Your selections:

3Minimum sum-of-squares clustering
3Nonsmooth optimization
2Clustering algorithms
2Clustering problems
2Global K-means algorithm
2Global optimization
2Optimization
2k-Means algorithm
2k-means algorithm
10102 Applied Mathematics
10103 Numerical and Computational Mathematics
10802 Computation Theory and Mathematics
10899 Other Information and Computing Sciences
1Affinity matrix
1Algorithm for solving
1Algorithms
1Cluster analysis
1Cluster centers
1Cluster construction

Show More

Show Less

Format Type

Modified global k-means algorithm for minimum sum-of-squares clustering problems

**Authors:**Bagirov, Adil**Date:**2008**Type:**Text , Journal article**Relation:**Pattern Recognition Vol. 41, no. 10 (2008), p. 3192-3199**Relation:**http://purl.org/au-research/grants/arc/DP0666061**Full Text:****Reviewed:****Description:**k-Means algorithm and its variations are known to be fast clustering algorithms. However, they are sensitive to the choice of starting points and inefficient for solving clustering problems in large data sets. Recently, a new version of the k-means algorithm, the global k-means algorithm has been developed. It is an incremental algorithm that dynamically adds one cluster center at a time and uses each data point as a candidate for the k-th cluster center. Results of numerical experiments show that the global k-means algorithm considerably outperforms the k-means algorithms. In this paper, a new version of the global k-means algorithm is proposed. A starting point for the k-th cluster center in this algorithm is computed by minimizing an auxiliary cluster function. Results of numerical experiments on 14 data sets demonstrate the superiority of the new algorithm, however, it requires more computational time than the global k-means algorithm.**Description:**k-Means algorithm and its variations are known to be fast clustering algorithms. However, they are sensitive to the choice of starting points and inefficient for solving clustering problems in large data sets. Recently, a new version of the k-means algorithm, the global k-means algorithm has been developed. It is an incremental algorithm that dynamically adds one cluster center at a time and uses each data point as a candidate for the k-th cluster center. Results of numerical experiments show that the global k-means algorithm considerably outperforms the k-means algorithms. In this paper, a new version of the global k-means algorithm is proposed. A starting point for the k-th cluster center in this algorithm is computed by minimizing an auxiliary cluster function. Results of numerical experiments on 14 data sets demonstrate the superiority of the new algorithm, however, it requires more computational time than the global k-means algorithm. © 2008 Elsevier Ltd. All rights reserved.**Description:**2003001713

**Authors:**Bagirov, Adil**Date:**2008**Type:**Text , Journal article**Relation:**Pattern Recognition Vol. 41, no. 10 (2008), p. 3192-3199**Relation:**http://purl.org/au-research/grants/arc/DP0666061**Full Text:****Reviewed:****Description:**k-Means algorithm and its variations are known to be fast clustering algorithms. However, they are sensitive to the choice of starting points and inefficient for solving clustering problems in large data sets. Recently, a new version of the k-means algorithm, the global k-means algorithm has been developed. It is an incremental algorithm that dynamically adds one cluster center at a time and uses each data point as a candidate for the k-th cluster center. Results of numerical experiments show that the global k-means algorithm considerably outperforms the k-means algorithms. In this paper, a new version of the global k-means algorithm is proposed. A starting point for the k-th cluster center in this algorithm is computed by minimizing an auxiliary cluster function. Results of numerical experiments on 14 data sets demonstrate the superiority of the new algorithm, however, it requires more computational time than the global k-means algorithm.**Description:**k-Means algorithm and its variations are known to be fast clustering algorithms. However, they are sensitive to the choice of starting points and inefficient for solving clustering problems in large data sets. Recently, a new version of the k-means algorithm, the global k-means algorithm has been developed. It is an incremental algorithm that dynamically adds one cluster center at a time and uses each data point as a candidate for the k-th cluster center. Results of numerical experiments show that the global k-means algorithm considerably outperforms the k-means algorithms. In this paper, a new version of the global k-means algorithm is proposed. A starting point for the k-th cluster center in this algorithm is computed by minimizing an auxiliary cluster function. Results of numerical experiments on 14 data sets demonstrate the superiority of the new algorithm, however, it requires more computational time than the global k-means algorithm. © 2008 Elsevier Ltd. All rights reserved.**Description:**2003001713

