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39 Abstract 
40 
41 
42 One of the most significant environmental issues of blasting operations is ground vibration which 
43 
44 

45 can cause damage to the surrounding residents and structures. Hence, it is a major concern to 
46 
47 predict and subsequently control the ground vibration due to blasting. This paper presents two 
48 
49 artificial intelligence (AI) techniques namely adaptive neuro-fuzzy inference system (ANFIS) and 
50 
51 artificial neural network (ANN) for the prediction of ground vibration in quarry blasting site. For 
52 
53 

this purpose, blasting parameters as well as ground vibrations of 109 blasting operations were 
55 
56 measured in ISB granite quarry, Johor, Malaysia. Moreover, an empirical equation was also 
57 
58 proposed based on the measured data. Several AI-based models were trained and tested using the 
59 
60 measured data to determine the optimum models. Each model involved two inputs (maximum 
61 
62 1 
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4 charge per delay and distance from the blast-face) and one output (ground vibration). To control 
5 
6 capacity performances of the predictive models, the values of root mean squared error (RMSE), 
7 
8 

value account for (VAF), and coefficient of determination (R2) were computed for each model. It 
10 
11 was found that the ANFIS model can provide better performance capacity in predicting ground 
12 
13 vibration in comparison with other predictive techniques. The values of 0.973, 0.987 and 97.345 
14 
15 for R2, RMSE and VAF, respectively reveal that the ANFIS model is capable to predict ground 
16 
17 

vibration with high degree of accuracy. 
19 
20 Keywords: Blasting, Ground vibration, ANFIS, ANN, Empirical equation. 
22 
23 1. Introduction 
24 
25 
26 Blasting is a common technique for rock fragmentation in quarries, mining operations and some 
27 
28 

29 civil engineering applications such as tunneling and leveling/road construction. In quarry works, 
30 
31 several rows of blast-holes (almost parallel to the free face of the bench) are drilled and blasted. 
32 
33 These operations cause several impacts such as ground vibration, air-overpressure, flyrock, and 
34 
35 back-break in the blasting environmental zone (Khandelwal and Singh 2009; Jahed Armaghani et 
36 
37 

al. 2013; Hajihassani et al. 2014a; Raina et al. 2014; Ebrahimi et al. 2015). Among them, ground 
39 
40 vibration is recognized as an undesirable phenomenon which may lead damage to the surrounding 
41 
42 structures (Singh and Singh 2005; Ozer et al. 2008) 
43 
44 
45 When an explosive is detonated in a blast-hole, chemical reaction of the explosives produces a 
46 
47 high pressure and temperature gas. This gas pressure crushes the rock adjacent to the blast-hole. 
48 
49 The detonation pressure decays or dissipates quickly. A wave motion is created in the ground by 
50 
51 

52 the strain waves conveyed to the surrounding rocks (Duvall and Petkof 1959). Due to various 
53 
54 breakage mechanism, like radial cracking, crushing, and reflection breakage in the free face, the 
55 
56 strain energy carried out by these strain waves fragments the rock mass (Khandelwal et al. 2011). 
57 
58 The strain waves are propagated as the elastic wave when the stress wave intensity reduces to the 
59 
60 
61 
62 2 
63 
64 
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4 ground level. These waves are known as ground vibration. The ground vibration can be spread 
5 
6 from the blast-hole in all direction (Dowding 1985). 
7 
8 
9 High ground vibration can cause damage to the surrounding structures, groundwater conduits, and 

10 
11 ecology of the nearby area  (Khandelwal and Singh 2006; Monjezi et al. 2010). The ground 
12 
13 

14 vibrations are measured in terms of peak particle velocity (PPV) and frequency. As reported in 
15 
16 several standards (New 1986; Indian Standard 1973), PPV is considered as a vibration index, 
17 
18 which is a significant indicator to control the structural damage criteria. Several parameters such 
19 
20 as blast design, distance from the blast-face, explosive charge weight per delay, and geological 
21 
22 

conditions are the most effective factors on ground vibration induced by blasting (Wiss and 
24 
25 Linehan 1978; Khandelwal and Singh 2007; Iphar et al. 2008). 
26 
27 

