Implicit feedback-based group recommender system for internet of things applications
- Guo, Zhiwei, Yu, Keping, Guo, Tan, Bashir, Ali, Imran, Muhammad, Guizani, Mohsen
- Authors: Guo, Zhiwei , Yu, Keping , Guo, Tan , Bashir, Ali , Imran, Muhammad , Guizani, Mohsen
- Date: 2020
- Type: Text , Conference paper
- Relation: 2020 IEEE Global Communications Conference, GLOBECOM 2020, Virtual Taipei, 7-11 December 2020 Vol. 2020-January
- Full Text:
- Reviewed:
- Description: With the prevalence of Internet of Things (IoT)-based social media applications, the distance among people has been greatly shortened. As a result, recommender systems in IoT-based social media need to be developed oriented to groups of users rather than individual users. However, existing methods were highly dependent on explicit preference feedbacks, ignoring scenarios of implicit feedbacks. To remedy such gap, this paper proposes an implicit feedback-based group recommender system using probabilistic inference and non-cooperative game (GREPING) for IoT-based social media. Particularly, unknown process variables can be estimated from observable implicit feedbacks via Bayesian posterior probability inference. In addition, the globally optimal recommendation results can be calculated with the aid of non-cooperative game. Two groups of experiments are conducted to assess the GREPING from two aspects: efficiency and robustness. Experimental results show obvious promotion and considerable stability of the GREPING compared to baseline methods. © 2020 IEEE.
- Authors: Guo, Zhiwei , Yu, Keping , Guo, Tan , Bashir, Ali , Imran, Muhammad , Guizani, Mohsen
- Date: 2020
- Type: Text , Conference paper
- Relation: 2020 IEEE Global Communications Conference, GLOBECOM 2020, Virtual Taipei, 7-11 December 2020 Vol. 2020-January
- Full Text:
- Reviewed:
- Description: With the prevalence of Internet of Things (IoT)-based social media applications, the distance among people has been greatly shortened. As a result, recommender systems in IoT-based social media need to be developed oriented to groups of users rather than individual users. However, existing methods were highly dependent on explicit preference feedbacks, ignoring scenarios of implicit feedbacks. To remedy such gap, this paper proposes an implicit feedback-based group recommender system using probabilistic inference and non-cooperative game (GREPING) for IoT-based social media. Particularly, unknown process variables can be estimated from observable implicit feedbacks via Bayesian posterior probability inference. In addition, the globally optimal recommendation results can be calculated with the aid of non-cooperative game. Two groups of experiments are conducted to assess the GREPING from two aspects: efficiency and robustness. Experimental results show obvious promotion and considerable stability of the GREPING compared to baseline methods. © 2020 IEEE.
Process automation in an IoT–Fog–Cloud ecosystem: A Survey and taxonomy
- Chegini, Hossein, Naha, Ranesh, Mahanti, Aniket, Thulasiraman, Parimala
- Authors: Chegini, Hossein , Naha, Ranesh , Mahanti, Aniket , Thulasiraman, Parimala
- Date: 2021
- Type: Text , Journal article
- Relation: IoT Vol. 2, no. 1 (2021), p. 92-118
- Full Text: false
- Reviewed:
- Description: The number of IoT sensors and physical objects accommodated on the Internet is increasing day by day, and traditional Cloud Computing would not be able to host IoT data because of its high latency. Being challenged of processing all IoT big data on Cloud facilities, there is not enough study on automating components to deal with the big data and real-time tasks in the IoT–Fog–Cloud ecosystem. For instance, designing automatic data transfer from the fog layer to cloud layer, which contains enormous distributed devices is challenging. Considering fog as the supporting processing layer, dealing with decentralized devices in the IoT and fog layer leads us to think of other automatic mechanisms to manage the existing heterogeneity. The big data and heterogeneity challenges also motivated us to design other automatic components for Fog resiliency, which we address as the third challenge in the ecosystem. Fog resiliency makes the processing of IoT tasks independent to the Cloud layer. This survey aims to review, study, and analyze the automatic functions as a taxonomy to help researchers, who are implementing methods and algorithms for different IoT applications. We demonstrated the automatic functions through our research in accordance to each challenge. The study also discusses and suggests automating the tasks, methods, and processes of the ecosystem that still process the data manually.
Energy efficiency perspectives of femtocells in internet of things : recent advances and challenges
- Al-Turjman, Fadi, Imran, Muhammad, Bakhsh, Sheikh
- Authors: Al-Turjman, Fadi , Imran, Muhammad , Bakhsh, Sheikh
- Date: 2017
- Type: Text , Journal article
- Relation: IEEE Access Vol. 5, no. (2017), p. 26808-26818
- Full Text:
- Reviewed:
- Description: Energy efficiency is a growing concern in every aspect of the technology. Apart from maintaining profitability, energy efficiency means a decrease in the overall environmental effects, which is a serious concern in today's world. Using a femtocell in Internet of Things (IoT) can boost energy efficiency. To illustrate, femtocells can be used in smart homes, which is a subpart of the smart grid, as a communication mechanism in order to manage energy efficiency. Moreover, femtocells can be used in many IoT applications in order to provide communication. However, it is important to evaluate the energy efficiency of femtocells. This paper investigates recent advances and challenges in the energy efficiency of the femtocell in IoT. First, we introduce the idea of femtocells in the context of IoT and their role in IoT applications. Next, we describe prominent performance metrics in order to understand how the energy efficiency is evaluated. Then, we elucidate how energy can be modeled in terms of femtocell and provide some models from the literature. Since femtocells are used in heterogeneous networks to manage energy efficiency, we also express some energy efficiency schemes for deployment. The factors that affect the energy usage of a femtocell base station are discussed and then the power consumption of user equipment under femtocell coverage is mentioned. Finally, we highlight prominent open research issues and challenges. © 2013 IEEE.
- Authors: Al-Turjman, Fadi , Imran, Muhammad , Bakhsh, Sheikh
- Date: 2017
- Type: Text , Journal article
- Relation: IEEE Access Vol. 5, no. (2017), p. 26808-26818
- Full Text:
- Reviewed:
- Description: Energy efficiency is a growing concern in every aspect of the technology. Apart from maintaining profitability, energy efficiency means a decrease in the overall environmental effects, which is a serious concern in today's world. Using a femtocell in Internet of Things (IoT) can boost energy efficiency. To illustrate, femtocells can be used in smart homes, which is a subpart of the smart grid, as a communication mechanism in order to manage energy efficiency. Moreover, femtocells can be used in many IoT applications in order to provide communication. However, it is important to evaluate the energy efficiency of femtocells. This paper investigates recent advances and challenges in the energy efficiency of the femtocell in IoT. First, we introduce the idea of femtocells in the context of IoT and their role in IoT applications. Next, we describe prominent performance metrics in order to understand how the energy efficiency is evaluated. Then, we elucidate how energy can be modeled in terms of femtocell and provide some models from the literature. Since femtocells are used in heterogeneous networks to manage energy efficiency, we also express some energy efficiency schemes for deployment. The factors that affect the energy usage of a femtocell base station are discussed and then the power consumption of user equipment under femtocell coverage is mentioned. Finally, we highlight prominent open research issues and challenges. © 2013 IEEE.
