Your selections:

50102 Applied Mathematics
50103 Numerical and Computational Mathematics
3Cluster analysis
3Nonconvex optimization
3Subdifferential
2DC programming
2Regression analysis
10801 Artificial Intelligence and Image Processing
10806 Information Systems
1Algorithm for solving
1Algorithms
1Bang-bang control
1Bundle method
1Clustering algorithms
1Clustering problems
1Cutting plane model
1DC functions
1Data mining

Show More

Show Less

Format Type

A quasisecant method for minimizing nonsmooth functions

- Bagirov, Adil, Ganjehlou, Asef Nazari

**Authors:**Bagirov, Adil , Ganjehlou, Asef Nazari**Date:**2010**Type:**Text , Journal article**Relation:**Optimization Methods and Software Vol. 25, no. 1 (2010), p. 3-18**Relation:**http://purl.org/au-research/grants/arc/DP0666061**Full Text:**false**Reviewed:****Description:**We present an algorithm to locally minimize nonsmooth, nonconvex functions. In order to find descent directions, the notion of quasisecants, introduced in this paper, is applied. We prove that the algorithm converges to Clarke stationary points. Numerical results are presented demonstrating the applicability of the proposed algorithm to a wide variety of nonsmooth, nonconvex optimization problems. We also compare the proposed algorithm with the bundle method using numerical results.

An inexact modified subgradient algorithm for nonconvex optimization

- Burachik, Regina, Kaya, Yalcin, Mammadov, Musa

**Authors:**Burachik, Regina , Kaya, Yalcin , Mammadov, Musa**Date:**2008**Type:**Text , Journal article**Relation:**Computational Optimization and Applications Vol. , no. (2008), p. 1-24**Full Text:****Reviewed:****Description:**We propose and analyze an inexact version of the modified subgradient (MSG) algorithm, which we call the IMSG algorithm, for nonsmooth and nonconvex optimization over a compact set. We prove that under an approximate, i.e. inexact, minimization of the sharp augmented Lagrangian, the main convergence properties of the MSG algorithm are preserved for the IMSG algorithm. Inexact minimization may allow to solve problems with less computational effort. We illustrate this through test problems, including an optimal bang-bang control problem, under several different inexactness schemes. © 2008 Springer Science+Business Media, LLC.**Description:**C1

**Authors:**Burachik, Regina , Kaya, Yalcin , Mammadov, Musa**Date:**2008**Type:**Text , Journal article**Relation:**Computational Optimization and Applications Vol. , no. (2008), p. 1-24**Full Text:****Reviewed:****Description:**We propose and analyze an inexact version of the modified subgradient (MSG) algorithm, which we call the IMSG algorithm, for nonsmooth and nonconvex optimization over a compact set. We prove that under an approximate, i.e. inexact, minimization of the sharp augmented Lagrangian, the main convergence properties of the MSG algorithm are preserved for the IMSG algorithm. Inexact minimization may allow to solve problems with less computational effort. We illustrate this through test problems, including an optimal bang-bang control problem, under several different inexactness schemes. © 2008 Springer Science+Business Media, LLC.**Description:**C1

An algorithm for the estimation of a regression function by continuous piecewise linear functions

- Bagirov, Adil, Clausen, Conny, Kohler, Michael

**Authors:**Bagirov, Adil , Clausen, Conny , Kohler, Michael**Date:**2008**Type:**Text , Journal article**Relation:**Computational Optimization and Applications Vol. 45, no. (2008), p. 159-179**Relation:**http://purl.org/au-research/grants/arc/DP0666061**Full Text:****Reviewed:****Description:**The problem of the estimation of a regression function by continuous piecewise linear functions is formulated as a nonconvex, nonsmooth optimization problem. Estimates are defined by minimization of the empirical L 2 risk over a class of functions, which are defined as maxima of minima of linear functions. An algorithm for finding continuous piecewise linear functions is presented. We observe that the objective function in the optimization problem is semismooth, quasidifferentiable and piecewise partially separable. The use of these properties allow us to design an efficient algorithm for approximation of subgradients of the objective function and to apply the discrete gradient method for its minimization. We present computational results with some simulated data and compare the new estimator with a number of existing ones.**Description:**The problem of the estimation of a regression function by continuous piecewise linear functions is formulated as a nonconvex, nonsmooth optimization problem. Estimates are defined by minimization of the empirical L 2 risk over a class of functions, which are defined as maxima of minima of linear functions. An algorithm for finding continuous piecewise linear functions is presented. We observe that the objective function in the optimization problem is semismooth, quasidifferentiable and piecewise partially separable. The use of these properties allow us to design an efficient algorithm for approximation of subgradients of the objective function and to apply the discrete gradient method for its minimization. We present computational results with some simulated data and compare the new estimator with a number of existing ones. © 2008 Springer Science+Business Media, LLC.