28 Various empirical predictors have been suggested for the prediction of PPV (e.g. Duvall and 
29 
30 Petkof 1959; Langefors and Kihlstrom 1963; Davies et al. 1964; Ambraseys and Hendron 1968; 
31 
32 Roy 1993). Normally, in these approaches, PPVs are obtained from two factors namely maximum 
33 
34 charge per delay and distance from the blast-face. As a result, in many cases, these methods are 
35 
36 not accurate enough, whereas prediction of the PPV values with high accuracy is important to 
38 
39 estimate the blasting safety area. In addition, these empirical equations need to be updated when 
40 
41 new blasting data is available. Aside from the empirical equations, the use of statistical methods 
42 
43 such as multiple regression analysis in predicting PPV has received attention mainly due to their 
44 
45 ease  of  use  (Hudaverdi  2012).  However,  the  implementation  of  the  statistical  prediction 
46 
47 
48 techniques is not reliable if new available data are different from the original ones (Khandelwal 
49 
50 and Singh 2009; Monjezi et al. 2013). 
51 
52 
53 Besides, utilizing artificial intelligence (AI) methods such as artificial neural network (ANN) in 
54 
55 the field of earth science is recently highlighted in literatures. This may be attributed to AI 
56 
57 capability in solving non-linear continuous functions (Dehghan et al. 2010). Isik and Ozden 
58 
59 (2013) used ANN for predicting soil compaction parameters namely maximum dry unit weight 
60 
61 
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63 
64 
65 



1 
2 
3 

 

27 

36 

4 (  dmax) and optimum water content (  opt). Ceryan et al. (2013) conducted a research to predict the 
5 
6 uniaxial compressive strength of carbonate rocks using ANN.  In another study, Verma and Singh 
7 
8 
9 (2013) showed capability of the ANN technique in predicting water quality parameters including 
10 
11 biological oxygen demand (BOD) and chemical oxygen demand (COD). Moreover, Park et al. 
12 
13 (2013)  and  Bi  et  al.  (2014)  applied  ANN  to  estimate  landslide  susceptibility  index  (LSI). 
14 
15 Dissolved organic carbon (DOC) in a river network was evaluated and predicted using ANN in 
16 
17 

18 the study conducted by Fu et al. (2013). An ANN toolbox was created within GIS software by 
19 
20 Lee et al. (2014). They successfully showed capability of this toolbox for solving geotechnical 
21 
22 problems. A  hybrid  ANN-based  predictive  model  was  developed  to  estimate  pile  bearing 
23 
24 capacity in the study carried out by Momeni et al. (2014). Ocak and Seker (2013) utilized ANN 
25 
26 

technique for solving problem of surface settlement  caused by tunneling. A comparative study 
28 
29 was performed by Maiti and Tiwari (2014) to predict groundwater level using ANN and adaptive 
30 
31 neuro-fuzzy inference system (ANFIS) models. It was found that ANN can perform better than 
32 
33 ANFIS for prediction of groundwater level. Gordan et al. (2015) proposed a hybrid particle 
34 
35 swarm  optimization  (PSO)-ANN  to  predict  seismic  stability  of  the  homogeneous  slopes. 
37 
38 Furthermore, several researchers have been used AI techniques in the case of PPV prediction. 
39 
40 Khandelwal and Singh (2006) utilized four empirical predictors to estimate the PPV values for 
41 
42 150 blasting operations and obtained results were compared to the measured data. Subsequently, 
43 
44 an ANN model was proposed for the prediction of PPV using the same data. They found that 
45 
46 

47 ANN results are more accurate compared to empirical predictors. Fisne et al. (2011) used fuzzy 
48 
49 inference system (FIS) and regression analysis to predict PPV using 33 datasets obtained from 
50 
51 Akdaglar quarry in Turkey. In their research, charge weight and distance from blast-face were 
52 
53 considered as model inputs. They concluded that the FIS technique can predict PPV values better 
54 
55 

56 than the statistical technique. Monjezi et al. (2013) predicted PPV values using ANN model and 
57 
58 the obtained results were compared to the recorded data in Shur River Dam, Iran as well as 
59 
60 obtained results by empirical equations. Finally, they concluded that the ANN model has higher 
61 
62 4 
63 
64 
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4 performance capacity compared to the empirical equations. Table 1 shows some recent studies 
5 
6 with their performances in predicting PPV induced by blasting. In this study, ANN and ANFIS 
7 
8 

9 models  have  been  developed  to  predict  PPV  resulting  from  blasting  in  granite  quarry. 
10 
11 Additionally, an empirical equation was suggested for prediction of PPV values according to 
12 
13 USBM method recommended by Duvall and Petkof (1959). Eventually, results of PPV values 
14 
15 using empirical equation, ANN and ANFIS models, were compared and discussed. 
16 
17 
18 
19 
20 2. Case Study and Data Monitoring 
21 
22 

23 The data used in this study was collected from ISB granite quarry, Kota Tinggi, Johor, Malaysia. 
24 
25 The quarry lies geographically in latitude 1° 44' 12" Nand longitude 103° 54' 08" E, and is 
26 
27 located 40 km north of Johor Bahru (Fig. 1). This quarry supplies granite aggregates for many 
28 
29 construction applications with capacity of 37000-44000 ton per month. Depend on the weather 
30 
31 

