A robust forgery detection method for copy-move and splicing attacks in images
- Islam, Mohammad, Karmakar, Gour, Kamruzzaman, Joarder, Murshed, Manzur
- Authors: Islam, Mohammad , Karmakar, Gour , Kamruzzaman, Joarder , Murshed, Manzur
- Date: 2020
- Type: Text , Journal article
- Relation: Electronics Vol. 9, no. 9 (2020), p. 1-22
- Full Text:
- Reviewed:
- Description: Internet of Things (IoT) image sensors, social media, and smartphones generate huge volumes of digital images every day. Easy availability and usability of photo editing tools have made forgery attacks, primarily splicing and copy-move attacks, effortless, causing cybercrimes to be on the rise. While several models have been proposed in the literature for detecting these attacks, the robustness of those models has not been investigated when (i) a low number of tampered images are available for model building or (ii) images from IoT sensors are distorted due to image rotation or scaling caused by unwanted or unexpected changes in sensors' physical set-up. Moreover, further improvement in detection accuracy is needed for real-word security management systems. To address these limitations, in this paper, an innovative image forgery detection method has been proposed based on Discrete Cosine Transformation (DCT) and Local Binary Pattern (LBP) and a new feature extraction method using the mean operator. First, images are divided into non-overlapping fixed size blocks and 2D block DCT is applied to capture changes due to image forgery. Then LBP is applied to the magnitude of the DCT array to enhance forgery artifacts. Finally, the mean value of a particular cell across all LBP blocks is computed, which yields a fixed number of features and presents a more computationally efficient method. Using Support Vector Machine (SVM), the proposed method has been extensively tested on four well known publicly available gray scale and color image forgery datasets, and additionally on an IoT based image forgery dataset that we built. Experimental results reveal the superiority of our proposed method over recent state-of-the-art methods in terms of widely used performance metrics and computational time and demonstrate robustness against low availability of forged training samples.
- Description: This research was funded by Research Priority Area (RPA) scholarship of Federation University Australia.
- Authors: Islam, Mohammad , Karmakar, Gour , Kamruzzaman, Joarder , Murshed, Manzur
- Date: 2020
- Type: Text , Journal article
- Relation: Electronics Vol. 9, no. 9 (2020), p. 1-22
- Full Text:
- Reviewed:
- Description: Internet of Things (IoT) image sensors, social media, and smartphones generate huge volumes of digital images every day. Easy availability and usability of photo editing tools have made forgery attacks, primarily splicing and copy-move attacks, effortless, causing cybercrimes to be on the rise. While several models have been proposed in the literature for detecting these attacks, the robustness of those models has not been investigated when (i) a low number of tampered images are available for model building or (ii) images from IoT sensors are distorted due to image rotation or scaling caused by unwanted or unexpected changes in sensors' physical set-up. Moreover, further improvement in detection accuracy is needed for real-word security management systems. To address these limitations, in this paper, an innovative image forgery detection method has been proposed based on Discrete Cosine Transformation (DCT) and Local Binary Pattern (LBP) and a new feature extraction method using the mean operator. First, images are divided into non-overlapping fixed size blocks and 2D block DCT is applied to capture changes due to image forgery. Then LBP is applied to the magnitude of the DCT array to enhance forgery artifacts. Finally, the mean value of a particular cell across all LBP blocks is computed, which yields a fixed number of features and presents a more computationally efficient method. Using Support Vector Machine (SVM), the proposed method has been extensively tested on four well known publicly available gray scale and color image forgery datasets, and additionally on an IoT based image forgery dataset that we built. Experimental results reveal the superiority of our proposed method over recent state-of-the-art methods in terms of widely used performance metrics and computational time and demonstrate robustness against low availability of forged training samples.
- Description: This research was funded by Research Priority Area (RPA) scholarship of Federation University Australia.
Continuous patient monitoring with a patient centric agent : A block architecture
- Uddin, Ashraf, Stranieri, Andrew, Gondal, Iqbal, Balasubramanian, Venki
- Authors: Uddin, Ashraf , Stranieri, Andrew , Gondal, Iqbal , Balasubramanian, Venki
- Date: 2018
- Type: Text , Journal article
- Relation: IEEE Access Vol. 6, no. (2018), p. 32700-32726
- Full Text:
- Reviewed:
- Description: The Internet of Things (IoT) has facilitated services without human intervention for a wide range of applications, including continuous remote patient monitoring (RPM). However, the complexity of RPM architectures, the size of data sets generated and limited power capacity of devices make RPM challenging. In this paper, we propose a tier-based End to End architecture for continuous patient monitoring that has a patient centric agent (PCA) as its center piece. The PCA manages a blockchain component to preserve privacy when data streaming from body area sensors needs to be stored securely. The PCA based architecture includes a lightweight communication protocol to enforce security of data through different segments of a continuous, real time patient monitoring architecture. The architecture includes the insertion of data into a personal blockchain to facilitate data sharing amongst healthcare professionals and integration into electronic health records while ensuring privacy is maintained. The blockchain is customized for RPM with modifications that include having the PCA select a Miner to reduce computational effort, enabling the PCA to manage multiple blockchains for the same patient, and the modification of each block with a prefix tree to minimize energy consumption and incorporate secure transaction payments. Simulation results demonstrate that security and privacy can be enhanced in RPM with the PCA based End to End architecture.
- Authors: Uddin, Ashraf , Stranieri, Andrew , Gondal, Iqbal , Balasubramanian, Venki
- Date: 2018
- Type: Text , Journal article
- Relation: IEEE Access Vol. 6, no. (2018), p. 32700-32726
- Full Text:
- Reviewed:
- Description: The Internet of Things (IoT) has facilitated services without human intervention for a wide range of applications, including continuous remote patient monitoring (RPM). However, the complexity of RPM architectures, the size of data sets generated and limited power capacity of devices make RPM challenging. In this paper, we propose a tier-based End to End architecture for continuous patient monitoring that has a patient centric agent (PCA) as its center piece. The PCA manages a blockchain component to preserve privacy when data streaming from body area sensors needs to be stored securely. The PCA based architecture includes a lightweight communication protocol to enforce security of data through different segments of a continuous, real time patient monitoring architecture. The architecture includes the insertion of data into a personal blockchain to facilitate data sharing amongst healthcare professionals and integration into electronic health records while ensuring privacy is maintained. The blockchain is customized for RPM with modifications that include having the PCA select a Miner to reduce computational effort, enabling the PCA to manage multiple blockchains for the same patient, and the modification of each block with a prefix tree to minimize energy consumption and incorporate secure transaction payments. Simulation results demonstrate that security and privacy can be enhanced in RPM with the PCA based End to End architecture.
SmartEdge : An end-to-end encryption framework for an edge-enabled smart city application
- Jan, Mian, Zhang, Wenjing, Usman, Muhammad, Tan, Zhiyuan, Khan, Fazlullah, Luo, Entao
- Authors: Jan, Mian , Zhang, Wenjing , Usman, Muhammad , Tan, Zhiyuan , Khan, Fazlullah , Luo, Entao
- Date: 2019
- Type: Text , Journal article
- Relation: Journal of Network and Computer Applications Vol. 137, no. (2019), p. 1-10
- Full Text:
- Reviewed:
- Description: The Internet of Things (IoT) has the potential to transform communities around the globe into smart cities. The massive deployment of sensor-embedded devices in the smart cities generates voluminous amounts of data that need to be stored and processed in an efficient manner. Long-haul data transmission to the remote cloud data centers leads to higher delay and bandwidth consumption. In smart cities, the delay-sensitive applications have stringent requirements in term of response time. To reduce latency and bandwidth consumption, edge computing plays a pivotal role. The resource-constrained smart devices at the network core need to offload computationally complex tasks to the edge devices located in their vicinity and have relatively higher resources. In this paper, we propose an end-to-end encryption framework, SmartEdge, for a smart city application by executing computationally complex tasks at the network edge and cloud data centers. Using a lightweight symmetric encryption technique, we establish a secure connection among the smart core devices for multimedia streaming towards the registered and verified edge devices. Upon receiving the data, the edge devices encrypts the multimedia streams, encodes them, and broadcast to the cloud data centers. Prior to the broadcasting, each edge device establishes a secured connection with a data center that relies on the combination of symmetric and asymmetric encryption techniques. In SmartEdge, the execution of a lightweight encryption technique at the resource-constrained smart devices, and relatively complex encryption techniques at the network edge and cloud data centers reduce the resource utilization of the entire network. The proposed framework reduces the response time, security overhead, computational and communication costs, and has a lower end-to-end encryption delay for participating entities. Moreover, the proposed scheme is highly resilient against various adversarial attacks.
