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Abstract: With the rising cost of energy and fuel oils, clean coal technologies will continue to play
an important role during the transition to a clean energy future. Victorian brown coals have high
oxygen and moisture contents and hence low calorific value. This paper presents an alternative non
evaporative drying technology for high moisture brown coals based on osmotic dewatering. This
involves contacting and mixing brown coal with anionic super absorbent polymers (SAP) which
are highly crossed linked synthetic co-polymers based on a cross-linked copolymer of acryl amide
and potassium acrylate. The paper focuses on evaluating the water absorption potential of SAP in
contact with 61% moisture Loy Yang brown coal, under varying SAP dosages for different contact
times and conditions. The amount of water present in Loy Yang coal was reduced by approximately
57% during four hours of SAP contact. The extent of SAP brown coal drying is directly proportional
to the SAP/coal weight ratio. It is observed that moisture content of fine brown coal can readily be
reduced from about 59% to 38% in four hours at a 20% SAP/coal ratio.

Keywords: brown coal; osmotic dewatering; super absorbent polymers; FTIR;
dewatering mechanism

1. Introduction

Victorian brown coal is a cost effective fuel for power generation. It is very cheap to mine and
low in sulphur and ash yield but the high moisture content and hence low calorific value result in
high CO2 emission intensity relative to bituminous coal. This high moisture has ensured that power
stations are located adjacent to their mines to minimise handling, transportation and environmental
problems. Run-of-mine brown coal will require upgrading before its use in new generation thermal
power plants.

Practical and economic advantages in reducing the moisture content in brown coals include
enhanced handling characteristics and reduced transportation costs. Additional benefits include
reduced boiler capital costs, higher combustion efficiency, lower water consumption and waste
disposal costs.

1.1. Victorian Brown Coals

Brown coal is at an intermediate stage in the geochemical conversion of accumulated vegetable
debris from peat into hard or bituminous coal [1]. Brown coals typically have high moisture contents,
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in the 30%–70% range, with Victorian brown coal at the extreme end of this range. This high moisture
content has a negative impact on every thermal application for brown coal. There is an uninterrupted
converse relationship between the moisture content of Victorian brown coal and useful heat accessible
from combustion of the coal (the net wet specific energy).

According to Mackay [2], Victorian brown coals occur in seams of a few centimetres to over
100 m thick, extending laterally from a few metres to over 50 km. Within the seams there are bands
of coal which vary in appearances and properties. These bands are formed of coals belonging to
different lithotypes (rock types) which reflect different depositional environments. The samples for
current study are supplied from Loy Yang brown coal mines, Gippsland, Victoria (Figure 1).
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Verheyen and Perry [4] reported Victorian brown coals to be physically complex and heterogeneous 

due to their detrital origin. Their relatively low carbon aromaticity, presence of residual carbohydrates 

Figure 1. Current operating brown coal mines located in Victoria website [3].

The freshly exposed surface of as mined brown coal changes in colour from red brown to dark
brown, as drying or oxidation occurs. When brown coal is air dried (to moisture 10%–15%) the colour
varies from yellow to black.

Verheyen and Perry [4] reported Victorian brown coals to be physically complex and
heterogeneous due to their detrital origin. Their relatively low carbon aromaticity, presence of
residual carbohydrates (in woody macerals), along with methoxy phenols, unsaturated diterpenoids
and fatty acids all confirm that Victorian brown coals have only been exposed to very mild
(diagenetic) conditions. Structural heterogeneity tends to decrease as coalification continues due to
condensation and cleavage reactions.

Iyengar, Sibal and Lahiri [5] reported that the water sorbed as a monolayer on coal is attached
to hydrophilic sites on the coal surface. These sites were identified as oxygen-containing functional
groups. They have been confirmed for a variety of coal ranks including Victorian brown coals [6,7].

Molecular simulation techniques were applied by Kumagai, Chiba and Nakamura [8] to define
a model for coal structure. They modelled the structure of Yallourn brown coal as two oligomers,
namely a tetramer (molecular weight (MW) 1540) and a pentamer (MW 1924) based on a monomer
of composition C21H20O7 as represented in Figure 2. The unit structure was modelled on the basis
of combined data from elemental analysis (C: 65.6, H: 5.2, O: 29.2 wt %) by Schafer [7] and 13C-NMR
spectroscopy. First two molecules were joined with 360 water molecules matching to 65.3% moisture
content (wet basis).
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Figure 2. Monomer structure of brown coal used as basis of Yallourn brown coal molecular
model (Kumagai, Chiba and Nakamura 1999) [8] corresponds to C: 65.6, H: 5.2, O: 29.2 wt %
(Molecular Weight (MW) = 384.4).