The rise of ransomware and emerging security challenges in the internet of things
- Yaqoob, Ibrar, Ahmed, Ejaz, Rehman, Muhammad, Ahmed, Abdelmuttlib, Imran, Muhammad
- Authors: Yaqoob, Ibrar , Ahmed, Ejaz , Rehman, Muhammad , Ahmed, Abdelmuttlib , Imran, Muhammad
- Date: 2017
- Type: Text , Journal article
- Relation: Computer Networks Vol. 129, no. (2017), p. 444-458
- Full Text: false
- Reviewed:
- Description: With the increasing miniaturization of smartphones, computers, and sensors in the Internet of Things (IoT) paradigm, strengthening the security and preventing ransomware attacks have become key concerns. Traditional security mechanisms are no longer applicable because of the involvement of resource-constrained devices, which require more computation power and resources. This paper presents the ransomware attacks and security concerns in IoT. We initially discuss the rise of ransomware attacks and outline the associated challenges. Then, we investigate, report, and highlight the state-of-the-art research efforts directed at IoT from a security perspective. A taxonomy is devised by classifying and categorizing the literature based on important parameters (e.g., threats, requirements, IEEE standards, deployment level, and technologies). Furthermore, a few credible case studies are outlined to alert people regarding how seriously IoT devices are vulnerable to threats. We enumerate the requirements that need to be met for securing IoT. Several indispensable open research challenges (e.g., data integrity, lightweight security mechanisms, lack of security software's upgradability and patchability features, physical protection of trillions of devices, privacy, and trust) are identified and discussed. Several prominent future research directions are provided. © 2017 Elsevier B.V. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Muhammad Imran” is provided in this record**
A robust forgery detection method for copy-move and splicing attacks in images
- Islam, Mohammad, Karmakar, Gour, Kamruzzaman, Joarder, Murshed, Manzur
- Authors: Islam, Mohammad , Karmakar, Gour , Kamruzzaman, Joarder , Murshed, Manzur
- Date: 2020
- Type: Text , Journal article
- Relation: Electronics Vol. 9, no. 9 (2020), p. 1-22
- Full Text:
- Reviewed:
- Description: Internet of Things (IoT) image sensors, social media, and smartphones generate huge volumes of digital images every day. Easy availability and usability of photo editing tools have made forgery attacks, primarily splicing and copy-move attacks, effortless, causing cybercrimes to be on the rise. While several models have been proposed in the literature for detecting these attacks, the robustness of those models has not been investigated when (i) a low number of tampered images are available for model building or (ii) images from IoT sensors are distorted due to image rotation or scaling caused by unwanted or unexpected changes in sensors' physical set-up. Moreover, further improvement in detection accuracy is needed for real-word security management systems. To address these limitations, in this paper, an innovative image forgery detection method has been proposed based on Discrete Cosine Transformation (DCT) and Local Binary Pattern (LBP) and a new feature extraction method using the mean operator. First, images are divided into non-overlapping fixed size blocks and 2D block DCT is applied to capture changes due to image forgery. Then LBP is applied to the magnitude of the DCT array to enhance forgery artifacts. Finally, the mean value of a particular cell across all LBP blocks is computed, which yields a fixed number of features and presents a more computationally efficient method. Using Support Vector Machine (SVM), the proposed method has been extensively tested on four well known publicly available gray scale and color image forgery datasets, and additionally on an IoT based image forgery dataset that we built. Experimental results reveal the superiority of our proposed method over recent state-of-the-art methods in terms of widely used performance metrics and computational time and demonstrate robustness against low availability of forged training samples.
- Description: This research was funded by Research Priority Area (RPA) scholarship of Federation University Australia.
- Authors: Islam, Mohammad , Karmakar, Gour , Kamruzzaman, Joarder , Murshed, Manzur
- Date: 2020
- Type: Text , Journal article
- Relation: Electronics Vol. 9, no. 9 (2020), p. 1-22
- Full Text:
- Reviewed:
- Description: Internet of Things (IoT) image sensors, social media, and smartphones generate huge volumes of digital images every day. Easy availability and usability of photo editing tools have made forgery attacks, primarily splicing and copy-move attacks, effortless, causing cybercrimes to be on the rise. While several models have been proposed in the literature for detecting these attacks, the robustness of those models has not been investigated when (i) a low number of tampered images are available for model building or (ii) images from IoT sensors are distorted due to image rotation or scaling caused by unwanted or unexpected changes in sensors' physical set-up. Moreover, further improvement in detection accuracy is needed for real-word security management systems. To address these limitations, in this paper, an innovative image forgery detection method has been proposed based on Discrete Cosine Transformation (DCT) and Local Binary Pattern (LBP) and a new feature extraction method using the mean operator. First, images are divided into non-overlapping fixed size blocks and 2D block DCT is applied to capture changes due to image forgery. Then LBP is applied to the magnitude of the DCT array to enhance forgery artifacts. Finally, the mean value of a particular cell across all LBP blocks is computed, which yields a fixed number of features and presents a more computationally efficient method. Using Support Vector Machine (SVM), the proposed method has been extensively tested on four well known publicly available gray scale and color image forgery datasets, and additionally on an IoT based image forgery dataset that we built. Experimental results reveal the superiority of our proposed method over recent state-of-the-art methods in terms of widely used performance metrics and computational time and demonstrate robustness against low availability of forged training samples.
- Description: This research was funded by Research Priority Area (RPA) scholarship of Federation University Australia.