- Authors: Jan, Mian , Zhang, Wenjing , Usman, Muhammad , Tan, Zhiyuan , Khan, Fazlullah , Luo, Entao
- Date: 2019
- Type: Text , Journal article
- Relation: Journal of Network and Computer Applications Vol. 137, no. (2019), p. 1-10
- Full Text:
- Reviewed:
- Description: The Internet of Things (IoT) has the potential to transform communities around the globe into smart cities. The massive deployment of sensor-embedded devices in the smart cities generates voluminous amounts of data that need to be stored and processed in an efficient manner. Long-haul data transmission to the remote cloud data centers leads to higher delay and bandwidth consumption. In smart cities, the delay-sensitive applications have stringent requirements in term of response time. To reduce latency and bandwidth consumption, edge computing plays a pivotal role. The resource-constrained smart devices at the network core need to offload computationally complex tasks to the edge devices located in their vicinity and have relatively higher resources. In this paper, we propose an end-to-end encryption framework, SmartEdge, for a smart city application by executing computationally complex tasks at the network edge and cloud data centers. Using a lightweight symmetric encryption technique, we establish a secure connection among the smart core devices for multimedia streaming towards the registered and verified edge devices. Upon receiving the data, the edge devices encrypts the multimedia streams, encodes them, and broadcast to the cloud data centers. Prior to the broadcasting, each edge device establishes a secured connection with a data center that relies on the combination of symmetric and asymmetric encryption techniques. In SmartEdge, the execution of a lightweight encryption technique at the resource-constrained smart devices, and relatively complex encryption techniques at the network edge and cloud data centers reduce the resource utilization of the entire network. The proposed framework reduces the response time, security overhead, computational and communication costs, and has a lower end-to-end encryption delay for participating entities. Moreover, the proposed scheme is highly resilient against various adversarial attacks.
Blockchain leveraged decentralized IoT eHealth framework
- Uddin, Ashraf, Stranieri, Andrew, Gondal, Iqbal, Balasubramanian, Venki
- Authors: Uddin, Ashraf , Stranieri, Andrew , Gondal, Iqbal , Balasubramanian, Venki
- Date: 2020
- Type: Text , Journal article
- Relation: Internet of Things Vol. 9, no. March 2020 p. 100159
- Full Text:
- Reviewed:
- Description: Blockchain technologies recently emerging for eHealth, can facilitate a secure, decentral- ized and patient-driven, record management system. However, Blockchain technologies cannot accommodate the storage of data generated from IoT devices in remote patient management (RPM) settings as this application requires a fast consensus mechanism, care- ful management of keys and enhanced protocols for privacy. In this paper, we propose a Blockchain leveraged decentralized eHealth architecture which comprises three layers: (1) The Sensing layer –Body Area Sensor Networks include medical sensors typically on or in a patient body transmitting data to a smartphone. (2) The NEAR processing layer –Edge Networks consist of devices at one hop from data sensing IoT devices. (3) The FAR pro- cessing layer –Core Networks comprise Cloud or other high computing servers). A Patient Agent (PA) software replicated on the three layers processes medical data to ensure reli- able, secure and private communication. The PA executes a lightweight Blockchain consen- sus mechanism and utilizes a Blockchain leveraged task-offloading algorithm to ensure pa- tient’s privacy while outsourcing tasks. Performance analysis of the decentralized eHealth architecture has been conducted to demonstrate the feasibility of the system in the pro- cessing and storage of RPM data.
- Authors: Uddin, Ashraf , Stranieri, Andrew , Gondal, Iqbal , Balasubramanian, Venki
- Date: 2020
- Type: Text , Journal article
- Relation: Internet of Things Vol. 9, no. March 2020 p. 100159
- Full Text:
- Reviewed:
- Description: Blockchain technologies recently emerging for eHealth, can facilitate a secure, decentral- ized and patient-driven, record management system. However, Blockchain technologies cannot accommodate the storage of data generated from IoT devices in remote patient management (RPM) settings as this application requires a fast consensus mechanism, care- ful management of keys and enhanced protocols for privacy. In this paper, we propose a Blockchain leveraged decentralized eHealth architecture which comprises three layers: (1) The Sensing layer –Body Area Sensor Networks include medical sensors typically on or in a patient body transmitting data to a smartphone. (2) The NEAR processing layer –Edge Networks consist of devices at one hop from data sensing IoT devices. (3) The FAR pro- cessing layer –Core Networks comprise Cloud or other high computing servers). A Patient Agent (PA) software replicated on the three layers processes medical data to ensure reli- able, secure and private communication. The PA executes a lightweight Blockchain consen- sus mechanism and utilizes a Blockchain leveraged task-offloading algorithm to ensure pa- tient’s privacy while outsourcing tasks. Performance analysis of the decentralized eHealth architecture has been conducted to demonstrate the feasibility of the system in the pro- cessing and storage of RPM data.
