The need for speed: Timely prevention of the dispersal of noxious weeds in relief fodder using efficient sampling procedures
- Weller, Sandra, Florentine, Singarayer, Sillitoe, Jim, Grech, Charles, McLaren, David, Chauhan, Bhagirath
- Authors: Weller, Sandra , Florentine, Singarayer , Sillitoe, Jim , Grech, Charles , McLaren, David , Chauhan, Bhagirath
- Date: 2015
- Type: Text , Journal article
- Relation: Crop Protection Vol. 70, no. (2015), p. 21-27
- Full Text:
- Reviewed:
- Description: Invasive and noxious weeds are well known as a pervasive problem, imposing significant economic burdens on all areas of agriculture. Whilst there are multiple possible pathways of weed dispersal in this industry, of particular interest to this discussion is the unintended dispersal of weed seeds within fodder. During periods of drought or following natural disasters such as wild fire or flood, there arises the urgent need for 'relief' fodder to ensure survival and recovery of livestock. In emergency situations, relief fodder may be sourced from widely dispersed geographic regions, and some of these regions may be invaded by an extensive variety of weeds that are both exotic and detrimental to the intended destination for the fodder. Pasture hay is a common source of relief fodder and it typically consists of a mixture of grassy and broadleaf species that may include noxious weeds. When required urgently, pasture hay for relief fodder can be cut, baled, and transported over long distances in a short period of time, with little opportunity for prebaling inspection. It appears that, at the present time, there has been little effort towards rapid testing of bales, post-baling, for the presence of noxious weeds, as a measure to prevent dispersal of seeds. Published studies have relied on the analysis of relatively small numbers of bales, tested to destruction, in order to reveal seed species for identification and enumeration. The development of faster, more reliable, and non-destructive sampling methods is essential to increase the fodder industry's capacity to prevent the dispersal of noxious weeds to previously unaffected locales.
- Authors: Weller, Sandra , Florentine, Singarayer , Sillitoe, Jim , Grech, Charles , McLaren, David , Chauhan, Bhagirath
- Date: 2015
- Type: Text , Journal article
- Relation: Crop Protection Vol. 70, no. (2015), p. 21-27
- Full Text:
- Reviewed:
- Description: Invasive and noxious weeds are well known as a pervasive problem, imposing significant economic burdens on all areas of agriculture. Whilst there are multiple possible pathways of weed dispersal in this industry, of particular interest to this discussion is the unintended dispersal of weed seeds within fodder. During periods of drought or following natural disasters such as wild fire or flood, there arises the urgent need for 'relief' fodder to ensure survival and recovery of livestock. In emergency situations, relief fodder may be sourced from widely dispersed geographic regions, and some of these regions may be invaded by an extensive variety of weeds that are both exotic and detrimental to the intended destination for the fodder. Pasture hay is a common source of relief fodder and it typically consists of a mixture of grassy and broadleaf species that may include noxious weeds. When required urgently, pasture hay for relief fodder can be cut, baled, and transported over long distances in a short period of time, with little opportunity for prebaling inspection. It appears that, at the present time, there has been little effort towards rapid testing of bales, post-baling, for the presence of noxious weeds, as a measure to prevent dispersal of seeds. Published studies have relied on the analysis of relatively small numbers of bales, tested to destruction, in order to reveal seed species for identification and enumeration. The development of faster, more reliable, and non-destructive sampling methods is essential to increase the fodder industry's capacity to prevent the dispersal of noxious weeds to previously unaffected locales.