Metric learning-based few-shot malicious node detection for IoT backhaul/fronthaul networks
- Zhou, Ke, Lin, Xi, Wu, Jun, Bashir, Ali, Li, Jianhua, Imran, Muhammad
- Authors: Zhou, Ke , Lin, Xi , Wu, Jun , Bashir, Ali , Li, Jianhua , Imran, Muhammad
- Date: 2022
- Type: Text , Conference paper
- Relation: 2022 IEEE Global Communications Conference, GLOBECOM 2022, Virtual, online, 4-8 December 2022, 2022 IEEE Global Communications Conference, GLOBECOM 2022 - Proceedings p. 5777-5782
- Full Text: false
- Reviewed:
- Description: The development of backhaul/fronthaul networks can enable low latency and high reliability, but nodes in future networks like Internet of Things (IoT) can conduct malicious activities like flooding attack and DDoS attack, which can decrease QoS of smart backhaul/fronthaul network. Timely detection of malicious nodes in future networks is significant for low-latency backhaul/fronthaul networks. However, conventional supervised learning-based detection models require abundant malicious training samples, while capturing adequate malicious samples can not meet the requirement of timely detection. In this paper, we propose a novel few-shot malicious node detection system for improving QoS of IoT backhaul/fronthaul network, which can detect malicious nodes with unknown malicious activities through a limited number of network traffic samples. In our proposed system, we first design a fresh IoT traffic sample processing approach, which integrates normal activity samples and known malicious activity samples to generate training pairs. Then, we design a metric learning-based malicious node detection model training method, which employs a contrastive loss over distance metric to distinguish between similar and dissimilar pairs of samples. Besides, the trained model can detect nodes with unknown malicious activities by comparing real-time samples with few-shot samples of malicious nodes. Finally, the proposed system is evaluated on a real-world IoT network dataset named N-BaIoT. The exhaustive experiment results show that our model can achieve an average accuracy around 97.67 % when detecting malicious nodes with unknown malicious activities, which is comparable to state-of-the-art supervised learning models while our model only needs 5-shot samples of malicious node. © 2022 IEEE.
- Jha, Devki Nandan, Alwasel, Khaled, Alshoshan, Areeb, Huang, Xianghua, Naha, Ranesh, Battula, Sudheer, Garg, Saurabh, Puthal, Deepak, James, Philip, Zomaya, Albert, Dustdar, Schahram, Ranjan, Rajiv
- Authors: Jha, Devki Nandan , Alwasel, Khaled , Alshoshan, Areeb , Huang, Xianghua , Naha, Ranesh , Battula, Sudheer , Garg, Saurabh , Puthal, Deepak , James, Philip , Zomaya, Albert , Dustdar, Schahram , Ranjan, Rajiv
- Date: 2020
- Type: Text , Journal article
- Relation: Software, practice & experience Vol. 50, no. 6 (2020), p. 844-867
- Full Text: false
- Reviewed:
- Description: Summary With the proliferation of Internet of Things (IoT) and edge computing paradigms, billions of IoT devices are being networked to support data‐driven and real‐time decision making across numerous application domains, including smart homes, smart transport, and smart buildings. These ubiquitously distributed IoT devices send the raw data to their respective edge device (eg, IoT gateways) or the cloud directly. The wide spectrum of possible application use cases make the design and networking of IoT and edge computing layers a very tedious process due to the: (i) complexity and heterogeneity of end‐point networks (eg, Wi‐Fi, 4G, and Bluetooth) (ii) heterogeneity of edge and IoT hardware resources and software stack (iv) mobility of IoT devices and (iii) the complex interplay between the IoT and edge layers. Unlike cloud computing, where researchers and developers seeking to test capacity planning, resource selection, network configuration, computation placement, and security management strategies had access to public cloud infrastructure (eg, Amazon and Azure), establishing an IoT and edge computing testbed that offers a high degree of verisimilitude is not only complex, costly, and resource‐intensive but also time‐intensive. Moreover, testing in real IoT and edge computing environments is not feasible due to the high cost and diverse domain knowledge required in order to reason about their diversity, scalability, and usability. To support performance testing and validation of IoT and edge computing configurations and algorithms at scale, simulation frameworks should be developed. Hence, this article proposes a novel simulator IoTSim‐Edge, which captures the behavior of heterogeneous IoT and edge computing infrastructure and allows users to test their infrastructure and framework in an easy and configurable manner. IoTSim‐Edge extends the capability of CloudSim to incorporate the different features of edge and IoT devices. The effectiveness of IoTSim‐Edge is described using three test cases. Results show the varying capability of IoTSim‐Edge in terms of application composition, battery‐oriented modeling, heterogeneous protocols modeling, and mobility modeling along with the resources provisioning for IoT applications.
Continuous patient monitoring with a patient centric agent : A block architecture
- Uddin, Ashraf, Stranieri, Andrew, Gondal, Iqbal, Balasubramanian, Venki
- Authors: Uddin, Ashraf , Stranieri, Andrew , Gondal, Iqbal , Balasubramanian, Venki
- Date: 2018
- Type: Text , Journal article
- Relation: IEEE Access Vol. 6, no. (2018), p. 32700-32726
- Full Text:
- Reviewed:
- Description: The Internet of Things (IoT) has facilitated services without human intervention for a wide range of applications, including continuous remote patient monitoring (RPM). However, the complexity of RPM architectures, the size of data sets generated and limited power capacity of devices make RPM challenging. In this paper, we propose a tier-based End to End architecture for continuous patient monitoring that has a patient centric agent (PCA) as its center piece. The PCA manages a blockchain component to preserve privacy when data streaming from body area sensors needs to be stored securely. The PCA based architecture includes a lightweight communication protocol to enforce security of data through different segments of a continuous, real time patient monitoring architecture. The architecture includes the insertion of data into a personal blockchain to facilitate data sharing amongst healthcare professionals and integration into electronic health records while ensuring privacy is maintained. The blockchain is customized for RPM with modifications that include having the PCA select a Miner to reduce computational effort, enabling the PCA to manage multiple blockchains for the same patient, and the modification of each block with a prefix tree to minimize energy consumption and incorporate secure transaction payments. Simulation results demonstrate that security and privacy can be enhanced in RPM with the PCA based End to End architecture.
- Authors: Uddin, Ashraf , Stranieri, Andrew , Gondal, Iqbal , Balasubramanian, Venki
- Date: 2018
- Type: Text , Journal article
- Relation: IEEE Access Vol. 6, no. (2018), p. 32700-32726
- Full Text:
- Reviewed:
- Description: The Internet of Things (IoT) has facilitated services without human intervention for a wide range of applications, including continuous remote patient monitoring (RPM). However, the complexity of RPM architectures, the size of data sets generated and limited power capacity of devices make RPM challenging. In this paper, we propose a tier-based End to End architecture for continuous patient monitoring that has a patient centric agent (PCA) as its center piece. The PCA manages a blockchain component to preserve privacy when data streaming from body area sensors needs to be stored securely. The PCA based architecture includes a lightweight communication protocol to enforce security of data through different segments of a continuous, real time patient monitoring architecture. The architecture includes the insertion of data into a personal blockchain to facilitate data sharing amongst healthcare professionals and integration into electronic health records while ensuring privacy is maintained. The blockchain is customized for RPM with modifications that include having the PCA select a Miner to reduce computational effort, enabling the PCA to manage multiple blockchains for the same patient, and the modification of each block with a prefix tree to minimize energy consumption and incorporate secure transaction payments. Simulation results demonstrate that security and privacy can be enhanced in RPM with the PCA based End to End architecture.