AI and IoT-Enabled smart exoskeleton system for rehabilitation of paralyzed people in connected communities
- Jacob, Sunil, Alagirisamy, Mukil, Xi, Chen, Balasubramanian, Venki, Srinivasan, Ram
- Authors: Jacob, Sunil , Alagirisamy, Mukil , Xi, Chen , Balasubramanian, Venki , Srinivasan, Ram
- Date: 2021
- Type: Text , Journal article
- Relation: IEEE Access Vol. 9, no. (2021), p. 80340-80350
- Full Text:
- Reviewed:
- Description: In recent years, the number of cases of spinal cord injuries, stroke and other nervous impairments have led to an increase in the number of paralyzed patients worldwide. Rehabilitation that can aid and enhance the lives of such patients is the need of the hour. Exoskeletons have been found as one of the popular means of rehabilitation. The existing exoskeletons use techniques that impose limitations on adaptability, instant response and continuous control. Also most of them are expensive, bulky, and requires high level of training. To overcome all the above limitations, this paper introduces an Artificial Intelligence (AI) powered Smart and light weight Exoskeleton System (AI-IoT-SES) which receives data from various sensors, classifies them intelligently and generates the desired commands via Internet of Things (IoT) for rendering rehabilitation and support with the help of caretakers for paralyzed patients in smart and connected communities. In the proposed system, the signals collected from the exoskeleton sensors are processed using AI-assisted navigation module, and helps the caretakers in guiding, communicating and controlling the movements of the exoskeleton integrated to the patients. The navigation module uses AI and IoT enabled Simultaneous Localization and Mapping (SLAM). The casualties of a paralyzed person are reduced by commissioning the IoT platform to exchange data from the intelligent sensors with the remote location of the caretaker to monitor the real time movement and navigation of the exoskeleton. The automated exoskeleton detects and take decisions on navigation thereby improving the life conditions of such patients. The experimental results simulated using MATLAB shows that the proposed system is the ideal method for rendering rehabilitation and support for paralyzed patients in smart communities. © 2013 IEEE. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Venki Balasubramanian” is provided in this record**
- Authors: Jacob, Sunil , Alagirisamy, Mukil , Xi, Chen , Balasubramanian, Venki , Srinivasan, Ram
- Date: 2021
- Type: Text , Journal article
- Relation: IEEE Access Vol. 9, no. (2021), p. 80340-80350
- Full Text:
- Reviewed:
- Description: In recent years, the number of cases of spinal cord injuries, stroke and other nervous impairments have led to an increase in the number of paralyzed patients worldwide. Rehabilitation that can aid and enhance the lives of such patients is the need of the hour. Exoskeletons have been found as one of the popular means of rehabilitation. The existing exoskeletons use techniques that impose limitations on adaptability, instant response and continuous control. Also most of them are expensive, bulky, and requires high level of training. To overcome all the above limitations, this paper introduces an Artificial Intelligence (AI) powered Smart and light weight Exoskeleton System (AI-IoT-SES) which receives data from various sensors, classifies them intelligently and generates the desired commands via Internet of Things (IoT) for rendering rehabilitation and support with the help of caretakers for paralyzed patients in smart and connected communities. In the proposed system, the signals collected from the exoskeleton sensors are processed using AI-assisted navigation module, and helps the caretakers in guiding, communicating and controlling the movements of the exoskeleton integrated to the patients. The navigation module uses AI and IoT enabled Simultaneous Localization and Mapping (SLAM). The casualties of a paralyzed person are reduced by commissioning the IoT platform to exchange data from the intelligent sensors with the remote location of the caretaker to monitor the real time movement and navigation of the exoskeleton. The automated exoskeleton detects and take decisions on navigation thereby improving the life conditions of such patients. The experimental results simulated using MATLAB shows that the proposed system is the ideal method for rendering rehabilitation and support for paralyzed patients in smart communities. © 2013 IEEE. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Venki Balasubramanian” is provided in this record**
A patient agent controlled customized blockchain based framework for internet of things
- Authors: Uddin, Md Ashraf
- Date: 2021
- Type: Text , Thesis , PhD
- Full Text:
- Description: Although Blockchain implementations have emerged as revolutionary technologies for various industrial applications including cryptocurrencies, they have not been widely deployed to store data streaming from sensors to remote servers in architectures known as Internet of Things. New Blockchain for the Internet of Things models promise secure solutions for eHealth, smart cities, and other applications. These models pave the way for continuous monitoring of patient’s physiological signs with wearable sensors to augment traditional medical practice without recourse to storing data with a trusted authority. However, existing Blockchain algorithms cannot accommodate the huge volumes, security, and privacy requirements of health data. In this thesis, our first contribution is an End-to-End secure eHealth architecture that introduces an intelligent Patient Centric Agent. The Patient Centric Agent executing on dedicated hardware manages the storage and access of streams of sensors generated health data, into a customized Blockchain and other less secure repositories. As IoT devices cannot host Blockchain technology due to their limited memory, power, and computational resources, the Patient Centric Agent coordinates and communicates with a private customized Blockchain on behalf of the wearable devices. While the adoption of a Patient Centric Agent offers solutions for addressing continuous monitoring of patients’ health, dealing with storage, data privacy and network security issues, the architecture is vulnerable to Denial of Services(DoS) and single point of failure attacks. To address this issue, we advance a second contribution; a decentralised eHealth system in which the Patient Centric Agent is replicated at three levels: Sensing Layer, NEAR Processing Layer and FAR Processing Layer. The functionalities of the Patient Centric Agent are customized to manage the tasks of the three levels. Simulations confirm protection of the architecture against DoS attacks. Few patients require all their health data to be stored in Blockchain repositories but instead need to select an appropriate storage medium for each chunk of data by matching their personal needs and preferences with features of candidate storage mediums. Motivated by this context, we advance third contribution; a recommendation model for health data storage that can accommodate patient preferences and make storage decisions rapidly, in real-time, even with streamed data. The mapping between health data features and characteristics of each repository is learned using machine learning. The Blockchain’s capacity to make transactions and store records without central oversight enables its application for IoT networks outside health such as underwater IoT networks where the unattended nature of the nodes threatens their security and privacy. However, underwater IoT differs from ground IoT as acoustics signals are the communication media leading to high propagation delays, high error rates exacerbated by turbulent water currents. Our fourth contribution is a customized Blockchain leveraged framework with the model of Patient-Centric Agent renamed as Smart Agent for securely monitoring underwater IoT. Finally, the smart Agent has been investigated in developing an IoT smart home or cities monitoring framework. The key algorithms underpinning to each contribution have been implemented and analysed using simulators.
- Description: Doctor of Philosophy
- Authors: Uddin, Md Ashraf
- Date: 2021
- Type: Text , Thesis , PhD
- Full Text:
- Description: Although Blockchain implementations have emerged as revolutionary technologies for various industrial applications including cryptocurrencies, they have not been widely deployed to store data streaming from sensors to remote servers in architectures known as Internet of Things. New Blockchain for the Internet of Things models promise secure solutions for eHealth, smart cities, and other applications. These models pave the way for continuous monitoring of patient’s physiological signs with wearable sensors to augment traditional medical practice without recourse to storing data with a trusted authority. However, existing Blockchain algorithms cannot accommodate the huge volumes, security, and privacy requirements of health data. In this thesis, our first contribution is an End-to-End secure eHealth architecture that introduces an intelligent Patient Centric Agent. The Patient Centric Agent executing on dedicated hardware manages the storage and access of streams of sensors generated health data, into a customized Blockchain and other less secure repositories. As IoT devices cannot host Blockchain technology due to their limited memory, power, and computational resources, the Patient Centric Agent coordinates and communicates with a private customized Blockchain on behalf of the wearable devices. While the adoption of a Patient Centric Agent offers solutions for addressing continuous monitoring of patients’ health, dealing with storage, data privacy and network security issues, the architecture is vulnerable to Denial of Services(DoS) and single point of failure attacks. To address this issue, we advance a second contribution; a decentralised eHealth system in which the Patient Centric Agent is replicated at three levels: Sensing Layer, NEAR Processing Layer and FAR Processing Layer. The functionalities of the Patient Centric Agent are customized to manage the tasks of the three levels. Simulations confirm protection of the architecture against DoS attacks. Few patients require all their health data to be stored in Blockchain repositories but instead need to select an appropriate storage medium for each chunk of data by matching their personal needs and preferences with features of candidate storage mediums. Motivated by this context, we advance third contribution; a recommendation model for health data storage that can accommodate patient preferences and make storage decisions rapidly, in real-time, even with streamed data. The mapping between health data features and characteristics of each repository is learned using machine learning. The Blockchain’s capacity to make transactions and store records without central oversight enables its application for IoT networks outside health such as underwater IoT networks where the unattended nature of the nodes threatens their security and privacy. However, underwater IoT differs from ground IoT as acoustics signals are the communication media leading to high propagation delays, high error rates exacerbated by turbulent water currents. Our fourth contribution is a customized Blockchain leveraged framework with the model of Patient-Centric Agent renamed as Smart Agent for securely monitoring underwater IoT. Finally, the smart Agent has been investigated in developing an IoT smart home or cities monitoring framework. The key algorithms underpinning to each contribution have been implemented and analysed using simulators.
- Description: Doctor of Philosophy
A lightweight blockchain based framework for underwater ioT
- Uddin, Ashraf, Stranieri, Andrew, Gondal, Iqbal, Balasurbramanian, Venki
- Authors: Uddin, Ashraf , Stranieri, Andrew , Gondal, Iqbal , Balasurbramanian, Venki
- Date: 2019
- Type: Text , Journal article
- Relation: Electronics (Switzerland) Vol. 8, no. 12 (2019), p.