32 condition, 4 to 8 blasting works per month were performed in this site. All blasting operations 
33 
34 were performed using blast-hole diameters of 89 mm and 115 mm. ANFO and dynamite were 
35 
36 used as the main explosive material and initiation respectively. The blast-holes were stemmed 
37 
38 using fine gravels. 
39 
40 
41 During data collection, blasting parameters including hole diameter, hole depth, maximum charge 
42 
43 per delay, burden, spacing, stemming length, powder factor and number of hole were measured. 
44 
45 

In  addition,  in  each  blasting,  PPV  was  monitored  using  Vibra  ZEB  seismograph  having 
47 
48 transducers for PPV measurement. The nearest structure is located about 450 m to the south of 
49 
50 the quarry. It should be mentioned that the distances between monitoring point and blast-face 
51 
52 were set in the range of 125 m to 670 m. Hole depths used in the blasting operations were in the 
53 
54 range of 13.5 m and 26.5 m.In total, 109 blast were recorded and PPV in each blasting operation 
55 
56 
57 was monitored. In this study, among all measured blasting parameters, only maximum charge per 
58 
59 delay  (MC)  and  distance  between  monitoring  point  and  blast-face  (D)  were  taken  into 
60 
61 
62 5 
63 
64 
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4 consideration for the prediction of PPV values as recommended by Duvall and Petkof (1959). In 
5 
6 addition,  the  mentioned  parameters  have  been  extensively-used  as  predictor  in  many  PPV 
7 
8 

9 prediction studies (see Table 1). Figs. 2-4 show the frequency of measured values of maximum 
10 
11 charge per delay, distance between monitoring point and blast-face and PPV, respectively. 
12 
13 

14 3. Empirical Equation Development 
15 
16 
17 Numerous  PPV  equations  have  been  established  empirically  by  many  researchers  (e.g. 
18 
19 Ambraseys and Hendron 1968; Roy 1993).  The most popular PPV equation is a typical method 
20 
21 suggested by Duvall and Petkof (1959). In the absence of monitoring, the use of scaled distance 
22 
23 (SD) factor is a method for prediction of PPV. A relationship between the MC and D values is 
24 
25 
26 formed through the SD formula as follows: 
27 
28 29  (1) 

30 √  
31 
32 Where  W  is  the  maximum  charge  per  delay  (kg)  and  D  represents  the  distance  between 
33 
34 monitoring  point  and  blast-face  (m).  Afterward,  PPV  values  can  be  determined  using  the 
35 
36 suggested equation by Duvall and Petkof (1959) as follows: 
37 
38 
39  (2) 
40 
41 

In which B and K are site constants. By using measured data from ISB granite quarry and also 
43 
44 necessary analysis by SPSS (18.0), an empirical formula was suggested to predict PPV values as: 
45 
46 
47  (3) 
48 
49 Coefficient  of  determination,  R2,  equals  to  0.836  for  the Eq.  3  indicates  that  the proposed 
50 
51 empirical equation can predict PPV with suitable accuracy level. Logarithmic graph between 
52 
53 

54 monitored PPVs and scaled distance values is shown in Fig. 5. 
55 
56 
57 4. Artificial Intelligence Techniques for PPV Prediction 
58 
59 

4.1 Artificial Neural Network (ANN) 
61 
62 6 
63 
64 
65 
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4 ANNs  are information  processing  patterns  simulating  the biological  nervous  systems  which 
5 
6 figure out the existing function from actual data. In other words, an ANN is a flexible non-linear 
7 
8 

9 function approximation that estimates a relationship between given input and output parameters. 
10 
11 ANNs learn by examples in order to obtain a connection through the parameters. The earliest 
12 
13 neuron was introduced by McCulloch and Pitts (1943), called the “Threshold Logic Unit”. Their 
14 
15 model describes a neuron as a linear threshold, equivalent to using the unit step function; the 
16 
17 