Population genetic analysis reveals a long-term decline of a threatened endemic Australian marsupial
- Hansen, Birgita, Harley, Daniel, Lindenmayer, David, Taylor, Andrea
- Authors: Hansen, Birgita , Harley, Daniel , Lindenmayer, David , Taylor, Andrea
- Date: 2009
- Type: Text , Journal article
- Relation: Molecular Ecology Vol. 18, no. 16 (2009), p. 3346-3362
- Full Text: false
- Reviewed:
- Description: Since European colonization, Leadbeater's possum (Gymnobelideus leadbeateri) has declined across its range to the point where it is now only patchily distributed within the montane ash forests of the Central Highlands of Victoria. The loss of large hollow-bearing trees coupled with inadequate recruitment of mature ash forest has been predicted to result in a reduction in population size of up to 90% by 2020. Furthermore, bioclimatic analyses have suggested additional reductions in the species' distribution under a variety of climate change scenarios. Using a panel of 15 highly resolving microsatellite markers and mitochondrial control region sequence data, we infer past and present gene flow. Populations in the northern part of the core range were highly admixed, and showed no signs of either current or historical barriers to gene flow. A marginal, isolated and inbred population at Yellingbo was highly genetically differentiated, both in terms of current and historic genetic structure. Sequence data confirmed the conclusions from earlier genetic simulation studies that the Yellingbo population has been isolated from the rest of the species range since before European-induced changes to the montane landscape, and formed part of a larger genetic unit that is now otherwise extinct. Historic loss of maternal lineages in the Central Highlands of Victoria was detected despite signals of immigration, indicating population declines that most probably coincided with changes in climate at the end of the Pleistocene. Given ongoing habitat loss and the recent (February 2009) wildfire in the Central Highlands, we forecast (potentially extensive) demographic declines, in line with predicted range reductions under climate change scenarios. © 2009 Blackwell Publishing Ltd.
Limited understanding of bushfire impacts on Australian invertebrates
- Saunders, Manu, Barton, Philip, Bickerstaff, James, Frost, Lindsey, Umbers, Kate
- Authors: Saunders, Manu , Barton, Philip , Bickerstaff, James , Frost, Lindsey , Umbers, Kate
- Date: 2021
- Type: Text , Journal article
- Relation: Insect Conservation and Diversity Vol. 14, no. 3 (2021), p. 285-293
- Full Text: false
- Reviewed:
- Description: Understanding how increasing risk of frequent and severe fires affects biodiversity and ecosystem function is important for effective conservation and recovery, but large knowledge gaps exist for many taxa in many parts of the world, especially invertebrates. After Australia's 2019–2020 catastrophic bushfire disaster, estimates of biodiversity loss and government priorities for post-fire conservation activities were focused on vertebrates and plants because of lack of knowledge about invertebrates. Our synthesis of published evidence reveals a fragmented and ambiguous body of literature on invertebrate responses to fire in Australian ecosystems, limiting the capacity of evidence to inform effective conservation policy in response to extreme fire events. Peer-reviewed studies are available for only six of the more than 30 invertebrate phyla and 88% were on arthropods, predominantly ants. Nearly all studies (94%) were conducted in terrestrial habitats, with only four studies measuring impacts in freshwater habitats and no studies of impacts on marine invertebrates. The high variation in study designs and treatment categories, as well as the absence of key methodological details in many older observational studies, means that there is substantial opportunity to improve our approach to collating meaningful estimates of general fire effects. To understand the full ecological effects of catastrophic fire events, and design effective policies that support recovery of ecosystems now and in future, it is critical that we improve understanding of how fire regimes affect invertebrates. We list key priorities for research and policy to support invertebrate conservation and ecosystem recovery in the face of increasing fire risk. © 2021 Royal Entomological Society. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Kate Umbers” is provided in this record**
Do temporal changes in vegetation structure additional to time since fire predict changes in bird occurrence?
