8-connected neighbouring cells. ∆H will be used by the cell clustering
process to delineate buildings and identify vegetation.
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(a) (b)Legends: 

 = Laser points = Cell centre  = Laser point closest to the centre*
Figure 4. (a) Grids overlaid on a sample image; (b) LiDAR points within a grid cell.

2.1.3. Aerial Image Generated Data

NDVI has been used extensively in literature to eliminate vegetation and classify scenes [15,22,25,35].
Nevertheless, many authors [2,15] emphasised to couple it with entropy, since NDVI alone is not a
promising feature to handle shadows and coloured buildings. Therefore, texture information in the
form of entropy [36] is utilised on the basis of the observation that trees are rich in texture and have
higher surface roughness than building roofs [15]. Provided, a multispectral orthoimagery (RGBI) is
not available, a pseudo-NDVI is then calculated from a colour orthoimage (RGB) following the process
in [2,10,37], which assumes the three colour channels in the order of I-R-G to use the standard NDVI
formula. From now onward, the term NDVI is referred to both NDVI and pseudo-NDVI.

Furthermore, using the method in [2], the image lines are extracted from the test input image
and categorised into “edge” (building border), “ridge” (intersection of two roof planes), and “ground”
classes sketched with “blue”, “cyan”, and “red” colours, respectively, in Figure 5. The structural lines
define the shape and direction of a building. These can be used as a cue to differentiate vegetation and
buildings and later, to generate building footprints in the building regularisation stage.

(b)(a)

7
.8

65
74

7
.8

65
78

7
.8

65
82

7
.8

65
86

7
.8

65
9

7
.8

65
9

4

e  +06

4.752 4.7525 4.753 4.7535

7
.8

6
5

7
4

7
.8

6
5

7
8

7
.8

6
5

8
2

7
.8

6
5

8
6

7
.8

6
5

9
7

.8
6

5
9

4

4.752 4.7525 4.753 4.7535

e +06

e +06 e +06

Figure 5. Image line extraction: (a) All classified lines on RGB Orthoimage; (b) All classified lines on
the building mask.
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2.2. Building Detection

In this section, the building detection stage shown in Figure 2 is presented in more detail using
the test data set.

2.2.1. Candidate Region Detection

Candidate building regions are identified using connected component analysis from the building
mask and their boundaries are estimated using Moore-Neighborhood tracing algorithm [36], which
provides an organised list of points (boundary) in the clockwise trace of connected pixels for an object
in a binary image. Figure 6a shows the detected candidate regions, where each region is labelled and
sketched in a different colour from its neighbour with the boundary black in colour. It is shown in
Figure 6b that the extracted boundaries (from LiDAR-based building mask) are misaligned with the
image (often over 1 m) due to misregistration between the aggregated data.
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Figure 6. (a) Connected components extracted from the building mask of test data; (b) Overlaying
building mask and orthoimage (misalignment and squeezed boundaries); (c) Boundaries of candidate
regions sketched on input orthoimage; and (d) Complex scenes representing false boundary delineation
from (i) to (vi).

Similarly, Figure 6c shows the inaccuracy of the extracted objects where the large buildings are
although detected but their boundaries are inaccurately delineated. It also shows the presence of
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several false objects on trees and an inaccurate inclusion of nearby vegetation into the building region.
Moreover, due to the presence of dense vegetation between the buildings, they have been wrongly
extracted as a single object (Label vi). Some complex situations are shown in Figure 6d with their
corresponding locations marked with Labels (i)–(vi) in Figure 6c.

2.2.2. Line Clustering and False Candidate Elimination

To associate the lines (from image) and the candidate building regions (from the LiDAR-based
building mask), a graph is constructed as part of this process. Each pixel of the building mask
corresponds to a node. An edge exists between a pair of nodes if a pixel and its 3 × 3 neighbouring
pixels are “black”, denoting a non-ground object. All these edges carry a weight equal to 1. However, if
a pixel or the neighbouring pixels are “white” (ground-object), the corresponding nodes do not have
any edge. Therefore, the resultant graph G is disconnected where each candidate region of the building
mask corresponds to a strongly connected edge-weighted graph g, such that G = {g1, g2, ..., gn} with n
describing the number of candidate regions.

Since the edge lines (blue) are substantially away from the borders of the non-ground objects due
to data misalignment (see Figure 5b), therefore, a determinant point Dpt is utilised along with G to
cluster the image lines for each candidate region. Dpt of a line can be either its midpoint Pmid, vertex,
or inside-point Pin. This Pin is 1.5 m perpendicular offset point from line’s Pmid that is given by the
line extraction process in [2] for each line. The line clustering process, with reference to Figure 7a,
works as follows: A pool of candidate lines is created by defining a buffer region (cyan) using uniform
matrix scaling transformation. Then, the longest line is chosen as a “seed”, such that its Dpt resides
within the region’s boundary. If no seed is found, the procedure continues to process the next building
region. Finally, the candidate lines having finite distances from the seed are added into the cluster.
Bellman-Ford algorithm, which computes the shortest path between two nodes, is used to calculate
the distances between Dpt’s of the lines. The procedure continues until the pool is empty and process
all the candidate regions iteratively. A candidate region which fails to cluster any line is removed for
further investigation. Figure 7b shows the remaining candidate building regions with their clustered
lines (it displays 307 candidate regions from an initial count of 936 from the building mask for brevity).
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Figure 7. Line clustering process: (a) Pool of Candidate lines to a sample building; (b) Clusters found
with their associated lines in different clustering colours.
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2.2.3. Cell Clustering for Building Detection and Vegetation Removal

