Your selections:

Show More

Show Less

A topological group observation on the Banach-Mazur separable quotient problem

- Gabriyelyan, Saak, Morris, Sidney

**Authors:**Gabriyelyan, Saak , Morris, Sidney**Date:**2019**Type:**Text , Journal article**Relation:**Topology and Its Applications Vol. 259, no. (2019), p. 283-286**Full Text:****Reviewed:****Description:**The Separable Quotient Problem of Banach and Mazur asks if every infinite-dimensional Banach space has an infinite-dimensional separable quotient Banach space. It has remained unsolved for 85 years but has been answered in the affirmative for special cases such as reflexive Banach spaces. An affirmative answer to the Separable Quotient Problem would obviously imply that every infinite-dimensional Banach space has a quotient topological group which is separable, metrizable, and infinite-dimensional in the sense of topology. In this paper it is proved that every infinite-dimensional Banach space has as a quotient group the separable metrizable infinite-dimensional topological group, T

**Authors:**Gabriyelyan, Saak , Morris, Sidney**Date:**2019**Type:**Text , Journal article**Relation:**Topology and Its Applications Vol. 259, no. (2019), p. 283-286**Full Text:****Reviewed:****Description:**The Separable Quotient Problem of Banach and Mazur asks if every infinite-dimensional Banach space has an infinite-dimensional separable quotient Banach space. It has remained unsolved for 85 years but has been answered in the affirmative for special cases such as reflexive Banach spaces. An affirmative answer to the Separable Quotient Problem would obviously imply that every infinite-dimensional Banach space has a quotient topological group which is separable, metrizable, and infinite-dimensional in the sense of topology. In this paper it is proved that every infinite-dimensional Banach space has as a quotient group the separable metrizable infinite-dimensional topological group, T

Observations on the separable quotient problem for banach spaces

**Authors:**Morris, Sidney , Yost, David**Date:**2020**Type:**Text , Journal article , Article**Relation:**Axioms Vol. 9, no. 1 (2020), p.**Full Text:****Reviewed:****Description:**The longstanding Banach-Mazur separable quotient problem asks whether every infinite-dimensional Banach space has a quotient (Banach) space that is both infinite-dimensional and separable. Although it remains open in general, an affirmative answer is known in many special cases, including (1) reflexive Banach spaces, (2) weakly compactly generated (WCG) spaces, and (3) Banach spaces which are dual spaces. Obviously (1) is a special case of both (2) and (3), but neither (2) nor (3) is a special case of the other. A more general result proved here includes all three of these cases. More precisely, we call an infinite-dimensional Banach space X dual-like, if there is another Banach space E, a continuous linear operator T from the dual space E* onto a dense subspace of X, such that the closure of the kernel of T (in the relative weak* topology) has infinite codimension in E*. It is shown that every dual-like Banach space has an infinite-dimensional separable quotient. © 2020 by the authors.

**Authors:**Morris, Sidney , Yost, David**Date:**2020**Type:**Text , Journal article , Article**Relation:**Axioms Vol. 9, no. 1 (2020), p.**Full Text:****Reviewed:****Description:**The longstanding Banach-Mazur separable quotient problem asks whether every infinite-dimensional Banach space has a quotient (Banach) space that is both infinite-dimensional and separable. Although it remains open in general, an affirmative answer is known in many special cases, including (1) reflexive Banach spaces, (2) weakly compactly generated (WCG) spaces, and (3) Banach spaces which are dual spaces. Obviously (1) is a special case of both (2) and (3), but neither (2) nor (3) is a special case of the other. A more general result proved here includes all three of these cases. More precisely, we call an infinite-dimensional Banach space X dual-like, if there is another Banach space E, a continuous linear operator T from the dual space E* onto a dense subspace of X, such that the closure of the kernel of T (in the relative weak* topology) has infinite codimension in E*. It is shown that every dual-like Banach space has an infinite-dimensional separable quotient. © 2020 by the authors.

- «
- ‹
- 1
- ›
- »

Are you sure you would like to clear your session, including search history and login status?