Piecewise partially separable functions and a derivative-free algorithm for large scale nonsmooth optimization

**Authors:**Bagirov, Adil , Ugon, Julien**Date:**2006**Type:**Text , Journal article**Relation:**Journal of Global Optimization Vol. 35, no. 2 (Jun 2006), p. 163-195**Full Text:****Reviewed:****Description:**This paper introduces the notion of piecewise partially separable functions and studies their properties. We also consider some of many applications of these functions. Finally, we consider the problem of minimizing of piecewise partially separable functions and develop an algorithm for its solution. This algorithm exploits the structure of such functions. We present the results of preliminary numerical experiments.**Description:**2003001532

**Authors:**Bagirov, Adil , Ugon, Julien**Date:**2006**Type:**Text , Journal article**Relation:**Journal of Global Optimization Vol. 35, no. 2 (Jun 2006), p. 163-195**Full Text:****Reviewed:****Description:**This paper introduces the notion of piecewise partially separable functions and studies their properties. We also consider some of many applications of these functions. Finally, we consider the problem of minimizing of piecewise partially separable functions and develop an algorithm for its solution. This algorithm exploits the structure of such functions. We present the results of preliminary numerical experiments.**Description:**2003001532

A heuristic algorithm for solving the minimum sum-of-squares clustering problems

**Authors:**Ordin, Burak , Bagirov, Adil**Date:**2015**Type:**Text , Journal article**Relation:**Journal of Global Optimization Vol. 61, no. 2 (2015), p. 341-361**Relation:**http://purl.org/au-research/grants/arc/DP140103213**Full Text:**false**Reviewed:****Description:**Clustering is an important task in data mining. It can be formulated as a global optimization problem which is challenging for existing global optimization techniques even in medium size data sets. Various heuristics were developed to solve the clustering problem. The global k-means and modified global k-means are among most efficient heuristics for solving the minimum sum-of-squares clustering problem. However, these algorithms are not always accurate in finding global or near global solutions to the clustering problem. In this paper, we introduce a new algorithm to improve the accuracy of the modified global k-means algorithm in finding global solutions. We use an auxiliary cluster problem to generate a set of initial points and apply the k-means algorithm starting from these points to find the global solution to the clustering problems. Numerical results on 16 real-world data sets clearly demonstrate the superiority of the proposed algorithm over the global and modified global k-means algorithms in finding global solutions to clustering problems.

An algorithm for clustering using L1-norm based on hyperbolic smoothing technique

- Bagirov, Adil, Mohebi, Ehsan

**Authors:**Bagirov, Adil , Mohebi, Ehsan**Date:**2016**Type:**Text , Journal article**Relation:**Computational Intelligence Vol. 32, no. 3 (2016), p. 439-457**Relation:**http://purl.org/au-research/grants/arc/DP140103213**Full Text:**false**Reviewed:****Description:**Cluster analysis deals with the problem of organization of a collection of objects into clusters based on a similarity measure, which can be defined using various distance functions. The use of different similarity measures allows one to find different cluster structures in a data set. In this article, an algorithm is developed to solve clustering problems where the similarity measure is defined using the L1-norm. The algorithm is designed using the nonsmooth optimization approach to the clustering problem. Smoothing techniques are applied to smooth both the clustering function and the L1-norm. The algorithm computes clusters sequentially and finds global or near global solutions to the clustering problem. Results of numerical experiments using 12 real-world data sets are reported, and the proposed algorithm is compared with two other clustering algorithms. ©2015 Wiley Periodicals, Inc.

A proximal bundle method for nonsmooth DC optimization utilizing nonconvex cutting planes

- Joki, Kaisa, Bagirov, Adil, Karmitsa, Napsu, Makela, Marko

**Authors:**Joki, Kaisa , Bagirov, Adil , Karmitsa, Napsu , Makela, Marko**Date:**2017**Type:**Text , Journal article**Relation:**Journal of Global Optimization Vol. 68, no. 3 (2017), p. 501-535**Relation:**http://purl.org/au-research/grants/arc/DP140103213**Full Text:**false**Reviewed:****Description:**In this paper, we develop a version of the bundle method to solve unconstrained difference of convex (DC) programming problems. It is assumed that a DC representation of the objective function is available. Our main idea is to utilize subgradients of both the first and second components in the DC representation. This subgradient information is gathered from some neighborhood of the current iteration point and it is used to build separately an approximation for each component in the DC representation. By combining these approximations we obtain a new nonconvex cutting plane model of the original objective function, which takes into account explicitly both the convex and the concave behavior of the objective function. We design the proximal bundle method for DC programming based on this new approach and prove the convergence of the method to an -critical point. The algorithm is tested using some academic test problems and the preliminary numerical results have shown the good performance of the new bundle method. An interesting fact is that the new algorithm finds nearly always the global solution in our test problems.

**Authors:**Bagirov, Adil , Ugon, Julien**Date:**2018**Type:**Text , Journal article**Relation:**Optimization Methods and Software Vol. 33, no. 1 (2018), p. 194-219**Full Text:**false**Reviewed:****Description:**The clusterwise linear regression problem is formulated as a nonsmooth nonconvex optimization problem using the squared regression error function. The objective function in this problem is represented as a difference of convex functions. Optimality conditions are derived, and an algorithm is designed based on such a representation. An incremental approach is proposed to generate starting solutions. The algorithm is tested on small to large data sets.

**Authors:**Bagirov, Adil , Ugon, Julien**Date:**2018**Type:**Text , Journal article**Relation:**Optimization Methods and Software Vol. 33, no. 1 (2018), p. 194-219**Relation:**http://purl.org/au-research/grants/arc/DP140103213**Full Text:**false**Reviewed:****Description:**The clusterwise linear regression problem is formulated as a nonsmooth nonconvex optimization problem using the squared regression error function. The objective function in this problem is represented as a difference of convex functions. Optimality conditions are derived, and an algorithm is designed based on such a representation. An incremental approach is proposed to generate starting solutions. The algorithm is tested on small to large data sets. © 2017 Informa UK Limited, trading as Taylor & Francis Group.

- «
- ‹
- 1
- ›
- »

Are you sure you would like to clear your session, including search history and login status?