It is a core process to distinguish urban objects, eliminate vegetation, and identify buildings partly
occluded or under shadows besides the larger and the ones small in size. The features such as ∆H,
NDVI and entropy are used to detect objects using a cell-based region growing process. To make
the segmentation flexible and robust towards multiple data acquisition sources, e.g., airborne and
mobile laser scanning systems [38], point cloud density per grid cell Pd is combined with the preceding
features. The test area is divided into a uniform grid structure and Pd is computed in relation to the
LiDAR’s resolution and the cell size, for example, Pd for the AV data set is 7 (floor (29 × 0.25)) using a
grid of size 0.25 m with 29 laser-points/m2, while of the German benchmark Pd is 3 with a grid size
of 1 m. The process is explained as follows with reference to Figure 8 (a sample occluded building
Label (vi) in Figure 6):

The cells of a candidate building region are marked unused (blue circles in Figure 8a) and a seed
cell is chosen i.e. an unused cell with the lowest ∆H. Its neighbours are found iteratively in a region
growing fashion. Neighbouring cells are added to the cluster if their values for ∆H, Pd, NDVI, and
entropy are smaller than the user defined thresholds (see Table 1). After this, a cell with the smallest
∆H is chosen. This becomes the new seed cell. However, a seed that fails to grow is removed. Figure 8b
shows the different clusters (filled in red) within the region’s boundary conceived during the cell
clustering process.

(d)

(g)

(a) (b) (c)

(h)

Candidate region Boundary

(e) (f)

Figure 8. Cell clustering process: (a) Cells collection for a candidate region (4 blue holes correspond to
a cell); (b) Clustered cells (red); (c) Clusters marked as buildings (cyan boundary) and; (d–h) Boundary
delineation samples.
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Table 1. Parameters used by the proposed building detection technique.

Parameters Values Sources

Ground height hg DTM height input ALS data
Height threshold ht hg + 1m [11]
Entropyt 8.0 [2]

R
G

BI NDVIt 10 [2]
NDVIt−max 15 this paper

R
G

B NDVIt 48 [2]
NDVIt−max 75 this paper

∆
H

t Flat terrain 0.4 this paper
Hilly terrain 0.8 this paper

An aerial data acquisition system sometimes fails to capture the laser returns from various parts
of a single object. Therefore, a segmentation process using the ALS data alone potentially leads to an
over-segmentation issue. To circumvent this limitation, the cell clustering process entirely uses NDVI
and entropy if at maximum 25% of the total cells of a particular candidate region does not have any
laser point. The seed cell is chosen with the lowest NDVI whereas a cell’s neighbours are chosen based
on both NDVI and entropy rather than ALS features.

Finally, a rule-based procedure employing NDVI, entropy, and boundary intersection is used
to identify a cluster within region’s boundary as a building or vegetation. It was found that the
buildings under shadows or with coloured roofs have a higher NDVI value which could have been
removed if a smaller threshold is employed. Therefore, NDVIt−max is introduced which combines
with image entropy to remove vegetation without eliminating any potential building. A cluster c is
marked as a tree, if its boundary does not intersect with the boundary of the candidate region and
NDVIc > NDVIt−max OR NDVIc < NDVIt−max AND entropyc > entropyt. Similarly, c is identified as
a building, if its boundary intersects with the boundary of the candidate region and NDVIc < NDVIt

OR NDVIc < NDVIt−max AND entropyc < entropyt.
Figure 8c shows that two partially occluded buildings are identified and separated from the

connected tree whereas the clusters within the region’s boundary are eliminated as “vegetation”.
Similarly, few more detected buildings either occluded or under shadows, marked earlier in Figure 6,
are shown in Figure 8d–h with their boundaries in cyan while the candidate regions’ boundaries in
red. The final building positions are hence obtained by the cell clustering process after the vegetation
elimination.

2.2.4. Building Area Enlargement

Owing to misalignment and a large height difference on the building perimeter, building edges
are usually under-detected (Figures 9a and 10a). That is compensated by claiming individual pixels
based on NDVI, entropy and LiDAR height difference. An adaptive local height threshold is employed
instead of a global threshold in area enlargement process by keeping into account the buildings with
gabled, flat, and complex roofs. The process with reference to Figure 9 is described as follows:

A boundary pixel Pb is first selected and its neighbouring pixels Pn which are outside the current
boundary (black) are determined. Subsequently, a concentric square of a grid-size (magenta) around
Pn is considered. If NDVI and entropy values of Pn are less than their thresholds presented in Table 1,
and the mean height within the square remains inside ±1 standard deviation of the building height
(within the building boundary), it is then included as a new boundary pixel whereas Pb is added into
the building region. The building outline process continues until all the boundary pixels including
the new ones are processed as described in Figure 9b,c. The building boundary before and after the
enlargement process is presented in Figure 9d.
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Pn
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Yellow - LiDAR 

ground point

Cyan - LiDAR 

above point

Yellow – Region extended 

by adding boundary pixels

Red – New 

boundary pixels

Cyan – no more 

extension (final 

boundary pixels)

(a) (b)

(c) (d)

Yellow – Extended region 

Blue – Detected building 

           boundary 

Cyan – Final boundary 

           (extended)

Figure 9. Pixel-based enlargement process: (a) Candidate boundary pixel (Pn) selection; (b) Snapshot
of the accumulated pixels; (c) Extended region; and (d) Detected outline and final building boundary.
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Figure 10. (a) Building boundaries before enlargement (Under detected edges with black boundary
and red region); (b) Final detected buildings after enlargement (cyan boundary).