- Lindenmayer, David, Candy, Steven, MacGregor, Christopher, Banks, Sam, Barton, Philip
- Authors: Lindenmayer, David , Candy, Steven , MacGregor, Christopher , Banks, Sam , Barton, Philip
- Date: 2016
- Type: Text , Journal article
- Relation: Ecological Applications Vol. 26, no. 7 (2016), p. 2267-2279
- Full Text:
- Reviewed:
- Description: Fire is a major ecological process in ecosystems globally. Its impacts on fauna can be both direct (e.g., mortality) and indirect (e.g., altered habitat), resulting in population recovery being driven by several possible mechanisms. Separating direct from indirect impacts of fire on faunal population recovery can be valuable in guiding management of biodiversity in fire-prone environments. However, resolving the influence of direct and indirect processes remains a key challenge because many processes affecting fauna can change concomitantly with time since fire. We explore the mechanisms influencing bird response to fire by posing the question, can temporal changes in vegetation structure predict changes in bird occurrence on sites, and can these be separated from other temporal changes using the surrogate of time since fire? We conducted a 12-yr study of bird and vegetation responses to fire at 124 sites across six vegetation classes in Booderee National Park, Australia. Approximately half of these sites, established in 2002, were burned by a large (>3000 ha) wildfire in 2003. To disentangle collinear effects of temporal changes in vegetation and direct demographic effects on population recovery that are subsumed by time since fire, we incorporated both longitudinal and cross-sectional vegetation effects in addition to time since fire within logistic structural equation models. We identified temporal changes in vegetation structure and richness of plant and bird species that characterized burned and unburned sites in all vegetation classes. For nine bird species, a significant component of the year trend was driven by temporal trends in one of three vegetation variables (number of understory or midstory plant species, or midstory cover). By contrast, we could not separate temporal effects between time since fire and vegetation attributes for bird species richness, reporting rate, and the occurrence of 11 other bird species. Our findings help identify species for which indirect effects of vegetation dominate recovery and thus may benefit from vegetation management where conservation actions are required and, conversely, those species for which direct effects of time since fire drive recovery, where simply leaving a system to recover following the last disturbance will be sufficient. © 2016 by the Ecological Society of America.
- Authors: Lindenmayer, David , Candy, Steven , MacGregor, Christopher , Banks, Sam , Barton, Philip
- Date: 2016
- Type: Text , Journal article
- Relation: Ecological Applications Vol. 26, no. 7 (2016), p. 2267-2279
- Full Text:
- Reviewed:
- Description: Fire is a major ecological process in ecosystems globally. Its impacts on fauna can be both direct (e.g., mortality) and indirect (e.g., altered habitat), resulting in population recovery being driven by several possible mechanisms. Separating direct from indirect impacts of fire on faunal population recovery can be valuable in guiding management of biodiversity in fire-prone environments. However, resolving the influence of direct and indirect processes remains a key challenge because many processes affecting fauna can change concomitantly with time since fire. We explore the mechanisms influencing bird response to fire by posing the question, can temporal changes in vegetation structure predict changes in bird occurrence on sites, and can these be separated from other temporal changes using the surrogate of time since fire? We conducted a 12-yr study of bird and vegetation responses to fire at 124 sites across six vegetation classes in Booderee National Park, Australia. Approximately half of these sites, established in 2002, were burned by a large (>3000 ha) wildfire in 2003. To disentangle collinear effects of temporal changes in vegetation and direct demographic effects on population recovery that are subsumed by time since fire, we incorporated both longitudinal and cross-sectional vegetation effects in addition to time since fire within logistic structural equation models. We identified temporal changes in vegetation structure and richness of plant and bird species that characterized burned and unburned sites in all vegetation classes. For nine bird species, a significant component of the year trend was driven by temporal trends in one of three vegetation variables (number of understory or midstory plant species, or midstory cover). By contrast, we could not separate temporal effects between time since fire and vegetation attributes for bird species richness, reporting rate, and the occurrence of 11 other bird species. Our findings help identify species for which indirect effects of vegetation dominate recovery and thus may benefit from vegetation management where conservation actions are required and, conversely, those species for which direct effects of time since fire drive recovery, where simply leaving a system to recover following the last disturbance will be sufficient. © 2016 by the Ecological Society of America.
