Matching algorithms : fundamentals, applications and challenges
- Ren, Jing, Xia, Feng, Chen, Xiangtai, Liu, Jiaying, Sultanova, Nargiz
- Authors: Ren, Jing , Xia, Feng , Chen, Xiangtai , Liu, Jiaying , Sultanova, Nargiz
- Date: 2021
- Type: Text , Journal article , Review
- Relation: IEEE Transactions on Emerging Topics in Computational Intelligence Vol. 5, no. 3 (2021), p. 332-350
- Full Text:
- Reviewed:
- Description: Matching plays a vital role in the rational allocation of resources in many areas, ranging from market operation to people's daily lives. In economics, the term matching theory is coined for pairing two agents in a specific market to reach a stable or optimal state. In computer science, all branches of matching problems have emerged, such as the question-answer matching in information retrieval, user-item matching in a recommender system, and entity-relation matching in the knowledge graph. A preference list is the core element during a matching process, which can either be obtained directly from the agents or generated indirectly by prediction. Based on the preference list access, matching problems are divided into two categories, i.e., explicit matching and implicit matching. In this paper, we first introduce the matching theory's basic models and algorithms in explicit matching. The existing methods for coping with various matching problems in implicit matching are reviewed, such as retrieval matching, user-item matching, entity-relation matching, and image matching. Furthermore, we look into representative applications in these areas, including marriage and labor markets in explicit matching and several similarity-based matching problems in implicit matching. Finally, this survey paper concludes with a discussion of open issues and promising future directions in the field of matching. © 2017 IEEE. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Jing Ren, Xia Feng, Nargiz Sultanova" is provided in this record**
- Authors: Ren, Jing , Xia, Feng , Chen, Xiangtai , Liu, Jiaying , Sultanova, Nargiz
- Date: 2021
- Type: Text , Journal article , Review
- Relation: IEEE Transactions on Emerging Topics in Computational Intelligence Vol. 5, no. 3 (2021), p. 332-350
- Full Text:
- Reviewed:
- Description: Matching plays a vital role in the rational allocation of resources in many areas, ranging from market operation to people's daily lives. In economics, the term matching theory is coined for pairing two agents in a specific market to reach a stable or optimal state. In computer science, all branches of matching problems have emerged, such as the question-answer matching in information retrieval, user-item matching in a recommender system, and entity-relation matching in the knowledge graph. A preference list is the core element during a matching process, which can either be obtained directly from the agents or generated indirectly by prediction. Based on the preference list access, matching problems are divided into two categories, i.e., explicit matching and implicit matching. In this paper, we first introduce the matching theory's basic models and algorithms in explicit matching. The existing methods for coping with various matching problems in implicit matching are reviewed, such as retrieval matching, user-item matching, entity-relation matching, and image matching. Furthermore, we look into representative applications in these areas, including marriage and labor markets in explicit matching and several similarity-based matching problems in implicit matching. Finally, this survey paper concludes with a discussion of open issues and promising future directions in the field of matching. © 2017 IEEE. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Jing Ren, Xia Feng, Nargiz Sultanova" is provided in this record**
Web of scholars : a scholar knowledge graph
- Liu, Jiaying, Ren, Jing, Zheng, Wenqing, Chi, Lianhua, Lee, Ivan, Xia, Feng
- Authors: Liu, Jiaying , Ren, Jing , Zheng, Wenqing , Chi, Lianhua , Lee, Ivan , Xia, Feng
- Date: 2020
- Type: Text , Conference paper
- Relation: 43rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2020 p. 2153-2156
- Full Text:
- Reviewed:
- Description: In this work, we demonstrate a novel system, namely Web of Scholars, which integrates state-of-the-art mining techniques to search, mine, and visualize complex networks behind scholars in the field of Computer Science. Relying on the knowledge graph, it provides services for fast, accurate, and intelligent semantic querying as well as powerful recommendations. In addition, in order to realize information sharing, it provides open API to be served as the underlying architecture for advanced functions. Web of Scholars takes advantage of knowledge graph, which means that it will be able to access more knowledge if more search exist. It can be served as a useful and interoperable tool for scholars to conduct in-depth analysis within Science of Science. © 2020 ACM.
- Authors: Liu, Jiaying , Ren, Jing , Zheng, Wenqing , Chi, Lianhua , Lee, Ivan , Xia, Feng
- Date: 2020
- Type: Text , Conference paper
- Relation: 43rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2020 p. 2153-2156
- Full Text:
- Reviewed:
- Description: In this work, we demonstrate a novel system, namely Web of Scholars, which integrates state-of-the-art mining techniques to search, mine, and visualize complex networks behind scholars in the field of Computer Science. Relying on the knowledge graph, it provides services for fast, accurate, and intelligent semantic querying as well as powerful recommendations. In addition, in order to realize information sharing, it provides open API to be served as the underlying architecture for advanced functions. Web of Scholars takes advantage of knowledge graph, which means that it will be able to access more knowledge if more search exist. It can be served as a useful and interoperable tool for scholars to conduct in-depth analysis within Science of Science. © 2020 ACM.
- «
- ‹
- 1
- ›
- »