1.2. Brown Coal Drying

Processes for drying or dewatering brown coals are grouped into three wide categories:
(a) evaporative (thermal); (b) non-evaporative (thermal) and (c) other non-evaporative drying processes.

The common commercial procedures include evaporative drying where heat is applied to
evaporate the water from coal at atmospheric pressure. Non evaporative drying processes are
attractive due to their enhanced energy effectiveness, since water is separated in liquid form and
the latent heat of vaporisation is not expended.

Studies have been conducted to investigate feasibility of non-evaporative drying of brown coal
such as the Fleissner process [9] which incorporates pressurised steam treatment at temperatures
above 200 �C. The Evans-Siemon process is the updated Fleisssner process where pressurised hot
water is used to improve thermal efficiency by avoiding a pressure cycle [10]. The Koppelman
(K-fuel) process [11] involves high pressure with low operating temperature; however, this process
was not demonstrated commercially. The mechanical thermal expression dewatering process [12]
involves use of elevated temperatures, up to 250 �C and pressure <12.7 MPa, resulting in significant
reductions in residual moisture content which may be largely attributed to the destruction of brown
coal porosity. Attempts at electro dewatering brown coals [13] did not demonstrate encouraging
results. Our current research aims at developing alternative technologies to dewater brown coals.

Dzinomwa, Wood and Hill [14] employed super absorbents to de-water fine black coal particles,
revealed some advantages over the alternative non evaporative drying technologies, and offered an
alternative lower energy osmotic water removal approach to the thermal technologies outlined above.

1.3. Super Absorbent Polymers (SAP)

SAPs comprise high molecular weight crossed linked hydrophilic polymers which absorb
several tens to hundred times their individual mass of water as they expand in size, but still preserve
distinct particle identity [15–17]. SAP can be cationic and anionic. The amount of water that a
specific SAP can absorb depends on its chemical composition and morphology as well as the quality
of absorbed water [18], particularly with respect to occurrence of ionic salts. The recycled water used
in mining plant operations generally contains a significant concentration of salts [19] and these need
to be managed to maximize the polymeric absorption potential.

Factors affecting the capacity of a SAP to absorb water are as follows:

1. Swelling properties (attributed to presence of hydrophilic groups in the network).
2. Cross linking density (generally higher molecular weight with lower cross linking densities

exhibits higher absorption capacities).
3. Structural integrity (high cross linking density is crucial to retain the structural integrity

of the polymer loaded with moisture as the high cross-linking density offers high
mechanical strength).

4. The “availability” of target water i.e., how tightly it is bound to the drying substrate.
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Figure 3 shows the mechanism of water absorption in SAP. The initial diffusion of water inside
hydrophilic SAP causes ionization of neutralized acrylate groups into negative carboxylate ions and
positive sodium ions. Negative electrical charges along the SAP backbone cause mutual repulsion
of carboxylate ions, increasing the osmotic pressure inside the gel, thereby resulting in expansion
and swelling of the SAP chains due to absorbed water. Finally, cross links between chains inhibit
solubilisation of SAP (in water) thus governing the extent of swelling or absorption by restricting
infinite swelling.
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1.4. Standard Method of Moisture Determination

According to Allardice [1], determination of moisture content of brown coals is complicated by
the lack of an inadequate definition for what constitutes moisture in coal. The most widely accepted
definition is that the moisture content is the water present in the coal as water molecules (H2O),
which can be released at 105–110 �C. This is not intended to include water from the decomposition of
functional groups or chemically adsorbed water.

Allardice [1] reported on two basic types of standard moisture determination methods i.e.,
(a) azeotropic distillation, in an immiscible liquid such as toluene and (b) oven drying at 105 �C.
In azeotropic distillation moisture content is determined directly from the volume of water collected
in the condenser, in contrast to most oven drying methods where water is estimated indirectly by
net weight loss. The standard method for determining moisture content of brown coals does not
discriminate between water of decomposition at a temperature up to 105 �C and molecular water
present in it.

