Detecting the seeds of Nassella neesiana in large round hay bales, by means of non-destructive core sampling
- Weller, Sandra, Florentine, Singarayer, Sillitoe, Jim, Grech, Charles, McLaren, David, Chauhan, Bhagirath
- Authors: Weller, Sandra , Florentine, Singarayer , Sillitoe, Jim , Grech, Charles , McLaren, David , Chauhan, Bhagirath
- Date: 2015
- Type: Text , Journal article
- Relation: Plos One Vol. 10, no. 9 (2015), p.
- Full Text:
- Reviewed:
- Description: In the last three decades or so there has been a significant increase in fodder trading, both in terms of the quantity of fodder traded and in terms of its economic value to the industry. Often, this fodder type may be supplied free of charge to graziers in distress due to circumstances that follow natural disasters such as bushfires, drought, and flood. However, because of the obvious urgency arising from these situations, it is suspected that much relief fodder may unintentionally pose an elevated risk for dispersal of weeds since it may be supplied from pasture not normally used for trade in fodder, and therefore is of unknown quality. Previous destructive method to detect weed propagules in bales of fodder are cumbersome, time consuming and of limited ecological and statistical value. Therefore, objective of this paper was to development of a convenient method to assess round pasture hay bales for the presence of weed propagules, to prevent unintentional spread of noxious species in hay bales. To examine this objective known quantity of seeds were added in a series of distributions to bales of seed free pasture hay, and a positive correlation for the amount of seed added per bale with that recovered in core samples was observed. Whilst the number of seeds detected per bale varied according to the distribution of seeds within the bales and the number of cores analysed, the absolute detection of seeds suggests that this sampling method is worthy of further examination. In addition, a pragmatic estimation of bale remnants after stock feeding has been investigated to more closely estimate the potential size of the remaining seed bank. The authors propose that development of this approach is timely, in the light of future climatic uncertainty driving extreme weather events that increase the need for relief fodder, which can be a potential vector for the spread of noxious weed seeds.
- Authors: Weller, Sandra , Florentine, Singarayer , Sillitoe, Jim , Grech, Charles , McLaren, David , Chauhan, Bhagirath
- Date: 2015
- Type: Text , Journal article
- Relation: Plos One Vol. 10, no. 9 (2015), p.
- Full Text:
- Reviewed:
- Description: In the last three decades or so there has been a significant increase in fodder trading, both in terms of the quantity of fodder traded and in terms of its economic value to the industry. Often, this fodder type may be supplied free of charge to graziers in distress due to circumstances that follow natural disasters such as bushfires, drought, and flood. However, because of the obvious urgency arising from these situations, it is suspected that much relief fodder may unintentionally pose an elevated risk for dispersal of weeds since it may be supplied from pasture not normally used for trade in fodder, and therefore is of unknown quality. Previous destructive method to detect weed propagules in bales of fodder are cumbersome, time consuming and of limited ecological and statistical value. Therefore, objective of this paper was to development of a convenient method to assess round pasture hay bales for the presence of weed propagules, to prevent unintentional spread of noxious species in hay bales. To examine this objective known quantity of seeds were added in a series of distributions to bales of seed free pasture hay, and a positive correlation for the amount of seed added per bale with that recovered in core samples was observed. Whilst the number of seeds detected per bale varied according to the distribution of seeds within the bales and the number of cores analysed, the absolute detection of seeds suggests that this sampling method is worthy of further examination. In addition, a pragmatic estimation of bale remnants after stock feeding has been investigated to more closely estimate the potential size of the remaining seed bank. The authors propose that development of this approach is timely, in the light of future climatic uncertainty driving extreme weather events that increase the need for relief fodder, which can be a potential vector for the spread of noxious weed seeds.