Figure 10a,b show building detection results before and after the pixel-based enlargement process.
It is discernible that the final detected boundaries in Figure 10b cover rooftops well close towards
the building edges and detects the building perimeter accurately. The same boundaries will be
used eventually for the evaluation purpose. Since the building boundaries are independent, the
clustering (line and cell-based) and area enlargement processes were executed in parallel to improve
the performance.
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2.3. Building Regularisation

Due to the point cloud sparsity, the extracted boundaries are jagged as shown in Figure 10b, which
can be regularised by obtaining structural lines using MDL [5], but it is computationally intensive.
However, the proposed regularisation approach employs image lines to regularise the boundary
assuming buildings are rectilinear and adjacent edges should either be parallel or perpendicular. Since
all possible image lines could not be extracted due to shadows and low contrast, this fact makes the
German data set (Vaihingen) suitable to demonstrate the robustness of the regularisation technique.
So, we choose a sample scene from Area 3, to explain the building footprint generation process.

The workflow of the regularisation process is shown in Figure 2. Figure 11a shows the boundary
of the candidate building region (from the building mask) and classified image lines before application
of the building detection steps described in Section 2.2. Figure 11b shows the clustered lines to the
candidate building region and the refined building boundary after application of building detection
procedure. The proposed building regularisation approach works in 3 steps: line selection, line
estimation, and footprint generation.

(a) (b)

Image lines intersecting  

boundary outline (red circle)

Inside-point (Pi)

Mirror-point (Mi)

Selected line (blue)

Boundary marker 

(Yellow)

(c) (d)

Yellow – Estimated line based on boundary points

Green – Boundary 

with no image lines

White – Boundary 

with image lines

Blue – Image lines

Peak point 

(red circle)

(e) (f)

Intersection (red circle) with adjacent 

parallel line (Magenta)

Figure 11. Building regularisation process: (a) Candidate boundary region (yellow) from building
mask and image extracted lines; (b) Clustered lines to candidate region and final detected building;
(c) Boundary lines selection; (d) Edge selection and boundary marking; (e) Edge line estimation for
unmarked boundary outline; and (f) 2D building footprint/regularised boundary.
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2.3.1. Building Edge Selection

For each clustered line with its midpoint Pmid, we use its inside-point Pin and mirror-point Pmir to
determine whether the line is a candidate line for the building boundary. For instance, with reference
to Figure 11c, the image line (blue) exists near to the building perimeter, the perpendicular line
from Pmir to Pin through Pmid intersects the extracted boundary (green), thus this line is a candidate
boundary line. The corresponding boundary part of the selected line is also marked. Figure 11d shows
the corresponding boundary parts within two yellow perpendicular lines through the end points
of the selected line. This selected line can be from any class of “edge”, “ridge”, or “ground” due to
the misalignment between the LiDAR-derived building boundary and image derived lines. All the
candidate lines are determined iteratively. If a line fails to intersect building boundary, it is removed.
If two or more candidate lines are found for a part of the boundary then the line that has the lowest
mean perpendicular distance of the boundary points to the line, finally qualifies for the boundary part.

2.3.2. Edge Line Estimation

The edge lines are estimated only if the boundary points are left unmarked as illustrated by the
green colour boundary in Figure 11e. These boundary points are first smoothed using the Gaussian
function and then corner detection is carried out using the technique in [39]. We determine the
curvature peaks (red circles in Figure 11e) that specify the locations where a considerable change in
curve direction occurs. A straight line is then fitted to the boundary segments using a least-square
technique such that the line is rotated by a half degree clockwise/anti-clockwise around its centre
to minimise the mean perpendicular distance to boundary points. The estimated edge lines and the
chosen image lines (yellow and blue respectively) can be seen in Figure 11e.

2.3.3. Building Footprint Generation

Assuming buildings mainly have two principal directions along its length and width, the lines at
least 6 m long are considered as long lines [40]. The long lines from the image are kept fixed. If no
image line exists, then the long estimated lines are kept fixed. In the case of only one single fixed line,
all the other line segments are made parallel or perpendicular to it. The two closest small lines on
both sides of a fixed line are adjusted first followed by the next two nearest small lines are tuned with
reference to the last fixed lines. This process continues until all the lines are adjusted to a parallel and
perpendicular relationship.

If there exist two or more fixed lines, the small lines in between are gradually made parallel
or perpendicular to their nearest fixed lines. In the case where a small line is at an equal distance
from the fixed lines, it is adjusted according to the fixed line with which it makes the smaller angle.
Perpendicular lines are then introduced between the successive parallel lines. Finally, the regularised
building boundary is generated by intersecting the consecutive lines. The regularised building footprint
for the sample scene is sketched on the input image in Figure 11f.