Obfuscated memory malware detection in resource-constrained iot devices for smart city applications
- Shafin, Sakib, Karmakar, Gour, Mareels, Iven
- Authors: Shafin, Sakib , Karmakar, Gour , Mareels, Iven
- Date: 2023
- Type: Text , Journal article
- Relation: Sensors Vol. 23, no. 11 (2023), p. 5348
- Full Text:
- Reviewed:
- Description: Obfuscated Memory Malware (OMM) presents significant threats to interconnected systems, including smart city applications, for its ability to evade detection through concealment tactics. Existing OMM detection methods primarily focus on binary detection. Their multiclass versions consider a few families only and, thereby, fail to detect much existing and emerging malware. Moreover, their large memory size makes them unsuitable to be executed in resource-constrained embedded/IoT devices. To address this problem, in this paper, we propose a multiclass but lightweight malware detection method capable of identifying recent malware and is suitable to execute in embedded devices. For this, the method considers a hybrid model by combining the feature-learning capabilities of convolutional neural networks with the temporal modeling advantage of bidirectional long short-term memory. The proposed architecture exhibits compact size and fast processing speed, making it suitable for deployment in IoT devices that constitute the major components of smart city systems. Extensive experiments with the recent CIC-Malmem-2022 OMM dataset demonstrate that our method outperforms other machine learning-based models proposed in the literature in both detecting OMM and identifying specific attack types. Our proposed method thus offers a robust yet compact model executable in IoT devices for defending against obfuscated malware.
- Authors: Shafin, Sakib , Karmakar, Gour , Mareels, Iven
- Date: 2023
- Type: Text , Journal article
- Relation: Sensors Vol. 23, no. 11 (2023), p. 5348
- Full Text:
- Reviewed:
- Description: Obfuscated Memory Malware (OMM) presents significant threats to interconnected systems, including smart city applications, for its ability to evade detection through concealment tactics. Existing OMM detection methods primarily focus on binary detection. Their multiclass versions consider a few families only and, thereby, fail to detect much existing and emerging malware. Moreover, their large memory size makes them unsuitable to be executed in resource-constrained embedded/IoT devices. To address this problem, in this paper, we propose a multiclass but lightweight malware detection method capable of identifying recent malware and is suitable to execute in embedded devices. For this, the method considers a hybrid model by combining the feature-learning capabilities of convolutional neural networks with the temporal modeling advantage of bidirectional long short-term memory. The proposed architecture exhibits compact size and fast processing speed, making it suitable for deployment in IoT devices that constitute the major components of smart city systems. Extensive experiments with the recent CIC-Malmem-2022 OMM dataset demonstrate that our method outperforms other machine learning-based models proposed in the literature in both detecting OMM and identifying specific attack types. Our proposed method thus offers a robust yet compact model executable in IoT devices for defending against obfuscated malware.
Cloud based secure service providing for IoTs using blockchain
- Rehman, Mubariz, Javaid, Nadeem, Awais, Muhammad, Imran, Muhammad, Naseer, Nidal
- Authors: Rehman, Mubariz , Javaid, Nadeem , Awais, Muhammad , Imran, Muhammad , Naseer, Nidal
- Date: 2019
- Type: Text , Conference paper
- Relation: 2019 IEEE Global Communications Conference, GLOBECOM 2019, Waikoloa, 9-13 December 2019
- Full Text: false
- Reviewed:
- Description: Internet of Things (IoTs) is widely growing domain of the modern era. With the advancement in technologies, the use of IoTs devices also increases. However, security risks regarding service provisioning and data sharing also increases. There are many existing security approaches. However, these approaches are not suitable for IoTs devices due to their limited storage and computation resources. These secure approaches also require a specific hardware. With the invention of blockchain technologies, many security risks are eliminated. Blockchain also supports data sharing mechanism. In this paper, we proposed a secure service providing mechanism for IoTs using blockchain. We introduced cloud nodes for maintaining the validity states of edge service providers. The edge node reputation is considered as a service rating given by end users. Incentive is given to edge servers after validation of service codes. Incentive is in the form of cryptocurrency. Incentive and edge node reputation values are stored in cloud node and are updated with respect to time. Smart contract is proposed to check the validity state of the edge servers. Smart contract is also used for the comparison and verification of the service codes provided by edge servers. In our proposed system, we perform service authentication at both cloud and edge server layer. Moreover, Proof of Authority (PoA) is used as a consensus mechanism. PoA enhanced overall performance of our proposed system. By experimental analysis, it is shown that our proposed model is suitable for resource constrained devices. © 2019 IEEE.
Priority based and secured traffic management system for emergency vehicle using IoT
- Authors: Chowdhury, Abdullahi
- Date: 2016
- Type: Text , Conference proceedings
- Relation: 2016 International Conference on Engineering and MIS, ICEMIS 2016; Agadir, Morocco; 22nd-24th September 2016; published in Proceedings - 2016 International Conference on Engineering and MIS, ICEMIS 2016 p. 1-6
- Full Text: false
- Reviewed:
- Description: Intelligent Traffic System (ITS) is one of the most recent research topics in the Internet of Things (IoT). The ever increasing number of vehicles in modern cities is creating heavy traffic congestion. To reduce the traffic congestion, a number of research have already been done to provide a clear pathway to the emergency vehicles in the urban area. However, they often fail to meet the target travel time of an emergency vehicle set by the Department of Treasury and Finances Budget and Financial Management Guidance (BFMG). To address this issue directly, an innovative ITS system considering the priorities of emergency vehicles based on the type of an incident and a method for detecting and responding to the hacking of traffic signals have been proposed in this paper. An experiment using a simulation software, namely Simulation of Urban Mobility (SUMO) was conducted. The simulation results have exhibited superior performance of our proposed system over the currently operational and recently proposed ITS for emergency vehicles, in terms of both congestion avoidance and travel time. The response time attained by our scheme meets the target set by BFMG for both normal and hacked traffic signals. © 2016 IEEE.
- Description: Proceedings - 2016 International Conference on Engineering and MIS, ICEMIS 2016
The role of big data analytics in industrial internet of things
- Rehman, Muhammad, Yaqoob, Ibrar, Salah, Khaled, Imran, Muhammad, Jayaraman, Prem, Perera, Charith
- Authors: Rehman, Muhammad , Yaqoob, Ibrar , Salah, Khaled , Imran, Muhammad , Jayaraman, Prem , Perera, Charith
- Date: 2019
- Type: Text , Journal article
- Relation: Future Generation Computer Systems Vol. 99, no. (2019), p. 247-259
- Full Text:
- Reviewed:
- Description: Big data production in industrial Internet of Things (IIoT) is evident due to the massive deployment of sensors and Internet of Things (IoT) devices. However, big data processing is challenging due to limited computational, networking and storage resources at IoT device-end. Big data analytics (BDA) is expected to provide operational- and customer-level intelligence in IIoT systems. Although numerous studies on IIoT and BDA exist, only a few studies have explored the convergence of the two paradigms. In this study, we investigate the recent BDA technologies, algorithms and techniques that can lead to the development of intelligent IIoT systems. We devise a taxonomy by classifying and categorising the literature on the basis of important parameters (e.g. data sources, analytics tools, analytics techniques, requirements, industrial analytics applications and analytics types). We present the frameworks and case studies of the various enterprises that have benefited from BDA. We also enumerate the considerable opportunities introduced by BDA in IIoT. We identify and discuss the indispensable challenges that remain to be addressed, serving as future research directions. © 2019 Elsevier B.V.