2. Methodology of the SAP Dewatering Process

Figure 4 depicts an outline of the osmotic dewatering process, using SAP to decrease moisture
content of brown coal. This is achieved by direct contact between SAP and sized brown coal using
an end-over-end tumbler, tumbling through 360� from top to bottom providing complete mixing and
a sieve shaker to affect final separation. High moisture brown coal is intimately mixed with dry
SAP by shaking in air tight bottles to prevent evaporation. This batch storage approach also enabled
the SAP to passively draw and absorb water from the surface of brown coal particles. Mechanical
end-over-end tumbling (vertical bottle rotation at 60 rpm) for a set time at constant speed was used to
maximize surface contact between SAP and brown coal particles thereby reducing the equilibration
time. The apparatus provided reproducible and gentle particle contact conditions. Water absorption
causes SAP to swell thus permitting the separation of swollen SAP from shrunken brown coal
particles by sieving.
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Figure 4. Proposed processes for reducing water content of brown coal by treatment with SAP.

3. Experimental

3.1. Materials

3.1.1. Brown Coal

The brown coal (<80 mm) was provided by Omnia Specialities from a bulk sample collected from
the AGL Loy Yang mine in 2014. It was stored in sealed plastic pails prior to analysis. Its proximate
and ultimate analysis is presented in Table 1. According to [20] brown coals of Victoria, particularly
from Latrobe have low ash yields, but as would be predicted from such huge volumes of coal, even
separate seams have slight to substantial differences in physical properties and chemical composition.

Table 1. Loy Yang Brown coal analysis.

Coal Properties Percentage (% Dry Basis)

Moisture 59.3 *
Ash 2.2

Volatile matter 50.5
Carbon 68.4

Hydrogen 5.1
Sulphur 0.3

* % as received.

3.1.2. Super Absorbent Polymers (SAP) Used in this Work

Aquasorb 3005 (<1000 µm) supplied by SNF (Australia) Pty Ltd. (Lara, Victoria, Australia), is
a highly crossed linked, synthetic co-polymer of acryl amide and potassium acrylate. It is water
insoluble with maximum water absorption of 150% w/w in 1000 ppm NaCl solution.

The polymer consists of a set of polymeric chains that are parallel to each other and regularly
linked to each other by cross-linking agents, forming a network. When water comes in contact with
one of these chains, it is drawn into the molecule by osmosis. Water rapidly migrates into the interior
of the SAP network where it is stored. The pH of SAP is alkaline at 8.1 with a density of 1.10 g/cm3.
The maximum water absorption of 400 wt % occurs for deionized water. SAP particles were sieved
and those >600 µm and <850 µm were selected for use. Figure 5 presents a molecular structural
representation of Aquasorb.
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3.2. Experimental Methods

3.2.1. Fourier Transform Infrared (FTIR)

Fourier transform infrared (FTIR) spectroscopy is widely used to determine/evaluate functional
groups in coal structure. The reference [21] attempted structural assignments via deconvolution of
particular absorbance bands associated functional groups. FTIR spectral comparison of dewatered
and run of mine brown coal samples has the potential to elucidate changes in hydrogen bonding and
oxygen functional groups occurring during drying.

In this project, the FTIR spectra were recorded with a FTS1000 FTIR (Varian, MA, USA) fitted
with a ATR (attenuated total reflectance) accessory (Specac, Golden Gate Mark II, Orpington, UK);
128 scans were accumulated with spectral resolution of 4 cm�1, over the range of 4000–650 cm�1. The
spectrometer was equipped with ATR diamond anvil cell with single reflection. After measurement
of spectra, the remaining coal sample on the crystal was removed with soft paper soaked in methanol
and allowed to dry. Regular background spectra (air) were collected to ensure no cross contamination.
The raw reflectance spectra were corrected for frequency distortion and converted to absorbance by
standard software.

Figure 6 presents the ATR-FTIR spectrum of run-of-mine moisture Loy Yang brown coal. The
ATR technique probes only the surface layers of the brown coal structure. Peaks identified at 3365,
2900, 1700, 1621 and 1440 cm�1 correspond to OH groups [22], aliphatic groups, carboxylic and
ketone groups, carbon oxygen double bonded aromatic rings and bending mode of H-bonded O–H
groups [23] respectively (Table 2). Water in brown coal constitutes a progressive series of forms—each
is more difficult to remove from apparent bulk water to that resulting from thermal decomposition of
hydroxyl groups in brown coal and water of hydration of impure minerals.