Fast modified global k-means algorithm for incremental cluster construction

- Bagirov, Adil, Ugon, Julien, Webb, Dean

**Authors:**Bagirov, Adil , Ugon, Julien , Webb, Dean**Date:**2011**Type:**Text , Journal article**Relation:**Pattern Recognition Vol. 44, no. 4 (2011), p. 866-876**Relation:**http://purl.org/au-research/grants/arc/DP0666061**Full Text:**false**Reviewed:****Description:**The k-means algorithm and its variations are known to be fast clustering algorithms. However, they are sensitive to the choice of starting points and are inefficient for solving clustering problems in large datasets. Recently, incremental approaches have been developed to resolve difficulties with the choice of starting points. The global k-means and the modified global k-means algorithms are based on such an approach. They iteratively add one cluster center at a time. Numerical experiments show that these algorithms considerably improve the k-means algorithm. However, they require storing the whole affinity matrix or computing this matrix at each iteration. This makes both algorithms time consuming and memory demanding for clustering even moderately large datasets. In this paper, a new version of the modified global k-means algorithm is proposed. We introduce an auxiliary cluster function to generate a set of starting points lying in different parts of the dataset. We exploit information gathered in previous iterations of the incremental algorithm to eliminate the need of computing or storing the whole affinity matrix and thereby to reduce computational effort and memory usage. Results of numerical experiments on six standard datasets demonstrate that the new algorithm is more efficient than the global and the modified global k-means algorithms. Â© 2010 Elsevier Ltd. All rights reserved.

A heuristic algorithm for solving the minimum sum-of-squares clustering problems

**Authors:**Ordin, Burak , Bagirov, Adil**Date:**2015**Type:**Text , Journal article**Relation:**Journal of Global Optimization Vol. 61, no. 2 (2015), p. 341-361**Relation:**http://purl.org/au-research/grants/arc/DP140103213**Full Text:**false**Reviewed:****Description:**Clustering is an important task in data mining. It can be formulated as a global optimization problem which is challenging for existing global optimization techniques even in medium size data sets. Various heuristics were developed to solve the clustering problem. The global k-means and modified global k-means are among most efficient heuristics for solving the minimum sum-of-squares clustering problem. However, these algorithms are not always accurate in finding global or near global solutions to the clustering problem. In this paper, we introduce a new algorithm to improve the accuracy of the modified global k-means algorithm in finding global solutions. We use an auxiliary cluster problem to generate a set of initial points and apply the k-means algorithm starting from these points to find the global solution to the clustering problems. Numerical results on 16 real-world data sets clearly demonstrate the superiority of the proposed algorithm over the global and modified global k-means algorithms in finding global solutions to clustering problems.

Cluster analysis of a tobacco control data set

- Dzalilov, Zari, Bagirov, Adil

**Authors:**Dzalilov, Zari , Bagirov, Adil**Date:**2010**Type:**Text , Journal article**Relation:**International Journal of Lean Thinking Vol. 1, no. 2 (2010), p.**Full Text:**false**Reviewed:****Description:**Development of theoretical and methodological frameworks in data analysis is fundamental for modeling complex tobacco control systems. Following this idea, a new optimization based approach was introduced in the paper through two distinct methods: the modified linear least square fit and a heuristic algorithm for feature slection based on optimization-based methods have the potential to detect nonlinearity, and therefore to be more effective analysis tools of complex data set. In this study we evaluate the modified global k-means clustering algorithm by applying it to a massive set of real-time tobacco control survey data. Cluster analysis identified fixed and stable clusters in the studied data. These clusters correspond to groups of smokers with similar behaviour and the identification of these clusters may allow us to give recommendations on modification of existing tobacco control systems and on the design of future data acquistion surveys.

- «
- ‹
- 1
- ›
- »

Are you sure you would like to clear your session, including search history and login status?