- Authors: Rehman, Muhammad , Yaqoob, Ibrar , Salah, Khaled , Imran, Muhammad , Jayaraman, Prem , Perera, Charith
- Date: 2019
- Type: Text , Journal article
- Relation: Future Generation Computer Systems Vol. 99, no. (2019), p. 247-259
- Full Text:
- Reviewed:
- Description: Big data production in industrial Internet of Things (IIoT) is evident due to the massive deployment of sensors and Internet of Things (IoT) devices. However, big data processing is challenging due to limited computational, networking and storage resources at IoT device-end. Big data analytics (BDA) is expected to provide operational- and customer-level intelligence in IIoT systems. Although numerous studies on IIoT and BDA exist, only a few studies have explored the convergence of the two paradigms. In this study, we investigate the recent BDA technologies, algorithms and techniques that can lead to the development of intelligent IIoT systems. We devise a taxonomy by classifying and categorising the literature on the basis of important parameters (e.g. data sources, analytics tools, analytics techniques, requirements, industrial analytics applications and analytics types). We present the frameworks and case studies of the various enterprises that have benefited from BDA. We also enumerate the considerable opportunities introduced by BDA in IIoT. We identify and discuss the indispensable challenges that remain to be addressed, serving as future research directions. © 2019 Elsevier B.V.
Bio-inspired network security for 5G-enabled IoT applications
- Saleem, Kashif, Alabduljabbar, Ghadah, Alrowais, Nouf, Al-Muhtadi, Jalal, Imran, Muhammad, Rodrigues, Joel
- Authors: Saleem, Kashif , Alabduljabbar, Ghadah , Alrowais, Nouf , Al-Muhtadi, Jalal , Imran, Muhammad , Rodrigues, Joel
- Date: 2020
- Type: Text , Journal article
- Relation: IEEE access Vol. 8, no. (2020), p. 1-1
- Full Text:
- Reviewed:
- Description: Every IPv6-enabled device connected and communicating over the Internet forms the Internet of things (IoT) that is prevalent in society and is used in daily life. This IoT platform will quickly grow to be populated with billions or more objects by making every electrical appliance, car, and even items of furniture smart and connected. The 5th generation (5G) and beyond networks will further boost these IoT systems. The massive utilization of these systems over gigabits per second generates numerous issues. Owing to the huge complexity in large-scale deployment of IoT, data privacy and security are the most prominent challenges, especially for critical applications such as Industry 4.0, e-healthcare, and military. Threat agents persistently strive to find new vulnerabilities and exploit them. Therefore, including promising security measures to support the running systems, not to harm or collapse them, is essential. Nature-inspired algorithms have the capability to provide autonomous and sustainable defense and healing mechanisms. This paper first surveys the 5G network layer security for IoT applications and lists the network layer security vulnerabilities and requirements in wireless sensor networks, IoT, and 5G-enabled IoT. Second, a detailed literature review is conducted with the current network layer security methods and the bio-inspired techniques for IoT applications exchanging data packets over 5G. Finally, the bio-inspired algorithms are analyzed in the context of providing a secure network layer for IoT applications connected over 5G and beyond networks.
- Authors: Saleem, Kashif , Alabduljabbar, Ghadah , Alrowais, Nouf , Al-Muhtadi, Jalal , Imran, Muhammad , Rodrigues, Joel
- Date: 2020
- Type: Text , Journal article
- Relation: IEEE access Vol. 8, no. (2020), p. 1-1
- Full Text:
- Reviewed:
- Description: Every IPv6-enabled device connected and communicating over the Internet forms the Internet of things (IoT) that is prevalent in society and is used in daily life. This IoT platform will quickly grow to be populated with billions or more objects by making every electrical appliance, car, and even items of furniture smart and connected. The 5th generation (5G) and beyond networks will further boost these IoT systems. The massive utilization of these systems over gigabits per second generates numerous issues. Owing to the huge complexity in large-scale deployment of IoT, data privacy and security are the most prominent challenges, especially for critical applications such as Industry 4.0, e-healthcare, and military. Threat agents persistently strive to find new vulnerabilities and exploit them. Therefore, including promising security measures to support the running systems, not to harm or collapse them, is essential. Nature-inspired algorithms have the capability to provide autonomous and sustainable defense and healing mechanisms. This paper first surveys the 5G network layer security for IoT applications and lists the network layer security vulnerabilities and requirements in wireless sensor networks, IoT, and 5G-enabled IoT. Second, a detailed literature review is conducted with the current network layer security methods and the bio-inspired techniques for IoT applications exchanging data packets over 5G. Finally, the bio-inspired algorithms are analyzed in the context of providing a secure network layer for IoT applications connected over 5G and beyond networks.
A novel collaborative IoD-assisted VANET approach for coverage area maximization
- Ahmed, Gamil, Sheltami, Tarek, Mahmoud, Ashraf, Imran, Muhammad, Shoaib, Muhammad
- Authors: Ahmed, Gamil , Sheltami, Tarek , Mahmoud, Ashraf , Imran, Muhammad , Shoaib, Muhammad
- Date: 2021
- Type: Text , Journal article
- Relation: IEEE Access Vol. 9, no. (2021), p. 61211-61223
- Full Text:
- Reviewed:
- Description: Internet of Drones (IoD) is an efficient technique that can be integrated with vehicular ad-hoc networks (VANETs) to provide terrestrial communications by acting as an aerial relay when terrestrial infrastructure is unreliable or unavailable. To fully exploit the drones' flexibility and superiority, we propose a novel dynamic IoD collaborative communication approach for urban VANETs. Unlike most of the existing approaches, the IoD nodes are dynamically deployed based on current locations of ground vehicles to effectively mitigate inevitable isolated cars in conventional VANETs. For efficiently coordinating IoD, we model IoD to optimize coverage based on the location of vehicles. The goal is to obtain an efficient IoD deployment to maximize the number of covered vehicles, i.e., minimize the number of isolated vehicles in the target area. More importantly, the proposed approach provides sufficient interconnections between IoD nodes. To do so, an improved version of succinct population-based meta-heuristic, namely Improved Particle Swarm Optimization (IPSO) inspired by food searching behavior of birds or fishes flock, is implemented for IoD assisted VANET (IoDAV). Moreover, the coverage, received signal quality, and IoD connectivity are achieved by IPSO's objective function for optimal IoD deployment at the same time. We carry out an extensive experiment based on the received signal at floating vehicles to examine the proposed IoDAV performance. We compare the results with the baseline VANET with no IoD (NIoD) and Fixed IoD assisted (FIoD). The comparisons are based on the coverage percentage of the ground vehicles and the quality of the received signal. The simulation results demonstrate that the proposed IoDAV approach allows finding the optimal IoD positions throughout the time based on the vehicle's movements and achieves better coverage and better quality of the received signal by finding the most appropriate IoD position compared with NIoD and FIoD schemes. © 2013 IEEE.