The pH of the Loy Yang coal sample was found to be pH 4.05 suggesting that carboxylic groups
will mainly be involved in dewatering.

Table 2. Structural assignments for absorption bands observed in infrared spectra of brown coal.

Frequency (cm�1) Functional Groups Reference

3350–3600
Stretching vibration of OH groups (water,
alcohol, phenol, carbohydrates, peroxides)
as well as amides (3650 cm�1)

(Liu et al., 2006) [22] Vijayalakshmi
and Ravindhran, 2012 [24]

2750–3000 CH3 and CH2 (aliphatic) (Chandarlal et al., 2014) [23]

1700 Carboxylic acid and ketone groups (Chandarlal et al., 2014) [23]

1649 Adsorbed water (Li et al., 2001) [24]

1618–1622 C=O, aromatic rings (Chandarlal et al., 2014) [23]

1440 CH2, C=O bending mode of H-bonded
O–H groups (Chandarlal et al., 2014) [23]

1000–1300 Phenoxy structure, aliphatic ethers, alcohols (Chandarlal et al., 2014) [23]

1355 Benzene or condensed benzene rings (Chandarlal et al., 2014) [23]

1180 Sp-3 rich structure COOH and OH (Chandarlal et al., 2014) [23]

997–1130 Stretching vibration of C–O of mono,
oligo and carbo-hydrates

(Vijayalakshmi and Ravindhran,
2012) [25]

<1000 C–H bending vibration from isoprenoids (Vijayalakshmi and Ravindhran,
2012) [25]

870–750 Weak absorption due to C–H bending
vibrations of olefinic and aromatic structures (Verheyen and Perry 1991) [4]
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carbo-hydrates 

(Vijayalakshmi and Ravindhran, 
2012) [25] 

<1000 C–H bending vibration from isoprenoids 
(Vijayalakshmi and Ravindhran, 
2012) [25] 

870–750 
Weak absorption due to C–H bending vibrations 
of olefinic and aromatic structures 

(Verheyen and Perry 1991) [4] 

Figure 6. Attenuated total reflectance Fourier transform infrared (ATR FTIR) spectrum of as received
Loy Yang coal.

3.2.2. Dewatering Tests

A series of tests were conducted to optimise the SAP dosage and brown coal/SAP contact time,
to identify the effective operating conditions to maximise the water removal.

Loy Yang coal (as received) was crushed and screened <600 µm (to ensure a smaller size
than SAP) and stored in sealed containers prior to use. 20 g coal sub samples were mixed with
predetermined amounts of SAP to achieve target loadings i.e., 0%, 5%, 10%, 15%, 20%, 25% and 30%
SAP/coal. The SAP/coal mixtures were sealed in air tight glass 600 mL lab bottles fitted with plastic
screw caps. Up to twelve bottles (replicates) were placed inside the sample box of a vertical tumbler
for gentle “top over bottom” bottle agitation at 60 rpm. The sample was weighed before and after
the predetermined tumbling time period to ensure no evaporative losses occurred. Contact time was
monitored by determining the weight loss of brown coal (after SAP separation) until there was no
further change at which point the moisture was considered to be at equilibrium. The mixture was
readily separated into dewatered fine brown coal and swollen polymer via a sieve due to their size
difference—SAP swells and increases in size, whilst the coal shrinks as it loses moisture. Changes in
moisture were measured by a moisture balance programmed for constant weight at a temperature of
105 �C. Figure 7 shows loaded SAP after dewatering of brown coal. It was found the coal lost to the
SAP was <0.2%.
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4. Results and Discussion

According to Li et al. [26] there is presence of significant amount of alkali and alkaline earth
metals associated with the carboxylic and phenolic functionalities in the structure of low rank coal.
At low pH, ion exchange mainly takes place with carboxylic groups to form carboxylates. According
to Schafer [27], acidic groups and phenolic, are primarily responsible for ion exchange properties
of brown coals. At the in-situ pH prevalent in wet brown coals, carboxyl groups may interchange
cations with pore water to form carboxylates. Cations normally related with these groups are calcium,
magnesium, sodium and iron. Meanwhile, phenolic groups do not interchange cations to any degree
until system pH is greater than pH 8. The mean acid group content of the brown coal from Loy Yang
field is shown in Table 3.