function value is 0, if the nerve cell remains inactive, or 1, if the cell fires. Nevertheless, the first 
19 
20 ANN  was  developed by Rosenblatt  (1958), called the “perceptron” based on the  neuron  of 
21 
22 McCulloch and Pitts (1943). 
23 
24 
25 ANNs are composed of a set of parallel interconnected processing units titled nodes or neurons. 
26 
27 There is an activation function along each neuron which transfers the activation signal between 
28 
29 nodes. However, the ability of an ANN in data processing is mainly related to its architecture and 
30 
31 weights (Dreyfus 2005; Engelbrecht 2007). In terms of the structure, ANNs are divided into two 
33 
34 types;  feed-forward  and  recurrent  ANNs.  In  feed-forward  ANNs,  the  neurons  are  usually 
35 
36 classified into several layers. Using the connections, a signal moves throughout the input to the 
37 
38 output  layer(s).  Multi-layer  perceptron (MLP) is the most  well-known type of feed-forward 
39 
40 ANNs (Kosko 1994). In recurrent ANNs, the outputs of some (or all) neurons are fed back to the 
41 
42 
43 same neuron or into neurons in preceding layers. Therefore, the signals can move both forward 
44 
45 and backward. Compared to other types of ANNs, feed forward MLP ANN is not complicated to 
46 
47 implement (Bounds et al. 1998). This type of ANN has been applied successfully in various areas 
48 
49 of engineering problems (Meulenkamp and Grima 1999; Singh et al. 2001; Tonnizam Mohamad 
50 
51 

52 et al. 2014). 
53 
54 The ability of ANNs to learn from samples and improve their performance is obtained by learning 
55 
56 

57 algorithm. Back-propagation (BP) algorithm is the most common training algorithm that tries to 
58 
59 adjust the network weights during learning process by reducing the error between input and 
60 
61 
62 7 
63 
64 
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4 output data (Specht 1991). Fundamentally, BP learning consists of forward and backward passes 
5 
6 in various layers of the network. The input parameters are applied to the hidden neurons and 
7 
8 

9 subsequently the outputs are produced. The error correction is conducted if the outputs of the 
10 
11 network are different from the desired values. This action is conducted through the adjustment of 
12 
13 weights and biases in which BP algorithm utilized for this purpose (Basheer and Hajmeer 2000). 
14 
15 Eventually, the system error can be computed based on some performance criteria such as root 
16 
17 

mean square error (RMSE) (Kosko 1994; Simpson 1990). 
19 
20 4.2 PPV Prediction by ANN 
21 
22 
23 As mentioned previously, maximum charge per delay and distance between monitoring point and 
24 
25 blast-face were considered as model inputs for prediction of PPV values. More detail of the input 
26 
27 

28 and output parameters are shown in Table 2. In this study, all datasets were normalized by using 
29 
30 following equation: 
31 
32 
33 Xnorm = (X - Xmin) / (Xmax - Xmin) (4) 
34 
35 
36 Where X is the measured value, Xnorm is the normalized value of the measured parameter; Xmin 
37 
38 and Xmax are the minimum and maximum values of the measured parameters in the dataset, 
39 
40 respectively. Afterwards, all 109 datasets were divided into training and testing datasets. In this 
41 
42 regard, 80% of the datasets were assigned for training purposes while the other 20% was used for 
43 
44 

45 testing of the network performance. To achieve the premier ANN performance, optimal network 
46 
47 architecture should be determined. Hornik et al. (1989) stated that only one hidden layer in the 
48 
49 network architecture can estimate any continuous function. Hence, in this study, one hidden layer 
50 
51 was used. Aside from the number of hidden layer, in ANN architecture, selecting the number of 
52 
53 

nodes in the hidden layer is the most critical task (Sonmez et al. 2006). Many relations have been 
55 
56 established to determine the number of nodes in hidden layers by some scholars as it can be seen 
57 
58 in Table 3. According to this table, using two inputs and one output, the number of nodes which 
59 
60 should be used in the hidden layer varies between one and six. In the next step of the analysis, the 
61 
62 8 
63 
64 
65 



1 
2 
3 

 

18 

55 

4 optimum number of nodes in the hidden layer must be determined. For this purpose, several 
5 
6 networks with one hidden layer were trained and tested to predict PPV values as shown in Table 
7 
8 

9 4.  As  tabulated  in  this  table,  each  model  was  repeated  five  times  by  using  the  random 
10 
11 distributions of datasets. In this table, results in terms of RMSE are listed for training and testing 
12 
13 datasets, whereas RMSE values for testing datasets were set as performance criteria.  Model 
14 
15 number  6  with  six  hidden  nodes  (second  iteration)  indicates  higher  prediction performance 
16 
17 

compared to other models in predicting PPV. Therefore, this model with two inputs, one hidden 
19 
20 layer and six nodes in the hidden layer was selected as the best ANN model. It is also worth 
21 
22 mentioning that in construction of ANN models, the learning rate and momentum coefficient 
23 
24 were set to be 0.1and 0.9 respectively. 
25 
26 
27 4.3 Adaptive Neuro-Fuzzy Inference System 
28 
29 
30 The adaptive neuro-fuzzy inference system (ANFIS) was first introduced by Jang (1993). Study 
31 
32 by Jung et al. (1997) recommends ANFIS capability in approximating any actual continuous 
33 
34 function.  ANFIS  is  capable  of  simulating  a  functional  mapping  which  approximates  the 
35 
36 
37 prediction process of the internal system parameter. The term neuro-fuzzy is used due to the fact 
38 
39 that in this artificial intelligence methods, the FIS concept is integrated into the ANN. Many 
40 
41 researchers have addressed the successful application of ANFIS in solving geotechnical problems 
42 
43 (Grima et al. 2000; Singh et al. 2012; Yesiloglu-Gultekin et al. 2013; Jahed Armaghani et al. 
44 
45 