- Authors: Ahmed, Gamil , Sheltami, Tarek , Mahmoud, Ashraf , Imran, Muhammad , Shoaib, Muhammad
- Date: 2021
- Type: Text , Journal article
- Relation: IEEE Access Vol. 9, no. (2021), p. 61211-61223
- Full Text:
- Reviewed:
- Description: Internet of Drones (IoD) is an efficient technique that can be integrated with vehicular ad-hoc networks (VANETs) to provide terrestrial communications by acting as an aerial relay when terrestrial infrastructure is unreliable or unavailable. To fully exploit the drones' flexibility and superiority, we propose a novel dynamic IoD collaborative communication approach for urban VANETs. Unlike most of the existing approaches, the IoD nodes are dynamically deployed based on current locations of ground vehicles to effectively mitigate inevitable isolated cars in conventional VANETs. For efficiently coordinating IoD, we model IoD to optimize coverage based on the location of vehicles. The goal is to obtain an efficient IoD deployment to maximize the number of covered vehicles, i.e., minimize the number of isolated vehicles in the target area. More importantly, the proposed approach provides sufficient interconnections between IoD nodes. To do so, an improved version of succinct population-based meta-heuristic, namely Improved Particle Swarm Optimization (IPSO) inspired by food searching behavior of birds or fishes flock, is implemented for IoD assisted VANET (IoDAV). Moreover, the coverage, received signal quality, and IoD connectivity are achieved by IPSO's objective function for optimal IoD deployment at the same time. We carry out an extensive experiment based on the received signal at floating vehicles to examine the proposed IoDAV performance. We compare the results with the baseline VANET with no IoD (NIoD) and Fixed IoD assisted (FIoD). The comparisons are based on the coverage percentage of the ground vehicles and the quality of the received signal. The simulation results demonstrate that the proposed IoDAV approach allows finding the optimal IoD positions throughout the time based on the vehicle's movements and achieves better coverage and better quality of the received signal by finding the most appropriate IoD position compared with NIoD and FIoD schemes. © 2013 IEEE.
A secured framework for SDN-based edge computing in IoT-enabled healthcare system
- Li, Junxia, Cai, Jinjin, Khan, Fazlullah, Rehman, Ateeq, Balasubramanian, Venki
- Authors: Li, Junxia , Cai, Jinjin , Khan, Fazlullah , Rehman, Ateeq , Balasubramanian, Venki
- Date: 2020
- Type: Text , Journal article
- Relation: IEEE Access Vol. 8, no. (2020), p. 135479-135490
- Full Text:
- Reviewed:
- Description: The Internet of Things (IoT) consists of resource-constrained smart devices capable to sense and process data. It connects a huge number of smart sensing devices, i.e., things, and heterogeneous networks. The IoT is incorporated into different applications, such as smart health, smart home, smart grid, etc. The concept of smart healthcare has emerged in different countries, where pilot projects of healthcare facilities are analyzed. In IoT-enabled healthcare systems, the security of IoT devices and associated data is very important, whereas Edge computing is a promising architecture that solves their computational and processing problems. Edge computing is economical and has the potential to provide low latency data services by improving the communication and computation speed of IoT devices in a healthcare system. In Edge-based IoT-enabled healthcare systems, load balancing, network optimization, and efficient resource utilization are accurately performed using artificial intelligence (AI), i.e., intelligent software-defined network (SDN) controller. SDN-based Edge computing is helpful in the efficient utilization of limited resources of IoT devices. However, these low powered devices and associated data (private sensitive data of patients) are prone to various security threats. Therefore, in this paper, we design a secure framework for SDN-based Edge computing in IoT-enabled healthcare system. In the proposed framework, the IoT devices are authenticated by the Edge servers using a lightweight authentication scheme. After authentication, these devices collect data from the patients and send them to the Edge servers for storage, processing, and analyses. The Edge servers are connected with an SDN controller, which performs load balancing, network optimization, and efficient resource utilization in the healthcare system. The proposed framework is evaluated using computer-based simulations. The results demonstrate that the proposed framework provides better solutions for IoT-enabled healthcare systems. © 2013 IEEE. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Venki Balasubramaniam” is provided in this record**
- Authors: Li, Junxia , Cai, Jinjin , Khan, Fazlullah , Rehman, Ateeq , Balasubramanian, Venki
- Date: 2020
- Type: Text , Journal article
- Relation: IEEE Access Vol. 8, no. (2020), p. 135479-135490
- Full Text:
- Reviewed:
- Description: The Internet of Things (IoT) consists of resource-constrained smart devices capable to sense and process data. It connects a huge number of smart sensing devices, i.e., things, and heterogeneous networks. The IoT is incorporated into different applications, such as smart health, smart home, smart grid, etc. The concept of smart healthcare has emerged in different countries, where pilot projects of healthcare facilities are analyzed. In IoT-enabled healthcare systems, the security of IoT devices and associated data is very important, whereas Edge computing is a promising architecture that solves their computational and processing problems. Edge computing is economical and has the potential to provide low latency data services by improving the communication and computation speed of IoT devices in a healthcare system. In Edge-based IoT-enabled healthcare systems, load balancing, network optimization, and efficient resource utilization are accurately performed using artificial intelligence (AI), i.e., intelligent software-defined network (SDN) controller. SDN-based Edge computing is helpful in the efficient utilization of limited resources of IoT devices. However, these low powered devices and associated data (private sensitive data of patients) are prone to various security threats. Therefore, in this paper, we design a secure framework for SDN-based Edge computing in IoT-enabled healthcare system. In the proposed framework, the IoT devices are authenticated by the Edge servers using a lightweight authentication scheme. After authentication, these devices collect data from the patients and send them to the Edge servers for storage, processing, and analyses. The Edge servers are connected with an SDN controller, which performs load balancing, network optimization, and efficient resource utilization in the healthcare system. The proposed framework is evaluated using computer-based simulations. The results demonstrate that the proposed framework provides better solutions for IoT-enabled healthcare systems. © 2013 IEEE. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Venki Balasubramaniam” is provided in this record**
An AI-enabled lightweight data fusion and load optimization approach for internet of things
- Jan, Mian, Zakarya, Muhammad, Khan, Muhammad, Mastorakis, Spyridon, Balasubramanian, Venki
- Authors: Jan, Mian , Zakarya, Muhammad , Khan, Muhammad , Mastorakis, Spyridon , Balasubramanian, Venki
- Date: 2021
- Type: Text , Journal article
- Relation: Future Generation Computer Systems Vol. 122, no. (2021), p. 40-51
- Full Text: false
- Reviewed:
- Description: In the densely populated Internet of Things (IoT) applications, sensing range of the nodes might overlap frequently. In these applications, the nodes gather highly correlated and redundant data in their vicinity. Processing these data depletes the energy of nodes and their upstream transmission towards remote datacentres, in the fog infrastructure, may result in an unbalanced load at the network gateways and edge servers. Due to heterogeneity of edge servers, few of them might be overwhelmed while others may remain less-utilized. As a result, time-critical and delay-sensitive applications may experience excessive delays, packet loss, and degradation in their Quality of Service (QoS). To ensure QoS of IoT applications, in this paper, we eliminate correlation in the gathered data via a lightweight data fusion approach. The buffer of each node is partitioned into strata that broadcast only non-correlated data to edge servers via the network gateways. Furthermore, we propose a dynamic service migration technique to reconfigure the load across various edge servers. We assume this as an optimization problem and use two meta-heuristic algorithms, along with a migration approach, to maintain an optimal Gateway-Edge configuration in the network. These algorithms monitor the load at each server, and once it surpasses a threshold value (which is dynamically computed with a simple machine learning method), an exhaustive search is performed for an optimal and balanced periodic reconfiguration. The experimental results of our approach justify its efficiency for large-scale and densely populated IoT applications. © 2021 Elsevier B.V. *Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Venki Balasubramanian” is provided in this record**.