Table 3. Mean acidic group content of Loy Yang brown coal (Schafer, 1991) [27].

Phenolic OH
(Dry Basis)

COOH
(Dry Basis)

COO
(Dry Basis)

Phenolic
Oxygen

(Dry Basis)

Carboxylic
Oxygen

(Dry Basis)

Acidic
Oxygen

Total
Oxygen
(Dmif)

Acidic
Oxygen

meq/g Percentage (%)

3.04 2.39 0.10 4.86 7.97 13.0 24.7 53

Dmif—dry mineral and inorganic free basis.

4.1. Moisture Results

SAP dosage rates ranging from 5 to 30 wt % SAP/brown coal, and contact times between 1 to
6 h were evaluated; to determine the optimum drying conditions for our experimental setup.

Test samples of fine brown coal prior to drying had a water content of 59.3%. Figure 8 and
Table 4 show the final coal moisture for different SAP doses and contact times. It was considered
that dosage of 5% of SAP by weight of brown coal and a contact time of six hours would give an
adequate moisture reduction while avoiding excessive cost of SAP and holding capacity. The brown
coal was observed to lose maximum of 53.25% of its original moisture after six hours contact with
20% w/w SAP.
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Figure 8. Variation in Loy Yang moisture content with contact time and Super absorbent Polymer,
SAP/coal.

A SAP/coal of 25 wt % caused a further decrease in moisture level. However at 30 wt % SAP
dosage, there was no further reduction in coal moisture instead a slight increase was observed. This
implies that higher weight percentage SAP loadings may release water from SAP which is reabsorbed
on to the brown coal.
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Figure 8 reveals the final Loy Yang moisture values with 20% SAP/coal achieving the optimal
drying for moisture reduction. Static osmotic dewatering of brown coal i.e., without the tumbling,
produced a final coal moisture of 47.3%, compared to the 38.6% with tumbling for the same contact
time. This result illustrates the importance of continuously exposing fresh surfaces for maximum
contact osmotic drying rates. The higher convective mass transfer and increased surface contact
interactions afforded by tumbling make it possible to reduce the brown coal drying time. It was
ascertained that a contact time of four hours was the optimal treatment time. Further drying via SAP
contact could be achieved by increasing the pH of coal as the SAP has higher moisture affinity under
basic conditions and the Loy Yang coal is acidic in nature.

Table 4. Effect of anionic super absorbent polymers (SAP) dosage and contact time on reduction of
water content of fine brown coal (initial water content of brown coal = 59.3%).

Polymer/Coal Ratio (%)

- 0 5 10 15 20 25 30

Hours Final Moisture Content (%)

0 59.3 59.3 59.3 59.3 59.3 59.3 59.3
1 58.7 48.8 44.8 43.6 41.3 44 42.2
2 58.7 48.8 44.6 43.4 40.4 40.8 41.5
3 58.4 48.2 43.7 43.1 40.2 40.4 41.7
4 58 48.5 44.2 42.3 38.6 39.7 40.3
5 58.2 48.6 44.2 42.2 39.7 39.3 40.3
6 58.2 47.6 44.3 42.2 39.2 39.3 40.2

4.2. Dewatering Kinetics

According to Szekely et al. [28] analysis of a heterogeneous reaction system must start from the
recognition that reaction takes place at the interface and hence mass must be transported to and from
this interface. It follows that structure, pertinent to mass transfer during and after contact plays a
significant role on the overall rate of water transfer. The fraction of moisture removed from brown
coal was calculated from the following equation:

α �
weight loss of brown coal due to moisture removal at any time ptq

Total moisture content

where, α = fraction of moisture removed.
Figure 9 shows the fraction of moisture removed with respect to the time. It can be seen that

the bulk of the drying occurs within the first two hours (Regions 1 and 2) and then attains a steady
state/equilibrium (Region 3). Figure 9 indicates the maximum removal of moisture by SAP within
the first two hours.
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The three different regions identified in Figure 9 are as follows:

1. Region 1: Dissociation and breaking of chemically adsorbed and surface moisture
(chemical process).

2. Region 2: Desorption of water (bound and free water)/and breaking of liquid bridges in coal
(chemical and physical process).