- Clements, Daniel, Dugdale, Tony, Butler, Kym, Florentine, Singarayer, Sillitoe, Jim
- Authors: Clements, Daniel , Dugdale, Tony , Butler, Kym , Florentine, Singarayer , Sillitoe, Jim
- Date: 2017
- Type: Text , Journal article
- Relation: Weed Research Vol. 57, no. 4 (2017), p. 257-266
- Full Text: false
- Reviewed:
- Description: Alternanthera philoxeroides is a problematic invasive plant in many regions of the world that is difficult to control once naturalised. It poses a threat to agricultural productivity, biodiversity and social amenity values of aquatic environments. Significant research has been conducted internationally, regarding the efficacy of different herbicides for control of A. philoxeroides. However, no studies have looked at key aspects of control for effective management in an early stage of invasion of aquatic environments, hindering eradication and control programmes. This study evaluates the efficacy of herbicides and surfactants on key A. philoxeroides response metrics, including control of above-ground biomass, below-ground biomass and production of viable stem fragments. This study concluded that glyphosate (isopropylamine salt) minimises viable stem fragment production post-herbicide application, compared with imazapyr and metsulfuron, thus reducing the potential for dispersal throughout catchments and waterways. In contrast, imazapyr and metsulfuron provided more effective control than glyphosate for A. philoxeroides growing on exposed embankments. We propose that an effective management strategy for early invasion of aquatic A. philoxeroides, using herbicides, would be to conduct initial applications of glyphosate to control overwater biomass and limit dispersal of viable stem fragments. Once infestations have been forced back to the embankment, imazapyr or metsulfuron treatments will provide longer term control. © 2017 European Weed Research Society
- Ng, Katherine, Barton, Philip, Macfadyen, Sarina, Lindenmayer, David, Driscoll, Don
- Authors: Ng, Katherine , Barton, Philip , Macfadyen, Sarina , Lindenmayer, David , Driscoll, Don
- Date: 2018
- Type: Text , Journal article
- Relation: Landscape Ecology Vol. 33, no. 1 (2018), p. 109-125
- Full Text: false
- Reviewed:
- Description: Context: Farming practices influence the degree of contrast between adjoining habitats, with consequences for biodiversity and species movement. Little is known, however, on insect community responses to different kinds of edges over time, and the extent of cross-habitat movement in agricultural landscapes. Objective: To determine temporal changes in beetle responses to different farmland-woodland edges, and document cross-habitat movement. Methods: We examined species richness, abundance, and movement across edges between remnant woodlands and four farmland uses (plantings, fallow, annual crops, woody debris applied over crops post-harvest) in southeastern Australia. We used directional pitfall traps to infer movement, and sampled at edges, and 20 and 200 m on both sides of edges, during spring and summer. Results: Detritivore and predator abundance varied between seasons across the edge between woodlands and all farmlands, but seasonal differences were weaker for fallow-woodland and woody debris-woodland edges. Detritivores moved from farmlands towards woodlands, but not across fallow-woodlands and woody debris-woodlands edges during summer. During summer, predators showed short-range movement towards edges from all farmlands except plantings, and towards woody debris from woodlands. Edges showed temporally stable predator richness and higher herbivore richness than adjoining habitats. Conclusions: Farmland use and season interactively affect beetle abundance across farmland-woodland edges. Woody debris can reduce seasonal fluctuations in beetle edge responses and increase permeability for cross-habitat movement, while plantings provide habitat during summer. Edges provide important resources for beetles in adjoining habitats, however, seasonal movement of predators specifically into edges may affect prey assemblages—a link requiring further study. © 2017, Springer Science+Business Media B.V.
Reptiles and frogs use most land cover types as habitat in a fine-grained agricultural landscape
- Pulsford, Stephanie, Barton, Philip, Driscoll, Don, Kay, Geoffrey, Lindenmayer, David
- Authors: Pulsford, Stephanie , Barton, Philip , Driscoll, Don , Kay, Geoffrey , Lindenmayer, David
- Date: 2018
- Type: Text , Journal article
- Relation: Austral Ecology Vol. 43, no. 5 (2018), p. 502-513
- Full Text: false
- Reviewed:
- Description: Agricultural landscapes comprise much of the earth's terrestrial surface. However, knowledge about how animals use and move through these landscapes is limited, especially for small and cryptic taxa, such as reptiles and amphibians. We aimed to understand the influence of land use on reptile and frog movement in a fine-grained grazing landscape. We surveyed reptiles and frogs using pitfall and funnel traps in transects located in five land use types: 1) woodland remnants, 2) grazed pastures, 3) coarse woody debris added to grazed pastures, 4) fences in grazed pastures and 5) linear plantings within grazed pastures. We found that the different land cover types influenced the types and distances moved by different species and groups of species. Reptiles moved both within, and out of, grazed paddocks more than they did in woodland remnants. In contrast, frogs exhibited varying movement behaviours. The smooth toadlet (Uperoleia laevigata) moved more often and longer distances within remnants than within paddocks. The spotted marsh frog (Limnodynastes tasmaniensis) moved out of grazed pastures more than out of pastures with coarse woody debris added or fences and were never recaptured in plantings. We found that most recaptured reptiles and frogs (76.3%) did not move between trapping arrays, which added to evidence that they perceived most of the land cover types as habitat. We suggest that even simple fences may provide conduits for movement in the agricultural landscape for frogs. Otherwise, most reptile and frog species used all land cover types as habitat, though of varying quality. Reptiles appeared to perceive the woodland remnants as the highest quality habitat. This landscape is fine-grained which may facilitate movement and persistence due to high heterogeneity in vegetation cover over short distances. Therefore, intensification and increasing the size of human land use may have negative impacts on these taxa. © 2018 Ecological Society of Australia
Does wing morphology affect recolonization of restored farmland by ground-dwelling beetles?