3. Performance Evaluation

The performance of the proposed approach was tested on five data sets which have different
LiDAR point densities, topography and surrounding conditions. The ISPRS benchmark data set,
Vaihingen, Germany has three areas whereas the other four data sets have one area each captured over
different geographic locations in Australia.

3.1. Evaluation Methods

Due to a current lack of a uniform evaluation system [41], the objective evaluation followed
both the threshold-based system [41] adopted by the ISPRS and an automatic and threshold-free
evaluation system [42] for the German and the Australian data sets, respectively. Both the evaluation
systems perform three categories of evaluations: object-based, pixel-based, and geometric, where
each category uses several metrics. For example, the object-based metrics (completeness, correctness,
quality, under- and over-segmentation errors, and reference cross-lap rates) evaluate the performance
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by counting the number of buildings, while the pixel-based metrics (completeness, correctness, quality,
area-omission, and area-commission errors) measure the detection accuracy by counting the number
of pixels. In addition, the geometric metric (root mean square error i.e., RMSE) indicates the accuracy
of the extracted boundaries with respect to the reference entities. For all the data sets, the minimum
areas for large and small buildings have been set to 50 m2 and 10 m2, respectively.

3.2. Benchmark Data Sets

The first data set is Vaihingen (VH), from the ISPRS benchmark that has three test sites as presented
in Figure 12a–c. Each area has a point density of 3.5, 3.9 and 3.5 points/m2, respectively. Area 1 is
situated in the centre of the city and characterised by dense construction consisting of historic buildings
having complex shapes. Area 2 is characterised by a few high-rise residential buildings surrounded
by trees. Finally, Area 3 is purely residential, with detached houses and many surrounding trees.
The number of buildings (larger than 2.5 m2) in these three areas are 37, 14, and 56, respectively.
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Figure 12. Data sets: Vaihingen; (a) Area 1; (b) Area 2; and (c) Area 3; (d) Aitkenvale; (e) Hobart;
(f) Eltham; and (g) Hervey Bay.
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The four Australian data sets, Aitkenvale (AV), Eltham (EL), Hobart (HT), and Hervey Bay (HB),
have point densities of 29.3, 4.8, 1.6, and 12 points/m2, respectively. Topographically, the AV and
HB areas are flat while EL and HT are hilly containing mostly residential buildings with different
level of vegetation. The AV, EL and HT data sets have dense vegetation, where many of the buildings
are severely occluded by the surrounding trees. These test areas, shown in Figure 12d–g, cover
214 × 159 m2, 393 × 224 m2, 303 × 302 m2, and 108 × 104 m2, respectively. The AV contains
63 buildings (four are between 4 to 5 m2 and 10 are between 5 to 10 m2). The EL data set contains
75 buildings (nine are less than 10 m2, including five within 3 to 5 m2). The HT data set has 69 buildings
(thirteen are less than 10 m2, including four within 1 to 5 m2). The HB data set contains 28 buildings
(three are between 4 to 5 m2 and six are between 5 to 10 m2). The reference data sets include parking
shades, huts, and shelter umbrellas as buildings during evaluation provided the height is more than
the threshold (1 m).

3.3. Results and Discussion

Sections 3.3.1 and 3.3.2 describe and discuss the evaluation results of our proposed technique on
the ISPRS benchmark and the Australian data sets.

3.3.1. ISPRS Benchmark Results

Tables 2 and 3 show the official per-object and per-area level evaluation results for the three
test areas of the benchmark data set. Figure 13 shows the per-pixel level visual evaluation of all
the test areas (column 1) for the building delineation technique (column 2) and their corresponding
regularisation outcome (column 3). The detailed quality measures for building delineation technique
before and after the regularisation can be found on the ISPRS portal [43] under detection with acronym
Fed_1 and Fed_2, respectively.

Table 2. Object-based building detection results on the Vaihingen (VH) data set before and after
regularisation stage. (Cm = completeness, Cr = correctness and Ql = quality, are for all the buildings
and over 50 m2 in percentage; 1:M = over-segmentation and N:1 = under-segmentation, N:M = both
over- and under-segmentation in the number of buildings).

Proposed Detection Areas Cm Cr Ql Cm,50 Cr,50 Q1,50 1:M N:1 N:M

Before
Regularisation

VH 1 83.8 100 83.8 100 100 100 0 6 0
VH 2 85.7 91.7 79.5 100 100 100 0 2 0
VH 3 82.1 95.7 79.2 100 100 100 0 7 0

Average 83.87 95.80 80.83 100 100 100 0 5 0

After
Regularisation

VH 1 83.8 100 83.8 100 100 100 0 6 0
VH 2 85.7 100 85.7 100 100 100 0 2 0
VH 3 82.1 95.7 79.2 100 100 100 0 5 0

Average 83.87 98.57 82.90 100 100 100 0 4.3 0

Table 3. Pixel-based building detection results on the Vaihingen (VH) data set before and after
regularisation stage. (Cmp = completeness, Crp = correctness and Qlp = quality are in percentage,
RMSE = planimetric accuracy in metres).

