Multi-objective planning and operation of water supply systems subject to climate change
- Perera, Bimalka, Sachindra, Dhanapala, Godoy, Walter, Barton, Andrew, Huang, Fuchun
- Authors: Perera, Bimalka , Sachindra, Dhanapala , Godoy, Walter , Barton, Andrew , Huang, Fuchun
- Date: 2011
- Type: Text , Journal article
- Relation: International Journal of Environmental, Earth Science and Engineering Vol. 5, no. 12 (2011), p. 174-182
- Full Text: false
- Reviewed:
- Description: Abstract—Many water supply systems in Australia are currently undergoing significant reconfiguration due to reductions in long term average rainfall and resulting low inflows to water supply reservoirs since the second half of the 20th century. When water supply systems undergo change, it is necessary to develop new operating rules, which should consider climate, because the climate change is likely to further reduce inflows. In addition, water resource systems are increasingly intended to be operated to meet complex and multiple objectives representing social, economic, environmental and sustainability criteria. This is further complicated by conflicting preferences on these objectives from diverse stakeholders. This paper describes a methodology to develop optimum operating rules for complex multi-reservoir systems undergoing significant change, considering all of the above issues. The methodology is demonstrated using the Grampians water supply system in northwest Victoria, Australia. Initial work conducted on the project is also presented in this paper.
A practical guide to multi-objective reinforcement learning and planning
- Hayes, Conor, Rădulescu, Roxana, Bargiacchi, Eugenio, Källström, Johan, Macfarlane, Matthew, Reymond, Mathieu, Verstraeten, Timothy, Zintgraf, Luisa, Dazeley, Richard, Heintz, Fredrik, Howley, Enda, Irissappane, Athirai, Mannion, Patrick, Nowé, Ann, Ramos, Gabriel, Restelli, Marcello, Vamplew, Peter, Roijers, Diederik
- Authors: Hayes, Conor , Rădulescu, Roxana , Bargiacchi, Eugenio , Källström, Johan , Macfarlane, Matthew , Reymond, Mathieu , Verstraeten, Timothy , Zintgraf, Luisa , Dazeley, Richard , Heintz, Fredrik , Howley, Enda , Irissappane, Athirai , Mannion, Patrick , Nowé, Ann , Ramos, Gabriel , Restelli, Marcello , Vamplew, Peter , Roijers, Diederik
- Date: 2022
- Type: Text , Journal article
- Relation: Autonomous Agents and Multi-Agent Systems Vol. 36, no. 1 (2022), p.
- Full Text:
- Reviewed:
- Description: Real-world sequential decision-making tasks are generally complex, requiring trade-offs between multiple, often conflicting, objectives. Despite this, the majority of research in reinforcement learning and decision-theoretic planning either assumes only a single objective, or that multiple objectives can be adequately handled via a simple linear combination. Such approaches may oversimplify the underlying problem and hence produce suboptimal results. This paper serves as a guide to the application of multi-objective methods to difficult problems, and is aimed at researchers who are already familiar with single-objective reinforcement learning and planning methods who wish to adopt a multi-objective perspective on their research, as well as practitioners who encounter multi-objective decision problems in practice. It identifies the factors that may influence the nature of the desired solution, and illustrates by example how these influence the design of multi-objective decision-making systems for complex problems. © 2022, The Author(s).
- Authors: Hayes, Conor , Rădulescu, Roxana , Bargiacchi, Eugenio , Källström, Johan , Macfarlane, Matthew , Reymond, Mathieu , Verstraeten, Timothy , Zintgraf, Luisa , Dazeley, Richard , Heintz, Fredrik , Howley, Enda , Irissappane, Athirai , Mannion, Patrick , Nowé, Ann , Ramos, Gabriel , Restelli, Marcello , Vamplew, Peter , Roijers, Diederik
- Date: 2022
- Type: Text , Journal article
- Relation: Autonomous Agents and Multi-Agent Systems Vol. 36, no. 1 (2022), p.
- Full Text:
- Reviewed:
- Description: Real-world sequential decision-making tasks are generally complex, requiring trade-offs between multiple, often conflicting, objectives. Despite this, the majority of research in reinforcement learning and decision-theoretic planning either assumes only a single objective, or that multiple objectives can be adequately handled via a simple linear combination. Such approaches may oversimplify the underlying problem and hence produce suboptimal results. This paper serves as a guide to the application of multi-objective methods to difficult problems, and is aimed at researchers who are already familiar with single-objective reinforcement learning and planning methods who wish to adopt a multi-objective perspective on their research, as well as practitioners who encounter multi-objective decision problems in practice. It identifies the factors that may influence the nature of the desired solution, and illustrates by example how these influence the design of multi-objective decision-making systems for complex problems. © 2022, The Author(s).
- «
- ‹
- 1
- ›
- »