- Full Text:
- Reviewed:
- Description: The Internet of Things (IoT) has facilitated services without human intervention for a wide range of applications, including underwater monitoring, where sensors are located at various depths, and data must be transmitted to surface base stations for storage and processing. Ensuring that data transmitted across hierarchical sensor networks are kept secure and private without high computational cost remains a challenge. In this paper, we propose a multilevel sensor monitoring architecture. Our proposal includes a layer-based architecture consisting of Fog and Cloud elements to process and store and process the Internet of Underwater Things (IoUT) data securely with customized Blockchain technology. The secure routing of IoUT data through the hierarchical topology ensures the legitimacy of data sources. A security and performance analysis was performed to show that the architecture can collect data from IoUT devices in the monitoring region efficiently and securely. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
- Authors: Uddin, Ashraf , Stranieri, Andrew , Gondal, Iqbal , Balasurbramanian, Venki
- Date: 2019
- Type: Text , Journal article
- Relation: Electronics (Switzerland) Vol. 8, no. 12 (2019), p.
- Full Text:
- Reviewed:
- Description: The Internet of Things (IoT) has facilitated services without human intervention for a wide range of applications, including underwater monitoring, where sensors are located at various depths, and data must be transmitted to surface base stations for storage and processing. Ensuring that data transmitted across hierarchical sensor networks are kept secure and private without high computational cost remains a challenge. In this paper, we propose a multilevel sensor monitoring architecture. Our proposal includes a layer-based architecture consisting of Fog and Cloud elements to process and store and process the Internet of Underwater Things (IoUT) data securely with customized Blockchain technology. The secure routing of IoUT data through the hierarchical topology ensures the legitimacy of data sources. A security and performance analysis was performed to show that the architecture can collect data from IoUT devices in the monitoring region efficiently and securely. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
A secured framework for SDN-based edge computing in IoT-enabled healthcare system
- Li, Junxia, Cai, Jinjin, Khan, Fazlullah, Rehman, Ateeq, Balasubramanian, Venki
- Authors: Li, Junxia , Cai, Jinjin , Khan, Fazlullah , Rehman, Ateeq , Balasubramanian, Venki
- Date: 2020
- Type: Text , Journal article
- Relation: IEEE Access Vol. 8, no. (2020), p. 135479-135490
- Full Text:
- Reviewed:
- Description: The Internet of Things (IoT) consists of resource-constrained smart devices capable to sense and process data. It connects a huge number of smart sensing devices, i.e., things, and heterogeneous networks. The IoT is incorporated into different applications, such as smart health, smart home, smart grid, etc. The concept of smart healthcare has emerged in different countries, where pilot projects of healthcare facilities are analyzed. In IoT-enabled healthcare systems, the security of IoT devices and associated data is very important, whereas Edge computing is a promising architecture that solves their computational and processing problems. Edge computing is economical and has the potential to provide low latency data services by improving the communication and computation speed of IoT devices in a healthcare system. In Edge-based IoT-enabled healthcare systems, load balancing, network optimization, and efficient resource utilization are accurately performed using artificial intelligence (AI), i.e., intelligent software-defined network (SDN) controller. SDN-based Edge computing is helpful in the efficient utilization of limited resources of IoT devices. However, these low powered devices and associated data (private sensitive data of patients) are prone to various security threats. Therefore, in this paper, we design a secure framework for SDN-based Edge computing in IoT-enabled healthcare system. In the proposed framework, the IoT devices are authenticated by the Edge servers using a lightweight authentication scheme. After authentication, these devices collect data from the patients and send them to the Edge servers for storage, processing, and analyses. The Edge servers are connected with an SDN controller, which performs load balancing, network optimization, and efficient resource utilization in the healthcare system. The proposed framework is evaluated using computer-based simulations. The results demonstrate that the proposed framework provides better solutions for IoT-enabled healthcare systems. © 2013 IEEE. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Venki Balasubramaniam” is provided in this record**
- Authors: Li, Junxia , Cai, Jinjin , Khan, Fazlullah , Rehman, Ateeq , Balasubramanian, Venki
- Date: 2020
- Type: Text , Journal article
- Relation: IEEE Access Vol. 8, no. (2020), p. 135479-135490
- Full Text:
- Reviewed:
- Description: The Internet of Things (IoT) consists of resource-constrained smart devices capable to sense and process data. It connects a huge number of smart sensing devices, i.e., things, and heterogeneous networks. The IoT is incorporated into different applications, such as smart health, smart home, smart grid, etc. The concept of smart healthcare has emerged in different countries, where pilot projects of healthcare facilities are analyzed. In IoT-enabled healthcare systems, the security of IoT devices and associated data is very important, whereas Edge computing is a promising architecture that solves their computational and processing problems. Edge computing is economical and has the potential to provide low latency data services by improving the communication and computation speed of IoT devices in a healthcare system. In Edge-based IoT-enabled healthcare systems, load balancing, network optimization, and efficient resource utilization are accurately performed using artificial intelligence (AI), i.e., intelligent software-defined network (SDN) controller. SDN-based Edge computing is helpful in the efficient utilization of limited resources of IoT devices. However, these low powered devices and associated data (private sensitive data of patients) are prone to various security threats. Therefore, in this paper, we design a secure framework for SDN-based Edge computing in IoT-enabled healthcare system. In the proposed framework, the IoT devices are authenticated by the Edge servers using a lightweight authentication scheme. After authentication, these devices collect data from the patients and send them to the Edge servers for storage, processing, and analyses. The Edge servers are connected with an SDN controller, which performs load balancing, network optimization, and efficient resource utilization in the healthcare system. The proposed framework is evaluated using computer-based simulations. The results demonstrate that the proposed framework provides better solutions for IoT-enabled healthcare systems. © 2013 IEEE. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Venki Balasubramaniam” is provided in this record**
A Survey on Behavioral Pattern Mining from Sensor Data in Internet of Things
- Rashid, Md Mamunur, Kamruzzaman, Joarder, Hassan, Mohammad, Shahriar Shafin, Sakib, Bhuiyan, Md Zakirul
- Authors: Rashid, Md Mamunur , Kamruzzaman, Joarder , Hassan, Mohammad , Shahriar Shafin, Sakib , Bhuiyan, Md Zakirul
- Date: 2020
- Type: Text , Journal article
- Relation: IEEE Access Vol. 8, no. (2020), p. 33318-33341
- Full Text:
- Reviewed:
- Description: The deployment of large-scale wireless sensor networks (WSNs) for the Internet of Things (IoT) applications is increasing day-by-day, especially with the emergence of smart city services. The sensor data streams generated from these applications are largely dynamic, heterogeneous, and often geographically distributed over large areas. For high-value use in business, industry and services, these data streams must be mined to extract insightful knowledge, such as about monitoring (e.g., discovering certain behaviors over a deployed area) or network diagnostics (e.g., predicting faulty sensor nodes). However, due to the inherent constraints of sensor networks and application requirements, traditional data mining techniques cannot be directly used to mine IoT data streams efficiently and accurately in real-time. In the last decade, a number of works have been reported in the literature proposing behavioral pattern mining algorithms for sensor networks. This paper presents the technical challenges that need to be considered for mining sensor data. It then provides a thorough review of the mining techniques proposed in the recent literature to mine behavioral patterns from sensor data in IoT, and their characteristics and differences are highlighted and compared. We also propose a behavioral pattern mining framework for IoT and discuss possible future research directions in this area. © 2013 IEEE.