Proposed Detection Areas Cmp Crp Qlp RMSE

Before Regularisation

VH 1 84.9 86.5 74.9 1.2
VH 2 87.9 84.4 75.6 1.28
VH 3 88.7 85.0 76.7 1.1

Average 87.17 85.30 75.73 1.19

After Regularisation

VH 1 85.4 86.4 75.4 1.06
VH 2 88.8 84.5 76.4 1.21
VH 3 89.9 84.7 77.4 1.06

Average 88.03 85.20 76.40 1.11
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Figure 13. Building detection on the ISPRS German data set: (a–c) Area 1, (d–f) Area 2, and
(g–i) Area 3. Column1: pixel-based evaluation, Column2: boundary before regularisation, and
Column 3: regularised boundary.

Considering all the buildings, Table 2 shows that the overall object-based completeness and
correctness before regularisation are 83.87% and 95.80%, respectively. However, the buildings
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eliminated during the mask generation process, showed with “green” arrows in Figure 13a,d,g
became a bottleneck in a relatively reduced performance. Howbeit, 100% object-based accuracy
was achieved on the large buildings. Since the overlap areas of the resultant and reference polygons
after the regularisation process were not greatly changed, therefore, a substantial increase in per-object
evaluation accuracy was not achieved. Table 3 shows the per-area evaluation (completeness and
correctness ' 88% and 85%, respectively) of the proposed detection before regularisation in Area 2
and Area 3. However, per-area completeness in Area 1 was lower (84.9%) because few carports below
the height threshold, marked with yellow dashed circles in Figure 13b and one in Area 3 (Figure 13h),
were eliminated by the building mask generation process.

During the cell clustering process, the cells lying partially on the building perimeter were included
into the region. That is why, few very close buildings were combined unexpectedly (marked as P,
Q and R) apart from the false positive pixels as shown in Figure 13. This could have been avoided
by analysing the white pixels from the building mask during the region growing. Nevertheless, the
proposed approach extracted several close buildings at a higher accuracy as shown in Figure 13b,h
with Labels (i)–(iii). Moreover, two buildings Label X and Y as shown in Figure 13e,h, respectively
were extracted completely using the proposed cell clustering process although major parts of the
buildings do not have any LiDAR data recorded. Results in Table 2 further indicate that the proposed
approach is absolutely free from over- (1:M) and many-to-many (M:N) segmentation errors, albeit
there are few under-segmentation cases.

Table 3 shows that the regularisation process improved the per-area completeness, correctness, and
quality on top of building detection results. This increase might be substantial if the image lines could
come in place of boundary segments, which are more accurate representative of the building perimeter
than the ALS boundary. However, a slight decrease in VH3 correctness after the regularisation was
observed because the lines and their intersections (corners) were shifting from their actual positions
during the regularisation. Notably, the regularisation process obtained a higher planimetric accuracy
that reached up to two times the horizontal point spacing of the ALS data. Overall, it can be established
from the evaluation performance that the proposed delineation together with regularisation process
not only can eliminate vegetation, extract building as well as their parts from the connected trees but
also regularise the boundary with 98.57% average objective correctness.

3.3.2. Australian Results

Tables 4 and 5 present object- and pixel-based evaluation of the detection technique before and
after the regularisation using the threshold-free evaluation system. Figures 14 and 15 show the
extracted buildings and their corresponding building footprints for the AV, EL, HT, and HB data
sets. The proposed detection extracted 55, 68, 62, and 22 buildings out of 65, 75, 69, and 22 reference
buildings in the AV, EL, HT, and HB data sets, respectively.

Table 4. Object-based building detection results on the Australian data sets before and after
regularisation stage. (Cm = completeness, Cr = correctness, are for all the buildings, 50 m2 and
over 10 m2 in percentage; Crd = detection cross-lap (under-segmentation) and Crr = reference cross-lap
(over-segmentation) rates).

Proposed Detection Areas Cm Cr Ql Cm,50 Cr,50 Cm,10 Cr,10 Crd Crr

Before
Regularisation

AV 84.62 100 84.62 100 100 91.67 100 1.81 1.53
EL 84.0 100 85.0 100 100 94.03 100 2.9 9.3
HT 82.61 98.39 82.43 100 100 95.0 100 1.6 7.2
HB 100 100 100 100 100 100 100 0 13.6

Average 87.81 99.6 88.01 100 100 95.18 100 1.57 7.91

After
Regularisation

AV 84.62 100 84.62 100 100 91.67 100 1.80 1.5
EL 84.0 100 85.0 100 100 94.03 100 2.9 9.3
HT 82.61 98.39 82.43 100 100 95.0 100 1.6 7.2
HB 100 100 100 100 100 100 100 0 13.6

Average 87.81 99.6 88.01 100 100 95.18 100 1.57 7.91
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Table 5. Pixel-based building detection results on Australian data sets before and after regularisation
stage. (Cmp = completeness, Crp = correctness and Qlp = quality are for all the buildings, 50 m2 and over
10 m2; Aoe = area omission error and Ace = area commission error; in percentage, RMSE = planimetric
accuracy in metres).