- Gibb, Heloise, Retter, Bryony, Cunningham, Saul, Barton, Philip
- Authors: Gibb, Heloise , Retter, Bryony , Cunningham, Saul , Barton, Philip
- Date: 2017
- Type: Text , Journal article
- Relation: Restoration Ecology Vol. 25, no. 2 (2017), p. 234-242
- Full Text: false
- Reviewed:
- Description: Revegetation of previously cleared land is widely used to increase habitat area and connectivity of remnant vegetation for biodiversity conservation. Whether new habitat attracts or supports fauna depends on the dispersal traits of those fauna as well as the structure and composition of the surrounding landscape. Here, we examined wing morphology as a key dispersal trait for beetles in a revegetated landscape and asked, first, how it was related to phylogeny (family), trophic position, and body size. Second, we asked if wing morphology of recolonizing (or persisting) beetles varied with habitat characteristics at multiple scales, from microhabitat to landscape context. Third, we examined how common winged and wingless species responded to habitat at multiple scales. We measured the wing morphology of ground-dwelling beetles from a restoration chronosequence, including paddocks, “young” revegetation (8–11 years old), “old” revegetation (14–19 years old), and fenced remnant vegetation. We found that body size and family membership were significant predictors of winglessness, with wingless species of carabids and curculionids being larger than their winged counterparts. We found no difference in the number of sites occupied by winged and wingless species, and no relationship between the wing morphology traits represented in different locations and habitat characteristics or landscape context. Furthermore, the most abundant species of both winged and wingless ground-dwelling beetles had relatively little affinity to any habitat successional stage. Thus, despite intrinsic differences in wing morphology among species of ground-dwelling beetle, we found no evidence that flight-related dispersal limitations influenced recolonization (or persistence) in this landscape. © 2016 Society for Ecological Restoration
Remnant vegetation, plantings and fences are beneficial for reptiles in agricultural landscapes
- Pulsford, Stephanie, Driscoll, Don, Barton, Philip, Lindenmayer, David
- Authors: Pulsford, Stephanie , Driscoll, Don , Barton, Philip , Lindenmayer, David
- Date: 2017
- Type: Text , Journal article
- Relation: Journal of Applied Ecology Vol. 54, no. 6 (2017), p. 1710-1719
- Full Text:
- Reviewed:
- Description: Managing agricultural landscapes for biodiversity conservation is increasingly difficult as land use is modified or intensified for production. Finding ways to mitigate the negative effects of agriculture on biodiversity is therefore critical. We asked the question: How do remnant patches, paddock types and grazing regimes influence reptile assemblages in a grazing landscape? At 12 sites, we surveyed reptiles and environmental covariates in remnant woodland patches and in four paddock types: (i) grazed pasture, (ii) linear plantings, (iii) coarse woody debris (CWD) added to grazed pasture and (iv) fences between grazed pasture. Each site was either continuously or rotationally grazed. Remnant vegetation and other vegetation attributes such as tree cover and leaf litter greatly influenced reptiles. We recorded higher reptile abundance and species richness in areas with more tree cover and leaf litter. For rare species (captured in ≤4 sites <70 captures), there were 5·7 more animals and 2·6 more species in sites with 50% woody cover within 3 km compared to 5% woody cover. The abundance and richness of rare species, and one common species differed between paddock types and were higher in linear plantings and fence transects compared to CWD and pasture transects. Synthesis and applications. Grazed paddocks, particularly those with key features such as fences and plantings can provide habitat for reptiles. This suggests that discrete differentiation between patch and matrix does not apply for reptiles in these systems. Management to promote reptile conservation in agricultural landscapes should involve protecting existing remnant vegetation, regardless of amount; and promote key habitat features of trees, leaf litter and shrubs. Establishing plantings and fences is important as they support high numbers of less common reptiles and may facilitate reptiles to move through and use greater amounts of the landscape. © 2017 The Authors. Journal of Applied Ecology © 2017 British Ecological Society