- Authors: Rashid, Md Mamunur , Kamruzzaman, Joarder , Hassan, Mohammad , Shahriar Shafin, Sakib , Bhuiyan, Md Zakirul
- Date: 2020
- Type: Text , Journal article
- Relation: IEEE Access Vol. 8, no. (2020), p. 33318-33341
- Full Text:
- Reviewed:
- Description: The deployment of large-scale wireless sensor networks (WSNs) for the Internet of Things (IoT) applications is increasing day-by-day, especially with the emergence of smart city services. The sensor data streams generated from these applications are largely dynamic, heterogeneous, and often geographically distributed over large areas. For high-value use in business, industry and services, these data streams must be mined to extract insightful knowledge, such as about monitoring (e.g., discovering certain behaviors over a deployed area) or network diagnostics (e.g., predicting faulty sensor nodes). However, due to the inherent constraints of sensor networks and application requirements, traditional data mining techniques cannot be directly used to mine IoT data streams efficiently and accurately in real-time. In the last decade, a number of works have been reported in the literature proposing behavioral pattern mining algorithms for sensor networks. This paper presents the technical challenges that need to be considered for mining sensor data. It then provides a thorough review of the mining techniques proposed in the recent literature to mine behavioral patterns from sensor data in IoT, and their characteristics and differences are highlighted and compared. We also propose a behavioral pattern mining framework for IoT and discuss possible future research directions in this area. © 2013 IEEE.
Blockchain leveraged task migration in body area sensor networks
- Uddin, Ashraf, Stranieri, Andrew, Gondal, Iqbal, Balasubramanian, Venki
- Authors: Uddin, Ashraf , Stranieri, Andrew , Gondal, Iqbal , Balasubramanian, Venki
- Date: 2019
- Type: Text , Conference proceedings , Conference paper
- Relation: 25th Asia-Pacific Conference on Communications, APCC 2019 p. 177-184
- Full Text:
- Reviewed:
- Description: Blockchain technologies emerging for healthcare support secure health data sharing with greater interoperability among different heterogeneous systems. However, the collection and storage of data generated from Body Area Sensor Net-works(BASN) for migration to high processing power computing services requires an efficient BASN architecture. We present a decentralized BASN architecture that involves devices at three levels; 1) Body Area Sensor Network-medical sensors typically on or in patient's body transmitting data to a Smartphone, 2) Fog/Edge, and 3) Cloud. We propose that a Patient Agent(PA) replicated on the Smartphone, Fog and Cloud servers processes medical data and execute a task offloading algorithm by leveraging a Blockchain. Performance analysis is conducted to demonstrate the feasibility of the proposed Blockchain leveraged, distributed Patient Agent controlled BASN. © 2019 IEEE.
- Description: E1
- Authors: Uddin, Ashraf , Stranieri, Andrew , Gondal, Iqbal , Balasubramanian, Venki
- Date: 2019
- Type: Text , Conference proceedings , Conference paper
- Relation: 25th Asia-Pacific Conference on Communications, APCC 2019 p. 177-184
- Full Text:
- Reviewed:
- Description: Blockchain technologies emerging for healthcare support secure health data sharing with greater interoperability among different heterogeneous systems. However, the collection and storage of data generated from Body Area Sensor Net-works(BASN) for migration to high processing power computing services requires an efficient BASN architecture. We present a decentralized BASN architecture that involves devices at three levels; 1) Body Area Sensor Network-medical sensors typically on or in patient's body transmitting data to a Smartphone, 2) Fog/Edge, and 3) Cloud. We propose that a Patient Agent(PA) replicated on the Smartphone, Fog and Cloud servers processes medical data and execute a task offloading algorithm by leveraging a Blockchain. Performance analysis is conducted to demonstrate the feasibility of the proposed Blockchain leveraged, distributed Patient Agent controlled BASN. © 2019 IEEE.
- Description: E1
Implicit feedback-based group recommender system for internet of things applications
- Guo, Zhiwei, Yu, Keping, Guo, Tan, Bashir, Ali, Imran, Muhammad, Guizani, Mohsen
- Authors: Guo, Zhiwei , Yu, Keping , Guo, Tan , Bashir, Ali , Imran, Muhammad , Guizani, Mohsen
- Date: 2020
- Type: Text , Conference paper
- Relation: 2020 IEEE Global Communications Conference, GLOBECOM 2020, Virtual Taipei, 7-11 December 2020 Vol. 2020-January
- Full Text:
- Reviewed:
- Description: With the prevalence of Internet of Things (IoT)-based social media applications, the distance among people has been greatly shortened. As a result, recommender systems in IoT-based social media need to be developed oriented to groups of users rather than individual users. However, existing methods were highly dependent on explicit preference feedbacks, ignoring scenarios of implicit feedbacks. To remedy such gap, this paper proposes an implicit feedback-based group recommender system using probabilistic inference and non-cooperative game (GREPING) for IoT-based social media. Particularly, unknown process variables can be estimated from observable implicit feedbacks via Bayesian posterior probability inference. In addition, the globally optimal recommendation results can be calculated with the aid of non-cooperative game. Two groups of experiments are conducted to assess the GREPING from two aspects: efficiency and robustness. Experimental results show obvious promotion and considerable stability of the GREPING compared to baseline methods. © 2020 IEEE.
- Authors: Guo, Zhiwei , Yu, Keping , Guo, Tan , Bashir, Ali , Imran, Muhammad , Guizani, Mohsen
- Date: 2020
- Type: Text , Conference paper
- Relation: 2020 IEEE Global Communications Conference, GLOBECOM 2020, Virtual Taipei, 7-11 December 2020 Vol. 2020-January
- Full Text:
- Reviewed:
- Description: With the prevalence of Internet of Things (IoT)-based social media applications, the distance among people has been greatly shortened. As a result, recommender systems in IoT-based social media need to be developed oriented to groups of users rather than individual users. However, existing methods were highly dependent on explicit preference feedbacks, ignoring scenarios of implicit feedbacks. To remedy such gap, this paper proposes an implicit feedback-based group recommender system using probabilistic inference and non-cooperative game (GREPING) for IoT-based social media. Particularly, unknown process variables can be estimated from observable implicit feedbacks via Bayesian posterior probability inference. In addition, the globally optimal recommendation results can be calculated with the aid of non-cooperative game. Two groups of experiments are conducted to assess the GREPING from two aspects: efficiency and robustness. Experimental results show obvious promotion and considerable stability of the GREPING compared to baseline methods. © 2020 IEEE.
The role of big data analytics in industrial internet of things
- Rehman, Muhammad, Yaqoob, Ibrar, Salah, Khaled, Imran, Muhammad, Jayaraman, Prem, Perera, Charith
- Authors: Rehman, Muhammad , Yaqoob, Ibrar , Salah, Khaled , Imran, Muhammad , Jayaraman, Prem , Perera, Charith
- Date: 2019
- Type: Text , Journal article
- Relation: Future Generation Computer Systems Vol. 99, no. (2019), p. 247-259
- Full Text:
- Reviewed:
- Description: Big data production in industrial Internet of Things (IIoT) is evident due to the massive deployment of sensors and Internet of Things (IoT) devices. However, big data processing is challenging due to limited computational, networking and storage resources at IoT device-end. Big data analytics (BDA) is expected to provide operational- and customer-level intelligence in IIoT systems. Although numerous studies on IIoT and BDA exist, only a few studies have explored the convergence of the two paradigms. In this study, we investigate the recent BDA technologies, algorithms and techniques that can lead to the development of intelligent IIoT systems. We devise a taxonomy by classifying and categorising the literature on the basis of important parameters (e.g. data sources, analytics tools, analytics techniques, requirements, industrial analytics applications and analytics types). We present the frameworks and case studies of the various enterprises that have benefited from BDA. We also enumerate the considerable opportunities introduced by BDA in IIoT. We identify and discuss the indispensable challenges that remain to be addressed, serving as future research directions. © 2019 Elsevier B.V.