46 2014). In fact, the prime objective of ANFIS is to map a relationship between the input and 
47 
48 output parameters. This can be done through a hybrid learning procedure for determination of the 
49 
50 membership function (MF) distribution. A classic ANFIS network architecture comprising two 
51 
52 input parameters x, y and a single output parameter f is presented in Fig. 6. As shown in this 
53 
54 

figure, the architecture consists of multiple layers i.e. 5 in the inference system, and each layer 
56 
57 includes a number of neurons, which are defined by the neuron function. 
58 
59 
60 
61 
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4 In the previous layers, the output node is recognized as the feeding data of the present layer. After 
5 
6 applying an operation using neuron function in the present layer, the model output forms the input 
7 
8 

9 signals  of  the next  layer.  To  briefly  illustrate the ANFIS  procedure,  consider  a  FIS  model 
10 
11 comprising, x and y as inputs and f as output. Hence, two fuzzy ‘‘if-then’’ rules can be introduced 
12 
13 as shown in the following lines: 
14 
15 
16  (rule 1) 
17 
18 
19  (rule 2) 
20 
21 
22 where, A1, A2, B1, B2 are defined as MFs for inputs x and y; p1, q1, r1, p2, q2, r2 are the output 
23 
24 function parameters. In the following, the five-layer ANFIS comprising two fuzzy rules, x and y 
25 
26 (inputs) and one output (f) is discussed (Jang 1993): 
28 
29 Layer 1: All neurons i in this layer are adaptive neurons. 
30 
31 
32 O1,i= µAi(x) (5) 
33 
34 
35 O1,i= µ Bi(y) (6) 
36 
37 
38 For ri=1, 2 where x and y are set as input nodes, and A and B are the linguistic labels. Also, µAi(x) 
39 
40 

41 and µ Bi(y) symbolize the MFs. 
42 
43 Layer 2: The neurons are labeled Π and shown by a circle. The output node, then, is formed 
44 
45 

46 based on incoming signals. 
47 
48 

49 O2,i= ωi = µAi(x) µ Bi(y) with i = 1,2 (7) 
50 
51 

52 The output node ωi indicates the firing strength of a rule. 
53 
54 Layer 3: Every neuron in this layer is a fixed neuron to be identified by a circle and labeled as N. 
56 

57 The output is obtained based on the ratio of the ith  rule’s firing strength over the summation of 
58 
59 firing strength of all rules. 
60 
61 
62 10 
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60 

4 O3,i= ϖi =ωi / (ω1 + ω2) with i = 1,2 (8) 
5 
6 
7 
8 Layer 4: In this layer, every neuron is an adaptive neuron with the neuron function like this: 
9 

10 
11 

12 O4,i= ϖifi =ϖi (pix + qiy + ri) (9) 
13 
14 
15 

16 Where  parameters  pi,qi,  ri  are  typically  known  as  consequent  parameters  and  ϖi   denotes 
17 
18 normalized firing strength. 
19 
20 
21 Layer 5: In this layer the final step is taken. This step deals with generating the output amount 
22 
23 through summation of all incoming signals: 
24 
25 

26 O5,i= ∑iϖifi = ∑iϖifi / ∑iϖi; i= 1,2 (10) 
27 
28 
29 
30 Back-propagation  gradient  descent  forms  the basic training rule of  ANFIS.  In this  learning 
31 
32 algorithm, the error signals from the output layer backward to the input neuron are recursively 
33 
34 determined. Based on the architecture presented in Fig. 6 (b), the output (f) can be presented as a 
35 
36 linear group of the consequent parameters. To learn the fuzzy model employing differentiable 
38 
39 functions, ANFIS employ a hybrid-learning rule due to its ease of use. The conventional BP 
40 
41 algorithm is mainly utilized by ANFIS to train the MF parameters. Also, the classic least-squares 
42 
43 predictor is applied by ANFIS to train the parameter of the first-order polynomial of the Takagi– 
44 
45 Sugeno–Kang fuzzy model as stated in a study by Jang et al. (1997). 
46 
47 
48 The hybrid training algorithm of ANFIS uses so-called forward and backward passes. In the 
49 
50 