- Authors: Pulsford, Stephanie , Driscoll, Don , Barton, Philip , Lindenmayer, David
- Date: 2017
- Type: Text , Journal article
- Relation: Journal of Applied Ecology Vol. 54, no. 6 (2017), p. 1710-1719
- Full Text:
- Reviewed:
- Description: Managing agricultural landscapes for biodiversity conservation is increasingly difficult as land use is modified or intensified for production. Finding ways to mitigate the negative effects of agriculture on biodiversity is therefore critical. We asked the question: How do remnant patches, paddock types and grazing regimes influence reptile assemblages in a grazing landscape? At 12 sites, we surveyed reptiles and environmental covariates in remnant woodland patches and in four paddock types: (i) grazed pasture, (ii) linear plantings, (iii) coarse woody debris (CWD) added to grazed pasture and (iv) fences between grazed pasture. Each site was either continuously or rotationally grazed. Remnant vegetation and other vegetation attributes such as tree cover and leaf litter greatly influenced reptiles. We recorded higher reptile abundance and species richness in areas with more tree cover and leaf litter. For rare species (captured in ≤4 sites <70 captures), there were 5·7 more animals and 2·6 more species in sites with 50% woody cover within 3 km compared to 5% woody cover. The abundance and richness of rare species, and one common species differed between paddock types and were higher in linear plantings and fence transects compared to CWD and pasture transects. Synthesis and applications. Grazed paddocks, particularly those with key features such as fences and plantings can provide habitat for reptiles. This suggests that discrete differentiation between patch and matrix does not apply for reptiles in these systems. Management to promote reptile conservation in agricultural landscapes should involve protecting existing remnant vegetation, regardless of amount; and promote key habitat features of trees, leaf litter and shrubs. Establishing plantings and fences is important as they support high numbers of less common reptiles and may facilitate reptiles to move through and use greater amounts of the landscape. © 2017 The Authors. Journal of Applied Ecology © 2017 British Ecological Society
Animal movements in fire-prone landscapes
- Nimmo, Dale, Avitabile, Sarah, Banks, Sam, Bird, Rebecca, Callister, Kate, Clarke, Michael, Dickman, Chris, Doherty, Tim, Driscoll, Don, Greenville, Aaron, Haslem, Angie, Kelly, Luke, Kenny, Sally, Lahoz-Monfort, Jose, Lee, Connie, Leonard, Steven, Moore, Harry, Newsome, Thomas, Parr, Catherine, Ritchie, Euan, Schneider, Kathryn, Turner, James, Watson, Simon, Westbrooke, Martin, Wouters, Mike, White, Matthew, Bennett, Andrew
- Authors: Nimmo, Dale , Avitabile, Sarah , Banks, Sam , Bird, Rebecca , Callister, Kate , Clarke, Michael , Dickman, Chris , Doherty, Tim , Driscoll, Don , Greenville, Aaron , Haslem, Angie , Kelly, Luke , Kenny, Sally , Lahoz-Monfort, Jose , Lee, Connie , Leonard, Steven , Moore, Harry , Newsome, Thomas , Parr, Catherine , Ritchie, Euan , Schneider, Kathryn , Turner, James , Watson, Simon , Westbrooke, Martin , Wouters, Mike , White, Matthew , Bennett, Andrew
- Date: 2019
- Type: Text , Journal article , Review
- Relation: Biological Reviews Vol. 94, no. 3 (2019), p. 981-998
- Full Text:
- Reviewed:
- Description: Movement is a trait of fundamental importance in ecosystems subject to frequent disturbances, such as fire-prone ecosystems. Despite this, the role of movement in facilitating responses to fire has received little attention. Herein, we consider how animal movement interacts with fire history to shape species distributions. We consider how fire affects movement between habitat patches of differing fire histories that occur across a range of spatial and temporal scales, from daily foraging bouts to infrequent dispersal events, and annual migrations. We review animal movements in response to the immediate and abrupt impacts of fire, and the longer-term successional changes that fires set in train. We discuss how the novel threats of altered fire regimes, landscape fragmentation, and invasive species result in suboptimal movements that drive populations downwards. We then outline the types of data needed to study animal movements in relation to fire and novel threats, to hasten the integration of movement ecology and fire ecology. We conclude by outlining a research agenda for the integration of movement ecology and fire ecology by identifying key research questions that emerge from our synthesis of animal movements in fire-prone ecosystems.