Proposed Detection Areas Cmp Crp Qlp Aoe Ace RMSE Cmp,50 Crp,50 Cmp,10 Crp,10

Before
Regularisation

AV 88.85 96.71 86.25 11.14 3.28 0.58 91.0 96.71 89.32 96.71
EL 80.57 95.13 77.38 19.4 4.86 2.08 81.24 95.13 80.79 95.13
HT 87.9 92.04 81.7 12.10 7.9 1.03 89.31 92.15 88.61 92.15
HB 86.95 96.72 84.45 13.0 3.28 1.18 86.95 96.71 86.95 96.71

Average 86.06 95.15 82.45 13.91 4.83 1.22 87.13 95.18 86.42 95.18

After
Regularisation

AV 90.11 97.50 88.08 9.88 2.49 1.30 92.43 97.50 90.71 97.50
EL 82.25 95.43 79.13 17.75 4.56 2.08 82.93 95.43 82.47 95.43
HT 89.4 93.67 84.28 10.62 6.33 1.42 91.0 93.74 90.11 93.74
HB 91.80 96.08 88.49 8.19 3.91 1.78 91.80 96.08 91.80 96.08

Average 88.39 95.67 84.99 11.61 4.32 1.65 89.54 95.76 91.54 95.76
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(g)
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(f)

(P)(P)

Legends:

Missed buildings

Detected buildings

Figure 14. (a,b) Building detection and regularisation on AV data set; (c) Building regularisation
example in AV; (d,e) Building detection and regularisation on EL data set; and (f–h) Building
regularisation examples in EL. Areas marked in (b) and (e) are magnified in (c) and (f–h), respectively.
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Figure 15. Building detection and regularisation on Hobart (a,b) and Hervey Bay (c,d). Building
detection examples after regularisation in: (e–h) HT data set (1.6 points/m2) ; and (i) HB data set
(12 points/m2). Areas marked in (b) and (d) are magnified in (e) to (i).

Table 4 shows that the object-based completeness of HT on all the buildings was comparatively
lower than that of AV and EL. The reason was the missing buildings (marked “red”) caused by severe
occlusion (Figures 14c,f and 15e) and transparent roof material (Figure 15g). The results further show
that the buildings over 50 m2 were extracted with 100% objective completeness and correctness while
nearly equal average completeness (' 95%) was achieved on the buildings over 10 m2.

Figure 14c,f–h show scenarios where non-occluded building parts were extracted after eliminating
the connected vegetation. However, two very close buildings in EL, Label (i) in Figure 14f, were
unexpectedly merged due to a small connecting region. Such complex cases increased cross-lap rate
(under-segmentation) in EL than AV and HT as given in Table 4. This could be prevented by taking
care of white pixels between the connected regions from the building mask. Since the overlap areas of
the resultant and reference polygons in before and after the regularisation process was not changed
much, therefore, objective evaluation was nearly the same as shown in Table 4.
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Table 5 shows the pixel-based evaluation (completeness and correctness '87% and 95%) before
regularisation for AV, HT, and HB. However, a relatively lower completeness in EL (80.57%) than others
caused by missing fewer buildings which were under severe occlusion and was evident from the high
area omission errors. For the buildings larger than 50 m2, an average completeness and correctness of
about 87% and 95% were achieved, while the similar were obtained for buildings over 10 m2. More than
2% rise in average completeness was recorded after the regularisation process when all the buildings
were considered. Yet, the planimetric accuracy was compromised, since the regularised lines and
their intersections were repositioning to generate a regularised boundary. Nevertheless, an average
pixel-based completeness increased significantly in HB from 86.95% to 91.80% after the regularisation
on all the buildings as shown in Table 5. The obvious reason was that major parts of the delineated
boundary had a respective image line which gave rise to accuracy.

The performance of the proposed approach is demonstrated using several data sets which have
transparent to complex structure buildings with varying sizes, flat to hilly terrain, low to dense
vegetation, and different ALS resolutions (1 to 29 points/m2). Qualitative (figures) and quantitative
(Tables 2–5) results show that the proposed detection approach can eliminate vegetation and extract
buildings as well as their non-occluded parts from the complex scenes at a high object- and pixel-based
accuracy. A constantly higher (>95%) correctness suggests that the proposed detection technique is
robust. Moreover, the applicability of the regularisation process after the detection is effective in the
useful generation of the building footprints.

3.4. Comparative Analysis

The proposed method is automatic and data-driven that integrates LiDAR and orthoimagery.
It predominantly uses LiDAR to create the building mask and building extraction. From the ISPRS
portal and the classified methods in [44], we select those which (1) use both LiDAR and image; (2) in
which pixel- and point-based processing is equally important; (3) automatic; and (4) unsupervised
and data-driven [44]. Due to a lack of integrated methods complying the above criteria, 2 supervised
integrated (Criteria 1–3) and 2 LiDAR only (Criteria 2–4) methods are also chosen as shown in Table 6.
The quantitative evaluation of the German data set (Area 1, Area 2, and Area 3) for KNTU_mod, Whuz,
IIST, Mon2, and the proposed detection and regularisation approach (FED_2) are available on the
ISPRS’ website, however, Yang’s [45] results are taken from the paper. To the best of our knowledge,
the only method evaluated using the evaluation system in [42] on the Australian data sets is MA [11]
and hence, chosen for the comparative study to conduct a fair evaluation.

Table 6. Existing methods that have been compared with the proposed technique.