3. Region 3: Diffusion/mass transfer process (physical process).

4.3. Surface Chemical and Diffusion Control Model

Accordingly the dewatering kinetics were tested for surface chemical model (R3 (α)) and
diffusion control model (D3 (α)). Where,

D3pαq � 1�
2
3
α� p1� αq2{3

R3pαq � 1�p1� αq 1/3

It follows from Figure 9 that Region 1 and parts of Region 2 should follow the surface chemical
model and parts of Region 2 and Region 3 should follow the diffusion model. Figure 10 shows the
plots for surface chemical shrinking core model, R3 (α) vs. time and diffusion control model, D3 (α) vs.
time, for 20% SAP to coal ratio. Plots for the pore diffusion model (Figure 10) indicate a better linear
trend until the end of the reaction, indicating that the mass transfer-diffusion process controls the
reactions. A linear trend in the Region 2 for R3 (α) plots indicates a competing chemical, and mass
transfer-diffusion process controlling the dewatering process.
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Figure 10. Plot of diffusion control model [D3 (α)] vs. time and surface control model [R3 (α)] vs. time
for 20% SAP to coal ratio.

4.4. Fourier Transform Infrared (FTIR ATR)

The Fourier transform infrared spectroscopy of the brown coal sample and SAP sample before
and after dewatering over the wave number ranges 4000–600 cm�1 are presented in Figures 11 and 12
respectively. The amplified difference spectrum in Figure 12 reveals that the as received and SAP
treated brown coal samples have only minimal difference in absorptions due to inherent moisture i.e.,
positive broad H-bonding band centred at approx. 3365 cm�1 and the minor contribution to the band
near 1621 cm�1. Removal of all the non-bound water at 105 �C resulted in the typical IR absorbance
spectrum (Figure 11) for dried brown coal with the O–H and C–H of aromatic and aliphatic stretching,
(3700–2400 cm�1) [4,29] and more pronounced absorptions due to C–H stretch near 2900 cm�1 [4,23]
and bend near 1450 cm�1; carbonyl 1700 cm�1 [23] and aromatic ring (breathing mode enhanced
by ring substitution) at 1621 cm�1. The fingerprint region 1440–949.2 cm�1 which incorporates a
multitude of functional group contributions [23,25], including etheric oxygen and mineral salts which
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is also enhanced in the oven dried sample. The sensitivity (IR extinction coefficients) changes for the
organic bands in the coal on removal of moisture with slightly higher band intensities observed for
most organic functional groups. For the SAP treated sample as seen in Figures 11 and 12 the doublet
band centred near 2380 cm�1 is assigned to adsorbed CO2 on the surface of the brown coal. The
variation in this band in SAP treated coal is thought to relate to both atmospheric CO2 adsorption by
the sample and CO2 transfer from the SAP itself. Figures 13 and 14 provide an IR spectral comparison
of SAP before and after contact with Loy Yang coal. Differences in absorption in the 1440–1600 cm�1

region (Figure 14) corresponds to fine structural bands that are lost from the polymer on wetting
and the spectrum is dominated by positive water bands. There is an expected increase in peaks at
approximately 3335 and 1650 cm�1 for SAP after coal contact indicative of adsorbed water.

The SAP would need to be recycled in a commercial coal drying application by a non-evaporative
dehydration process. This can be achieved by pH shock wherein the SAP shrinks on contact with
acids such as HCl [14]. The low pH water self-drains from the SAP thereby reducing the need for
thermal evaporation. Further research into SAP recycling is warranted given the encouraging results
presented here for removing bulk moisture osmotically from Loy Yang coal.
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Figure 11. Stacked ATR–IR spectra of as received (59.3% moisture) SAP treated (38.6% moisture) and
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5. Conclusion

Osmotic dewatering of brown coal using SAP indicates that it is possible to achieve reduction in
Loy Yang moisture from 59.3% to 38.6% equivalent to removing 57% (on dry basis) of the initial water
present. Under the tumbling contact conditions employed mixing for four hours is necessary to attain
equilibrium moisture loadings between polymer and brown coal. This process is safer than direct
thermal drying and will produce fine brown coal with a consistent moisture content. Laboratory tests
revealed that the rate of moisture absorption remains constant between 4–6 h.
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