- Authors: Rehman, Muhammad , Yaqoob, Ibrar , Salah, Khaled , Imran, Muhammad , Jayaraman, Prem , Perera, Charith
- Date: 2019
- Type: Text , Journal article
- Relation: Future Generation Computer Systems Vol. 99, no. (2019), p. 247-259
- Full Text:
- Reviewed:
- Description: Big data production in industrial Internet of Things (IIoT) is evident due to the massive deployment of sensors and Internet of Things (IoT) devices. However, big data processing is challenging due to limited computational, networking and storage resources at IoT device-end. Big data analytics (BDA) is expected to provide operational- and customer-level intelligence in IIoT systems. Although numerous studies on IIoT and BDA exist, only a few studies have explored the convergence of the two paradigms. In this study, we investigate the recent BDA technologies, algorithms and techniques that can lead to the development of intelligent IIoT systems. We devise a taxonomy by classifying and categorising the literature on the basis of important parameters (e.g. data sources, analytics tools, analytics techniques, requirements, industrial analytics applications and analytics types). We present the frameworks and case studies of the various enterprises that have benefited from BDA. We also enumerate the considerable opportunities introduced by BDA in IIoT. We identify and discuss the indispensable challenges that remain to be addressed, serving as future research directions. © 2019 Elsevier B.V.
Bio-inspired network security for 5G-enabled IoT applications
- Saleem, Kashif, Alabduljabbar, Ghadah, Alrowais, Nouf, Al-Muhtadi, Jalal, Imran, Muhammad, Rodrigues, Joel
- Authors: Saleem, Kashif , Alabduljabbar, Ghadah , Alrowais, Nouf , Al-Muhtadi, Jalal , Imran, Muhammad , Rodrigues, Joel
- Date: 2020
- Type: Text , Journal article
- Relation: IEEE access Vol. 8, no. (2020), p. 1-1
- Full Text:
- Reviewed:
- Description: Every IPv6-enabled device connected and communicating over the Internet forms the Internet of things (IoT) that is prevalent in society and is used in daily life. This IoT platform will quickly grow to be populated with billions or more objects by making every electrical appliance, car, and even items of furniture smart and connected. The 5th generation (5G) and beyond networks will further boost these IoT systems. The massive utilization of these systems over gigabits per second generates numerous issues. Owing to the huge complexity in large-scale deployment of IoT, data privacy and security are the most prominent challenges, especially for critical applications such as Industry 4.0, e-healthcare, and military. Threat agents persistently strive to find new vulnerabilities and exploit them. Therefore, including promising security measures to support the running systems, not to harm or collapse them, is essential. Nature-inspired algorithms have the capability to provide autonomous and sustainable defense and healing mechanisms. This paper first surveys the 5G network layer security for IoT applications and lists the network layer security vulnerabilities and requirements in wireless sensor networks, IoT, and 5G-enabled IoT. Second, a detailed literature review is conducted with the current network layer security methods and the bio-inspired techniques for IoT applications exchanging data packets over 5G. Finally, the bio-inspired algorithms are analyzed in the context of providing a secure network layer for IoT applications connected over 5G and beyond networks.
- Authors: Saleem, Kashif , Alabduljabbar, Ghadah , Alrowais, Nouf , Al-Muhtadi, Jalal , Imran, Muhammad , Rodrigues, Joel
- Date: 2020
- Type: Text , Journal article
- Relation: IEEE access Vol. 8, no. (2020), p. 1-1
- Full Text:
- Reviewed:
- Description: Every IPv6-enabled device connected and communicating over the Internet forms the Internet of things (IoT) that is prevalent in society and is used in daily life. This IoT platform will quickly grow to be populated with billions or more objects by making every electrical appliance, car, and even items of furniture smart and connected. The 5th generation (5G) and beyond networks will further boost these IoT systems. The massive utilization of these systems over gigabits per second generates numerous issues. Owing to the huge complexity in large-scale deployment of IoT, data privacy and security are the most prominent challenges, especially for critical applications such as Industry 4.0, e-healthcare, and military. Threat agents persistently strive to find new vulnerabilities and exploit them. Therefore, including promising security measures to support the running systems, not to harm or collapse them, is essential. Nature-inspired algorithms have the capability to provide autonomous and sustainable defense and healing mechanisms. This paper first surveys the 5G network layer security for IoT applications and lists the network layer security vulnerabilities and requirements in wireless sensor networks, IoT, and 5G-enabled IoT. Second, a detailed literature review is conducted with the current network layer security methods and the bio-inspired techniques for IoT applications exchanging data packets over 5G. Finally, the bio-inspired algorithms are analyzed in the context of providing a secure network layer for IoT applications connected over 5G and beyond networks.
6G wireless systems : a vision, architectural elements, and future directions
- Khan, Latif, Yaqoob, Ibrar, Imran, Muhammad, Han, Zhu, Hong, Choong
- Authors: Khan, Latif , Yaqoob, Ibrar , Imran, Muhammad , Han, Zhu , Hong, Choong
- Date: 2020
- Type: Text , Journal article
- Relation: IEEE Access Vol. 8, no. (2020), p. 147029-147044
- Full Text:
- Reviewed:
- Description: Internet of everything (IoE)-based smart services are expected to gain immense popularity in the future, which raises the need for next-generation wireless networks. Although fifth-generation (5G) networks can support various IoE services, they might not be able to completely fulfill the requirements of novel applications. Sixth-generation (6G) wireless systems are envisioned to overcome 5G network limitations. In this article, we explore recent advances made toward enabling 6G systems. We devise a taxonomy based on key enabling technologies, use cases, emerging machine learning schemes, communication technologies, networking technologies, and computing technologies. Furthermore, we identify and discuss open research challenges, such as artificial-intelligence-based adaptive transceivers, intelligent wireless energy harvesting, decentralized and secure business models, intelligent cell-less architecture, and distributed security models. We propose practical guidelines including deep Q-learning and federated learning-based transceivers, blockchain-based secure business models, homomorphic encryption, and distributed-ledger-based authentication schemes to cope with these challenges. Finally, we outline and recommend several future directions. © 2013 IEEE.
- Authors: Khan, Latif , Yaqoob, Ibrar , Imran, Muhammad , Han, Zhu , Hong, Choong
- Date: 2020
- Type: Text , Journal article
- Relation: IEEE Access Vol. 8, no. (2020), p. 147029-147044
- Full Text:
- Reviewed:
- Description: Internet of everything (IoE)-based smart services are expected to gain immense popularity in the future, which raises the need for next-generation wireless networks. Although fifth-generation (5G) networks can support various IoE services, they might not be able to completely fulfill the requirements of novel applications. Sixth-generation (6G) wireless systems are envisioned to overcome 5G network limitations. In this article, we explore recent advances made toward enabling 6G systems. We devise a taxonomy based on key enabling technologies, use cases, emerging machine learning schemes, communication technologies, networking technologies, and computing technologies. Furthermore, we identify and discuss open research challenges, such as artificial-intelligence-based adaptive transceivers, intelligent wireless energy harvesting, decentralized and secure business models, intelligent cell-less architecture, and distributed security models. We propose practical guidelines including deep Q-learning and federated learning-based transceivers, blockchain-based secure business models, homomorphic encryption, and distributed-ledger-based authentication schemes to cope with these challenges. Finally, we outline and recommend several future directions. © 2013 IEEE.