Benchmark Data Set Method’s Name Data Types Processing Strategy Reference

ISPRS, Germany

KNTU_mod LiDAR + image supervised [46]
Whuz LiDAR + image supervised [47]
IIST LiDAR + image Data-driven [48]

Mon2 LiDAR Data-driven [40]
Yang LiDAR Data-driven [45]

Australian MA LiDAR Data-driven [11]

The comparison between FED_2 and other methods is presented in Tables 7 and 8, where bold
numbers show better or equal performance of our technique. FED_2 performed significantly better
on the Australian data sets which are characterised more complex than the ISPRS benchmark due to
dense vegetation, shadows, and topography. Likewise, FED_2 achieved similar or better object and
area level completeness and correctness than the counterparts in all the German areas. Although, in
Area 1, Mon2 offered better object completeness, since it captured the carports at ground-height due
to more accurate DTM, however, high per-object correctness was obtained by FED_2 (see Table 7),
which is an indicator of a method’s robustness. Moreover, the proposed method had better objective
completeness than Yang which had more per-area completeness on Area 1. Besides FED_2 performed
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better in Area 2 than fellow methods, Mon2 achieved slightly better per-object completeness in Area 3.
Nevertheless, FED_2 achieved higher per-area and better per-object completeness on large buildings
in Area 3.

Table 7. Comparing building detection results for the Vaihingen (VH) data set. Object-based
Cm = completeness, Cr = correctness (Cm,50 and Cr,50 are for buildings over 50 m2) and pixel-based
Cmp = completeness and Crp = correctness are in percentage. RMSE = planimetric accuracy in metres.
1:M = over-segmentation and N:1 = under-segmentation, N:M = both over- and under-segmentation in
the number of buildings. Bold values show better or equal performance of the proposed technique.

Methods Cm Cr Cm,50 Cr,50 Cmp Crp RMSE 1:M N:1 N:M

Area 1 - 3.5 laser points/m2

KNTU_mod 83.8 100.0 100.0 100.0 91.4 94.3 0.8 - - -
Whuz 78.4 43.5 89.3 96.3 84.4 83.9 1.2 - - -
IIST 78.4 83.3 82.1 95.8 75.8 74.3 1.4 - - -

Mon2 89.2 91.4 100.0 100.0 88.1 90.0 1.0 0 6 0
Yang 81.1 96.8 100.0 96.6 87.9 91.2 0.9 0 3 2

FED_2 83.8 100.0 100.0 100.0 85.4 86.4 1.0 0 6 0

Area 2 - 3.9 laser points/m2

KNTU_mod 83.8 100.0 100.0 100.0 86.5 93.6 0.8 - - -
Whuz 57.1 42.3 80.0 90.9 79.6 91.9 0 - - -
IIST 71.4 62.5 100.0 90.9 78.8 92.6 0.9 - - -

Mon2 85.7 92.3 100.0 100.0 87.1 94.0 0.8 0 2 0
Yang 78.6 100.0 100.0 100.0 88.8 94.0 0.8 0 2 0

FED_2 85.7 100.0 100.0 100.0 88.8 84.5 1.2 0 2 0

Area 3 - 3.5 laser points/m2

KNTU_mod 85.7 98.0 100.0 100.0 88.3 99.0 0.7 - - -
Whuz 64.3 79.2 81.6 100.0 76.9 92.6 1.1 - - -
IIST 67.9 58.3 86.8 94.3 86.2 78.4 1.2 - - -

Mon2 83.9 97.9 97.4 100.0 87.7 89.0 1.0 0 8 0
Yang 73.2 97.6 97.6 92.1 85.2 89.5 0.8 0 6 0

FED_2 82.1 95.7 100.0 100.0 89.9 84.7 1.1 0 5 0

- means results not available.

Table 8. Comparing building detection results for the Australian data set. Object-based
Cm = completeness, Cr = correctness (Cm,10 and Cr,10 are for buildings over 10 m2) and pixel-based
Cmp = completeness and Crp = correctness are in percentage. RMSE = planimetric accuracy in metres.
Bold values show better or equal performance of the proposed technique.

Methods Cm Cr Cm,10 Cr,10 Cmp Crp RMSE

Aitkenvale (AV) - 29.3 laser points/m2

MA 67.2 100 81.1 100 87.2 94.9 0.66
FED_2 84.62 100 91.67 100 90.11 97.50 1.3

Eltham (EL) - 4.8 laser points/m2

MA 77.6 88.2 77.6 88.2 85.6 90.1 1.31
FED_2 84.0 100 94.03 100 82.25 95.43 2.08

Hobart (HT) - 1.6 laser points/m2

MA 71.2 80.8 80.8 79.3 80 80.2 1.33
FED_2 82.61 98.39 95 100 89.4 93.67 1.42

Hervey Bay (HB) - 12 laser points/m2

MA 73.2 97.6 97.6 92.1 80 80.2 0.68
FED_2 100 100 100 100 91.80 96.08 1.78

Table 7 further shows that large buildings (50 m2) were extracted with 100% completeness than
Yang and Mon2, who missed large buildings from Area 3 while IIST from Areas 1 and 3. The same
also shows that IIST performed poorly on all the Areas in German data set due to an inappropriate
integration of features extracted from LiDAR and image. Notably, FED_2 was mainly free from
over- and many-to-many segmentation errors, but had few under-segmentation cases, unlike Yang
which suffered from many-to-many and under-segmentation. When compared with supervised
methods which are trained to perform a better classification, the proposed approach achieved better
per-object completeness and correctness in all the areas except Area 3. Likewise, it demonstrated
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better in per-area level except in Area 1 where KNTU_mod had better completeness and correctness.
However, Whuz performed consistently poor on all the Areas in German data set and even missed
buildings larger than 50 m2 from Areas 1 and 3. Since the segmentation results of IIST, KNTU_mod,
and Whuz were not available, therefore, a comparative discussion was not provided.