51 former, functional signals go forward till layer 4 and the consequent parameters are estimated 
52 
53 using  least-squares  error  criteria.  Subsequently,  like  ANN  procedure,  to  update the premise 
54 
55 parameters,  the  obtained  errors  are  backwardly  propagated.  This  process  is  repeated  using 
56 
57 gradient descendent method until reaching a desirable output. The final output can be illustrated 
58 
59 

in the following manner: 
61 
62 11 
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43 

4 
5 
6 
7  (11) 
8 
9 

10 wherep1, q1, r1, p2, q2, and r2 are consequent parameters. The prime advantage of implementing an 
11 
12 ANFIS model is efficient determination of the consequent and optimal premise parameters during 
13 
14 training procedure. 
15 
16 
17 4.4 PPV Prediction by ANFIS 
18 
19 
20 This paper provides an insight into the application of ANFIS for predicting PPV. Similar to ANN 
21 
22 part, the required datasets for modelling were randomly divided into two subsets: 80% of the 
23 
24 

25 dataset was set for training the model and the rest was considered for testing purposes. In this 
26 
27 study, the numbers of fuzzy rules were determined using a trial-error method. Numerous models 
28 
29 with different fuzzy rule combinations (e.g. 2, 3 and so on) were used for this reason. Eventually, 
30 
31 it was concluded that the ANFIS structure with 5MFs for each input performs best when the 
32 
33 

results of RMSE were compared. In overall, the conducted parametric study suggested that the 
35 
36 best prediction performance of the model is expected when ANFIS model is trained with 25 fuzzy 
37 
38 roles (5  5). The type of MF utilized for each input is the Gaussian MF. Gaussian MFs are the 
39 
40 most well-known MF in the literatures of fuzzy system, as they provide both simplicity and 
41 
42 

flexibility (Tutmez et al. 2007). In the next step of the modeling, ANFIS models were built to 
44 
45 predict PPV values. Prediction performances of these models are shown in Table 5. This table 
46 
47 indicates that PPV values were repeated 5 times using different training and testing datasets 
48 
49 randomly. According to the presented results in this table, model number 4 outperforms other 
50 
51 models. Hence, the aforementioned model i.e. model number 4 was chosen for prediction of PPV. 
52 
53 
54 RMSE  values  equal  to  0.983  and  1.017  for  training  and  testing  datasets  show  the  high 
55 
56 performance capacity of the ANFIS model in predicting PPV. In model number 4, the MFs of the 
57 
58 inputs were adjusted after 29,700 epochs using the hybrid optimization method. This optimization 
59 
60 
61 
62 12 
63 
64 
65 



1 
2 
3 

 

21 

49 

58 

4 method includes BP for the parameters associated with the input MFs and also estimation of 
5 
6 least-squares for the parameters associated with the output MFs. 
7 
8 
9 Figs.7 and 8 display the assigned input MFs after training step. The linguistic variables assigned 

10 
11 

12 for ‘‘maximum charge weight per delay’’ and ‘‘distance’’ are very low (VL), low (L), medium 
13 
14 (M), high (H), very high (VH), and very close (VC), close (C), normal (N), far (F), very far (VF), 
15 
16 respectively. Additionally, the type of output membership function was set to be linear. It should 
17 
18 be mentioned that all ANN and ANFIS predictive models were constructed using MATLAB 
19 
20 (version 7.14.0.739). SPSS package (18.0) was used  to determine RMSE values as well as 
22 
23 statistical calculations. The suggested ANFIS structure is shown in Fig. 9. 
24 
25 
26 5. Results and Discussion 
27 
28 In this study, an attempt has been made to examine the ability of ANN and ANFIS models for 
29 
30 
31 prediction of PPV values induced by quarry blasting. For this purpose, a database comprising of 
32 
33 109 blasting operations was prepared. Several ANN and ANFIS models were built using two 
34 
35 inputs namely maximum charge per delay and the distance from the blast-face. Additionally, 
36 
37 using the same datasets based on suggested method by Duvall and Petkof (1959),  an empirical 
38 
39 

40 equation was proposed. Fig. 10 shows the PPV values predicted by empirical equation against 
41 
42 monitored PPVs. R2  value equal to 0.836 reveals that this equation is able to predict PPV with 
43 
44 suitable  accuracy.  Fig.  11  displays  the  predicted  PPVs  by  employing  conventional  ANN 
45 
46 technique plotted against the measured PPV values for training and testing datasets. The R2

 
47 
48 

values of 0.955 and 0.902 for training and testing datasets show that the ANN approach can 
50 
51 predict PPV with high accuracy level. Moreover, in the prediction of PPV using the ANFIS 
52 
53 technique, R2 values of 0.974 and 0.969 for training and testing datasets suggest the superiority of 
54 
55 this technique in predicting PPV compared to proposed empirical equation and ANN technique 
56 
57 (see Fig. 12). 
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18 