- Authors: Nimmo, Dale , Avitabile, Sarah , Banks, Sam , Bird, Rebecca , Callister, Kate , Clarke, Michael , Dickman, Chris , Doherty, Tim , Driscoll, Don , Greenville, Aaron , Haslem, Angie , Kelly, Luke , Kenny, Sally , Lahoz-Monfort, Jose , Lee, Connie , Leonard, Steven , Moore, Harry , Newsome, Thomas , Parr, Catherine , Ritchie, Euan , Schneider, Kathryn , Turner, James , Watson, Simon , Westbrooke, Martin , Wouters, Mike , White, Matthew , Bennett, Andrew
- Date: 2019
- Type: Text , Journal article , Review
- Relation: Biological Reviews Vol. 94, no. 3 (2019), p. 981-998
- Full Text:
- Reviewed:
- Description: Movement is a trait of fundamental importance in ecosystems subject to frequent disturbances, such as fire-prone ecosystems. Despite this, the role of movement in facilitating responses to fire has received little attention. Herein, we consider how animal movement interacts with fire history to shape species distributions. We consider how fire affects movement between habitat patches of differing fire histories that occur across a range of spatial and temporal scales, from daily foraging bouts to infrequent dispersal events, and annual migrations. We review animal movements in response to the immediate and abrupt impacts of fire, and the longer-term successional changes that fires set in train. We discuss how the novel threats of altered fire regimes, landscape fragmentation, and invasive species result in suboptimal movements that drive populations downwards. We then outline the types of data needed to study animal movements in relation to fire and novel threats, to hasten the integration of movement ecology and fire ecology. We conclude by outlining a research agenda for the integration of movement ecology and fire ecology by identifying key research questions that emerge from our synthesis of animal movements in fire-prone ecosystems.
Managing uncertainty in movement knowledge for environmental decisions
- Smith, Annabel, Kujala, Heini, Lahoz-Monfort, José, Guja, Lydia, Barton, Philip
- Authors: Smith, Annabel , Kujala, Heini , Lahoz-Monfort, José , Guja, Lydia , Barton, Philip
- Date: 2019
- Type: Text , Journal article
- Relation: Conservation Letters Vol. 12, no. 3 (2019), p.
- Full Text:
- Reviewed:
- Description: Species’ movements affect their response to environmental change but movement knowledge is often highly uncertain. We now have well-established methods to inte-grate movement knowledge into conservation practice but still lack a framework to deal with uncertainty in movement knowledge for environmental decisions. We provide a framework that distinguishes two dimensions of species’ movement that are heavily influenced by uncertainty: knowledge about movement and relevance of movement to environmental decisions. Management decisions can be informed by their position in this knowledge-relevance space. We then outline a framework to support decisions around (1) increasing understanding of the relevance of movement knowledge, (2) increasing robustness of decisions to uncertainties and (3) improving knowledge on species’ movement. Our decision-support framework provides guid-ance for managing movement-related uncertainty in systematic conservation plan-ning, agri-environment schemes, habitat restoration and international biodiversity policy. It caters to different resource levels (time and funding) so that species’ movement knowledge can be more effectively integrated into environmental decisions. © 2018 The Authors. Conservation Letters published by Wiley Periodicals, Inc.
- Authors: Smith, Annabel , Kujala, Heini , Lahoz-Monfort, José , Guja, Lydia , Barton, Philip
- Date: 2019
- Type: Text , Journal article
- Relation: Conservation Letters Vol. 12, no. 3 (2019), p.
- Full Text:
- Reviewed:
- Description: Species’ movements affect their response to environmental change but movement knowledge is often highly uncertain. We now have well-established methods to inte-grate movement knowledge into conservation practice but still lack a framework to deal with uncertainty in movement knowledge for environmental decisions. We provide a framework that distinguishes two dimensions of species’ movement that are heavily influenced by uncertainty: knowledge about movement and relevance of movement to environmental decisions. Management decisions can be informed by their position in this knowledge-relevance space. We then outline a framework to support decisions around (1) increasing understanding of the relevance of movement knowledge, (2) increasing robustness of decisions to uncertainties and (3) improving knowledge on species’ movement. Our decision-support framework provides guid-ance for managing movement-related uncertainty in systematic conservation plan-ning, agri-environment schemes, habitat restoration and international biodiversity policy. It caters to different resource levels (time and funding) so that species’ movement knowledge can be more effectively integrated into environmental decisions. © 2018 The Authors. Conservation Letters published by Wiley Periodicals, Inc.
- «
- ‹
- 1
- ›
- »