FED_2 achieved better object and area level accuracy than MA on the Australian data sets as shown
in Table 8. However, in EL, per-area completeness of MA was marginally better but performed poorly
(per-object) in AV due to missing small buildings. Nevertheless, FED_2 offered high completeness and
correctness on all the data sets but underwent through a lower planimetric accuracy than MA. It was
concluded that FED_2 was found quite robust under complex scenarios on the Australian data sets
and achieved higher completeness and correctness. However, it achieved better or equal performance
except few cases on the ISPRS benchmark data sets with a constantly high correctness.

3.5. Implications of the Regularisation Technique

Although, per-area completeness increased after the regularisation process, but could not achieve
the expectation level (above 95%). On the contrary, the planimetric accuracies of the 2D footprints
for the AV, HT, and HB data sets were adversely affected as shown in Table 5. The phenomenon is
explained through samples from VH Area 3 and AV data sets in Figure 16a,c, respectively. The positions
of these buildings were labelled (N) and (P) in former Figures 13h,i and 14a,b, respectively.

(i)

(a) (b)
(c) (d)

(e) (f)

(g)

(h)

(j) (k)

(n)(l) (m)

Longest 

Fixed-Line

Longest 

Fixed-Line

Figure 16. Building examples from ISPRS and Australian data sets. Detected and regularised buildings
on (a,b) VH Area 3; (c,d) AV; (e,f) VH Area 3; (g,h) VH Area 2; (i,j) EL; (k,l) HT; and (m,n) HB.
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As described under Section 2.3.3, the regularisation process begins with the selection of a longest
fixed line (see Figure 16b,d) and adjusts the nearby lines with respect to it. A wrong selection of the
fixed line may deviate the generated footprint from the building’s orientation or if the coincident lines
are fixed and do not comply any parallel or perpendicular relation, such segments are joined without
any adjustment. Thereby, it increases the RMSE. This issue can be resolved by minimising the line
to the boundary distance during fixed line selection and line adjustment. Besides, some additional
corners are observed in a regularised boundary as a result of the vertical lines introduced to construct a
building footprint. This issue can be avoided by finding the intersection points of nearby lines (image
and estimated) and adjusting them into a parallel or perpendicular relationship instead of inserting
new lines. For observation, building footprints of few sample detected buildings from VH Area 3, VH
Area 2, EL, HT, and HB data sets are sketched in Figure 16e–n. It shows that the applicability of the
regularisation process even for complex building structures after the detection is effective in the useful
generation of building footprints.

3.6. Limitations of the Proposed Detection

The objects either made of transparent materials which allow the laser to penetrate through to
the ground or lower than the height threshold (1 m) are eliminated by the mask generation process.
Therefore, such objects will not be extracted. The construction of transparent roofs is not widely
practised and even if exist, are mainly used for sheds and huts and not for main buildings, so does not
significantly impact the application of the proposed building detection technique. Moreover, irregular
buildings, such as domes, although may be detected in the building mask, they will be either wrongly
regularised as rectilinear buildings when long lines are found from the orthoimage or eliminated due
to the absence of long image lines. Also, small buildings with area less than the grid’s cell-size (1 m2)
will be eliminated by the clustering processes.

4. Conclusions and Outlook

A building detection and footprint generation technique is presented here, which is fully
data-driven and automatic. The candidate building regions are first identified using connected
component analysis. Then, the buildings are extracted including partly occluded and shadowed after
the vegetation removal through the grid index structure and multisource data. Finally, the building
footprints are generated using the image lines and the extracted building boundaries.

The performance of the proposed technique is tested on several data sets having different point
densities (1 to 29 points/m2), topographic and vegetation conditions. Results showed that it not only
can extract small, partially occluded and shadowed buildings but can generate footprints irrespective
of the surrounding complexity. The proposed method offers high detection rates even in the presence of
moderate registration error between the ALS data and the orthoimagery. Furthering to the performance,
the experimental results demonstrated that our method is completely free from many-to-many and
over-segmentation errors, which is imperative to obtain high objective accuracy. When compared
with six existing methods, the proposed technique performed better than the counterparts with the
correctness of above 95%. Additionally, the building outlines produced here are regularised in contrast
to recent methods which generate only ragged boundaries.

Due to the mask generation process, the buildings below the height threshold and transparent
materials were removed and hence, were not detected. In addition, the planimetric accuracy of
the regularised boundary was affected because of the registration error between LiDAR and image.
Hence, it would be interesting to cluster the image lines using the delineated boundary before the
regularisation process begins. The per-area and planimetric accuracy of the building footprints are
likely to improve. Moreover, the research to extract the transparent buildings by using LiDAR intensity
and image gradient is under investigation. The proposed method applied both the radiometric and
geometric clues in order to detect buildings in complex situations, especially when buildings were
connected with neighbouring dense vegetation and partially occluded. Another important geometric
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clue that can also be applied is the general planarity principle, which states that a building roof
consists of one or more large planar segments while a tree does not [11]. Our future investigation on
3D building modelling and regularisation will use this clue as well. This is also planned to test the
applicability of the proposed approach on more data sets having large registration errors.
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