Cyberattacks detection in iot-based smart city applications using machine learning techniques
- Rashid, Md Mamunur, Kamruzzaman, Joarder, Hassan, Mohammad, Imam, Tassadduq, Gordon, Steven
- Authors: Rashid, Md Mamunur , Kamruzzaman, Joarder , Hassan, Mohammad , Imam, Tassadduq , Gordon, Steven
- Date: 2020
- Type: Text , Journal article
- Relation: International Journal of Environmental Research and Public Health Vol. 17, no. 24 (2020), p. 1-21
- Full Text:
- Reviewed:
- Description: In recent years, the widespread deployment of the Internet of Things (IoT) applications has contributed to the development of smart cities. A smart city utilizes IoT-enabled technologies, communications and applications to maximize operational efficiency and enhance both the service providers’ quality of services and people’s wellbeing and quality of life. With the growth of smart city networks, however, comes the increased risk of cybersecurity threats and attacks. IoT devices within a smart city network are connected to sensors linked to large cloud servers and are exposed to malicious attacks and threats. Thus, it is important to devise approaches to prevent such attacks and protect IoT devices from failure. In this paper, we explore an attack and anomaly detection technique based on machine learning algorithms (LR, SVM, DT, RF, ANN and KNN) to defend against and mitigate IoT cybersecurity threats in a smart city. Contrary to existing works that have focused on single classifiers, we also explore ensemble methods such as bagging, boosting and stacking to enhance the performance of the detection system. Additionally, we consider an integration of feature selection, cross-validation and multi-class classification for the discussed domain, which has not been well considered in the existing literature. Experimental results with the recent attack dataset demonstrate that the proposed technique can effectively identify cyberattacks and the stacking ensemble model outperforms comparable models in terms of accuracy, precision, recall and F1-Score, implying the promise of stacking in this domain. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
- Authors: Rashid, Md Mamunur , Kamruzzaman, Joarder , Hassan, Mohammad , Imam, Tassadduq , Gordon, Steven
- Date: 2020
- Type: Text , Journal article
- Relation: International Journal of Environmental Research and Public Health Vol. 17, no. 24 (2020), p. 1-21
- Full Text:
- Reviewed:
- Description: In recent years, the widespread deployment of the Internet of Things (IoT) applications has contributed to the development of smart cities. A smart city utilizes IoT-enabled technologies, communications and applications to maximize operational efficiency and enhance both the service providers’ quality of services and people’s wellbeing and quality of life. With the growth of smart city networks, however, comes the increased risk of cybersecurity threats and attacks. IoT devices within a smart city network are connected to sensors linked to large cloud servers and are exposed to malicious attacks and threats. Thus, it is important to devise approaches to prevent such attacks and protect IoT devices from failure. In this paper, we explore an attack and anomaly detection technique based on machine learning algorithms (LR, SVM, DT, RF, ANN and KNN) to defend against and mitigate IoT cybersecurity threats in a smart city. Contrary to existing works that have focused on single classifiers, we also explore ensemble methods such as bagging, boosting and stacking to enhance the performance of the detection system. Additionally, we consider an integration of feature selection, cross-validation and multi-class classification for the discussed domain, which has not been well considered in the existing literature. Experimental results with the recent attack dataset demonstrate that the proposed technique can effectively identify cyberattacks and the stacking ensemble model outperforms comparable models in terms of accuracy, precision, recall and F1-Score, implying the promise of stacking in this domain. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
A novel collaborative IoD-assisted VANET approach for coverage area maximization
- Ahmed, Gamil, Sheltami, Tarek, Mahmoud, Ashraf, Imran, Muhammad, Shoaib, Muhammad
- Authors: Ahmed, Gamil , Sheltami, Tarek , Mahmoud, Ashraf , Imran, Muhammad , Shoaib, Muhammad
- Date: 2021
- Type: Text , Journal article
- Relation: IEEE Access Vol. 9, no. (2021), p. 61211-61223
- Full Text:
- Reviewed:
- Description: Internet of Drones (IoD) is an efficient technique that can be integrated with vehicular ad-hoc networks (VANETs) to provide terrestrial communications by acting as an aerial relay when terrestrial infrastructure is unreliable or unavailable. To fully exploit the drones' flexibility and superiority, we propose a novel dynamic IoD collaborative communication approach for urban VANETs. Unlike most of the existing approaches, the IoD nodes are dynamically deployed based on current locations of ground vehicles to effectively mitigate inevitable isolated cars in conventional VANETs. For efficiently coordinating IoD, we model IoD to optimize coverage based on the location of vehicles. The goal is to obtain an efficient IoD deployment to maximize the number of covered vehicles, i.e., minimize the number of isolated vehicles in the target area. More importantly, the proposed approach provides sufficient interconnections between IoD nodes. To do so, an improved version of succinct population-based meta-heuristic, namely Improved Particle Swarm Optimization (IPSO) inspired by food searching behavior of birds or fishes flock, is implemented for IoD assisted VANET (IoDAV). Moreover, the coverage, received signal quality, and IoD connectivity are achieved by IPSO's objective function for optimal IoD deployment at the same time. We carry out an extensive experiment based on the received signal at floating vehicles to examine the proposed IoDAV performance. We compare the results with the baseline VANET with no IoD (NIoD) and Fixed IoD assisted (FIoD). The comparisons are based on the coverage percentage of the ground vehicles and the quality of the received signal. The simulation results demonstrate that the proposed IoDAV approach allows finding the optimal IoD positions throughout the time based on the vehicle's movements and achieves better coverage and better quality of the received signal by finding the most appropriate IoD position compared with NIoD and FIoD schemes. © 2013 IEEE.
- Authors: Ahmed, Gamil , Sheltami, Tarek , Mahmoud, Ashraf , Imran, Muhammad , Shoaib, Muhammad
- Date: 2021
- Type: Text , Journal article
- Relation: IEEE Access Vol. 9, no. (2021), p. 61211-61223
- Full Text:
- Reviewed:
- Description: Internet of Drones (IoD) is an efficient technique that can be integrated with vehicular ad-hoc networks (VANETs) to provide terrestrial communications by acting as an aerial relay when terrestrial infrastructure is unreliable or unavailable. To fully exploit the drones' flexibility and superiority, we propose a novel dynamic IoD collaborative communication approach for urban VANETs. Unlike most of the existing approaches, the IoD nodes are dynamically deployed based on current locations of ground vehicles to effectively mitigate inevitable isolated cars in conventional VANETs. For efficiently coordinating IoD, we model IoD to optimize coverage based on the location of vehicles. The goal is to obtain an efficient IoD deployment to maximize the number of covered vehicles, i.e., minimize the number of isolated vehicles in the target area. More importantly, the proposed approach provides sufficient interconnections between IoD nodes. To do so, an improved version of succinct population-based meta-heuristic, namely Improved Particle Swarm Optimization (IPSO) inspired by food searching behavior of birds or fishes flock, is implemented for IoD assisted VANET (IoDAV). Moreover, the coverage, received signal quality, and IoD connectivity are achieved by IPSO's objective function for optimal IoD deployment at the same time. We carry out an extensive experiment based on the received signal at floating vehicles to examine the proposed IoDAV performance. We compare the results with the baseline VANET with no IoD (NIoD) and Fixed IoD assisted (FIoD). The comparisons are based on the coverage percentage of the ground vehicles and the quality of the received signal. The simulation results demonstrate that the proposed IoDAV approach allows finding the optimal IoD positions throughout the time based on the vehicle's movements and achieves better coverage and better quality of the received signal by finding the most appropriate IoD position compared with NIoD and FIoD schemes. © 2013 IEEE.
Energy efficiency perspectives of femtocells in internet of things : recent advances and challenges
- Al-Turjman, Fadi, Imran, Muhammad, Bakhsh, Sheikh
- Authors: Al-Turjman, Fadi , Imran, Muhammad , Bakhsh, Sheikh
- Date: 2017
- Type: Text , Journal article
- Relation: IEEE Access Vol. 5, no. (2017), p. 26808-26818
- Full Text:
- Reviewed:
- Description: Energy efficiency is a growing concern in every aspect of the technology. Apart from maintaining profitability, energy efficiency means a decrease in the overall environmental effects, which is a serious concern in today's world. Using a femtocell in Internet of Things (IoT) can boost energy efficiency. To illustrate, femtocells can be used in smart homes, which is a subpart of the smart grid, as a communication mechanism in order to manage energy efficiency. Moreover, femtocells can be used in many IoT applications in order to provide communication. However, it is important to evaluate the energy efficiency of femtocells. This paper investigates recent advances and challenges in the energy efficiency of the femtocell in IoT. First, we introduce the idea of femtocells in the context of IoT and their role in IoT applications. Next, we describe prominent performance metrics in order to understand how the energy efficiency is evaluated. Then, we elucidate how energy can be modeled in terms of femtocell and provide some models from the literature. Since femtocells are used in heterogeneous networks to manage energy efficiency, we also express some energy efficiency schemes for deployment. The factors that affect the energy usage of a femtocell base station are discussed and then the power consumption of user equipment under femtocell coverage is mentioned. Finally, we highlight prominent open research issues and challenges. © 2013 IEEE.