Animal movements in fire-prone landscapes
- Nimmo, Dale, Avitabile, Sarah, Banks, Sam, Bird, Rebecca, Callister, Kate, Clarke, Michael, Dickman, Chris, Doherty, Tim, Driscoll, Don, Greenville, Aaron, Haslem, Angie, Kelly, Luke, Kenny, Sally, Lahoz-Monfort, Jose, Lee, Connie, Leonard, Steven, Moore, Harry, Newsome, Thomas, Parr, Catherine, Ritchie, Euan, Schneider, Kathryn, Turner, James, Watson, Simon, Westbrooke, Martin, Wouters, Mike, White, Matthew, Bennett, Andrew
- Authors: Nimmo, Dale , Avitabile, Sarah , Banks, Sam , Bird, Rebecca , Callister, Kate , Clarke, Michael , Dickman, Chris , Doherty, Tim , Driscoll, Don , Greenville, Aaron , Haslem, Angie , Kelly, Luke , Kenny, Sally , Lahoz-Monfort, Jose , Lee, Connie , Leonard, Steven , Moore, Harry , Newsome, Thomas , Parr, Catherine , Ritchie, Euan , Schneider, Kathryn , Turner, James , Watson, Simon , Westbrooke, Martin , Wouters, Mike , White, Matthew , Bennett, Andrew
- Date: 2019
- Type: Text , Journal article , Review
- Relation: Biological Reviews Vol. 94, no. 3 (2019), p. 981-998
- Full Text:
- Reviewed:
- Description: Movement is a trait of fundamental importance in ecosystems subject to frequent disturbances, such as fire-prone ecosystems. Despite this, the role of movement in facilitating responses to fire has received little attention. Herein, we consider how animal movement interacts with fire history to shape species distributions. We consider how fire affects movement between habitat patches of differing fire histories that occur across a range of spatial and temporal scales, from daily foraging bouts to infrequent dispersal events, and annual migrations. We review animal movements in response to the immediate and abrupt impacts of fire, and the longer-term successional changes that fires set in train. We discuss how the novel threats of altered fire regimes, landscape fragmentation, and invasive species result in suboptimal movements that drive populations downwards. We then outline the types of data needed to study animal movements in relation to fire and novel threats, to hasten the integration of movement ecology and fire ecology. We conclude by outlining a research agenda for the integration of movement ecology and fire ecology by identifying key research questions that emerge from our synthesis of animal movements in fire-prone ecosystems.
- Authors: Nimmo, Dale , Avitabile, Sarah , Banks, Sam , Bird, Rebecca , Callister, Kate , Clarke, Michael , Dickman, Chris , Doherty, Tim , Driscoll, Don , Greenville, Aaron , Haslem, Angie , Kelly, Luke , Kenny, Sally , Lahoz-Monfort, Jose , Lee, Connie , Leonard, Steven , Moore, Harry , Newsome, Thomas , Parr, Catherine , Ritchie, Euan , Schneider, Kathryn , Turner, James , Watson, Simon , Westbrooke, Martin , Wouters, Mike , White, Matthew , Bennett, Andrew
- Date: 2019
- Type: Text , Journal article , Review
- Relation: Biological Reviews Vol. 94, no. 3 (2019), p. 981-998
- Full Text:
- Reviewed:
- Description: Movement is a trait of fundamental importance in ecosystems subject to frequent disturbances, such as fire-prone ecosystems. Despite this, the role of movement in facilitating responses to fire has received little attention. Herein, we consider how animal movement interacts with fire history to shape species distributions. We consider how fire affects movement between habitat patches of differing fire histories that occur across a range of spatial and temporal scales, from daily foraging bouts to infrequent dispersal events, and annual migrations. We review animal movements in response to the immediate and abrupt impacts of fire, and the longer-term successional changes that fires set in train. We discuss how the novel threats of altered fire regimes, landscape fragmentation, and invasive species result in suboptimal movements that drive populations downwards. We then outline the types of data needed to study animal movements in relation to fire and novel threats, to hasten the integration of movement ecology and fire ecology. We conclude by outlining a research agenda for the integration of movement ecology and fire ecology by identifying key research questions that emerge from our synthesis of animal movements in fire-prone ecosystems.
- «
- ‹
- 1
- ›
- »