The current and future role of smart street furniture in smart cities
- Nassar, Mohamed, Luxford, Len, Cole, Peter, Oatley, Giles, Koutsakis, Polychronis
- Authors: Nassar, Mohamed , Luxford, Len , Cole, Peter , Oatley, Giles , Koutsakis, Polychronis
- Date: 2019
- Type: Text , Journal article
- Relation: IEEE Communications Magazine Vol. 57, no. 6 (2019), p. 68-73
- Full Text: false
- Reviewed:
- Description: Recently, street furniture, including bins, seats, and bus shelters, has become smart as it has been equipped with environmental sensors, wireless modules, processors, and microcontrollers. Accordingly, smart furniture is expected to become a vital part of the IoT infrastructure and one of the drivers of future smart cities. This work focuses on how smart street furniture can be exploited within the IoT architecture as a basis of recommender systems, toward achieving smart cities' different components. We present and discuss recent relevant work as well as the key challenges and opportunities for future research. We explain that much work is still required when it comes to combining scalability, real-time processing, smart furniture, and recommender systems.
Security of Internet of Things devices : ethical hacking a drone and its mitigation strategies
- Karmakar, Gour, Petty, Mark, Ahmed, Hassan, Das, Rajkumar, Kamruzzaman, Joarder
- Authors: Karmakar, Gour , Petty, Mark , Ahmed, Hassan , Das, Rajkumar , Kamruzzaman, Joarder
- Date: 2022
- Type: Text , Conference paper
- Relation: 2022 IEEE Asia-Pacific Conference on Computer Science and Data Engineering, CSDE 2022, Gold Coast, Australia, 18-20 December 2022, Proceedings of IEEE Asia-Pacific Conference on Computer Science and Data Engineering, CSDE 2022
- Full Text: false
- Reviewed:
- Description: Internet of Things (IoT) is enabling us to introduce cost-effective, innovative and intelligent services in business, industrial, and government application domains. Despite these huge potential benefits of IoT applications, since the backbone of IoT is Internet and IoT connects numerous heterogeneous devices, IoT is vulnerable to many different attacks and thus has been a honey pot to the cybercriminals and hackers. For this reason, the attacks against IoT devices are increasing sharply in recent years. To prevent and detect these attacks, ethical hacking of different IoT devices are of paramount importance. This is because the lesson learnt from these ethical hackings can be exploited to develop effective and robust strategies and mitigation approaches to protect IoT devices from these attacks. There exist a few ethical hacking techniques reported in the literature such as hacking Android phones, Windows XP virtual machine and a DNS rebinding attack on IoT devices. In this paper, we implement an approach for the ethical hacking of a Drone and then hijack it. As an outcome of lesson learnt, the mitigation approaches on how to reduce the hacking on a drone is presented in this paper. © 2022 IEEE.
Machine learning-based optimal load balancing in software-defined networks
- Authors: Sharma, Aakanksha
- Date: 2022
- Type: Text , Thesis , PhD
- Full Text:
- Description: The global advancement of the Internet of Things (IoT) has poised the existing network traffic for explosive growth. The prediction in the literature shows that in the future, trillions of smart devices will connect to transfer useful information. Accommodating such proliferation of devices in the existing network infrastructure, referred to as the traditional network, is a significant challenge due to the absence of centralized control, making it tedious to implement the device management and network protocol updates. In addition, due to their inherently distributed features, applying machine learning mechanisms in traditional networks is demanding. Consequently, it leads to an imbalanced load in the network that affects the overall network Quality of Service (QoS). Expanding the existing infrastructure and manual traffic control methods are inadequate to cope with the exponential growth of IoT devices. Therefore, an intelligent system is necessary for future networks that can efficiently organize, manage, maintain, and optimize the growing networks. Software-defined network (SDN) has a holistic view of the network and is highly suitable for handling dynamic loads in the traditional network with a minimal update in the network infrastructure. However, the standard SDN architecture control plane has been designed for a single controller or multiple distributed controllers that faces severe bottleneck issues. Our initial research created a reference model for the traditional network, using the standard SDN (SDN) in a network simulator called NetSim. Based on the network traffic, the reference models consisted of light, modest and heavy networks depending on the number of connected IoT devices. Furthermore, the research was enhanced with a priority scheduling and congestion control algorithm in the standard SDN, named extended SDN (eSDN), which minimized the network congestion and performed better than the existing SDN. However, enhancement was suitable only for the small-scale network because, in a large-scale network, the eSDN does not support dynamic controller mapping in the network. Often, the same controller gets overloaded, leading to a single point of failure. Our exhaustive literature review shows that the majority of proposed solutions are based on static controller deployment without considering flow fluctuations and traffic bursts that lead to a lack of load balancing among controllers in real-time, eventually increasing the network latency. Often, the switch experiences a traffic burst, and consequently, the corresponding controller might overload. Therefore, to maintain the Quality of Service (QoS) in the network, it becomes imperative for the static controller to neutralize the on-the-fly traffic burst. Addressing the above-mentioned issues demands research critical to improving the QoS in load balancing, latency minimisation, and network reliability for next- generation networks. Our novel dynamic controller mapping algorithm with multiple- controller placement in the SDN is critical in solving the identified issues. In the dynamic controller approach (dSDN), the controllers are mapped dynamically as the load fluctuates. If any controller reaches its maximum threshold, the rest of the traffic will be diverted to another controller, significantly reducing delay and enhancing the overall performance. Our technique considers the latency and load fluctuation in the network and manages the situations where static mapping is ineffective in dealing with the dynamic flow variation. In addition, our novel approach adds more intelligence to the network with a Temporal Deep Q Learning (tDQN) approach for dynamic controller mapping when the flow fluctuates. In this technique, a multi-objective optimization problem for flow fluctuation is formulated to dynamically divert the traffic to the best-suited controller. The formulated technique is placed as an agent in the network controller to take care of all the routing decisions, which can solve the dynamic flow mapping and latency optimization without increasing the number of optimally placed controllers. Extensive simulation results show that the novel approach proposed in this thesis solves dynamic flow mapping by maintaining a balanced load among controllers and outperforms the existing traditional networks and SDN with priority scheduling and congestion control. Compared to traditional networks, tDQN provides a 47.48% increase in throughput, a 99.10% reduction in delay and a 97.98% reduction in jitter for heavy network traffic. The thesis also presents a few future research directions as possible extensions of the current work for further enhancement.