- Authors: Al-Turjman, Fadi , Imran, Muhammad , Bakhsh, Sheikh
- Date: 2017
- Type: Text , Journal article
- Relation: IEEE Access Vol. 5, no. (2017), p. 26808-26818
- Full Text:
- Reviewed:
- Description: Energy efficiency is a growing concern in every aspect of the technology. Apart from maintaining profitability, energy efficiency means a decrease in the overall environmental effects, which is a serious concern in today's world. Using a femtocell in Internet of Things (IoT) can boost energy efficiency. To illustrate, femtocells can be used in smart homes, which is a subpart of the smart grid, as a communication mechanism in order to manage energy efficiency. Moreover, femtocells can be used in many IoT applications in order to provide communication. However, it is important to evaluate the energy efficiency of femtocells. This paper investigates recent advances and challenges in the energy efficiency of the femtocell in IoT. First, we introduce the idea of femtocells in the context of IoT and their role in IoT applications. Next, we describe prominent performance metrics in order to understand how the energy efficiency is evaluated. Then, we elucidate how energy can be modeled in terms of femtocell and provide some models from the literature. Since femtocells are used in heterogeneous networks to manage energy efficiency, we also express some energy efficiency schemes for deployment. The factors that affect the energy usage of a femtocell base station are discussed and then the power consumption of user equipment under femtocell coverage is mentioned. Finally, we highlight prominent open research issues and challenges. © 2013 IEEE.
Security and privacy in IoT using machine learning and blockchain : threats and countermeasures
- Waheed, Nazar, He, Xiangjian, Ikram, Muhammad, Usman, Muhammad, Hashmi, Saad
- Authors: Waheed, Nazar , He, Xiangjian , Ikram, Muhammad , Usman, Muhammad , Hashmi, Saad
- Date: 2021
- Type: Text , Journal article , Review
- Relation: ACM Computing Surveys Vol. 53, no. 6 (2021), p.
- Full Text:
- Reviewed:
- Description: Security and privacy of users have become significant concerns due to the involvement of the Internet of Things (IoT) devices in numerous applications. Cyber threats are growing at an explosive pace making the existing security and privacy measures inadequate. Hence, everyone on the Internet is a product for hackers. Consequently, Machine Learning (ML) algorithms are used to produce accurate outputs from large complex databases, where the generated outputs can be used to predict and detect vulnerabilities in IoT-based systems. Furthermore, Blockchain (BC) techniques are becoming popular in modern IoT applications to solve security and privacy issues. Several studies have been conducted on either ML algorithms or BC techniques. However, these studies target either security or privacy issues using ML algorithms or BC techniques, thus posing a need for a combined survey on efforts made in recent years addressing both security and privacy issues using ML algorithms and BC techniques. In this article, we provide a summary of research efforts made in the past few years, from 2008 to 2019, addressing security and privacy issues using ML algorithms and BC techniques in the IoT domain. First, we discuss and categorize various security and privacy threats reported in the past 12 years in the IoT domain. We then classify the literature on security and privacy efforts based on ML algorithms and BC techniques in the IoT domain. Finally, we identify and illuminate several challenges and future research directions using ML algorithms and BC techniques to address security and privacy issues in the IoT domain. © 2020 ACM.
- Authors: Waheed, Nazar , He, Xiangjian , Ikram, Muhammad , Usman, Muhammad , Hashmi, Saad
- Date: 2021
- Type: Text , Journal article , Review
- Relation: ACM Computing Surveys Vol. 53, no. 6 (2021), p.
- Full Text:
- Reviewed:
- Description: Security and privacy of users have become significant concerns due to the involvement of the Internet of Things (IoT) devices in numerous applications. Cyber threats are growing at an explosive pace making the existing security and privacy measures inadequate. Hence, everyone on the Internet is a product for hackers. Consequently, Machine Learning (ML) algorithms are used to produce accurate outputs from large complex databases, where the generated outputs can be used to predict and detect vulnerabilities in IoT-based systems. Furthermore, Blockchain (BC) techniques are becoming popular in modern IoT applications to solve security and privacy issues. Several studies have been conducted on either ML algorithms or BC techniques. However, these studies target either security or privacy issues using ML algorithms or BC techniques, thus posing a need for a combined survey on efforts made in recent years addressing both security and privacy issues using ML algorithms and BC techniques. In this article, we provide a summary of research efforts made in the past few years, from 2008 to 2019, addressing security and privacy issues using ML algorithms and BC techniques in the IoT domain. First, we discuss and categorize various security and privacy threats reported in the past 12 years in the IoT domain. We then classify the literature on security and privacy efforts based on ML algorithms and BC techniques in the IoT domain. Finally, we identify and illuminate several challenges and future research directions using ML algorithms and BC techniques to address security and privacy issues in the IoT domain. © 2020 ACM.
Cloudlet computing : recent advances, taxonomy, and challenges
- Babar, Mohammad, Khan, Muhammad, Ali, Farman, Imran, Muhammad, Shoaib, Muhammad
- Authors: Babar, Mohammad , Khan, Muhammad , Ali, Farman , Imran, Muhammad , Shoaib, Muhammad
- Date: 2021
- Type: Text , Journal article
- Relation: IEEE Access Vol. 9, no. (2021), p. 29609-29622
- Full Text:
- Reviewed:
- Description: A cloudlet is an emerging computing paradigm that is designed to meet the requirements and expectations of the Internet of things (IoT) and tackle the conventional limitations of a cloud (e.g., high latency). The idea is to bring computing resources (i.e., storage and processing) to the edge of a network. This article presents a taxonomy of cloudlet applications, outlines cloudlet utilities, and describes recent advances, challenges, and future research directions. Based on the literature, a unique taxonomy of cloudlet applications is designed. Moreover, a cloudlet computation offloading application for augmenting resource-constrained IoT devices, handling compute-intensive tasks, and minimizing the energy consumption of related devices is explored. This study also highlights the viability of cloudlets to support smart systems and applications, such as augmented reality, virtual reality, and applications that require high-quality service. Finally, the role of cloudlets in emergency situations, hostile conditions, and in the technological integration of future applications and services is elaborated in detail. © 2013 IEEE.
- Authors: Babar, Mohammad , Khan, Muhammad , Ali, Farman , Imran, Muhammad , Shoaib, Muhammad
- Date: 2021
- Type: Text , Journal article
- Relation: IEEE Access Vol. 9, no. (2021), p. 29609-29622
- Full Text:
- Reviewed:
- Description: A cloudlet is an emerging computing paradigm that is designed to meet the requirements and expectations of the Internet of things (IoT) and tackle the conventional limitations of a cloud (e.g., high latency). The idea is to bring computing resources (i.e., storage and processing) to the edge of a network. This article presents a taxonomy of cloudlet applications, outlines cloudlet utilities, and describes recent advances, challenges, and future research directions. Based on the literature, a unique taxonomy of cloudlet applications is designed. Moreover, a cloudlet computation offloading application for augmenting resource-constrained IoT devices, handling compute-intensive tasks, and minimizing the energy consumption of related devices is explored. This study also highlights the viability of cloudlets to support smart systems and applications, such as augmented reality, virtual reality, and applications that require high-quality service. Finally, the role of cloudlets in emergency situations, hostile conditions, and in the technological integration of future applications and services is elaborated in detail. © 2013 IEEE.
- «
- ‹
- 1
- ›
- »