21 

4 In order to demonstrate the capability of developed models, the widely-used PPV empirical 
5 
6 equations  were applied.  Table 6  shows  these PPV predictor  equations  as  well  as their  site 
7 
8 

9 constants for granite. Using the presented equations in Table 6 and collected parameters from the 
10 
11 site, PPV values were predicted. Figs 13 to 17 illustrate measured PPVs against predicted PPVs 
12 
13 by Langefors – Kihlstrom, general predictor, Indian standard, Ghosh - Daemen predictor, and 
14 
15 CMRI equations, respectively. The results show lower performance capacities of the empirical 
16 
17 

models in comparison to proposed models in this study. 
19 
20 To check the capacity performance of the predictive models as well as empirical PPV predictors, 
22 
23 vales of RMSE and value account for (VAF) were obtained as follows: 
24 
25 
26 RMSE = √   ∑           , (12) 
27 
28 
29 
30 VAF = [1 −                             , (13) 
31         
32 
33 
34 Where y and y′ are the obtained and predicted values, respectively and N is the total number of 
35 
36 data. When the RMSE value is zero and VAF value is 100, the model`s performance is perfect. 
37 
38 Table 7 shows the performance indices achieved by all mentioned models in this study. As it can 
39 
40 be seen in this table, the ANFIS model can provide higher performance capacity in predicting 
41 
42 

43 PPV induced by blasting compared to other predictive techniques. The values of 0.973, 0.987 and 
44 
45 97.345 for R2, RMSE and VAF respectively reveal that the ANFIS model is capable to predict 
46 
47 PPV with high degree of accuracy. It is important to note that proposed model based on USBM in 
48 
49 this study can predict PPV values better than empirical PPV predictors. This can be seen clearly 
50 
51 

52 based on obtained RMSE values.   RMSE value of 2.469 for proposed model based on USBM 
53 
54 shows superiority of this model in predicting PPV, while these values were obtained as 10.473, 
55 
56 6.391, 7.821, 6.233 and 4.078 for Langefors – Kihlstrom, general predictor, Indian standard, 
57 
58 Ghosh - Daemen predictor, and CMRI models, respectively. The presented results show that all 
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26 

4 proposed models are able to estimate PPV induced by quarry blasting. Nevertheless, the ANFIS 
5 
6 model may be used when PPV values with higher degree of accuracy is required. Cautious step 
7 
8 

9 needs to be taken when the range of future data is beyond the range of the data used in this study. 
10 
11 

12 6. Conclusions 
13 
14 In this study, several models have been proposed to predict ground vibration induced by quarry 
15 
16 

17 blasting. The model dataset include blasting parameters and PPV values of 109 blasting works in 
18 
19 ISB granite quarry, Johor, Malaysia. The maximum charge per delay and distance from blast-face 
20 
21 were considered as model inputs for prediction of PPVs. Several ANN and ANFIS models were 
22 
23 trained and tested using the mentioned inputs-output configuration and finally two models were 
24 
25 chosen as best models of ANN and ANFIS. Apart from that, using the same input parameters, a 
27 
28 model based on USBM was proposed for prediction of PPV values. To show the ability of the 
29 
30 proposed  models,  some empirical predictors  were also applied to predict  PPVs. Finally,  the 
31 
32 results indicated that the ANFIS predictive model is able to predict PPVs with higher accuracy 
33 
34 compared to other models. It is worth noting that in practice all proposed methods have the 
35 
36 
37 applicability of PPV prediction.  However,  depending on the condition,  they should be used 
38 
39 accordingly. 
40 
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Table 1 Recent works on PPV prediction using soft computation techniques 

Reference Technique Input No. of dataset R
2
 

Khandelwal and Singh (2009) ANN BI, S, B, HD, D, VOD, Vp, E, υ, C 154 R
2
 = 0.98 

Monjezi et al. (2010) ANN BS, N, D, UCS, C, DPR 269 R
2
 = 0.95 

Monjezi et al. (2011) ANN HD, ST, D, C 182 R
2
 = 0.95 

Khandelwal et al. (2011) ANN D, C 130 R
2
 = 0.92 

Mohamed (2011) ANN, FIS D, C 162 
R

2
ANN = 0.94 

R
2 

FIS = 0.90 

Fisne et al. (2011) FIS D, C 33 R
2
 = 0.92 

Li et al. (2012) SVM D, C 32 R
2
 = 0.89 

Mohamadnejad et al. (2012) SVM, ANN D, C 37 
R

2
SVM = 0.89 

R
2 

ANN = 0.85 

Ghasemi et al. (2013) FIS B, S, ST, N, C, D 120 R
2
 = 0.95 

Monjezi et al. (2013) ANN C, D. TC 20 R
2
 = 0.93 

Jahed Armaghani et al. (2013) ANN-PSO HD, S, B, ST, PF, C, DI, N, RD, SD 44 R
2
 = 0.94 