- Description: Doctor of Philosophy
- Authors: Sharma, Aakanksha
- Date: 2022
- Type: Text , Thesis , PhD
- Full Text:
- Description: The global advancement of the Internet of Things (IoT) has poised the existing network traffic for explosive growth. The prediction in the literature shows that in the future, trillions of smart devices will connect to transfer useful information. Accommodating such proliferation of devices in the existing network infrastructure, referred to as the traditional network, is a significant challenge due to the absence of centralized control, making it tedious to implement the device management and network protocol updates. In addition, due to their inherently distributed features, applying machine learning mechanisms in traditional networks is demanding. Consequently, it leads to an imbalanced load in the network that affects the overall network Quality of Service (QoS). Expanding the existing infrastructure and manual traffic control methods are inadequate to cope with the exponential growth of IoT devices. Therefore, an intelligent system is necessary for future networks that can efficiently organize, manage, maintain, and optimize the growing networks. Software-defined network (SDN) has a holistic view of the network and is highly suitable for handling dynamic loads in the traditional network with a minimal update in the network infrastructure. However, the standard SDN architecture control plane has been designed for a single controller or multiple distributed controllers that faces severe bottleneck issues. Our initial research created a reference model for the traditional network, using the standard SDN (SDN) in a network simulator called NetSim. Based on the network traffic, the reference models consisted of light, modest and heavy networks depending on the number of connected IoT devices. Furthermore, the research was enhanced with a priority scheduling and congestion control algorithm in the standard SDN, named extended SDN (eSDN), which minimized the network congestion and performed better than the existing SDN. However, enhancement was suitable only for the small-scale network because, in a large-scale network, the eSDN does not support dynamic controller mapping in the network. Often, the same controller gets overloaded, leading to a single point of failure. Our exhaustive literature review shows that the majority of proposed solutions are based on static controller deployment without considering flow fluctuations and traffic bursts that lead to a lack of load balancing among controllers in real-time, eventually increasing the network latency. Often, the switch experiences a traffic burst, and consequently, the corresponding controller might overload. Therefore, to maintain the Quality of Service (QoS) in the network, it becomes imperative for the static controller to neutralize the on-the-fly traffic burst. Addressing the above-mentioned issues demands research critical to improving the QoS in load balancing, latency minimisation, and network reliability for next- generation networks. Our novel dynamic controller mapping algorithm with multiple- controller placement in the SDN is critical in solving the identified issues. In the dynamic controller approach (dSDN), the controllers are mapped dynamically as the load fluctuates. If any controller reaches its maximum threshold, the rest of the traffic will be diverted to another controller, significantly reducing delay and enhancing the overall performance. Our technique considers the latency and load fluctuation in the network and manages the situations where static mapping is ineffective in dealing with the dynamic flow variation. In addition, our novel approach adds more intelligence to the network with a Temporal Deep Q Learning (tDQN) approach for dynamic controller mapping when the flow fluctuates. In this technique, a multi-objective optimization problem for flow fluctuation is formulated to dynamically divert the traffic to the best-suited controller. The formulated technique is placed as an agent in the network controller to take care of all the routing decisions, which can solve the dynamic flow mapping and latency optimization without increasing the number of optimally placed controllers. Extensive simulation results show that the novel approach proposed in this thesis solves dynamic flow mapping by maintaining a balanced load among controllers and outperforms the existing traditional networks and SDN with priority scheduling and congestion control. Compared to traditional networks, tDQN provides a 47.48% increase in throughput, a 99.10% reduction in delay and a 97.98% reduction in jitter for heavy network traffic. The thesis also presents a few future research directions as possible extensions of the current work for further enhancement.
- Description: Doctor of Philosophy
- Islam, Mohammad, Karmakar, Gour, Kamruzzaman, Joarder, Murshed, Manzur
- Authors: Islam, Mohammad , Karmakar, Gour , Kamruzzaman, Joarder , Murshed, Manzur
- Date: 2019
- Type: Text , Conference proceedings , Conference paper
- Relation: 18th IEEE International Conference on Trust, Security and Privacy in Computing and Communications/13th IEEE International Conference on Big Data Science and Engineering, TrustCom/BigDataSE 2019 p. 775-780
- Full Text: false
- Reviewed:
- Description: Trust of image sensor data is becoming increasingly important as the Internet of Things (IoT) applications grow from home appliances to surveillance. Up to our knowledge, there exists only one work in literature that estimates trustworthiness of digital images applied to forensic applications, based on a machine learning technique. The efficacy of this technique is heavily dependent on availability of an appropriate training set and adequate variation of IoT sensor data with noise, interference and environmental condition, but availability of such data cannot be assured always. Therefore, to overcome this limitation, a robust method capable of estimating trustworthy measure with high accuracy is needed. Lowering cost of sensors allow many IoT applications to use multiple types of sensors to observe the same event. In such cases, complementary multimodal data of one sensor can be exploited to measure trust level of another sensor data. In this paper, for the first time, we introduce a completely new approach to estimate the trustworthiness of an image sensor data using another sensor's numerical data. We develop a theoretical model using the Dempster-Shafer theory (DST) framework. The efficacy of the proposed model in estimating trust level of an image sensor data is analyzed by observing a fire event using IoT image and temperature sensor data in a residential setup under different scenarios. The proposed model produces highly accurate trust level in all scenarios with authentic and forged image data. © 2019 IEEE.
- Description: E1