Dynamics of IL-4 and IL-13 expression in the airways of sheep following allergen challenge
- Liravi, Bahar, Piedrafita, David, Nguyen, Gary, Bischof, Robert
- Authors: Liravi, Bahar , Piedrafita, David , Nguyen, Gary , Bischof, Robert
- Date: 2015
- Type: Text , Journal article
- Relation: BMC Pulmonary Medicine Vol. 15, no. 1 (2015), p. 1-11
- Full Text:
- Reviewed:
- Description:
Background: IL-4 and IL-13 play a critical yet poorly understood role in orchestrating the recruitment and activation of effector cells of the asthmatic response and driving the pathophysiology of allergic asthma. The house dust mite (HDM) sheep asthma model displays many features of the human condition and is an ideal model to further elucidate the involvement of these critical Th
2 cytokines. We hypothesized that airway exposure to HDM allergen would induce or elevate the expression profile of IL-4 and IL-13 during the allergic airway response in this large animal model of asthma. Methods: Bronchoalveolar lavage (BAL) samples were collected from saline-and house dust mite (HDM)-challenged lung lobes of sensitized sheep from 0 to 48h post-challenge. BAL cytokines (IL-4, IL-13, IL-6, IL-10, TNF-aα) were each measured by ELISA. IL-4 and IL-13 expression was assessed in BAL leukocytes by flow cytometry and in airway tissue sections by immunohistology. Results: IL-4 and IL-13 were increased in BAL samples following airway allergen challenge. HDM challenge resulted in a significant increase in BAL IL-4 levels at 4h compared to saline-challenged airways, while BAL IL-13 levels were elevated at all time-points after allergen challenge. IL-6 levels were maintained following HDM challenge but declined after saline challenge, while HDM administration resulted in an acute elevation in IL-10 at 4h but no change in TNF-aα levels over time. Lymphocytes were the main early source of IL-4, with IL-4 release by alveolar macrophages (AMs) prominent from 24h post-allergen challenge. IL-13 producing AMs were increased at 4 and 24h following HDM compared to saline challenge, and tissue staining provided evidence of IL-13 expression in airway epithelium as well as immune cells in airway tissue. Conclusion: In a sheep model of allergic asthma, airway inflammation is accompanied by the temporal release of key cytokines following allergen exposure that primarily reflects the Th2 -driven nature of the immune response in asthma. The present study demonstrates for the first time the involvement of IL-4 and IL-13 in a relevant large animal model of allergic airways disease. © 2015 Liravi et al.
- Authors: Liravi, Bahar , Piedrafita, David , Nguyen, Gary , Bischof, Robert
- Date: 2015
- Type: Text , Journal article
- Relation: BMC Pulmonary Medicine Vol. 15, no. 1 (2015), p. 1-11
- Full Text:
- Reviewed:
- Description:
Background: IL-4 and IL-13 play a critical yet poorly understood role in orchestrating the recruitment and activation of effector cells of the asthmatic response and driving the pathophysiology of allergic asthma. The house dust mite (HDM) sheep asthma model displays many features of the human condition and is an ideal model to further elucidate the involvement of these critical Th
2 cytokines. We hypothesized that airway exposure to HDM allergen would induce or elevate the expression profile of IL-4 and IL-13 during the allergic airway response in this large animal model of asthma. Methods: Bronchoalveolar lavage (BAL) samples were collected from saline-and house dust mite (HDM)-challenged lung lobes of sensitized sheep from 0 to 48h post-challenge. BAL cytokines (IL-4, IL-13, IL-6, IL-10, TNF-aα) were each measured by ELISA. IL-4 and IL-13 expression was assessed in BAL leukocytes by flow cytometry and in airway tissue sections by immunohistology. Results: IL-4 and IL-13 were increased in BAL samples following airway allergen challenge. HDM challenge resulted in a significant increase in BAL IL-4 levels at 4h compared to saline-challenged airways, while BAL IL-13 levels were elevated at all time-points after allergen challenge. IL-6 levels were maintained following HDM challenge but declined after saline challenge, while HDM administration resulted in an acute elevation in IL-10 at 4h but no change in TNF-aα levels over time. Lymphocytes were the main early source of IL-4, with IL-4 release by alveolar macrophages (AMs) prominent from 24h post-allergen challenge. IL-13 producing AMs were increased at 4 and 24h following HDM compared to saline challenge, and tissue staining provided evidence of IL-13 expression in airway epithelium as well as immune cells in airway tissue. Conclusion: In a sheep model of allergic asthma, airway inflammation is accompanied by the temporal release of key cytokines following allergen exposure that primarily reflects the Th2 -driven nature of the immune response in asthma. The present study demonstrates for the first time the involvement of IL-4 and IL-13 in a relevant large animal model of allergic airways disease. © 2015 Liravi et al.
- Akagi, Jin, Skommer, Joanna, Matuszek, Anna, Takeda, Kazuo, Fujimura, Yuu, Khoshmanesh, Khashayar, Kalantar-zadeh, Kourosh, Mitchell, Arnan, Errington, Rachel, Smith, Paul, Darzynkiewicz, Zbigniew, Wlodkowic, Donald
- Authors: Akagi, Jin , Skommer, Joanna , Matuszek, Anna , Takeda, Kazuo , Fujimura, Yuu , Khoshmanesh, Khashayar , Kalantar-zadeh, Kourosh , Mitchell, Arnan , Errington, Rachel , Smith, Paul , Darzynkiewicz, Zbigniew , Wlodkowic, Donald
- Date: 2013
- Type: Text , Conference paper
- Relation: Microfluidics, BioMEMS, and Medical Microsystems XI
- Full Text: false
- Reviewed:
- Description: Measurement of apoptotic markers in tumors can be directly correlated with the cell cycle phase using flow cytometry (FCM). The conventional DNA content analysis requires cell permeabilization to stain nuclei with fluorescent probes such as propidium iodide or use of a costly UV-excitation line for Hoechst 33342 probe. The access to FCM is also still limited to centralized core facilities due to its inherent high costs and complex operation. This work describes development and proof-of-concept validation of a portable and user-friendly microfluidic flow cytometer (μFCM) that can perform multivariate real time analysis on live cells using sampling volumes as small as 10 microliters. The μFCM system employs disposable microfluidic cartridges fabricated using injection molding in poly(methylmethacrylate) transparent thermoplastic. Furthermore, the dedicated and miniaturized electronic hardware interface enables up to six parameter detection using a combination of spatially separated solid-state 473 (10 mW) and 640 nm (20 mW) lasers and x-y stage for rapid laser alignment adjustment. We provide new evidence that a simple 2D flow focusing on a chip is sufficient to measure cellular DNA content in live tumor cells using a far-red DNA probe DRAQ5. The feasibility of using the μFCM system for a dose-response profiling of investigational anti-cancer agents on human hematopoietic cancer cells is also demonstrated. The data show that μFCM can provide a viable novel alternative to conventional FCM for multiparameter detection of caspase activation and dissipation of mitochondrial inner membrane potential (ΔΨm) in relation to DNA content (cell cycle phase) in live tumor cells.
- Description: Measurement of apoptotic markers in tumors can be directly correlated with the cell cycle phase using flow cytometry (FCM). The conventional DNA content analysis requires cell permeabilization to stain nuclei with fluorescent probes such as propidium iodide or use of a costly UV-excitation line for Hoechst 33342 probe. The access to FCM is also still limited to centralized core facilities due to its inherent high costs and complex operation. This work describes development and proof-of-concept validation of a portable and user-friendly microfluidic flow cytometer (
- «
- ‹
- 1
- ›
- »