Hajihassani et al. (2014b) ANN-ICA BS, ST, D, C, Vp, E 95 R
2
 = 0.98 

Ghoraba et al. (2015) ANN BS, D, C, ST, HD 115 R
2
 = 0.98 

Spacing (S); burden (B); stemming (ST); powder factor (PF); specific drilling (SD); support vector machine (SVM); charge per delay (C); hole 

diameter (DI); hole depth (HD); rock density (RD); number of row (N); particle swarm optimization (PSO); sub-drilling (SD); distance from the 

blasting face (D); total charge (TC); blastability index (BI); velocity of detonation of explosive (VOD); p-wave (Vp); Young’s 

modulus(E);poison’s ratio(υ); burden to spacing ration (BS); delay per rows (DPR); imperialist competitive algorithm (ICA). 
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Table 2 Parameters used in the predictive model with their categories 

Parameter Category Unit Symbol Minimum Maximum Average 

Maximum charge per delay Input (Kg) MC 106 374 255.47 

Distance* Input (m) D 125 670 346.37 

Peak particle velocity Output (mm/s) PPV 3.83 31.65 12.72 

* Distance between monitoring point and blast-face 

 

Table 2



Table 3 Recommended number of nodes for hidden layers (Sonmez et al. 2006) 

Heuristic Reference 

    Ni+ 1 Hecht-Nielsen (1987) 

3Ni Hush (1989) 

(Ni + N0)/2 
Ripley (1993) 
 

                   (  
     )   

     
 Paola (1994) 

2Ni/3 Wang (1994) 

√       Masters (1994) 

2Ni 
Kaastra and Boyd (1996) 
Kannellopoulas and Wilkinson (1997) 

       Ni: number of input neuron, N0: number of output neuron. 
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Table 4 Performances of trained ANN models to predict PPV  

Model 

No. 

Nodes in 

hidden layers 

Network Result 

Iteration 1  Iteration 2  Iteration 3  Iteration 4  Iteration 5 

RMSE  RMSE  RMSE  RMSE  RMSE 

Train Test  Train Test  Train Test  Train Test  Train Test 

1 1 2.709 2.778  2.755 2.387  2.608 3.013  2.655 2.839  2.714 2.587 

2 2 2.585 2.583  2.689 2.705  2.071 2.781  2.206 2.759  2.329 2.182 

3 3 1.865 2.507  2.112 2.539  2.091 2.438  1.976 2.665  2.059 2.410 

4 4 1.949 2.220  2.021 2.118  2.163 2.471  2.055 2.393  1.825 2.491 

5 5 1.425 1.777  1.684 2.285  1.662 2.250  1.377 2.173  1.418 1.673 

6 6 1.261 1.726  1.327 1.538  1.576 1.653  1.597 1.654  1.698 2.473 

 

 

Table 4



Table 5 Performances of the 5 ANFIS models in predicting PPV 

ANFIS Model 
RMSE 

Train Test 

1 1.114 1.642 

2 1.217 1.599 

3 1.020 1.252 

4 0.983 1.017 

5 1.303 1.595 
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Table 6 Empirical PPV models  

Reference Equation Site Constant for Granite 

Langefors - Kihlstrom (1963)                    K: 44.43, B: -1.18 

General predictor by Davies et al. (1964)               K: 212.27, B: 1.09, A: 0.52 

Bureau of Indian Standard (1973)                   K: 6.33, B: 0.22 

Ghosh - Daemen predictor (1983)                    K: 780.36, B: 1.26, α: 0.0004 

CMRI by Roy (1993)                  K: 168.91, n: 1.57 

   : Peak particle velocity (mm/s), MC: Maximum charge per delay (kg), D: Distance between blast face and vibration 

monitoring point (m), K, B, A, α, n: Site constants. 
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Table 7 Performance indices of all utilized models for prediction of PPV 

Predictive Model 

Performance Indices 

R
2 RMSE VAF (%) 

Langefors - Kihlstrom  0.315 10.473 -128.274 

General predictor  0.831 6.391 69.293 

Indian Standard  0.349 7.821 6.024 

Ghosh - Daemen predictor  0.834 6.233 37.996 

CMRI  0.827 4.078 72.068 

Proposed model based on USBM  0.836 2.469 83.629 

ANN 0.949 1.372 94.895 

ANFIS 0.973 0.987 97.345 
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